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Abstract

Gradient Domain Vertex Connection and Merging
by
Weilun Sun
Master of Science in Computer Science
University of California, Berkeley
Professor Yi-Ren Ng, Chair

Recently, gradient-domain rendering techniques have shown great promise in reducing
Monte Carlo noise and improving overall rendering efficiency. However, all existing gradient-
domain methods are built exclusively on top of Monte Carlo integration or density estimation.
While these methods can be effective, combining Monte Carlo integration and density esti-
mation has been shown (in the primal domain) to more robustly handle a wider variety of
light paths from arbitrarily complex scenes. We present gradient-domain vertex connection
and merging (G-VCM), a new gradient-domain technique motivated by primal domain VCM.
Our method enables robust gradient sampling in the presence of complex transport, such
as specular-diffuse-specular paths, while retaining the denoising power and fast convergence
of gradient-domain bidirectional path tracing. We show that G-VCM is able to handle a
variety of scenes that exhibit slow convergence when rendered with previous gradient-domain
methods.
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Chapter 1

Introduction

The core of light transport simulation methods is to numerically solve the complex rendering
equation[9]. Over the years, numerous solutions have been proposed; yet capturing all paths
of light in both a fast and efficient manner remains challenging and illusive. One popular
class of techniques is based on directly estimating the pixel intensities by sampling potential
light paths between the camera and light sources. Bidirectional path tracing (BDPT) |11},
18] is one of the most general techniques along this line of work. The power of BDPT comes
from combining multiple complementary sampling techniques through multiple importance
sampling [19]. Despite the success of BDPT in many scenarios, specular-diffuse-specular
(SDS) paths which contribute to important visual effects are still problematic for the method.
Another separate class of techniques is based on density estimation. The representative
work along this line is photon mapping (PM) [§] and its variants|3, [2, |15]. Complementary
to BDPT, PM based methods are very efficient in handling SDS paths, but have difficulty
sampling diffuse/glossy interactions. To take the best of both classes, vertex connection and
merging (VCM)[1] or unified path sampling (UPS)[4] was proposed to unify them in the same
framework. The key to the unification is to treat PM as a probabilistic connection based
sampling technique which aligns well with the BDPT formulation. Through the combination,
VCM is able to inherit both BDPT’s fast convergence in multiple diffuse/glossy interactions
and PM’s ability to handle SDS paths. It is considered a leap forward towards robust light
transport simulation.

Despite VCM’s robustness it still suffers from noise, like other primal domain techniques.
Recently, gradient-domain methods have demonstrated an ability to generate smooth images
by extending standard pixel estimators with correlated gradient samples. Using a screened
Poisson reconstruction of both the original pixel values and gradients, the resulting rendered
image is often much smoother than those generated by primal domain counterparts.

The concept of gradient-domain rendering was first proposed in gradient-domain metropo-
lis light transport|12] as a Markov chain Monte Carlo method. Later, gradient-domain path
tracing[10] extended standard path tracing to the gradient domain through sampling cor-
related offset paths from the base paths. Gradient-domain bidirectional path tracing (G-
BDPT)[13] was then proposed to generate offset paths from base paths sampled by BDPT
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in an efficient way, enabling robust gradient sampling in scenes with highly occluded light
sources. Temporal gradient-domain path tracing further extended G-PT in animation
rendering which is orthogonal to our discussions.

We present gradient-domain vertex connection and merging (G-VCM), an extension of
VCM to the gradient domain. Formulating gradient-domain density estimation in the path
integral formalism is an open problem we address in order to combine G-BDPT and density
estimation based gradient estimates. To do so, we propose a new gradient sampling strategy,
gradient-domain vertex merging. Our new strategy inherits the path reuse power of density
estimation to handle complex light transport, e.g. SDS paths, and is easy to combine with
other complementary gradient-domain strategies. We use multiple importance sampling to
combine G-BDPT and gradient-domain vertex merging strategies across (potentially) many
vertices on sensor subpaths.

Our contributions include:

« a method to generate correlated samples and gradient estimates using a vertex merging
strategy that is compatible with the path integral framework (Chapter @),

« a robust gradient estimator using vertex connection and merging combined with mul-
tiple importance sampling (Chapter [5)), and

o anew rendering algorithm, G-VCM, able to robustly sample light paths in both primal
and gradient domains, greatly improving overall image quality in challenging scenes
compared to previous methods (e.g., see Figures and H; Chapter m)

G-BDPT G-PM VCM/UPS G-VCM(Ours) | REF(VCM/UPS)
Iters: 281 Iters: 834 Iters: 771 Iters: 170 Iters: 31567
Time: 59.4899m Time: 1.0159h Time: 59.8237m [Time: 59.3760 Time: 40h

relMSE: 0.01088 relMSE: 0.02761 relMSE: 0.00423 IrelMSE: 0.00279

Figure 1.1: Equal time (1 hr) comparison in the Car scene. Here, G-BDPT iterations
correspond to samples per pixel. Our method significantly reduces noise compared to
VCM/UPS|1} 4]. G-BDPT[13] completely misses the SDS path contribution on the seats
and G-PM[5] struggles with the glossy window frame and wheel hub. Our method robustly
captures all of these transport contributions.

