
Securing the Internet of Things via Locally Centralized,
Globally Distributed Authentication and Authorization

Hokeun Kim

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-139
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-139.html

August 9, 2017



Copyright © 2017, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.



Securing the Internet of Things via Locally Centralized, Globally Distributed
Authentication and Authorization

by

Hokeun Kim

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Edward A. Lee, Chair
Professor Alberto L. Sangiovanni-Vincentelli

Professor Raja Sengupta

Summer 2017



Securing the Internet of Things via Locally Centralized, Globally Distributed
Authentication and Authorization

Copyright 2017
by

Hokeun Kim



1

Abstract

Securing the Internet of Things via Locally Centralized, Globally Distributed
Authentication and Authorization

by

Hokeun Kim

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Edward A. Lee, Chair

The Internet of Things (IoT) brings about benefits through interaction with humans and
the physical world using a variety of technologies including sensors, actuators, controls, mo-
bile devices and cloud computing. However, these benefits can be hampered by malicious
interventions of attackers when the IoT is not protected properly. Hence, authentication and
authorization comprise critical parts of basic security processes and are sorely needed in the
IoT. Characteristics of the IoT render existing security measures such as SSL/TLS (Secure
Socket Layer/Transport Layer Security) and network architectures ineffective against emerg-
ing networks and devices. Heterogeneity, scalability, and operation in open environments are
serious challenges that need to be addressed to make the IoT secure. Moreover, many exist-
ing cloud-based solutions for the security of the IoT rely too much on remote servers over
possibly vulnerable Internet connections.

This dissertation presents locally centralized, globally distributed authentication and au-
thorization to address the IoT security challenges. Centralized security solutions make sys-
tem management simpler and enable agile responses to failures or threats, while having a
single point of failure and making it challenging to scale. Solutions based on distributed
trust are more resilient and scalable, but they increase each entity’s overhead and are more
difficult to manage. The proposed approach leverages an emerging network architecture
based on edge computers by using them as locally centralized points for authentication and
authorization of the IoT. This allows heterogeneity and an agile access control to be handled
locally, without having to depend on remote servers. Meanwhile, the proposed approach has
a globally distributed architecture throughout the Internet for robustness and scalability.

The proposed approach is realized as SST (Secure Swarm Toolkit), an open-source toolkit
for construction and deployment of an authentication and authorization service infrastructure
for the IoT, for validation of locally centralized, globally distributed trust management.
SST includes a local authorization entity called Auth to be deployed on edge computers
which are used as a gateway for authorization as well as for the Internet. Software building
blocks provided by SST, called accessors, enable IoT developers to readily integrate their
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IoT applications with the SST infrastructure, by encapsulating cryptographic operations and
key management. In addition to protection against network-based intruders, SST supports
a secure migration mechanism for enhancing availability in the case of failures or threats of
denial-of-service attacks, based on globally distributed and trusted Auths.

For evaluation, I provide a formal security analysis using an automated verification tool
to rigorously show that SST provides necessary security guarantees. I also demonstrate the
scalability of the proposed approach with a mathematical analysis, as well as experiments
to evaluate security overhead of network entities under different security profiles supported
by SST. The effectiveness of the secure migration technique is shown through a case study
and simulation based on a concrete IoT application.
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Chapter 1

Introduction

The Internet of Things (IoT) [7] faces challenges [68] to enable scalable, safe and secure
systems. Since the IoT interacts with humans, machines and environments, failures in the
IoT can lead to very serious consequences. This fact makes the safety of the IoT particularly
important. Safety extends to security in the sense that security guarantees (e.g., protection
from intrusion or unauthorized access) can help prevent an adversary from damaging safety.
Safety measures such as Airbus flight envelope protection [100], which prohibits pilots from
performing risky maneuvers, can help prevent a successful intruder from doing damage.

The security of the traditional Internet has been enhanced by well-developed security
measures such as the SSL/TLS (Secure Socket Layer/Transport Layer Security) protocol
suites1. However, the IoT has unique characteristics that distinguish it from the traditional
Internet, and these characteristics lead to special requirements for security solutions of the
IoT. Widely-used network security measures do not adapt one-to-one to the IoT because of
these special requirements.

1.1 The Internet of Things (IoT) and Security

On October 21, 2016, domain name service provider Dyn suffered a distributed denial-of-
service (DDoS) attack [44] leading to a significant collapse of fundamental infrastructures
comprising the Internet. In a DDoS attack, a number of compromised or zombie computers,
forming a botnet, send a flood of traffic to the target server, causing a denial of service by
exhausting computation or communication resources. What made this incident remarkable
was the fact that many of compromised computers launching the attack were relatively
small devices including printers, webcams, residential gateways, and baby monitors, i.e., the
Internet of Things (IoT).

The IoT benefits from connectivity that facilitates collaboration among a variety of com-
puting systems, ranging from sensor nodes and mobile devices to large control systems and
cloud computers. The IoT closely interacts with human beings and physical systems such

1Widely used by web servers, clients, and remote logins.
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Smart	homes
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Figure 1.1: Electric vehicles (EVs) and charging infrastructure.

as medical devices or smart power grids. However, as seen in the Dyn incident, the IoT also
brings about security challenges, especially when the “Things” lack security.

Another incident that showed the threat of the connectivity was the cyberattack on
Ukrainian power grid [61] on December 23, 2015. The attackers gained control over the
SCADA (Supervisory Control and Data Acquisition) system of the Ukrainian power grid
and caused a blackout for several hours in the large area of Ukraine’s Ivano-Frankivsk region
populated by 1.4 million residents. This case showed that, unlike cyberattacks in the past,
the consequences of attacks on the IoT can be more devastating than information theft or
financial loss. The consequences can be life-threatening.

To avoid such incidents, IoT can be secured by widely-used cloud computing technologies
where the IoT can benefit from plentiful resources of cloud servers for security services.
However, this means the security services such as authentication and authorization can
be affected by the availability of the cloud servers and the Internet connections to remote
servers. A recent example showing this is Google OnHub incident [70], where a failure in
the companys authentication servers caused IoT gateway devices (called OnHub) to become
unavailable, in turn leading to failures in all IoT devices connected to these gateway devices.
The connection to the cloud can be disrupted by impairing Internet infrastructure services
such as DNS (Domain Name Service). The indication of the Google OnHub case is that
depending on remote cloud servers over possibly brittle Internet connections can be risky,
especially for authentication and authorization, considering that access control is essential
for the system’s availability.

As recognized in the literature including [95], the main challenges in the security of
the Internet of Things (IoT) include heterogeneity, operation in open environments, and
scalability. For example, IoT components including electric vehicles (EVs) and EV charging
infrastructure in Figure 1.1 are considered safety-critical. Unlike servers in data centers,
EVs and EV charging stations are physically accessible not only by valid users but also by
potential adversaries. This leads to an increased number of physical points of access; thus,
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there can be a higher risk of being subverted. Therefore, an authorization infrastructure for
the IoT must have ways to revoke access of the compromised devices within a short amount
of time to limit the damage when they are under control of adversaries.

In addition, mobile phones or EVs can migrate from one network to another, possibly
making their network connection unstable. There are also IoT devices with constrained re-
sources and the number of IoT devices is expected to grow rapidly. Therefore, the security in-
frastructure for the IoT should work well with unstable connection and resource-constrained
devices at a great scale. However, with security measures such as TLS based on certificates
provided by certificate authorities, it will be very difficult to have control over authorization
of a huge number of devices, some of which may have seriously limited resources.

There is a variety of examples showing that the networked entities in the IoT are het-
erogeneous in terms of both security requirements and resource availability. For example,
safety-critical systems such as above-mentioned electric power grid, autonomous vehicles, or
drones will require the strongest possible guarantees for authorization and authentication.
For mobile payment applications such as Apple Pay, high performance may be desirable in
addition to confidentiality and authentication of transactions. However, for battery-powered
devices such as temperature sensors, the lifetime and availability are considered just as im-
portant as data security. For some sensors, guaranteeing data integrity can be enough; it
may not be necessary to keep sensor data confidential.

Therefore, insisting on maximum security for all devices in the IoT is not appropriate.
To the best of my knowledge, there has not been a single integrated security solution for the
IoT that supports heterogeneous requirements from safety-critical systems to sensor nodes.
Existing, widely-used security measures including SSL/TLS, Kerberos, and various solutions
for WSN (Wireless Sensor Network) and MANET (Mobile Ad hoc Network) are designed for
homogeneous networks, and may not be directly applicable in a heterogeneous IoT setting.
For instance, an approach purely based on SSL/TLS would be too prohibitive in an IoT
network due to the high computational requirements of public-key cryptography operations.

Another challenge arises due to risks involved with operating safety-critical components
in open, untrusted, and even hostile environments. The threat model for existing, web-
connected networks is reasonably well-understood, with a variety of mitigations developed
to guard against potential attacks. Due to its open nature, however, an IoT network is
susceptible to entirely new classes of attacks, which may include illegitimate access through
mediums other than traditional networks (e.g., physical access, Bluetooth, radios). For in-
stance, Ghena et al. [38] demonstrate an attack on a traffic controller on the streets of Ann
Arbor, Michigan, including manipulation of actual traffic lights; this attack was made pos-
sible via direct radio communication with the traffic controller. Thus, the security solution
for the IoT should provide ways to mitigate the potential effect of compromised entities in
an open environment. Jamming attacks on wireless communication channels [107] can also
be a threat to the availability of the IoT operating over wireless networks.

The last but not least challenge is scalability of connected devices in the IoT. Many reports
on scalability of the IoT, including ones by Ericsson [22] and Cisco [25], expect there will be
tens of billions of connected devices by 2020, far exceeding the world population, and billions
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of Terabytes (1012 Bytes) of IP traffic, a significant portion of which will be generated by the
IoT. Hence, the security solution must scale accordingly; in particular, the overhead of adding
and removing devices to/from the security solution should be minimal. And securing a large
amount of data should be done in an efficient way. This includes supporting object or data
security for communications such as information-centric networks [1], publish-subscribe [35]
or broadcasting.

1.2 Motivation

1.2.1 Challenges with Current Security Measures

This section discusses why current state-of-the-art network security solutions cannot address
some of the IoT security challenges, and why an integrated security framework is needed. I
summarize the main challenges as follows.

1. Heterogeneity : Diversity in security requirements and resource availability (including
devices with resource constraints and/or intermittent connectivity).

2. Open environment : Increased risks of operation in an environment where adversaries
have physical and/or wireless access to IoT devices.

3. Scalability : A large number of devices and a high volume of communication traffic
including one-to-many traffic patterns such as broadcasting or publish-subscribe.

For discussion in this section, consider data collection in a WSN (wireless sensor network)
using a UAV (unmanned aerial vehicle), as shown in Figure 1.2. This example is motivated
by Shih et al. [94]

To secure communication among the network nodes, one option is to apply a security so-
lution purely based on SSL/TLS. This approach, however, will run into the following issues.
First, resource-constrained sensor nodes (1. Heterogeneity) will suffer heavy energy consump-
tion, due to the high computational requirements of public-key cryptographic operations as
well as the transmission of large certificates. The air traffic control system and UAV are
particularly critical for safety: If either of these two is compromised (2. Open environment),
it will be difficult to prevent catastrophic consequences on the overall system. To mitigate
the effect of compromised entities, SSL/TLS supports CRLs (Certificate Revocation List);
however, CRLs must be updated frequently for all devices to revoke compromised certificates
in a timely fashion. This will create scalability problems for resource-constrained devices.
Moreover, SSL/TLS uses a server/client model based on one-to-one connections, which does
not scale to broadcasting communication within sensor node clusters (3. Scalability).

The Kerberos authentication system [75], another popular security mechanism, employs
the notion of a ticket, which includes an encrypted session key and a timestamp-based
authenticator. The ticket is issued by the centralized Kerberos AS/TGS (Authentication
Server / Ticket Granting Service), and the authenticator generated by a client proves the
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Figure 1.2: Motivational example for a security measure for the IoT inspired by [94]; WSN
data collection using a UAV.

freshness of the authentication request. Kerberos provides centralized and timely control
of authentication; thus, in the context of the example in Figure 1.2, it will provide means
to limit damage even when the critical components have been compromised. However, this
approach is not suitable for the UAV and sensor nodes with intermittent connectivity (1.
Heterogeneity) because the authentication process requires direct communication with the
AS/TGS. In addition, if the network contains a large number of sensor node clusters, the
centralized AS/TGS will be a bottleneck for authentication (3. Scalability).

Lightweight security solutions for WSN or MANET [76] [33] will be suited to the require-
ments of the resource-constrained sensor nodes in this example. Keys with long lifetimes
will mitigate the intermittent connectivity of the UAV. However, most of these solutions
are not designed to work on an Internet scale, relying on local wireless communications and
using local base stations for key distribution (3. Scalability). Furthermore, these lightweight
solutions accept weaker security guarantees as a trade-off for better energy efficiency (e.g.,
no confidentiality) and may not be suited to meeting the requirements of safety-critical
components (1. Heterogeneity).

While the existing approaches provide a partial solution for some of these challenges, none
of them offers a complete, integrated solution. The proposed approach and the toolkit as its
realization provide an integrated, Internet-scale authentication and authorization framework
that can satisfy a diverse set of security and resource requirements found in an IoT network.

1.2.2 Security Requirements for the IoT

This section summarizes security requirements of the security solution for the IoT.

• Frequent authorization and authentication – Due to the criticality of some de-
vices in the IoT, tight authorization and authentication will be necessary. Machines
operate at higher speeds than human beings, and physical accessibility of devices cre-
ates more vulnerability. Dynamically varying situations resulting from mobility may
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change authorization of devices. Moreover, frequent authorization can provide ways to
limit the damage in case critical devices are subverted.

• Automated mutual authentication – It will be prohibitive for users to remember
passwords for a large number of devices. Thus, the IoT devices must be able to
authenticate themselves without user intervention.

• Intermittent connectivity – Mobility of devices changes the network environment
under which the devices operate, which can lead to unstable connectivity. However, we
cannot compromise security when the network connection is unstable, thus we should
be able to handle intermittent connectivity of devices.

• Dynamic registration of IoT entities – Unlike the traditional Internet, the IoT
includes devices with shorter life cycles than general computers. Mobile devices may be
added to and removed from authentication/authorization systems dynamically. There-
fore, adding and removing entities should be manageable in the secure network archi-
tecture for the IoT.

• Support for scalability features – There is a variety of approaches for network
scalability, which benefit the IoT devices, including the publish-subscribe protocols [35]
such as MQTT [8]. The security architecture should be able to work together with
these scalability features.

• Consideration for resource constraints – Some devices in the IoT have scarce
resources; for example, battery-powered devices have limited energy budget for com-
putation or communication. Stronger security measures generally cost more energy;
however, excessive energy consumption can harm the availability. Hence, the security
measure should be able to balance security and energy consumption.

• Privacy – Personal devices such as mobile phones can easily collect and carry private
information of their users. Therefore, the security measure also needs to be able to
protect user’s privacy.

• Resiliency and Robustness – For some IoT applications, availability is as critical as
information protection. Therefore, the security solution for the IoT needs to be able to
maintain some degree of availability even in the case of failures or availability threats
such as Denial-of-Service (DoS) attacks.

• Locality – The IoT security measure must not depend too much on remote systems.
Specifically, authentication and authorization services should not be interrupted by the
Internet connections or operational states of remote servers.

• Ease of deployment – To deal with scalability and management of heterogeneous
IoT systems, the security solution should be easy enough to be deployed by local
system managers. This includes enabling IoT developers with moderate knowledge of
computer security to integrate their applications with the security solution.
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1.3 Contributions

In this dissertation, I propose locally centralized, globally distributed authentication and
authorization to secure the IoT while addressing the IoT-related requirements. This disser-
tation also presents a toolkit called SST (Secure Swarm Toolkit) [53] and its infrastructure
designed as a realization of the proposed approach. To the best of my knowledge, SST is the
first working implementation of an Internet-scale authorization infrastructure that covers
heterogeneous security requirements from sensor nodes to safety-critical components, with
an automated, formal security analysis. SST is not just a protocol or key management sys-
tem but it also provides standardized software components, accessors, for secure composition
of IoT applications. The key contributions of the dissertation are summarized as follows:

• This dissertation proposes locally centralized, globally distributed authentication and
authorization as a solution to address security challenges in the IoT. This approach
takes the hybrid of centralized and distributed solutions and leverages the emerging
network architecture called edge computing.

• As a concrete implementation of the proposed approach, this dissertation presents an
open-source implementation of a local authorization entity, Auth, that can be down-
loaded and deployed by anyone with moderate knowledge of computer security. Auth
can be deployed on edge-computing devices including Intel’s IoT gateways and Swarm-
Box which will be introduced in Section 2.2 to authenticate and authorize IoT devices
and establish secure connections.

• Auth provides a variety of security alternatives depending on security requirements and
resource availability. These alternatives range from strong and frequent authorization
for safety-critical components to lightweight message integrity guarantees for resource-
constrained sensor nodes. For example, the proposed Auth can use the cryptography
algorithms that are used in TLS to provide a comparable level of security guarantees
for safety-critical systems while providing lightweight solutions for battery-powered
sensor nodes.

• The proposed Auth has control over existing connections among the IoT devices, pro-
viding mechanisms to mitigate damage caused by compromised or subverted entities,
by revoking credentials of compromised entities.

• The proposed infrastructure includes actor-based software components that are de-
signed to help non-security expert developers design secure software for the IoT. This
is achieved by enforcing a secure implementation and composition of software through
actor-based programming semantics.

• To rigorously show that SST provides necessary security guarantees, I have performed a
formal analysis on a model of the proposed authorization protocol using an automated
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verification tool. As far as I know, this is the first security framework for the IoT that
has been subjected to a rigorous, formal security analysis.

• A robust authentication and authorization service infrastructure for the IoT is built
upon the open-source implementation of SST. SST is particularly interesting because,
by its design nature, it provides distributed Auths and leverages trust among Auths.
In the previous design of SST, each Auth takes responsibility of local IoT entities for
authorization. In the proposed approach, Auths are allowed to share the authorization
information (credentials and communication policies) of the registered entities with
other trusted Auths. When an Auth becomes unavailable due to a DoS attack, another
trusted Auth can take over the authorization tasks for the entities of the unavailable
Auth.

The rest of this dissertation is organized as follows. Chapter 2 presents the background of
research. Chapter 3 describes the proposed approach, locally centralized, globally distributed
authentication and authorization along with an open-source toolkit, SST, a realization of the
approach. The design and implementation of the proposed approach are demonstrated in
Chapter 4, followed by evaluation through analysis and experiments in Chapter 5. Chap-
ter 6 introduces a secure migration mechanism for enhancing availability with the proposed
approach and evaluates its robustness through experiments. Related work is summarized in
Chapter 7. Conclusions and future directions of the research are presented in Chapter 8.
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Chapter 2

Background

This chapter discusses the background of research, starting with important security-related
concepts including authentication, authorization, and trust in the context of the IoT. I also
provide a survey of an emerging network architecture that opens up opportunities for security
research of the IoT, called “edge computing”.

2.1 Authorization, Authentication and Trust

In Section 1.1, we saw two cases where the security of the IoT was undermined, the Dyn
cyberattack and the Ukrainian power grid attack. So why did the IoT fall under the attacker’s
control in these two aforementioned incidents? First, things that did not used to be connected
are now connected to the Internet, a wilderness full of potential adversaries. Second, the
connected things were not robust enough to be exposed to the wilderness in part because
they lacked proper mechanisms for access control.

Access control, or authorization, is the process of determining whether an entity (a de-
vice or a user) can access resources, e.g., read or write data, execute programs, and control
actuators. Authorization also includes denying or revoking access, especially for someone
or something malicious. Authentication, a process of identifying an entity, is a prerequisite
for authorization. In most cases, authorization is not even possible without proper authen-
tication. How can we grant or deny access to someone or something that we do not know
about?

