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Abstract

High-Performance Systems for Crowdsourced Data Analysis

by

Daniel Haas

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael J. Franklin, Co-chair

Professor Kenneth Goldberg, Co-chair

In spite of the dramatic recent progress in automated techniques for computer vision and
natural language understanding, human effort, often in the form of crowd workers recruited
on marketplaces such as Amazon’s Mechanical Turk, remains a necessary part of data anal-
ysis workflows for machine learning and data cleaning. However, embedding manual steps in
automated workflows comes with a performance cost, since humans seldom process data at
the speed of computers. In order to rapidly iterate between hypotheses and evidence, data
analysts need tools that can provide human processing at close to machine latencies.

In this dissertation, I describe the design, theory, and implementation of performant
crowd-powered systems. After discussing the performance implications of involving humans
in data analysis workflows, I present an example of a data cleaning system that requires
low-latency crowd input. Then, I describe CLAMShell, a system that accurately labels
large-scale datasets in one to two minutes, and its evaluation on over a thousand workers
processing nearly a quarter million tasks. Next, I consider the design of multi-tenant crowd
systems running many heterogeneous applications at once. I describe Cioppino, a system
designed to improve throughput and reduce cost in this setting, while taking into account
worker preferences. Finally, I explore the theory of identifying fast individuals in an un-
known population of workers, which can be modeled as an instance of the infinite-armed
bandit problem. The analysis results in novel near-optimal algorithms with applications to
broader statistical theory. Together, these components provide for the implementation of
human computation systems that are cost-efficient, scalable, and fast enough to integrate
into existing data analysis workflows without compromising performance.
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Chapter 1

Introduction

With every passing year, technology is becoming more sophisticated and more ever-present
in our lives. Our cellphones help us navigate with realtime traffic alerts and information
about nearby businesses, while the software we use every day recommends the products we
buy, the movies we watch, and even the clothes we wear. Many of these advances can be
ascribed to what the popular media calls “The Big Data Revolution” [114], which can be
summarized as the timely intersection of three trends: a vast increase in the amount of
data being collected and made available over the internet, a dramatic decrease in the cost
of large-scale computing mainly due to the advent of public cloud computing providers, and
the development of powerful open-source software tools for computing on large datasets.

Applying massive computing resources to massive amounts of data comes with chal-
lenges, however, and though machine learning and data mining approaches have produced
an impressive array of futuristic applications, there are many problems for which automated
solutions fall short. For example, the best algorithms we have today cannot with high ac-
curacy understand the emotional sentiment of tweets, detect offensive content in videos,
or identify duplicate products in large datasets. These applications are critical to support
the technologies that power our lives, and they all have one important feature in common:
people can do them without much effort at all. Because of our innate human ability to
understand language and recognize patterns, most of us could look at a tweet and decide in
seconds whether it describes a positive or negative sentiment towards its subject, or examine
two smartphone listings from an online marketplace and decide whether or not they are
duplicates.

Taking advantage of this insight, today’s companies spend millions of dollars per year
paying human workers to complete simple tasks that cannot be automated [100], a practice
known as “human computation”. Unfortunately, putting humans into the loop between data
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and insight represents a major obstacle to performance1, since people and machines process
data on very different timescales. As a result, human computation can currently support only
those applications where speed is not a requirement, a shrinking set as consumers demand
insights faster and faster.

In this thesis, I study techniques that bring the performance of human computation to
near-machine timescales so that it can be usefully embedded in big data applications. I
argue that many of the sources of latency in human-powered systems are not fundamental,
and present systems [65, 66, 64] and algorithms [78] I have designed to eliminate them.
These techniques manage human workforces with software in novel ways, bringing together
ideas from many related areas in computer systems, computer theory, and human-computer
interaction.

1.1 Algorithms, Machines, and People

The rise of crowdsourcing has been an important catalyst in the development of human com-
putation systems. Crowdsourcing (see [50, 117] for recent surveys) has become an umbrella
term for any number of techniques that allow individuals or organizations to incentivize and
coordinate other people to provide services, ideas, or insights, mainly over the internet. In
this thesis, I focus on paid microwork, a form of crowdsourcing where workers accept mon-
etary compensation in exchange for performing small, repetitive data processing tasks such
as labeling images or translating text. Microwork platforms are vital to human computation
systems, which frequently break datasets into small groups of items and send them to paid
workers for processing.

