
Towards Cooperative SLAM for Low-Cost Biomimetic
Robots

Austin Buchan

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-142
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-142.html

August 10, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Thanks to the Biomimetic Millisystems Lab, specifically Andrew Chen,
Duncan Haldane, and Shiong Lun James Lam Yi for their contributions to the
VelociRoACH and Zumy platform development.
The author would also like to thank Ben Morse and Dave Rollinson for their
insights to practical Kalman filtering. Thanks to Sam Burden, Henrik
Ohlsson, and Roy Dong for discussions on Hybrid Systems.
Many thanks to members of the Technical University of Hamburg-Harburg
MuM Lab for a fantastisch research and cultural exhange experience.
Thanks to Miguel Heleno for guidance on what the ``dignity of the thesis''
truly means.
Thanks to Andrea Bajcsy for cooperatively exploring cooperative exploration.

Towards Cooperative SLAM for Low-Cost Biomimetic Robots

by

Austin D. Buchan

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ronald S. Fearing, Chair
Professor Ruzena Bajcsy
Professor Avideh Zakhor
Professor Mark Mueller

Summer 2017

Towards Cooperative SLAM for Low-Cost Biomimetic Robots

Copyright 2017
by

Austin D. Buchan

1

Abstract

Towards Cooperative SLAM for Low-Cost Biomimetic Robots

by

Austin D. Buchan

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ronald S. Fearing, Chair

Bio-inspired millirobots exhibit unique locomotion modalities that allow them to tra-
verse complex, unstructured terrain that traditional robots cannot. This makes them po-
tentially useful in urban search and rescue, structure inspection, environmental monitoring,
and surveillance, all of which require some level of situational awareness. The low-cost,
lightweight design and difficult-to-model dynamics of these robots also create unique chal-
lenges when applying state-of-the-art Simultaneous Localization and Mapping (SLAM) ap-
proaches usually used to gain this awareness. In this thesis, we develop a collection of esti-
mation and control techniques that addresses these challenges, allowing teams of millirobots
to localize within and map complex, unstructured environments. The analysis covers several
facets of the problem, including low-cost millirobot team design, motion modeling, cooper-
ative state estimation, and mapping.

We first show the utility of disposable low-cost robots in hazardous environments by using
teams of picket and observer robots for exploration. Next, we explore a data-driven motion
modeling approach to approximate the non-linear stochastic dynamics of legged millirobots.
Then we develop an inter-robot pose estimation technique using monocular vision and active
markers that can operate in visually feature-poor environments, and can scale to teams of
computationally constrained robots. We demonstrate this technique first on autonomous
underwater vehicles, and then extend it to a team of ground robots cooperatively navigating
three-dimensional terrain. Finally, we explore a simple scanning laser technique that can
leverage cooperating robots with cameras to map an environment.

i

Contents

Contents i

List of Figures iii

List of Tables vii

1 Introduction 1
1.1 Preface . 1
1.2 Contributions . 4
1.3 Background . 5

2 Safe Cooperative Exploration 9
2.1 Introduction . 9
2.2 Methods . 12
2.3 Results . 18
2.4 Conclusion . 19

3 Motion Model Identification 21
3.1 Introduction . 21
3.2 Methods . 23
3.3 Results . 32
3.4 Discussion . 37
3.5 Conclusion . 38

4 Monocular Localization 42
4.1 Introduction . 42
4.2 Theory . 45
4.3 Methods . 50
4.4 Results . 53
4.5 Conclusion . 57

5 Cooperative Inchworm Localization 59
5.1 Introduction . 59

ii

5.2 Methods . 63
5.3 Results . 69
5.4 Conclusion . 76

6 Energetic Cost of Cooperative Range Finding 78
6.1 Introduction . 78
6.2 Theory . 79
6.3 Hardware . 86
6.4 Simulation . 87
6.5 Results . 90
6.6 Conclusion . 93

7 Conclusion 94
7.1 Discussion . 94
7.2 Future Directions . 95

A SLAM Sensors 96

B Hardware Designs 101
B.1 VelociRoACH . 101
B.2 Zumy . 101
B.3 Active Marker Hat . 101
B.4 Laser Scanner . 102

C Software 105
C.1 Automatic PWA Model Identification . 105
C.2 VelociRoACH Embedded . 105
C.3 Zumy Embedded and ROS . 105
C.4 Monocular Pose Estimation . 106
C.5 V-REP Simulation . 106

D Datasets 107
D.1 Cooperative Exploration . 107
D.2 Automatic PWA Model Identification . 107
D.3 Monocular Pose Estimation . 108
D.4 Inchworm Localization . 108
D.5 V-REP Mapping Simulation . 109

Bibliography 110

iii

List of Figures

1.1 Rangefinder and millirobot scale. 3
1.2 SLAM sensors and systems. 7

2.1 Observer Robot with Incapacitated Picket Robot 10
2.2 Robot Team . 13
2.3 Experimental setup . 13
2.4 Point Cloud Collection . 14
2.5 Probabilistic Exploration Sequence . 15
2.6 Map Generation . 18
2.7 Mapping Results . 19

3.1 The VelociRoACH on a treadmill, equipped with tether. 22
3.2 (A) Change in leg angle, ψ, with respect to motor crank angle, α. Note regions

of dead-band around multiples of α = π. (B) Robot leg configuration at α = 0,
corresponding to touchdown of the fore and aft legs. (C) Robot leg configuration
at α = 3π

2
, mid-stance of the middle leg. 24

3.3 Experimental setup. 25
3.4 A block diagram of the method used to learn and test PWA models. Data flows

from top to bottom and left to right. 25
3.5 Differential drive model used for control. 27
3.6 Contour map of probability of leg phase plotted against velocity. Lighter regions

are more likely to occur. There are approximately 100,000 observations for each
measured speed. 33

3.7 Model performance on an Input/Output basis, as a function of approach. Input
score is defined as DM(Cχ(X(t)) −X(t),ΣX) where Cχ(X(t)) is the centroid of the

submodel region containing X(t). Output score is defined as DM(Ẋ − ˆ̇X,ΣẊ).
The marked points on each series are the mean of an equal number of observations,
so that the density of the points indicates the distribution of observations on each
axis. 34

iv

3.8 Predicted time trajectories of fore-aft velocity (A), Yaw angle (B), and the sub-
model index of the K-10 simulation state χK−10(XK−10) superimposed on the
K-10 submodel index of the observed trajectory χK−10(Xobs) (C). In (A) and (B),
transitions between submodels are marked with + symbols. 35

3.9 This plot was generated using 1000 simulations with initial conditions randomly
selected from X. State Estimate Score is defined asDM(X(t0+tsim)−Xsim(tsim),ΣX). 37

3.10 Heat-maps showing observed robot and model dynamics projected on to leg phase
space. The robot stick figures on the axes show how mid-stance for each of the
legs is associated with the α variable. Top dead center for the front and rear legs
occurs at π/2, and at 3π/2 for the middle leg. 38

3.11 Plot of trajectory through phase space. 39

4.1 Underwater localization for inspection with proposed monocular vision and active
marker technique. RF or acoustic beacons (i) provide global position information.
An observer µAUV (ii) can measure the relative 6DOF pose of inspection µAUVs
(iii, iv) to provide precise formation control through a communication channel to
aid the overall inspection of structure [17] (v). 43

4.2 Render and photo of HippoCampus µAUV platform. 46
4.3 In Reflective estimation, the observer source (i) illuminates the field of view of

the camera. A surface on the target robot (ii) reflects light through lens (iii) to
illuminate a pixel on image sensor (iv). In Active estimation, multiple markers
(v) on the target system produce an image on observer sensor (vi). 46

4.4 Energy comparison between Active and Reflective estimation across lenses and
resolutions. 49

4.5 Experimental water tank setup for localization. 50
4.6 Algorithm dataflow (novel contributions in bold). 51
4.7 LED detections and resulting pose estimate on sample image. The final image

shows the result of separating overlapping blobs based on their Hue coordinate. 52
4.8 Monocular pose estimation of HippoCampus freely moving along a helical trajec-

tory underwater. 54
4.9 Comparison between pose estimation with and without hue information. 55
4.10 Distribution of errors in calibration experiment. 55

v

5.1 The above diagrams compare the leapfrog and inchworm strategies. Arrows are
drawn to show motion that happens during a time step. In the Leapfrog method
(a-c), all robots are the same type and at each time step one robot moves while
the other two remain stationary. For example during (a) at t = 1, robots 2
and 3 remain stationary while robot 1 moves. This process repeats where the
moving robot cycles at each time step. In our approach, the inchworm method,
at least one robot remains stationary while two move. In addition the picket
robots generally remain in front of the observer. For example during (d) the
pickets move in front of the observer and during (e) the observer catches up to
the stationary pickets. At (f) picket-1 and the observer both move leaving picket-2
stationary. 60

5.2 Coordinate frame overview for a sample team consisting of two robots. The
observer, (a), is mounted with a camera and the picket, (b), with multi-color
LED markers. 64

5.3 Block diagram of the asynchronous multi-robot team performing real-time co-
operative localization algorithm. Asynchronous sensor data from the robots is
sent over WiFi, sorted into a measurement buffer, and then used in the EKF
propagate and update step. Currently, the host system is an external laptop. . . 65

5.4 A plot of the XY projection of the team’s pose estimates from the EKF along
with the ground truth trajectories. Shown for the base case of the planar U-turn
where a single picket is used to perform localization. 70

5.5 A plot of the XY projection of the team’s pose estimates from the EKF along
with the ground truth trajectories. Shown for the base case of the planar U-turn
where both pickets are used to perform localization. 71

5.6 Camera-only approach: A plot of the XY projection of the team’s pose estimates
along with the ground truth trajectories, using a camera-only approach. Performs
notably worse in yaw drift than the IMU-camera fusion approach shown in Figures
5.4, 5.5. 71

5.7 6-DOF environment for testing: Robot team is on the right, rock garden is center-
right), a “hole” is shown on the bottom-left, and the ramp is on top left. 72

5.8 Starting position of the robot team with view of the rock garden section. The
origin is defined as the starting position of the observer. 73

5.9 Ground truth trajectories of the multi-robot team are compared against the es-
timates of the EKF for the non-planar environment. Axes are scaled equally . . 74

5.10 2D projection of ground truth trajectories of the multi-robot team are compared
against the estimates of the EKF for the non-planar environment. 74

5.11 Position along the x-axis versus time. 75
5.12 Orientation error versus time. 76

6.1 Comparison of mapping motion with different Field of View. 81
6.2 Sequence of scan volumes showing the increasing information gain metric. 86
6.3 Pose estimation and scanning hardware. 87

vi

6.4 Complex V-REP simulation environment. 88
6.5 SLAM system overview. 90
6.6 Cooperative mapping in simulated environment. 91
6.7 Information gain versus energy used for two simulated robots. 92

B.1 Renders of laser scanner hardware . 103
B.2 Laser scanner schematic. 104

vii

List of Tables

2.1 Robot Specifications . 13

3.1 Model Comparison . 33

5.1 Pose Tracker Comparison . 69
5.2 Planar Drift Analysis . 70
5.3 Non-Planar Drift Analysis . 75

6.1 Simulation parameters. 89

A.1 SLAM Sensor Technologies. 97
A.2 SLAM Sensors Properties. 98
A.3 SLAM Sensor References. 99

viii

Acknowledgments

Thanks to the Biomimetic Millisystems Lab, specifically Andrew Chen, Duncan Haldane,
and Shiong Lun James Lam Yi for their contributions to the VelociRoACH and Zumy plat-
form development. The author would also like to thank Ben Morse and Dave Rollinson for
their insights to practical Kalman filtering. Thanks to Sam Burden, Henrik Ohlsson, and
Roy Dong for discussions on Hybrid Systems. Many thanks to members of the Technical
University of Hamburg-Harburg MuM Lab for a fantastisch research and cultural exhange
experience. Thanks to Miguel Heleno for guidance on what the “dignity of the thesis” truly
means. Thanks to Andrea Bajcsy for cooperatively exploring cooperative exploration. ;)

1

Chapter 1

Introduction

1.1 Preface

“Driven by the reality of experiments with actual robots our ideas took a route
different from the traditional approach in Artificial Intelligence. Our approach
emphasized

(1) that there would be no traditional notion of planning

(2) that no central representation was needed

(3) that notions of world modeling are impractical and unnecessary

(4) that biology and evolution were good models to follow in our quest

(5) that we insist on building complete systems that existed in the real world
so that we would not trick ourselves into skipping hard problems”

-Rodney A. Brooks and Anita M. Flynn, 1989. [10]

The work done in the Biomimetic Millisystems Laboratory has largely followed the guid-
ing principles outlined by Brooks and Flynn when considering how to make robots “Fast,
Cheap, and Out of Control.” Especially relevant are notions (4) and (5), in that we build
and test highly agile bio-inspired robots to prove that a full implementation is possible and
robust to the non-idealities of construction. However, this thesis challenges the first three
notions on the grounds that many motivating applications for low-cost robots working with
and around humans in complex environments depend on representations of the environment
to be effective. A large body of research on world modeling with robotic applications has
progressed thanks in part to the availability of high-quality sensors, robotic platforms, and
algorithms that mesh well with the assumptions imposed by the sensing paradigms. Implicit

CHAPTER 1. INTRODUCTION 2

in acquiring and using these high-performance sensors is a healthy research or engineering
budget, which tends to work against making robots quickly or cheaply (though it is more
likely they are in control). In order to bridge the gap between traditional sensing, control,
and exploration approaches and the realities of low-cost robots, this thesis evaluates several
of the assumptions underlying the approaches, and how they do not yet apply to our style
of low-cost robots. By working towards implementations of motion models, pose estimation
techniques, localization strategies, and mapping approaches with low-cost robots, we make
the case that with appropriate consideration and co-design of robotic hardware and algo-
rithms, the vision of ubiquitous low-cost teams of spatially aware robots may be a reality in
the near future.

Simultaneous Localization and Mapping (SLAM) is a prominent field of study in robotics.
It addresses the problem of creating a geometric representation of the environment (a map),
and identifying where robotic agents are within that map (localization). In general, this prob-
lem can formulate the requirements for using one or more robotic agents to autonomously
explore a space, generate map that can be used to reason about the space, and identify
the location of the robots within that environment. This basic SLAM exploration problem
needs to be solved first before other applications, such as team formation control, distributed
sensing, and object or environment manipulation can be executed in initially unknown en-
vironments. Solving either the mapping or localization problem individually can be fairly
straightforward given complete knowledge of the other, but building and maintaining an
estimate of both of these quantities “simultaneously” has been the subject of much research.

For well-understood and modeled cases, the theory and implementation of SLAM is quite
advanced. Thrun, Burgard, and Fox [72] outline a fairly complete approach to SLAM explo-
ration problems using scanning range finders on wheeled robots in 2D planar environments.
The fact that consumer technology can provide usable localization of smart phone users in
GPS-denied environments based on Wi-Fi signal maps [39] is testament to the maturity of
some domains of this problem. However, there are still many motivating problems that aren’t
solved in autonomous SLAM for exploration. These rich areas for research manifest when
we try to extend SLAM approaches to robotic platforms, sensors, and environments that
do not fit the assumptions of models used most frequently in SLAM due to the convenience
and tractability of their formulation. In many cases, more expensive sensors, processing
systems, and precision mobility platforms can be used to achieve implementations that more
closely approximate modeling assumptions (uniform sampling time, Gaussian noise, rigid
kinematics, abundant memory and processing time, et cetera).

The most popular type of sensor used for mobile SLAM implementations is the scanning
laser range finder. These devices commonly provide a planar array of equiangularly-spaced
range measurements using infrared (IR) laser Time-of-Flight (ToF) measuring technology.
For full 3D environment mapping, a single sensor must either be moved by the robot through
the desired spatial coverage, more sensors added at different angles, or sensors with larger
spatial coverage. All of these approaches tend to increase the cost, size, weight, power
consumption, and complexity of a SLAM solution. One of the most popular and economic
planar range finders (shown in Figure 1.1a) is $1000 USD, 175cm2, and 2.5W [33]. These

CHAPTER 1. INTRODUCTION 3

(a) Hokuyo scanning laser
range finder.

(b) VelociRoACH Robot.

Figure 1.1: Rangefinder and millirobot scale.

specifications are quite far from anything that could be considered low-cost, especially if
multiple scanners are needed.

In and of itself, the task of exploring low-cost implementations of sensing, control, and
algorithmic robotics can be considered outside the domain of scientific research. However,
seeking results with lower-cost hardware often elucidates the limits of state-of-the-art re-
search approaches, and can inform where research effort may best be spent in improving
sensing, actuation, and computational hardware. Much of the research of the UC Berke-
ley Biomimetic Millisystems Laboratory dwells in this realm of seeing how far the core of
robotics research algorithms can be extended to novel systems that exhibit impressive and
unique mobility. This work focuses on working towards a SLAM implementation that could
be used with a team of small-scale, low-cost, bio-inspired robots. The running, flying, jump-
ing, and climbing robots developed in the lab offer extreme mobility in complex unstructured
environments. While highly mobile, the often erratic motion and environment interactions of
these kinds of robots provides additional challenges in modeling and controlling their motion.
These robots employ light-weight and low-cost construction methods such as cardboard and
plastic laminate composites. The scale and construction methods also impose significant
constraints on the size, weight, power, and computational capacity of the robots.

The unique mobility and small scale of bio-inspired millirobots anticipate applications
that are currently infeasible with available robotic platforms. Planetary surveying and ex-
ploration, environment and structure inspection, surveillance, and environmental monitoring
are just a few of the tasks that would benefit greatly from a robotic solution to free humans
from the dull, dirty, and dangerous aspects of their execution. However, we do not cur-
rently have a general-purpose robotic platform that combines universal mobility with robust
sensing that would allow them to function well in all of these environments.

Urban Search and Rescue (USAR) is an incredibly compelling, while incredibly chal-
lenging, use case for robots that can navigate in harsh unstructured terrains that may well
damage or destroy the agents. Here, using many disposable low-cost robots rather than a
few expensive robots is a much more attractive approach to dealing with the uncertainty of

CHAPTER 1. INTRODUCTION 4

the environment exploration task, and improves the likelihood of overall search success. In
an environment that is likely to destroy or impair robots, being able to send a team of 100
cheap and redundant robots, losing half of them to the environment, but still completing
the search task is better than only having 10 expensive robots and losing all of them. Crit-
ical to the USAR application is the ability to produce a map of an environment. Assessing
structure condition, prioritizing exploration strategies, searching for and localizing evidence
of survivors or hazards all depend on constructing an accurate map. As such, we seek to first
develop an approach to mapping that can be scaled to the constraints of low-cost robots.

As outlined by Cadena, et al., [14], these challenges of fast stochastic dynamics, unstruc-
tured and feature-poor environments, and severely resource (size, power, weight, computa-
tion) constrained platforms are open problems in SLAM research. The modeling, sensing,
and control techniques developed in this work move towards a viable SLAM approach that
can work within the constraints of low-cost systems while being able to leverage their unique
mobility. Through analysis of the motion capabilities of the robots, and available sensing
technologies, our basic hypothesis is that a monocular vision-based approach can solve both
the relative localization and mapping problems when using active markers on robots, and
scanning lasers to illuminate specific points in the environment.

1.2 Contributions

This thesis primarily develops a monocular vision sensing modality that can enable localiza-
tion of a team of low-cost robots, with outlined extensions for mapping. Aspects of motion
modeling and cooperative exploration are delved into, but we find that the approaches in
pose estimation and mapping largely compensate for the large amount of progress yet to be
made in effective motion modeling for legged millirobots.

Chapter 2 explores an exploration application with a heterogeneous team of low-cost
robots using a conventional pose estimation technique with passive reflective robots tags.
This chapter serves primarily to motivate how a team of disposable and prioritized robots can
be used to explore unpredictable environments that may have undetectable yet debilitating
hazards. This technique sacrifices “picket” robots to discover the hazards, allowing more
costly “observer” robots to avoid the hazards. It also shows the basic feasibility of monocular
localization methods for inter-robot pose estimation, and the use of this data to produce a
2D map for motion planning.

Chapter 3 evaluates a novel system identification technique for modeling the complex
dynamics of bio-inspired crawling robots. We show that data-driven Piecewise-Affine (PWA)
model generation techniques can predict the dynamic behavior of the robot on short time
scales (100ms). Ultimately this chapter shows there is still more work to be done before
fine-grained models can be used to plan and control motion effectively. However, we show
that approximating the legged robot as a differential-drive system allows the system to be
controlled (albeit noisily) on a treadmill. This result motivates the exploration of pose

CHAPTER 1. INTRODUCTION 5

estimation techniques that can compensate for the stochastic dynamic behavior observed in
the model identification experiments.

Chapter 4 extends a low-cost monocular relative pose estimation technique using active
colored markers on a low-cost underwater robotic platform. An in-depth analysis of the
physical properties of visual pose estimation shows there is a region of operation where
active markers are more energy efficient than reflective markers in an underwater scenario.
By extending the technique to use colored markers, we show how this improves the marker
correspondence matching problem, improving scaling to larger teams of robots.

Chapter 5 shows the application of the pose estimation technique to a team of robots
to maintain relative localization while navigating a 3D environment. The novel “inchworm”
technique to cooperatively move a team of robots through an environment provides a group
odometry estimate on par with encoder-based approaches where encoder approaches would
fail due to 3D features and wheel or track slippage. This makes the technique ideal for
application to crawling robots, as it is robust to noisy 3D motion.

Finally, Chapter 6 looks at how the techniques presented here could be extended to map-
ping areas of the environment with a scanning laser system, thus paving the way for a full
SLAM system using only on-board monocular vision on low-cost bio-inspired millirobots.
This technique positions the robots to cooperatively triangulate the position of a steerable
on-board laser reflected in the environment in the intersecting fields of view of the robot
cameras. We analyze the uncertainty in environment scan points resulting from this tech-
nique to function as sensor model, and use a simple motion model to evaluate the cost versus
information gain for simple exploration strategies.

1.3 Background

1.3.1 Biomimetic Millirobots

Several unique and low-cost construction methods have been developed in order to achieve
the wide variety of crawling, flying, climbing, and jumping robots produced and studied in the
Biomimetic Millisystems Laboratory. The Scaled Composite Manufacturing (SCM) process
developed by Hoover, et al. [36] enables several types of highly agile robots to be constructed
out of mostly recyclable cardboard and PET. The intersection of high-maneuverability and
low-cost robotics is motivated by applications such as Urban Search and Rescue (USAR),
inspection, surveillance, and exploration tasks that require navigating complex, unstructured
terrain, which may be so dangerous as to likely cause damage or destruction of robot agents
sent through them. In these applications, low-cost robotics offer the advantage of being able
to deploy many redundant agents for the cost of a single higher-cost robot. Low-cost robots
may even be deliberately sacrificed to gain information about dangerous environments that
aids the overall success of the task. Chapter 2 explores just such a task that leverages the
disposable natrure of low-cost agile robots.

CHAPTER 1. INTRODUCTION 6

Low-cost robotics also offer challenges in that they have unpredictable dynamics, and
limited budget for sensing and computational payload. Chapter 3 delves into quantifying
this unpredictability for the purposes of dynamic modeling. Ultimately we see that further
techniques need to be developed before they can be interfaced directly with robust SLAM
frameworks, but some progress is made in identifying regions of dynamic interest, and useful
differential-drive motion approximations.

Regarding the constrained sensing and computation budget, much of this thesis focuses
on a minimal hardware and processing pose estimation and range finding technique. With
a robust, cooperative pose estimation strategy, noisy dynamics can be compensated for
by sensing the resulting pose from other robot team members. We focus on a monocular
localization strategy using active markers that fundamentally requires very low cost, weight,
and power sensing and emitting hardware in Chapters 4 and 5. Finally, Chapter 6 shows how
a team of robots augmented with scanning laser beams can cooperatively triangulate surfaces
in the environment, paving the way for a full mapping approach. While these techniques do
not reach a full SLAM implementation, we show that progress has been made on the major
challenges of motion modeling and perception for low-cost bio-inspired robots, and that with
further engineering and research efforts cooperative SLAM with teams of robots is not out
of reach.

Related to the low-cost paradigm of our research is the guiding principle of open-source
and reproducible robotics research. The primary robotic platforms used in this thesis, namely
the VelociRoACH, Zumy, and HippoCampus, are all open-source research platforms with
documentation for their construction and software available freely online. In theory all of
the research platforms presented herein can be reproduced for under $500 USD with Com-
mercial, Off-the-Shelf (COTS) components or with commercially available rapid prototyping
tools, and programmed using the software in repositories maintained by the Biomimetic Mil-
lisystems Laboratory (as referenced in appendices). Assessing the practicality of such lofty
goals as open-sourced research hardware and software reproducibility is left as an exercise
to the reader.

1.3.2 SLAM Sensors

Key to localization and mapping tasks are proprioceptive and extroreceptive sensors that
can measure relevant robot and environmental signals, ultimately informing a probabilistic
estimate of the likely underlying robot system and environment state. The types of sensors
used in robotic SLAM implementations can vary greatly depending on type of robot, and
thus resource constraints, as well as the environment and task goals. By first examining
and categorizing the types of sensors commonly used in SLAM applications, we look at the
broad landscape of sensors available with the hope of choosing a collection thereof that is
most likely to provide the necessary perception while meeting our goals under the resource
constraints of low-cost bio-inspired millirobots. Ideally we could quantify the trade-offs in
information rate, range, and sensing certainty with respect to power, weight, size, cost for
every commercially available and experimental sensor. We can imagine that there exists

CHAPTER 1. INTRODUCTION 7

Figure 1.2: SLAM sensors and systems.

some Pareto frontier for information efficiency with respect to the exact task at hand for
any number of metrics costs, such as bit/s, bit/J, bit/Kg, bit/m3, or bit/$. As a first step
in this direction, we look at the raw bit rate produced, power consumed, and physical size
of several types of common SLAM sensors, shown in Figure 1.2.

The sensors and systems we evaluate fall in five main categories: odometry, range, depth
field, image, and system.

Odometry sensors measure quantities that ultimately inform an estimate of the path a
robot has taken through an environment regardless of any environmental structure. Here
we primarily consider Inertial Measurement Units (IMUs) and encoders. IMUs use inertial
sensors to directly measure the linear acceleration and angular velocity of a robot body in
3D space. Encoders measure joint or wheel angles, and based on assumptions about the
locomotive interaction with the environment can provide an estimate of the path that the
robot has taken.

Range sensors are the simplest type of extroreceptive sensor in that they proved a single
measurement of the distance from the robot to a surface in the environment. They all
basically rely on the reflection of light or sound energy emitted from the sensor. Sonar and
Infrared Time of Flight (IR-ToF) sensors measure the time it takes for an emitted packet
of energy to be reflected from the environment and detected at the robot. Triangulation
sensors also emit IR light, but measure the incident angle of reflected light to estimate the
distance to a surface.

CHAPTER 1. INTRODUCTION 8

Depth field sensors produce a 2 or 3 dimensional measurement of depth in an area. This
can either be done by scanning a 1D sensor through one or two axes, or actually measuring
an entire field of emitted light (in the case of structured light sensors and ToF cameras).

Image sensors are the basic cameras we are familiar with; sensing a 1 or 2 dimensional
array of light intensities, possibly in multiple wavelengths. We also distinguish whether these
sensors can capture the entire array at a single instance (global shutter) or sequentially scan
rows of the image (rolling shutter). These sensors usually require significant post-processing
to produce an estimate of the geometry of the environment, but are interesting in their raw
bit rate per Watt efficiency.