In concurrent work, gradient-domain photon density estimation (G—PM) proposes gra-
dient sampling in the density estimation framework. G-PM is shown to outperform G-BDPT
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and its primal domain counterpart, progressive photon mapping[3], in scenes dominated by
SDS paths. However, this formulation relies (in a unidirectional sense) exclusively on den-
sity estimation. Without multiple integration techniques, G-PM remains susceptible to
robustness issues with low photon density, i.e., as light paths that travel through multi-
ple diffuse/glossy reflections (Figure . We elaborate on the key differences between our
gradient-domain vertex merging strategy and G-PM in Section [7.2



Chapter 2

Background

We quickly provide a technical overview of background in both primal- and gradient-domain
path-space and density estimation.

2.1 Multiple Importance Sampling

Multiple importance sampling (MIS)[19] is a way to reliably combine multiple Monte Carlo
(MC) estimators of the same integral. Consider the integral I = [, f(x)du(z), where f is a
real valued function and p is a measure over the integration domain €2. An MC estimate of
I using MIS is

=3 S (X)) F(X) [ Xe), (21)

where n distributions pi, p, ..., p, are sampled at points X; ; (the j* of the n; independent
samples drawn from distribution p;), and w(X; ;) is the weight of the individual estimators
at X; ;. The power heuristic w(X; ;) = [nipi(Xi,j)]ﬁ/Z’,gzl[nkpk(Xi,j)]/B is a provably good
strategy for the combination; using 5 = 1 corresponds to the balance heuristic which has
been shown to work well in practice.

2.2 Bidirectional Path Tracing

We follow Veach’s path space formulation[17], where the goal of light transport simulation
is to estimate pixel integrals

1= | f)du(x). (22)

where x is a path consisting of k + 1 vertices xg...xy, 1 is the area product measure du(x) =
dA(xg)...dA(zy),  is the set of all paths contributing to the sensor location, and f is the
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Figure 2.1: Path space integral.

path measurement contribution function of the following form

k=1
f(x) = Le(w0)G(zo » 21)Welzy) [] plwict, 21, wi1) Gl 5 Tis1), (2.3)

=1

where L. is the emitter radiance, G the geometry term, p the BRDF and W, the sensor
importance (see the example in Figure .

As illustrated in Figure bidirectional path tracing samples the path integral by first
generating an emitter subpath y = y...y,, -1 and a sensor subpath z = 2...2,,1 for each
pixel. Then, n; x ng full paths can be constructed by connecting any pair of vertices, y,
and z;, chosen from y and z respectively. Let x,; = yo...Ys2t...20 = Zo...Z5Ts41...2 be the full
path constructed by connecting y, and z; and p;(x,,) be the probability of sampling path

X, by connecting at x; and z;41. Then, f(x,;) / ps(Xs+) can be used as an estimator of the
partial path integral contributed by all paths of k vertices. Finally, to obtain an unbiased
estimator of the path integral over all paths, the estimators from all n; x ng full paths are

combined as A
I= Z ZWS(Xs,t)f(Xs,t)/pS(Xs,t>7 (2.4)

s>0t>0

where wq(Xs¢) = ps(xs4)? / S [pi(xs.4)]? is the multiple importance sampling weight to take
all kK — 1 connection strategies of sampling path x,, into account.

“t=Ls+1
Figure 2.2: BDPT Paths.
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(4)

“t—1
Figure 2.3: VCM paths.

2.3 Vertex Connection and Merging

Suppose we generate N pairs of emitter and sensor subpaths Often N is set to the number
of pixels, to enable stratified sensor sampling. We denote y* and z as emitter and sensor
subpaths generated for pixel .. BDPT evaluates each pair separately through connections.
That is, for pixel ;, BDPT makes connections only between y and z? to sample full paths.
VCM extends BDPT by adding a vertex merging strategy where all N emitter subpaths
can potentially be merged with the sensor subpath. Figure shows an example of such
a path, y). Vertex merging happens when any of the vertices of the emitter subpath
falls within the merging kernel K, of a sensor subpath vertex. K, is a 2D merging kernel
with support radius r centered at zt(l). For simplicity, we assume K, is the uniform disk
kernel K, (zgi),ygl) (7r? )_ if ||z 2 ys+1 | <7 and 0 otherwise. Consider y\) in Figure
as an example. Since yi "}y falls in the kernel of 20 vertex merging happens and an