Authentication is intrinsically based on trust. For example, when we check someone’s
ID, we first have to trust the issuer of the ID, such as a national government, as shown in
Figure 2.1 (a). The same analogy applies to networked computers. Figure 2.1 (b) illustrates
the process of establishing trust between a browser (client) and a bank’s website (server). A
number of modern websites use HTTPS, a secure version of HTTP running over SSL/TLS
(Secure Socket Layer/Transport Layer Security), a widely-used protocol providing channel
security guarantees. SSL/TLS uses public-key cryptography for channel establishment; thus,
the authenticity of a server’s public key is critical. A (digital) certificate, a token for au-



CHAPTER 2. BACKGROUND 10

Browser	(client)Bank	(server)

(1)	Bank	presents	its	
certificate	issued	by	CA (2)	Browser	verifies	Bank's	certificate

using	CA's	certificate	embedded	in	it

Certificate	Authority	 (CA)
– Issuer	of	certificates

(3)	Browser	trusts	Bank	and	its	certificate

Police	officer

Government

Authenticates	person's	ID

Person	with	ID

(b)	Establishing	client-to-server	trust	in	SSL/TLS

(a)	Identification	of	a	person	with	a	government-issued	ID

Initial	trust
Derived	 trust

Figure 2.1: Trust and Authentication. (a) In identifying a person with a government-issued
ID, we must trust the issuer. (b) There are several steps to establishing client-to-server trust
in SSL/TLS.

thentication, includes the server’s public key and its identity called a common name which is
usually the server’s domain name. A certificate is issued and digitally signed by a certificate
authority (CA). Initially, the browser trusts CA and the CA has issued a certificate for the
bank’s website. When the browser connects, the web server presents its certificate (Fig-
ure 2.1 (b)-(1)). The browser verifies the bank’s certificate using CA’s certificate (Figure 2.1
(b)-(2)). If the verification succeeds, the browser trusts the bank’s web server (Figure 2.1
(b)-(3)). A Public Key Infrastructure (PKI) is a set of roles and policies for issuing and
managing these certificates.

Indeed, there is a variety of ways to implement tokens for authentication in computer
systems. Passwords are the most common ways to authenticate human users. For additional
security, we often use two-factor authentication using what we have (such as phones) and
what we are (for instance, fingerprints) in addition to what we know (passwords).

In machine-to-machine communications, cryptography is a powerful tool for providing se-
curity guarantees. In such crypto systems, cryptographic keys are commonly used as tokens
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Figure 2.2: Building trust in networked systems. Ways to build trust include (a) establishing
trust using a root of trust and having either (b) a centralized initial trust or (c) a distributed
initial trust.

for authentication and also for authorization. Therefore, in many cases, authentication, au-
thorization, and trust management come down to the problems of generating and managing
cryptographic keys.

Establishing trust in computing usually starts with a root of trust, which constructs an
initial trust relationship. Using the root of trust, further trust relationships are derived as
shown in Figure 2.2 (a). A root of trust can be a special hardware component such as a
TPM (Trusted Platform Module) [99]. Another example is the root certificate in PKI.

For networked computers, there are two broad classes of ways to set up the initial trust
relationship. One is to ask a centralized authority, as in Figure 2.2 (b); and the other is to
use distributed trusted fellows, as in Figure 2.2 (c).

2.1.1 Asking a Centralized Trusted Authority

In centralized trust schemes, the centralized authority is often called a trusted third party
because it does not participate in the communication. SSL/TLS based on PKI is one of the
most widely-used approaches using a centralized CA for authentication. Although there are
multiple trusted CAs in PKI, the trust management is still centralized in the same sense
that multiple national governments are centralized authorities.

Another widely-used approach using a centralized trusted third party is the Kerberos
authentication system [75]. Kerberos uses temporary access tokens called tickets to au-
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thenticate clients and servers and to grant access to the services. Thus, Kerberos provides
authorization as well as authentication.

Wireless sensor networks (WSNs), one of the predecessors to the IoT, have their own
security solutions. Many WSNs use a base station with plentiful resources to coordinate the
battery-powered sensor nodes. Sometimes, a base station also works as a root of trust for
sensor nodes, especially as a key distributor. One representative example is Sensor Network
Encryption Protocol (SNEP) as part of Security Protocols for Sensor Networks (SPINS) [85].
In SNEP, each sensor node shares a secret key called master key with its base station. Further
keys between sensor nodes are derived using master keys – in other words, based on trust
with the base station, which is a centralized authority.

A pitfall of centralized trust management is that failure of the centralized authority can
result in failure of the whole system. One example of this is the WoSign incident that
occurred in 2016 [101]. A Chinese certificate authority WoSign mistakenly issued certificates
to false subjects; for instance, if you control foobar.github.com, WoSign issued a certificate
for *.github.com. This incident showed how an entire security system can be broken when
the root of trust gets broken.

2.1.2 Using Distributed and Trusted Participants

Distributed trust schemes can avoid the problem of the centralized authority being a single
point of failure. In distributed schemes, there is no centralized trusted third party and the
participants coordinate autonomously to build further trust.

The concept of a web of trust used by OpenPGP [20] – an encryption standard widely
used for email encryption – leverages trust between participants. OpenPGP uses public keys
for encrypting messages. The association of a public key with a recipient is as critical as in
PKI. Therefore, OpenPGP also uses certificates, but in this case, the certificates are signed
by other trusted users rather than a centralized authority. Unlike in PKI, even if a single
user gets compromised and has the private key stolen, the effect of the attack would not be
catastrophic as in the WoSign incident.

Bitcoin [50], a cryptography-based digital currency, also uses distributed trust. There is
no single authority validating Bitcoin transactions. Whenever a Bitcoin transaction occurs,
the Bitcoin client broadcasts the transaction to the entire Bitcoin network. Other clients
verify the transaction and attach it to a public ledger called a blockchain. The blockchain is
shared by the Bitcoin clients, therefore it is infeasible for a single malicious Bitcoin client to
forge transactions.

Localized Encryption and Authentication Protocol (LEAP+) [113] is an example security
protocol for WSNs, based on distributed trust. LEAP+ also uses base stations, but their
involvement is limited to certain tasks such as node initialization. For pairwise key creation
and management, the sensor nodes collaborate with neighboring nodes. In this way, LEAP+
can reduce the management overhead of a base station and communication overhead of direct
communication between a sensor node and a base station which is usually more costly than
communication between neighboring nodes.
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Figure 2.3: Edge computers mediate interactions between Things on a LAN and the Internet.

In general, security schemes based on distributed trust are more resilient than centralized
schemes. And the overhead of authentication and authorization can be distributed to par-
ticipants, leading to better scalability. However, distributed schemes are more vulnerable to
collusion attacks, it is harder to manage and keep track of the whole system, and overhead
of individual entities tends to be higher than that of centralized schemes.

2.2 Trust and Edge Computing

Building IoT systems using cloud computing has been widely adopted [16], [40]. Services
such as Amazon’s AWS IoT [45] are primarily cloud services, in this case using Amazon Web
Services (AWS). An alternative that I view more promising is to mix cloud services, edge
computing, and Things, rather than just cloud services and Things. Edge computing is an
emerging architecture, depicted in Figure 2.3, that puts services on devices that are physically
much closer to the Things, residing in smart gateways or in networking equipment [63]. Cisco
Systems coined the term “fog computing” [14] for such architectures to suggest that it is kind
of like the cloud, but closer to the ground. I will refer to this architecture more generically
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Figure 2.4: The TerraSwarm SwarmBox 2.0 edge computing server is hosted in IMB-186-
4300U manufactured by ASRock Inc.

as “edge computing,” as in [32].
There are various aspects that need to be considered for the IoT, including scalability,

context-awareness, and ease of deployment, in addition to security and privacy, as Pal [81]
points out. The amount of data generated by the IoT is increasing rapidly [24], and demand
for real-time processing is surging for cyber-physical systems [47] such as autonomous vehicles
or factory floors. To satisfy these needs, Cisco Systems coined the term fog computing for
the IoT. [15] Fog computing utilizes edge-computing devices which include mobile phones,
smart gateways (wireless routers with plentiful computational power) and laptop computers,
which can act as a gateway to the Internet.

Edge computing has some advantages compared to cloud computing, which is prevalent
in recent days. Lopez et al. [63] make the following points relevant to security and privacy:

1. Private and sensitive data are kept on the edge rather than sent to the centralized cloud,
enhancing privacy.

2. The edge has more context information related to the security and privacy, reducing the
overhead for the cloud and better serving the heterogeneous entities.

3. Proximity and intelligence at the edge enable real-time interaction with the IoT, pre-
dictable latency, and clock synchronization.

Many computing devices with enough resources can play a role as an edge device. An
example is the SwarmBox that is proposed as a hardware platform in the TerraSwarm project
(https://terraswarm.org/). The version 2.0 SwarmBox is an edge computing server hosted
in an IMB-186-4300U manufactured by ASRock Inc. SwarmBox 2.0 has the following useful
features as an edge device. It supports both WiFi and BLE (Bluetooth Low Energy) for
wireless communication, functioning as a smart gateway for devices that connect to the
Internet through the SwarmBox. It has dual Ethernet ports, one for the Internet and the

https://terraswarm.org/


CHAPTER 2. BACKGROUND 15

other for local networks. The one for the local network is also equipped with hardware
support for the IEEE 1588 Precision Time Protocol (PTP), enabling nanoseconds-scale clock
synchronization, a desirable property to support real-time systems.

An edge computer is a computing device that can act as an Internet gateway or a router,
such as Intel’s IoT gateway1 or the aforementioned SwarmBox. But rather than being
just a provider of networking, edge computers also provide services, including, for example,
monitoring sensors for anomalies, brokering authentication and authorization [53], filtering
data feeds to ensure privacy, and preprocessing data feeds to forward to the cloud only what
the cloud needs.

Any device with computing and networking capability can function as an edge computer,
so it is the role of the device not its physical characteristics that I focus on throughout the
dissertation. For instance, a smart phone is a Thing when used for its sensors or actuators.
At the same time, it is an edge computer when it acts as an Internet gateway for other
Things such as wearable devices. A device can perform both roles simultaneously.

Varghese et al. [102] classify edge computers as either an “edge node,” edge computers
running on traditional Internet routers, and an “edge device” for edge computers based
on user mobile devices including smart phones and laptops. Since “node” and “device” are
almost synonymous, I distinguish “immobile” edge computers from “mobile” edge computers.
To be an edge computer, it must interact with Things, and mobility is determined by whether
it moves with respect to the Things it interacts with. For example, a mobile edge computer
can be inside of a car; the car itself is mobile, but the edge computer is stationary relative to
Things on the car connected to it. Similarly, mobile phones are typically bound to humans,
and they follow their owners around, remaining stationary from the perspective of their
owner’s wearables. But they are mobile from the perspective smart building devices, and
hence less effective for edge computing.

Immobile edge computers have a big advantage over mobile ones: they become part of
the same physical environment occupied by the Thing. For immobile edge computers, it is
much easier to ensure proximity and real-time interaction under the assumption that the
edge computer has fixed physical location and thus stable network connections, compared
to mobile edge computers. They can leverage their locality to control latency; to keep data
local (for privacy and security); to offload computation from battery-powered devices; to
provide temporary storage for memory-constrained devices; to firewall a local network; and
to authorize devices based on physical proximity. The cloud, on the other hand, is a better
choice for services that require aggregating data from multiple sources or that exceed the
computing and/or memory capabilities of edge computers.

I believe that many IoT applications can benefit from both edge and cloud capabilities,
and that services should be carefully partitioned between the edge and the cloud based on
their requirements. This presents a significant challenge to the community: to develop APIs
and infrastructure for edge/cloud combinations that bring to developers the convenience

1http://www.intel.com/content/www/us/en/internet-of-things/gateway-solutions.html

http://www.intel.com/content/www/us/en/internet-of-things/gateway-solutions.html
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that frameworks such as Apache Hadoop, Apache Spark, and Microsoft Orleans [13] have
brought to cloud developers.

In the IoT, some services are critical to safety and cannot be beholden to remote services
with highly variable latencies and potential network and service outages. Imagine a scenario
where a power plant operator is locked out of the local network because a remote authen-
tication service goes offline. This risk was also shown in the recent Google OnHub incident
[70]. On February 23, 2017, many of Google’s smart gateway (router) devices called OnHub
failed for about 45 minutes because a failure in authentication servers caused users’ Google
accounts for OnHub devices to be disconnected, causing problems for all other smart devices
connected to OnHub routers. Users could not even access local resources like printers on
their LAN.

The Internet itself is also vulnerable. Recall the DNS Dyn cyberattack on October 21,
2016, which led to Internet connection problems to major websites including Twitter, Netflix,
Spotify and the Financial Times [44]. These incidents show that depending on remote cloud
servers over possibly brittle Internet connections can be risky and cannot be depended on
for safety. Edge computers with adequate local authentication and authorization services
can mitigate these risks, as shown in Chapter 6.
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Chapter 3

Approach

This chapter presents the proposed approach, locally centralized, globally distributed au-
thentication and authorization for the IoT. And I show how the approach addresses the
challenges of the IoT security by introducing an open-source toolkit, Secure Swarm Toolkit
(SST), which is a concrete realization of the proposed approach as an authentication and
authorization service infrastructure for the IoT. SST includes a local authorization soft-
ware entity, Auth, its protocols, and software building blocks called secure communication
accessors for developing IoT applications integrated with SST. This chapter also describes
authentication and authorization processes of the proposed approach and how these processes
achieve the goals.

3.1 Locally Centralized, Globally Distributed

Infrastructure

I introduce a network architecture shown in Figure 3.1 using local authentication and autho-
rization entities that I call Auth [55] to be deployed on edge-computing devices of any kind
including mobile edge computers. Auth’s open-source software implementation in Java is
available on GitHub (https://github.com/iotauth). Auth provides authorization services
for locally registered entities (IoT devices), while managing trust relationships with other
Auths globally. I call this a locally centralized and globally distributed infrastructure [54].
Auth is now part of a toolkit for constructing an authorization infrastructure called the
Secure Swarm Toolkit (SST) [53]. In Section 5.1, I show through formal analysis that Auth
and SST satisfy fundamental security requirements.

3.1.1 Locally Centralized

As noted in Section 2.1, the locality of edge computing has advantages over globally central-
ized cloud computing in terms of security and privacy. Auth keeps credentials of registered
devices locally because I expect local domain experts can better manage Auth and registered

https://github.com/iotauth
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Figure 3.1: Locally centralized, globally distributed authorization service infrastructure using
Auth.

devices. I assume that the network granularity of local IoT devices may vary depending on
the network’s nature; it can be a personal area network, a vehicle, or a building, for example.
SST also includes software building blocks to program IoT applications accessing Auth and
IoT services. These software building blocks encapsulate cryptographic keys and operations
to help local system designers with only moderate knowledge in security.

Auth stores credentials and access policies of its locally registered entities in its database.
The authorization process is achieved by distributing session keys which are cryptographic
keys valid only for specific access activities. To serve different contexts composed of hetero-
geneous IoT devices, Auth provides a variety of security alternatives. For example, it can
support multiple underlying communication protocols, including TCP and UDP over WiFi,
and BLE. Auth allows resource-constrained devices to use longer-term, cached session keys
with less power-hungry cryptography. Auth also supports secure one-to-many communica-
tion such as broadcasting or publish-subscribe by distributing the same session keys to more
than two entities. The effect of different security configurations on energy consumption is
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demonstrated in Section 5.3.

3.1.2 Globally Distributed

The trust relationship between Auths is globally distributed. The current implementation
of Auth uses HTTPS for communication between Auths, based on certificates. These certifi-
cates are managed in a way that is similar to the web of trust in OpenPGP, trusting other
Auths for signing certificates. When an entity needs to access other entities registered with
another Auth, then the two Auths collaborate for authorization of their entities, leveraging
the distributed trust. With this, I expect to achieve better scalability. A more detailed
analysis of Auth’s scalability is discussed in Section 5.2. Unlike certificates in PKI, Auths
do not need to have a domain name or fixed network address, allowing edge devices without
fixed network addresses to run Auth.

Distributed trust can make the entire system more resilient, limiting the impact of attacks
even when an Auth gets compromised. The globally distributed architecture also provides
ways to protect the internal network from the Internet, particularly by firewalling or physi-
cally disconnecting the external connection. This is possible because the local authorization
service does not depend on an external authority. Even when an Auth becomes unavailable
due to an attack or a failure, the resulting effect should be limited to the local authorization
services. For further resilience, Auth can back up the authorization information of its reg-
istered entities to other trusted Auths and let the entities migrate to the trusted Auths for
authorization in case of the Auth’s failure.

3.2 SST: Secure Swarm Toolkit

This section presents an overview of SST, a concrete realization of the proposed approach,
and discuss how SST addresses the main challenges stated in Section 1.2.

3.2.1 Open-source Local Authorization Entity, Auth

Figure 3.2 illustrates the network architecture for the SST infrastructure based on local au-
thorization entities, Auths [55]. An Auth is a program to be deployed on edge devices [63]
including smart gateways, responsible for authentication and authorization of locally regis-
tered entities. An open-source implementation of Auth is available on SST’s GitHub repos-
itory (https://github.com/iotauth). Auth’s implementation is written in a memory-safe
language (Java), supports connectionless protocols such as UDP in addition to TCP, pro-
vides a diversity of security configurations, and uses a full-fledged but lightweight database,
SQLite, with all credentials encrypted.

https://github.com/iotauth
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3.2.2 Software Components for Accessing Authorization Services

I also propose actor-based software components for accessing the authorization services called
Secure Communication Accessors shown in Figure 3.3. Accessors1 [58] are actors [60] [43]
specialized for accessing remote services to enable composition of heterogeneous devices
and services in the IoT. The interaction of accessors is orchestrated by the actor model,
allowing concurrent execution, segregation of private data and message passing. A secure
communication accessor internally manages its credentials (cryptographic keys), and uses
the keys for encryption, decryption, and message authentication. Thus, an accessor liberates
application developers from the need to manage cryptographic keys and operations, while
providing security guarantees for accessing remote services.

3.2.3 How SST Works

Client

SecureCommClient

Accessor

Access
Received
Message

Message
To	Send

Process
Received
Message

Respond
To	Client

SecureCommServer

Accessor

Server

Auth

(1) (2)

(3) Challenge-response
handshake

Session	Key Session	Key

(4)	Secure	communication

Figure 3.4: Process of building a secure connection between Client and Server.

Communications between the IoT entities in the proposed infrastructure are protected
by symmetric cryptographic keys, called session keys. These keys are generated by Auth and
distributed only to entities that are authorized for access and communication. For secure
delivery of session keys, Auth and an entity share another symmetric key called a distribution
key. Figure 3.4 illustrates the process of establishing a secure connection between Client and
Server. Both Client and Server are registered with Auth, and employ SecureCommClient
and SecureCommServer accessors, respectively, for secure communication with Auth and
with each other. Details on accessors are found in Section 4.3.

To build a secure connection, Client and Server must obtain a session key from Auth. In
step (1) of Figure 3.4, Client receives a session key from Auth, encrypted and authenticated

1https://accessors.org/
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Figure 3.5: Security configuration space provided by SST.

with a distribution key between Client and Auth. Through step (2), Server receives the same
session key encrypted and authenticated with another distribution key between Server and
Auth. Details of (1) and (2) are described in Section 3.3.2. To prove the ownership of
the session key to each other, Client and Server perform a challenge-response handshake
using nonces (random values) in step (3). After step (3) succeeds, they can start a secure
communication as in step (4). Details of (3) and (4) are explained in Section 3.3.3.

3.2.4 How SST Addresses Challenges

Heterogeneity

SST supports various security configurations, which can be used to achieve trade-offs between
security guarantees and resource usage. Figure 3.5 depicts the space of configuration options.
This space includes multiple alternatives for key distribution (D-1, D-2, D-3), cryptography
strength and key lifetimes (C-1, C-2, C-3), session key usage (S-1, S-2, S-3), the number
of session key owners (O-1, O-2, O-3), the number of cached session keys (K-1, K-2, K-3),
and reliability of the underlying protocol (P-1, P-2). An example of different cryptography
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Table 3.1: Example security configuration profiles.
aaaaaaaaaaa

Configuration

Profile High-risk
safety-critical

Resource-
constrained

Sensitive
information

Broadcasting

Key distribution D-3 D-1 D-2 D-2
Crypto strength C-3 C-1 C-2 C-2
Session key use S-2 S-1 S-3 S-1
Max key owners O-1 O-2 O-1 O-3

Cached keys K-1 K-3 K-2 K-2
Protocol P-2 P-1 P-2 P-1

strengths is AES ciphers with different key sizes.
Table 3.1 shows sample profiles using different configuration alternatives. For a safety-

critical entity in a high-risk environment, we can enforce short-term keys to limit the damage
when the entity is compromised. Resource-constrained devices are allowed to use cached keys
and connectionless protocols to cope with intermittent connectivity. Entities dealing with
sensitive information can derive a new key for communication by exchanging Diffie-Hellman
parameters using the session key (details in Section 3.3.3). For broadcasting devices, we can
allow an unlimited number of devices sharing the same session key.

Open environment

Auth is a central point of authorization, keeping track of credentials and authorization
requests. Thus, Auth can revoke credentials of compromised entities to limit their potential
damage. This is important for devices operating under a high risk of being compromised due
to the physical or wireless access by potential adversaries. For attack detection, various IDSs
(Intrusion Detection Systems) [19] can be deployed in combination with Auth, leveraging
the fact that all traffic relevant to authorization is directed through Auth.