Though there are many public platforms for paid crowdsourcing (see Section 2.2), the
most popular of them is Amazon’s Mechanical Turk (MTurk) [105], which was one of the
first platforms to develop programmatic application programming interfaces (APIs) on top
of its crowdsourcing product. MTurk’s APIs allow users to write software that automatically
creates a task, hires a worker to work on the task, displays an interface to the worker within
which to perform the task, pays the worker after the task is completed, and sends the results
back to the software, all without any manual intervention by the software programmer.
Table 1.1 lists some of the functionality provided by MTurk’s APIs, which can be invoked
from code written in 9 different programming languages including Python, Java, Javascript,
and C++.

Such APIs provide unprecedented control over human work, and open the door for large
scale hybrid human-machine computer systems where the flow of insights between people
and algorithms is bi-directional. For example, adaptive algorithms can request information

1The systems research community uses the term performance to refer to data processing speed, whereas
the machine learning research community uses the term to refer to the quality or accuracy of predictions.
In this thesis, which is primarily focused on system design, I use the word performance to refer exclusively
to system speed, and will use the terms quality or accuracy to describe the predictive power of machine
learning models.
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API Call Important Params Description

CreateHIT interface specification,
reward, number of an-
swers desired.

creates a new HIT (Human In-
telligence Task) and makes it
available to Workers.

CreateQualificationType test questions and an-
swer key.

creates a new Qualification task
that workers must pass before
working on HITs.

ListAssignmentsForHIT HIT identifier. retrieves results for completed
task assignments.

ApproveAssignment assignment identifier. approves the results of a com-
pleted assignment and pays the
worker.

RejectAssignment assignment identifier,
explanatory message.

rejects a completed assignment
and does not pay the worker.

NotifyWorkers message text, worker
identifiers.

sends an email to workers.

SendBonus worker identifier,
amount, reason.

issues a bonus payment to a
worker.

Table 1.1: A sample of API calls provided by Amazon Mechanical Turk [7].

in the form of labeled data from workers in order to refine machine learning models, and
humans can run algorithms to summarize, recommend, and visualize data to improve their
understanding of it. These systems are vital to modern data-driven applications that require
computational power that can only be provided by large clusters of computers, and accuracy
that can only be provided by human workers. As a result, many companies report using
crowdsourced human computation for training machine learning algorithms, cleaning large
datasets, and moderating content [100].

1.2 Where do Humans Fit in Data Analysis?

In the abstract, it is not difficult to imagine a system where humans and algorithms pass
data back and forth. But what do data analysis systems actually do, and how do they make
use of the crowd? Figure 1.1 lays out the phases of modern data analysis (for a detailed
description of the process, see, e.g., [48]). First, data are acquired from sensors, users on the
internet, or existing publicly available sources. Then, data are pre-processed to be ready for
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Figure 1.1: The process of data analysis ([61]).

analysis, for example by transforming fields into a consistent format or extracting structured
information from text, audio, or visual data. Next, the data are cleaned to correct errors,
fill in missing values, and eliminate duplicate entries. Subsequently, data analysts perform
exploratory data analysis by computing descriptive statistics of the data, querying the data,
or generating visualizations of the data. This step frequently leads to observations that
require further investigation by acquiring new data or adjusting pre-processing and cleaning
techniques. Finally, predictive models or algorithms are trained on the data to generate
insights, for example recommendation algorithms based on product data, or topic clustering
based on textual data. These algorithms, once deemed to be of sufficient quality, are built
into a data product used to make the decisions that power businesses and support user
applications.

Data science is typically performed by individuals or small teams within modern compa-
nies, but crowd workers are increasingly being used to aid in data analysis during all of its
phases. MTurk is frequently used as a data collection tool for survey data [15], and crowd
systems for data acquisition can augment existing datasets by asking the crowd to, e.g.,
list all of the computer science professors at Berkeley [137]. In the pre-processing phase,
human-in-the-loop systems allow workers to reformat data entries and guide algorithms for
automatic reformatting [82], as well as performing complex data extraction from images or
pdfs [63]. In the data cleaning phase, crowds can assist in acquiring missing data [112], iden-
tifying duplicate data [58], and resolving challenging data errors [34] (the system presented
in Chapter 3 is an example of a system that can do all three). During exploratory data anal-
ysis, crowds can help design useful visualizations [26] or execute open-ended queries that
require human interpretation of the data [52, 102, 110]. And to support predictive models,
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crowds are frequently tasked with providing labeled training data to improve the accuracy
of the models, for example by labeling objects in images [45] or translating text [23].