Finally, we consider some full SLAM systems that consist of multiple sensor types, ac-
tuators, and a computational system to fuses the sensor streams into a consistent estimate
of pose and environment. Included in the graph are the VelociRoACH platform (V-Roach),
the SLAM backpack system developed by Turner et al. [74], and the combination of a Ve-
lociRoACH and camera (V-Roach-Cam). As we will see through the developments in this
thesis, the high informational bandwidth and low size, weight, power, cost of a camera make
it an ideal way to augment the odometry sensors on the VelociRoACH to pursue a low-cost
SLAM implementation.

Several sensors from these categories are plotted in Figure 1.2. The x-axis shows the active
power they consume while producing data, and the y-axis shows the raw data bandwidth
in MB/s they can produce. The point marker and color of disk respectively indicate the
broad and specific class of sensors, and the area of the disk represents the physical size of the
sensor or system. Isocontours of bandwidth/energy efficiency are shown as diagonal dotted
lines of 1GB/Joule, 1MB/Joule, and 1kB/Joule. While there are several interesting trends
in this data, the most prominent factor that motivates the rest of this work is that Odometry
sensors and Image sensors are generally the smallest and most information-efficient sensors
available. This trend can be seen in the prevalence of image and inertial SLAM work, and
provides a launching point for the rest of this thesis. If a combination of IMU, encoder, and
image measurements can be used to extract sufficient coverage of the proprioceptive space
relevant to SLAM fusion tasks, it could prove to be a fruitful way forward for integrating
SLAM techniques with small low-cost robots. The rest of this thesis can seen as evaluating
the first steps of integrating sensing and estimation techniques in the directions of motion
modeling, pose estimation, and environmental sensing under the constraints of minimal
sensing. While there is still much to be done to reach a viable and robust SLAM framework
at these resource scales, we hope to show that the challenges to bridging the gap between
mature SLAM algorithms and agile robots is worthwhile and surmountable given enough
consideration for the unique solution space we are evaluating.

9

Chapter 2

Safe Cooperative Exploration

2.1 Introduction

Cooperative millirobots are low-cost, low-energy systems that can be used to explore disaster
areas during search and rescue operations. In this work, we address the problem of generat-
ing a terrain map with difficult to detect hazards that can incapacitate robot systems used
during exploration. By exploring dangerous terrain with expendable picket robots, a safe
path through the environment can be found for a more sensor-capable but less maneuver-
able observer robot. We evaluate three different picket robot exploration methods used to
generate a map of safely traversable regions. The explored environment point cloud map is
converted into a grid of safely navigable points that is suitable for path planning. We employ
a conventional distance-based A* for path planning and navigation using the observer robot
and demonstrate its ability to avoid hazardous terrain locations based on the final terrain
map.1

Robots can reduce the risk to human workers during urban search and rescue operations
by exploring hazardous environments. While a great deal of work has been presented on
robotic terrain mapping, the issue of safe, fast, and inexpensive environment mapping and
exploration is still an open research problem. Coordinated teams of bio-inspired millirobots
are low-cost, low-energy systems that can be used to explore disaster areas during search and
rescue operations. Biologically inspired millirobots can be inexpensive to produce, highly
robust, and can exhibit remarkable dynamic performance [28]. Although they have limited
computational capabilities and energy resources, millirobots can be sacrificed and easily
replaced during exploration procedures. This allows for the design of exploration algorithms
that maximize information gain by making riskier exploration decisions.

Considering these advantages, we present a computer vision-based approach to terrain
mapping and navigation using a heterogeneous team of millirobots. Our goal is to address the

1This work was originally co-authored as part of the National Science Foundation Research Experiences
for Undergraduates (NSF REU) project of A. Bajcsy, Summer 2015. A. Bajcsy developed and implemented
the probabilistic exploration algorithm. A. Buchan designed and implemented the robotic systems, experi-
ments, and algorithms for map generation and path planning.

CHAPTER 2. SAFE COOPERATIVE EXPLORATION 10

Figure 2.1: Observer Robot with Incapacitated Picket Robot

problem of generating a map of terrain with difficult to detect hazards that can incapacitate
both robot systems used in the exploration. By exploring the terrain with expendable picket
robots, a safe path through the environment can be found for a more sensor-capable but less
maneuverable observer robot.

Since the observer robot is more expensive and computationally powerful than the picket,
our design aims to ensure the safety of the observer robot as it moves through the unknown
environment and accumulates the terrain map. This is achieved by sending the picket robot
ahead of the observer robot to (1) investigate the reachable areas in the nearby environment
and (2) to detect the presence of any unsafe terrain that may not be identified simply
by visual inspection (for example, a quicksand trap). The picket robot has no sensing or
vision capabilities and therefore depends on exploration goals and commands assigned by
the observer robot. We limit the sensors used to generate the terrain map to a single camera
carried atop the observer robot. Compared to other sensors, cameras are compact and energy
efficient which meets the limited size and energy abilities of the millirobots. The camera is
used to observe the picket robot’s movements. Challenges addressed in this work include
estimating depth with a monocular camera and safe path planning for the observer robot
based on the generated terrain map.

CHAPTER 2. SAFE COOPERATIVE EXPLORATION 11

2.1.1 Prior Work

Existing approaches to collaborative robotic terrain mapping have investigated both homo-
geneous swarms of millirobots and heterogeneous, hierarchical teams of robots. In order
to map unknown environments using a homogeneous, stochastic swarm of millirobots, the
authors of [19] introduce a classification approach to determine topology features of an en-
vironment from the interactions of the robot agents with the environment. The key to this
approach is the emphasis on extracting a “sketch” of the environment rather than a detailed
map. During the exploration, each robot performs a random walk through an arena with
obstacles and the recovered point clouds exhibit features of the unique environment. Each
of the millirobot agents are equipped with IR proximity sensors, camera and microphone,
omni-directional wheels, and an IR beacon. We aim to avoid the addition of extra sensors
on-board the millirobots in our work, since it increases both the cost and the risk associated
with damaging the robots during exploration.

Alternatively, heterogeneous robotic teams may consist of millirobots, medium-sized tank
robots, and large all-terrain vehicles [25]. Since each robot is equipped with different capabil-
ities, they collaboratively accomplish mapping and exploration tasks based on their unique
configurations. A team leader robot synthesizes the millirobot data by using occupancy grid
mapping algorithms to combine multiple streams of sensor data [25] [53]. However, these
centimeter-scale millirobots are also configured with infrared (IR) sensors, a camera, and
computation modules and use sonar distance measurements, GPS, and landmarks for local-
ization. Similarly to the work of [19], these sensor additions increase the cost and exploration
risk.

Compared to large teams of robots, cooperative observer and picket robot pairs have
proved to be successful at safe terrain navigation. In [29] [52], a large, sensing main robot
drives a small, limited-sensing picket robot. Our experiment follows a similar design but
we use limited-sensing millirobots for both the main robot and the picket robot. Safety, as
defined in [32][29] can be addressed as a coverage problem where the picket robots have to
cover a certain size of area in front of the main robot in order to identify all dangerous
terrain. Complete coverage is not necessary for ensuring the safety of the main robot;
only the dangerous areas need to be explored and detected. In the work of [29], the main
robot performs vision-based marker detection of an Augmented Reality (AR) Tag placed
on the back of the picket robot in order to assess the slipperiness of the terrain ahead.
This framework proved to be a feasible proof of concept for remote terrain detection, with
over 90% accuracy when identifying slippage of the picket robot [29]. In contrast to terrain
classification, we aim to build a terrain map that allows for the identification of reachable
and safe regions in the environment.

In addition to the challenges of robotic collaboration, the autonomous navigation of
millirobots through hazardous terrain is complicated due to the limited sensing capabilities of
many millirobots. In [48], the authors use a single low-resolution camera in order to perform
visual landmark-based localization for a crawling millirobot within a dark, cluttered, and
confined environment. The path planning was based on Field D* algorithm while detection

CHAPTER 2. SAFE COOPERATIVE EXPLORATION 12

and recovery from “stuck” conditions used optical flow algorithms on successive camera
frames. The framework presented in [48] was able to have a millirobot autonomously find
its way to within ∼ 1 centimeter of a goal target.

2.2 Methods

2.2.1 Robotic System

Our robot team consists of two different types of robots: the VelociRoACH as the picket robot
and the Zumy as the observer robot. Both robots can be run wirelessly on battery power, but
for the purposes of this experiment are tethered. The VelociRoACH is the latest in several
low-cost millirobots developed in the Biomimetic Millisystems Laboratory using the Smart
Composite Microstructures process [36]. Due to their small size, it is important to minimize
the number of actuators and the required actuator bandwidth on bio-inspired millirobots.
Therefore, these robots [28][35][5] have been designed to be open-loop stable, allowing them
to convert feed-forward motor power into stable and robust locomotion. For this experiment,
the on-board microcontroller systems uses only the motor back-EMF measurement to control
the average velocity of the left and right pair of legs. Based on this minimal control, and
recent commercially available versions of these robots2, we believe these robots could be
manufactured for less than $30 U.S..

The Zumy robotic platform is a millibot-scale tracked robot designed to be able to sup-
port a full Linux computing system for convenient software development, networking, and
accelerated vision processing. This robot can carry a Microsoft Lifecam 3000 camera for
visual tracking, and supports Wi-Fi wireless communication to a host computer. While not
bio-inspired, this robot was designed to be easily built from commercially available off-the-
shelf (COTS) parts while being about the same size scale as the VelociRoACH. References
to full hardware and software specifications can be found in Appendices B.2 and C.3. This
makes the Zumy robot ∼ 10 times the cost ($300 USD) of the VelociRoACH.

2.2.2 Experimental Setup

Our test environment (shown in Figure 2.3a) consists of a 60cm by 75cm arena bounded
on two out of the four sides with white cardboard walls. The ground terrain is planar with
“safe” cardboard regions and a “hazardous” trap in the center of the arena. The granular
media (poppy seeds) was chosen since it incapacitates both types of robots when entered,
and is difficult to distinguish with visual or range sensing methods.

The picket robot is outfitted with an AR Tag “hat” so that it can be visually tracked by
the observer robot. The AR Tag hat is shaped as a rectangular frustum with a unique AR
Tag on each of the five visible faces. This guarantees that from any position and orientation

2http://www.dashrobotics.com

CHAPTER 2. SAFE COOPERATIVE EXPLORATION 13

Microcontroller
Board

AR Tag “Hat”

Di�erential Drive
C-Legs (3x per Side)

(a) Picket: VelociRoACH

Drive Treads (2x)

USB Webcam USB WiFi Dongle

(b) Observer: Zumy

Figure 2.2: Robot Team

VelociRoACH Zumy
Size cm 14x10x9 10x10x12

Weight g 45 325
Maximum Velocity m/s 2.7 1

CPU dsPIC33 4x Cortex-A9
CPU Frequency MHz 40 1700

Compute and Sense Power W 2.7 7.5
Battery Voltage V 3.7 7.2

Battery Capacity mAh 120 850

Table 2.1: Robot Specifications

(a) Environment (b) System Organization

Figure 2.3: Experimental setup

CHAPTER 2. SAFE COOPERATIVE EXPLORATION 14

Figure 2.4: Point Cloud Collection

we can see at least one face of the hat with an AR Tag. AR Tags were also added to
environment walls to allow registration of terrain map and for navigation.

Figure 2.3b details the communication and computational system. During a field deploy-
ment, the two robots can be run untethered, but still coordinated by a host PC system.
The observer robot communicates with the host over WiFi, while the picket robot uses an
IEEE 802.15.4 radio to receive velocity commands from the host. We use the open-source
Robot Operating System (ROS) [62] to manage software and coordinate on-line information
sharing between the various parts of this system.

We use the ALVAR software library3 to track the pose of the AR markers relative to the
observer robot’s camera. In addition, we developed calibration software which allows us to
estimate the position and orientation of the top-most ”master” marker (whose orientation
matches the VelociRoACH’s body) based on any visible AR markers even if the master
marker is not currently in sight. The AR Tag tracking from the camera video feed is processed
on-board the Zumy, which would greatly reduce the bandwidth requirements for running
multiple observer robots coordinated by a single host system.

During operation, the host system receives the pose information of the picket robot via
the observer robot. The host uses this information to construct a point cloud representing
the explored environment surface. Based on this information, the host then sends velocity
commands to the picket robot guiding it to unexplored regions. The host also monitors
the progress of the picket robot to determine if it has failed to reach a goal, or become
trapped by the environment. Figure 2.4 shows this view from the observer robot’s camera,
and a perspective view showing the positions of the picket robot and camera relative to the
environment frame.

3https://github.com/sniekum/ar_track_alvar

CHAPTER 2. SAFE COOPERATIVE EXPLORATION 15

(a) Goal out of range (b) New goal assigned

(c) Approaching second goal (d) Final map

Figure 2.5: Probabilistic Exploration Sequence

2.2.3 Environment Exploration

We investigate three picket robot exploration methods: random walk, probabilistic random
walk, and manual drive. These three methods represent three points on a spectrum of
exploration techniques, ranging from automated and non-deterministic to human-operated.
Note that these approaches were chosen for simplicity and generality, but more complex
explorations can be used when a specific navigation goal is in mind (see [75]).

During random walk, the picket robot alternates between four phases of right, forward,
left, backward at constant velocities and spends a random amount of time in each phase.
This is to try to mitigate the problem of the picket robot getting stuck in front of a wall for an
extended period of time. If the picket robot gets stuck at an obstacle or in a trap, we place it
back at the start location near the observer robot. For the purposes of this experiment, this
action symbolizes a new picket robot being deployed after the last one failed. Additionally,
we record the location of where the picket robot was stuck in order to mark the final mesh
and occupancy grid map with a flag for dangerous terrain.

Probabilistic random walk deals with one of the main assumptions in our purely vision-
based approach: that the observer robot can see the picket robot at all times. In this
method, we bound the region of exploration for the VelociRoACH to the camera FOV.
We use a homography matrix to convert between real-world coordinates to pixels in the
camera frame. The homography matrix is constructed from the real-world measurements
of the VelociRoACH’s four corners and the corresponding pixel coordinates in the camera
image. Once we have defined the exploration plane, we can randomly assign goal locations
to the picket robot that are always guaranteed to keep the robot in the line of sight. Over

CHAPTER 2. SAFE COOPERATIVE EXPLORATION 16

time, if there exists an obstacle in the environment and the VelociRoACH cannot reach the
obstructed area from any angle, then the probability of assigning that location as a goal will
approach zero. However, since we do not immediately assign a probability of zero after a
single failure, we allow for additional exploration to the same region in an effort to verify that
the picket cannot get past the obstacle from another direction or angle. The VelociRoACH
runs for some fixed time T while generating a map, after which it stops and allows for Zumy
path planning and navigation. Our exploration and goal-assignment algorithm is as detailed
in Algorithm 2.1.

Algorithm 2.1 Probabilistic Exploration Algorithm

Require: goalGridij ← 1/(N ×M); 0 ≤ i < N, 0 ≤ j < M
goalPointxyz ← assignGoal
while stillExploring(time,map) do

if dist(picket, goalPointxyz) < ε then
goalPointxyz ← assignGoal

else
if dist(picket, goalPointxyz) ≥ ε after T tries then
goalGrid← updateGoalGridij
goalPointxyz ← assignGoal

end if
end if

end while

Figure 2.5a shows an example where the assigned goal location, marked by the green
sphere, is impossible for the robot to reach. After failure, the probability of reassigning the
location is decreased and the goal is is randomly reassigned (see Figure 2.5b). The picket
robot proceeds to turn towards the new goal and in Figure 2.5d it reaches the destination
and produces a point cloud of the path it took to reach the goal location.

Finally, in manual drive, a human operator moves the picket robot through the experi-
mental arena, intentionally running the robot into traps or obstacles in order to mark the
dangerous regions in the final terrain map.

We expect other automated methods will exhibit performance between random walk and
manual drive (potentially even superseding manual drive). However, future work will need
to focus on modelling the motion and sensing of the picket-observer robot system in order
to be effective at coordinating teams of robots during exploration.

2.2.4 Map Generation

Our raw terrain map consists of a point cloud created by estimating the pose of the top-
most AR Tag (and thereby of the picket robot). We use the open-source Point Cloud Library
(PCL)4 for storing the point cloud map as an unordered list of (x,y,z) coordinates. Since

4http://pointclouds.org

CHAPTER 2. SAFE COOPERATIVE EXPLORATION 17

Algorithm 2.2 Assign Goal

Require: H ← homographyMatrix
pdf ← pdf(goalGrid)
randNum← rand(0.0, 1.0)
while k < N ∗M do

if k == 0 and randNum ≤ pdf [k] then
gridCell← k + 1
break

else
if pdf [k − 1] < randNum and randNum ≤ pdf [k] then
gridCell← k + 1
break

end if
else
gridCell← k + 1
break

end if
end while
goalP ixelrc ← getP ixel(gridCell)
goalPointxyz ← H−1 ∗ goalP ixelrc

we know beforehand the precise measurements of the AR Tag hat, we can estimate the
distance the robot is away from the camera as well as its orientation. The four corners of the
uppermost AR Tag can be projected to match the size and orientation of the VelociRoACH
at any given time, allowing us to place a rectangular point cloud under its body. During
exploration, we mark points when the picket robot has gotten stuck or trapped. Thus, the
final point cloud represents all reachable area in the observer robots FOV.

After collecting the point cloud, we convert it into a 2D mesh representing navigable
terrain using PCL and OpenSCAD5. In order to reduce the complexity of the 2D mesh, after
the first-pass meshing, interior points are removed from the data structure and the filtered
cloud is re-meshed. The simplified mesh can be better converted into an occupancy grid to
allow for path planning using the observer robot.

2.2.5 Path Planning

Once the explored environment has been converted into a grid of safely navigable points,
it is suitable for path planning. In exploration regions where there is discovered dangerous
terrain, grid points within a certain radius can simply be removed from the grid (see Results
section for diagram). For the results below, we employed conventional distance-based A*
[30], but any other path planning and navigation algorithm can be used.

5http://www.openscad.org

CHAPTER 2. SAFE COOPERATIVE EXPLORATION 18

(a) Exploration Point Cloud (scale in
meters)

(b) Meshed Point Cloud (scale in me-
ters)

(c) Simplified Mesh (scale in meters) (d) Navigation Grid

Figure 2.6: Map Generation

2.3 Results

Figures 2.7a and 2.7b show the results of two techniques for generating a map from our
exploration method. In each, the bounds of the exploration environment are the outermost
black outline, with the sticking hazard shown as a red rectangle. The paths that the picket
robots took while exploring the space are shown in thin blue. The resulting explored region
is outlined in thin black. This region has a navigation grid superimposed in green dots and
red “X”s. The red dots represent grid points that are within a specified radius of a location
where the explorer robot got stuck (this radius is shown in as a red circle). The green dots
are the remaining navigation points that are safe to use for path planning. Finally, the
yellow circle and gold star represent the start and goal location of the observer robot, and
the thick black line represents the path that has been planned through the safe region.

The random trial took 326 seconds while becoming stuck 9 times, while the manually
driven trial took 223 second while becoming stuck 6 times.

Noise from AR tag reads is evident in both trials. Essentially, when an AR tag position is
misread, it places a point cloud collection in an area outside the environment, or in a location
that is clearly in the hazard. Future work will need to address this issue by filtering the poses
read for the explorer robots. This can involve modifying the AR tracking software to require
a more confident read of the tag location, combined with a motion model and Kalman filter
for the explorer robot motion. For the purposes of clarity in this work, poses that were clearly
outside the exploration environment were manually removed from the tracking dataset.

CHAPTER 2. SAFE COOPERATIVE EXPLORATION 19

(a) Random-drive exploration (b) Manual-drive exploration

Figure 2.7: Mapping Results

Figure 2.7a also shows the result of inappropriately labeling a point as being stuck in the
bottom left corner of the hazard region. This could be problematic for path planning if several
incorrect stuck poses are labeled resulting in the start and goal locations being disconnected
in the planning grid. A method for mitigating this effect would use a probabilistic occupancy
grid assignment, allowing subsequent exploration to determine that incorrectly labeled stuck
regions are actually free.

2.4 Conclusion

We have shown a technique for exploring a hazardous environment with picket robots to
generate a map of safely navigable regions for high-value robotic systems. This technique
relies on having expendable low-cost picket robots to traverse dangerous terrain, and discover
hazards by becoming incapacitated by them. As these robots are marked with AR tags, an
observer robot monitoring the exploration can generate a map of safely traversable regions,
and plan a path to a desired goal.

2.4.1 Future Work

A key element for making this work practical is the overall automation of the exploration
technique. The stochastic nature of the VelociRoACH movement made this difficult to
implement as of yet, but future work will focus on better sensing and motion modeling of
the picket robots to effectively guide them autonomously through an environment. Chapter 3

CHAPTER 2. SAFE COOPERATIVE EXPLORATION 20

looks deeply at the nature of this stochasticity, and makes some progress in quantifying and
predicting the dynamic behavior of the VelociRoACH robot. While still not at the level
of prediction necessary for most SLAM implementations, simplifying assumptions about
differential drive dynamic models are discussed as a substitute until more rigorous models
can be explored. Once this is accomplished, further extensions can be made to generate
maps of 3D environments, as well as environments that do not have incapacitating hazards,
but regions that are of varying difficulties to traverse. Generating a map of expected cost
of transport using picket robots would be highly valuable for terrains that are difficult to
assess with vision or range-finding techniques alone.

21

Chapter 3

Motion Model Identification

3.1 Introduction

This chapter presents a simple, data-driven technique for identifying models for the dynamics
of legged robots. Piecewise Affine (PWA) models are used to approximate the observed
nonlinear system dynamics of a hexapedal millirobot. The high dimension of the state space
(16) and very large number of state observations (∼100,000) motivated the use of statistical
clustering methods to automatically choose the submodel regions. Comparisons of models
with 1 to 50 PWA regions are analyzed with respect to state derivative prediction and forward
simulation accuracy. Derivative prediction accuracy was shown to reduce average in-axis
absolute error by up to 52% compared to a null estimator. Simulation results show tracking
of state trajectories over one stride length, and the degradation of simulation prediction is
analyzed across model complexity and time horizon. We describe metrics for comparing the
performance of different model complexities across one-step and simulation predictions.1

Biologically inspired millirobots are inexpensive to produce, highly robust, and can ex-
hibit remarkable dynamic performance [28]. Due to their small size, it is important to
minimize the number of actuators and the required actuator bandwidth. Therefore, these
robots [5][35][28] have been designed to be open-loop stable, allowing them to convert feed-
forward motor power into stable and robust locomotion. The ability of these robots to run
dynamically has allowed us to observe a number of emergent dynamic maneuvers such as
rapid turns, reversals, jumps exceeding body height, flips, and cartwheels. However, we
currently have no modeling approaches that are accurate enough to predict these aggressive
maneuvers on the time scales significant to our robotic systems. The work presented here

1This chapter originally published as “Automatic Identification of Dynamic Piecewise Affine Models
for a Running Robot,” IROS 2013 [11]. A. Buchan developed the model framework, regression methods,
statistical analysis, prediction methods, and experimental data collection setup. D. Haldane developed the
VelociRoACH platform, treadmill hardware and control, control strategy assumptions and implementation,
and data filtering pipeline. It was supported by the National Science Foundation under IGERT Grant No.
DGE-0903711, and Grant No. CNS-0931463, and the United States Army Research Laboratory under the
Micro Autonomous Science and Technology Collaborative Technology Alliance.

CHAPTER 3. MOTION MODEL IDENTIFICATION 22

Figure 3.1: The VelociRoACH on a treadmill, equipped with tether.

is taking the first steps towards modeling techniques that will enable predictive control to
execute these actions on command.

Legged locomotion has been modeled using a diverse array of reduced order templates [34].
By applying traditional analyses to these analytic models, predictions of gait characteris-
tics such as speed or stability can be produced. System identification for legged systems
has been based on fitting parameters to some of these analytic models. Several bodies of
work [2][43][44] fit Spring Loaded Inverted Pendulum (SLIP) model parameters to the stance
phase of the RHex family of robots. Bloesch et al. [6] developed a method to fit kinematic
parameters and sensor models to the StarlETH, a legged robot. Recently, a parameter fit-
ting approach has been extended to hybrid dynamics by reducing the dimensionality of the
system around a periodic orbit [13].

Another technique has been to approximate the rhythmic dynamics of a legged system
with a data-driven Floquet model [64]. This work was able to find periodic orbits in a low-
dimensional state space to which high frequency disturbances converge. The Floquet models
and parameter-fit analytic models can make good predictions for steady-state behavior, but
they rely on an assumption of periodic dynamics. They cannot describe transient maneuvers
observed when periodic gaits are not enforced. We believe that understanding the full space
of behaviors with non-periodic leg motion will be necessary to make headway on useful
predictive models for under-actuated yet highly maneuverable legged robots.

To this end, we present a data-driven statistical approach for general modeling of the
dynamical behavior of nonlinear systems. Our approach has the benefits of requiring no
knowledge of the underlying dynamics, and using computationally simple models to describe

CHAPTER 3. MOTION MODEL IDENTIFICATION 23

the behaviors observed. This identification approach scales well with the dimension of the
dynamical state space and number of observations. It is also easy to tune the granularity of
the model approximation to make the best use of available computational resources for on-line
predictions. The automatic identification of state-space partitioning based on the statistics
of the observations can give initial insights into the behavior of a complex dynamical system,
which is useful for later analysis.

We assume the dynamics of our millirobots are locally governed by linear dynamics
(rigid body motion, kinetic friction, damped springs) with highly nonlinear shifts in these
dynamics (footfalls, four-bar linkage singularities). As such, Piecewise Affine (PWA) systems
are a reasonable first approximation of these dynamics. PWA models describe a system as a
collection of affine submodels, and a partition of the state-space where each model is applied.
These models are very fast to compute for forward prediction, a desirable property for state
estimation on low-power systems. Concepts of stability, controllability, and observability
have been extended to PWA systems as approximations of nonlinear systems [69], which will
enable further analysis with the models generated by this method. In addition, Tedrake et
al. [71] have shown that LQR controllers can piece together these regions of state-space for
control.

Automatic identification of PWA models is actively being researched [22]. In general, this
iterative identification process grows in exponential time with the number of samples, and is
thus intractable to compute on very large datasets. Heuristic methods can avoid incurring
the computational cost, associated brute-force techniques, but are sensitive to initial region
partitioning and can converge to non-global optima. As such, we chose simple, statistically-
driven clustering methods to identify the partition.

We describe current methods for empirically deriving models of dynamical systems. Sec-
tion 3.2 gives the methods for collecting data on our dynamic millirobots and fusing sensor
data into a high-fidelity state trajectory. In Section 3.2.5 we explain the type of models
derived by our method, and the way in which the collected data is partitioned to learn these
models. Finally, in Section 3.3 we show how the collection of models learned with our method
was able to predict future states through simulation of the identified dynamics and control.

3.2 Methods

This work presents a processing pipeline that identifies several models for a dynamic robotic
system, as well as methods for comparing the performance of those models. First, sensor
data are collected and fused into a high-fidelity state trajectory (Sections 3.2.1 to 3.2.4).
Models are then fit to this data, as described in Section 3.2.5. Section 3.2.6 describes how
the models were forward simulated, and Section 3.2.7 gives our validation method for the
model accuracy and simulation. Figure 3.4 illustrates this process, and will be referred to in
the description of each step of the pipeline.