Scalability

The scalability problem is twofold: (1) how to handle a large number of entities and (2)
how to handle increased data traffic. The proposed approach addresses the first problem by
allowing multiple Auths to be deployed on a network. To show how this works, I use a simple
operation example described in Figure 3.6, where Client and Server are registered with two
different Auths, Auth1 and Auth2, respectively. For Client and Server, the overhead for
establishing a secure connection is no more than it would be with a single Auth, since they
only need to communicate with their own Auth at all times. Auth1 and Auth2 still need
to communicate with each other to deliver the same session key to Client and Server, but
this exchange needs to occur only once before Client and Server can communicate without
additional overhead. An analysis in Section 5.2 shows the proposed approach’s scalability.
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Figure 3.6: Operation example of communication between Client and Server registered with
two different Auths, Auth1 and Auth2, respectively.
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To handle increased data traffic, the proposed infrastructure supports shared session
keys for one-to-many communication patterns. Figure 3.7 describes an example of secure
publish-subscribe communication in SST. For creating Publisher and Subscriber programs,
an IoT application developer can use corresponding accessors, SecurePublisher and Secure-
Subscriber. Publisher and two Subscribers, Subscriber1 and Subscriber2, are first registered
with Auth. They are also connected with a possibly untrusted message broker which for-
wards published messages to subscribers. Publisher and two Subscribers are authorized by
Auth, and each receives the same session key to be used for published messages. Publisher
only needs to encrypt the message and send it once even when the number of Subscribers
increases. This process is further explained in Section 3.3.3 and evaluated in Section 5.3.2.
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3.3 Authentication and Authorization

3.3.1 Entity Registration Process

Each entity must be registered with Auth in order to access the authorization infrastructure.
The main purpose of this registration process is to set up credentials between Auth and an
entity. An entity’s credentials may be generated2 during the registration or shipped by the
manufacturer3 with the entity.

If an entity is capable of performing public-key cryptography operations to update4 its
distribution key (explained in Section 3.2.3), the entity and Auth must exchange their public
keys. If an entity cannot perform public-key cryptography, then the entity and Auth can
set up a permanent distribution key. In addition to setting up the credentials, the entity’s
unique name, security configurations, and communication policies are also set up during
entity registration. If a severely resource-constrained entity cannot directly connect to Auth
or perform symmetric-key decryption, the entity will not be able to directly obtain any new
session key from Auth. However, even such entity can be part of the infrastructure if it has
preloaded session keys. In this case, the entity’s preloaded keys are stored in Auth during
entity registration.

Auth stores the basic information and initial credentials in Auth’s database, specifically,
in the registered entity table which is explained in detail in Section 4.1.2 with Table 4.1. If
the access policy of the newly registered entity is not already in Auth’s database, the access
policy should be inserted to Auth’s communication policy table which is described in detail
in Section 4.1.2 with Table 4.2.

3.3.2 Auth – Entity Communication

Auth authorizes entities to communicate with each other by distributing a session key shared
by entities. Figure 3.8 shows the authorization process, which starts with step (1) CON-
NECT TO AUTH. If an entity uses TCP, step (1) is TCP connection establishment with
Auth. If the entity uses a connectionless protocol such as UDP, step (1) is entity’s EN-
TITY HELLO message, which simply triggers step (2). After step (1), Auth sends (2)
AUTH HELLO message, which includes Auth’s ID and its fresh random nonce, NAuth.

Step (3) SESSION KEY REQUEST must include NAuth and NEntity (entity’s random
nonce), the name of the requesting entity, the purpose of the request (e.g., for communication
with an entity in a certain group or a certain publish-subscribe topic), and the number of
keys requested. NEntity is to ensure that an old message of step (4) cannot be reused in

2 Generation of credentials (cryptographic keys) can be done using tools such as OpenSSL command line
tools.

3 This is becoming more common for IoT devices that need credentials for cryptography operations.
4 The distribution key is important because it is used for encrypting session keys. If a distribution

key is compromised, session keys encrypted with the distribution key can also be compromised. Updating
distribution keys can mitigate the effect of a compromised distribution key.
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Figure 3.8: Steps for Auth – Entity communication for session key distribution; a padlock
next to a message indicates that the message is encrypted and/or authenticated.

replay attacks. (3) must be at least authenticated, and can be optionally encrypted as well
for confidentiality. There are two cases of (3) depending on whether the distribution key is
to be updated or not:

• If the entity already has a valid distribution key, the message authentication (and
optionally, encryption) must be done using the distribution key.

• If the entity does not have a valid distribution key or wants to update an existing
distribution key using public-key cryptography, (3) must be authenticated (digitally
signed) with the entity’s private key, and optionally encrypted with Auth’s public key.

Given that the message in (3) is valid, Auth consults its communication policy table (Auth’s
database table storing access policies, details are in Section 4.1.2 with Table 4.2) and de-
termines whether the requesting entity should be authorized. If so, it generates new session
keys or fetches existing, cached keys to be returned to the requesting entity; in addition, if
necessary, it also generates a new distribution key.

In (4), Auth sends back SESSION KEY RESPONSE, which includes NEntity, new ses-
sion keys, a security specification for the session keys, as well as a new distribution key (if
requested in (3)). This message must be authenticated and encrypted with the distribution
key; when a new distribution key is sent, the new distribution key must be encrypted with
the entity’s public key and signed with Auth’s private key. After receiving (4), the entity
decrypts it to check the validity of NEntity and Auth’s MAC (Message Authentication Code)
and/or signature. If the message is valid, the entity stores the received session keys (and if
applicable, also the updated distribution key).

To support UDP, a connectionless protocol, Auth maintains its responses until a specified
timeout so that it can respond again in case any message is lost. If the entity does not get a
response from Auth, it repeats the message after timeout, TOEntity. Auth keeps the NAuth

and (4) SESSION KEY RESPONSE each UDP port until Auth’s timeout TOAuth so that
it can respond to the entity when a message is requested again. TOAuth � TOEntity should
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Figure 3.9: Process of secure communication for (a) Server-client (b) Publish-subscribe.

hold to make sure the entity can retry multiple times. After TOAuth, the nonce and message
are destroyed.

If Auth detects anything wrong or suspicious during the authorization process, it sends
AUTH ALERT message to the entity. For example, use of an expired distribution key
or a session key request violating communication policies will result in an AUTH ALERT
message to the requesting entity.

3.3.3 Entity – Entity Communication

After an entity receives a valid session key from Auth, it can start secure communication
with other entities. The secure communication means messages are encrypted and/or au-
thenticated. Figure 3.9 describes two ways of secure communication provided by the SST
infrastructure.

Figure 3.9 (a) shows a server-client type of secure communication. To first confirm the
validity of each other’s session key, Server and Client carry out a challenge-response by
performing cryptographic operations on random nonces in steps (1) to (3). This process
is similar to the PSK Key Exchange Algorithm of Pre-shared key (PSK) cipher suites for
TLS [34]. For identification of the session key, Auths use its unique identifier, session key
ID. As part of its value, the session key ID also includes the ID of Auth who generated it,
and thus it can be used to identify the generator. The session key ID is analogous to the
PSK identity of PSK Key Exchange Algorithm of TLS.

Optionally, we can configure the session key to be used to authenticate an ephemeral
Diffie-Hellman key exchange to derive a new session key in steps (2) to (3). This process is
similar to DHE PSK Key Exchange Algorithm of PSK TLS [34], which provides additional
protection such as Perfect Forward Secrecy (PFS).

Having successfully performed the handshake, Server and Client can start a secure com-
munication protected by the session key. Each CLIENT MESSAGE or SERVER MESSAGE
includes a read/write sequence number that increases per message. These sequence num-
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Figure 3.10: Steps for Auth – Auth communication.

bers are used to detect whether a certain message is missing or replayed by attackers. The
sequence numbers are similar to those in the application data record protocol of SSL/TLS.
The proposed approach supports both TCP and UDP for this server-client communication.

Figure 3.9 (b) shows a publish-subscribe style of communication supported by SST.
Publisher and Subscribers have the same session key to be used for messages. Publisher
encrypts and/or authenticates a SECURE PUBLISH message, attaches the session key ID
in plaintext (so that Subscribers can identify which session key is used for the message),
and sends it to the Message Broker, which in turn forwards the message to Subscribers.
Only those Subscribers with a valid session key can decrypt and/or check the authenticity
of published messages. To mitigate risks where a compromised subscriber illegally publishes
messages, SST supports delayed disclosure of keys using a technique similar to that of the
TESLA protocol [83].

3.3.4 Auth – Auth Communication

Auth communicates with other Auths to request a session key that was generated by the
other Auths. Trusted Auths are connected to each other over HTTPS on top of SSL/TLS,
using POST request/response for communication. Figure 3.10 illustrates the steps of Auth
– Auth communication. Entity, which is registered with Auth1, requests a session key
that was generated by Auth2. This case can happen when Entity wants to set up a
secure communication with another entity registered with Auth2. Auth1 receives SES-
SION KEY REQUEST that specifies the session key’s ID. As explained in Section 3.3.3,
the session key ID includes the generator’s ID, in this case, Auth2’s ID. From this ID of
Auth2, Auth1 discovers that the requested session key was generated by Auth2 and sends
(1) AUTH SESSION KEY REQUEST which includes Entity’s information, the purpose of
the request, and the session key’s ID. Auth2 responds to Auth1 if the Auth1’s request is
eligible with (2) AUTH SESSION KEY RESPONSE which includes the requested session
key and cryptography specification of the session key. Upon receiving (2), Auth1 responds
to Entity. Further details of this procedure are illustrated in Section 4.2.5.



29

Chapter 4

Design and Implementation

This chapter focuses on the design and implementation of the proposed approach. These
include design considerations of necessary components for the proposed approach and how
the design is realized through a concrete implementation. Specifically, this chapter describes
the database design of the local authorization entity, Auth, and design of messages used in
communication throughout operation processes of the proposed toolkit, SST. I also illustrate
the design and implementation of APIs (or software building blocks) for integration of IoT
application with the proposed toolkit.

4.1 Auth

In this section, I describe the design and implementation of the local authorization entity of
SST, Auth. Auth’s role is to authenticate and authorize locally registered entities. It also
interacts with other Auths to allow communication between entities on different networks,
registered with different Auths. Auth makes its authorization decisions based on a database
of access policies and configurations.

4.1.1 Key Words and Overall Operation Phases

The proposed infrastructure uses a local authorization entity, called Auth, to automatically
handle frequent authentication and authorization of IoT devices. For scalability and resource
constraints, the proposed approach uses symmetric keys for authentication and authorization
rather than asymmetric keys. Before diving into the details of the design and implementation
of the proposed toolkit, I clarify some important terms used throughout this chapter.

• Entity – Any device connected to the network in the IoT to be authenticated and
authorized. Each entity has a unique identifier and cryptographic keys for secure
communication.
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Figure 4.1: Overview of four operation phases and Auth database of SST (Secure Swarm
Toolkit).

• Auth – An entity responsible for authenticating and authorizing registered entities.
Auth maintains and manages database tables to store information for authorization of
entities.

• Client – An entity that initiates communication.

• Server – An entity accepting communication requests.

• Public key and Private key – The public and private components of entity’s asym-
metric key pair.

• Distribution key – A symmetric key-wrapping key used to encrypt session keys for
distribution.

• Session key – A symmetric key used to protect a single session of communication.
Since only authorized entities receive a valid session key, an entity can prove that it
is authorized, by proving ownership of the session key. Each session key is assigned a
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unique session key ID and its validity periods. A session key plays a similar role as a
ticket in the Kerberos authentication system [75].

The operations of the proposed approach can be divided into four phases, (1) entity
registration, (2) session key distribution, (3) communication initialization, and (4) secure
communication, as shown in Figure 4.1. A newly added entity must be registered with at
least one Auth during the entity registration phase. Registered entities can obtain session
keys through session key distribution. The dotted lines below the client and server describe
the time line of communication initialization and secure communication. The following
sections explain the roles of Auth and details of each phase.

4.1.2 Auth Database Design

REGISTERED_ENTITY	
Primary	Key:	Name	
	Name	
	Group	
	UsePermanentDistribu2onKey	
	PublicKey	
	MaxSessionKeysPerRequest	
	MaxCachedSessionKey	
	Distribu2onKeyValidityPeriod	
	Distribu2onCryptoSpec	
	Distribu2onKeyExpira2onTime	
	Distribu2onKeyValue	

	COMMUNICATION_POLICY	
	Primary	Key:	
	(Reques?ongGroup,	
	TargetType,Target)	
	Reques?ngGroup	
	TargetType	
	Target	
	MaxNumSessionKeyOwners	
	SessionCryptoSpec	
	AbsoluteValidityPeriod	
	Rela2veValidityPeriod	

	TRUSTED_AUTH	
	Primary	Key:	ID	
	ID	
	HostName	
	PortNumber	
	Cer2ficate	

*	
*	

*	

CACHED_SESSION_KEY	
Primary	Key:	ID	
	ID	
	Owners	
	MaxNumOwners	
	Purpose	
	AbssoluteExpira2onTime	
	Rela2veValidityPeriod	
	CryptoSpec	
	KeyValue	

*	
*	

Figure 4.2: Auth database table schema. (* for many-to-many relationship)

The Auth entity allows authentication and authorization through distributing session
keys to entities that are valid for communication. For session key distribution, Auth stores
various information in its database, as shown in Figure 4.2. The database tables include:

• Registered entity table (Table 4.1): Stores information about entities registered
with the Auth, including its credentials (cryptographic keys) and the configuration
related to key distribution.

• Communication policy table (Table 4.2): Stores access policies between entities
(for example, which entity can talk to which entity, what kind of cryptography should
be used, and how long the cryptographic keys should be valid).

• Cached session key table (Table 4.3): Stores cached session keys, which Auth allows
for entities with limited connectivity. Each session key is associated with its owners
and the max possible number of owners (two for server/client, and three or more for
one-to-many communication).
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• Trusted Auth table (Table 4.4): Stores information and credentials for other trusted
Auths, including each Auth’s unique ID, network address, port, and certificate.

Figure 4.3, Figure 4.4 and Figure 4.5 illustrate examples of database tables maintained and
managed by Auth.

Registered entity table

Name Group Public	
key

Distribution	Key
<Value,

Expiration	Time>

Distribution	
Key	Validity	

Period

Distribution
Crypto	Spec Operational	ConditionsCipher

Algorithm
MAC

Algorithm
EV001 Electric
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8c	98	
7c		…

<28	3d	ef …,
9/1/16,16:00>

10	days AES-128
-CBC

SHA256 Max	session	 keys:30,
Session	 keys/req:5,	…

CS003 EV Charging	
Station

30	8b	
3b		…

<da	9f	f1	…,
8/23/16,4:00>
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-CBC

SHA384 Max	session keys:5,
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2c	4a	
b1	…

<d3	28	3d	...,
9/21/16,16:00>
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-CBC

SHA384 Max	session keys:10,
Session	 keys/req:10,…

CS024 Current	
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N/A <ef c0	20	…,
8/22/18,16:00>

2	years AES-128
-CBC

SHA256 Max	session keys:	10,
Session	 keys/req:	5,…

��� ��� ��� ��� ��� ���

Figure 4.3: Example of Auth’s registered entity table.

The registered entity table in Figure 4.3 stores entity-specific information such as an
entity’s unique name, group, public/distribution key, and conditions for key distribution
and operations. The key distribution conditions determine the cipher/MAC algorithm and
validity period for the distribution key. The distribution key field has the key’s value and
when it expires. The validity period or cryptoperiod of cryptographic keys including the
distribution key can be determined depending on risk factors as recommended in [9]. Risk
factors include the cryptography strength, operating environment, number of transactions,
and potential threats.

In the example table Figure 4.3, an EV charging station named CS003, has the shortest
validity period for distribution keys. This is because the charging station operates in an
open space, requires a relatively large number of session keys to interact with many vehicles,
and causes critical damage to the power grid if compromised. An electric vehicle named
EV001 has a longer validity period because it interacts with others less frequently and it
is less accessible (e.g., protected by locks/garage doors). A fuel cell storage, FC005 has an
even longer cryptoperiod, since it operates under restricted access.

The distribution key can be updated using public key cryptography, thus, Auth stores
public keys of the registered entities as in Figure 4.3. The proposed approach also supports
devices incapable of public key cryptography such as the (electric) current sensor named
CS024. In this case, Auth stores distribution key during the entity registration phase and
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Table 4.1: Registered entity table fields.

Field Explanation
Name Entity’s unique name in string
Group Entity’s group in string for communication policy
DistributionProtocol Network protocol used for communication with

Auth (e.g, TCP or UDP)
UsePermanentDistributionKey Boolean value that is true if the entity uses perma-

nent distribution key without updates, false if the
entity’s distribution key is updated using public
key cryptography

MaxSessionKeysPerRequest Maximum number of session keys to be delivered
to the entity for each request

MaxCachedSessionKey Maximum number of valid session keys that the
entity can cache in advance

PublicKey Public key of the entity null if the entity uses per-
manent distribution key

DistributionKeyValidityPeriod Validity period of one distribution key
DistributionCryptoSpec Cryptography specification of the key distribution

communication (e.g., cipher/MAC algorithm)
DistributionKeyExpirationTime Expiration time of the current distribution key
DistributionKeyValue Binary value of current distribution key in use for

the entity, encrypted with Auth’s database key

uses it for the entire life cycle of the device. Sections 4.2.1 and 4.2.2 explain the details of
this. The operational conditions include the maximum number of total cached session keys,
a maximum number of session keys per request, and the entity’s time precision required for
time synchronization.

Communication policy table

The communication policy table in Figure 4.4 is used to determine the conditions of com-
munication between certain entities such as cipher/MAC algorithms and validity periods. A
client (or communication initiator) and a server (or connection listener) can also be speci-
fied as a group to set a communication policy between groups of entities. With this table,
Auth has a full control over authentication/authorization of entities, and the communication
policies can be dynamically managed.

The cipher/MAC algorithms used for communication can be determined by various cri-
teria, including security requirements (e.g., confidentiality, integrity), available resources of
entities, and performance/costs of algorithms on entities. A session key validity period is a
tuple of two values, absolute validity period and relative validity period. The absolute validity
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Requesting	Group
(Client	or	
Publisher)

Target	
Type

Target	(Server	
Group	or	Pub-
Sub	Topic)

Session	Crypto	Spec Session	Key	Validity	
Period

<Absolute, Relative>
Cipher

Algorithm
MAC

Algorithm
Electric Vehicle Server-

Client
EV Charging	
Station

AES-128-
CBC SHA256 <2	days,	 30	min>

EV Charging	
Station

Server-
Client

Fuel	Cell	
Storage

AES-256-
GCM SHA384 <1	hour,	 5	min>

Current	Sensor Publish-
Subscribe

Current	
Sensor	Value RC4-128 SHA1 <7	days,	 1	day>

��� ��� ��� ��� ���

Figure 4.4: Example of Auth’s communication policy table.

Table 4.2: Communication policy table fields.

Field Explanation
RequestingGroup The group of entities requesting the communica-

tion
TargetType The communication target’s type, it can be an-

other group of entities or publish-subscribe topic
Target The communication target, a group or a topic
MaxNumSessionKeyOwners Maximum number of entities that can share the

same session key, two for a server/client model,
more than two for publish-subscribe

SessionCryptoSpec Cryptography to be used for communication
AbsoluteValidityPeriod How long the session key is valid after it is gener-

ated by the Auth
RelativeValidityPeriod How long the session key is valid after it is first

used

period specifies how long a session key is valid after creation and the relative validity period
denotes the validity of the session key after its first use for communication.

Cached session key table

Once a session key is generated, Auth stores it in the cached session key table in Figure 4.5.
Auth assigns each session key a unique identifier, called session key ID. When a session key is
distributed to entities, Auth updates its owners, the entities who share the session key. The
Expires on and Valid for fields of each session key are set according to the communication
policy table. Details of each field in the cached session key table are explained in Table 4.3.
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Session	
Key	ID

Session	Key	
Value

Crypto	Spec
Owner(s) Expiration Time	

(Absolute	Validity)
Relative	Validity

Period	Cipher
Algorithm

MAC
Algorithm

212371 42	d5	49	1c	… AES-128-CBC SHA256 EV001 8/24/2016, 16:00 30	min
212372 0a	de	d6	90	… AES-128-CBC SHA256 EV001 8/24/2016, 16:00 30	min
212373 56	e2	f8	1a	… AES-256-GCM SHA384 FC005 8/22/2016, 17:00 5	min
212374 37	6b	1a	b9	... RC4-128 SHA1 CS024 8/29/2016, 16:00 1	day

��� ��� ��� ��� ��� ��� ���

Figure 4.5: Example of Auth’s cached session key table.

Table 4.3: Cached session key table fields.

Field Explanation
ID Unique ID of the session key, encoded with the ID

of the Auth who generated it
Owners Names of the entities who have the session key
MaxNumOwners Maximum number of entities that can have the key
Purpose Purpose of the key, set up during session key gen-

eration, used to determine whether it can be given
to a certain entity

ExpirationTime Expiration time of the session key no matter it
is actually used or not, set up when the key is
generated

RelativeValidityPeriod Validity period after first use of the session key,
the entity who starts using this key will discard
the key after this time period

CryptoSpec Cryptography to be used with the key
KeyValue Binary value of the key

Table 4.4: Trusted Auth table fields.