With APIs like those of MTurk, software systems can automatically hire crowd workers
and assign them data analysis work instead of requiring data scientists to create crowd tasks
by hand. These systems constitute an additional layer of abstraction on top of the crowd
platform, allowing data scientists to specify high level goals such as ‘eliminate duplicates
in this dataset of products’ rather than writing low-level code to hire and send tasks to
workers. In addition to improving usability, the extra abstraction allows systems to optimize
how they gather human input without affecting the data scientist’s specification of analysis
goals. This is analogous to relational database systems, which optimize how data is accessed
independently of how users specify SQL queries. Consequently, the optimization techniques
presented in this thesis can improve the performance of crowd systems without changing
how data analysts ask for crowd input.

1.3 Not as Easy as it Sounds

Unfortunately, designing human-powered systems comes with a unique set of challenges,
because human processors are different from computers in crucial ways. People have varying
levels of skill and experience, and do not complete tasks the same way every time, making
unintentional errors due to lack of attention or fatigue. They are orders of magnitude slower
at processing a single data item than a computer, and the time they take to complete a
tasks varies significantly over time and between individuals. They have inherent motivations
and interests that lead them to perform with different accuracy and speed on different
tasks. Ignoring these differences can lead to systems that counterintuitively produce results
of lower accuracy than purely automated systems, while simultaneously costing more and
taking longer to compute those results.

As a result, existing human computation systems explicitly model human behaviors and
design techniques to address them, focusing on improving one or more of three key goals of a
human computation system: reducing cost, increasing quality, and maximizing performance.
These goals are all highly interrelated. For example, techniques that reduce cost by reducing
the fraction of data processed by human workers [143, 101, 111] can hurt accuracy because
answers require approximation, but will improve performance because there is less work to
do. Techniques that attempt to improve quality by getting more opinions [75, 18], on the
other hand, will increase costs because more workers must be paid, and will hurt performance
because getting more opinions takes longer.

Much of the previous research on optimizing crowd systems has focused on tradeoffs
involving cost and quality, allowing performance to fall by the wayside. However, supporting
modern interactive data analysis workflows also requires a focus on crowd performance.
Waiting days for the crowd to process a large dataset is unacceptable when the analysis
workflow is being re-adjusted every few minutes, or when the data is constantly changing.
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In this thesis, I focus on optimizing crowd performance in order to design systems that can
process large datasets in minutes, not days.

Intuitively, addressing crowd performance seems like a fundamental challenge due to
the difference in timescales between human and machine processing. However, people can
complete individual tasks such as image labeling in less than a second, and automated data
analysis systems routinely take minutes to hours to train machine learning models or query
large datasets. One of the key arguments of this thesis is that by identifying and eliminating
the bottlenecks that slow crowd systems down, crowd-powered data analysis can complete
on timescales similar to those of completely automated systems.

1.4 Optimizing Crowds by Analogy

Ironically, although the major challenges to the design of crowd-powered systems arise from
the behaviors that set people apart from computers, many of the system optimizations
presented in this thesis and elsewhere that address those challenges are inspired by the
similarities between human and machine. For example, representing crowd tasks as functions
that take an input and produce a structured output allow for optimizations that collect
multiple outputs for the same task and average them together.

A key analogy that I leverage in this thesis is between crowds of human workers and
clusters of distributed computers. In many ways, sending data processing tasks to multiple
people and gathering their responses is like a distributed system whose master server coordi-
nates computation across numerous worker computers, especially those that do so in multiple
stages, such as mapreduce systems [43] or distributed dataflow engines [147]. Similarly, sup-
porting multiple user applications running on a single crowd is analogous to multi-tenant
cloud computing environments that must share resources fairly but efficiently between the
clients in the system. These analogies are useful because, unlike in crowd systems, an
immense amount of effort has been focused on optimizing the performance of distributed
computation, both in the systems and theory communities. In this thesis, I take inspiration
from the analogy between crowd workers and computers, and adapt systems techniques such
as straggler mitigation [10], scheduling [108], autoscaling [116], and multi-tenant resource
sharing [56], as well as the learning theory of multi-armed bandits [77] to help improve the
performance of humans in supporting data analysis.