CHAPTER 3. MOTION MODEL IDENTIFICATION 24

0 π/2 π 3π/2 2π
0

0.7

α

dψ
dα

ψ

α = 0 α = 3π/2

(A)

(B) (C)

Figure 3.2: (A) Change in leg angle, ψ, with respect to motor crank angle, α. Note regions of
dead-band around multiples of α = π. (B) Robot leg configuration at α = 0, corresponding
to touchdown of the fore and aft legs. (C) Robot leg configuration at α = 3π

2
, mid-stance of

the middle leg.

3.2.1 Robotic System

For this analysis, we observed the dynamics of the VelociRoACH [28] running on a treadmill.
The VelociRoACH is a hexapedal robot capable of stable running at 27 body-lengths per
second with an alternating tripod gait. At the cost of some speed and stability, we did not
enforce an alternating tripod gait in order to allow differential drive (diff-drive) steering. In
this way, we used the robot as its own disturbance and were able to observe the dynamics
of running in a larger region around a stable operating point. It has one actuated degree of
freedom per side, a coreless brushed DC motor driving a rotary crank, which drives a set
of kinematic linkages. These linkages are made with the Smart Composite Microstructures
process [36], and convert rotary motion to leg abduction and adduction. See Haldane et
al. [28] for details on mechanical design and dynamic performance. A key feature of this
robot is that the leg kinematics for each side are predetermined by the geometry of the
kinematic linkages, i.e. there is 1 degree of freedom per side. As the motor crank rotates,
the robot takes one step with the fore and aft legs, followed by a step with the middle leg,
as shown in Figure 3.2. We define one stride to be one full rotation of the motor crank.

A lightweight electronics package controls the VelociRoACH’s two motors and streams

CHAPTER 3. MOTION MODEL IDENTIFICATION 25

ψ (yaw)

x (forward
velocity)

PC
Motion
Capture

RT
Control/
Logging

. . .

. . .

Motion Capture Cameras (8x)

Front
High-Speed

Camera Side
High-Speed Camera

Vtreadmill

Control
Sensor Data

Tether

Point Cloud

Figure 3.3: Experimental setup.

Experiment
System

Feedback Control

u(t) = h(YM(t),vt(t))

Sensor Fusion & Filtering

X,Ẋ - State, State Derivative

u,YM,YR - Control,
Motion Capture/Robot Sensor

X,Ẋ = S-EKF(YM,YR)

(a)

Model ID
X,u,Ẋ

Segmentation

{Xi}i=1 = seg(X)

Regression

{Θi}i=1 - Submodel Parameters

{Xi}i=1 - Submodel Regions

for i = 1 to s:
 Ψi=[X u 1] | χ(X)=i

Θi = Ψi
†Ẋi

s

s

s

(b)

Simulation
{(X,Θ)}i=1 - Model

X0 - Initial Condition
T,Δt - Duration, Time Step

h - Feedback Control

Forward Euler

Xsim - Simulated State Trajectory

Xsim(0) = X0, t=0
while t < T:
 usim(t) = h(Xsim(t))

Ẋsim(t) = Θχ(Ψ(t))Ψ(t)
Xsim(t+Δt) = Xsim(t)+ΔtẊsim(t)
t = t + Δt

s

(c)

Validation

Prediction Error

e(t) = Ẋ(t) - Θχ(Ψ(t))Ψ(t)

) - Error Score

Mahalanobis Distance

DM(e,) = √e ΣZ e

Simulation Error
Input Error

e - Error Vector
Z -Reference Distribution

Z = Ẋ

-1ΣZ

DM(e,ΣZ

(d)

Figure 3.4: A block diagram of the method used to learn and test PWA models. Data flows
from top to bottom and left to right.

telemetry data from its on-board sensors. These sensors include a six axis inertial measure-
ment unit (IMU) and 14-bit absolute encoders on the output cranks of each side. The time
series of robot sensor information is referred to as YR(t). The full design for the electron-
ics and embedded software can be found from the references in Appendices B.1 and C.2
respectively.

3.2.2 Experimental Setup

To collect data on dynamic running, we designed a treadmill system with motion tracking
and closed-loop position control. The treadmill simulates constant velocity forward running
on flat ground, while the motion capture system streams and records robot position infor-
mation to a real-time control system, which in turn provides motion commands to the robot.
High speed video footage was captured from the front and side of the treadmill to observe

CHAPTER 3. MOTION MODEL IDENTIFICATION 26

ground-leg interactions and verify the state trajectory information. Figure 3.3 shows the
experimental setup.

For this experiment, the VelociRoACH was modified by adding reflective markers and a
lightweight tether. The markers enable motion capture, and the tether provides power and
serial communication to the controller. The combined weight of these modifications is less
than 1 gram, with negligible effects on the inertia of the robot. The tether did not generate
any measurable forces on the robot, and the robot was loaded with a battery for mass. We
therefore assume that data collected on the treadmill will be valid for tether-free running on
a similar surface.

The treadmill area measures ∼30 cm x 50 cm, allowing 5 robot body lengths of motion
in each respective planar axis. A canvas belt provides sufficient traction such that the robot
does not slip during nominal running. The belt is driven by a motor with integrated speed
controller, allowing the belt to be commanded to speeds up to 5 m/s. Using the motion
capture system, we verified that the belt velocity was a linear function of the commanded
velocity with a maximum standard deviation of σ = 0.023 m/s.

The motion capture system calculates the position and orientation of the robot YM =
[x y z ψ θ φ]> at 100 Hz with sub-millimeter resolution and maximum standard deviations
of σxyz = 0.027mm and σψθφ = 0.0026rad within the capture volume, respectively. These
data are streamed to a real-time control system, which calculates and streams a control
signal to the robot. The position control loop is executed at 100 Hz, using the most recent
available data from the motion capture system to reduce network latency and jitter. The
max round-trip latency was observed to be 30 ms, with an average latency of 10 ms.

To time synchronize the robot, motion capture, and video data, an infrared LED on
the robot was driven by a square wave originating from the real-time controller. This LED
was detected as a marker by the motion capture system. The synchronization signal, along
with all robot sensor data, are streamed to the real-time controller for logging at 1 kHz.
The VelociRoACH has been shown to have significant oscillatory energy in frequencies up
to 100 Hz during high speed running [28], which necessitates this high sampling rate.

3.2.3 Feedback Control

To control the heading and velocity of the robot, a simple planar differential-drive model was
assumed. This clearly ignores much of the complexity of legged locomotion dynamics, but
we found it sufficient for keeping the robot on the treadmill long enough to gather data. Our
trials were approximately two minutes in length. Figure 3.5 shows the coordinate system
and variables used for this simplified control. Under this model we apply the proportional
control in Equation (3.1) to find a desired robot velocity command. Figure 3.4a refers to

this function as u = [˜̇x ˜̇ψ]> = h(YM , vt) since it operates directly on motion capture sensor
information and treadmill velocity vt.

˜̇x =
vt − kxx
cos(ψ)

, ˜̇ψ = −kψψ (3.1)

CHAPTER 3. MOTION MODEL IDENTIFICATION 27

(x,y)

V
ω θ

Vt

Vl

Vr

αl

αr

d

x
y

Figure 3.5: Differential drive model used for control.

Assuming positive vt and a bounded region of the controlled state-space around xc =
[x y ψ]> = [0 0 0]>, positive gains kx,ψ can be found to guarantee the stability of this model
for the given region and treadmill velocity. This be shown by considering Lyapunov function
V (xc) = ||xc||22. In practice, the control gains were manually tuned to keep the robot stable
at each treadmill velocity. We recognize that assuming this model limits the region of the
state space, and thus model dynamics, we can expect to exercise and measure on the robot.
This is part of an open problem of data-driven model identification where it is not trivial to
control towards all viable regions of the state space of the robot. The approach presented
here is a first step in model identification for the VelociRoACH, with the understanding that
it will be incomplete in fully specifying the dynamics of the robot. Future work may be able
to use a completely unsupervised state space exploration approach to move closer to true
black-box model identification.

Low level PID control on the position and velocity of the legs is executed at 1 kHz
on-board the robot. This control translates a desired robot longitudinal and yaw angular

velocity [˜̇x ˜̇ψ]> to nominal left and right leg crank angular velocities [˜̇αl ˜̇αr]
>. Equation 3.2

shows this conversion for a robot with width d and effective leg radius r.

CHAPTER 3. MOTION MODEL IDENTIFICATION 28

[
˜̇αl
˜̇αr

]
=

1

r

[
1 d/2

1 −d/2

][˜̇x
˜̇ψ

]
(3.2)

3.2.4 Data Fusion and Filtering

In order to study leg function and body motion in dynamic running and turning, we imple-
mented an off-line sensor fusion framework to estimate full robot state. The end result of
this off-line data processing is a pair of state and state derivative trajectories X(t) and Ẋ(t)
that can be used to learn a model mapping from X(t) to Ẋ(t). The 16-dimensional state
vector X consists of the first-order position variables q and their continuous-time derivatives
q̇. Shown in Equation 3.3, q contains the position and orientation of the robot body, and
the crank angles (αr, αl) of each leg mechanism. Robot position and orientation are recorded
in the world frame, while all other variables are considered in robot-fixed axes. The highest
order physical variables are accelerations in the q̈ portion of Ẋ.

q =
[
x y z ψ θ φ αl αr

]>
(3.3)

X =

[
q
q̇

]
, Ẋ =

[
q̇
q̈

]
(3.4)

This effectively imposes a structure on the endogenous motion models we learn to be of
the form [

q̇
q̈

]
=

[
0 I

Aq̈,q Aq̈,q̇

] [
q
q̇

]
, (3.5)

where the only free parameters are in the blocks Aq̈,q and Aq̈,q̇. This is imposed in
the regression steps of Section 3.2.5 by only including q̈ in X in the actual pseudoinverse
calculation.

The goal of this filtering framework is to produce a consistent trajectory for X(t) and
Ẋ(t) given the multiple noisy measurements of the state from the motion capture system
and on-board sensors, such that for periods on the order of a time step, the error in the
Euler integration approximation ||X(t + ∆t) − (∆t Ẋ(t) + X(t))||2 is low. A Kalman filter
framework provides a natural way to impose simple inertial dynamic constraints, and to
appropriately weight the contributions of the motion capture and on-board sensors by their
respective covariances in measurement.

Measurements of position and orientation were collected at 100 Hz using an OptiTrackTM

motion capture system. Sensor noise models for the motion capture and IMU data were em-
pirically derived by analyzing 1,000 seconds of telemetry data, which were streamed while
the robot was stationary. Spatially independent Gaussian noise was assumed on each mea-
surement channel, and the variance for each was subsequently calculated for the sensor

CHAPTER 3. MOTION MODEL IDENTIFICATION 29

measurement model. This assumption mostly supports integration with simple dynamic
models in the smoothing Kalman filter step.

The incoming data was filtered for outliers. All observed outliers occurred as motion
capture tracking errors wherein the state measurement of the robot was miscalculated by
several orders of magnitude. These outliers were filtered by rejecting any data point which
was more than 4 standard deviations away from the mean. On average, this filter caught 3-4
outliers per 2 minute run. The initial and final twenty strides were clipped from the data
set to rule out any transient effect from treadmill start up and slow down. A virtual bound
was placed on the treadmill running surface to define a conservative operational area for the
robot. If at any time the robot exited this area, a fault condition was set, and all consequent
data was discarded from the analysis.

There was a small amount of variance in the sampling period for both the motion capture
and robot data. A bicubic spline interpolation was used to time shift this irregularly sampled
data to the nearest 1 ms time step. The maximum interpolation distance is bounded by one
half of the sampling period.

To fuse the data, we used an Extended Kalman Filter (EKF) [72] combined with a
minimum-variance smoother (S-EKF). The difference in sampling rates between the robot
and the motion capture was accounted for by using a time varying observability matrix
which limited observations of the motion capture state to valid timestamps. We used the
motion model developed by van der Merwe et al. [50] to forward propagate the state. The
empirically derived mass and inertial properties of the robot derived in [28] were used to
predict the gravitational and Coriolis forces of the model.

The motion model for this approach predicts 6-DOF single rigid body dynamics in gravity
for q̇ and q with high certainty, and with low certainty for q̈. This was accomplished by
setting a diagonal R matrix for the EKF with σ2 values on par with the variance of the
motion capture system for the position and velocity states, and σ2 values greater than 10
times the IMU variance for the acceleration states. This results in the motion capture data
being “trusted” more for the fused estimates of the position variables, a combination of
the motion capture and IMU measurements for the velocity variables, and the IMU mostly
contributing to the estimates of the accelerations.

To reduce the variance of the filtered data we performed a backwards pass using a Rauch-
Tung-Striebel smoother [63]. The accuracy of the smoothed data was confirmed by applying
a known motion profile to a dummy robot, and verified with high-speed video.

3.2.5 Model Identification

The models identified in this work are time-invariant piecewise affine state-space differential
equations with exogenous inputs. Functionally this means a model maps a state and input
to a single estimated continuous-time state derivative. For a fixed submodel, this map in
classical linear system terms is: a system matrix A, input matrix B, with an affine forcing
vector f . For convenience we concatenate A,B, and f to a parameter matrix Θi, and the

CHAPTER 3. MOTION MODEL IDENTIFICATION 30

state, input, and affine component to a regressor vector Ψ(t). Equation 3.6 describes this

map to state derivative prediction, ˆ̇X(t).

ˆ̇X(t) =
[
A B f

]
i

X(t)
u(t)

1

 = Θ>i Ψ(t) (3.6)

Submodel parameters are indexed by i, which indicates the submodel region Xi ⊂ Rn in
which those dynamics hold. The regions are disjoint (∀i 6= j,Xi ∩Xj = ∅), and complete
(
⋃
i Xi = Rn). A complete model consists of the collection of tuples of submodel parameters

and regions {(Θ,X)i}si=1, where s is the number of submodels. As Figure 3.4b illustrates, our
model identification technique first partitions the space via statistical segmentation methods,
then finds the submodel parameters using linear regression.

3.2.5.1 Segmentation

In a practical sense, we are interested in a balance between the number of model partitions
and the overall accuracy of the estimation. To explore this relationship, we introduce and
evaluate three different methods of partitioning: “Average”, “z-score”, and “k-means”. To
test the null hypothesis of no linear dynamics, we also define a null model [A B f]null =
[0 0 µ], where µ is the average value of Ẋi. We use this collection of automatic region
identification methods tests values of s = [0, 1, 2, 10, 50].

The Average method considers all observed data in one region, and thus identifies one
affine model for the entire system. This approach is a base case for a dynamical system.

The z-score method divides the observations into two partitions based on the empirical
likelihood of the observation. First the data are z-score normalized, giving the distribution
of observations mean 0 and variance 1 in each axis. A parameter σz is used to separate the
data. Observations within σz of the origin in z-score space are considered one region, and
the remaining data outside this ball are a second region. This approach is primarily used
to see if a submodel fit to the most likely observations improves the overall model fit. We
tested the z-score model with σz = 1.5 (listed as Z-1.5), which empirically improved the fit
of the inner region over the outer region by an average of 25% per axis.

To extend this method to more partitions, we used the k-means clustering method. First,
all data in X are z-score normalized. Then, standard k-means is applied to the normalized
data to identify k = s model partitions. We evaluated this approach for s = 10 and s =
50 to define the K-10 and K-50 models. Varying s allows tuning of the model granularity;
we chose a maximum of s=50 so that the partition could be computed in a few minutes.
Empirically we found that the number of observations in each region was approximately
uniform for each trial.

For convenience, we define the submodel selecting function χ in Equation 3.7, which maps
a state vector to the submodel region index i that the state portion of X resides in. We
also use the notation χ(Ψ), which is understood to act only on the X portion of Ψ. Where
relevant, the subscript M denotes which model partition is used.

CHAPTER 3. MOTION MODEL IDENTIFICATION 31

χ : Rn → {1, ..., s}

χM(X(t)) = i s.t. X(t) ∈Xi (3.7)

In practice the submodel regions can be defined explicitly with polytopic separating
planes, or implicitly by other methods. In the case of z-score and k-means segmentation
algorithms, χ can be more simply evaluated by storing the parameters of the model and
calculating the regions of a new observation from those. For example, by storing the means
of the k-means segmentation method as {µi}si=1, the region index can be calculated as:

χK−s(X) = arg min
i∈{1,...,s}

||X− µi||2 (3.8)

We use this approach to simplify the representation in the simulation results discussed
below. In general any method that reproduces the complete and disjoint mapping will suffice.

3.2.5.2 Regression

Once the data are segmented, we estimate the dynamics of each region of the observed data
using least squares. Given a collection of correlated observations, the learned models are an
estimator of Ẋ(t), given X(t) and u(t). The estimation error e(t) for a particular observed
Ẋ(t) and model is therefore:

e(t) = Ẋ(t)−Θ>χ(Ψ(t))Ψ(t) (3.9)

By collecting all observations in a region Xi as column vectors in Ψi, we can calculate
the submodel parameters that minimize the region sum squared prediction error in ei as
Equation 3.10, where the dagger represents the Moore-Penrose pseudoinverse.

Θi = Ψ†iẊi (3.10)

3.2.6 Simulation

The PWA models identified by this approach can be used to simulate a system state tra-
jectory (Figure 3.4c). The simulations presented in this work use Euler integration with
exogenous control and state determined submodels (Equation 3.8) to generate trajectories.
At each time step, the control usim is calculated from Xsim using the same control law
discussed in 3.2.3. The submodel parameters Θi used to calculate the state derivative are
chosen such that i = χ(Xsim).

3.2.7 Validation

Comparing the performance of these models requires a metric that relates vector quantities in
different spaces based on the distribution of values in that signal. We chose the Mahalanobis

CHAPTER 3. MOTION MODEL IDENTIFICATION 32

Distance (DM) of an error vector e with respect to collection of observations Z. ΣZ is the
covariance matrix of the distribution of Z.

DM(e,ΣZ) =
√

e>Σ−1
Z e (3.11)

The remainder of our discussion will refer to a vector e as an “error”, and the scalar
value calculated by DM as a “score”. A higher score corresponds to a greater error, and thus
a poorer prediction.

3.3 Results

Our results are presented in three major sections. The first describes how the models perform
strictly as a predictor of the state acceleration based on the state and input. Next we
evaluate how forward simulation of state trajectories varies across the modeling approaches
and duration of simulation. Finally we examine how the state-space partitions identified by
segmentation may be correlated with physical non-linearities.

3.3.1 Data Selection

Our approach to model identification relies on collecting data from a robot running in a
stable or desirable operating regime. Models fit to this zone of operation would then be
most accurate around a nominal point of stable running. We collected running data from
the VelociRoACH with treadmill speeds in the range of 0.1 to 0.5 m/s. Figure 3.6 shows
the resulting distribution of leg phase observations as a function of treadmill speed. Leg
phase is defined to be Φ = αl − αr + π. The most stable operating speed was 0.25 m/s,
corresponding to a stride frequency of approximately 5 Hz. At this leg frequency, the robot
tends to passively converge to an alternating tripod gait (Φ = 0) which indicates an empirical
basin of stability for the alternating tripod gait in this region.

3.3.2 Model Evaluation

All of the models discussed in this work are predictors of state derivative, conditioned on
state and control input. We have constrained the parameters of our identification to second-
order state-space differential equations and so our prediction output space is the acceleration
vector, q̈. Table 3.1 reports the average prediction error for each of these variables for all
five of the modeling approaches we consider. These results were generated using 10-fold
cross-validation between model generation and prediction. The table values are the average
absolute error between the predicted and actual value, normalized by the standard deviation
of that value. The standard deviation of each variable is reported in the last row to provide
scale.

The null model shows a baseline normalized error of 1 for all variables. The prediction
accuracy improves as the number of model regions increases. This validates the hypothesis

CHAPTER 3. MOTION MODEL IDENTIFICATION 33

Treadmill Speed (m/s)
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
or

m
al

iz
ed

 L
ik

el
ih

oo
d

0.3

0.4

0.5

0.6

0.7

0.8

Le
g

Ph
as

e
(r

ad
)

0

π/
2

π
-π

/2
-π

Figure 3.6: Contour map of probability of leg phase plotted against velocity. Lighter regions
are more likely to occur. There are approximately 100,000 observations for each measured
speed.

Table 3.1: Model Comparison

Variance Normalized Average Error

Model ẍ ÿ z̈ ψ̈ θ̈ φ̈ α̈L α̈R

Null 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Avg 0.843 0.781 0.672 0.950 0.790 0.737 0.820 0.821
Z-1.5 0.791 0.760 0.622 0.925 0.768 0.730 0.744 0.765
K-10 0.719 0.728 0.594 0.839 0.648 0.663 0.727 0.713
K-50 0.627 0.638 0.521 0.684 0.516 0.529 0.575 0.555

σσσ 6.581 10.18 9.449 515.9 294.7 112.1 2259 2203
units m/s2 m/s2 m/s2 rad/s2 rad/s2 rad/s2 rad/s2 rad/s2

CHAPTER 3. MOTION MODEL IDENTIFICATION 34

Null
Avg
Z-1.5
K-10
K-50

0 1 2 3 4 5 60

1

1.5

2

2.5

3

Input Score

O
ut

pu
t

Sc
or

e

Figure 3.7: Model performance on an Input/Output basis, as a function of approach. Input
score is defined as DM(Cχ(X(t)) − X(t),ΣX) where Cχ(X(t)) is the centroid of the submodel

region containing X(t). Output score is defined as DM(Ẋ − ˆ̇X,ΣẊ). The marked points
on each series are the mean of an equal number of observations, so that the density of the
points indicates the distribution of observations on each axis.

that a linear model at least improves over the Null model with no dynamics, and that more
submodel regions allow better local approximations of non-linear dynamics.

Figure 3.7 shows that as more regions are added, the average distance to a submodel
centroid decreases. This empirically shows the intuitive positive correlation between input
score and output score. We expect that an input observation close to the centroid of a
subregion is representative of the behavior in that region, and thus the output prediction is
best in that vicinity.

3.3.3 Simulation

As discussed in section 3.2.6, the models can be used to predict the behavior of the system.
Figure 3.8 shows characteristic simulations for several models compared to the experimentally
observed trajectory of the system. We chose to show forward velocity (ẋ) and yaw (φ),
which are examples of first and zeroth-order state predictions. These variables are also

CHAPTER 3. MOTION MODEL IDENTIFICATION 35

0
0.1

0.2

0.3

0.4

0.5

Fo
re

-a
ft

 V
el

oc
ity

 (
m

/s
) Obs. Average K-10 K-50

-0.2

-0.1

0

0.1

Y
aw

 A
ng

le
 (

ra
d)

0 50 100 150 200
Simulation Time (ms)

Su
bm

od
el

In
de

x

Obs. K−10

(A)

(C)

(B)

1

10

Figure 3.8: Predicted time trajectories of fore-aft velocity (A), Yaw angle (B), and the
submodel index of the K-10 simulation state χK−10(XK−10) superimposed on the K-10 sub-
model index of the observed trajectory χK−10(Xobs) (C). In (A) and (B), transitions between
submodels are marked with + symbols.

CHAPTER 3. MOTION MODEL IDENTIFICATION 36

useful to predict robot motion for turning maneuver planning. In each case we initialized
the simulation state to an observed state, and then simulated the state and control for 200
1 ms time steps. The observed data for the duration of these simulation times was excluded
from the data used to train the models. Figure 3.8 (A) and (B) show simulated trajectories
of the Average, K-10, and K-50 models, along with the observed trajectory of the system.

The simulations qualitatively follow the behavior of the system through several submodel
regions. After a simulation time horizon of 100-125 ms the model prediction of the state
diverges from the observed state trajectory. Figure 3.8 (C) shows that the submodel transi-
tions in the simulation lag the observed submodel transitions. This lag causes a divergence
from the observed submodel region trajectory for the K-10 model. The dynamics of the
K-50 model are noisier than those of K-10 due to a larger number of transitions between the
affine submodels. The K-50 submodel trajectory diverges earlier than K-10 which shortens
the time horizon of its usefulness.

The time horizon of useful predictions from simulations decays with the number for
submodels. Figure 3.9 shows this trend of prediction accuracy versus simulation duration.
The plot shows a Pareto frontier for the model complexity. The K-50 model is most accurate
for short time spans (up to 40 ms), K-10 for a brief midrange (40-60 ms), and the average
model remains closest to the observed trajectory from 60 to 200 ms. After 200 ms, all models
make a poorer estimate than a null model with constant acceleration. We hypothesize that
this phenomenon is due to almost all modeling approaches learning at least some unstable
models at the periphery of the traversed stated space, and a transition to these models will
most likely lead to exponential growth in the state.

3.3.4 Interpretation of Model Regions

A hypothesis of our model identification approach is that model regions will be roughly
associated with distinct dynamic behaviors which are caused by physical nonlinearities. To
explore how the models identified for our robot correspond to a physically interpretable
dynamic structure, we project the likelihood of model transition onto a plane of the state-
space where we expect regions of disparate dynamics to be readily identifiable.

The leg crank angle largely determines whether a leg is on or off the ground, so we expect
it to generate the clearest distinctions in dynamics. To examine this hypothesis, we analyze
how closely the observed dynamics match a simple diff-drive kinematic model as a function of
the projection to the leg phase space (the plane of (αl, αr)). We consider the diff-drive state
XD = [ẋ ψ̇]>. The kinematic model predicts that XD is the inverse of the linear mapping in
Equation 3.2; we label this prediction X̂D.

Figure 3.10a shows the differential drive Dynamic Score, defined as DM(XD− X̂D,ΣXD
),

projected onto leg phase space. We see that the diff-drive model does not make accurate
predictions of robot behavior over the course of a stride. Variations in the local dynamics of
the robot from the kinematic model are shown by the color in this figure. Regions of high
contrast indicate that the dynamics of a region are changing rapidly. These changes were

CHAPTER 3. MOTION MODEL IDENTIFICATION 37

101 102

101

Simulation Duration (ms)

St
at

e
E

st
im

at
e

Sc
or

e

Null
Average
Z-1.5
K-10
K-50

Figure 3.9: This plot was generated using 1000 simulations with initial conditions randomly
selected from X. State Estimate Score is defined as DM(X(t0 + tsim)−Xsim(tsim),ΣX).

caused by leg touchdown and liftoff events, physical nonlinearities which ideally would be
matched by submodel transitions.

Figure 3.10b shows submodel transition ratio projected onto the same leg angle space.
The transition ratio is calculated by binning the state trajectories on this space, and report-
ing the ratio of trajectories that experience a submodel transition to the total number of
trajectories in the bin.

If there were no structure to the observed state trajectories, then we would expect there
to be an even distribution of submodel transitions. From a mechanical perspective, we would
expect leg touchdown events to be hybrid transitions in the robot dynamics. The most salient
trend visible in Figure 3.10b are the high probability bands in the vicinity of 3π/4, which
corresponds to liftoff of the front and rear legs (see Figure 3.2). These bands match well
with several regions of high-contrast in Figure 3.10a.