Field Explanation
ID Unique ID of the trusted Auth, integer value
Host Network address of the trusted Auth
Port Port number of the trusted Auth
Certificate Current certificate value of the trusted Auth
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Trusted Auth table

The trusted Auth table contains information about other trusted Auths. This includes the
trusted Auths’ unique identifiers, credentials (a public key or certificate), and connection
information (a host name, port, and protocols). Important fields of the trusted Auth table
are shown in Table 4.4.

4.1.3 Scalability and robustness of Auth

SST supports multiple Auths, making the proposed approach more scalable. When entities
registered with different Auths want to communicate, each entity just needs to contact with
its own Auth for authorization. Auths communicate with one another to deliver the same
session key to their entities for setting up a secure connection. This process is explained in
detail with an example in Section 4.2.5.

Note that Auth is a logical entity that can be implemented in a variety of ways, like the
controller of a software-defined network (SDN). It is a logical entity and can be implemented
in a distributed way [29]. I expect that Auth can also be implemented in a distributed
manner, possibly with replicas. Such Auth implementations can avoid being a single point
of failure, providing robustness against denial of service attacks. Also note that some Auths
must be in a safe place where only valid users can access, such as general servers in data
centers, for an additional layer of security. The architectural advantage for resilience and
robustness is shown through the proposed secure migration technique in Chapter 6.

4.2 Protocol Design and Operation Phases

This section illustrates the design and implementation of the communication protocol used
in SST. Specifically, message-level details are explained for the communication introduced
in Section 3.3, including description and requirements of components in messages and ex-
changed credentials, following the operation phases shown in Figure 4.1.

4.2.1 Entity Registration Phase

In the entity registration phase, Auth and a newly added entity exchange information for
session key distribution. There are two possible options for the distribution key, updatable
distribution key and permanent distribution key, depending on whether the distribution key
can be updated using public key cryptography. Figure 4.6 shows types of exchanged data
during the entity registration and their security requirements.

When the distribution key of the new entity is updatable, Auth and the entity should
exchange their public keys for the secure delivery of the distribution key from Auth to the
entity. The public keys must not be tampered with during the exchange to prevent an
adversary from spoofing the identity of Auth or the new entity, although the public keys
need not be confidential. If the distribution key of the new entity is permanent, meaning that
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Data	Security	Requirements	

Integrity	+	Confiden/ality	

Distribu2on	Key	
Op2ons	

Updatable	
Distribu2on	Key	

Permanent	
Distribu2on	Key	

Key	Setup	
Informa2on	

Auth's	Public	Key,	
En/ty's	Public	Key	

Symmetric	
Distribu/on	Key	

Addi2onal	
Informa2on	

Auth's	ID,	Network	Address	(or	URL),		
En/ty's	Unique	Name,	Group,		

Integrity	

Figure 4.6: Exchanged information during entity registration phase, and data security re-
quirements for different types of data.

a single distribution key is to be used for the entire life cycle of the entity, the distribution
key must be kept confidential, only known to Auth and the entity.

For both options, Auth and the new entity should exchange additional information, in-
cluding the new entity’s unique name and group, and the Auth’s ID and network address or
URL (can be more than one). Data integrity must be guaranteed for the additional infor-
mation exchanged to prevent masquerading. After the entity registration, Auth stores the
entity’s information in its registered entity table. The new entity stores Auth’s information
in its local storage. If the Auth is replicated, then the entity stores information of Auth’s
replicas as well.

As long as the specified data security requirements are satisfied, many methods can be
used for the entity registration. An authorized person can plug a new device or use Near Field
Communication (NFC) to securely connect to Auth or Auth’s delegate that is connected to
Auth via a secure connection, for information exchange. For personal devices, for example,
two-factor authentication [3] can be used to guarantee the authenticity of the information
from the device.

4.2.2 Session Key Distribution Phase

Auth delivers one or more session keys to an entity during the session key distribution phase.
An entity can request multiple session keys a priori for future use. Hence, an entity with
intermittent connectivity can authenticate and authorize itself even without direct connection
to Auth. A resource-constrained entity can save communication and computation to obtain
session keys. Session key distribution works on top of TCP/IP to ensure reliable message
delivery. Figure 4.7 illustrates the session key distribution process for two cases, depending
on whether there is an available distribution key.

When an entity already has a valid distribution key as in Figure 4.7 (a), the distri-
bution key is used for the session key distribution. When a TCP/IP connection is estab-
lished, Auth sends AUTH HELLO, including Auth’s information such as its ID, and a nonce
(random number) generated by Auth. Upon receiving AUTH HELLO, the entity sends
SESSION KEY REQ, which specifies the requesting entity’s name, communication purpose
including the target of communication, the number of requested keys, and the session key’s
identifier, if necessary. The nonce from Auth and the entity’s own nonce are appended to
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AUTH_HELLO,	NA	
En-tyName	+	

{SESSION_KEY_REQ,	NA,	NE}DistKey	

{SESSION_KEY_RESP,	NE,	SessionKeys}DistKey	

•  NA,	NE:	Nonce	(random	
number)	generated	by	Auth	
and	En-ty,	respec-vely	

(a)	

•  {MESSAGE}DistKey:	Encrypted	with	Distribu-on	Key,	
with	MAC	(message	authen-ca-on	code)	aPached	

(1)  Retrieve	DistKey	for	En-tyName,	
and	decrypt	SESSION_KEY_REQ	

(2)  If	NA	is	recovered,		check	communica-on	policy	table	
(3)  If	request	is	valid,	send	response	

(generate	session	keys	if	necessary)	

(b)	

En-ty	 Auth	AUTH_HELLO,	NA	
{En-tyName,	SESSION_KEY_REQ,	

NA,	NE}PubEnc,Sign	

{DistKey}PubEnc,Sign	+	
{SESSION_KEY_RESP,	NE,	SessionKeys}DistKey	

•  {MESSAGE}PubEnc,Sign:	
Encrypted	with	des-na-on’s	
public	key	and	signed	with	
source’s	private	key	

(1)  Decrypt	with	Auth's	private	key,	
and	verify	en-ty's	signature	

(2)  If	both	signature	and	NA	are	valid,	check	communica-on	policy	table	
(3)  If	request	is	valid,	send	response	

(generate	session	keys	if	necessary)	

En-ty	 Auth	

Figure 4.7: Two cases of session key distribution phase (a) when the distribution key is
available, and (b) when the distribution key needs to be updated.

SESSION KEY REQ, to prevent replay attacks. The whole message is encrypted with the
distribution key after attaching MAC (message authentication code). The entity’s unique
name is also sent in plain text.

Upon receiving the entity’s request, Auth retrieves the distribution key using the entity’s
name, checks the Auth’s nonce and the communication policy table for the entity’s eligibility,
and sends the response if the request is valid. Auth generates session keys before sending the
response if it is necessary. The Auth’s response, SESSION KEY RESP includes the entity’s
nonce, communication policy and session keys, encrypted by the distribution key. After
receiving SESSION KEY RESP, the entity checks the nonce and stores the session keys.

Figure 4.7 (b) describes the case when the distribution key should be updated, after
registering a new entity or expiry of a distribution key. In this case, public key cryptography
is used to deliver the distribution key securely. The entity’s request, SESSION KEY REQ
along with the entity’s name and the nonces should be encrypted with Auth’s public key
and signed with the entity’s private key. When Auth receives the request, it decrypts the
request with its private key and verifies the signature using the entity’s public key. If the
signature and the nonce are valid, Auth checks the request’s eligibility and responds. The
response includes the distribution key, DistKey, encrypted with the entity’s public key and
signed with Auth’s private key. The response also contains SESSION KEY RESP, a list of
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Client	 Server	COMM_INIT_REQ	+	
SessionKeyID	+	{NC}SKey	

•  {MESSAGE}SKey:	Encrypted	with	Session	Key,	
MAC	(message	authenHcaHon	code)	aJached	

{COMM_INIT_RESP,	NC,	NS}SKey	

Searches	session	key	using	SessionKeyID	

{COMM_INIT_FIN,	NS}SKey	

•  NC,	NS:	Nonce	(random	number)	generated	
by,	Client	and	Server,	respecHvely.	

(a)	

{CLIENT_MESSAGE,	SeqC}SKey	

(b)	 {SERVER_MESSAGE,	SeqS}SKey	

If	session	key	is	not	found,	sends	Auth	
SESSION_KEY_REQ	to	obtain	session	key	

•  SeqC,	SeqS:	Sequence	numbers	for	messages	
from	Client	and	Server,	respecHvely.	

Figure 4.8: (a) Communication initialization phase, followed by (b) secure communication
phase.

session keys and nonces, encrypted with DistKey.

4.2.3 Communication Initialization Phase

After obtaining a session key, a client can initiate communication with a server. The main
objective of this phase is proving ownership of the session key, since the ownership indicates
the entity is authenticated and authorized to communicate. Although there are many differ-
ent ways to prove the ownership, I choose a simple challenge-response handshake, where each
entity shows its ability to perform cryptographic operations on randomly generated num-
bers (nonces) by its counterpart. The random nonces are used to prevent replay attacks.
Figure 4.8 (a) shows the operations of the communication initialization phase between the
client and server.

The communication initialization phase begins with the client’s COMM INIT REQ with
SessionKeyID, a unique identifier for the session key. Note that the client must send the com-
munication initialization request’s header and SessionKeyID in clear text, with the client’s
nonce and its message authentication code (MAC) encrypted by the session key.

Upon receiving COMM INIT REQ, the server searches for the session key using Session-
KeyID in its cache. The server finds the session key if it is already cached. Otherwise,
the server sends SESSION KEY REQ to Auth with SessionKeyID specified to obtain the
session key. After decrypting COMM INIT REQ, the server sends COMM INIT RESP with
the client’s nonce and the server’s nonce encrypted with the session key. The client receives
COMM INIT RESP, decrypts it, and compares the nonce in it against the nonce generated
by the client. If the two nonces match, the server is verified to have the session key. In the
same way, the client sends COMM INIT FIN with server’s nonce encrypted, and the server
verifies the client’s ownership of the session key. If either the client or the server is unable
to match nonces, communication initialization fails.
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Publisher	

Subscriber	

SECURE_PUB,	SessionKeyID,	{MESSAGE}SKey	

Subscriber	 Subscriber	

Broker	

SECURE_PUB,	SessionKeyID,	
{MESSAGE}SKey	

•  {MESSAGE}SKey:	Encrypted	with	Session	
Key,	MAC	(message	authenHcaHon	code)	
aJached	

Figure 4.9: Alternative secure communication phase for publish-subscribe protocols.

4.2.4 Secure Communication Phase

After the client and server initialize communication, they can exchange encrypted messages
as shown in Figure 4.8 (b). This works almost the same as the TLS record layer with
application data after TLS handshake. Each message is assigned a sequence number, starting
from 0 for the first message, to prevent replay attacks. Every message has MAC attached,
encrypted with the symmetric session key.

The proposed approach also provides an alternative way of secure communication phase
for publish-subscribe protocols such as MQTT, as depicted in Figure 4.9. The packet for
this method of secure communication, SECURE PUB, includes its header and SessionKeyID
in clear text. Any entity with the session key specified by SessionKeyID is authorized to
decrypt the encrypted messages. The sender only needs to encrypt and send the message
once to all receivers, thus, this scales very well together with one-to-many communication
such as broadcasting and publish-subscribe patterns.

Lagutin et al. [57] introduce other various ways to secure a publish-subscribe network
architecture using certificates, including packet level authentication (PLA). Such methods
require an entity to either carry large certificates or perform expensive asymmetric key op-
erations for published messages. Compared to these approaches, the proposed approach can
significantly reduce the overhead to secure publish-subscribe by using a small and lightweight
symmetric session key.

When the published or broadcasted data does not require confidentiality, the TESLA [83]
protocol can be used to guarantee data integrity and authenticity for message receivers.
The proposed approach can be integrated with TESLA, in a way that Auth establishes an
authentication key for a sender and discloses the key to receivers after key disclosure delay.

4.2.5 Scaling to Multiple Auths

The proposed approach can also support authentication/authorization between entities that
are registered with different Auths. I illustrate this with an example shown in Figure 4.10.
In this example, a client registered with Auth1 communicates with a server registered with
Auth2. Each entity is authorized by its own Auth, that is, the client and the server receive
a session key from Auth1 and Auth2, respectively. Auth1 and Auth2 are connected via a
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Auth1	

Client	 Server	

Auth2	
Secure	connec2on	(e.g.,	SSL/TLS)	

En2ty1	 En2ty2	

En22es	registered	with	Auth1	 En22es	registered	with	Auth2	

Session	key	 Session	key	

Communica2on	ini2aliza2on	
&	secure	communica2on	

Figure 4.10: An example where a client and a server that are registered with two different
Auths initialize a secure communication.

AUTH_HELLO,	NA1

ClientName +	
{SESSION_KEY_REQ	(target:	Server),	

NA1,	NC}DistKeyCA1

{SESSION_KEY_RESP	(SKeyCS,	

SKIDCS),	NC}	DistKeyCA1

Auth1 Client Auth2Server

COMM_INIT_REQ	+	SKIDCS	+
{NC'}SKeyCS

{COMM_INIT_RESP,	NC',	NS'}

SKeyCS

{COMM_INIT_FIN,	NS'}	SKeyCS

AUTH_HELLO,	NA2

ServerName +
{SESSION_KEY_REQ	(Session	Key	

with	SKIDCS),	NA2,	NS}	DistKeySA2

{SESSION_KEY_RESP	(SKeyCS),	NS}	

DistKeySA2

{AUTH_SESSION_KEY_REQ	(Session	key	with	SKIDCS)}	EncKeyA1A2

{AUTH_SESSION_KEY_RESP	(SKeyCS)}	EncKeyA1A2

• {MESSAGE}Key:Message	encrypted	with	Key
• DistKeyCA1: Distribution	 key	for	Client	and	Auth1
• DistKeySA2:	Distribution	 key	for	Server	and	Auth2
• SKeyCS:	Session	key	for	Client	and	Server
• SKIDCS:	Unique	ID	for	SKeyCS
• EncKeyA1A2:	Encryption	key	for	Auth1 and	Auth2
• NA1,	NA2,	NC,	NS: Nonce	(random	number)	 generated	by	Auth1,	Auth2,	
Client	and	Server,	respectively,	used	for	session	key	distribution

• NC',	NS': Nonce	generated	by	Client	and	Server,	respectively,	used	for	
communication	 initialization

Auth2	decodes	SKIDCS,	
and	notices	it	was	
generated	by	Auth1

Auth1	generates	SKeyCS
for	Client	and	Server,

and	assigns	its	ID,	SKIDCS

Figure 4.11: Details of the example authorization process of a client and a server that are
registered with two different Auths. (Continued from Figure 4.10.)
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(a) (b)

(c) (d)

Figure 4.12: Secure communication accessors of SST.

secure connection such as SSL/TLS. They work together to distribute the same session key
for the client and server.

Figure 4.11 describes the detailed authorization process of this example. The client sends
SESSION KEY REQ to Auth1, specifying the server as a target of communication, as ex-
plained in Section 4.2.2. Auth1 responds to the client’s request with a session key, SkeyCS,
and its unique ID, SKIDCS. SKIDCS is encoded with information of the session key’s gener-
ator, in this case, Auth1. Using SkeyCS and SKIDCS, the client sends COMM INIT REQ to
the server for initialization of a secure communication, as explained in Section 4.2.3.

To continue communication initialization, the server requests its own Auth, Auth2, for a
session key specified by SKIDCS. Auth2 decodes SKIDCS and finds that the requested session
key was generated Auth1. Auth2 sends AUTH SESSION KEY REQ (a session key request
between Auths) to Auth1 specifying the session key ID, SKIDCS, via a pre-established secure
connection such as SSL/TLS. Auth1 replies to Auth2 with AUTH SESSION KEY RESP,
which includes SkeyCS. Auth2 delivers SkeyCS to the server, and the server continues to set
up a secure connection with the client.

4.3 Secure Communication Accessors

For constructing a secure swarm applications, I provide four secure communication acces-
sors for accessing authorization services, SecureCommClient, SecureCommServer, Secure-
Publisher, and SecureSubscriber as shown in Figure 4.12. In common, all these accessors
manage a distribution key and cached session keys internally with parameters for security
configurations and credentials. The proposed accessors provide standardized interfaces over
different underlying implementations. Incoming and outgoing triangles on each accessor
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indicate input and output ports of the accessor, respectively. If any security condition is
violated, these accessors generate an output on their error output port. Detailed documents
are available on accessor’s library (https://accessors.org/library/) under net group.

SecureCommClient (Figure 4.12 (a)) establishes a secure connection with SecureComm-
Server (Figure 4.12 (b)) when there is an input on serverHostPort which specifies the des-
tination server information. Both SecureCommClient and SecureCommServer generate an
output connection when a new secure connection is established. Both SecureCommClient
and SecureCommServer send a secure message to the counterpart when there is an input
on toSend and generate an output on received when a secure message arrives. toSendID
and receivedID of SecureCommServer are used to specify a specific client since there can be
multiple clients connected to the same server.

SecurePublisher and SecureSubscriber use a MQTT [8] message broker for publishing
and subscribing secure messages. When they are connected to the broker, they generate an
output on connected. If SecurePublisher obtained the session key and is ready to publish, it
generates an output on ready. When there is an input on toPublish, SecurePublisher sends a
secure publish message for the topic specified as a parameter. SecureSubscriber can subscribe
and unsubscribe on a specific topic and an output on subscription indicates the subscription
status. When a secure publish message arrives on the topic, outputs are generated on received
and receivedTopic ports.

4.3.1 APIs for Accessor Modules

1 // Functions for communication with Auth

2 function sendSessionKeyRequest(options ,

sessionKeyResponseCallback , callbackParameters)

3 function sessionKeyResponseCallback(status , distributionKey ,

sessionKeyList , callbackParameters)

4 // Functions for server/client communication

5 function initSecureCommunication(options , eventHandlers)

6 function initSecureServer(options , eventHandlers)

7 // Functions for publish -subscribe

8 function encryptSecurePub(message , cryptoSpec , sessionKey)

9 function getKeyIDOfSecurePub(rawData)

10 function decryptSecurePub(encrypted , cryptoSpec , sessionKey)

Figure 4.13: JavaScript APIs used to implement secure communication accessors.

Accessors internally use a JavaScript file to specify interactions with other accessors
(inputs, outputs, and parameters) and functionality implementations (reaction to inputs
and production of outputs). Many accessors use asynchronous atomic callbacks (AAC), for
requesting remote services and handling following responses asynchronously and atomically.

https://accessors.org/library/
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To construct secure communication accessors, I define APIs (Application Program Interfaces)
shown in Figure 4.13. These APIs are in the form of JavaScript functions based on a callback
structure.

Common Interfaces For Communicating with Auth

1 options = {

2 authHost ,

3 authPort ,

4 entityName ,

5 numKeysPerRequest ,

6 purpose ,

7 distributionKey = {value , absoluteValidity},

8 distributionCryptoSpec ,

9 publicKeyCryptoSpec ,

10 authPublicKey ,

11 entityPrivateKey

12 }

Figure 4.14: Options for sendSessionKeyRequest function in Figure 4.13.

For any entity registered with Auth, I provide an interface including a function for send-
ing a session key request to Auth and a callback that is triggered when a session key response
is received from Auth. The function sendSessionKeyRequest (line 2 of Figure 4.13) triggers
a session key request to Auth. The parameter options is consisted of information specifying
the session key request as shown in Figure 4.14. These options include Auth connection
information (Auth’s hostname, port, protocol), entity’s unique name, credentials, security
configurations, the purpose of the request, the number of session keys to request, etc. Other
parameters are a callback function, sessionKeyResponseCallback, and additional param-
eters transferred to the callback, callbackParameters.

When a response is received from Auth, a callback function sessionKeyResponseCallback

(line 3 of Figure 4.13) is called. The parameter status indicates whether the session key
request succeeded and also an error message if it failed. distributionKey is set if a
new distribution key was included in the respond or null otherwise. sessionKeyList in-
cludes new session keys from Auth. Further behaviors can be specified using additional
callbackParameters such as connecting to a server right after receiving new session keys.

Interfaces For Seucre Comm Client

A client entity can start a secure connection with a server using initSecureCommunication

(line 5 of Figure 4.13). The parameter options (shown in Figure 4.15) includes the target
server’s address and port, a session key to be used, and cryptography configurations.
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1 options = {

2 serverHost ,

3 serverPort ,

4 sessionCryptoSpec ,

5 sessionKey = {id, value , absoluteValidity , relativeValidity}

6 }

Figure 4.15: Options for initSecureCommunication function in Figure 4.13.