extended path x{, = (] ), yg )yiﬁ)lz() z(()) is generated. Note that yi +)1 introduces an extra

integration dimension over the blurring kernel K. For simplicity, we omit superscripts in
the following discussions. The vertex merging strategy approximates the path integral with
density estimation on all extended paths collected in the merging kernel. The resulting
vertex merging estimator is

s t—1
Tyas(xs) = Ko yern) (T an(0)lp(zees, 20 [T o (20)] (25)
n=0 n=0

% forn =0
_ p(yo)p(y1) 7
aL(yn) ) pWim1.yi i 1) Gyiryic) forn > 0 (2.6)
p(Yit1) ’
w forn=0
B p(20)p(21 ’
aE(Z") ) plzic1,zizin1) Gz ziv) forn >0 ’ (2.7)
p(zit1) ’

where ay, and ag are the Veach style weights |17] for each vertex in emitter and sensor sub-
path respectively. The core of VCM is to combine the BDPT (vertex connection) estimator
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denoted as Iyc(x,,:) with the vertex merging estimator Iy (x; ;) using multiple importance
sampling. To do this, we can think of the extended path x7, as an approximation of the
physically valid path yg...ys2;...29. The probability of sampling this path is

*

p(xs,t) = p<y0'-'yszt-'-ZO)pacc<X:7t)> (28)

where p(yo...ysz:...20) is the probability density of sampling all the vertices of the physically
valid path. pacc(x;t) is the approximate probability of the path being accepted. When y; is
not a specular interaction, pac.(x;;) = p(ys — Ys+1)mr? which approximates the probability
that ys.1 falls inside the merging kernel by assuming that the probability distribution is uni-
form inside the kernel, otherwise pacc(x;t) = 1. The final VCM estimator is the combination
of the sum of the vertex connection and merging contribution:

Iverm = Cve + Cyu (2.9)
CVC = Z ZWVC,S (X87t)f(xs,t)/pVC,s (Xs,t) (210)
§>0 >0

N . .
Oy = D3> wvars (X)) Iy ar(x9). (2.11)

j=1s>1t>1

Here, the meaning of f(x,:) and pycs(Xs:) are the same as those in Equation because
the BDPT estimators are inherited. The subscript V' is used to stress that BDPT is called
vertex connection in VCM. wy¢ s(xs,) is different because vertex merging can potentially
sample the same paths that vertex connection samples. wyc s in Equation and wyazs
in Equation [2.11| can be derived by considering all potential strategies of sampling the same
path. That is

[pves(xs0)]°

wyes(Xet) = — (2.12

(et) = S o)l + NPy )
, (\18

a1 P (6 (2.13)

S v on(xU)]8 + [INpyara (x))]°

In Equation , the meaning of the numerator and 3-*_![pyc.n(%.,)]? in the denominator
is identical to those in the expression of w,(x,;:) in Equation which takes all connection
strategies into account. The extra [Npyc., (xgt))]ﬁ term in the denominator is to consider all
the merging strategies, where py s, (Xst) = Pvon(Xst)Dacen(Xs) is the probability density
of sampling x,,; through merging at z,;1 and paeen(Xs:) is the acceptance probability. Note
that Paceo(Xst) = Dacek—1(Xst) = 0 because we do not merge at the sensor or the light source.
Factor N takes into account the fact that we use this strategy for all N emitter subpaths.
Equation [2.13| can be interpreted in a similar way, where the denominator is the powered
sum of the probability of all connection and merging strategies and the numerator is the

powered probability of the strategy being used.
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2.4 Gradient-Domain Bidirectional Path Tracing

G-BDPT extends BDPT by generating correlated samples for neighboring pixels using pairs
of emitter y and sensor z subpaths|13]. These samples are used to obtain a correlated es-
timator of the path integrals of the pixel’s neighbors, and to estimate gradients by finite
differencing. To do so, a deterministic and reversible shift mapping 7;;, which we discuss
in depth shortly, is first applied to the sensor subpath z to obtain an offset sensor subpath
z°% = T;;(z) (Figure , where we assume i and j are indices of neighboring pixels. For
efficiency, G-BDPT classifies all vertices as connectable or unconnectable, with a roughness
threshold; specifically, if a vertex’s material roughness is too large, it is connectable, other-
wise not. Unlike BDPT, G-BDPT only connects vertex pairs if both of them are connectable.
With this classification, both the base and offset sensor subpaths are connected to the emitter

subpath y to construct full paths for both pixels. Given a constructed base path x,, and its

off
st

corresponding offset path as x2, pixel i’s path integral estimator is I; = f(xs.) / Ps(Xst)

and pixel j’s correlated path integral estimator is I; = f(x3) / Ps(Xs0)|T5;(X5¢)|, where