1.5 Thesis Overview and Contributions

This thesis focuses on designing systems and algorithms to accelerate crowd-powered systems
to near-machine performance so they can be embedded in automated data analysis workflows.
In it, I make the following contributions [65, 66, 78, 64]:

• I motivate performant crowd systems with examples of modern data analysis sys-
tems that rely on repeated low-latency input from humans. I have released Sample-
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Clean [124], one such system, as open source software.

• I analyze in depth the sources of latency in crowd systems, and use that understanding
to identify where effort should be focused in order to improve crowd performance.

• I leverage the similarities between crowd data analysis and distributed cluster compu-
tation to bring theory and techniques from other areas to bear on crowd performance.

• Building on ideas from these related areas, I propose optimizations and algorithms
that dramatically reduce latency, increase throughput, and lower the cost of crowd-
powered data analysis systems. My proposals explicitly take into account the subtleties
of human behavior that can affect performance, and support multiple applications
running on a single performant crowd. Many of these techniques are available as part
of the open-source software package AMPCrowd [9].

• I evaluate these proposals extensively via three main mechanisms: large-scale experi-
ments on live crowd workers, simulations that use synthetic and trace-based task work-
loads and crowd behavior to explore how environmental variation affects the impact
of techniques, and proofs that offer high-probability guarantees on the performance of
algorithms. The CLAMShell system presented in Chapter 4 can reduce the latency of
crowd-powered data labeling by up to 8× and reduce its variance by up to 150×, and
the Cioppino system presented in Chapter 5 can reduce the cost of data analysis on a
multi-tenant crowd by up to 19× while increasing throughput by 20%.

The ultimate goal of this thesis is to support a new class of system that can improve
quality by integrating people into the data analysis process without significantly altering the
end-to-end performance of automated data analysis systems. This is only possible because
of the separation between the level of abstraction at which system users specify the data
analysis tasks they want humans to work on, and the level of abstraction at which the system
hires, pays, and assigns tasks to crowd workers. By hiding the complexity of performant
crowdsourcing from data analysts and taking advantage of low-level APIs for crowd work, I
allow crowd-powered systems to implement optimizations that improve performance without
affecting the way in which data and results are communicated.

1.6 Organization

The remainder of this thesis is organized as follows. Chapter 2 introduces crowd-powered
systems for data analysis, with a focus on the obstacles to achieving near-machine perfor-
mance. In doing so, it surveys related work in crowd-powered systems as well as the several
other areas on which this thesis draws.

Chapter 3 further motivates performant crowd-powered systems with an in-depth look at
Wisteria, an example of the kind of human-in-the-loop system that is enabled by performant
crowds. Wisteria allows users to specify plans for data cleaning with either automated or
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human operators, and brings them together under a unified workflow abstraction. To make
this abstraction work, the system relies on crowd operators running at comparable timescales
to automated operators, and requires consistency in crowd response times.

Chapter 4 demonstrates that consistent performance from crowds is possible, and that
latency can be reduced to the point where large datasets can be processed by humans in min-
utes. I describe CLAMShell, a system that incorporates multiple optimizations designed to
reduce the task, batch, and full-run latency of crowd-powered data analysis. These optimiza-
tions are inspired by techniques from cluster computing, and include straggler mitigation,
pool maintenance, and hybrid active-and-passive learning. I evaluate CLAMShell on a crowd
of over 1,000 MTurk workers running nearly 250,000 tasks, showing order of magnitude
reductions in the speed and variance of getting answers from the crowd.

In Chapter 5, I extend CLAMShell with additional techniques for managing pools of crowd
workers, relaxing the assumption that pool size is fixed and providing support for multiple
crowd-powered applications running in parallel on the same pool of workers. I introduce
Cioppino, a multi-tenant crowd system inspired by analogies between crowd worker man-
agement and cloud infrastructure management. Cioppino is architected around a queuing
model of worker behavior, and leverages novel techniques to improve the performance and
efficiency of the crowd, including control-theoretic auto-scaling of the crowd in response to
changing application workloads, adaptive recruitment to compensate for worker abandon-
ment, and proactive transfer of workers between applications to maximize utilization. I
evaluate Cioppino in simulation on a trace derived from workers hired by the CLAMShell sys-
tem of Chapter 4, and demonstrate that the system’s techniques can dramatically decrease
cost, while improving performance and respecting workers’ preferences for which tasks to
work on.