3.4 Discussion

Figure 3.12a shows the vertical acceleration of the VelociRoACH for one full stride, while
traveling at 0.25 m/s. For these strides, the VelociRoACH has passively converged to alter-
nating tripod gait, which is most likely gait at this speed (see Figure 3.11). The first stride
shows a characteristic SLIP-like pattern of acceleration. During the second stride, the robot
reacts to a pitch perturbation, which disturbs the motion away from a SLIP-like regime.

CHAPTER 3. MOTION MODEL IDENTIFICATION 38

0 π/2 π 3π/2 2π
α

π/
2

π
3π

/2
2π

L

α R

D
yn

am
ic

 S
co

re

2

3

4

5

6

7

8

(a) Heat-map of observed differential
drive Dynamic Score.

0 π/2 π 3π/2 2π
α

π/
2

π
3π

/2
2π

L

α R

T
ra

ns
iti

on
 r

at
io

0.1

0.2

0.3

0.4

0.5

0.6

(b) Heat-map of model transition ratio
for the K-50 model.

Figure 3.10: Heat-maps showing observed robot and model dynamics projected on to leg
phase space. The robot stick figures on the axes show how mid-stance for each of the legs
is associated with the α variable. Top dead center for the front and rear legs occurs at π/2,
and at 3π/2 for the middle leg.

Both the K-10 and K-50 models accurately predict the motion for the full stride, whereas a
SLIP model fit to the system would not have been able to predict the full body dynamics.

Because we used a data driven approach to modeling this system, we were able to doc-
ument this newly observed dynamic behavior during the data collection process. We were
interested on analyzing the performance of the steering controller, so we extracted a set of
high speed turns from the experimental data collected at 0.25 m/s. Figure 3.12b shows how
well the hybrid models tracked the observed Yaw angular acceleration, ψ̈ during one of these
turns. The robot started facing forward, in the nominal operating condition. The models
tracked well near the nominal state (with K-50 outperforming K-10) because a large amount
of training data was available for this region. The performance of the models degrades as
the robot exits this region due to the relatively small amount of training data around the
perturbed state. The dynamics of this region could be learned using our method by intro-
ducing repeated disturbances such that the robot more frequently occupied this region of
the state space.

3.5 Conclusion

We applied a highly simplified differential drive model to a legged robot, which fit well
enough to control its position and heading on a treadmill up to speeds of 5 body-lengths
per second. This allowed for the collection of a large dataset of robot state observations.
We demonstrated a data-driven methodology which learns models that predict the observed
robot 16 dimensional state and derivative on time scales of about one stride. The method-

CHAPTER 3. MOTION MODEL IDENTIFICATION 39

0 π/2 π 3π/2 2πα

π/
2

π
3π
/2

2π

L

α R

Z−1.5 K−10 K−50
Left TurnAlternating Tripod

Figure 3.11: Plot of trajectory through phase space.

CHAPTER 3. MOTION MODEL IDENTIFICATION 40

0 20 40 60 80 100 120 140 160 180−20

−10

0

10

20

30

40

Time (ms)

z̈(
m

/s
2)

(A) (B) (C)

Observed K−10 Prediction
K−10 Transitions

K−50 Prediction
K−50 Transitions

(a) z̈ for tripod gait. (b) ψ̈ for left turn.

ology is platform agnostic, which will allow application of our approach to determine the
dynamics of a wide variety of systems.

The predictive ability of the sets was measured via a Mahalanobis Distance metric (DM).
The one-time-step predictive performance of learned models increased with the granularity
of the state space partitions. However, forward simulations of models with more subregions
tended to diverge from the observed state trajectory in shorter time periods than simulations
of simpler models. We expect this balance between short and long-term predictions to be
a trend in models identified with this technique that have highly energetic transitions. The
choice of model granularity will depend on the prediction and simulation goals of a specific
robotic state estimation problem. Understanding exactly when the region-based modeling
does not capture these transitions is relegated to future work.

Future work will target further improving the predictive ability of the data derived mod-
els. More sophisticated partitioning strategies could be employed by allowing the shape of
the k-means clusters to more closely match the dynamical transitions of the robot. Itera-
tive optimization techniques could then modify the regions to move towards improving the
descriptive ability of the models with fewer model subregions. Analysis under the model
selection framework of the Bayesian Information Criterion (BIC) could help automatically
tune the balance of model complexity and prediction.

Simulation could also be improved over Euler integration by using models that explicitly
allow non-continuous dynamics, and probabilistic dynamic transitions. Frameworks such as
Gaussian mixture models and Markov Chains could add information about the likelihood of
model transitions, and reduce the instability seen due to diverging from observed submodel
index trajectories.

Finally, we are planning future work on using these learned models for on-line state
estimation and control. The models are particularly amenable to an on-board Kalman
filter or particle filter, as the simple to compute affine dynamical models can also be stored
with an estimate of their accuracy. This relationship can be easily approximated with the

CHAPTER 3. MOTION MODEL IDENTIFICATION 41

Input/Output score relationship in Figure 3.7, or extended to a full empirical motion model
covariance. Extending to control and planning, other future investigations could use the
models to investigate the dynamics of aggressive maneuvers, such as rapid turns.

With these additions, the work presented here would be a first step to a modeling and
control paradigm that could be used on nearly any type of dynamical system. It has been
shown to work well for identification and on-line control in lower dimensional systems, in-
cluding ornithopter robots developed by Rose [66] in the Biomimetic Millisystem Laboratory.
If state trajectories in regions of interest can be explored, our approach can identify a col-
lection of affine models that predict the dynamics with tunable granularity. These models
can then identify physical parameters of interest, provide a variable horizon simulation of
the system, or provide empirical measures of prediction uncertain in probabilistic planning
frameworks.

42

Chapter 4

Monocular Localization

4.1 Introduction

We present an approach for estimating the absolute poses of a swarm of Micro Autonomous
Underwater Vehicles (µAUVs) by decomposing the problem into few absolute position esti-
mations and many relative pose estimations. As power constraints are critical to small mobile
robots, we develop an extension of Active marker pose estimation using color information
to solve the marker correspondence problem, and show that this approach is more energy
efficient than Reflective estimation approaches. We show the feasibility of this approach by
localizing a robot navigating in an underwater test tank environment. Detailed analysis is
presented characterizing the noise and error properties when estimating robot poses from
fixed on-board markers. Moreover, we provide comparisons in power and computational cost
for other popular methods of underwater localization.1

4.1.1 Motivation

Localization is a key capability for robotic operations in unknown environments when per-
forming tasks such as exploration and inspection. Localization systems for small-sized au-
tonomous robots are specifically challenging, because they need to consider design specifica-
tions of being small, low-cost, and low-power.

Micro autonomous underwater vehicles (µAUVs) have become an active research area in
recent years. They open groundbreaking possibilities for applications related to automated
information gathering such as monitoring of nuclear storage ponds [26] as well as of large
industrial process tanks and port basins.

1This chapter to appear as “Low-Cost Monocular Localization with Active Markers for Micro Au-
tonomous Underwater Vehicles,” IROS 2017 [12]. A. Buchan developed the power theory of monocular
estimation, adapted the pose estimation framework to include hue information, and designed and conducted
experiments. E. Solowjow and D. Duecker developed the HippoCampus platform, and assisted with robotic
control and experiment implementation. This work was supported by the German Research Foundation
(DFG) under grant Kr752/33-1.

CHAPTER 4. MONOCULAR LOCALIZATION 43

i

i

i

i

ii
iii

iv

v

Figure 4.1: Underwater localization for inspection with proposed monocular vision and ac-
tive marker technique. RF or acoustic beacons (i) provide global position information. An
observer µAUV (ii) can measure the relative 6DOF pose of inspection µAUVs (iii, iv) to pro-
vide precise formation control through a communication channel to aid the overall inspection
of structure [17] (v).

The requirements of µAUVs put unique constraints on localization methods. Aquatic
environments attenuate most visual/electromagnetic signals quickly relative to air or space
environments. When seeking localization solutions for low-cost teams of µAUVs, the pay-
load size, cost, and power available for sensing and computation is limited. Localization of
µAUV groups is a challenging topic and is considered as the current bottleneck to increased
autonomy.

4.1.2 Localization Concept

We propose a strategy that allows localization of swarms of µAUVs with team members
operating in proximity to each other, comparable to a school of fish. We assume the µAUVs
can communicate with each other, e. g. via an acoustic channel. Instead of directly deter-
mining each swarm member’s absolute pose, we suggest for µAUVs to obtain each other’s
relative poses first. Similar to a rigid system of particles we are left with six unknown degrees
of freedom (6DOF) for the whole group (three translational, three rotational), because the

CHAPTER 4. MONOCULAR LOCALIZATION 44

relative poses are invariant to translational and rotational motions of the µAUV group. Mea-
suring the absolute positions (no orientations required) of just three swarm members called
observers is sufficient to break the translational and rotational symmetries and to obtain the
desired absolute poses of all swarm members. The three measured absolute positions must
not be collinear. Alternatively, a single observer is sufficient for symmetry breaking if it
can also determine its global orientation. Our approach is motivated by the fact that most
underwater absolute positioning systems do not scale with team size because of two-way
signal transmission, while the appeal of µAUVs lies in deploying many robots.

Since systems for determining global positions of underwater robots have been covered
[24, 58], we focus on developing and characterizing the part of the system for estimating
relative poses of µAUVs with monocular vision. We show that the proposed strategy is
able to determine the full 6DOF relative pose of a µAUV with respect to a camera in
underwater environments using minimal sensing hardware with low computational and power
requirements. This approach is tested on a hardware setup that can be easily miniaturized
and integrated to eventually enable autonomous swarm localization in the field. Figure 4.1
shows how this technique can be applied in an underwater structure inspection task. Only
the observer vehicle (ii) needs access to global pose information. The remaining vehicles’
poses are obtained via monocular vision.

4.1.3 Prior Work

Current underwater localization systems can be categorized in terms of the physical effect
they are based on, i. e. acoustics, electro-magnetism and vision.

Acoustic positioning is the method of choice in open seas and thus full scale AUVs. How-
ever, its performance degrades significantly in confined environments, because of interference
and reflections [18]. Furthermore, while localization errors of several AUV body lengths are
usually tolerable in an ocean environment, small-scale operations require much smaller ab-
solute errors. Small-sized, low-cost acoustic systems which would be suitable for µAUVs are
therefore rare [24].

Recently a localization method based on the attenuation of electro-magnetic carrier waves
in water was introduced, which delivers accurate absolute positioning results [58]. However,
the range is limited to a couple of meters and a bulky signal analyzer is required to compute
a radio spectrum. So far the electro-magnetic method is not suitable for µAUVs.

The work presented by Faessler et al. [21] provides an approach using monocular vision
and infrared LEDs markers on-board the robotic system to be localized. Given a known 3D
configuration of markers and an image of the system, this approach searches for a marker
correspondence and estimated pose that minimizes the reprojection error of detected marker
positions to predicted marker positions. This method has been shown to work well for
quadrotor control, and is generally easy to implement and low-cost compared to other meth-
ods. The small size of current camera sensors make this approach ideal for implementing on
board of µAUVs to localize to each other.

CHAPTER 4. MONOCULAR LOCALIZATION 45

Active marker beacons with monocular vision are more suitable for short-range pose
estimation in underwater environments, as opposed to methods that require ambient illumi-
nation such as Augmented Reality (AR) tags. Since µAUVs may be required to operate in
environments with no ambient light, the energy losses associated with illuminating a target
and sensing the reflected light are compounded compared to directly detecting active mark-
ers. In addition, AR tags would require a large flat area on board the sensed AUV be visible
at all desired poses, which would be detrimental to the agile hydrodynamic performance of
an AUV.

However, several shortcomings motivate our work in adapting this approach to µAUVs.
Infrared light is more absorbed than the visible spectrum underwater [59], and given the
ambiguity between markers it is difficult to distinguish between poses that have similar 2D
projections of markers. Finally, the approach given in [21] will not scale well to identifying
multiple robots, as the combinatorial problem of marker correspondence grows exponentially
with the number of markers visible. Thus we propose using visible spectrum LED markers
that can be distinguished by color for relative localization of a µAUV.

The prerequisites in [21] can be relaxed with the introduction of color for marker corre-
spondence. Especially with µAUVs, finding configurations of markers that do not produce
symmetric projections to an image plane when viewed from perspectives all around the robot
is particularly difficult.

This technique has already been shown to work for a team of three low-cost terrestrial
robots [54]. The following sections detail our adaptation of this approach to use colored
LED markers to localize the µAUV HippoCampus, which is shown in Figure 4.2a and was
developed for monitoring scalar and flow fields [27]. The cutaway render in Figure 4.2a shows
the payload bay at the front of the robot that could carry one or more cameras for swarm
monocular localization.

By just studying the monocular relative pose estimation of a single µAUV we condense
the problem down to its essentials. This is the key aspect for the localization concept
described in Section 4.1.2 and the main contribution of this work.

4.2 Theory

Here we develop a model for the energy required to obtain a pose estimate from two different
vision based methods: Reflective and Active. Reflective methods encompass approaches like
AR Tags, where light reflecting from a known visually patterned surface produces an image
that can be used to extract the homography between the camera and surface. To evaluate
the best-case engineered solution, we consider using a retro-reflective surface material that
can reflect the majority of the optical energy in a narrow cone back towards the source (and
also camera if it is placed nearby). For the purposes of µAUVs, we cannot assume there will
be enough ambient illumination to view the surface, so we derive the energy necessary from
a light source at the observer robot directed at the target robot to capture a single pose
estimate image.

CHAPTER 4. MONOCULAR LOCALIZATION 46

i

i

i

i

iiiii

(a) CAD render of platform showing
drive impellers (i) and hardware bay
regions for housing processor and bat-
teries (ii), with additional payload area
(iii).

(b) Platform with Active LED markers
used for localization.

Figure 4.2: Render and photo of HippoCampus µAUV platform.

d

θΩFOV

AR

AA
ΩS,A

Re�ective

Active

i

ii

iii
iv

v

vi

ΩS,R

Figure 4.3: In Reflective estimation, the observer source (i) illuminates the field of view of
the camera. A surface on the target robot (ii) reflects light through lens (iii) to illuminate a
pixel on image sensor (iv). In Active estimation, multiple markers (v) on the target system
produce an image on observer sensor (vi).

CHAPTER 4. MONOCULAR LOCALIZATION 47

The Active approach (this work) derives the total energy required of Active LED markers
on board the target robot necessary to produce the same type of image for extracting homog-
raphy. In both cases, we first find the transmittance efficiency T for each approach, which
represents the fraction of energy measured to the energy input to the system. The overall
transmittance T (λ, d) is a product of individual process transmittances Tx, which are vari-
ously functions of light wavelength λ, distance d, and properties of the medium and optics.
Figure 4.3 illustrates the geometry of these processes for the two approaches considered.

We use a formulation similar to [8] to include all of the relevant processes: the source
conversion of electrical to optical energy Ts, environmental Beer-Lambert scattering and
absorption Te, retro-reflection Tr, optics geometry To, and detection via the conversion of
optical energy to signal Td. The total transmittance is thus:

T (λ, d) =
∏
x∈X

Tx = Ts(λ)Te(λ, d)TrTo(d)Td(λ). (4.1)

Environmental transmittance is an exponential decay with a rate depending on the wave-
length:

Te(λc, x) = e−γ(λc)x = e−γcx (4.2)

The difference between red (γr ≈ 0.3m−1), green (γg ≈ 0.04m−1), and blue (γb ≈ 0.01m−1)
absorption has a significant effect on the Active case.

For retro-reflectors we assume that all light gathered within the projection of a pixel
comes back towards the source in a very small cone (∼ 10◦ as per ASTM D4956 Type I
rating for retro-reflective tape), thus, this is just the fraction of light collected by a single
pixel:

Tr =
1

np
(4.3)

The optics transmittance To is the ratio of the light collected by the pixel effective aperture
A to the solid angle of the source ΩS (either the reflected cone, or Active marker), which
grows with the distance squared to the source. A is the effective aperture of a lens, given by
the standard relation of the focal length f and F-Number N :

To(x) =
A

ΩSx2
, A = π

(
f

2N

)2

(4.4)

We assume for a particular wavelength λc there is a minimum total energy a pixel must
collect ED,min to achieve a desired Signal to Noise Ratio (SNR) for pose estimation. Thus,
the minimum energy required by all sources ES,min to measure a pose is the sum over the set
of wavelengths C of the ratio of minimum detection energies over the transmittances:

ES,min(d) =
∑
c∈C

ED,min(λc)

T (λc, d)
(4.5)

These formulations will next allow us to compare the minimum energy required for a pose
estimate in the Reflective and Active case as a function of distance.

CHAPTER 4. MONOCULAR LOCALIZATION 48

4.2.1 Reflective Estimation

Assuming illumination with blue light in water, the Reflective transmittance is:

TR(d) = Ts(λb)Te(λb, 2d)TrTo(d)Td(λb) (4.6)

=
Ts,d(λb)AR
npΩS,R

e−2γbd

d2
(4.7)

where ΩS,R is the solid angle of the retro-reflector cone. The minimum energy is:

ES,R,min(d) =
ED,min(λb)npΩS,R

Ts,d(λb)AR

d2

e−2γbd
(4.8)

= Eb,min
npΩS,R

AR
d2e2γbd (4.9)

where Eb,min is an energy factor that depends only on the camera and illuminator properties.
We report the energy at a given distance as multiple of this quantity since it is the same for
both approaches.

4.2.2 Active Estimation

For Active estimation, we must consider the worst case of an individual marker image being
split between 4 pixels. Thus, the transmittance of a single marker is:

TA(λc, d) =
1

4
Ts(λc)Te(λc, d)To(d)Td(λc) (4.10)

=
Ts,d(λc)AA

4ΩS,A

e−γcd

d2
. (4.11)

ΩS,A is a full sphere (4π), but we leave it in for comparison. Assuming that the efficiency
of production and detection of light is approximately the same for each color (Ts,d(λc) ≈
Ts,d(λb)) yields

TA(λc, d) =
Ts,d(λb)AA

4ΩS,A

e−γcd

d2
. (4.12)

Finally, we consider the fact that we need 3 detections of each of red, green, and blue pixels
to read the six colors used in this method (red, yellow, green, blue, cyan, magenta):

ES,A,min(d) = 3
∑

c∈{r,g,b}

ED,min(λb)4ΩS,A

Ts,d(λb)AA

d2

e−γcd
(4.13)

= Eb,min
12ΩS,A

AA
d2(eγrd + eγgd + eγbd). (4.14)

CHAPTER 4. MONOCULAR LOCALIZATION 49

(a) (b) (c)

Figure 4.4: Energy comparison between Active and Reflective estimation across lenses and
resolutions.

4.2.3 Relative Efficiency

Figure 4.4 shows the required energy (as a multiple of Eb,min) to acquire a pose estimate as a
function of distance. Each subplot shows the behavior of each approach on a single lens across
different standard resolutions (QVGA: 320× 240, VGA: 640× 480, UVGA: 1280× 960). We
considered the three lens types (wide angle, normal, and zoom) available for the open-source
OpenMV embedded computer vision platform [57].

The line for each approach is solid between the minimum and maximum distances that
the approach is viable. Minimum distance is limited by fitting the entire 35 cm robot within
the vertical field of view of the camera, and maximum distance is limited by the camera
resolution. We assume that a Reflective approach would need to be able to resolve 1cm
features of a 5 × 5 pixel AR Tag, and the Active approach needs to resolve 3.3 cm features
(allowing for markers spaced a minimum of 10 cm apart, and resolving at least one dark pixel
in between on the diagonal). In general, the Active approach will have ∼ 3 times the range
of the Reflective approach since the features it needs to resolve are 3.3 times larger.

This is shown in Figures 4.4a and 4.4b for a wide and normal angle lens respectively.
The Active approach always requires less energy for a given resolution in the distance range
where the approaches are viable. Even though the energy losses of red wavelengths will
eventually dominate the required energy in an Active approach, the limited range of Reflec-
tive approaches usually prevents them from realizing the benefits of using only blue light.
Figure 4.4c shows that with sufficient magnification and resolution, a Reflective approach
can require less energy than the Active approach at far ranges. The energy requirements
for a Reflective approach at UVGA resolution drop lower than the Active requirement at
around 18 meters. However, at closer ranges the Active approach still requires less energy
than the Reflective approach at any lower resolutions, and for most ranges at UVGA resolu-
tion. In general, for having a balance between field of view and energy efficiency, the Active
approach proves to be much better in theory than Reflective approaches. Of course, this
model is subject to variability in implementation and assumptions of parameters, therefore

CHAPTER 4. MONOCULAR LOCALIZATION 50

1.5m

4.4m

Camera
Axis

x

z

2m

y

AUV

Gantry

Figure 4.5: Experimental water tank setup for localization.

we experimentally verify the efficacy and energy requirements of the Active approach in the
following sections.

4.3 Methods

4.3.1 Hardware Setup

The HippoCampus µAUV was outfitted with six waterproof RGB LEDs and spherical 35 mm
diameter diffusers at the front, rear, and each of the four motor struts, as shown in Fig-
ure 4.2b. The RGB LEDs are programmable, which allows the exact colors of each marker
to be arbitrarily reassigned during experimentation. The colors were chosen to provide as
close to an even distribution in the Hue coordinate of the HSV color space [41] as possible
when viewed underwater. This corresponds roughly to red, yellow, green, cyan, blue, and
magenta colors (respectively, 0◦, 60◦, 120◦, 180◦, 240◦, and 300◦ in Hue coordinates).

We simulated the behavior of how a camera on-board an observer µAUV would perform
while viewing a different µAUV. We placed a robot in a water tank with observation panels.
Localization image data was gathered by placing a Logitech QuickCam E3500 against a
clear section of a water tank, and observing the robot with markers inside the tank. This
tank was outfitted with an XYZ gantry that allowed repeatable and rigid positioning of the
robot along the three axes. Orientation of the robot was held with a lockable spherical wrist
gimbal. This orientation lock maintained a rigid pose, but was much more prone to human
error when trying to attain accurate pose angles. Figure 4.5 shows this setup with the world
coordinate frame in which we report results.

Adjustments to the exposure, gain, and white balance settings of the camera proved
crucial to obtaining clear and identifiable images of the markers underwater. By manually

CHAPTER 4. MONOCULAR LOCALIZATION 51

Image Blob
detection

Last poses
Prediction

Correspond-
ence search

Marker distances

Pose
optimization

Pose with
covariance

Marker positions

Blob locations
and hues

Marker
optimization

Marker hues,
camera parameters Precomputed

Online Processing

Figure 4.6: Algorithm dataflow (novel contributions in bold).

setting the white balance correction to accentuate red hues we were able to partially com-
pensate for the higher absorption of red colors in water. We also found that using the lowest
exposure time with high gain produced the highest contrast of markers to the environment.
This had to be balanced by the fact that too high values of gain or LED brightness would
wash out the markers to appear white, losing distinguishing color information.

4.3.2 Algorithm

4.3.2.1 Overview

Our approach follows that in [21] with a few key modifications. The main steps of Blob
Detection, Correspondence Search, Pose Prediction, and Pose Optimization are used as
shown in Figure 4.6. New information and modified steps are shown in bold. Blob Detection
determines the centers and dominant hue of bright blobs detected in the camera image. The
correspondence search assigns detected blobs to markers to obtain an initial pose estimate.
The correspondence search can be initialized with a guess for where markers should be given
a constant velocity model using the pose prediction based on the last two poses. Finally, once
a consistent correspondence is found, the final pose is optimized using the Gauss-Newton
method. This step also reports an estimated covariance of the pose estimate. In the following
sections we detail the novel contributions to the blob detection and correspondence search
steps allowing the algorithm to leverage color information.

4.3.2.2 Calibration

Camera calibration was performed using a checkerboard test pattern in the tank, allowing
the system to identify the intrinsic properties of the camera viewing markers through the
water. As it was difficult to measure the exact spatial configuration of the markers on the

CHAPTER 4. MONOCULAR LOCALIZATION 52

Hue Channel Thres’d Value

Resulting Detections

Figure 4.7: LED detections and resulting pose estimate on sample image. The final image
shows the result of separating overlapping blobs based on their Hue coordinate.

robot, pairwise measurements between markers were taken. Then the BFGS optimization
method [55] was used to find the positions of the markers that minimized the sum squared
error of these measurements.

4.3.2.3 LED Detection

The image used in our approach is captured from the camera as a raw RGB pixel array.
The image is converted to the Hue Saturation Value (HSV) color space using the OpenCV
Library [7], which makes blob thresholding and color segmentation more convenient. LED
blobs are detected by thresholding the Value coordinate of the HSV image, and then finding
the contours of the remaining bright regions. The standard deviation of the Hue coordinate
within these contours is calculated. If the variance is above a threshold within a contour, the
blob is split into two regions with Hue values above and below the mean of the original blob.
This allows the detection and separation of markers even when they partially occlude each
other. In practice using half the separation between colors (30◦) for this threshold worked
well.

CHAPTER 4. MONOCULAR LOCALIZATION 53

Figure 4.7 shows a grayscale representation of of the Hue and thresholded Value channels
of a sample image. The Hue channel shows that the regions representing LED blobs have
a roughly uniform and distinct coordinate, especially in the red circled area showing the
cyan and green markers. The thresholded Value channel image shows the regions identified
as blobs by removing all pixels below a certain magnitude (∼25% of the maximum possible
Value coordinate). Note the single blob in the circled red region for two markers. Finally,
Figure 4.7 shows the original image with the detected blob centers as colored crosshairs, the
Region of Interest (ROI) where markers are expected as a blue rectangle, and coordinate
axes representing the estimated pose. Here the result of separating a single blob into two
based on the Hue covariance is clear.

4.3.2.4 Correspondence Search

The correspondence search step assigns detected blobs to markers on the object in order to
calculate a pose using a Perspective-Three-Point (P3P) solver [42]. In the original algorithm,
the search required initialization by computing a pose for every combination of three detected
blobs assigned to each combination of three markers. The remaining blobs were then checked
to see if they were consistent with the expected marker location. With this method the
number of poses checked grows factorially in the number of markers on the object, and in
the number of detected blobs.

Our approach uses the hues of the detected blobs to match them to the nearest marker
in Hue coordinate, which can drastically reduce the number of pose checks. In the case that
there are fewer detections than marker colors, there is only one required pose check. As the
number of detections nD grows larger than the number of colors nC , the worst case number
of required pose checks N grows as

N =

⌊
nD
nC

⌋(nD mod nC)

·
⌈
nD
nC

⌉(nC−(nD mod nC))

(4.15)

where bc and de respectively are the floor and ceiling functions. This function only grows
exponentially in nC and linearly in nD. As our approach using colored LED markers tends
to produce far more false detections than the IR LED marker approach, this modest growth
in the pose checking computation time is an added benefit. For our use case of nC = 6, this
requires only 64 checks for a particularly poor nD = 12, whereas the original approach would
have required 105, 600 checks.

4.4 Results

In this section we present experimental results for dynamic open-loop trajectory tracking of
a µAUV and static error analysis.

CHAPTER 4. MONOCULAR LOCALIZATION 54

Figure 4.8: Monocular pose estimation of HippoCampus freely moving along a helical tra-
jectory underwater.

4.4.1 Open-Loop Trajectory

A helical trajectory tracking experiment with a small radius was chosen to demonstrate
the accuracy of our method. The µAUV HippoCampus freely follows a helical trajectory
underwater by completing small circles in the XY plane while pitching downwards for the
first half of the experiment, and then upwards when it reaches the bottom of the tank. This
allowed it to cover nearly the full visual field of the camera within the test tank.