T (xs)| = ‘8283...8zfﬁ / (820...82t)’ is the determinant of the Jacobian of the shift map-
ping for the change of integration variables. I; — I; can be used to estimate the gradient,
however this estimator can be biased since the mapping does not guarantee that pixel j’s
full integration domain is covered. To solve this, the correlated estimator is combined with
its neighbor’s base path estimator using MIS. And so, the contribution to the full gradient

estimator is -
Fi(xO)I T (Xs0)| — fi(%st)

Ci‘ = W; ‘,S(Xs, ) y (214)
’ ;) tZZO ’ ' ps(xs,t)
where 5
S XS
wij,s(Xsp) = Ps(Xs) (2.15)

Sio[pr(xs.)]? + [pe (D) T} (x2D)]1°
is the MIS weight. The first term in the denominator considers all connection strategies of

the base path. The second term in the denominator takes the reverse mapping into account.
That is, the same gradient can also be sampled through pixel j. If pixel j sampled x‘s’ﬁ for

Ys ®Unconnectable

%x% —0— Y @Connectable

Zc/zgﬂ: Manifold Zb Preserve Half Vectors
Perturbation

Figure 2.4: G-BDPT paths.
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the base path, then the same gradient sample would be generated through inverse mapping
Tﬂ(x;’fg) Note that the full gradient estimator is from the contributions of 2 strategies Cj;

Shift Mapping Sensor Sub Path

As illustrated in Figure[2.4] assume the first and second connectable vertices along the sensor
subpath z are z, and z. respectively. The offset path can be constructed as follows. First, a
sensor ray from the neighbor pixel with the same offset as that of the base pixel is initiated.
Then, we recursively trace this ray to find vertices zgT22%.. 20 that correspond to 2g2;...2. If
the ray hits an unconnectable vertex, we deterministically trace the recursive ray such that
the vertex shares the same half vector as its base vertex. Then, we construct z%...2°% such
that 2°T = 2., which is done by either a simple connection if z. is 2,’s successor or a manifold
perturbation[7] preserving half vectors otherwise. Here, the half vector of a vertex is the
normalized average vector of the incoming and outgoing ray direction vectors. The BRDF
value of many specular or glossy materials is only determined by the half vector. This way,
by preserving half vectors on unconnectable vertices, high correlation between the offset and
base paths can be obtained in G-BDPT. Manifold perturbation is a method to construct a
new path from a given path such that the end vertex of the new path is at a target location
and all half vectors of its unconnectable predecessors are preserved.
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Chapter 3

Overview

We present our method G-VCM in this section. Algorithm [If outlines a single G-VCM
iteration, where the pipeline is similar to that of VCM, with additional gradient sampling
and evaluation steps.

At each iteration, we first sample and store all emitter subpaths and build a kd-tree for
their connectable vertices to perform fast queries (lines 1-8). For each pixel, we sample and
shift map a sensor subpath to generate four offset sensor subpaths for its neighbors (lines
10-15). We evaluate primal and gradient contributions with connection strategies using
the base sensor subpath, its four offset paths and emitter subpaths that correspond to the
pixel, similarly to G-BDPT (see Section ; lines 16-18). The only difference here is that,
to combine with our new vertex merging strategies, we need to modify the MIS weights
previously used for G-BDPT. We introduce these modifications in Chapter

Next, we perform vertex merging by looking up emitter vertices inside the merging kernel
of each connectable vertex along the sensor subpath (lines 19-24). We obtain the primal
contribution of vertex merging with standard VCM (see Section[2.3). A major challenge here
is how to generalize the original vertex merging to gradient sampling and how to combine
it with vertex connection strategies. We introduce our gradient-domain vertex merging
strategy in Chapter [4| and show how to compute MIS weights for vertex merging to combine
with vertex connection in Chapter [5]
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Algorithm 1 G-VCM Iteration

1: Initialize empty vertex array Y
> For collecting connectable vertices.

2: for pixel ¢ in all pixels do

3: Sample and cache emitter subpath y;

4: for connectable vertex y in y; do

5: Append y to P

6: end for

7: end for

8: Build kd-tree index for Y

9: for pixel 7 in all pixels do

10: y <Y, > Retrieve y,
11: Sample sensor subpath z

12: Initialize empty offset sensor subpaths z°f = {z9%, ... 29}
13: for pixel j in pixel ¢’s neighbors do

14 29"« T};(z) > Sensor subpath shift mapping
15: end for

16: for strategy (s,t) in all connection strategies do

17: EvaluateConnection(y, z,z°%, 5, 1)

> G-BDPT contribution
> with modified MIS weights in Section [5]

18: end for

19: for connectable vertex z; in z do
20: for emitter vertex y € Y in z;’s merging kernel do
21: y, s < GetPathAndPredecessorIndex(y)
22: EvaluateMerging(y, z,z°%, s, t)

> Gradient-domain vertex merging in Section
> with MIS weights in Section

23: end for

24: end for

25: end for
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Chapter 4

Gradient Domain Vertex Merging

We will generalize the vertex merging strategy in VCM to gradient sampling. We use the
same threshold as described in Section [2.4]to decide whether a vertex is connectable and only
perform vertex merging at connectable vertices. In this way, two scenarios arise, depending
on where merging happens as illustrated in Figure : either occurs at or after z. (case 1),
or at z, (case 2).