In Chapter 6, I describe my work on the problem of identifying fast workers in an anony-
mous crowd. The optimizations of Chapters 4 and 5 rely on access to a pool of quick workers,
and this work provides theoretical guarantees on how efficiently such a pool can be identified
among an unknown population. Finding fast workers can be connected to a statistical setup
called the most biased coin problem. I prove lower bounds on the hardness of this problem,
importantly demonstrating that strategies that try to learn about the crowd population
and then use that knowledge to find fast workers are quadratically more expensive than
adaptive algorithms that simultaneously learn and search. Subsequently, I present a novel
adaptive algorithm that finds fast crowd workers with no prior knowledge of the worker pop-
ulation distribution parameters, and prove near-optimal guarantees on its runtime. These
algorithms have important consequences not only for crowd systems but for any sequential
decision process.

Finally, in Chapter 7 I summarize the main contributions of this work and discuss some
of its limitations. I conclude by suggesting future opportunities for improving the state of
performant crowd systems, and offer a few final thoughts on the broader implications of
designing hybrid human-machine software.
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Chapter 2

Background

The term “wisdom of the crowd” is frequently invoked to describe the power of bringing the
attention of many people to bear on a single difficult problem. However, there is a wide
gap between the understanding that crowdsourcing can be an effective problem solving tool
and the ability to design software systems that efficiently leverage human expertise. Over
the past decade, significant progress has been made in the latter, to which this chapter
provides a gentle introduction. In particular, because this thesis focuses on the performance
of human-powered systems for data analysis, I focus on background related to data analysis
systems.

In addition to describing how state of the art crowd-powered data analysis systems work,
I identify key challenges in their design, particularly those related to system performance.
Throughout, I describe related work both in the area of human computation systems and in
the several other areas from which my thesis draws.

2.1 The Cast of Characters

When reading a thesis about computer systems that assign work to humans, it is easy to get
confused about which humans are doing what. There are two main roles played by humans
in human computation systems: those who request work and those who perform it. Here, I
briefly highlight the terminology used to refer to each, both in this thesis and in other work.

Users, alternately data analysts or requesters, are the humans who are seeking to use
a human-powered system to accomplish a data analysis goal such as training a machine
learning model or cleaning a data set. They load datasets into the system, issue high-level
commands (e.g., ‘clean the date column of the Restaurants table using the crowd’), and
use the results of the analysis after it has completed (e.g., run a query on the cleaned up
Restaurants table).
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Workers1, alternately the crowd or human processors, are the humans who actually
analyze data, coordinated by the system itself. They are employed internally by companies
or hired on platforms such as MTurk, and repeatedly interact with the system’s interface to
perform tasks such as data labeling or de-duplication. Systems that optimize performance
by managing their workforce, such as those described in Chapters 4 and 5, hire and release
workers using automated algorithms, but other systems may make hiring decisions in a
more traditional way (i.e., through an HR department) or by leaving hiring decisions to the
first-come, first-served policy used by most crowd marketplaces today.

Though in some systems, these roles are easy to identify and separate, in others it can
be less clear. For example, in some human-in-the-loop data cleaning systems (e.g., [58]), the
system user also acts as an expert worker by processing example data items. For this reason,
it is preferable to think of users and workers as roles, rather than individuals, understanding
that a given person may embody both at once.

2.2 Human Computation Platforms

The workers who process data must be hired from somewhere, and there are numerous
platforms that serve as marketplaces to connect users with workers. In this section, I overview
some of the platforms most commonly used in human-powered data analysis systems and
describe their features. All of them have in common the feature that tasks can be sent to
workers programmatically, separating them from traditional employment marketplaces and
recruiting tools.

Internal Crowd Platforms. A recent survey found that about 50% of companies that
use crowd work host platforms developed in-house to coordinate workers rather than hiring
them on public marketplaces [100]. Larger technology companies in particular have received
attention for their use of contracted labor on internally-developed platforms for crowdsourc-
ing, including Twitter [12], Facebook [150], and Google (both in their Youtube [4] and
Search [47] products). Workers are either full-time employees or (more commonly) con-
tracted from agencies such as ZeroChaos [149] or TaskUs [134] that specialize in outsourcing
and temp jobs. Once hired, workers are coordinated using proprietary software for tasks
including data categorization, content moderation, and data analysis (see Section 2.3.5 for
common specific crowdsourced data analysis applications).