Figure 4.8 shows the 3D pose estimation results from the first half of the motion tracking
HippoCampus going upwards. The coordinate system in the 3D graph is relative to the
initial pose of the robot. The start and end positions are marked, as well as intermediate
pose axes showing the orientation of the robot (the red axis with diamond tip is the long
axis of the µAUV.)

Figure 4.9a shows a time trajectory of the estimated pose using the algorithm presented
in this work using hue information to assign correspondences to markers. For comparison,

CHAPTER 4. MONOCULAR LOCALIZATION 55

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Po
si

si
ti
o
n
 (

m
)

Trajectory Estimate with Hue Information

X
Y
Z

0 20 40 60 80 100
Time (s)

150

100

50

0

50

100

150

A
n
g
le

 (
d
eg

)

Roll
Pitch
Yaw

(a) Estimation with Hue information.

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Po
si

si
ti
o
n
 (

m
)

Trajectory Estimate without Hue Information

X
Y
Z

0 20 40 60 80 100
Time (s)

150

100

50

0

50

100

150

A
n
g
le

 (
d
eg

)

Roll
Pitch
Yaw

(b) Estimation without Hue informa-
tion.

Figure 4.9: Comparison between pose estimation with and without hue information.

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

Po
si

ti
o
n
 E

rr
o
r

(m
)

X Sweep Errors

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

0
.4

5

0
.5

0

0
.5

5

0
.6

0

0
.6

5

0
.7

0

0
.7

5

0
.8

0

0
.8

5

X Difference (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
n
g
le

 E
rr

o
r

(d
eg

)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Po
si

ti
o
n
 E

rr
o
r

(m
)

Y Sweep Errors

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

0
.4

5

0
.5

0

0
.5

5

0
.6

0

0
.6

5

0
.7

0

0
.7

5

0
.8

0

0
.8

5

Y Difference (m)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

A
n
g
le

 E
rr

o
r

(d
eg

)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Po
si

ti
o
n
 E

rr
o
r

(m
)

Z Sweep Errors

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

0
.4

5

0
.5

0

0
.5

5

0
.6

0

0
.6

5

Z Difference (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
n
g
le

 E
rr

o
r

(d
eg

)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Po
si

ti
o
n
 E

rr
o
r

(m
)

Roll Sweep Errors

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

2
4
0

2
6
0

2
8
0

3
0
0

3
2
0

Roll Difference (deg)

0
2
4
6
8

10
12
14
16
18

A
n
g
le

 E
rr

o
r

(d
eg

)

0.00

0.05

0.10

0.15

0.20

0.25

Po
si

ti
o
n
 E

rr
o
r

(m
)

Pitch Sweep Errors

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

Pitch Difference (deg)

0
2
4
6
8

10
12
14
16
18

A
n
g
le

 E
rr

o
r

(d
eg

)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Po
si

ti
o
n
 E

rr
o
r

(m
)

Yaw Sweep Errors

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

2
4
0

2
6
0

2
8
0

3
0
0

3
2
0

3
4
0

Yaw Difference (deg)

0

10

20

30

40

50

60

70

80

A
n
g
le

 E
rr

o
r

(d
eg

)

Figure 4.10: Distribution of errors in calibration experiment.

Figure 4.9b shows the result applying the original algorithm to the same image sequence
using only the marker centers to determine a pose estimate.

4.4.2 Fixed Pose

The evaluation of the accuracy of the pose estimation method consisted of mounting the
µAUV on the gantry in the experimental tank and collecting 30 images at each of a series of

CHAPTER 4. MONOCULAR LOCALIZATION 56

fixed poses. These poses were grouped into six sets that swept the pose at even coordinate
increments along only one world axis or angle, with the goal of viewing the µAUV at the
extremes of the field of view of the camera. The same orientation was used for all of the axis
sweep sets, and conversely the same position was maintained for each of the angle sweeps.
The axes frames are defined in Figure 4.5, and Roll, Pitch, and Yaw are rotation about the
X, Y, and Z axes respectively.

Figure 4.10 shows the errors in the pose estimation resulting from the fixed pose ex-
periments. For each trial the first measured pose was set as the reference pose, and the
subsequent relative poses were used to calculate the deviation from the expected pose based
on the applied movement. Position errors are reported as the magnitude of the position error
vector, and angle errors are reported as the magnitude of the angle in an axis-angle repre-
sentation of the difference between the measured and expected orientation. This follows the
convention for pose error quantification outlined in Sharma and D’Amico’s work on visual
pose estimation for satellites [68]. Note that the horizontal axes are aligned in each of the
six data sets, but the vertical axes do not have the same ranges across the data sets.

4.4.3 Execution Time

The conversion of images from RGB to HSV color space approximately doubles the time
spent in the blob detection phase compared to the original algorithm. Even though this was
already the largest share of computational cost, the additional time did not prevent the pose
tracker from being able to operate at the 30 Hz capture rate of the camera, thus did not
significantly impact the desired application.

4.4.4 Power Usage

We compare the total localization system power including the beacons if deployed. The
power required by the approach presented in this work was measured to be 600 mW for the
markers (or 100 mW per marker) and 650 mW for the camera while active. In comparison,
the approach based on electro-magnetic wave attenuation requires up to 100 mW per beacon.
However, eight beacons would be required for the size of the presented tank, because four
beacons need to be placed at two different depths [58]. The receiver power accounts to
100 mW. Hence, the total power used by the markers and cameras is 900 mW. Acoustic
localization systems require significantly more power. The system presented in [24] which
was applied within the same test environment as this work’s system consisted of four 80 W
acoustic transmitters.

To benchmark computational power requirements, the software pipeline was compiled
and tested on an embedded compute platform that can easily be integrated onboard the
HippoCampus. The platform used was the Hardkernel ODROID-U3, which has a quad core
1.7 GHz ARM Cortex-A9 processor and 2 GB of RAM. When on and idle, this platform
draws 1.79 W of power. While capturing 1280 by 720 pixel RGB video at 21.6 Hz (the
maximum rate achievable on the system), the device and camera together draw 3.16 W of

CHAPTER 4. MONOCULAR LOCALIZATION 57

power (this includes the 900 mW for powering the camera). With the full pose estimation
pipeline running, the system draws 4.16 W producing a pose estimate at the full 21.6 Hz
frame rate. In comparison, running the AR Track Alvar2 pose estimation pipeline draws a
total of 4.28 W, while only producing a maximum pose estimate rate of 9.59 Hz.

Based on observations in [27] of a 12.8 Volt, 1.8 Amp-hour battery running the Hip-
poCampus robot for 60 minutes under average operation, we can estimate 23 Watt of active
power usage for processing and motion on the platform. The 4.16 Watt cost of running the
tracking pipeline would reduce the operating time to 50 minutes under these assumptions.

4.5 Conclusion

4.5.1 Discussion

Figure 4.9 clearly shows that the Hue information produces a much cleaner estimate of
the robot trajectory than only using marker positions for many more observed poses. This
(expected) failure of the original method is largely due to the symmetry of the marker
positions causing poor correspondence matches, and thus wildly varying pose estimates when
not using Hue information. With further calibration and tuning of the parameters of the
estimator, we believe that this augmented approach could achieve similar accuracy to the
original method.

The trends in Figure 4.10 are largely due to human error in positioning the robot, and
a likely poor calibration of the camera. Some of the trends in the angle sweeps may be due
to particular orientations that are difficult to perceive and identify correct correspondences.
Still, the fact that each box distribution represents 30 images of the robot in a rigid location
provides some insight into the noise that the camera introduces. Future work will quantify
the actual blob position noise given different camera conditions, and be used to inform a more
accurate covariance estimate than the assumed single-pixel noise model presented previously.

Overall, our approach provides reasonable estimates of the relative poses. Combined with
absolute positioning systems, e. g. acoustic methods, the system allows to localize possibly
large fleets with member operating in proximity, whereby only few absolute positions need
to be measured. Further, the presented method can be deployed in µAUV research to track
vehicles in experimental tanks. While the range of the approach is limited by the visibility of
the markers, we believe this approach could be ideal for precisely localizing and controlling
µAUV systems at closer ranges.

4.5.2 Future Work

Our approach could benefit greatly from closed-loop control of the marker brightness and
camera exposure settings to maximize marker visibility and Hue contrast. This will be neces-
sary for the desired extension to teams of µAUVs, where a system must distinguish between

2http://wiki.ros.org/ar_track_alvar

CHAPTER 4. MONOCULAR LOCALIZATION 58

several collections of markers on robots. While this approach incurred a high computational
cost with the color space conversion, many cameras can provide raw data in YUV color
space, which has a simple transform to HSV. Optimizing the blob extraction to operate
on this type of data, and to take advantage of embedded hardware on board the robots
could greatly reduce the computational cost of this method, and allow integration on-board
the µAUVs. Finally, further empirical characterization of the noise properties of this ap-
proach would allow it to be fused with other position tracking methods based on IMUs and
acoustics.

59

Chapter 5

Cooperative Inchworm Localization

5.1 Introduction

In this chapter we address the problem of multi-robot localization with a heterogeneous
team of low-cost mobile robots. The team consists of a single centralized observer with an
inertial measurement unit (IMU) and monocular camera, and multiple picket robots with
only IMUs and Red Green Blue (RGB) light emitting diodes (LED). This team cooperatively
navigates a visually featureless environment while localizing all robots. A combination of
camera imagery captured by the observer and IMU measurements from the pickets and
observer are fused to estimate motion of the team. A team movement strategy, referred
to as inchworm, is formulated as follows: Pickets move ahead of the observer and then act
as temporary landmarks for the observer to follow. This cooperative approach employs a
single Extended Kalman Filter (EKF) to localize the entire heterogeneous multi-robot team,
using a formulation of the measurement Jacobian to relate the pose of the observer to the
poses of the pickets with respect to the global reference frame. An initial experiment with
the inchworm strategy has shown localization within 0.14 meter position error and 2.18
degree orientation error over a path-length of 5 meters in an environment with irregular
ground, partial occlusions, and a ramp. This demonstrates improvement over a camera-
only localization technique that was adapted to our team dynamic which produced 0.18
meter position error and 3.12 degree orientation error over the same dataset. In addition,
we demonstrate improvement in localization accuracy with an increasing number of picket
robots.1

The size of a robot can greatly affect what it can do and where it can go. Advan-
tages of small robots include increased accessibility and a wider range of capabilities such as
crawling through pipes, inspecting collapsed buildings, exploring congested or complex en-

1This work originally published as “Cooperative Inchworm Localization with a Low-Cost Team,” ICRA
2017 [54]. B. Nemsick developed the on-line localization filtering and fusion framework. A. Buchan incorpo-
rated multi-robot monocular pose tracking with hue information. A. Nagabandi developed the experimental
methods, and all authors contributed to executing the experiments. This work was supported by the National
Science Foundation under the National Robotics Initiative, Award 1427096.

CHAPTER 5. COOPERATIVE INCHWORM LOCALIZATION 60

(a) (b) (c)

Le
ap

fr
og

Robot 2

Robot 1

Robot 3

(d)In
ch

w
or

m

Pi
ck

et
-1

Observer

Picket-2

(e) (f)

t = 1 t = 2 t = 3

Figure 5.1: The above diagrams compare the leapfrog and inchworm strategies. Arrows are
drawn to show motion that happens during a time step. In the Leapfrog method (a-c), all
robots are the same type and at each time step one robot moves while the other two remain
stationary. For example during (a) at t = 1, robots 2 and 3 remain stationary while robot
1 moves. This process repeats where the moving robot cycles at each time step. In our
approach, the inchworm method, at least one robot remains stationary while two move. In
addition the picket robots generally remain in front of the observer. For example during
(d) the pickets move in front of the observer and during (e) the observer catches up to the
stationary pickets. At (f) picket-1 and the observer both move leaving picket-2 stationary.

vironments, and hiding in small or inconspicuous spaces. However, these benefits also bring
along challenges in the form of reduced sensing abilities, lower communication capability,
limited computational resources, and tighter power constraints.

One way to overcome these limitations is to employ a heterogeneous team [25] of collab-
orative robots. This approach marks a design shift away from the traditional simultaneous
localization and mapping (SLAM) ground robots that have expensive sensors and powerful
processors, but less mobility in disaster environments. The goal is to have small, mobile,
disposable robots with limited capabilities collaborate and share information to accomplish
a larger task. Since each robot is expendable, reliability can be obtained in numbers because
even if a single robot fails, few capabilities are lost for the team. Hierarchical organization
and the idea of a heterogeneous team allows for robots to have different specializations, such
as larger robots with higher computation power, smaller robots with increased maneuver-
ability, and robots with different sensor modalities. Another advantage of a team of less
capable robots, rather than one extremely capable robot, is that it allows sensing from mul-
tiple viewpoints and hence achieves a wider effective baseline. This is helpful for tasks such
as surveillance, exploration, and monitoring. Furthermore, physically traversing an area

CHAPTER 5. COOPERATIVE INCHWORM LOCALIZATION 61

conveys much more information than simply looking at it from a distance. For example,
an expensive scanner can scan the rubble of a disaster site from the outside, but cannot
enter and inspect the inside. Knowledge that cannot be gained without physical presence
includes detection of slippery surfaces, hidden holes, and other obscured hazards; these can
completely incapacitate robots despite their state-of-the-art SLAM algorithms, expensive
cameras, and complex laser range finders. Instead, these same hazards can be detected
through sacrifice of highly mobile disposable picket robots that scout the area [29].

Localization is a central problem in many robotic applications. It is particularly impor-
tant in collaborative situations where without position and orientation information of each
robot, there is no global context in which to meaningfully share information between the
robots. In this work, we focus on the localization problem and consider a heterogeneous
multi-robot team consisting of two types of minimally equipped robots. A single, central,
and more capable observer robot is equipped with a monocular camera and a 6-axis IMU
consisting of a gyroscope and accelerometer. Multiple picket robots, which are expendable
and less computationally capable, are equipped with no sensors other than 6-axis IMUs. A
limited communication interface between the observer robot and individual picket robots is
assumed. We consider a multi-robot team with a single observer and multiple picket robots
in an unknown environment. We present a method for using a single EKF, which the ob-
server uses to localize the entire multi-robot team, including itself, in six degrees of freedom
(6-DOF) by fusing IMU measurements and relative pose estimates of the pickets. Relative
pose estimation refers to the process of estimating the position and orientation of a picket’s
body frame with respect to the camera frame on the observer. This relative pose estimation
is done using RGB LEDs that are mounted at known positions on the picket robots.

The datasets discussed in this work include one observer working together with two
pickets to traverse given areas. Even with minimal sensors, the inchworm method is shown
to work in dark environments with visual occlusions such as walls or obstacles, instances
when line of sight between the robots is lost, and non-planar settings without external visual
features or landmarks. The camera and IMU fusion approach employed by the inchworm
method demonstrates improved performance over a camera only approach. In addition, we
show that the localization accuracy of the inchworm method improves with an increasing
number of picket robots.

5.1.1 Related Work

Existing localization strategies with stationary robots have been explored [25]. A stationary
robot is defined as a robot that remains at rest while other robots move. Stationary robots
and leapfrogging strategies build on the ideas from [25] and have shown promise in 3-DOF
environments in [53][73]. These previous approaches have a stronger condition than our ap-
proach because they require two or three stationary robots at any given time. Our inchworm
strategy relaxes these constraints to require only a single stationary robot at any given time,
as shown in Figure 5.1.

CHAPTER 5. COOPERATIVE INCHWORM LOCALIZATION 62

A similar approach, cooperative positioning system (CPS), to inchworm is presented in
[45]. The CPS approach focuses on 4-DOF (x,y,z,yaw) environments and partitions the
robots into two groups, with each group consisting of at least one robot. Under the CPS
system, the team alternates between which group moves: Either group A moves or group B
moves. For the purposes of comparison we can consider group A to be the observer and group
B to be the picket robots. An example of the CPS motion is shown in Figure 5.1 (d-e) where
either the pickets move or the observer moves. Our inchworm strategy improves on CPS by
allowing the observer and picket robots to move at the same time. An example of this is
found in Figure 5.1(f) where both picket-1 and the observer move while picket-2 is stationary.
Previous approaches and variants of leapfrogging strategies were focused on team dynamics
with high redundancy where each robot produces relative pose estimates of all other robots.
Our inchworm approach relaxes the sensor constraints to accommodate teams where only a
single observer robot is required to have relative pose estimation capabilities. This leaves
the picket robots with more flexibility and less computational burden.

Haldane et al. [29] use a heterogeneous team to detect slippery terrain by sending out a
small picket robot and having it walk around the area of interest. The large robot is capable
of accurately estimating it’s own pose, and it uses an augmented reality (AR) tag on the
picket robot to localize it. Then, features of the picket’s motion are used to train a terrain
classifier that is capable of detecting slippery terrain.

A follow-the-leader approach in [78] demonstrates a team composition similar to picket-
observer. The leaders and children setup in [76] provides a relative localization scheme in
3-DOF; it assumes accurate localization of the leaders from an external source and localizes
the children robots. This approach is extended in [77] to localize the leaders. The problem
is subdivided into leader localization and then children localization. The localization of the
leaders in [77] requires multiple leaders to maintain line of sight between each other. We
extend the approach in [77] to jointly solve the leader and children localization problem
without requiring multiple leaders.

A more recent approach [20] uses range-only sensors with a team of aerial vehicles for
SLAM and builds on the limited sensor approach of [3]. These drones are equipped with
on-board computers and expensive lasers. In contrast, our approach uses inexpensive and
disposable picket robots in a 6-DOF environment.

Odometry-based propagation method have been successful in 3-DOF fusion architectures
[25] [46]. However, in 6-DOF non-planar environments, wheel slippage causes systematic
biases from encoders. Cell phone quality IMUs are a low cost alternative to wheel encoders
in 6-DOF environments because they provide a motion model even under slippage. Extensive
work in IMU-based propagation in visual-inertial systems has been explored in [70][51][38].
Additionally, monocular pose estimation has been explored in [21][9].

Many algorithms and approaches exist for multi-robot localization. Graph based ap-
proaches have been used [1][40], and the graph optimization algorithm in [1] relies on the
locations of static landmarks and exploits the sparse nature of the graph. Existing EKF
[67][47][46] or particle filter methods [37][16][60] demonstrate the capability of fusing data
to provide accurate multi-robot localization.

CHAPTER 5. COOPERATIVE INCHWORM LOCALIZATION 63

The noted previous works have extensively and successfully explored multi-robot localiza-
tion, but their experiments were conducted with access to significantly more capable robots,
availability of GPS or beacons of known pose, 3-DOF settings with planar environmental
assumptions and accurate wheel odometry, requirements of additional stationary robots,
assumptions of light, and existence of landmarks or visual features. In this work, we relax
these assumptions to localize a team consisting of a single observer robot and multiple picket
robots. This is accomplished using an EKF approach with the inchworm strategy require-
ment of at least a single stationary robot at all times. IMU measurements are used for EKF
propagation and relative pose estimates are used as an EKF update.

5.2 Methods

Algorithm 5.1 Cooperative Inchworm Localization (EKF)

Propagation: For each IMU measurement:

• buffer previous IMU measurements received from other robots

• propagate state and covariance for the team using the time-step, buffer and new IMU
measurement (cf. Section III-B).

Update: For each camera image:

• identify RGB LEDs (cf. Section III-C).

• estimate the relative pose between the visible picket robots and the observer frame
with P3P and Gauss Newton minimization (cf. Section III-C).

• propagate the state and covariance for the team using the time-step, and most recent
IMU measurements

• perform state and covariance update for the team (cf. Section III-D, III-E).

Inchworm requirement: At least one stationary robot

The purpose of the multi-robot EKF is to localize all of the robot team’s body frames
with respect to a global reference frame. An overview of the EKF is provided in Algorithm
5.1 and can be described as follows: IMU measurements from both types of robots are used
to propagate the state and covariance of the team with the same IMU motion model. RGB
LEDs are placed with a known configuration on each picket robot such that images captured
on the observer can be used to estimate the relative pose of the robots using [61][42] and
Gauss-Newton minimization[21]. Relative pose is defined as the estimation of a picket’s body
frame (6-DOF position and orientation) with respect to the camera frame on the observer.

CHAPTER 5. COOPERATIVE INCHWORM LOCALIZATION 64

Figure 5.2: Coordinate frame overview for a sample team consisting of two robots. The
observer, (a), is mounted with a camera and the picket, (b), with multi-color LED markers.

The coordinate frames of the team and example LED placement scheme are depicted in
Figure 5.2. The relative pose estimates are subsequently used in the EKF update step.

A team movement strategy called inchworm is adopted, where the picket robots move
ahead of the observer to scout and then the observer robot catches up. This movement
strategy requires at least one stationary robot. This turn-based approach significantly re-
duces IMU dead-reckoning error and increases the robustness of the localization algorithm
to temporary line of sight. An inchworm increment is a set of motions where the observer
and picket robots all move at least once. An example inchworm increment is shown in Figure
5.1 (d-e).

We impose that a stationary robot does not propagate its corresponding states or co-
variances, thus bounding the uncertainty of the entire team. This is a strong assumption
that can be violated by sensor failures (repeated incorrect pose estimates) and unobservable
environmental phenomenon (slipping while wheels are stationary). In practice, we expect
that scaling this approach to a team such that all robot positions can be redundantly ob-
served will improve robustness to these failure modes. Importantly, this assumption enables
the stationary robot to function as a temporary visual landmark and serves as a functional
substitute to external visual features. Although external visual features are used in tradi-
tional visual odometry or visual SLAM systems, they are not consistently available in low
light environments.

One benefit of a stationary picket robot is in situations of complete line of sight failure,
where none of the picket robots are visible to the observer. In this case, a single future
re-observation of a stationary robot, i.e. loop-closure, corrects the IMU dead-reckoning error
of the non-stationary robots.

The following sections describe the EKF propagation and update steps in detail.

CHAPTER 5. COOPERATIVE INCHWORM LOCALIZATION 65

Figure 5.3: Block diagram of the asynchronous multi-robot team performing real-time coop-
erative localization algorithm. Asynchronous sensor data from the robots is sent over WiFi,
sorted into a measurement buffer, and then used in the EKF propagate and update step.
Currently, the host system is an external laptop.

5.2.1 State Vector

The EKF state and accompanying error-state vector stores the state of each single-robot in
the multi-robot team. The state vector components with respect to i th picket robot are:

xi = [BGq̄Ti ,
GpTi ,

GvTi ,b
T
ig ,b

T
ia]T ∈ R16×1 (5.1)

where B
Gq̄Ti ∈ R4×1, is the unit quaternion representation of the rotation from the global

frame {G} to the body frame {B}, Gpi,
Gvi ∈ R3×1 are the body frame position and velocity

with respect to the global frame, and big ,bia ∈ R3×1 are the gyroscope and accelerometer
biases.

The corresponding error-state components with respect to i th picket robot are:

x̃i = [Gθ̃
T

i ,
Gp̃Ti ,

GṽTi , b̃
T

ig , b̃
T

ia]T ∈ R15×1 (5.2)

where Gθ̃
T

i is the minimal representation from the error quaternion δq̄ ' [1
2
Gθ̃

T
, 1]T [51] [38].

The non-quaternion states use the standard additive error model.
The observer robot is also a component in the EKF state and error-state vector:

xo = [OGq̄To ,
GpTo ,

GvTo ,b
T
og ,b

T
oa]T ∈ R16×1

x̃o = [Gθ̃
T
, Gp̃To ,

GṽTo , b̃
T

og , b̃
T

oa]T ∈ R15×1
(5.3)

where {O} denotes the observer frame.

CHAPTER 5. COOPERATIVE INCHWORM LOCALIZATION 66

Combining the states in Equations 5.1, 5.2, and 5.3, the augmented EKF state vector
and error-state vector with respect to the multi-robot team with n pickets becomes:

x = [xTo ,x
T
1 ,x

T
2 , ... xTn]T ∈ R16(n+1)×1

x̃ = [x̃To x̃T1 , x̃
T
2 , ... x̃Tn]T ∈ R15(n+1)×1

(5.4)

where n is the total number of picket robots.

5.2.2 IMU Propagation Model

The EKF propagation step occurs each time a new IMU measurement from any single-robot
or a camera image is captured on the observer robot. The continuous dynamics of the IMU
propagation model for a single-robot are [51][38]:

B
Gq̇ =

1

2
Ω(ω)BGq̄, Gṗ = Gv, Gv̇ = Ga

ḃg = nwg, ḃa = nwa

(5.5)

where nwg,nwa are Gaussian white noise vectors for the gyroscope and accelerometer respec-
tively and

bω×c =

[
0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

]
,Ω(ω) =

[
−bω×c ω
−ωT 0

]
(5.6)

The discrete time linearized model and the error-state model are derived and discussed
with detail in [51][38].

Critically, stationary robots receive no state or covariance propagation. This prevents
IMU dead-reckoning drift from moving a temporary landmark and maintains a bounded
covariance block pertaining to the stationary robot.

5.2.3 Relative Pose Estimation

Four (or more) RGB LEDs are placed at known configurations position on the picket robots
to allow relative pose estimation on board the observer. Each picket robot receives a unique
configuration with LEDs of various colors. Color and intensity thresholds are used to find
the LED centroids, and these LED detections are passed into separate pose estimators (one
pose estimator for each robot).

From the centroid detections, the approach from [21] is used to perform relative pose
estimation. Pose correspondence is computed with the perspective-3-point (P3P) [61] [42]
algorithm for each picket. Using different colors for the LEDs reduces the computational load
by allowing the P3P correspondence search to search fewer possible configurations. Gauss-
Newton minimization refines the initial solution from the P3P algorithm by minimizing
reprojection error [21]:

CHAPTER 5. COOPERATIVE INCHWORM LOCALIZATION 67

P ∗ = arg min
P

∑
<l,d>∈C

||π(l,P− d)||2

where P is pose estimate, l is the set of LED configurations, d is the set of LED centroids,
C is the LED correspondences, and π projects an LED from R3 into R2 (camera image).

The pose estimate covariance (Q) is calculated with the Jacobian (J) from the Gauss-
Newton minimization [21]:

Q = (JTΣ−1J)−1 where Σ = I2×2 pixels2 (5.7)

5.2.4 Camera Measurement Model

In this section we describe how the relative pose estimates are used to compute the EKF
update. We derive the residual and observation matrix that relates the relative pose estimates
to the state vector as described in Section 5.2.1. The residual and the observation matrix
are used to calculate the Kalman gain and correction.

An example overview of the multi-robot teams coordinates frames is shown in Figure 5.2.
A static camera transform is defined as:

[COq̄T , COpT]T ∈ R7×1 (5.8)

With respect to a single visible picket robot, i, a relative pose estimate from the camera
frame on board the observer is defined as:

zi = [BC q̄Tiz ,
B
CpTiz]

T ∈ R7×1 (5.9)

In an EKF framework, a residual, r, and a measurement Jacobian, H are used to compute
the EKF update. The standard relationship between the residual and measurement Jacobian
is:

r = z− ẑ ≈ Hx̃ + n (5.10)

where n is noise. A prediction of the observation, ẑi, is used to compute a residual in an
EKF. This observation corresponds to a relative pose for each visible robot. Additionally,
the quaternion states in x use the rotational error definition, δq = q⊗ q̂−1 rather than the
standard linear error, p̃ = p− p̂.