1 eventHandlers = {

2 onClose ,

3 onError ,

4 onConnection ,

5 onData

6 }

Figure 4.16: Event handlers for initSecureCommunication function in Figure 4.13.

The event handlers for initSecureCommunication function are presented in Figure 4.16.
These are callback functions that are called while and after calling initSecureCommunication.
onClose and onError are called when the underlying connection is closed and an error oc-
curs while initializing secure communication with a SST server, respectively. onConnection
is called when the secure communication channel is successfully established and onData is
called when a message arrives from the server after the secure channel is established. A
secure socket is given as a parameter of the callback function, onConnection, upon secure
connection establishment. This secure socket is used for an accessor to send secure messages
to the target server.

Interfaces For Secure Comm Server

1 options = {

2 serverPort ,

3 sessionCryptoSpec

4 }

Figure 4.17: Options for initSecureServer function in Figure 4.13.

initSecureServer (line 6 of Figure 4.13) initializes a secure server. options spec-
ify the server’s listening port and cryptographic configurations. eventHandlers include
callback functions for when a client requests a secure communication (onClientRequest),
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1 eventHandlers = {

2 onServerError , // for server

3 onServerListening ,

4 onClientRequest , // for client ’s communication

initialization request

5

6 onClose , // for individual sockets

7 onError ,

8 onData ,

9 onConnection

10 }

Figure 4.18: Options for initSecureServer function in Figure 4.13.

when the server starts listening (onServerListening), and when a server error occurs
(onServerError). Server’s eventHandlers also include four callback functions(onConnection,
onData, onClose, onError) that are similar to those of a client for each secure connection.

Interfaces For Secure Publisher

1 message = {

2 sequenceNum ,

3 data

4 }

Figure 4.19: Details of the message parameter for encryptSecurePub function in Figure 4.13.

encryptSecurePub (line 8) takes a securely published message (Figure 4.19) as a pa-
rameter which will be encrypted and/or authenticated with a sessionKey using a specified
cryptoSpec. The parameter, message, includes a sequence number of the published message,
sequenceNum, which increases per each message, and the actual data to be published.

Interfaces For Secure Subscriber

When a subscriber receives a secure publish message, it uses getKeyIDOfSecurePub (line 9)
to get the session key ID used for the message. Then, the subscriber decrypts and/or authen-
ticates the encryptedMessage using decrypteSecurePub (line 10). Although the functions
have “encrypt” and “decrypt” in their names, they can also be used to just authenticate
messages without encryption.

Figure 4.20 shows the return value of getKeyIDOfSecurePub. This includes success, a
boolean variable indicating whether getting the key ID was successful and error for the rea-
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1 ret = {

2 success ,

3 error ,

4 keyId ,

5 encryptedMessage

6 }

Figure 4.20: Return value for getKeyIDOfSecurePub function in Figure 4.13.

son of an error when the function call was not successful. keyId is for the session key’s ID ex-
tracted from the secure publish message and encryptedMessage is for an encrypted message
from the secure publish message. encryptedMessage is used for calling decryptSecurePub.

1 ret = {

2 success ,

3 error ,

4 sequenceNum ,

5 message

6 }

Figure 4.21: Options for decryptSecurePub function in Figure 4.13.

The return value of decryptSecurePub is shown in Figure 4.21. The meaning of success
and error is the same as that of the return value of getKeyIDOfSecurePub. sequenceNum

and message are the sequence number and actual data of the published message after de-
cryption.

4.3.2 Benefits of Secure Communication Accessors

Accessors are untrusted code that serves as proxies for sensors, actuators, and services.
Inspired by the web, accessors are therefore executed in a virtualized environment that
controls access to resources and data. Such encapsulation provides a starting point for
ensuring security and privacy, but it is not sufficient by itself. In particular, the execution
environment will have to grant access to physical resources such as sensors and actuators
in order to realize IoT applications. How should it authenticate the IoT applications (e.g.,
whether an application running remotely is modified from the original program components)?
Moreover, how can we make sure we only grant permission to legitimate IoT applications to
access certain resources (authorization or access control)?

SST provides a set of accessors for bringing authentication and authorization to the IoT
while addressing challenges mentioned in Section 1.2.
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Figure 4.22: Modified part of the example of augmented reality model in [17] with a Se-
cureCommClient accessor for additional security.

Figure 4.22 illustrates a part of an extended version of the augmented reality example in
[17], secured by one of the accessors in SST, SecureCommClient. A stream of output data
from another program component (marked as Mutable) is encrypted and sent to a cloud
server via the SecureCommClient accessor. Let us assume there is another IoT application,
namely SensorAnomalyDetector, running on a remote cloud server and programmed using
another accessor in SST, SecureCommServer, shown in Figure 4.12. SensorAnomalyDetector
takes streams of data from the distributed augmented reality applications reporting their
sensor data, executes a machine learning algorithm on collected data, and sends feedback
to the applications when any sensor data anomaly is detected. When a client application
receives feedback on a detected anomaly from the server, the feedback is sent to the graphic
overlays additional input port, metadata, to indicate the anomaly as part of the overlay.

In this extended example, the main function of these security accessors is to access authen-
tication and authorization services provided by Auths. After authenticated and authorized
by their Auths, SecureCommClient and SecureCommServer establish a secure communica-
tion channel between the client and server similar to that of SSL/TLS. But with SST, we
can have more choices such as different underlying network protocols (e.g., TCP or UDP) or
different cryptography. We do not have to maintain a centralized certificate authority (CA).
Adding SST accessors provides additional security guarantees including confidentiality and
message authenticity, preventing network-based attackers from eavesdropping or spoofing a
device ID. In addition to the two aforementioned accessors, SST provides accessors for con-
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structing IoT applications based on a publish-subscribe communication style, using accessors
SecurePublisher and SecureSubscriber also shown in Figure 4.12.

Another benefit of using SST accessors comes from encapsulation of cryptography opera-
tions and cryptographic key management. As Myers and Stylos [71] point out, the design of
APIs is critical for software security, especially in the sense that misuse of APIs can lead to
serious security problems. With SST accessors, all software developers need to do is specify
configuration parameters and set up initial credentials (e.g., generate a public-private key
pair and register the public key with an Auth). Even developers with moderate knowledge
in security need not worry about internal cryptographic operations and encryption key man-
agement for accessors once the accessor design is correct. Specifying security configurations
can be further simplified by using the given profiles as suggested in Table 3.1 of Section 3.2.4.

Combined with actor-oriented modeling semantics where actors communicate only through
input and output ports, isolation of cryptographic keys and operations in SST accessors can
enhance security when supported by OS-level or architecture-level security mechanisms. By
sandboxing the execution of SST accessors, a swarmlet host can restrict the privilege of ac-
cessors to read from or write to arbitrary files or network ports, preventing credentials from
being leaked or being used maliciously (e.g., by an attacker to spoof the device). If the host
is equipped with an architectural security mechanism such as Intel’s Software Guard Exten-
sions (SGX) [67], the credentials can be protected even when other processes on the host or
the host’s middleware or hardware components are compromised. Like other accessors, SST
accessors also require some modules to be available on the host. These modules include the
crypto module and the TCP or UDP modules.
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Chapter 5

Evaluation of Approach

This chapter evaluates security, scalability, and support for heterogeneous security require-
ments of the proposed approach through analysis and experiments. A security analysis proves
that the proposed approach and protocol design satisfy security requirements including confi-
dentiality, integrity, and authenticity of messages. A mathematical scalability analysis shows
that the proposed approach can linearly scale with the number of IoT entities by deploying
more Auths in theory. The effectiveness of various security configurations provided by SST
is shown through experiments and results.

5.1 Security Analysis

In this section, I present a security analysis of the proposed authorization infrastructure. This
security analysis was carried out in collaboration with Eunsuk Kang. To make the analysis
rigorous, Eunsuk and I constructed a formal model of the Auth protocol, and applied an
automated verification tool to exhaustively explore all possible behaviors of the model for
vulnerabilities.

5.1.1 Security Properties and Threat Model

The purpose of Auth is to provide a secure channel for trusted entities on an Auth network
to communicate to each other, even in the presence of possibly malicious entities. To be
more specific, in the analysis of this section, I wish to establish the following two security
properties: (1) Each message sent from an entity should be accessible to its intended re-
cipient(s) (confidentiality of a message), and (2) A message delivered to an entity has the
same content as it is sent by its source entity (data integrity and authenticity of a message).
In the threat model presented in this section, I do not consider security guarantees against
availability attacks, such as a denial of service (DoS) or depletion of energy resources; this
is in part addressed by an architectural mechanism presented in Chapter 6.
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Let us assume the presence of an active network attacker, who is able to eavesdrop on
communication among network nodes, and potentially modify or replay any messages. Let
us further allow the attacker to take on the role of an entity itself, interacting with Auths
or other entities on the network. The attacker may have access to public keys of Auths
and entities, their IDs and names, and impersonate another entity while interacting with an
Auth. However, it is assumed that the attacker is not capable of impersonating Auth.

5.1.2 Formal Analysis

Modeling Auth in Alloy

Alloy is a modeling language based on a first-order relational logic [51]. It has been used to
analyze a wide range of systems, including web applications [2], network configurations [72],
and security policies [73]. Alloy is a particularly suitable choice for specifying and analyzing
IoT networks, thanks to (1) its expressiveness, which allows modeling of a dynamic network
where its topology evolves as nodes enter and exit, (2) its type system (with a flexible sub-
typing mechanism), which allows modeling of heterogeneous components that share common
characteristics, and (3) its analysis engine, which can perform simulation and verification of
a model against various properties, such as safety, security, and functional correctness.

Figure 5.1 shows a snippet of a model of the proposed authorization infrastructure and
its protocol in Alloy. A simplified version is shown here and the full model is available at
https://github.com/iotauth/security analysis. The model1 begins with declarations
of data types that will be used for communication in an Auth network (lines 2-8). In
particular, two types of Key are declared: SymKey, which represents symmetric keys that
will be used as distribution and session keys, and AsymKey, each of which is associated
with a corresponding asymmetric key (pair) that can be used for public-key cryptographic
operations. A constraint is introduced to ensure that each asymmetric key is assigned a
unique pair (line 8)2.

The set of Auth and entities in the world are collectively referred as Node in our model
introduced in [53]. Each node is assigned a pair of public and private keys that can be used
for secure communication with other nodes in the network (line 10). Every Auth object is
associated with an ID, and has access to a set of public keys that it uses to encrypt messages
sent to entities (line 15). Similarly, each Entity is assigned a name, and knows the public
keys of Auths that it communicates to (line 24). For analysis in this section, I will assume
some subset of the entities to be malicious (line 29)3.

1 The Alloy keyword sig introduces a signature, which defines a set of elements in the universe. A
signature may contain one or more fields, each introducing a relation that maps the elements of the signature
to the field expression; for example, field name in Entity is a binary relation that maps each Entity object
to its name (line 22). The keyword extends creates a subtyping relationship between two signatures; an
abstract signature has no elements except those belonging to its extensions.

2 A fact is a constraint that must hold over every instance of the model.
3 The keyword in imposes a subset relationship between two sets.

https://github.com/iotauth/security_analysis
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1 sig Time {} // Totally ordered time steps
2 /* Data types (keys , payloads , names , IDs) */
3 sig Payload // data to be sent between entities
4 sig Name , ID {} // entity names and Auth IDs
5 abstract sig Key {}
6 sig SymKey extends Key {} // symmetric keys
7 sig AsymKey extends Key { pair : AsymKey }
8 fact { no disj k1, k2: AsymKey | k1.pair = k2.pair }
9 /* Auth and entities */

10 abstract sig Node { publicKey , privateKey: AsymKey }{
11 publicKey.pair = privateKey
12 }
13 sig Auth extends Node {
14 id: ID,
15 entityPublicKeys: Name -> AsymKey ,
16 // session keys allocated so far
17 sessionKeys: SymKey -> Time ,
18 // owners associated with session keys
19 owners: sessionKeys -> Name -> Time
20 }
21 sig Entity extends Node {
22 name: Name ,
23 payloads: set Payload ,
24 authPublicKeys: ID -> AsymKey ,
25 // session keys obtained from Auth
26 sessionKeys: Name -> SymKey -> Time
27 }
28 // Some of the entities may be malicious
29 sig Attacker in Entity {}
30 /* Messages */
31 abstract sig Message { sender ,receiver: Node , t: Time }
32 sig SESSION_KEY_REQUEST extends Message {
33 entity , target: Name , id: ID
34 }{
35 encryptWith[entity+target ,sender.authPublicKeys[id]]
36 signWith[entity+target ,sender.privateKey]
37 some newKey: SymKey |
38 insert[receiver.sessionKeys ,newKey ,t] and
39 insert[receiver.owners ,newKey ->entity ,t]
40 }
41 sig SESSION_KEY_RESP extends Message {
42 distrKey , sessionKey: SymKey ,
43 req: SESSION_KEY_REQUEST
44 }{
45 encryptWith[sessionKey ,distrKey]
46 encryptWith[distrKey ,sender.entityPublicKeys[req.entity

]]
47 insert[receiver.sessionKeys ,req.target ->sessionKey ,t]
48 }
49 sig SECURE_MESSAGE extends Message {
50 payload: Payload , target: Name
51 }{
52 encryptWith[payload ,( sender.sessionKeys.t)[target]]
53 }
54 /* Security property */
55 check Confidentiality {
56 no t: Time , e: Entity - Attacker , a: Attacker |
57 some s : e.payloads | accesses[a,s,t]
58 } for 5 but 10 Time , 10 Message

Figure 5.1: A snippet of an Alloy model of the Auth protocol.
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Modeling behavior. To reason about the dynamic behavior of a network, I use a style
of modeling where an execution is modeled as a sequence of time steps, and each mutable
object is associated with a state at each step [51]. In this model, I declare the signature
Time to represent the set of time steps, and attach it as the last column of every relation
that stores mutable records. For example, consider the field sessionKeys (line 17), which
is a ternary relation of type Auth× SymKey× Time; tuple (a, k, t) belonging to sessionKeys

means that k is one of the session keys that Auth a has allocated for its entities at time t.
Communication between two nodes is modeled using a set of objects called Message. Each

message is associated with a sender and a receiver, and a time step (t) at which the message
is sent and delivered4. The sender and receiver behavior associated with each type of message
is defined using signature constraints5. For instance, consider SESSION KEY REQUEST, which
corresponds to a set of messages that an entity sends to an Auth (with id) in order to
request a session key for communicating to another entity (identified by target); here, I
only depict the case in which the sender does not possess a distribution key. The definition
of SESSION KEY REQUEST requires that both the names of the sender and target entities are
encrypted using the receiving Auth’s public key, and then signed with the sender’s private key
(lines 35-36). When Auth receives the message, it allocates a new symmetric key (newKey)
and inserts it into its current list of session keys and their owners (lines 37-39)6.

In response, Auth sends back a SESSION KEY RESP message with a distribution key and
the newly generated session key. It encrypts the session key with the distribution key (line
45), which is, in turn, encrypted with the public key of the receiving entity to ensure its
secrecy (lines 46). Having obtained the session key, the entity is now able to send a secure
message (SECURE MESSAGE) to its target entity by encrypting the payload using the key (line
52).

Verification Procedure

The Alloy Analyzer is a tool that can be used to execute a model or automatically verify it
against desired properties. The tool is capable of exhaustive, bounded verification; that is, it
will explore all possible behaviors of the modeled system, up to certain upper bounds on the
length of an execution trace and the number of system and data components. Verifying an
infinite system is an undecidable problem in general [6], and so to render the analysis fully
automatic, the tool makes a trade-off by asking the user to specify the bounds for the input
model.

One of the security properties of Auth that has been verified using the tool is shown
in Figure 5.1 (lines 55-58). This confidential property says that there should never be a
time (t) at which an attacker (a) is able to access one of the payloads (s) that belongs to a

4 For the analysis in this section, I assume that messages are delivered without delays.
5 A signature constraint, specified in the appendix to field declarations, is a statement that is imposed

on every member of the signature.
6 encryptWith[d,k] and signedWith[d,k] are custom-defined predicates that mean data d is encrypted

and signed with key k, respectively. insert[x,r,t] means tuple x is added to mutable relation r at time t.
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Figure 5.2: Verification times on the Auth model.

non-attacker entity (e)7. When executed with a check command, the analyzer will attempt
to generate a counterexample (if it exists within the bounds) that demonstrates how the
model violates the property. In this case, such a counterexample would show an execution
where there is at least one time step t at which the attacker receives a message containing
a payload (s) of the victim entity (e).

Results

In the SST paper [53], we analyzed a model of Auth against the properties stated in Sec-
tion 5.1.1: confidentiality, data integrity and authenticity of each message. We specified an
upper bound of 5 for the size of each signature (at most 5 unique Node objects, etc.), except
10 for the number of time steps and messages, which allowed the analyzer to explore all
possible traces up to length 10.

Figure 5.2 shows the average times taken by the analyzer to generate a counterexample
for different trace lengths8. Overall, the analysis time shows an exponential growth over the
maximum length of a trace explored by the analyzer. This trend is not surprising, since
as the maximum length of a trace is incremented, the number of all possible traces also
increases exponentially. For example, consider the three types of messages in Figure 5.1;
since every message contains multiple parameters, each of which takes on one of five possible
values (given the general upper bound of 5 on each signature), the number of messages that
may be sent at a particular time step is (53 + 52 + 52) = 175. Thus, given a maximum trace
length of 10, the number of possible combinations of messages (i.e., the number of traces
potentially explored by the analyzer) is approximately 17510 ≈ 2.69 ∗ 1022.

The analyzer generated 17 counterexample traces during the analysis. We examined
each of these traces and incrementally fixed the model to ensure that the attack scenario
captured by the trace would no longer be allowed by the model. These traces did not point
to a fundamental security flaw in the design of Auth itself, but were due to missing security

7 The keyword no is a quantifier meaning ¬∀; the custom-defined predicate accesses[e,d,t] means
that entity e can access data d at time t.

8 The analysis was performed on a Mac OS X 10.11 machine with 2.7 GHz Intel Core i5 and 8 GB of
RAM.
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assumptions in our model. An assumption is a condition that must hold in order for a
protocol to satisfy its security properties. For example, an assumption may describe the
initial knowledge of an attacker (e.g., it does not have access to an entity’s private key),
configuration requirements (each trusted entity and Auth pair are configured with each
other’s correct public key), or what each protocol agent is not allowed to do (Auth never
reuses a distribution key when it responds to a new entity).

The initial model of Auth omitted many of these assumptions, since they were implicit in
our original, informal protocol description. These counterexamples nevertheless demonstrate
possible attacks on implementations that do not satisfy one of these assumptions. The
analysis process improved our understanding of Auth, and helped us come up with a precise
specification that explicitly lists security assumptions that every Auth implementation must
satisfy. We believe this is especially important, since many implementations of cryptographic
protocols have suffered from attacks due to missing or violated assumptions [4].

5.1.3 Limitations

The threat model used in this section assumes that all Auths are trusted and cannot be
controlled by an attacker. Possible consequences of a compromised Auth are significant.
The attacker may be able to manipulate messages from and to entities, undermining the
security of the local Auth network and possibly its neighbors. A possible future work is
to extend SST with a detection and recovery mechanism in the presence of a compromised
Auth.

Due to the bounded nature of the verification technique used, it is possible that our anal-
ysis may have missed one or more attacks on Auth. In our experience with Alloy, however,
often a small number of messages are sufficient to demonstrate a flaw in a system [5]. For ex-
ample, the smallest counterexample that we found required only 4 messages to demonstrate
a possible attack on Auth, and the longest one involved 8 messages. To further increase the
confidence in its results, one may repeat the analysis with increasingly larger bounds. We
believe that this is an acceptable trade-off to achieve automation and an ability to generate
counterexamples, which greatly aided our understanding of Auth.