Ys off
Zp

Ys+ r‘ A
=20
1) "¢ "¢

\

=
Case b

Case (2)

Figure 4.1: Gradient-domain vertex merging cases.

Recall that z;, and z, are the first and second connectable vertices along the sensor subpath
as in Section [2.4] In both cases, we use the same vertex merging estimator Iy, in Equation
for the base path. Note that we only illustrate an example emitter subpath for case (1)
in Figure and case (2) is discussed in separate figures.

Next, we describe how to generate the correlated estimator for the offset path in each
case. Case (1) is simpler than case (2) because the base and offset sensor subpaths share
the same emitter subpath and merging kernel. So let’s deal with case (1) first. Assume
merging happens at sensor subpath vertex z;(t > ¢). We consider how Equation should
change to obtain the correlated estimator from the offset path. All a should stay the
same since all emitter vertices are sampled in the same way. The BRDF term p(z;_1, 2, ys)
should be p(z°%, 2, y,). Note that 22T and 2z,_; are the same vertex when ¢t > c. For
ag, the measurement values should be from the corresponding offset vertices instead and
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e

Figure 4.2: The case where y, is connectable.

the probability should stay the same. To account for the change of variables in the shift
mapping, we also need to multiply the determinant of the Jacobian. Putting them together,
we have

t—1
(x5 ,) = UG )p(2, 2z ya) [T o ()| T (2), (4.1)
n=0

where U(x?,) = K, (2, Ys11)[I]5=0 @L(yn)] is common for base and offset sensor subpaths,
|T7;(2)| is the determinant of the Jacobian of shift mapping and

We<zst>G)<z(8ff§>zi’ff> forn =0

off p(z0)p(z1 ’

) = 4.2

ap (Z ) P(Z;)ElyziHvzgfl)G(Z;)ﬂHZ;‘)fl) for n.> 0 ( )
p(zit1) ’

are the weights for offset sensor subpaths. Note that for ¢t > ¢, z, and 2°f are the same
vertex.

In case (2), the major problem is that, since 2, and 22T do not share the same merging
kernel, it is unclear how we can generate the correlated estimator under the density estima-
tion formulation in Equation[2.5] To solve this problem, we propose to construct a physically
valid full path as the offset path and treat the sampling process as a probabilistic connection.
Assume the base emitter path and sensor path are y and z respectively and the offset sensor
subpath is z°%. Depending on the material property of y,, our gradient sampling method is
split into the two cases as follows.

Scenario: y, is connectable

In this case, we simply connect y, and 25T to form the offset path x°T = yq...y,20%.. 20T as in

Figure . The measurement contribution f(x°%) can then be evaluated for the offset path.
Assume that the extended base path is x* = yg...ys¥ys112p---20. Then the probability density
of sampling this path is

PN (x*) = p(Yo--Yszs--20)p(yss1)Tr2 e, (4.3)
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which is the probability of sampling and accepting the base path, multiplied by the shift
mapping’s determinant of the Jacobian from zy to z,, J, = ’820...821, / (azgﬁ...azgﬁ‘)\. This

way, the offset estimator is simply I9f, = f(x°f) / p°f(x

Scenario: y, is unconnectable

In this case, we can still use simple connection to obtain consistent estimators. However, since
ys is specular or highly glossy, the connected offset path is likely to have zero contribution,
making the gradient estimator noisy. To solve this, as illustrated in Figure we utilize
manifold perturbation [7] to obtain the offset path in this case. Assume that the closest
connectable predecessor of y; is y4. We perturb ys.1 to yg’fl = 22 such that half vectors of
vertices in between y4 and ys,1 are preserved. For the mapping to be reversible, we also check
if yoff +1 can be perturbed back to y,,;. Note that this reversibility is biased, but converges
consistently as the merging kernel » — 0 progressively. If the reversibility test fails, we set
the offset path’s contribution to 0, otherwise, a full offset path x°% = yq...yay3", .. y;’ﬂzgﬂ...zgﬂ
can be constructed and its measurement value can be evaluated as f(x°T). Next, we derive
p°f(x*), the probability of the offset path being sampled. To do this, we observe that any
base chain yg...ys+1 with the same half vectors for all unconnectable vertices will be perturbed
to the same offset path as illustrated in Figure 4.4 Let’s denote the half vector offset space
of the base and the offset chain as follows:

{Yar1--ys} = {0411...05}

off i
{yd+1 o= {0d+1 oo}
where 0g441...05 correspond to the half vectors of y4.1...ys and od b1
half vectors of y3T e %%, Then, we arive at the following equation for p