To compute ẑi, the state vector estimate is updated with the EKF propagation step. The
poses of the picket robots are then converted from the global frame converted to the camera
coordinate frame, {C}, in Equation 5.8 to match the relative pose estimate:

ẑi =

[
B
C

ˆ̄qi
B
C p̂i

]
=

[
B
G

ˆ̄qi ⊗ G
O

ˆ̄qO ⊗ O
C

ˆ̄qO
C
ORO

GR̂(BGp̂i − O
Gp̂O − C

Op)

]
(5.11)

where ⊗ represents quaternion multiplication.

CHAPTER 5. COOPERATIVE INCHWORM LOCALIZATION 68

The single-robot residuals with respect to each visible picket robot are calculated accord-
ing to the definition Equation 5.10:

ri = zi − ẑi =

[
2 · π(BC ˆ̄q−1

i ⊗ B
C q̄iz)

B
Cpiz − B

C p̂i

]
(5.12)

where π is defined as π([qx, qy, qz, qw]T)T = [qx, qy, qz]
T and utilized as a small angle ap-

proximation for the orientation difference between zi and ẑi.
The i th measurement Jacobian, Hi, is calculated by applying small angle approximations

and taking the partial derivatives of the i th single-robot residual with respect to the error-
state. The non-zero entries are shown below:

ri ' Hix̃

Hi =

[
−CGR̂ 0 0 . . . C

GR̂ 0 0 . . .
C
GR̂b(BGp̂i − O

Gp̂O − C
Op)×c −CGR̂ 0 . . . 0 C

GR̂ 0 . . .

]
x̃ =

[
Gθ̃o

Gp̃o
Gṽo · · · Gθ̃i

Gp̃i
Gṽi · · ·

] (5.13)

where C
GR̂ = C

ORO
GR̂ and bq×c is the quaternion skew operator from Equation 5.6. The

higher order and cross terms are dropped from Hi to satisfy the linear requirement of the
EKF.

The states of all picket robots become correlated with the observer robot through the
measurement Jacobian. This enables an individual pose estimate of a picket robot to improve
the state estimate of each picket robot. The correlation is essential to localizing the observer
robot because it is unable to observe itself directly from camera imagery.

5.2.5 EKF Update

From the camera measurement model the EKF update is performed. To utilize the standard
equations, the overall measurement Jacobian is calculated by vertically stacking the single-
robot measurement Jacobians from the camera measurement model in Equation 5.13:

H = [HT
1 ,H

T
2 , ... HT

n]T ∈ R6n×16(n+1) (5.14)

Accordingly the measurements, zi, are stacked identically:

z = [zT1 , z
T
2 , ... zTn]T ∈ R7n×1 (5.15)

The corresponding overall observation noise is calculated by diagonalizing the uncorrelated
relative pose estimate covariances from Equation 5.7:

Q = diag(Q1,Q2, ... Qn) ∈ R6n×6n (5.16)

From Equations 5.14, 5.15, and 5.16, the procedure to update an EKF with quaternion
states is described in [51] [38].

CHAPTER 5. COOPERATIVE INCHWORM LOCALIZATION 69

Table 5.1: Pose Tracker Comparison

Faessler et al. [21] Our System

Resolution (pixels2) 752x480 640x480
Baseline Radius (cm) 10.9 10.6

LEDs/Robot 5 5
LED Type Infared RGB

≈ error at 2 m depth 5 cm, 1-2 deg 5-8 cm, 1-4 deg

5.3 Results

5.3.1 Experimental Approach

We apply the localization technique described above to data collected from a team of three
small, low-cost, mobile robots. The Zumy robot2 is a decimeter-scale tracked robot running
ROS on board a Linux computing system with networking and vision processing capabilities.
The observer Zumy supports a Microsoft Lifecam 3000 camera with 640× 480 pixels2 at 30
Hz, InvenSense MPU-6050 MEMS IMU at 30 Hz, and supports WiFi wireless communication.
This robot is designed to be easily built from commercially available off-the-shelf parts for a
total cost of ≈ $350.

The robotic team consists of one observer and two picket robots shown in Figure 5.2. A
Zumy robot with a camera serves as the observer, and to represent the inexpensive and less
capable picket robots, we use Zumy robots without cameras. Each picket robot is outfitted
with an LED “hat” so that it can be visually tracked by the observer robot. Infrared
markers are also attached to each Zumy in order to obtain ground truth from a VICON
motion capture system. The robots are manually driven for these datasets.

5.3.2 Planar Base Case

The baseline experimental task was a cooperative U-turn in planar 3-DOF with one observer
and two pickets. The robots were manually driven in the dark. Although the dataset was
recorded in a 3-DOF environment, the filter was not constrained with environmental priors.
A direct comparison between the LED pose tracker system setup in [21] and our system
setup is in Table 5.1.

In Figures 5.4 and 5.5, we show the resulting trajectories from the localization of all team
members during this U-turn dataset and we compare to ground truth. We plot the results
of using only one picket while discarding the measurements from other, and then the results
of using both pickets. Note that the observer trajectory is not as smooth as that of picket-1
or picket-2, because the motion of the observer has unmodeled vibration effects that cause
motion blur and temporary changes to the “static” camera transform.

2https://wiki.eecs.berkeley.edu/biomimetics/Main/Zumy

CHAPTER 5. COOPERATIVE INCHWORM LOCALIZATION 70

Figure 5.4: A plot of the XY projection of the team’s pose estimates from the EKF along
with the ground truth trajectories. Shown for the base case of the planar U-turn where a
single picket is used to perform localization.

Table 5.2: Planar Drift Analysis

Camera-only Fusion Fusion
Two Pickets One Picket Two Pickets

O
b
se

rv
er x (cm) -8.14 0.67 -0.80

y (cm) 16.64 2.58 -1.46
z (cm) 4.09 -5.42 3.07

Angle (◦) 9.33 1.89 1.54

P
ic

ke
t-

1 x (cm) -13.38 -4.25 -6.23
y (cm) 28.97 -1.79 -1.70
z (cm) 4.53 -7.91 4.39

Angle (◦) 4.72 2.64 1.36

P
ic

ke
t-

2 x (cm) -1.35 - 9.92
y (cm) 25.40 - -5.65
z (cm) 4.56 - 5.18

Angle (◦) 4.56 - 1.88

CHAPTER 5. COOPERATIVE INCHWORM LOCALIZATION 71

Figure 5.5: A plot of the XY projection of the team’s pose estimates from the EKF along
with the ground truth trajectories. Shown for the base case of the planar U-turn where both
pickets are used to perform localization.

Figure 5.6: Camera-only approach: A plot of the XY projection of the team’s pose estimates
along with the ground truth trajectories, using a camera-only approach. Performs notably
worse in yaw drift than the IMU-camera fusion approach shown in Figures 5.4, 5.5.

CHAPTER 5. COOPERATIVE INCHWORM LOCALIZATION 72

Figure 5.7: 6-DOF environment for testing: Robot team is on the right, rock garden is
center-right), a “hole” is shown on the bottom-left, and the ramp is on top left.

This dataset consisted of 10 inchworm increments. An inchworm increment is defined
as the minimal set of team motions where each robots has moved once. End position drift
for using one versus two pickets is shown in Table 5.2. The angular drift, which causes
propagates error into the future, for the two picket fusion case was less than the one picket
case. Although unconstrained to a plane, the angular drift was almost exclusively in yaw.
Performing right or left turns with the robot team introduces more rotational drift than
forward or backwards motions. Without external features or global correction, the yaw
errors persist until the end of experiment, but adding more picket robots helps to mitigate
these effects. The jagged regions of the trajectory correspond to the observer and picket
robots starting or stopping motion, and they are due to the LED mounts and the robots
shaking during these transient motions.

A camera-only filtering approach was evaluated in Figure 5.6 as a baseline. The camera-
only approach uses the same formulation of the measurement derived in Section 5.2.4 but
without a motion model. This method performed significantly worse with four times as much
yaw drift than the IMU plus camera fusion approach. Without the gyroscope, the inchworm
localization performs significantly worse in orientation estimation.

5.3.3 Non-planar Terrain with Ramp

The second experiment was conducted in an environment featuring non-planar terrain, ob-
stacles, and occlusions. The robots were manually driven in the environment shown in
Figure 5.7. The 6-DOF non-planar dataset consisted of 10 inchworm increments: 3 for the

CHAPTER 5. COOPERATIVE INCHWORM LOCALIZATION 73

Figure 5.8: Starting position of the robot team with view of the rock garden section. The
origin is defined as the starting position of the observer.

rock garden and 7 for the right turn and ramp. Temporary line of sight failure of both
pickets occurred during the rock garden because the pose estimator failed to converge, as
the observer was moving on the rocks. Wheel slippage also occurred during the rock garden
section. After the rock garden, picket-2 was deliberately left behind to simulate a hole in
the environment and a loss of a robot.

The ground truth trajectories and the EKF pose estimates of the dataset are shown in
Figures 5.9 and 5.10. The end point drift analysis is shown in Table 5.3 with a comparison
against a camera-only approach. The fusion approach outperformed the camera-only for the
observer and picket-1. The most critical improvement is the orientation error of the observer,
which persists without correction. Picket-2 traveled mostly in a straight line except during
the rock garden, and the endpoint errors of both approaches are almost identical. The drift is
predominantly in pitch for each robot. We hypothesize that this is due to a higher covariance
in the estimate of the relative pitch angles between robots, as the distribution of markers
on the picket robots is wider than it is tall from the perspective of the observer. Further
investigation is necessary to be certain of the cause of this drift. Temporal plots with ground
truth are in Figures 5.11 and 5.12.

CHAPTER 5. COOPERATIVE INCHWORM LOCALIZATION 74

Figure 5.9: Ground truth trajectories of the multi-robot team are compared against the
estimates of the EKF for the non-planar environment. Axes are scaled equally

.

Figure 5.10: 2D projection of ground truth trajectories of the multi-robot team are compared
against the estimates of the EKF for the non-planar environment.

CHAPTER 5. COOPERATIVE INCHWORM LOCALIZATION 75

Table 5.3: Non-Planar Drift Analysis

Camera-only Fusion
Two Pickets Two Pickets

O
b
se

rv
er x (cm) -4.03 -5.35

y (cm) 13.36 12.67
z (cm) 1.01 0.04

Angle (◦) 3.12 2.18

P
ic

ke
t-

1 x (cm) -2.11 -4.48
y (cm) 17.9 16.76
z (cm) 1.72 0.10

Angle (◦) 6.22 4.29

P
ic

ke
t-

2 x (cm) 0.28 0.32
y (cm) -0.20 0.15
z (cm) 5.37 5.37

Angle (◦) 3.58 3.59

Figure 5.11: Position along the x-axis versus time.

CHAPTER 5. COOPERATIVE INCHWORM LOCALIZATION 76

Figure 5.12: Orientation error versus time.

5.4 Conclusion

A heterogeneous team which consists of a single observer and multiple picket robots is able
to navigate a visually featureless, unknown, non-planar environment as a unit, using only
relative pose observations and IMU measurements to estimate the motion of the entire team.
The IMU and camera fusion approach presented in this work has clear advantages over a
simpler camera-only approach (Figures 5.4, 5.5, and 5.6) and its benefits outweigh the cost
of having asynchronous communication. Although calibration of an IMU adds many com-
plications, it is a natural choice for environments in which wheel encoders are unreliable.
A camera-only approach heavily relies on line of sight at all times, which is restricting and
potentially impractical to maintain. In addition, motion-model based approaches for EKF
propagation allow for the rejection of errant camera pose estimates from faulty LED detec-
tions or P3P correspondence matching. Most importantly, with a camera-only approach,
each inchworm increment has an associated positional and rotational drift in 6-DOF. The
calibration of the IMU allows the fusion based approach of using the stationary robots’
gravity vectors to reduce and bound the pitch and roll drift leading to drift in only 4-DOF.
While the full state of the robotic team with respect to the environment is fundamentally
unobservable without any environment sensing, this approach has been shown to be at least
as effective as commonly used odometry methods in other SLAM work. Moreover, this ap-
proach works with noisy robot motion (due to dynamics or environment), and where wheel
encoder approaches that assume no slippage would fail.

In the future, we will create exploration strategies for larger robot teams of more than
10 robots. With this increasing number of robots, autonomous control is far more effective

CHAPTER 5. COOPERATIVE INCHWORM LOCALIZATION 77

than manual driving. An advanced control scheme that factors in terrain, obstacles, and
collaboration of robots will be developed for effective exploration in hazardous environments.
It is clear that growing a linear state space to more robots will not scale well at some point. To
grow to larger (10-100 robot) teams, methods that can effectively leverage sparse observations
between team members should be explored. Factor-graph SLAM approaches are a popular
and active field of research that would address this issue [14].

78

Chapter 6

Energetic Cost of Cooperative Range
Finding

6.1 Introduction

In this chapter, we show preliminary work towards the addition of a simple scanning laser
beam to the robot team used in Chapter 5 to enable the team to measure range via triangula-
tion in overlapping camera Field of Views (FOVs) volumes. This range sensing capability is
the last critical component of a full SLAM approach on low-cost hardware, as it would allow
the robotic team to map the surrounding environment, and make decisions about how to
proceed with exploration. A basic technique for scanning and then navigating an unknown
environment is presented, with considerations for how the FOV size affects the rate at which
a region can be scanned. We demonstrate the efficacy of this approach using a simulation
developed in the V-REP Simulation Framework [65], which shows point cloud generation for
a team of robots using only visual features. Finally we show progress towards miniaturizing
the hardware for use on crawling millirobots.

This approach is motivated primarily by focusing on scanning hardware that is as low-
cost, lightweight, and low-power as possible. Almost all range finding methods rely on
emitting light or sound energy, and measuring the bearing and distance to a point of reflection
of that energy in the environment. The choice of sensing modality affects trade-offs between
resolution, energy used, and rate of volume scanned. In general, more energy can be used up
to a point to collect information from a farther range, or take more measurements at a time.
Sensor interference, ambient noise, scattering, and reflection inefficiencies all contribute to
the fundamental limits of these approaches. Bulk scanning approaches, such as structured
light or Time of Flight (ToF) depth cameras, also tend to be energetically wasteful, as they
emit a significant amount of energy in regions that have already been sensed.

To understand these trade-offs at a first-principles level, we study an approach here that
takes exactly one range measurement at a time. Akin to geographical surveying methods,
we position robots with known relative pose so that their FOVs are overlapping, emit a

CHAPTER 6. ENERGETIC COST OF COOPERATIVE RANGE FINDING 79

visible laser beam from one robot, detect the reflected point from at least two perspectives,
and triangulate the position of the reflected point. Scanning the bearing of the laser beam
through the full FOV of the co-located camera allows the system to collect a depth-map of the
intersecting volume. Details such as reflectance angle and occlusion will reduce the effective
sensing FOV, but this approach provides a simple proof-of-concept 3D range finding that
can be extended and integrated with SLAM frameworks, all while being plausibly adaptable
for use within the power, weight, size, and computational constraints of low-cost robots.

Section 6.2.1 presents a theory of moving through and scanning a volume with a team
of robots with scanning lasers while respecting the constraints of Inchworm Localization
outlined in Chapters 4 and 5. In order to provide an objective framework for estimating
the energy used and information gained by a mapping approach, Sections 6.2.2 and 6.2.3
respectively define an energy and information model that can capture up to quadratic costs.
Section 6.3 shows progress on a laser scanning mechanism and active marker frame that
can be adapted for use on Zumy (and ultimately VelociRoACH-scale) robots to enable this
cooperative range finding approach. This hardware is used to derive the operational energy
parameters of the energy model. Section 6.4 shows the results of simulating a pair of robots
moving and scanning a simple environment via the technique in Section 6.2.1. The derived
energy and information models are used to produce a graph showing the trajectory of energy
consumption and information gain of the team.

Ultimately, this chapter is mostly speculative towards a pipeline that could be used to
compare various robotic platforms, sensors, sensing techniques, and exploration algorithms.
The energy and informational models here have issues with generality and scalability, but
mostly serve as placeholders to show what a future technique could address in terms of
comparing the informational efficiency of mapping approaches.

6.2 Theory

Assuming the technique of monocular pose estimation established in Chapters 4 and 5, we
have at least two robots with cameras with known relative pose. The pose estimation tech-
nique in Chapter 4 conveniently provides a software framework for identifying the bearing of
points of light within a camera frame, so we can leverage this output to measure the bearing
of reflected laser points in an environment. In Section 6.2.1 we first establish a navigation
strategy for exploring an environment while sensing the environment via cooperative trian-
gulation. We then outline a simple energetic model that can predict the approximate energy
used for robots navigating with active markers while laser scanning with this technique in
Section 6.2.2. Lastly, Section 6.2.3 provides a simple way of quantifying the information
gained during a mapping trajectory using the volume swept out by scan rays. Together,
these methods lay a theoretical framework foundation that could be leveraged by future
work to implement a complete, on-line SLAM approach that can reason about energetic and
information gain trade-offs.

CHAPTER 6. ENERGETIC COST OF COOPERATIVE RANGE FINDING 80

6.2.1 Navigation

Given a laser emanating from one of the robots, our goal is to identify the most likely point
relative to the robot frame to have generated the pair of bearing measurements. Hartley
and Sturm [31] outline and compare several techniques for triangulating a point from two
perspectives. For the proof-of-concept implementation in this work, we have implemented
the simplest “Midpoint Method.’ This method produces an estimate of the 3D coordinates
of a detected laser reflection point by calculating the midpoint of the common perpendicular
to the two rays from the camera centers to the detected point. In the case of no noise
in the detected point bearing observations, this result is exact, and it is robust to small
perturbations in the detected bearing. Any of the described methods in Hartley and Sturm
may be used; we chose the Midpoint Method for its intuitive interpretation and ease of
implementation.

An important condition for this technique to work is that the relative pose of the cameras
is known. We can maintain this invariant using the inchworm technique developed in Chap-
ter 5, with the additional condition that we only move into regions that have been scanned.
Ideally, the entire volume surrounding the robots would be scanned allowing motion in the
most convenient or informationally rewarding direction. However, common low-cost cameras
have fixed diagonal FOV usually ∼ π

2
. We also assume that the resolution of the camera

and power of the active markers and laser emitter imposes some maximum range of sensing,
which we will approximate as a fixed radius. This motivates choosing a sequence of robot
positions that first grow the sensed region in the desired direction of travel, moves one robot
to the edge of that region, and then switches the roles of the robots so that the second one
can be moved.

Figure 6.1 shows an overhead projection of this basic two-robot mapping and moving
sequence, with differing Fields of View (FOVs). Each sequence shows the position of robots
as yellow circles, their FOVs as blue arcs, and the growing mapped region as green segments.
The goal is to travel as a team in the positive x direction.

Figure 6.1a shows one of the more efficient cases (in terms of total area scanned per step)
when the FOV is π

2
radians. At t0, the upper robot (R1) is facing in the negative y direction,

with the lower robot (R0) at the origin, and left edge of R1’s FOV facing in the positive
x direction. This configuration nearly maximizes the scannable region, with some buffer to
allow for the size of the robot, and uncertainties in pose and scan density. The robots scan at
t0, which results in the mapped area in t1. R1 then moves to the right edge of this mapped
region. By t2, R0 has rotated to have R1 in its FOV. After a similar rotation by R1 to face
left by t3, the robots now have a new overlapping region ready for scanning.

This configuration is symmetric to t0, so the remaining plots show the repetition of the
process, growing the mapped region in each of the upper frames (t0, t3, t6, t9). This process
can continue as long as there is no obstacle blocking the path of the robots, which ostensibly
will be sensed by the mapping process. In the case of an obstacle, it is straightforward to
reorient the robots within the already scanned region such that they can start moving in a
new direction.

CHAPTER 6. ENERGETIC COST OF COOPERATIVE RANGE FINDING 81

(a) Mapping motion with π
2 FOV.

(b) Mapping motion with π
3 FOV. (c) Mapping motion with 4π

3 FOV.

Figure 6.1: Comparison of mapping motion with different Field of View.

Figures 6.1b and 6.1c show the same sequence of motions, but with smaller and larger
FOVs respectively. With the smaller FOV, some of the region between the robots is left
unmapped. If the only goal is to move quickly this may be an acceptable outcome. If
coverage is desired, an intermediate rotation of R1 facing R0 can be used to map this region.
For the larger FOV, we see that there is an initially much larger region scanned at the first
step, but the region available for mapping in subsequent steps is not much larger than in
Figure 6.1a. As was shown in Chapter 4, growing the FOV of a camera without maintaining
spatial resolution can have a detrimental affect on effective range, so this further supports
that a midrange FOV of ∼ π

2
may be the most practical.

CHAPTER 6. ENERGETIC COST OF COOPERATIVE RANGE FINDING 82

6.2.2 Energy Model

Considering the power/information metric space we used to categorize popular SLAM sensors
and systems in Figure 1.2, we would like to develop a power cost and information gain metric
for this proposed cooperative range finding approach that can allow us to compare the overall
informational efficiency to popular and state of the art approaches.

The total energy used in Joules for cooperative range finding is a pragmatic cost metric,
especially for resource constrained robots. To be useful for predicting actual performance,
the model must be expressive enough to capture the relevant dominating physics of motion
in the environment, be it viscous drag for fluid-navigating robots (aerial or underwater),
moving on sloped ground, or any combination thereof. If used in an optimization framework
for exploration, we should also have a reasonable expectation that the energy model can be
designed as a robust, conservative upper bound for the actual energy used. For convenience
in adapting to different types of robots, or even customizing for robots of the same type
with variance in operational parameters between individual robots or variation over time,
we would like that the energy model can be quickly derived in a data-driven manner (similar
to the motivation in Chapter 3). Finally, for practicality in exploration optimization, where
hundreds to tens of thousands of exploration trajectories may need to be evaluated quickly,
we would like that the energy metric is lightweight computationally.

Given these motivating properties, here we evaluate a quadratic matrix form as a cost
metric. It has the ability to capture important physics that cannot be expressed as a simpler
weighted sum, such as moving on sloped ground, which requires a product of velocity and
surface normal. Given a trajectory of a robot representative in the physics we are trying
to learn and the real power consumption, it is straightforward to regress a quadratic power
model that minimizes the error in predicted energy. Finally, calculating the quadratic power
estimation metric is simply two matrix multiplications, and thus very fast to compute.

This model will take the basic matrix quadratic form of a cost function used by Linear-
Quadratic Regulator (LQR) theory [15] to predict the instantaneous power p(t) in Watts
given a robot state x(t):

p(t) = xT(t) Mp x(t) (6.1)

The constant quadratic cost matrix Mp allows us to capture physical phenomena pro-
portional to squared state variables (such as viscous friction dominating losses in constant
velocity wheel motion), or products of two variables (such as gravitational power being a
product of velocity and elevation angle). In this chapter we will show an example power
matrix for differential drive terrestrial robots derived from basic physics, but this form of
power model is easily extensible to other kinds of robots such as the underwater µAUVs
in Chapter 4. It could also be extended with an experimental data-driven technique as in
Chapter 3 to learn the matrix parameters from motion and energy data.

Assuming the power model form above, the total energy used at a given point in time in
Joules e(t) is the integral of power:

CHAPTER 6. ENERGETIC COST OF COOPERATIVE RANGE FINDING 83

e(ti) =

∫ ti

0

p(t) dt (6.2)

If we can assume that trajectories in this power space are a sequence of states {xi} =
{x(ti)}, and assume piecewise constant velocity approximations between states (where tj −
ti = ∆tij and xj − xi = ∆xij):

x(t)|t∈[ti,tj) = xi +
t− ti
∆tij

∆xij (6.3)

This allows us to write the velocity between the two states:

ẋ(t)|t∈[ti,tj) = ẋij =
1

∆tij
∆xij (6.4)

Then the energy used on a constant velocity path eij is a function of the start and end
states, as well as the time between them:

eij(∆tij,xi,xj) =

∫ tj

ti

xT(t)Mpx(t) dt

=
∆tij

3
(xT

i Mpxi + xT
i Mpxj + xT

jMpxj)

(6.5)

This makes it easy to predict the energy used by any trajectory of states Xi as just
the sum of the energies used for each trajectory segment xi,i+1, provided we know the ∆t
between them. Future work will need to evaluate whether or not this approximation holds
for trajectories useful in cooperative range finding, and then if it is useful for improving the
computation time required to estimate the energetic cost of a motion or sensing action. For
now, in Section 6.4 we use numerical integration of the power model to calculate total energy
used, as we have the energy state at each time step and are only computing one trajectory.

In our cooperative triangulation application, we assume that each robot uses energy in
four main categories: computation, motion, active markers, and laser scanning. Thus the
state x is a column vector with first and second order variables representing the pose and
velocity of the robot, the motion and illumination of the laser scanner, and the illumination
state of the LED markers. For convenience, we associate the computational energetic cost
with a generic “robot” energy state xr. We now assume the energy used in the robot,
marker xm, and scanning xs states is independent of the other states, allowing us to rewrite
the power cost as:

p(t) =
[
xT
r (t) xT

m(t) xT
s (t)

] Mp,r 0 0
0 Mp,m 0
0 0 Mp,s

xr(t)
xm(t)
xs(t)

 (6.6)

This allows us to describe the substate elements and power cost matrices independently.
To let us express quadratic and linear terms, each substate vector is a collection of one

CHAPTER 6. ENERGETIC COST OF COOPERATIVE RANGE FINDING 84

or more time-varying scalar quantities xk,N(t), concatated with a constant 1 in the last
coordinate.

xk(t) =

xk,0(t)

...
xk,n(t)

1

 =

[
xk,N(t)

1

]
(6.7)

This intuitively organizes each substate power matrix into quadratic (Ak), linear (bk),
and constant (ck) elements:

pk(t) = xT
k (t) Mp,k xk(t) =

[
xT
k,N(t) 1

] [Ak 1
2
bk

1
2
bT
k ck

] [
xk,N(t)

1

]
= xT

k,N(t) Ak xk,N(t) + bT
k xk,N(t) + ck

(6.8)

For the motion aspects we assume that our robots essentially exhibit differential drive
dynamics in a 3D environment. Chapter 3 shows that legged robots can be used under these
assumptions, and the Zumy robots used in Chapters 2 and 5 also exhibit noisy differential
drive dynamics. In this modeling work, we assume that frictional losses and gravitational
work dominate the energy expenditure. For reasons we explore at the end of this section, we
also assume that robots move throughout the environment in constant velocity trajectories,
with brief periods of acceleration near waypoints that do not contribute significantly to the
bulk energy consumption. Using the same reference frame and variables as in Figure 3.5 is
used, with the addition that the robot may be on a sloped plane, the scalar state variables
of the robot energy state xr(t) are

xr(t) =

v(t)
ω(t)
x̂z(t)

1

 (6.9)

where v(t) is the linear velocity in m/s, ω(t) the angular velocity in rad/s, and x̂z(t) is
the projection of the robot x-axis on the world z-axis.