Microtask Crowd Platforms. The most popular public crowdsourcing platforms for
data analysis specialize in microtasks : small, simple questions with well-defined outputs that
require little context to complete, for example image labeling or text translation. By far the
most popular such platform is Amazon’s Mechanical Turk (MTurk) [105], which connects

1Note: the terminology becomes unavoidably more complicated because computers in a distributed
cluster are also frequently referred to as workers. In this thesis, I explicitly modify worker with ‘machine’ or
‘node’ unless it is clear from context that I am referring to a computer.
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users with a workforce of over 500,000 workers from 190 countries. MTurk has been widely
adopted by the academic community because of its convenient APIs for creating tasks, hiring
workers, and fetching results. Common tasks on the platform include translation, transcrip-
tion, image processing, and data extraction or collection. Other popular microtask platforms
include CrowdFlower [39], which sources workers from multiple partner ‘channels’ and offers
several additional features such as quality control in addition to simply creating tasks, and
Samasource [123], which focuses on recruiting workers from disadvantaged populations in the
developing world and organizes them via agencies that provide office space and computers
to perform microtask work.

Macrotask Crowd Platforms. Some data analysis work, for example complex data ex-
traction [63], cannot be accomplished via short microtasks. To complete such tasks, workers
are typically hired as freelancers in longer-term contracts on macrotask platforms. Up-
work [138] (formerly Elance and Odesk) is the best known macrotask platform. Its free-
lancing model is much closer to traditional employment than microtask platforms, and in
addition to performing crowd-powered data analysis tasks, workers are hired to perform work
such as web design, copy editing, and software development. As a result, the platform is
heavily focused on connecting users with workers who have the necessary expertise, experi-
ence, and availability. However, the site still provides programmatic access to contracting,
task assignment, and payment.

Domain-specific Crowd Platforms. The previously described human computation plat-
forms are entirely generic, in the sense that users can design their own interfaces and ask
workers to perform any type of work. However, there are also a number of crowd platforms
tailored to employing workers for specific types of work, both microtasks and macrotasks.
For example, Tamr [132, 130] leverages human workers to assist in data integration micro-
tasks, and LeadGenius [92] (formerly MobileWorks [106]) employs the crowd to manage the
process of sales lead generation and management (composed of complex macrotasks).

Platform Features. Beyond allowing programmatic access to a human workforce, most
human computation platforms provide additional features to improve the experience of re-
questers. For example, MTurk and Crowdflower both provide ready-made templates for task
interfaces in common categories such as image tagging or data collection so that requesters
need not design their tasks from scratch.

One important feature is task quality control, which seeks to minimize errors in human
work. Crowdflower provides out-of-the box quality control by automatically sending tasks
to multiple workers and inferring the result based on inter-worker agreement. Though other
platforms do not offer this feature, their users frequently implement it anyways using custom
code. MTurk also allows workers to be filtered based on the quality of their previous tasks
in order to improve the likelihood of high quality work. Platforms such as Upwork and
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Samasource provide tools for users to spot check workers’ output, an important technique
for macrotasks that cannot be assigned to multiple workers.

Additionally, all platforms allow users to provide feedback to their workers. MTurk lets
users reject tasks that are poor quality with explanations to help the worker improve, and
Samasource, Crowdflower, and UpWork allow for detailed feedback around each task as well,
though Samasource typically expects managers in its agencies to provide training rather than
depending on requesters.

Finally, platforms typically provide mechanisms for assessing the quality of workers.
MTurk uses quantitative measurements such as percentage of tasks accepted vs. rejected,
allows users to design custom qualification tasks for workers, and has its own ‘master’ qual-
ification to identify high quality workers. Crowdflower organizes workers into three tiers of
quality, allowing workers in the top tiers access to more interesting work with higher pay.
Additionally, it uses tasks with known answers to explicitly assess worker quality, and uses
some of the algorithmic techniques described in Section 2.4.1 to infer quality from completed
work. Upwork also allows for task-specific qualification tests, and uses its public feedback
system to track the reputation of its workers.

2.3 Human-in-the-Loop Data Analysis

The high-level goal of a human-in-the-loop system is to divide labor between automated
data processing and human worker contributions in a way that takes advantage of the speed
of software without losing the insights of the workers. A key property of such systems is
declarativity : data providers typically specify data analysis tasks at a high level without
prescribing the details of the division of labor. This creates opportunities for optimization.
In particular, the workflow describing how data is passed between workers and system,
the selection and management of the workers employed by the system, the assignment of
particular workers to particular data points, and the interface that workers use to operate
on data can all be modified while still meeting the requirements of the data provider.