P (x*) = p(2p...20) Lp(Yo- - Ysi1) JyTr2, (4.4)

where J, is the same determinant in Equation[4.3]that accounts for the change of variables in
the sensor subpath, 772 normalizes the merging kernel K, at z;, and J, = ‘8yd+1...8ys / (OySt,.. 8y§ﬁ)‘

0%t correspond to the

accounts for the change of variables from y441...ys to y3T,...yo%

Figure 4.3: The case where y, is unconnectable.
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yoi, Share Half Vectors yoll,
Ya —0 —o— [
% ‘*/{ t N Fixed

Yd+1 YsF1

@ Specular
® Glossy
@ Connectable

Figure 4.4: An example of a specular/glossy chain.

To derive J, we use the half vector offset space as an intermediate representation, similarly
to G-MLT [12]. That is

-1

oyt ..oyot
yd+l ys , (45)

off off
003 1 ...003

(90d+1 . .805
off ff
003 | ...00%

Ya1---0ys

J pum—
Y 80d+1...803

where the middle term evaluates to 1 because the Jacobian 0o04y1...004 / (009K, ...00M) is
an identity matrix by nature of the manifold perturbation. The left and right terms can
be obtained from the derivative matrices of the half vector manifold exploration constraint
functions [7]. We reuse the open source Mitsuba implementation of this component [6],
which takes into account the case where the chain comprises glossy and specular vertices (by
omitting certain rows and columns in the matrices).

Given p°f(x*), the offset pixel’s path integral is I8, = p]:,g;?).
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Chapter 5
MIS for G-VCM

In Chapter 4] we derived how to estimate a neighboring pixel’s integral using vertex merging.
To robustly sample gradients, we need to combine all estimators from vertex connection and
vertex merging using MIS. Assume a pair of gradient base path x = z...z, and its offset
x° = 70T 201 is generated using strategy VC or VM. Its corresponding gradient estimator
is gvervm = Iveyvm — [{}HC/VM. To obtain MIS weight for this estimator, we consider
all potential strategies to sample the same path pair. Depending on which pixel initiates
the paths, there are 2 basic categories. One possibility is that pixel ¢ sampled x and then
suggested x°f for pixel j. In this case, path x can be sampled by connecting or merging
between every 2 consecutive vertices. We call this category active strategies. The powered

sum of all active strategies’ pdf is

pact ng pVMz [NpVCZ< )]ﬁ (51)

The other possibility is that pixel j sampled x°" and suggested x for pixel i. In this case, path

x°f can also be sampled by connecting or merging between every 2 consecutive vertices. We
call this category passive strategies. For passive strategies to compare with active strategies,
we need to multiply each of passive strategies’ pdf with their corresponding reverse mapping
Jacobian to convert them to base path’s area probability density. The powered sum of all
passive strategies’ converted pdf is

Ppas(X Z pvari(x°)])” + [Npyea (x)7)| T, (x°7) ). (5.2)
1=0

In summary, the MIS weight is the powered proportion of the strategy being used to all
potential active and passive strategies:

[pveyvars(x))°
Pact(X) + Dpas(x°) (5.3)

Wve/vM,s (X7 XOH) =
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Chapter 6

Implementation Details

We implemented our method on top of the publicly available G-BDPT implementation in
the Mitsuba renderer[6] and followed the pipeline in Algorithm .

For each sensor subpath, we decide the merging kernel radius of the first connectable
vertex using ray differentials such that the size of the merging kernel projected onto the
sensor is about the same as the pixel filter size. We use this kernel size to prevent the
smoothing effects of the merging kernel and gradient reconstruction from conflicting with
each other.

Adaptive Merging Kernel We find that using the same kernel size along a sensor subpath
is detrimental to both VCM and G-VCM since, unlike connection estimators, merging esti-
mators are highly correlated (especially at “deeper” vertices along the sensor subpath). This
correlation corrupts the MIS weights, which assume independent estimators. Given this,
we shrink the initial merging radius based on vertex material roughness along the sensor
subpath: for sensor subpath vertex z, (on z), we use a kernel radius of r, = 0.507Gt-1p,_
where 7(z;_1) is the material roughness at vertex z;_;. Note that we estimate an initial
merging radius 7 using ray differentials. Figure[6.1] shows the impact of adapting the kernel
merging radius in VCM: bright speckles on the wall are caused by merges that occur after
the first connectable vertex of the sensor subpath. We smooth these speckles out using an
adaptive kernel.