We suppose that the energy loss in left and right wheel, leg set, or track of a ground
robot is proportional to its angular velocity squared α̇2(t) via a friction coefficient aw. Using
Equation 3.2 to convert between the robot and wheel velocity space, the wheel power pw(t)
is written as:

pw(t) =
[
α̇l α̇r

] [aw 0
0 aw

] [
α̇l
α̇r

]
,

[
α̇l
α̇r

]
=

[
1/r −d/2r

1/r d/2r

] [
v(t)
ω(t)

]
(6.10)

⇒ pw(t) =
[
v(t) ω(t)

] [2aw/r2 0
0 awd2/2r2

] [
v(t)
ω(t)

]
(6.11)

CHAPTER 6. ENERGETIC COST OF COOPERATIVE RANGE FINDING 85

Assuming that the gravitational work done is simply the rate of potential energy gain
mr g v(t) x̂z(t), where g is the magnitude of gravitational acceleration, we can write the full
quadratic portion of the robot power matrix:

Ar =

2aw/r2 0 mr g/2

0 awd2/2r2 0
mr g/2 0 0

 (6.12)

There are no linear components for the robot power matrix (br = 0), but we do include
the constant cr to account for the power that the robot draws without moving. Thus the
full robot power matrix Mp,r is:

Mp,r =

2aw/r2 0 mr g/2 0

0 awd2/2r2 0 0
mr g/2 0 0 0

0 0 0 cr

 (6.13)

The power state for the active markers only has one variable component m(t) which is
the sum of the red, green, and blue LED values ranging from 0 to 255 for each active marker.
The Mp,m matrix has only the linear component bm, which is the scalar that scales an LED
value to power consumption:

xm(t) =

[
m(t)

1

]
, Mm,r =

[
0 bm/2

bm/2 0

]
(6.14)

Finally, the laser scanning component of this energetic model captures the energy used
to illuminate a projected laser beam, and energy used to steer the laser to different points in
the camera FOV. These two components can be represented by the laser command l(t) and
the steering command s(t). For now we assume these quantities can be calculated such that
linear coefficients bl and bs can be used to scale to power consumed, such that the scanning
power state and matrix are as follows:

xs(t) =

l(t)s(t)
1

 , Mp,s =

 0 0 bl/2

0 0 bs/2

bl/2 bs/2 0

 (6.15)

6.2.3 Information Model

In order to quantify and compare the informational value of different actions in a mapping
context, we need an information gain metric that can be calculated from a mapping action.
Traditional SLAM approaches usually define an information metric of a map h(m) in terms
of the entropy of the distribution representing the uncertainty in the map [72]

As a surrogate for a probabilistic information gain metric traditionally used in SLAM
approaches, we propose that the volume swept out by cylinders along the line-of-sight scan
rays can approximate information gained in a mapping context. This is a more conservative

CHAPTER 6. ENERGETIC COST OF COOPERATIVE RANGE FINDING 86

(a) First scanned point of t0,
hv = 21.3.

(b) Scan volume part way
through t0 scan, hv = 4650.

(c) First scan volume after
move and beginning second
scan of t3, hv = 10800.

Figure 6.2: Sequence of scan volumes showing the increasing information gain metric.

bound than using cones, as it allows that scans of far away surfaces may have gaps of
uncertain geometry between sensed points. This volume would be proportional to the number
of voxels necessary to represent the scan geometry, and thus proportional to the number of
bits needed to represent a binary occupancy space. For this work, a cylinder with the
diameter of the robot is swept from each camera to a triangulated point in space. Figure 6.2
shows a sequence of these scan volume cylinders being added to a scan volume. Importantly,
the union of new scans with the existing scan volume is taken at each time step so that
only newly sensed areas contribute to the information metric. This geometric calculation is
computationally expensive, and would not scale well to on-line implementations.

Most well-studied mapping representations would do better at approximating this infor-
mation metric, and would likely be a fruitful direction for future implementation and study.
Probabilistic extensions are also more natural with the addition of uncertainty measures at
each sensed point. This would work particularly well with the recently published AtomMap
by Fridovich-Keil et al. [23], which represents a scanned volume with a collection of spheres
(or “Atoms”) in the environment. This approach avoids volumetric quantization errors in-
trinsic to voxel-based approaches by representing surfaces implicitly as a Signed Distance
Field (SDF) estimate at each scan point. All of these features would make it an excellent
candidate for future work extensions of cooperative range finding, and ultimately SLAM
with small scale robots.

6.3 Hardware

Figure 6.3 shows efforts to create and miniaturize scanning hardware that could be used on a
bio-inspired millirobot. Figure 6.3a shows a scanning laser system attached to the OpenMV
Cam M4 V2 [56]. This camera platform pairs an image sensor with a 180MHz ARM Cortex

CHAPTER 6. ENERGETIC COST OF COOPERATIVE RANGE FINDING 87

(a) Miniature camera and laser scanner.
(b) Addressable active marker hat on
VelociRoACH.

Figure 6.3: Pose estimation and scanning hardware.

M4 embedded processor, and draws 462mW of power when active. The software environment
is designed to easily port software developed with the OpenCV libraries, which was used
almost exclusively in the blob extraction pipeline.

The laser scanning rig uses two small gear motors and worm drives to tilt a spring-loaded
mirror positioned in front of a laser diode module. The range of motion of the mirror allows
up to π

4
deflection from center in each axis. The scanning motors draw 297mW when moving

the mirror, and the laser uses 14mW at maximum illumination.
Figure 6.3b shows a lighter and reconfigurable version of the active marker hats used

in Chapter 5. The hat frame uses carbon fiber spars and 3D-printed node connectors with
exchangeable LED and diffuser clips that allows LEDs to be placed at any of 12 node
locations. The LED clips are a series of programmable RGB modules, so that each LED
can be assigned any color and brightness at run time. At maximum power (all six LEDs
programmed to white) the markers can draw 1.5W. Using the default red, yellow, green,
blue, cyan, magenta coloring at powers needed to establish a pose estimate at ∼1m, only
224mW are used.

6.4 Simulation

To test the cooperative range finding with vision only sensing, a simulation was developed in
the V-REP Framework. This framework offers a selection of full physics engines, including
Bullet and ODE, as well as API and plugin in support for ROS and Python interfaces. This
simulation was designed to be as drop-in compatible as possible with the hardware as pos-
sible, in that it takes the same commands as a Zumy robot for commanded velocity, scan,
and active marker colors, and produces the same sensor messages in terms of images, IMU
readings, and odometry. The modularity afforded by the ROS/V-REP model allows compo-
nents of the pipeline to be easily substituted. For example, the initial work from Chapter 2

CHAPTER 6. ENERGETIC COST OF COOPERATIVE RANGE FINDING 88

(a) Team and environment.

(b) “Observer” perspective. (c) “Picket” perspective.

Figure 6.4: Complex V-REP simulation environment.

with AR tags used for safe exploration was briefly re-implemented in V-REP before adapting
the vision system to active markers. Much of this work for V-REP simulation was inspired
by the Gazebo-based simulation available for the PixHawk development environment, which
was used to test the initial adaptation of the colored active markers to the HippoCampus
platform used in Chapter 4.

Figure 6.4 shows several simulated views in a complex rubble environment with three
robots. Figure 6.4a shows an overhead perspective view of the whole team of robots in a
rolling hill environment with pillar and slab concrete obstacles that could be expected in
a collapsed building USAR situation. Figures 6.4b and 6.4c respectively show the views
from the perspective of the rear observer robot camera, and one of the picket robots on the
wall section. These perspectives clearly show the active markers on board the picket robots,
which allow pose estimation between team members as per the techniques in Chapters 4
and 5. We can also see the dark red lines representing the rays of steerable lasers, and close

CHAPTER 6. ENERGETIC COST OF COOPERATIVE RANGE FINDING 89

Table 6.1: Simulation parameters.

Environment Team Robot

• geometry

• surface friction prop-
erties

• visual textures

• ambient lighting

• particulate occlusion

• number of robots

• initial pose of robots

• body geometry

• motion modality

• number and position
of cameras

• FOV of cameras and
scanners

• power model parame-
ters

inspection of the observer and picket perspective will show the laser reflection points on
the slab. Currently, the texturing and high polygon count of the environments lead to high
pre-compute times and less-than-on-line execution rates for the simulation, but with some
work on optimizing the environment for visual rendering efficiency we believe this framework
could serve as a general-purpose simulator to produce sensor trajectories for arbitrary teams
of robots in arbitrary environments.

This flexibility in simulation would be key to showing the expected performance of explo-
ration and mapping techniques. Table 6.1 lists some examples of useful simulation param-
eters that could be explored with this simulation framework in the physical environment,
configuration of the team of robots, and configuration of a single robot, supporting the
generality of the simulation.

Figure 6.5 shows outline generic system software architecture allowing substitution of
hardware and simulation. As of yet only the upper algorithmic modules (control, environ-
ment, and feature extraction) have been tested. Future work will hopefully leverage the
simulation environment as convenient way of developing a full SLAM stack, as it is much
easier develop complex environments, and scale to large heterogeneous teams of robots.

As Section 6.2.2 outlined, we can use a quadratic form to simulate the power used at a
very fine granularity in simulation. For the purposes of estimating the power used by the
simulation motion and scanning trajectory, the full power state x(t) can be calculated at
each simulation step. Since the simulation proceeds at an exact regular time interval ∆t, the
total energy used is just the sum of the individual power costs multiplied by the time step:

e(tN) = ∆t
∑
i∈N

xT
i Mpxi (6.16)

CHAPTER 6. ENERGETIC COST OF COOPERATIVE RANGE FINDING 90

Figure 6.5: SLAM system overview.

The hardware developed in Section 6.3 was tested under basic motion, scanning, and
marking conditions to arrive at the following values for the power matrix components:

Mp,r =

14.0 0 1.68 0

0 0.035 0 0
1.68 0 0 0

0 0 0 7.56

 (6.17)

Mp,m =

[
0 2× 10−4

2× 10−4 0

]
, Mp,s =

 0 0 0.25
0 0 0.025

0.25 0.025 0

 (6.18)

These values were used to calculate the power used trajectory in Section 6.5.

6.5 Results

To test extracting the geometry of the environment, two simulated robots were placed in a
static configuration on flat ground near a wall corner, as shown in Figure 6.6a. One robot is
in the FOV of the other, nominally where the first robot would travel forward after mapping
as in Figure 6.1. A portion of the floor and wall are in the intersection FOV of the two

CHAPTER 6. ENERGETIC COST OF COOPERATIVE RANGE FINDING 91

(a) Simulated environment with two
robots.

(b) Resulting point cloud.

(c) Point cloud top view. (d) Point cloud front and side views.

Figure 6.6: Cooperative mapping in simulated environment.

robots, shown as light gray lines in Figure 6.6a. The first robot has six colored markers that
are used via the camera image exactly as in Chapters 4 and 5. Also depicted is the bearing
of the simulated laser beam, which is only visible at the point of reflection in the images
from each camera.

In the simulation, the active markers are first flashed to establish the pose between the
robots. Then the laser is scanned in a regular grid with respect to the first robot’s FOV in
a boustrophedon pattern. For each simultaneous detection, the intersection of the bearing
measurement from each camera is triangulated. Figure 6.6b shows the resulting point cloud,
which clearly shows ground and walls in front of and to the right of the first robot. The
points in Figures 6.6c and 6.6d use the same color scaling as Figure 6.6b to show the time
at which each point was sensed. Due to image noise/aliasing and timing synchronization
issues, some scan points are missed.

After initial triangulation was tested, the sequence of alternating scans and moves was
implemented in simulation up to time t6 as shown in Figure 6.1. Using the energy model
and information metric discussed in Section 6.2.2, the total energy used and information
gained throughout the trajectory was simulated, shown in Figure 6.7. The graph shows
the three distinct scans, with power use due to motion and active marker pose estimation

CHAPTER 6. ENERGETIC COST OF COOPERATIVE RANGE FINDING 92

t0
scan

t1-2 move

t 3
 sc

an

t 6
 sc

an

t4-5 move

Figure 6.7: Information gain versus energy used for two simulated robots.

accounting for the gaps in between the dense scanning arcs. We see from this graph that
the expected general increasing trend with diminishing returns in information can be seen in
the second and third scans, but the first scan does not show this trend. For this simulation
the increasing information trend at the end of the first scan is likely due to scanning from
left to right, and measuring a region that is farther away from the robots but still in the
FOV of both. This shows the weakness of this metric for quantifying the expected decreased
certainty in farther scans, and highlights the need for further development of a probabilistic
informational metric.

Some important takeaways from Figure 6.7 are that the energetic cost of sensing is
greater than the robot platform motion. While this will not always be true, we expect that
it would be the case for very resource constrained robots such as the VelociRoACH, and it is
important that our model can express this. In the case of the simulation here based on the
Zumy robots, this trend could be largely due to the slow frame rate of the simulated camera
(20Hz), conservative wait times for inter-robot camera synchronization, and the high resting
cost of the computational platform, but it does show that this approach can highlight the
trade-offs between cost of sensing and cost of motion.

CHAPTER 6. ENERGETIC COST OF COOPERATIVE RANGE FINDING 93

6.6 Conclusion

While there is still quite a bit of future work to be done to achieve a full SLAM solution at
millirobot scales, we have at least shown a proof of concept implementation of point cloud
generation via triangulation between two robots with cameras. With some consideration
for maintaining line-of-sight when exploring, we have shown that the inchworm localization
technique can be modified to allow two robot to scan an unknown region, and then make
progress in a desired direction with this technique. A full physics simulation in V-REP
has shown this triangulation technique to be viable with vision-only pose and bearing mea-
surements. Hardware has been developed to enable vision and a steerable laser system at
millirobot scales of power, weight, and size.

94

Chapter 7

Conclusion

7.1 Discussion

Throughout this thesis we have seen one approach to enabling low-cost bio-inspired mil-
lirobots with sensing and estimation techniques that could eventually be used in a coopera-
tive SLAM application. On the dual fronts of modeling the motion and sensing properties
of these robots, we have shown progress in modeling the behavior that informs their use in
a SLAM pipeline.

First of all, we have shown that the low-cost design of the robots can allow for unique
strategies in exploring terrains that could leverage disposability of robots for robust, safe
exploration of dangerous environments. With regards to motion modeling, we have shown
that even the highly dynamic and stochastic nature of the robot motion can be approximated
mostly by differential drive assumptions. Future work can improve the results of learning
motion models via data-driven techniques. With more complex models that can be designed
to use on-board sensing for improved motion estimation.

Even with the challenges in modeling the motion of robots, we have developed a pose
estimation technique that can compensate for the noisiness of this motion. By using small
on-board monocular vision and active markers carried with the robots, a full 6-DOF pose
estimate can be extracted between robots that have line of sight maintained. This technique
can be effective in underwater environments, which simulate the feature-poor environment
of a USAR deployment.

Ultimately, the monocular pose estimate can also be leveraged with additional laser scan-
ning hardware to cooperatively triangulate surfaces in the environment, paving the way for
a full mapping implementation. Initial simulations with two robots cooperatively localizing
and triangulating portions of the environment. A basic energy model allows the energy used
for each motion, sense, and scanning action to be simulated, which could serve as a starting
point for a predictive model of SLAM active perception. We also showed a first approxima-
tion of an information gain metric relative to sensed environment volume, which would serve
as the productivity metric in an exploration framework.

CHAPTER 7. CONCLUSION 95

7.2 Future Directions

In order to see a usable and robot SLAM implementation on these robots, future work will
need to proceed along several fronts.

For motion modeling, the data driven model identification framework could show promise
with more complex models, and better on-line sensing integration. At the extreme of data-
driven approaches would be unsupervised machine learning methods that assume no struc-
ture in the motion model. Progress in the complexity and accuracy of machine learning
modeling techniques is continuous, but the especially non-linear and stochastic interaction
of underactuated legged robots with unstructured terrain may still provide challenges in
learning predictive models. Being able to learn and quantify probabilistic bounds on the un-
certainty in dynamic modes of the robots will also be critical to effectively using the models
in an estimation framework. After incorporation with energetic models of stochastic motion,
exploration frameworks could effectively evaluate optimal choices in trajectories through a
space to maximize information gain and minimize cost of motion in the process.

For monocular pose estimation, it would also be beneficial to develop more accurate
uncertainty models of optically sensed poses. The current technique can offer a baseline
Gaussian approximation of the pose uncertainty, but is based on a fairly rudimentary as-
sumption of single pixel variance in sensing. This assumption does not truly capture the
nature of noise in the pose estimates, and also does not deal with the problems brought on
by separating adjacent or occluded markers. A data-driven approach of actually measuring
the noise and bias in pose estimate using various configurations of markers and cameras
would shed light on the structure of the noise in this method of pose estimation. The pose
estimation technique would also benefit from more fine-grained power modeling in conjunc-
tion with the noise characterization. Understanding the trade-offs between energy used in
the markers and the quality of the pose estimate should allow the energy to be modulated
to the minimum necessary to achieve a desired quality of pose estimate.

There are several interesting venues for future work on cooperative localization and map-
ping. Obviously the scanning laser technique for cooperative triangulation needs to be tested
on real systems to understand how well the assumptions about noise and energy apply to the
non-idealities of the implementation. The simulation environment was originally developed
to allow simulations of large-scale environments and teams of robots. It would be valuable to
prove out automated exploration algorithms in simulation while varying parameters of the
exploration team (camera FOV, marker size, laser power, speed, location, etc.). This would
illuminate how sensitive the exploration technique is to each of these parameters, and allow
optimization of the team and algorithm in terms of speed of mapping, accuracy, or power
efficiency.

96

Appendix A

SLAM Sensors

This appendix details the data collected for the SLAM sensor and system comparison in
Figure 1.2. Table A.1 shows the unique name used for each sensor, and the associated Part
Number, Manufacturer and sensing technology category. The name corresponds with labeled
points in Figure 1.2, and the technology category is shown as the disk color.

Table A.2 shows the physical characteristics of these sensors. They are the raw maximum
bandwidth produced while sensing in bits per second, the power used while sensing in Watts,
the sensor unit cost in US Dollars, the weight in grams, and the size in cubed millimeters.
Where possible the bandwidth is calculated as the size in bits of a sensor read datagram
multiplied by the sense rate. In cases where an exact datagram format was not available the
bits needed to represent a sensor reading was approximated as

⌈
log2

(
range

resolution

)⌉
.

Table A.3 lists all of the associated website URLs and publication references used to
collect these data.

APPENDIX A. SLAM SENSORS 97

Table A.1: SLAM Sensor Technologies.

Name Part Number Manufacturer Technology
SF-MPU-9250 MPU-9250 InvenSense IMU

AMS-AS504 AS5040 AMS AG Encoder
ALM-A3213 A3213 Allegro MicroSystems Encoder

USD-E4T E4T US Digital Encoder
PO-2591 Pololu2591 Pololu Encoder

SH-GP2Y0A02 GP2Y0A02 Sharp Triangulation
ST-VL6180X VL6180X STMicroelectronics IR-ToF

Low-Power-SL Low Power SL Mertz Structured-Light
PL-LIDAR-Lite LIDAR Lite PulsedLight ToF

MI-SR4500 SR4500 Mesa Imaging ToF
MI-SR4000 SR4000 Mesa Imaging ToF
SK-DS325 DS325 SoftKinetic ToF
NUX-Pico CamBoard Pico S NimbleUX ToF

RS-RPLIDAR RPLIDAR-A2 RoboPeak Scanning-2D
HK-30LX UTM-30LX Hokuyo Scanning-2D
SI-LM100 LM100 Sick Scanning-2D
VD-Puck Puck LITE Velodyne Scanning-3D

Line-Camera TSL1401CL TAOS Gray-Rolling
OV-GG OV6211 OmniVision Gray-Global
OV-RC OVM9724 OmniVision Color-Rolling

CMUCam5 CMUcam5 Pixy Charmed Labs Color-Rolling
MS-LifeCam T3H-00011 Microsoft Color-Rolling

PG-CG-1 FMVU-03MTC-CS PointGrey Color-Global
PG-CG-0 FL3-GE-03S1C-C PointGrey Color-Global
PG-XB3 BBX3 PointGrey Stereo

LM-LeapMotion Leap Motion Leap Motion Stereo
PG-08S2 BB2-08S2 PointGrey Stereo

PG-HICOL LD2-HICOL-KIT PointGrey Spherical
MS-Kinect L6M-00001 Microsoft DepthImage

MS-XB1-Kinect B00INAX3Q2 Microsoft DepthImage
Laser-Scanner Laser-Scanner Buchan SLAM
V-Roach-Cam V-Roach-Cam Bermudez SLAM

SB-VI VI-Sensor SkyBotics SLAM
Backpack Backpack Zakhor SLAM
V-Roach VelociRoACH Haldane SLAM

APPENDIX A. SLAM SENSORS 98

Table A.2: SLAM Sensors Properties.

Bandwidth Power Cost Weight Size
Name bit/s W USD g mm3

SF-MPU-9250 2.40× 105 9.25× 10−3 5.44 4.37× 10−2 9.00
AMS-AS504 1.00× 105 5.28× 10−2 5.00 5.57× 10−2 96.7
ALM-A3213 4.00× 103 8.25× 10−4 1.30 1.42× 10−2 8.64

USD-E4T 6.00× 106 0.125 20.0 19.0 5.85× 103

PO-2591 3.00× 104 7.92× 10−2 7.00 1.50 222
SH-GP2Y0A02 400 0.165 9.75 5.00 1.83× 104

ST-VL6180X 240 4.76× 10−3 25.0 0.500 13.4
Low-Power-SL 1.11× 109 6.50 800 500 2.00× 106

PL-LIDAR-Lite 1.20× 103 0.650 150 22.0 3.84× 104

MI-SR4500 1.01× 107 12.0 4.65× 103 850 6.16× 105

MI-SR4000 6.08× 106 9.60 4.29× 103 500 3.21× 105

SK-DS325 1.36× 109 2.50 260 - 8.79× 104

NUX-Pico 6.91× 106 2.00 690 - 9.08× 103

RS-RPLIDAR 3.20× 104 1.15 500 340 1.84× 105

HK-30LX 6.91× 105 8.00 1.10× 103 370 3.13× 105

SI-LM100 2.70× 105 12.0 5.00× 103 1.10× 103 1.63× 106

VD-Puck 7.20× 106 8.00 5.60× 103 590 5.88× 105

Line-Camera 3.07× 104 1.25× 10−2 8.77 5.00× 10−2 33.8
OV-GG 5.76× 108 0.238 136 3.46× 10−2 20.2
OV-RC 8.29× 108 0.154 5.08 0.500 35.8

CMUCam5 1.23× 109 0.700 60.0 27.0 1.80× 104

MS-LifeCam 2.46× 108 0.550 40.0 5.00 9.00× 103

PG-CG-1 6.50× 108 1.00 300 37.0 3.65× 104

PG-CG-0 1.11× 109 2.50 600 38.0 2.52× 104

PG-XB3 1.42× 109 4.00 4.02× 103 505 4.28× 105

LM-LeapMotion 9.22× 107 1.00 80.0 32.0 1.28× 104

PG-08S2 1.15× 109 2.50 4.02× 103 342 2.68× 105

PG-HICOL 4.25× 108 11.2 430 1.19× 103 1.55× 106

MS-Kinect 3.69× 108 2.25 150 547 8.11× 105

MS-XB1-Kinect 1.49× 109 17.6 43.1 1.29× 103 6.42× 105

Laser-Scanner 7.37× 107 0.889 30.0 11.4 1.44× 105

V-Roach-Cam 1.48× 108 3.03 210 46.0 1.92× 105

SB-VI 1.73× 108 10.0 4.62× 103 130 5.41× 105

Backpack 7.50× 107 125 2.00× 104 1.50× 104 2.83× 107

V-Roach 1.64× 105 2.22 200 45.0 1.92× 105

APPENDIX A. SLAM SENSORS 99

Table A.3: SLAM Sensor References.

Name References
SF-MPU-9250 https://www.invensense.com/products/motion-tracking/9-axis

/mpu-9250/

https://www.sparkfun.com/products/13762

AMS-AS504 https://ams.com/kor/content/download/1285/7214/file/AS5040

_Datasheet_EN_v2.pdf

ALM-A3213 http://www.allegromicro.com/~/media/Files/Datasheets/A3213

-4-Datasheet.ashx

USD-E4T http://www.usdigital.com/products/encoders/incremental/rot

ary/kit/E4T

PO-2591 https://www.pololu.com/product/2591/specs

SH-GP2Y0A02 https://www.pololu.com/product/1137/specs

ST-VL6180X https://cdn.sparkfun.com/datasheets/Sensors/Proximity/DM00

112632.pdf

https://www.pololu.com/product/2489

Low-Power-SL Mertz [49]
http://www.picopros.com/article/battery-life-testing-micro

vision-showwx

http://www.ptgrey.com/flea3-03-mp-color-gige-vision-sony-i

cx618-camera%E2%84%A2

PL-LIDAR-Lite http://velodynelidar.com/lidar/hdlproducts/vlp16.aspx

MI-SR4500 http://www.mesa-imaging.ch/products/sr4500/

MI-SR4000 http://www.mesa-imaging.ch/products/sr4000/

SK-DS325 http://www.softkinetic.com/Store/ProductID/6

http://www.softkinetic.com/Portals/0/Download/WEB_20120907

_SK_DS325_Datasheet_V2.1.pdf

NUX-Pico http://pmdtec.com/html/pdf/PMD_RD_Brief_CB_pico_71.19k_V01

03.pdf

RS-RPLIDAR http://www.robotshop.com/media/files/pdf/datasheet-rplidar

.pdf

HK-30LX http://www.hizook.com/blog/2009/03/03/new-sick-laser-range

finder-lms-100-designed-compete-hokuyo-utm-30lx

SI-LM100 http://www.hizook.com/blog/2009/03/03/new-sick-laser-range

finder-lms-100-designed-compete-hokuyo-utm-30lx

VD-Puck http://velodynelidar.com/vlp-16-lite.html

Line-Camera http://www.mouser.com/catalog/specsheets/TSL1401CL.pdf

https://www.digikey.com/product-detail/en/ams/TSL1401CL/TS

L1401CLCT-ND/3095283

OV-GG http://www.ovt.com/download_document.php?type=sensor&senso

rid=147

APPENDIX A. SLAM SENSORS 100

https://www.digikey.com/product-detail/en/omnivision-techn

ologies-inc/OV06211-EAAA-AA0A/OV06211-EAAA-AA0A-ND/50224

90

OV-RC http://www.ovt.com/download_document.php?type=sensor&senso

rid=144

https://www.digikey.com/product-detail/en/omnivision-techn

ologies-inc/OVM9724-RYDA/OVM9724-RYDA-ND/4377197

CMUCam5 http://charmedlabs.com/default/pixy-cmucam5/

http://cmucam.org/projects/cmucam5

MS-LifeCam http://www.microsoft.com/hardware/en-us/p/lifecam-hd-3000

PG-CG-1 http://www.ptgrey.com/firefly-mv-03mp-color-usb-20-micron-

mt9v022

http://www.trossenrobotics.com/fireflyMV

PG-CG-0 http://www.ptgrey.com/flea3-03-mp-color-gige-vision-sony-i

cx618-camera

http://www.iceinspace.com.au/forum/archive/index.php/t-735

27.html

PG-XB3 http://www.ptgrey.com/bumblebee-xb3-stereo-vision-13-mp-co

lor-firewire-1394b-38mm-sony-icx445-camera

http://www.ptgrey.com/support/downloads/10132

LM-LeapMotion https://www.leapmotion.com/product

PG-08S2 http://ebuying365.com/Product/21925291896/

PG-HICOL http://www.ptgrey.com/ladybug2-48-mp-firewire-1394b-spheri

cal-digital-video-camera-system

https://www.govdeals.com/index.cfm?fa=Main.Item&itemid=105

&acctid=6542

MS-Kinect http://gmv.cast.uark.edu/scanning/hardware/microsoft-kinec

t-resourceshardware/

MS-XB1-Kinect http://zugara.com/how-does-the-kinect-2-compare-to-the-kin

ect-1

https://www.amazon.com/Xbox-One-Kinect-Sensor/dp/B00INAX3Q

2

Laser-Scanner Chapter 6
V-Roach-Cam Bermudez [4]

SB-VI http://www.skybotix.com/skybotix-wordpress/wp-content/uplo

ads/2013/12/VISensor_Factsheet_web.pdf

http://www.ros.org/news/2014/05/skybotix-opens-vi-sensor-e

arly-adopter-program.html

Backpack https://www.voanews.com/a/new-tool-maps-buildings-energy-e

fficiency/2660519.html

V-Roach Haldane [28]

101

Appendix B

Hardware Designs

B.1 VelociRoACH

URL : https://www.github.com/biomimetics/imageproc_pcb

The design of the VelociRoACH robot embedded control board is available at the above
repository. Details on the processor type, radio, IMU, encoder control, and energy sensing
can be found within the EAGLE design files.