5.2 Scalability Analysis

In this section, I provide a mathematical analysis of the scalability of the SST infrastructure.
Figure 5.3 shows an example where entities registered with one Auth are divided into entity
groups with two Auths. Let n be the total number of entities, k be the number of Auths,
and n/k be the number of entities registered with each Auth (given n is divisible by k). Let
c1 be Auth’s overhead for session key request and response for its entity, and let c2 be each
Auth’s overhead for session key request and response between two Auths. Although actual
c1 and c2 vary depending on underlying cryptography and communication configurations, I
assume that they are the worst-case upper bounds for all possible configurations.
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Figure 5.3: Division of entities into two groups registered with separate Auths

I assume that each entity sets up a server/client-style secure communication with a
constant number of entities (m). For each connection, Auth needs to authorize a pair of
entities involved. When k = 1, there are m× n secure connections; thus, the total overhead
for Auth is

t1 = mn× 2c1 (5.1)

Now consider the case where k ≥ 2. Among m entities that some entity e wishes to
communicate to, let p (0 ≤ p ≤ 1) be the proportion of the entities registered with the
same Auth as e is. Then, pm entities are registered with the same Auth as e is, while
(1− p)m entities are registered with other Auths. Since each Auth has n

k
registered entities,

the overhead for authorizing connections between entities in a single Auth is

pm× n

k
× 2c1 (5.2)

In addition, there is overhead for authorization of the entities that communicate with entities
outside the Auth. Since this overhead for each Auth is (c1+c2) as in Figure 5.3, the resulting
overhead is

(1− p)m× n

k
× (c1 + c2) (5.3)

Summing (5.2) and (5.3), for k ≥ 2, the total overhead for an individual Auth is

tk = pm× n

k
× 2c1 + (1− p)m× n

k
× (c1 + c2) (5.4)

Now, let r = n
k

be the ratio of n and k. The ratio r can also be considered as the number of
entities per Auth. Even when n increases, we can keep r constant by having linearly more
Auths. Then, equation (5.4) becomes

tk = pm× r × 2c1 + (1− p)m× r × (c1 + c2) (5.5)

Then, we can make tk (the overhead of each Auth) independent of n, assuming that we add
more Auths linearly to the number of entities. Hence, in theory, the proposed infrastructure
should be scalable for an increasing number of entities.
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Table 5.1: Energy cost model used in [55] (energy numbers from [87] and [36])

Operation Energy cost

RSA-2048
91.02 mJ per encrypt/sign operation
4.41 mJ per decrypt/verify operation

AES-128-CBC 0.19 µJ per byte encrypted/decrypted
SHA-256 0.14 µJ per byte digested

Send packet 454 µJ + 1.9 µJ × packet size (bytes)
Receive packet 356 µJ + 0.5 µJ × packet size (bytes)

5.3 Experiments and Results

To evaluate the proposed approach, I demonstrate a range of trade-offs between security
guarantees and energy consumption for different configurations provided by SST. I performed
experiments for both client-server and one-to-many styles of communication. During the
experiments, I measured the overhead of entities in establishing secure connections and
sending secure messages. For each experiment, I tested different security configurations and
varying numbers of communicating entities. In addition, I compared the proposed approach
against SSL/TLS as a reference.

The entities for the experiments in this section were built using secure communication ac-
cessors. To run these entities as a composition of accessors, a special type of application called
an accessor host is needed; I used a Node.js host (https://accessors.org/hosts/node/),
which is based on Node.js [98], a JavaScript runtime platform. Java 1.8 was used to run
Auth. In addition, Auth and entities were deployed on a single host with different port
numbers.

I measured (1) computational security overhead by logging cryptographic operations9

and (2) communicational overhead by capturing network packets using a packet sniffing
tool, WireShark (https://www.wireshark.org/). For cryptography operations, I used RSA-
2048 for public-key cryptography, AES-128-CBC for bulk encryption, and SHA-256 for mes-
sage authentication. This specification is the same as one of the TLS 1.2 cipher suites,
TLS RSA WITH AES 128 CBC SHA256, which is the cipher suite I used for the experi-
ments of TLS. I converted the measurements into energy consumption to estimate overall
security overhead. For this conversion, I used the energy cost model used in [55] (shown in
Table 5.1).

5.3.1 Server-Client Communication

I describe the findings on the security overhead in establishing secure connections for the
client-server communication architecture. For this experiment, I varied three configuration
parameters: (1) the maximum number of allowed cached session keys, (2) the underlying

9 This was done by modifying OpenSSL library (version 1.0.2k) included in Node.js (version 7.6.0).

https://accessors.org/hosts/node/
https://www.wireshark.org/
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Figure 5.4: Estimated energy consumption of a client for setting up and closing secure
connections with 16, 32, and 64 servers. (Note that the energy consumption results for TLS
are cut off due to the space limitation.)

network protocol, and (3) distribution key management alternatives. For each entity, either
only one cached key was allowed or there was no limit on the number of cached keys. For
the network protocol, an entity was allowed to use either TCP or UDP. For distribution key
management, an entity was given either a distribution key to be updated using public-key
cryptography or a permanent distribution key. If an entity was a distribution key to be
updated, I assumed that the entity did not have a distribution key in its initial deployment.

Figure 5.4 shows the estimated energy consumption of a client for establishing/closing
secure connections with 16, 32, and 64 servers under different configurations. Figure 5.5
shows the results for a server with 16, 32, and 64 clients. We can see that SST uses far
less energy for secure connections than TLS for both the client and server. This is mainly
because of the overhead associated with public-key cryptography: It rapidly increases with
the number of communicating entities in TLS, but remains constant in SST, which employs
public-key cryptography only for communication with Auth. However, note that this does
not necessarily mean the proposed approach is always more desirable than TLS, since the
latter provides different types of security guarantees.

From the results, we can also observe that the estimated energy consumption of SST
ranges approximately an order of magnitude under different configurations. An entity can
save energy on public-key cryptography by trading off updatability of the distribution key.
An entity can save energy on network communication by using cached keys and/or UDP.



CHAPTER 5. EVALUATION OF APPROACH 59

49
5

41
7

31
2

25
9

22
7

22
5

12
0

67 35
98
5

64
2

42
4

32
7

25
9 45
1

23
2

13
5

67
19
67

10
93

65
0

46
1

32
4

90
1

45
8

27
0

13
3

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞

TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP

Updated Permanent Updated Permanent Updated Permanent

16	Clients 32	Clients 64	Clients

En
er
gy
	(
m
J)

Estimated	energy	consumption	of	resource-constrained	server

Public-key	crypto
Sym.	crypto	&	MAC
Network	comm.

# allowed
cached	keys

Protocol
Dist.	key
mgmt.

#	clients
TLS TLS TLS

Figure 5.5: Estimated energy consumption of a server for setting up and closing secure
connections with 16, 32, and 64 clients.

TLS consumes more energy on SHA-256 MAC than SST does, since it needs to verify client
and server certificates, although there is an only negligible difference in energy used for AES
(symmetric cryptography) on data encryption/decryption.

5.3.2 A Sender and Multiple Receivers

In this section, I describe the security overheads in one-to-many communication architecture,
where one node sends encrypted messages to multiple other entities. I conducted experiments
with four different settings for a sender and receivers described in Figure 5.6. The first setting
in Figure 5.6 (a) employed a separate, individual TLS connection between the sender and
each receiver. Figure 5.6 (b) shows another setting using individual secure connections but
with a shared session key distributed by Auth. The setting in Figure 5.6 (c) used a publish-
subscribe protocol, MQTT [8], to connect the sender and receivers sharing a single session
key. I used an open-source MQTT message broker Mosquitto (http://mosquitto.org)
for forwarding published messages from the sender to receivers. I assumed that the broker
should not be able to decrypt the published messages.

In the final setting shown in Figure 5.6 (d), I assumed that the sender and receivers were
on the same local network; here, the sender employed a UDP broadcast for sending messages
encrypted with a shared session key. An example of this last setting is one where messages
are made broadly available to the local network, such as alerts or notifications. In addition,
I varied the distribution key management for each experiment (i.e., updated or permanent

(http://mosquitto.org)
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Figure 5.6: Four different settings of a sender and receivers; (a) Individual SSL/TLS con-
nections. (b) Individual secure connections by the proposed approach using a shared session
key. (c) Publisher and subscribers connected via a message broker. (d) Sender and Receivers
over UDP broadcast in a local network.

distribution keys).
Figure 5.7 shows the estimated energy consumed for setting up keys and connections

with different numbers of receivers. The energy consumption for TLS (Figure 5.6 (a)) and
ISC (Individual Secure Connections, Figure 5.6 (b)) increases as the number of receivers
increased. However, the energy consumption for MB (Message Broker, Figure 5.6 (c)) and
UB (via UDP Broadcast, Figure 5.6 (d)) remains constant. This is because the sender in MB
only needs to communicate with Auth and the broker, and the only overhead for the sender
in UB occurs when obtaining a shared session key from Auth. The overhead of public-key
cryptography occurs at most once in SST, resulting in less energy consumption than TLS as
explained in Section 5.3.1.

Figure 5.8 depicts the estimated energy consumption for a scenario where the sender
attempts to deliver a 1 KB message to different numbers of receivers. The results show
that the sender in MB and UB uses a constant amount of energy even when the number of
receivers increases; this is because the sender only needs to encrypt and send the message
once to the broker in MB and to the local network in UB. The sender uses less energy in
ISC than TLS because the sender in ISC only needs to encrypt the message once, thanks
to the shared session key. However, the impact of this is not significant because energy
consumption in communication is dominant, and both TLS and ISC require sending mes-
sages to individual receivers separately. There is no difference between two distribution key
management alternatives in this experiment because no public-key cryptography was used.

To illustrate how different security configurations affect the lifetime of IoT devices, let
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Figure 5.7: Estimated energy consumption of a sender for setting up secure connections with
16, 32, and 64 receivers. (ISC : Individual Secure Connections, MB : with a Message Broker,
UB : via UDP Broadcast)
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us consider two battery-powered sensor nodes, each sending a 1 KB message to 64 receivers
every minute. Assume that one uses ISC (193.5 mJ/message) while the other uses UB (3.0
mJ/message), and sending 1 KB messages is the only activity for these two sensor nodes.
If we use a 500 mAh battery operating on 1.5 V, the total energy budget will be 0.75 Wh,
which is 2.7 kJ. Under these conditions, the sensor node using ISC will die within 10 days
while the one using UB will last for 625 days.
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Chapter 6

Enhancing Availability

This chapter introduces an architectural mechanism for enhancing availability, based on lo-
cally centralized globally distributed authentication and authorization. Specifically, I propose
a secure migration technique where the IoT entities can migrate to other trusted authoriza-
tion entities, Auths, when their Auth becomes unavailable due to a failure or an availability
attack such as a Denial-of-Service (DoS) attack. This secure migration technique is designed
and integrated into SST as part of its implementation. This chapter also presents a problem
formulation for constructing migration policies that satisfy access requirements between IoT
entities and optimize the communication costs. The effectiveness of the proposed secure
migration is illustrated through network simulation and a concrete IoT application.

6.1 Background and Goals

6.1.1 Denial-of-Service (DoS) Attacks

The ultimate purpose of Denial-of-Service (DoS) attacks is to breach a system’s availability.
There can be many different motivations for launching a DoS attack, revenge, blackmail, etc.
The most common and widely known type of DoS attacks will be a DDoS (Distributed Denial-
of-Service) [109] attack, where an attacker control a number of compromised computers (a
botnet) to exhaust computational and communication resources. For the IoT, there can be
more than remote DDoS attacks. An adversary can have more points of access to the system
either physically or via direct wireless communication. One example of this is a DoS attack
using jammers [82] which can produce high-energy radio signals into the air to disrupt the
wireless communication around.

6.1.2 Proposed Architectural Mechanism

The main goal of this chapter is to provide defense and mitigation mechanisms against DoS
attacks and other failures on the IoT by providing a distributed and robust authorization
infrastructure based on an edge-computing architecture. Specifically, I propose a mechanism
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Figure 6.1: (a) SST in normal operation. (b) SST without the architectural mechanism
proposed in this chapter, in case of Auth failure. (c) Proposed secure migration technique
for enhancing availability of SST, in case of Auth failure.

that can make the proposed authorization infrastructure resilient even when some of the
edge devices become unavailable due to denial-of-service attacks and other failures. I accom-
plish this goal by having Auths take over other Auths’ authorization tasks when they are
not available. Architectures based on distribution and replication have been used in many
systems such as Google’s Spanner [26] to achieve better availability.

Figure 6.1 (a) shows an example of a small IoT network in normal operation using SST:
there are two Auths, A1 and A2, and each Auth is responsible for authorization of three
entities, t1, t2 and t3 for A1 and t4, t5 and t6 for A2. Let us assume the current SST
design without the architectural mechanism that is proposed in this chapter. If A1 fails
due to a DoS attack, authorization services for registered entities will become unavailable as
shown in Figure 6.1 (b). This will also affect the availability of other entities. For example,
communication between t4 and t3 will be disrupted.

However, this does not fully utilize the globally distributed architecture of SST. The goal
of this chapter is to provide enhanced availability of IoT authentication and authorization
services through a mechanism that leverages SST’s globally distributed architecture. The
architectural mechanism proposed in this chapter includes backing up information for au-
thorization services to other trusted Auths and securely migrating IoT entities to continue
the IoT services even in case of Auth failures as shown in Figure 6.1 (c).

6.1.3 Considerations for Migration Policies

Although the high-level idea behind migration may appear straightforward, determining
migration policies is a non-trivial problem due to a number of factors that need to be con-
sidered. Figure 6.2 demonstrates examples of Auths and entities with the consideration of
Auth failures. First, we need to consider trust relationships among Auths to guarantee the
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Figure 6.2: Considerations for migration policies: (a) Trust among Auths and communi-
cation requirements between IoT entities (Things). (b) Balancing workload of Auths for
Authorization. (c) Characteristics and security guarantees of Auths.

required communication channels between certain entities. In the example of Figure 6.2 (a),
t4 and t5 are required to communicate with each other, meaning that there must be a way
for them to share the same session key distributed by Auths. Trust relationships between
Auths are A1–A2 and A1–A3, and t4 and t5 are registered with A1 and A3, respectively. If we
arbitrarily decide to migrate t4 to A2 in the event of A1’s failure due to a DoS attack, then t4
will not be authorized to communicate with t5 anymore after migration because there is no
trust relationship between A1 and A3. Therefore, a proper migration policy should migrate
t4 to A3 instead in case of A1’s failure.

Let us consider a different case described in Figure 6.2 (b), where the nodes are con-
nected via wireless communication, with signal ranges of A1 and A2 as depicted. I assume
that communication costs increase as the distance between nodes increases. Then, it will be
reasonable for each entity to connect to A1 to minimize the communication costs. However,
this decision may affect the overall system, depending on the operational conditions of A1.
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What if A1 has a limit in its capacity for authorization tasks for some reason? For example,
A1 has to run other computation-intensive tasks other than a job as an Auth. Thus, autho-
rization of entities above a certain threshold can lead to degradation of its tasks. Or A1 may
be running on a battery-powered edge device with a limited energy budget. In such cases,
assigning entities within A2’s signal range (t5, t6 and t7) to A2 can be more desirable for
the overall system despite the higher communication costs for those entities. This example
shows that we must consider Auths’ operating conditions for entity assignment as well as
the communication costs of entities.

Another important factor to be considered for Auth-entity assignments is security guar-
antees provided by Auths. In the example shown in Figure 6.2 (c), there are two Auths, A1

which is equipped with hardware security support, TPM (Trusted Platform Module) and
Intel’s SGX (Software Guard Extensions) and located in a restricted-access area, and A2

which is located in an open area without any hardware security support. If security guaran-
tees provided an Auth are a more important factor for the entity, t3, then it may want to be
registered with A1 rather than with A2 even if the cost of communication with A1 is higher
than A2.

For the implementation of migration policy construction, Gurobi [41] library was used as
the underlying ILP solver and integrated to SST.

6.1.4 Threat Model and Goals

Threat mode: As a threat model, I consider any types of denial-of-service (DoS) attacks or
failures on the Auths running on edge devices. I assume the attackers target the authorization
entities, Auths, to cause a denial of service on access control (authorization) for the IoT
devices. The types of DoS attacks include flooding attacks such as distributed denial-of-
service (DDoS) attacks and attacks leveraging physical/wireless access to the edge devices
to cause a denial of service. This is because, compared to cloud servers, it is relatively
easier to access some edge devices, for example, public Wi-Fi routers. I do not consider
impersonation of Auths. This problem can be addressed by preventing access to private
keys of Auths, using various approaches including hardware security support such as Intel’s
Software Guard Extensions (SGX).
Requirement constraints: I consider following constraints for determining assignments
(or mapping) between entities (IoT devices) and Auths.

• Each entity can have security requirements that must be provided by Auth. These
requirements include hardware support (e.g., TPM/SGX), restricted physical location,
cryptography specification (e.g., ephemeral keying for perfect forward secrecy).

• Each Auth has a threshold for authorization tasks in terms of upper bounds for au-
thorization requests per minute or upper bounds for session keys cached in Auth. In
other words, there is a threshold of registered entities for each Auth. When there are
more registered entities than this threshold the Auth will experience degradation in
the authorization tasks.
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• Entity-to-entity communication requirements. Some entities need to be authorized to
communicate with certain entities even after migration. This requires trust relation-
ships between Auths with which those entities are registered.

• There exists multiple criticality levels for the communication requirements among enti-
ties, which often called mixed-criticality systems [18]. This means we should prioritize
communication requirements of high-criticality entities.

Optimization criteria: For determining assignments between entities and Auths, I con-
sider following criteria for optimization. Among the assignments that can meet constraints
above, I chose the assignments that can optimize following requirements.

• For some entities, especially those which run on battery-powered IoT devices, reducing
communication costs with Auths can help increase their availability. I assign entities
with Auths so that we can minimize recurring costs for communication with Auths.

• Migration costs, which are the costs for migrating entities from unavailable Auth to
another, can be minimized. Given that the assignments meet required constraints, it
would be desirable to minimize migration costs for Auths and entities.

• For some Auths running on battery-powered edge devices such as mobile phones or
laptops, reducing their costs for authorizing their registered entities can increase overall
systems availability. I consider this factor in the exploration of possible assignments
between entities and Auths.

6.2 Problem Formulation

In this section, I formulate the problem of finding the best assignment of entities and Auths
in the event of DoS attacks or other failures on Auths. I assume that I have a set of available
Auths running on edge devices. For each DoS attack case for each Auth, I use the set
with a reduced number of Auths. I also assume that I have a set of entities on IoT devices
with security and communication requirements. I describe the input of the problem-solving
algorithm in the form of a graph with two type of nodes (Auths and Things) and edges
connecting these nodes.
Input: A graph G which is as follows.

• G: A graph which includes two sets of nodes (A and T ) and edges (E). These two sets
are A for Auths and T for thing entities. G =< V,E >

• V : A set of all vertices (nodes) such that V = A ∪ T , A ∩ T = ∅.

• A: A set of nodes representing Auths.

• T : A set of nodes representing things (or IoT entities).
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• a ∈ A: An Auth node. Each a has a set of attributes. a =< SA, CA >

– SA: A set of security guarantees that an Auth can provide.

– CA: A threshold of Auth’s capacity for authorization of entities without causing
degradation.

• t ∈ T : A thing entity node. Each t has a set of attributes. t =< ST , RT >

– ST : A set of security guarantees that a thing requires.

– RT : Requirements for authorization tasks. A sum of these values for entities
assigned to a certain Auth should not exceed the threshold capacity of an Auth,
in order not to cause degradation.

• E: A set of edges representing relationships for nodes from A and T . E consists of
different types of edges. E =< EAA, ETT , EAT >

– EAA: A set of edges representing relationships between Auths. Each eAA ∈ EAA

includes trust relationship as a binary value (0 or 1) and a communication cost
value between Auths as a positive real number. eAA also includes the migration
cost for an entity that migrates from one Auth to another.

– ETT : A set of edges representing relationships between things (IoT entities). Each
eTT ∈ ETT includes the communication requirement represented as a positive in-
teger meaning the criticality of communication. eTT also includes communication
cost as a positive real number.

– EAT : A set of edges representing assignments between entities and Auths. For
computing assignments in the event of Auth’s failure, it has a partial assignment.
For computing initial assignments, this set will be an empty set. Each edge is
represented as exists or not exists.

Output: The output of the algorithm is EAT which contains full assignments for Auths and
entities.
Constraints: The set of constraints that must be satisfied by every valid graph G is defined
as:

constraints(G) ≡ securityCons(G) ∧ trustCons(G) ∧ capacityCons(G)

which are, in turn, defined in terms of the following constraints:

• Security constraint: For each thing and its security requirement, the thing must be
connected to at least one Auth that provides the same security guarantee:

securityCons(G) ≡ ∀t ∈ T ∀r ∈ t.ST ∃a ∈ A · (a, t) ∈ EAT ∧ r ∈ a.SA
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• Trust constraint: For every pair of things that communicate with each other but
belong to different Auths, the latter pair must satisfy the trust constraint for the
things:

trustCons(G) ≡
∀t1, t2 ∈ T, a1, a2 ∈ A·

(t1, t2) ∈ ETT ∧ (a1, t1) ∈ EAT ∧ (a2, t2) ∈ EAT ∧ ¬(a1 = a2) =⇒
critical(t1, t2) = 1 =⇒ trust(a1, a2) = 1

where critical(t1, t2) returns the criticality of the communication between things t1 and
t2, and trust(a1, a2) returns the trust relationship between the two Auths.