Reconstruction As with previous work, any reconstruction technique can be used to com-
bine primal and gradient estimation obtained from our method. We tested L1 and L2
reconstructions, and the recent control variate-based reconstruction technique [16] can also
be used given additional variance statistics.
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Figure 6.1: Comparison between with and without adaptive kernel in VCM with 16 itera-

tions.
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Figure 6.2: Error (relMSE) plots of all 5 test scenes, comparing G-BDPT, G-PM, G-VCM
using L1 reconstruction and VCM.
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Chapter 7

Results and Discussions

We compare our method to VCM, G-BDPT and the concurrent work G-PM, all implemented
in the Mitsuba renderer [6]. Since the code for G-PM was not readily available at the time,
we implemented G-PM ourselves. For our G-PM implementation, we only use vertex merging
at the first connectable sensor subpath vertex and completely take out connection strategies
in G-VCM. To obtain consistent convergence, the MIS weights introduced in Chapter
should be modified such that the pdf of all strategies not being used is set to 0. Our G-
PM implementation is not identical to the original G-PM, but we show strong similarities
between the two in Section The subtle difference should not change the effectiveness of
the algorithm.

All of our experiments are done on a desktop with 12-core Intel i7-5930K 3.5GHz processor
and 20GB memory. Our VCM implementation takes about twice as much time per iteration
compared to the original BDPT implementation due to the photon gathering overhead. For
the same reason, our method has about 60% overhead per iteration compared to G-BDPT.
We only show L1 reconstruction for comparison in this section and pick the reconstruction
parameter a = 0.3 for all gradient-domain methods. We use a more conservative v than
used in previous works because our scenes involve many glossy objects. We set the BRDF
roughness threshold to 0.01 and merging kernel radius reduction ratio to 0.9 for all methods.
Full resolution images of all methods using both L1 and L2 reconstruction are provided in
our supplemental materials.

We use five test scenes: Glasses, Lamp, Bottle, and Bookshelf (Figure and Car (Fig-
ure[L.1)). In Bottle and Lamp, we modified the original scene to include SDS paths and glossy
reflections. As with previous gradient-domain methods, we use relMSE = average[(X —
R)?/(R? + 0.001)], where R is the reference pixel color and X is the estimated image color.
We discard the 50 pixels with highest error due to the corruption from strong light paths
that reach the sensor through specular-only interactions.

Figure shows the relative mean squared error (relMSE) convergence curve for all
scenes. We can see that our method has lower relMSE than VCM in all test scenes. In
Glasses and Bottle, G-BDPT has almost flat convergence due to SDS paths that it fails
to efficiently capture. In Car, Bookshelf and Lamp where the contribution of SDS paths
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is relatively small, G-BDPT has less error than our method initially due to its smaller
overhead, but it slows down significantly and gets surpassed by our method after a few
minutes when SDS paths become its bottleneck. On the other hand, although G-PM is very
good at handling SDS paths, the overall image quality is hardly competitive due to the large
contribution from multiple diffuse/glossy interactions in our test scenes. In comparison, our
method has robust convergence and outperforms VCM, G-BDPT and G-PM in the long run.

In Figure[l.I]and Figure[7.4] we show equal time comparison of our test scenes. Thanks to
the denoising power of gradients, our method achieves significant noise reduction compared to
VCM. Compared with gradient-domain methods, our method robustly captures all potential
light paths across every scene. G-BDPT has difficulty in sampling SDS paths, such as the
interior of the Car and the caustics from the bottle (seen through the goblet) in Bottle. Here,
our method is able to sample these paths well using vertex merging strategies. Although
G-PM is also able to capture SDS paths, it generally fails on glossy surfaces (as its primal
domain counterpart). Examples of this case include the glossy reflection of the lamp in
Bookshelf and of the table in Glasses. Here, our method is able to rely more on the more
efficient vertex connection strategy. Overall, our method demonstrates all-round performance
improvements by leveraging the best of both vertex connection and merging schemes, where
techniques that rely exclusively on connection or merging can have difficulty sampling certain
transport paths.

7.1 Limitations

Although our method is generally more robust than G-PM and G-BDPT, there are still
certain types of light paths that are hard to capture even with G-VCM. For example, in
the first row of insets for Lamp, the yellowish glossy caustics near the bottom of the glass
egg are poorly captured by all methods. This is because neither vertex connection nor
vertex merging is efficient at handling specular-glossy interactions. In addition, our method
inherits the low frequency image assumption as with all current gradient-domain rendering
techniques. Therefore, G-VCM may perform worse than VCM in scenes with very rich high
frequency details.

7.2 Comparison with G-PM

In this section, we illustrate the similarities and differences between case (2) of the vertex
merging part of our method introduced in Chapter |4/ and the concurrent work G-PM [5]. In
general, G-PM shift maps the base photon from the base sensor vertex’s kernel to the offset
sensor vertex’s kernel, while our method directly shift maps the base photon to the offset
sensor vertex. Both methods apply different shift mapping depending on the connectability
of a photon’s predecessor.
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G-PM G-VCM

Figure 7.1: G-PM and vertex merging of G-VCM in connectable predecessor case.