B.2 Zumy

URL : https://wiki.eecs.berkeley.edu/biomimetics/Main/Zumy

The Zumy robot used in Chapters 2, 5, and 6 was designed to be an open-source low-cost
robotic platform. As such, much of the design documentation can be found at the public
documentation Wiki link above. This site includes the most recent bill of materials, Printed
Circuit Board designs, and assembly instructions.

B.3 Active Marker Hat

The active marker hat designed to be used on the VelociRoACH and Zumy platforms pictured
in Figure 6.3b is a configurable mount for a collection of programmable RGB LED units with
diffusers. It is constructed as collection of carbon-fiber spars held together with cyanoacrylate
glue at 3D printed nodes to roughly form a hexagonal base frustum. Each node has a slotted
face for accepting LED clip-on units, allowing markers to be placed at any node. The
marker unit holds a Worldsemi WS2812 RGB LED unit next to a translucent 1cm diameter
polypropylene sphere as a diffuser. A chain of six of these LED units are wired together as
per the WS2812 datasheet for data-in data-out chaining, allowing the LED brightnesses to
be programmed with a single serial data line.

APPENDIX B. HARDWARE DESIGNS 102

The geometry files for the full assembly and 3D printed parts can be found as the same
file server referenced in Appendix D, in folder public/coop_slam/mechanical_designs/

hat/vroach/space_frame. Most files are available as a SolidWorks part file (SLDPRT) and
STereoLithography (STL) file for use in 3D printing.

B.3.1 Files:

• vroach_space_frame.SLDASM: SolidWorks assembly of entire space frame hat.

• vroach_strut_*.SLDPRT: part files showing lengths of carbon fiber spars.

• vroach_node_*.SLDPRT/STL: part files for each frame node piece.

• vroach_clip.SLDPRT/STL: part files for clip to hold frame on VelociRoACH robot.

The geometry files for the marker clips are in folder public/coop_slam/mechanical_

designs/hat/vroach/space_frame:

• marker_thin.SLDASM: assembly of entire clip, retainer, LED, and diffuser.

• led_clip_thin.SLDPRT/STL: housing of LED clip.

• led_retainer_thin.SLDPRT/STL: retainer to hold LED in to clip.

B.4 Laser Scanner

The laser scanning system developed in Chapter 6 supports a steerable section of mirror
in front of a laser to allow the laser to be projected anywhere in a 90◦ pyramid in front of
the scanner. It uses two DC motors with planetary gear reductions connected to machine
screws to move a pair of sliders attached to the elastic-spring loaded mirror pivot to achieve
control over two-degree-of-freedom angular displacement. Metallic stops for the sliders are
also used to sense when either slider is at the extreme of its motion. Figure B.1 shows several
renders of the complete mechanism with section views from various illustrative planes. The
geometry files for 3D printing are available on the public file server in folder public/coop_
slam/mechanical_designs/hat/vroach/space_frame.

B.4.1 Files:

• scanner.SLDASM: full assembly of scanner mechanism.

• guide.SLDPRT/STL: the guide box that contains the sliders and interfaces with the
mount.

• slide.SLDPRT/STL: one of two sliders that are actuated via the machine screws and
nylon nut.

APPENDIX B. HARDWARE DESIGNS 103

(a) Scanner with steerable FOV. (b) Midplane cut view.

(c) Rear cut view. (d) Top cut view.

Figure B.1: Renders of laser scanner hardware

• mount.SLDPRT/STL: front mount that abuts guide box, and supports pin pivot to
mirror plate.

• mirror_plate.SLDPRT/STL: support plate for mirror segment with thread holes for
elastic bands and pull strings to sliders.

• M2_adapter.SLDPRT/STL: adapter from gearbox output to hexagonal socket of ma-
chine screw.

B.4.2 Control Board

Figure B.2 shows the schematic for the laser scanner control board. The full schematic,
printed circuit board file, and part libraries are available in the repository at https://

github.com/biomimetics/modular_robotics_pcb/tree/master/laser_scanner/board.

APPENDIX B. HARDWARE DESIGNS 104

Figure B.2: Laser scanner schematic.

105

Appendix C

Software

C.1 Automatic PWA Model Identification

URL : https://www.github.com/biomimetics/auto_pwa

This repository includes software used in Chapter 3 to filter motion capture and IMU data
into a consistent state and state derivative trajectory, and create Piecewise Affine motion
models from the resulting data for each of the model type discussed in the chapter.

C.2 VelociRoACH Embedded

URL : https://www.github.com/biomimetics/roach

This repository includes the embedded software running on the VelociRoACH main board
used in Chapters 2 and 3. It is responsible for on-board leg velocity control, radio command
processing, and sensor measurement, recording, and streaming.

C.3 Zumy Embedded and ROS

Embedded URL : https://www.github.com/biomimetics/mbed_zumy

Platform URL : https://www.github.com/biomimetics/ros_zumy

Remote Launch URL : https://www.github.com/biomimetics/odroid_machine

Joystick URL : https://www.github.com/biomimetics/man_joy_override

This repositories contain all of the code required to run the Zumy robots used in Chap-
ters 2, 5, and 6. The Embedded repository is the software for the LPC1768 embedded
microcontroller on-board the Zumy that coordinates sensor measurements, track velocity

APPENDIX C. SOFTWARE 106

control, and interfacing with sensor or actuator extensions such as the active markers or
scanning laser system. The “packet” branch is the one used for this research.

The Platform repository is the software running on the Zumy ODROID embedded plat-
form that handles communication with the LPC1768, and interfacing with ROS communica-
tion layers. It publishes all sensor measurements as topics and relays commands for velocity
control and exteneral sensors from input topics or services. The “packet” branch is the one
used for this research.

The Remote Launch repository is responsible for launching control software on Zumy
robots from a host machine over a network via ROS infrastructure.

The Joystick repository provides a convenience utility for using a gamepad joystick to
control multiple robots.

C.4 Monocular Pose Estimation

URL : https://www.github.com/biomimetics/rpg_monocular_pose_estimator

This repository has the pose estimation software adapted from [21] to use hue information
and scale to multiple robots as used in Chapters 4, 5, and 6. The “master” branch was used
for the work in Chapter 4, the “zumy” branch for Chapter ??, and the “factored” branch
was used for the work in Chapter 6.

C.5 V-REP Simulation

V-REP URL : https://www.github.com/biomimetics/bml_vrep

V-REP Model Server Folder : vrep_mapping/coop_slam

Exploration URL : https://www.github.com/biomimetics/exploration

These repositories contain code necessary to support the simulation of robots in V-REP
doing monocular pose estimation and cooperative range finding as discussed in Chapter 6.
The V-REP repository contains code to configure a team of robots and an environment
within the V-REP simulation, with a ROS-based interface for control and sensing. Robot
and environment model files are available on the server referenced in Appendix D, under the
Model Server Folder listed above. The Exploration repository contains software for creating
energy estimates from simulation, and information metric calculation.

107

Appendix D

Datasets

The following datasets can be reached by logging in to the following public file server:

URL: https://biomimetics.eecs.berkeley.edu

Username: public_user

Password: NfUPxBONWrl3B

Each entry below details a folder in this file server interface under “public/coop_slam.”

D.1 Cooperative Exploration

The folder “cooperative_exploration” contains a video and ROS bag files logging all ROS
topics used in Chapter 2.

D.1.1 Files:

• cooperative_exploration.mp4: Video showing safe exploration and granular media,
as well as mapping results.

• manual.bag: ROS bag file for manual drive experiments.

• random.bag: ROS bag file for random drive experiments.

D.2 Automatic PWA Model Identification

The folder “model_identification” contains datasets of the VelociRoACH running on a
treadmill and videos used to create the models in Chapter 3.

APPENDIX D. DATASETS 108

D.2.1 Files:

• Trial2013_03_08_21_26_53_front.mov: Video file showing front view of treadmill
running.

• Trial2013_03_08_21_26_53_side.mov: Video file showing side view of treadmill run-
ning.

• Trial_*_clip.mat: MATLAB format data file with state trajectory and derivative.

• Trial_*_clip_stats.mat: MATLAB format data file with statistics of each type of
model for corresponding state trajectory file.

• Trial_*_clip_models.mat: MATLAB format data file with learned models for cor-
responding state trajectory file.

D.3 Monocular Pose Estimation

The folder “monocular_pose_estimation” contains ROS bag files used to create the pose
estimate calibration data and pose trajectory plot in Chapter 4.

D.3.1 Files:

• calibration*.bag: ROS bag file showing angle or axis sweep for estimation accuracy
calibration.

• circles_and_shaking.bag: ROS bag file for trajectory of pose estimation.

D.4 Inchworm Localization

The folder “inchworm_localization” contains ROS bag files and a video showing a team
of Zumy robots navigating an environment with Inchworm localization as in Chapter 5.

D.4.1 Files:

• updated_coop_slam.mp4: Video showing robots navigating environment, and results.

• maze.bag: ROS bag file with information from robot team (video, IMU, control).

• vicon_maze.bag: ROS bag file with Vicon motion tracking ground truth.

APPENDIX D. DATASETS 109

D.5 V-REP Mapping Simulation

The folder “vrep_mapping” contains a ROS bag file and video showing two robots mapping
a simulated environment in V-REP, as detailed in Chapter 6.

D.5.1 Files:

• move_map.avi: Video file showing perspective view of robots moving and mapping
corner in V-REP simulation.

• move_map.avi: ROS bag file with resulting data from navigation and mapping.

110

Bibliography

[1] Aamir Ahmad et al. “Cooperative robot localization and target tracking based on
least squares minimization”. In: IEEE Int. Conf. on Robotics and Automation, 2013,
pp. 5696–5701.

[2] R. Altendorfer, Daniel E. Koditschek, and Philip J Holmes. “Stability Analysis of a
Clock-Driven Rigid-Body SLIP Model for RHex”. In: The International Journal of
Robotics Research 23.10-11 (Oct. 2004), pp. 1001–1012. issn: 0278-3649. doi: 10.

1177/0278364904047390.

[3] Kostas E Bekris, Max Glick, and Lydia E Kavraki. “Evaluation of algorithms for
bearing-only SLAM”. In: IEEE Int. Conf. on Robotics and Automation, 2006, pp. 1937–
1943.

[4] Fernando Luis Garcia Bermudez. Compensation for camera motion on unsteady robots
for optical flow. University of California, Berkeley, 2013.

[5] Paul Birkmeyer, Kevin Peterson, and Ronald S. Fearing. “DASH : A dynamic 16g
hexapedal robot”. In: IEEE Int. Conf. on Intelligent Robots and Systems (2009),
pp. 2683–2689.

[6] Michael Bloesch et al. “Kinematic Batch Calibration for Legged Robots”. In: IEEE
Int. Conf. on Robotics and Automation 3 (2013), pp. 2527–2532.

[7] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools (2000).

[8] Urban Brändström. The ALIS Imager: Some basic concepts. 2004. url: http://www.
irf.se/~urban/avh/html/node13.html (visited on 02/22/2017).

[9] Andreas Breitenmoser, Laurent Kneip, and Roland Siegwart. “A monocular vision-
based system for 6D relative robot localization”. In: IEEE Int. Conf. on Intelligent
Robots and Systems, 2011, pp. 79–85.

[10] Rodney A Brooks and Anita M Flynn. Fast, cheap and out of control. Tech. rep.
Massachusetts Institute of Technology Artificial Intelligence Lab, 1989.

[11] Austin D Buchan, Duncan W Haldane, and Ronald S Fearing. “Automatic identifica-
tion of dynamic piecewise affine models for a running robot”. In: Intelligent Robots and
Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE. 2013, pp. 5600–
5607.

BIBLIOGRAPHY 111

[12] Austin D. Buchan et al. “Low-Cost Monocular Localization with Active Markers for
Micro Autonomous Underwater Vehicles”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (accepted). IEEE. 2017.

[13] Samuel Burden, Shai Revzen, and SS Sastry. “Dimension reduction near periodic orbits
of hybrid systems”. In: IEEE Conf. on Decision and Control (2011), pp. 6116–6121.
arXiv: arXiv:1109.1780v1.

[14] Cesar Cadena et al. “Past, present, and future of simultaneous localization and map-
ping: Toward the robust-perception age”. In: IEEE Transactions on Robotics 32.6
(2016), pp. 1309–1332.

[15] Frank M. Callier and Charles A. Desoer. Linear System Theory. London, UK, UK:
Springer-Verlag, 1991. isbn: 0-387-97573-X.

[16] Luca Carlone et al. “Rao-Blackwellized particle filters multi robot SLAM with unknown
initial correspondences and limited communication”. In: IEEE Int. Conf. on Robotics
and Automation, 2010, pp. 243–249.

[17] Philippe Cavalier. Quatro 290 - 1M CAD Model. 2016. url: https://grabcad.com/
library/quatro-290-1m-1 (visited on 02/15/2017).

[18] Aleksandr Dikarev et al. “Combined multiuser acoustic communication and localisa-
tion system for µAUVs operating in confined underwater environments”. In: IFAC-
PapersOnLine 48.2 (2015), pp. 161–166.

[19] A. Dirafzoon et al. “Mapping of unknown environments using minimal sensing from a
stochastic swarm”. In: 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2014). Sept. 2014, pp. 3842–3849. doi: 10.1109/IROS.2014.
6943102.

[20] FR Fabresse, F Caballero, and A Ollero. “Decentralized simultaneous localization and
mapping for multiple aerial vehicles using range-only sensors”. In: IEEE Int. Conf. on
Robotics and Automation, 2015, pp. 6408–6414.

[21] Matthias Faessler et al. “A Monocular Pose Estimation System based on Infrared
LEDs”. In: 2014 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2014, pp. 907–913.

[22] Giancarlo Ferrari-Trecate et al. “A clustering technique for the identification of piece-
wise affine systems”. In: Automatica 39.2 (Feb. 2003), pp. 205–217. issn: 00051098.
doi: 10.1016/S0005-1098(02)00224-8.

[23] D. Fridovich-Keil, E. Nelson, and A. Zakhor. “AtomMap: A probabilistic amorphous
3D map representation for robotics and surface reconstruction”. In: 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA). May 2017, pp. 3110–3117.
doi: 10.1109/ICRA.2017.7989355.

BIBLIOGRAPHY 112

[24] Andreas R Geist et al. “Towards a Hyperbolic Acoustic One-Way Localization System
for Underwater Swarm Robotics”. In: 2016 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2016, pp. 4551–4556.

[25] Robert Grabowski et al. “Heterogeneous Teams of Modular Robots for Mapping and
Exploration”. en. In: Autonomous Robots 8.3 (June 2000), pp. 293–308. issn: 0929-
5593, 1573-7527. doi: 10.1023/A:1008933826411. url: http://link.springer.
com/article/10.1023/A:1008933826411 (visited on 09/12/2015).

[26] Arron Griffiths et al. “AVEXIS-Aqua Vehicle Explorer for In-Situ Sensing”. In: IEEE
Robotics and Automation Letters 1.1 (2016), pp. 282–287.

[27] Axel Hackbarth, Edwin Kreuzer, and Eugen Solowjow. “HippoCampus: A Micro Un-
derwater Vehicle for Swarm Applications”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2015, pp. 2258–2263.

[28] Duncan W Haldane et al. “Animal-inspired Design and Aerodynamic Stabilization of
a Hexapedal Millirobot”. In: IEEE Int. Conf. on Robotics and Automation (2013),
pp. 3264–3271.

[29] Duncan W. Haldane et al. “Detection of slippery terrain with a heterogeneous team of
legged robots”. In: 2014 IEEE International Conference on Robotics and Automation
(ICRA). May 2014, pp. 4576–4581. doi: 10.1109/ICRA.2014.6907527.

[30] P.E. Hart, N.J. Nilsson, and B. Raphael. “A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths”. In: IEEE Transactions on Systems Science and
Cybernetics 4.2 (July 1968), pp. 100–107. issn: 0536-1567. doi: 10.1109/TSSC.1968.
300136.

[31] Richard I Hartley and Peter Sturm. “Triangulation”. In: Computer vision and image
understanding 68.2 (1997), pp. 146–157.

[32] Constantin Herbst et al. Safe Navigation with a Heterogeneous Team of Legged Robots.
2013. url: http://students.asl.ethz.ch/upl_pdf/511-report.pdf (visited on
09/12/2015).

[33] Hokuyo URG-04LX-UG01 Scanning Laser Rangefinder - RobotShop. url: http://
www.robotshop.com/en/hokuyo-urg-04lx-ug01-scanning-laser-rangefinder.

html.

[34] Philip Holmes et al. “The Dynamics of Legged Locomotion: Models, Analyses, and
Challenges”. In: SIAM Review 48.2 (Jan. 2006), pp. 207–304. issn: 0036-1445. doi:
10.1137/S0036144504445133.

[35] Aaron M. Hoover et al. “Bio-inspired design and dynamic maneuverability of a mini-
mally actuated six-legged robot”. In: 3rd IEEE RAS and EMBS Int. Conf. on Biomed-
ical Robotics and Biomechatronics (BioRob). Sept. 2010, pp. 869–876.

BIBLIOGRAPHY 113

[36] A.M. Hoover and R.S. Fearing. “Fast scale prototyping for folded millirobots”. In:
Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on. May
2008, pp. 1777–1778. doi: 10.1109/ROBOT.2008.4543462.

[37] Andrew Howard. “Multi-robot simultaneous localization and mapping using particle
filters”. In: The International Journal of Robotics Research 25.12 (2006), pp. 1243–
1256.

[38] Guoquan Huang, Michael Kaess, and John J Leonard. “Towards consistent visual-
inertial navigation”. In: IEEE Int. Conf. on Robotics and Automation, 2014, pp. 4926–
4933.

[39] J. Huang et al. “Efficient, generalized indoor WiFi GraphSLAM”. In: 2011 IEEE In-
ternational Conference on Robotics and Automation. May 2011, pp. 1038–1043. doi:
10.1109/ICRA.2011.5979643.

[40] Vadim Indelman et al. “Multi-robot pose graph localization and data association from
unknown initial relative poses via expectation maximization”. In: IEEE Int. Conf. on
Robotics and Automation, 2014, pp. 593–600.

[41] George H Joblove and Donald Greenberg. “Color Spaces for Computer Graphics”. In:
ACM SIGGRAPH Computer Graphics. Vol. 12. 3. ACM. 1978, pp. 20–25.

[42] Laurent Kneip, Davide Scaramuzza, and Roland Siegwart. “A novel parametrization
of the perspective-three-point problem for a direct computation of absolute camera
position and orientation”. In: Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on. IEEE. 2011, pp. 2969–2976.

[43] Haldun Komsuoglu et al. “A physical model for dynamical arthropod running on level
ground”. In: Int. Symposium on Experimental Robotics (2008), pp. 303–317.

[44] Haldun Komsuoglu et al. “Characterization of Dynamic Behaviors in a Hexapod Robot”.
In: Int. Symposium on Experimental Robotics (2010).

[45] Ryo Kurazume and Shigeo Hirose. “An experimental study of a cooperative positioning
system”. In: Autonomous Robots 8.1 (2000), pp. 43–52.

[46] Raj Madhavan, Kingsley Fregene, and Lynne E Parker. “Distributed heterogeneous
outdoor multi-robot localization”. In: IEEE Int. Conf. on Robotics and Automation,
2002. Vol. 1, pp. 374–381.

[47] Agostino Martinelli, Frederic Pont, and Roland Siegwart. “Multi-robot localization
using relative observations”. In: IEEE Int. Conf. on Robotics and Automation, 2005,
pp. 2797–2802.

[48] Allison Mathis et al. “Autonomous Navigation of a 5 Gram Crawling Millirobot in a
Complex Environment”. In: Baltimore, 2012, pp. 23–26. url: https://robotics.
eecs.berkeley.edu/~ronf/PAPERS/MEDIC-clawar12.pdf (visited on 09/12/2015).

BIBLIOGRAPHY 114

[49] Christoph Mertz et al. “A low-power structured light sensor for outdoor scene re-
construction and dominant material identification”. In: Computer Vision and Pat-
tern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on.
IEEE. 2012, pp. 15–22.

[50] Rudolph Van Der Merwe, Eric A Wan, and Simon I Julier. “Nonlinear Estimation and
Sensor-Fusion - Applications to Integrated Navigation -”. In: Proc. AIAA Guidance
Navigation and Controls Conf (2004), pp. 1–30.

[51] Anastasios I Mourikis and Stergios I Roumeliotis. “A multi-state constraint Kalman
filter for vision-aided inertial navigation”. In: IEEE Int. Conf. on Robotics and Au-
tomation, 2007, pp. 3565–3572.

[52] R.R. Murphy. “Marsupial and shape-shifting robots for urban search and rescue”. In:
IEEE Intelligent Systems and their Applications 15.2 (Mar. 2000), pp. 14–19. issn:
1094-7167. doi: 10.1109/5254.850822.

[53] Luis E. Navarro-Serment, Christiaan J. J. Paredis, and Pradeep K. Khosla. “A Beacon
System for the Localization of Distributed Robotic Teams”. In: In Proceedings of the
International Conference on Field and Service Robotics. 1999, pp. 232–237.

[54] Brian E Nemsick et al. “Cooperative inchworm localization with a low cost team”.
In: Robotics and Automation (ICRA), 2017 IEEE International Conference on. IEEE.
2017, pp. 6323–6330.

[55] Jorge Nocedal and Stephen J Wright. Numerical Optimization, 2nd Ed. Springer, 2006.

[56] OpenMV Cam M4 V2 — OpenMV. url: https://openmv.io/products/openmv-cam.

[57] OpenMV LLC. OpenMV Lenses. 2016. url: https://openmv.io/collections/

lenses (visited on 02/28/2017).

[58] Daegil Park et al. “3D Underwater Localization Scheme using EM Wave Attenua-
tion with a Depth Sensor”. In: 2016 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2016, pp. 2631–2636.

[59] Robin M Pope and Edward S Fry. “Absorption spectrum (380–700 nm) of pure water.
II. Integrating cavity measurements”. In: Applied optics 36.33 (1997), pp. 8710–8723.

[60] Amanda Prorok, Alexander Bahr, and Alcherio Martinoli. “Low-cost collaborative lo-
calization for large-scale multi-robot systems”. In: IEEE Int. Conf. on Robotics and
Automation, 2012, pp. 4236–4241.

[61] Long Quan and Zhongdan Lan. “Linear n-point camera pose determination”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 21.8 (1999), pp. 774–780.

[62] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: ICRA
workshop on open source software. Vol. 3. 2009. url: http://www.willowgarage.
com/sites/default/files/icraoss09-ROS.pdf (visited on 09/12/2015).

BIBLIOGRAPHY 115

[63] H. E. Rauch, C. T. Striebel, and F. Tung. “Maximum likelihood estimates of linear
dynamic systems”. In: AIAA Journal 3.8 (Aug. 1965), pp. 1445–1450. issn: 0001-1452.
doi: 10.2514/3.3166. url: http://arc.aiaa.org/doi/abs/10.2514/3.3166.

[64] Shai Revzen and John M Guckenheimer. “Finding the dimension of slow dynamics in
a rhythmic system.” In: Journal of the Royal Society, Interface / the Royal Society
9.70 (May 2012), pp. 957–71. issn: 1742-5662. doi: 10.1098/rsif.2011.0431.

[65] Eric Rohmer, Surya PN Singh, and Marc Freese. “V-REP: A versatile and scalable
robot simulation framework”. In: Intelligent Robots and Systems (IROS), 2013 IEEE
/ RSJ International Conference on. IEEE. 2013, pp. 1321–1326.

[66] Cameron J Rose, Parsa Mahmoudieh, and Ronald S Fearing. “Modeling and Con-
trol of an Ornithopter for Diving”. In: Intelligent Robots and Systems (IROS), 2016
IEEE/RSJ International Conference on. IEEE. 2016, pp. 957–964.

[67] Stergios I Roumeliotis and George A Bekey. “Distributed multirobot localization”. In:
IEEE Transactions on Robotics and Automation 18.5 (2002), pp. 781–795.

[68] Sumant Sharma and Simone D’Amico. “Comparative assessment of techniques for
initial pose estimation using monocular vision”. In: Acta Astronautica 123 (2016),
pp. 435–445.

[69] E Sontag. “Nonlinear regulation: The piecewise linear approach”. In: IEEE Transac-
tions on Automatic Control (1981), pp. 346–358.

[70] Dennis Strelow and Sanjiv Singh. “Motion estimation from image and inertial measure-
ments”. In: The International Journal of Robotics Research 23.12 (2004), pp. 1157–
1195.

[71] R. Tedrake et al. “LQR-trees: Feedback Motion Planning via Sums-of-Squares Verifica-
tion”. In: The International Journal of Robotics Research 29.8 (Apr. 2010), pp. 1038–
1052. issn: 0278-3649. doi: 10.1177/0278364910369189.

[72] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. 2005.

[73] Stephen Tully, George Kantor, and Howie Choset. “Leap-frog path design for multi-
robot cooperative localization”. In: Int. Conf. on Field and Service Robotics. Springer.
2010, pp. 307–317.

[74] Eric Turner, Peter Cheng, and Avideh Zakhor. “Fast, automated, scalable generation
of textured 3d models of indoor environments”. In: IEEE Journal of Selected Topics
in Signal Processing 9.3 (2015), pp. 409–421.

[75] C. Urmson and R. Simmons. “Approaches for heuristically biasing RRT growth”. In:
2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003.
(IROS 2003). Proceedings. Vol. 2. Oct. 2003, 1178–1183 vol.2. doi: 10.1109/IROS.
2003.1248805.

BIBLIOGRAPHY 116

[76] Thumeera R Wanasinghe, George KI Mann, and Raymond G Gosine. “Distributed col-
laborative localization for a heterogeneous multi-robot system”. In: 27th IEEE Cana-
dian Conf. on Electrical and Computer Engineering (CCECE), 2014, pp. 1–6.

[77] Thumeera R Wanasinghe, George KI Mann, and Raymond G Gosine. “Distributed
Leader-Assistive Localization Method for a Heterogeneous Multirobotic System”. In:
IEEE Transactions on Automation Science and Engineering 12.3 (2015), pp. 795–809.

[78] Karl E Wenzel, Andreas Masselli, and Andreas Zell. “Visual tracking and following of a
quadrocopter by another quadrocopter”. In: 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE. 2012, pp. 4993–4998.