• Auth capacity constraint: For each Auth, the sum of authorization task require-
ments for all entities connected to this Auth must not exceed its capacity:

capacityCons(G) ≡ ∀a ∈ A · (
∑

t∈ts(a)
t.RT ) ≤ a.CA

where ts(a) = {t ∈ T | (a, t) ∈ EAT}

Costs to be optimized:
I formulate the migration task as the problem of multi-objective optimization (MOO);

in particular, the goal here is to optimize over two cost variables, TCA and TCT , which
represent the total costs for the Auths and things:

TCA = CA + wA × CM TCT = CT + wT × CM

Here, wA and wT are positive real numbers that represent the weighting factors to distribute
the migration costs over Auths and things. The types of costs are defined as follows:

• Auth-to-Auth costs: The sum of communication costs between Auths is defined as:

CA =
∑

e∈ETT

(AA(e).costcomm)

where AA(e) returns the Auth – Auth edge for communication between the pair of
things in the given edge, e. Note that if the things belong to the same Auth, then the
cost associated with AA(e) is 0.

• Thing-to-thing costs: The sum of communication costs between things is defined
as:

CT =
∑

e∈ETT

(AT1(e).costcomm + AT2(e).costcomm)

where AT1(e) returns the edge between the first thing and the Auth that it belongs to
(similarly, AT2(e) returns the edge between the second thing and its Auth).
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• Migration costs: The overall migration costs for all entities that were migrated during
the attack are defined as:

CM =
∑

(t,e)∈migrated(G,G′)

(e.costmigr)

where I define (t, e) to be a tuple in migrated(G,G′) if and only if thing t was migrated
from e.a1 to e.a2 between graphs G and G′; that is,

migrated(G,G′) =

{(t, (a1, a2)) ∈ T × EAA | (a1, t) ∈ EAT ∧ (a2, t) ∈ E ′
AT}

I solve this problem as Mixed-Integer Programming (MIP).

6.2.1 Migration example with cost optimization

Let us consider the example shown in Figure 6.3, where there are three Auths, a1, a2 and
a3, five things (IoT entities) t1 through t5. Let the cost of communication between ai and tj,
(ai, tj).costcomm be c(ai, tj) for readability. Similarly, I set (ai, ak).costcomm = c(ai, ak). Here
the communication costs include energy consumption on wireless communication, crypto-
graphic operations and accessing local data storage. In reality, most of the communication
costs should be asymmetric. That is, the cost of communication between an Auth, ai, and
a thing tj, c(ai, tj), should not be the same for ai and tj because the amount of tasks for
authorization and the operational environment (including the platform and underlying hard-
ware) are different. The cost of communication between two Auths may also be different for
each Auth, depending on their underlying platforms. However, here I assume the cost is the
same for each communicating part in this example for simplicity.

The relationships and costs of communication between Auths and things are described
in Figure 6.3. All Auths trust one another. t1 and t2 are required to communicate with each
other and so are t1 and t5. Originally, t1 and t2 are registered with a1, t3 and t4 are registered
with a2, and t5 is registered with a3. These relationships can also be stated as follows:

{(a1, a2), (a1, a3), (a2, a3)} ⊂ EAA

{(a1, t1), (a1, t2), (a2, t3), (a2, t4), (a3, t5)} ⊂ EAT

{(t1, t2), (t1, t5), (t3, t4)} ⊂ ETT

Let us assume that the maximum number of things that a2 can handle is three. Note that
the capacity limit for a2 is exaggerated to demonstrate the effect of capacity with a simple
example.

Let us consider the situation where we want to compute a migration plan when a1 becomes
unavailable. First, we delete all edges including a1 and resulting edges are as follows.

{(a2, a3)} ⊂ EAA

{(a2, t3), (a2, t4), (a3, t5)} ⊂ EAT

{(t1, t2), (t1, t5), (t3, t4)} ⊂ ETT
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Figure 6.3: Migration plan examples with considerations for communications costs for
authorization of IoT entities after migration; (a) Relationships and communication costs
between Auths and entities during normal operation. (b) Migration plan1 after a1’s failure.
(c) Migration plan2 after a1’s failure. (d) Migration plan3 after a1’s failure.
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Now, we have to assign t1 and t2 Auths so that we can meet the communication requirements
specified in ETT . We also need to meet the Auth capacity constraint which is

|{(x, y)|(x, y) ⊂ EAT ∧ x = a2}| ≤ 3

meaning that the number of things registered with a2 should not exceed 3. Due to this
constraint, either only one of t1 or t2 can migrate to a2 but not both. Therefore, there can
be three possible migration plans and let us call these plans plan1, plan2 and plan3.

• plan1: {(a2, t1), (a3, t2)} ⊂ EAT

• plan2: {(a2, t2), (a3, t1)} ⊂ EAT

• plan3: {(a3, t1), (a3, t2)} ⊂ EAT

Let us consider the resulting authorization communication costs of t1and t2, which are
Ct1 and Ct2 . I just consider authorization costs to meet the communication requirements, so
Ct1 will be twice (with t2 and t5) of the authorization cost with its registered entity and Ct2

will be the authorization cost with its registered entity. Note that the communication costs
of t3, t4 and t5 remain the same after migration, that is Ct3 = 1, Ct4 = 1 and Ct5 = 1. The
total communication cost of things is CT = Ct1 + Ct2 + Ct3 + Ct4 + Ct5 = Ct1 + Ct2 + 3.

For plan1:

Ct1 = 2× c(a2, t1) = 4

Ct2 = c(a3, t2) = 3

CT = Ct1 + Ct2 + 3 = 10

For plan2:

Ct1 = 2× c(a3, t1) = 5

Ct2 = c(a2, t2) = 1.5

CT = Ct1 + Ct2 + 3 = 9.5

For plan3:

Ct1 = 2× c(a3, t1) = 5

Ct2 = c(a3, t2) = 3

CT = Ct1 + Ct2 + 3 = 11

Let us consider the resulting authorization communication costs of a2 and a3. The com-
munication cost for a2 to handle authorization of t3 and t4 remains the same after migration
and let us set this cost C ′

a2
= c(a2, t3) + c(a2, t4) = 2. Similarly, the communication cost for

a3 to handle authorization of t5 remains the same after migration which is c(a3, t5) = 1.
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Table 6.1: The total cost to be optimized depending on different weights for the things and
Auths, wT and wA, respectively. (Note that the minimum costs are marked as bold for each
set of weights.)

(wT ,wA) (0.9,0.1) (0.8,0.2) (0.7,0.3) (0.5,0.5)
plan1 11.2 12.4 13.6 16
plan2 10.1 10.7 11.3 12.5
plan3 11 11 11 11

For plan1:

Ca2 = C ′
a2

+ 2× c(a2, t1) + 2× c(a2, a3) = 12

Ca3 = c(a3, t2) + c(a3, t5) + 2× c(a2, a3) = 10

CA = 22

For plan2:

Ca2 = C ′
a2

+ c(a2, t2) + c(a2, a3) = 6.5

Ca3 = 2× c(a3, t1) + c(a3, t5) + c(a2, a3) = 9

CA = 15.5

For plan3:

Ca2 = C ′
a2

= 2

Ca3 = 2× c(a3, t1) + c(a3, t2) + c(a3, t5) = 9

CA = 11

Let TC be the total communication cost to be optimized. TC can be expresses as a
weighted sum of CT and CA:

TC = wTCT + wACA

where wT and wA are the weights for CT and CA, respectively. Table 6.1 shows TC for
different sets of weights, illustrating the plan minimizes TC can differ depending on the
weights. For example, when (wT , wA) = (0.8, 0.2), plan2 leads to a minimum communication
cost, while (wT , wA) = (0.7, 0.3) make plan3 a plan with a minimum communication cost.

6.3 Secure Migration

In this section, I describe a robust architecture and implementation for achieving secure mi-
gration. In SST, each Auth has database tables to store authorization information of entities
and trust relationships among Auths. As introduced in Chapter 4, the four main database
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Figure 6.4: Overview of operations to defend against DoS attacks: (a) Backup, (b) Detec-
tion, and (c) Migration.

tables maintained by each Auth are Registered Entity Table, Communication Policy Table,
Trusted Auth Table, and Cached Session Key Table. The trust relationships among Auths
are stored in Trusted Auth Table and this information is used to securely deliver information
of registered entities in Registered Entity Table to trusted Auths. If the communication pol-
icy of entities to be backed up is not available in the trusted Auth’s Communication Policy
Table, then the necessary communication policies should be backed up as well.

Figure 6.4 illustrates the operations for backup, detection, and migration. As shown in
Figure 6.4 (a), during normal operation, each Auth backs up credentials and information
about its registered IoT entities to other trusted Auths as planned using the migration
methods proposed in Section 6.2. The registered entities detect that their Auth is unavailable
as depicted in Figure 6.4 (b). This can be done by setting up a threshold for connection
failures in trying to reach their Auth for each entity; for example, an entity decides that its
Auths is down after 10 connection failures for 10 minutes. Upon detection of the Auth’s
failure, each entity tries to reach alternative Auths as shown in Figure 6.4 (c). For this,
each entity needs to be assigned a list of hosts and ports for alternative Auths that it can
potentially migrate to. Each of alternative Auth will reply either with a new credential that
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can be used to be authorized by the alternative Auth or with a message saying that the
entity should try another alternative Auth.

6.3.1 Authorization Procedure: In Context of Secure Migration

In SST, each entity is authorized by an Auth by receiving a session key, which is a temporary
symmetric cryptographic key for accessing a certain service or communicating with another
entity (or entities). A session key can be just a MAC key when the access activity does not
require confidentiality of the data, or it can include both a cipher key for encryption and
also a MAC key for message authentication. A session key could be a single key value if
the session cryptography uses authenticated encryption that does both the encryption and
message authentication with a single key value.

Session keys need to be confidential; they must be only known to the entities participating
in a certain access activity. Thus, these session keys must always be encrypted with another
symmetric key between Auth and each entity called a distribution key. A distribution key
includes a cipher key and a MAC key for encryption and for message authentication, respec-
tively. Or, a distribution key can be a single value if the distribution key uses authenticated
encryption. In this chapter, I only consider a distribution key with a pair of a cipher key
and a MAC key for simplicity.

A distribution key can be optionally updated using public-key cryptography. In this
case, Auth and the registered entity should have already exchanged public keys during the
registration (initialization) process of SST. This public-key cryptography can also include
an ephemeral Diffie-Hellman key exchange for perfect forward secrecy of the distribution
key, meaning that the previously used distribution keys cannot be recovered even when the
private key of either Auth and the entity is stolen. SST provides an option using permanent
distribution key so that it can support resource-constrained IoT devices that cannot afford
public-key cryptography.

6.3.2 Prepare for Migration

For preparation before a DoS attack is launched or a failure occurs on Auths, migration
plans are computed using the approach presented in Section 6.2. After this computation,
the migration plan is entered into each Auth’s registered entity table, specifying an ID of
the trusted Auth to which each entity should migrate. For the following communications
between trusted Auths, I assume that all messages exchanged are protected by HTTPS over
TLS (Transport Layer Security).

As backup information, Auth needs to prepare the credential that will be transferred
from the trusted Auth to the registered entity that is migrating. For example, if the entity
uses public-key cryptography for authorization as shown in Figure 6.5 (a), then Auth needs
to issue a certificate for the trusted Auth signed by its private key, so that entity can verify
that the Auth to which it is migrating is trusted by its original Auth.
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Figure 6.5: Backup operation details depending on the type of cryptography used for
authorization. Note that the channel between two Auths a1 and a2 is protected by HTTPS
over TLS (Transport Layer Security). Assume that the permanent distribution key comprises
of a cipher key for encryption and a MAC key for message authentication.

If the entity does not have a capability of performing public-key cryptography and uses
symmetric cryptography for authorization (i.e., using a permanent distribution key), then
Auth prepares a migration token which is a new (permanent) distribution key encrypted with
the current distribution key as shown in Figure 6.5 (b). Let us assume that a distribution
key comprises a cipher key (for encryption) and a MAC key (for message authentication).
The process is as follows. The Auth generates a new distribution key value (both the cipher
key and message authentication key) for the registered entity and the new Auth (that the
registered entity will migrate to). Then the Auth encrypts and authenticates this new
distribution key using current distribution key.

The new Auth’s certificate and the migration token have validity periods that are config-
urable. Having proper expiration times (which are part of the validity periods) can prevent
an obsolete certificate and migration token from being used by adversaries and also make
sure that the entity migrates to the Auth as supposed in the up-to-date migration plan. If
there is a newly registered entity, then the migration plan for the new entity will be updated
and its credentials and information should be backed up to one or more trusted Auth. Upon
receiving the backup request from its trusted Auth, an Auth stores the information and
credentials into its database tables in order to allow the other Auth’s entities to migrate to
it in case of the trusted Auth’s failure.
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Figure 6.6: Secure migration procedure (a) Backup operation: A1 updates its Thing with
a trusted Auth list and sends a migration token after migration policy construction (b)
Migration operation: A1 fails and its entity t1 tries to migrate to A2 or A3. (Note that
the AUTH HELLO messages, the very first messages containing a nonce to make sure each
request is fresh, are omitted for simplicity.)

6.3.3 Detect and Migrate

During an attack or a failure, first, we will need to detect the unavailability of Auths.
Each entity has criteria for determining whether its Auth is down. One example is having a
threshold for the number of connection failures in a row and down time of Auth; for instance,
an entity can determine that its Auth is under a DoS attack or a failure when it fails to
reach its Auth more than 10 times in a row for more than 10 minutes. Each entity should
have a list of Auths that it can connect to a priori in the case of its Auth’s failure. This list
includes other Auths’ network addresses (host names), ports and underlying protocols (e.g.,
TCP or UDP).

When an entity detects its Auth’s failure, it tries to connect to the Auths in its list and
sends a MIGRATION REQ (migration request) message. Whenever any entity connects
to an Auth, the Auth sends an AUTH HELLO message that includes a fresh nonce, as
explained in Section 3.3.2.

An example of the backup operation is described in Figure 6.6 (a). For its registered
entity t1, Auth A1 gives out a list of its trusted Auths (A2 and A3) and their host names
(IP addresses) and port numbers. This is first given during the entity registration and
then updated when the information changes. Then, A1 constructs the migration policies for
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its registered entities, either by itself or by receiving migration policies from other trusted
Auths, using the method shown in Section 6.2. With the constructed migration policies, A1

prepares migration token for each of its registered entities, and sends it to A3 to which A1’s
entity t1 will migrate, according to the constructed migration policy.

Figure 6.6 (b) describes an example with a set of migration operations. In this example,
an IoT entity, t1 detects the failure of its Auth, a1. Then it sends MIGRATION REQ to
a2, an Auth trusted by a1, but not the one that t1 is supposed to migrate to. Since a2 does
not have the required credentials for t1, a2 sends a response, MIGRATION RESP indicating
that the request is rejected and t1 should try another trusted Auth in its list. After receiving
MIGRATION RESP (rejected) from a2, t1 tries the next Auth in its list, a3. When a3
receives MIGRATION REQ from t1, it notices that t1 can migrate to it and responds with
a MIGRATION RESP message indicating that the request has been accepted.

A MIGRATION REQ message includes the entity’s name and a verification token. This
verification token can be a digital signature of the entity if it uses public-key cryptography
for authorization. The verification token can be a MAC (message authentication code) if it
cannot afford public-key cryptography for authorization. In either case, the Auth that the
entity is supposed to migrate to will be able to verify the MIGRATION REQ either with the
entity’s public key or the MAC key of the entity’s current distribution key. This is because
the Auth should have been backed up with the entity’s public key or MAC distribution key
from the Auth that the entity was previously registered with.

As explained with the example, MIGRATION RESP can indicate either rejected or ac-
cepted. The rejected MIGRATION RESP is just to say that this is not the Auth which
the entity is supposed to be authorized by. The accepted MIGRATION RESP contains the
certificate of the a3 signed by a1 if t1 uses public-key cryptography for authorization, or the
migration token for t1, if t1 does not use public-key cryptography for authorization. The
whole MIGRATION RESP should be authenticated by the Auth’s private key or the MAC
key of the previous distribution key, so that the entity can verify the MIGRATION RESP
message upon receiving it. When the migration request and response are successful, both
the Auth and entity update the counterpart’s credentials for further authorization.

6.4 Experiments and Results

In this section, I carry out experiments to demonstrate the effectiveness of the proposed
migration approach for maintaining availability. For the following experiments, I only con-
sider things (IoT entities) that are capable of public-key cryptography. As an experimental
scenario, I take a door controller and door opening application in a smart building. This is
inspired by a prototype door controller deployed on the 5th floor of Cory Hall at UC Berke-
ley. I assume a virtual environment where the door controllers are deployed on currently
card-key accessed doors, door opening mobile phone apps run on user smart phones, and
Auths are deployed on some of the existing WiFi access points. Figure 6.7 illustrates this
virtual environment. I also assume Auths have trust relationships depending on research
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centers on the 5th floor, and the Things (door controllers and user smart phones) are regis-
tered with Auth as shown in Figure 6.7. I measure availability as the ratio of responses from
door controllers (the number of correct door operation) to the door opening requests for a
given time window. In the following experimental scenarios, different numbers of Auths can
be unavailable due to failures or DoS attacks. In addition, I also compare against scenar-
ios without secure migration and also a scenario where all Auths are unavailable, which is
equivalent to the case where an authorization entity is deployed on a remote cloud and the
cloud is not reachable.

6.4.1 Experimental Setup

Figure 6.8 describes the experimental setup with the ns-3 network simulator [88]. For realis-
tic experiments, I use the actual implementation of Auth available on the GitHub repository
and IoT entities (door controllers and opening apps) written using SST’s APIs, secure com-
munication accessors. Each of Auths and IoT entities runs within an individual Linux Con-
tainer (LXC) [62] which provides OS-level virtualization (paravirtualization) with a separate
virtual network space. For simulating the network infrastructure, I use ns-3. The LXCs’ vir-
tual Ethernet interfaces are connected to the host OS’s Linux bridges, then to the TAP
bridges of ns-3 nodes in the ns-3 simulator. The other side of ns-3 nodes are either CSMA or
WiFi NetDevice and are connected to the network simulated in ns-3. LXCs on which Auths
are running have both the wired and WiFi connections and LXCs for IoT entities have WiFi
connections. For connections between Auths’ wired network interfaces, I use a CSMA chan-
nel with data rate 100Mbps. For connections between the wireless network interfaces of
Auths and Things, I use an ad-hoc IEEE 802.11a channel with data rate of 54Mbps. For
the channel signal strength model, I use a Log Distance Propagation Loss Model in ns-3 to
represent the channels between Auths and things. As a simulation platform, I use Ubuntu
Linux 16.04.2 LTS on Amazon’s AWS EC2 with 4 CPUs, 16GB RAM, and 256GB SSD.

6.4.2 Simulation Results

I ran simulations with 4 Auths, 19 door controllers, and 26 user devices for 15 minutes for
each experiment in real time, 2.5 minutes before Auth failures and 12.5 minutes after failures.
Each user device sends a door opening request to the closest door controller every minute,
simulating the user behaviors in front of doors.

Figure 6.9 illustrates the experimental results. I performed experiments with up to three
Auths failing during the experiments. The failure occurs in order of Auth 1, Auth 3, and
Auth 4 where the Auth numbers are as denoted in Figure 6.7. When all four Auths failed,
the availability became 0% in our experiments as I expected, although I did not include this
in Figure 6.7. It will be the same when the authorization services based on the cloud lose
connections with the cloud. I also compared three different migration policies, (1) without
any secure migration (original SST, denoted as ”No Migration”), (2) with a näıve migration
policy where the clients (door opening applications) try the nearest available Auth first
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Figure 6.9: Availability results with different numbers of failing Auths for three different
migration policies using SST simulated on the ns-3 simulator and Linux containers: (a)
When one Auth fails, (b) When two Auths fail, and (c) When three Auths fail.
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then try the next nearest Auth, and so on (denoted as ”Näıve Migration”), and (3) with a
migration policy constructed using the proposed approach in Section 6.2 (denoted as ”ILP-
Based Migration” in the results).

As shown in Figure 6.9 (a), when one Auth fails the availability drops down to 69%
without any migration, while the näıve migration and ILP-based migration policies recover
the availability up to 92% and 100%, respectively. The näıve migration policy could not
recover 100% availability due to the fact that it did not consider the trust relationships
between Auths properly, thus leading to a migration policy which is infeasible for some IoT
entities. In Figure 6.9 (b), we can see that the availability drops down to 50% without any
migration and fluctuates around 58% with the näıve migration policy, while the proposed
ILP-based solution recovers 81% of availability. Figure 6.9 (c) shows decreased availability
around 27% with no or the näıve migration policy and recovered availability of 54% with the
proposed technique. The fluctuation with the näıve migration policy was caused mainly by
the infeasible migration requests and their interference with normal requests, and unbalanced
workload among functioning Auths. The proposed ILP-based solution was not able to achieve
100% availability because of some of the entities were out of the signal ranges of Auths,
however, the proposed solution maintained significantly higher availability compared to other
two cases.
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Chapter 7

Related Work

This chapter summarizes related work with a thorough literature review on the security of
the IoT, especially on authentication and authorization. The related work includes security
measures for the IoT based on traditional security solutions and network architectures, se-
curity solutions for the predecessors of the IoT, and measures to enhance the availability of
the IoT against failures or Denial-of-Service (DoS) attacks.