In the connectable predecessor case as shown in Figure [7.1], G-PM first decides the offset
photon’s position y;,; within the offset sensor vertex 20™s kernel such that the base and
offset photon positions in the local frames of their kernels are preserved. Then, a ray from y;
to yr,; is fired to find the physical intersection point y°F; in the scene, which is then used as
the offset photon for the offset kernel’s density estimation. In this case, our method directly
connects y, and 22T and computes the offset path’s contribution as introduced in Chapter .

In the unconnectable predecessor case as shown in Figure [7.2] G-PM first finds the inter-
section point yg’fl in the scene following the same procedure as in the connectable predecessor
case. Then, a manifold perturbation is performed to move the base photon vertex y,,1 to the
offset photon vertex ygffl, preserving half vectors of preceding unconnectable vertices. This
way, an offset emitter sub-path can be constructed and used in density estimation. Finally,
to check reversibility, G-PM tests the visibility between 2z, and y°%. If the visibility test fails,
it suggests that the shift mapping is not reversible and the offset path’s contribution is set
to zero. In our case, we directly apply a manifold perturbation to move the photon vertex
Ys+1 to the offset sensor vertex 25T and estimate the offset path’s contribution as introduced
in Chapter [4]

The behaviors of these two methods become increasingly similar as the merging kernel size
progressively shrinks to 0. As mentioned in Chapter [0 we use ray differentials to initialize
the merging kernel radius of the first connectable vertex. The same strategy is also used in
G-PM. This suggests that the initial merging radius is very small so that the behaviors of
both methods in this case are very similar from the beginning.

Despite similar asymptotic behavior, the power of G-VCM comes from our probabilistic
connection formulation, which allows us to easily combine gradient-domain vertex merging
with other complementary strategies (as in Algorithm . This combination is the key to
the increased robustness of our algorithm compared to previous work. In contrast, G-PM
only performs density estimation once at the first connectable vertex, resulting in robustness
issues in many scenarios (see Chapter [7)).

In figure[7.3] we show a full image comparison between G-PM and G-VCM in the Bottle
scene. The scene settings and run time are the same as in figure [7.4. Here, we use L2
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Figure 7.2: G-PM and vertex merging of G-VCM in unconnectable predecessor case.

G-PM G-VCM

Figure 7.3: Full image comparison between G-PM and G-VCM using L2 reconstruction with
the same run time. Scene settings are the same as in Figure [7.4] where we show insets of L1
reconstruction results.

reconstruction in both methods in order to highlight the quality in gradient estimation. As
can be seen from the images, G-PM struggles to obtain high quality gradients on specular
surfaces due to low photon density. In comparison, our method achieves much better gradient
estimation overall by leaning more on vertex connection and alternative vertex merging
strategies when necessary.
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Figure 7.4: Equal time comparison between our method, G-BDPT, G-PM and VCM with
L1 reconstruction for all gradient domain methods.
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Chapter 8

Conclusions and Future Work

Robustness and noise reduction are two major long standing challenges in light transport
simulation. VCM was a leap forward in improving robustness through unifying both BDPT
and PM. Despite the success in alleviating robustness issues, VCM still generates images with
noticeable noise at low sampling rates. On the other hand, gradient domain methods (G-
MLT, G-PT, G-BDPT and G-PM) are proposed to extend their primal domain counterparts
by adding correlated samples. These methods are able to reduce image noise significantly
compared to primal domain methods through a screened Poisson reconstruction of both the
primal and gradient samples. However, they inherit robustness issues from their primal
domain predecessors because the primal samples are driven by the same set of techniques.

In this thesis, we propose G-VCM, a new method to utilize the advantages of VCM in the
gradient domain context in order to achieve the best of both robustness and noise reduction.
The core of our method is a set of novel correlated vertex merging sampling techniques which
can be easily combined with correlated vertex connection (G-BDPT) sampling techniques via
MIS. By adding vertex merging techniques on top of G-BDPT, our method is able to robustly
sample gradients in scenes with both multiple diffuse/glossy interactions and specular-diffuse-
specular paths, which are challenging for both G-BDPT and G-PM. Through this robust
gradient sampling unification, we are also able to achieve significant noise reduction and lower
RMSE error compared to VCM at the same time. As we have demonstrated in Chapter [7]
our method has robust convergence in scenes with multiple difficult light path types, where
both G-PM and G-BDPT have slow convergence.

For future work, we believe that an asymptotic error analysis of the progressive kernel
shrinkage strategy for G-VCM similar to the one in progressive photon mapping [3] will
provide some useful insights. The challenge here is how to generalize the primal domain
analysis with the added complexity from gradient sampling. Another promising avenue is to
add Markov chain Monte Carlo strategies to VCM in the gradient domain context following
the primal domain work [20].
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