7.1 Using Traditional Security Solutions for the IoT

Secure Socket Layer/Transport Layer Security (SSL/TLS), or simply TLS [28], has been
providing security for the Internet. For authentication, TLS uses certificates, usually pro-
vided by a certificate authority (CA). However, this cannot be the best option for the IoT
due to the overhead for CAs to manage the huge number of certificates. To make TLS with
CAs more scalable, the Let’s Encrypt project1 launches free and automated CAs based on
a protocol called Automatic Certificate Management Environment (ACME) [10]. Neverthe-
less, it will be too demanding for resource-constrained devices to carry large certificates and
perform computationally expensive asymmetric key (public-key cryptography) operations
for every TLS connection.

OpenIoT [96] is a platform designed to enable integration among a collection of hetero-
geneous IoT applications. The platform leverages a publish-subscribe architecture to allow
different types of devices to communicate to each other. For privacy and security, OpenIoT
relies on a central authentication mechanism based on TLS, which, as we have discussed, is
likely to face scalability challenges in dynamic IoT networks.

Kothmayr et al. [56] propose an authentication system for the IoT using DTLS [86], a
datagram variant of TLS. Hummen et al. [48] propose a security framework for IoT devices
also based on DTLS. Similar to the proposed approach, their framework employs specialized
authorization entities, delegation servers, to reduce the amount of public-key cryptography
computations. In comparison, SST provides a wider range of configurations, as shown in

1https://letsencrypt.org

https://letsencrypt.org
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Figure 7.1: Authentication/authorization flows of different approaches; (a) CA (certificate
authority) and Certs (certificates). (b) The Kerberos authentication system and TGS (ticket
granting service). (c) Proposed approach with locally centralized, globally distributed Auth
(Authentication/Authorzation entity).

Figure 3.5, allowing each entity to create its own profile based on its security and resource
requirements.

The Constrained Application Protocol (CoAP) [92] is designed to support the types of
low-power devices that are common on an IoT network. Communication between CoAP
devices is secured using DTLS and this kind of approach can work better with resource-
constrained devices than TLS. However, DTLS still relies on each device to perform public-
key operations, or share symmetric keys with other trusted devices before the deployment.
Furthermore, CoAP is mainly designed for one-to-one communication (e.g., a client-server
model) like TLS, and does not directly support one-to-many settings. This fact makes it
challenging to secure such one-to-many communications common in the IoT such as broad-
casting or publish-subscribe patterns [35]. In addition, a certificate used in TLS and DTLS
contains a unique value for an entity. This risks exposing the entity’s identity, leading to a
potential threat to privacy.

Another issue with certificate-based approaches is revocation of authentication. As il-
lustrated in Figure 7.1 (a), the CA is only involved in the issuance of certificates, and the
client and server authenticate each other using the certificates as long as the certificates are
valid. The validity period of certificates is typically longer than several months due to the
management overhead of certificates, especially for renewal of certificates. Therefore, it is
challenging to revoke authentication of entities using certificates. This can be a potential
threat to the safety of critical components in the IoT in case they are compromised.
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For authentication of entities, the Kerberos authentication system [75] issues temporary
tickets through its ticket granting service (TGS), as illustrated in Figure 7.1 (b). Thus, Ker-
beros provides a centralized control over the validity period of authentication, addressing the
challenges of access revocation. However, such systems are designed for human users, requir-
ing user intervention such as entering passwords. This makes it hard to support automated
mutual authentication of IoT devices.

There are extensions for Kerberos [112] that use public key cryptography for authentica-
tion, to replace the human intervention. Even with these extensions, however, clients with
intermittent connectivity may face authentication problems when they are not connected to
Kerberos/TGS. Although caching tickets can address the intermittent connectivity problem,
it creates another problem of allowing a compromised client with cached tickets to authen-
ticate with the server. This is because a ticket is delivered to a server by a client, not by
Kerberos/TGS, as shown in Figure 7.1 (b), and the server trusts the client as long as the
ticket is valid.

The authentication flows for certificate-based approaches and the Kerberos authentica-
tion system are designed for the networks with general-purpose computers. Although these
approaches have been successful for the traditional Internet, we note that the authentica-
tion flows shown in Figure 7.1 (a) and (b) cannot address some of the IoT-related security
and scalability issues. Therefore, we propose a security framework that has the authentica-
tion/authorization flow as shown in Figure 7.1 (c).

In the proposed approach, the local authorization entity, Auth, assigns lightweight session
keys to entities involved in communication. The Auth entity controls the validity period of
session keys and covers authorization as well as authentication. This is possible because Auth
is aware of communication context of registered entities, determining whether an entity is
authorized to communicate with others. While Auth serves as a local point of authorization,
it also interacts with other Auths to control communication between entities registered with
different Auths, distributing the authorization overhead locally. Potential deployment targets
for Auth include edge computers covered in Section 2.2.

7.2 Contemporary Security Solutions for the IoT

There are many current approaches proposed for authorization and authentication of the
IoT. Most of these approaches at least partly rely on remote and centralized cloud servers
for providing authentication and authorization for the IoT. IoT-OAS [23] uses OAuth servers
for providing access control for third-party applications in the IoT. AOT (Authentication of
Things) [74] offers various authentication schemes and uses a cloud server to control trust
relationships between the manufacturer and devices. OpenIoT [96] is primarily based on
cloud servers and adopts flexible methods for authentication and authorization of the IoT by
leveraging CAS (Central Access Control) services. OSCAR [103] provides integrated security
architecture of the cloud and IoT using authorization servers. Amazon’s AWS IoT [45] takes
advantage of its well-known cloud infrastructure, AWS, for authentication and authorization



CHAPTER 7. RELATED WORK 87

Cloud	servers Edge	computers
(Internet	gateways)

IoT devices	(Things)

More	available	resources
Higher	latency	

Less	stable	connections

Easier	to	keep	data	private

Restricted	resources
Better	connectivity	
Lower	latency

More	challenging	to
guarantee	data	privacy

Better	context	awareness
(of	local	system)

Limited	context	awareness
(of	local	system)

Figure 7.2: Characteristics of cloud, edge and things.

of IoT devices. However, as pointed out in the Google’s OnHub incident [70] in Section 1.1,
depending too much on remote cloud servers can render the system vulnerable to connection
failures or availability attacks.

An alternative system architecture that reduces the dependency on remote servers, called
edge computing [93] or fog computing [64], is based on computers serving as Internet gateways
(e.g., smart home routers, laptops, smart phones). Cloud computing and edge computing are
often reckoned to be complementary rather than exclusive. Figure 7.2 illustrates different
characteristics of the cloud servers, edge computers, and IoT devices. As pointed out in
Lopez et al. [63], benefits of adopting edge computing include better privacy, lower latency
for real-time applications, less dependency on cloud servers and its connections, and better
context awareness and manageability of the local systems. Thus, edge computing creates an
opportunity for a more robust and efficient authorization service infrastructure for the IoT.

A few approaches leverage edge computing for constructing authorization service infras-
tructure for the IoT. To provide robust authentication and authorization of medical IoT
devices without depending on remote servers, SEA (Secure and Efficient Authentication and
Authorization Architecture) [69] uses distributed smart e-health gateways as local authoriza-
tion centers based on DTLS (Datagram TLS). TACIoT (Trust-aware Access Control for the
IoT) [12] employs an architecture called IoT bubbles as local units of authorization of the
IoT. The toolkit proposed in this dissertation, SST (Secure Swarm Toolkit) [53], constructs
an authorization infrastructure for the IoT based on an open-source local authorization en-
tity called Auth. Auth in SST runs on edge devices and works as a local center of access
control for the locally registered things.

7.3 Security Measures for Predecessors of the IoT

The concept of connected “Things” has been existed for several decades under different names
including The Swarm [59], Smart Dust [105], Mobile Ad-hoc Networks (MANET) [27], and
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Wireless Sensor Networks (WSN). A variety of security frameworks for WSN have been
proposed and studied [11], [52], [65], [84], [85] to support automated authentication for
resource-constrained devices. Sensors and IoT devices have similar resource constraints, but
we expect the latter group to be more diverse in terms of the types of applications that they
implement. SST can be deployed as an underlying infrastructure for a mixture of traditional
sensor nodes as well as entities with application-specific requirements.

Approaches using random or pairwise pre-distributed encryption keys [30], [31] provide
energy efficient solutions. There has been a static key management approach that allows key
establishment for newly added nodes [37]. However, static key management systems may
not be proper for the safety-critical devices running under hostile environments, due to the
increased probability of being attacked for the cryptographic key with a long lifetime.

He et al. [42] survey dynamic key management systems for WSN, which can address
the problem with pre-distributed keys by supporting key revocation mechanisms. These
approaches for WSN can be categorized into distributed and centralized approaches. In
distributed approaches including EDDK [111] (Energy-efficient Distributed Deterministic
Key management), neighboring nodes collaborate to dynamically establish keys. TinyPBC
Pairing-Based Cryptography (PBC) provides key agreement without any network interac-
tion [77] to save energy for communication especially for carrying certificates. To consider
resource constraints in certificate-based approaches, there have been various methods such
as MOCA [108], a distributed, mobile certificate authority for mobile ad-hoc networks. Such
approaches can avoid a single point of failure in authentication systems; however, they tend
to be more vulnerable to collusion attacks and prone to design errors.

In centralized approaches, a central trusted third party (e.g., a base station) is respon-
sible for key generation and distribution for nodes. Many of these approaches have similar
authentication flows as the proposed approach’s authentication flow in Figure 7.1 (c). Huang
et al. [46] propose a centralized forward authentication approach for hierarchical and het-
erogeneous sensor networks composed of high-end and low-end sensor nodes. Sahingoz [90]
provides a key distribution system using an unmanned aerial vehicle (UAV) as a center of
key distribution and coordination, for large scale WSNs. To support addition and deletion
of mobile sensor nodes, Erfani et al. [33] propose a key management system that uses key
pre-distribution and post-deployment key establishment.

The dynamic key management systems for WSN can address some part of the IoT-related
security requirements in Section 1.2.2. However, they still have limited results to cover the
vast heterogeneity of devices in the IoT, from the resource-constrained sensor nodes to the
critical components that require frequent authentication and authorization for safety. The
support for the dynamic environment such as intermittent connectivity and dynamic entity
registration is still not sufficient.

There have been other research efforts for the security of the IoT from a diversity of
angles. Seitz et al. [91] outline a set of desirable security and performance requirements
for an IoT network, and propose a conceptual framework for controlling access to device
resources using the XACML policy language [39]. However, their approach is not based
on a particular authentication scheme and does not directly address scalability issues. Wei



CHAPTER 7. RELATED WORK 89

Before	the	Attack During	the	Attack After	the	Attack
Location
of	Deployment

Point	of	Time

Proposed	approach:	
Secure	migration

IoTPOT (2016)
Honeypot-based	
malware	analysis	
and	report	for	

compromised	IoT

Preventive	
measure	against
DDoS attack	on	
IoT network

Zhang	and	Green	
(2015)

Sonar	and	
Upadhyay (2016)

Identifying	DDoS attack	
in	IoT network	a	priori	
at	border	gateways

Destination
AS

Source
AS

Intermediate
AS

DoS attack	
source	

(compromised	
computers)	

Networks	
between	attack	
source	and	
destination

DoS attack	
destination	
(victims)

TESLA++	(2012)
DoS-tolerant	

authentication	for	IoT

Oliveira	et	al.	(2012)
Filtering-based	

mitigation	for	IPv6	IoT
on	DoS packets	with	
proper	addressing

IACAC	for	IoT (2013)
Preventing	excessive	
access	to	resources	by	
limiting	the	number	of	
sessions	for	each	ID

Oriwoh and	Sant
(2013)

Autonomous	 and	
independent	
forensics	for	
home	IoT

Hummen et	al.	 (2013)
Making	it	challenging	
for	malicious	initiators	
to	establish	excessive	

connections

Wang	et	al.	(2016)
Distributed	

network	forensics	
for	M2M	

communications

Figure 7.3: Countermeasures against DoS attacks to the IoT classified by two criteria used
in [109], deployment location and point of time.

et al. [106] propose a conceptual design of security infrastructure for deploying smart grid
networks. Although their focus is on power grids, their approach is similar to ours in that it
provides integration between different types of devices with varying performance and security
requirements. SHAWK [21] provides a secure mechanism for integrating heterogeneous wire-
less networks including cellular and WLANs. Like SST, SHAWK addresses heterogeneity by
integrating existing solutions but at a different layer of abstraction.

7.4 Defense Against Availability Attacks on the IoT

Although I do not limit the scope of DoS attacks to DDoS attacks in this dissertation,
I use the DDoS attack classification criteria presented by Zargar et al. [109], to position
the proposed secure migration technique in Chapter 6. Figure 7.3 illustrates a variety of
countermeasures and mitigations against the availability attacks to the IoT or the similar
networked systems. The horizontal axis in Figure 7.3 shows the stages of a DoS attack
broken into three, according to the point of time when the measure takes effect relative to
the attack: before the attack, during the attack, and after the attack. The vertical axis
shows three categories of DoS attack countermeasures based on their deployment locations:
at potential attack sources, on networks between the attacker and the target, and at attack
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destinations – the victims.
Before the attack, a preventive measure can be taken at the attack source such as Identity

Authentication and Capability Based Access Control (IACAC) for the IoT [66], which limits
excessive access activity by imposing capability associated to IoT devices. An approach
proposed by Sonar and Upadhyay [97] can prevent the DDoS attack traffic from reaching
the IoT devices by identifying the attack traffic a priori at border gateways. Zhang and
Green [110] have proposed a lightweight defensive algorithm for an IoT end network by
leveraging distributed intelligence at IoT end nodes to detect and prevent malicious packet
streams.

There have been DoS mitigations proposed for the IoT, which take effect while a DoS
attack is happening. Hummen et al. [49] have presented an approach which makes it difficult
for malicious entities to create excessive connections from the attack source. The solution
proposed by Oliveira et al. [78] mitigates the DoS traffic with filtering for the IPv6-based
IoT. TESLA++ [89] supports DoS-tolerant authentication at the destination by extending
the original TESLA (Timed Efficient Stream Loss-tolerant Authentication) protocol [83].

Forensics and log analysis-based approaches for the IoT have been proposed at a variety
of deployment locations for investigation after DoS attacks. Such approaches include a
honeypot-based malware analysis, IoTPOT [80], which is used to track and report malware
that can potentially compromise the IoT devices and use them as zombie computers for
launching DDoS attacks. Forensics using distributed anti-honeypots has been proposed by
Wang et al. [104] for M2M communication (machine-to-machine, another name for the IoT)
to be deployed on networks between the attack source and destination. As a solution to be
deployed on the victim side, Oriwoh et al. [79] have proposed a user-manageable forensics
solution for the home IoT.

The secure migration mechanism presented in Chapter 6 maintains the availability of
the IoT services by migrating Things while Auths are under attack, thus it falls into the
category of the victim side, during the attack, as marked in Figure 7.3. Since the secure
migration approach involves migration policy construction and backup operations before the
attack, it has some overlaps with the “before the attack” category. Although TESLA++ falls
into the same category, the proposed secure migration technique is a more comprehensive
approach that covers more diverse IoT devices and cryptography, while TESLA++ focuses
on broadcasting network and message authentication.
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Chapter 8

Conclusions

8.1 Conclusions

Security schemes solely based on centralized trust do not take advantage of emerging edge-
computing devices and could face the problems of a single point of failure. Fully distributed
solutions may not be practical for the IoT due to the overhead on individual IoT devices,
especially resource-constrained devices. I envision the authentication and authorization in-
frastructure for the IoT to be locally centralized and globally distributed, which is achievable
by local authorization entities based on globally distributed trust among these authorization
entities.

In this dissertation, I propose a locally centralized and globally distributed authentication
and authorization infrastructure to address IoT-related security requirements, as summarized
in Table 8.1. The proposed approach has been realized as a novel toolkit for constructing
an authorization service infrastructure for the IoT called the Secure Swarm Toolkit (SST).
The proposed approach supports frequent, automated authentication and authorization by
using a local authorization entity called Auth. Auth authorizes registered entities through
session key distribution. By caching the session keys and allowing a variety of cryptographic
algorithms, even the entities with intermittent connectivity or resource constraints can be
authorized effectively. For authentication and authorization, an entity only needs to use
temporary session keys provided by Auth. Thus, it does not have to risk exposing its identity
by using its unique value such as a certificate, maintaining its privacy. This dissertation also
provides a rigorous, formal security analysis to ensure that SST meets necessary security
guarantees. This analysis shows SST’s scalability, and the experimental results illustrate
security overheads under a range of different security configurations.

Availability of IoT services can be critical for the system’s safety. By leveraging emerging
network architecture based on edge computing and SST’s distributed authorization infras-
tructure, the proposed approach achieves much higher availability even under failures of local
authorization entities running on edge computers. The proposed secure migration approach
will be appropriate especially for the Internet of Things under safety-critical environments
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Table 8.1: How the proposed approach addresses IoT-related security requirements intro-
duced in Section 1.2.2.

IoT Security Requirements Proposed Approach
Frequent authentication and autho-
rization

Auth controls every secure communication, and
it can enforce short key validity periods of session
keys

Automated mutual authentication Auth provides fully automated authentication;
no human intervention is required except for en-
tity registration

Intermittent connectivity Auth allows use of cached session keys
Dynamic registration of IoT entities An entity can be seamlessly registered/unregis-

tered with Auth, without interrupting other en-
tities

Support for scalability features Session keys can be shared by more than two
entities for one-to-many communication (e.g.,
publish-subscribe)

Consideration for resource constraints Small and lightweight symmetric session keys
are used for authentication; Auth allows var-
ious cryptographic algorithms for resource-
constrained devices, including the ones that can-
not afford public key cryptography

Privacy No unique identifier is needed for authentication,
thanks to the use of temporary session keys

Resiliency and Robustness SST’s secure migration technique can mitigate
the effect of failures of Auths or DoS attacks
on edge computers hosting Auths, by migrating
Things to other trusted available Auths.

Locality Auths are designed to be deployed local edge-
computing devices without dependence on re-
mote servers for authentication and authoriza-
tion

Ease of deployment SST is accessible to public as an open-source
toolkit, and secure communication accessors help
developers build IoT applications and integrate
with SST.
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including medical centers, manufacturing systems, and electric power grids, so that the pro-
posed infrastructure can maintain as much availability as possible.

I expect heterogeneous IoT devices, ranging from sensor nodes to electric power grid
control systems, can be integrated into the authorization infrastructure by virtue of SST’s
diverse security alternatives. Auth’s scalability will enable Internet-scale deployment of
the proposed infrastructure together with SST’s support for one-to-many communication to
cope with increasing data traffic. I also envision SST can facilitate further integration in
IoT network protocols, for example, by providing key distribution mechanisms for existing
network protocols for the IoT such as CoAP over DTLS.

8.2 Remaining Challenges and Future Work

There are still challenges that need to be addressed for further secure authorization infras-
tructure. Auth is fully automated once entity registration is completed. During registration,
Auth and the entity to be registered set up credentials, security configurations, and access
control policies. In many existing security solutions, this initialization process is quite costly.
However, to cope with scalability and dynamically added and removed IoT devices, there
should be an automated or semi-automated registration process. One possibility is to exploit
physical proximity, where the ability to place a device within a few centimeters of an edge
computing server establishes a trust relationship. Another remaining challenge is dealing
with authorization for mobile devices. I envision this can be done in a similar way as the
current cellular network, which deals with cellular handoff (changing cell towers as a mobile
phone moves).

To enhance the availability of Auth under a denial-of-service attack and avoid being a
single point of failure, a distributed implementation of Auth will be required. To provide
further security guarantees, we can use Auth as a point of intrusion detection, since it can
see access-related activities of local devices. Auth also can serve as a software attestation
center to guarantee that the IoT device is running a legitimate program not tampered with
by adversaries. Further studies need to be carried out on the usability of the SST’s software
building blocks for accessing Auth and IoT services.

Ease of deployment of authorization services for the IoT is another important challenge.
Accessors included in the open-source SST are expected to reduce the burden of IoT develop-
ers and increase accessibility to security solutions. Other remaining problems include timely
detecting malicious behavior in the IoT and providing guarantees for swarm applications
running remotely on untrusted IoT platforms.

Another remaining problem is to improve the proposed defense and mitigation against
denial-of-service attacks breaching availability. It will be necessary to investigate the use
of an ILP solver to construct a migration policy that is not only valid but also optimal
with respect to the overall network costs. The effectiveness and limitations of the proposed
migration mechanism will be further evaluated by carrying out larger scale experiments.
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Another future direction is to evaluate the proposed secure migration approach on examples
with a more diverse range of security requirements and resource availability.
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