Nevertheless, most human-powered data analysis systems follow a similar overall work-
flow (illustrated in Figure 2.1), wherein batches of data are repeatedly sent to workers for
processing until the desired analysis is judged to be of sufficient quality. The following
subsections examine this process in detail in the context of an example application.

2.3.1 Overview and Example Application

Though the specific type of analysis performed by a human-powered system may vary, the
flow of data throughout the system is fairly consistent across applications. For ease of
exposition, I will describe this flow in the context of a simple example from data cleaning:
the goal is to remove duplicate products from a dataset using the crowd, a process known as
Entity Resolution. To do so, the system asks crowd workers to compare pairs of products and
answer the binary question, “Do these two product descriptions refer to the same real world
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Figure 2.1: The flow of data through a human-powered data analysis system.

entity?” Because product databases can be very large and pairwise comparison is quadratic
in the size of the data, it may be impractical to ask workers to compare all pairs of products
in the dataset. Instead, typical entity resolution systems acquire enough answers from the
crowd to train a binary classifier that can identify a pair of products as duplicate or distinct,
then use that classifier to label the rest of the data.

Now let us consider a single execution of our entity resolution application on a dataset
of products, following the flow in Figure 2.1. First, the Data Analysis Module selects a
batch of product pairs to be labeled, and sends it to the Human Computation Module. The
Human Computation Module synthesizes each pair into an interface that can be presented to
a worker, for example, an HTML form with radio buttons for ‘duplicate’ and ‘not duplicate’.
It then uses the API of a platform such as MTurk to publish the interface as a task. Once the
task is published, a worker is assigned to complete it. When the worker completes the task,
the HTML form is submitted, and the worker receives payment for the work. The submitted
responses are aggregated by the Human Computation Module, and when the whole batch is
complete, the processed batch is returned to the Data Analysis Module. The Data Analysis
Module uses the labeled batch to train a binary classifier, and evaluates the quality of the
classifier against held-out data using a technique such as k-fold cross-validation. If the
classifier is judged to be of sufficient quality, it is used to assign labels to all remaining pairs
of products, and the analysis is complete. If not, the Data Analysis Module selects another
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batch of data to be processed, and so forth until an accurate classifier has been trained.

2.3.2 Selecting Records to Process

How does the Data Analysis Module pick which records to put into each batch? Picking a
small subset of records to be representative of the entire dataset is essentially a population
sampling problem, so any number of techniques from the statistical literature might be
appropriate, but there are several common approaches:

Random sampling. The simplest and most common approach to batch selection is to
simply pick a set of records uniformly at random from the data set. This can be desirable,
for example, when fitting a supervised learning model that assumes that its training data are
independently distributed. For applications where machine learning is not involved, random
sampling is a reasonable default if there is no domain knowledge to inform the choice.

Adaptive sampling. Batch selection can also be accomplished using active learning tech-
niques (see [126] for a survey) that leverage information about previously-processed data to
pick the next batch. Intuitively, this approach makes sense: if, for example, the system has
already identified most of the duplicate smartphone records in the product database, it is
likely more useful for the classifier to observe examples of duplicates among other products
than to be given another example of two matching smartphones. When employed appro-
priately, active learning can dramatically reduce the number of records the crowd needs to
process before a high-quality classifier is obtained. As a result, a number of recent systems
have leveraged active learning to select batches of data to send to the crowd [58, 104].

Stratified sampling. When information is known about natural groupings in the dataset,
records can be selected based on those groupings. For example, if the product database con-
tains a column describing the category of each product, it clearly makes sense to prefer
record pairs within the same category (e.g., two smartphones) over pairs that span very
different categories (e.g., a smartphone and a soccer ball). In systems for entity resolution,
these domain-specific criteria for picking records are called blocking rules, and are employed
universally [142, 58]. Stratified sampling is also important for applications performing ap-
proximate query processing with the crowd [70], particularly when records are unevenly
distributed among groups. The SampleClean system takes this into account [143].

2.3.3 Synthesizing Task Interfaces

Once a batch of records has been selected, each must be presented to workers in an interface
that allows for efficient and accurate data processing. Because most human computation
occurs via a web interface, interfaces are almost exclusively described in HTML. The standard
approach to generating these interfaces is template-based: each task type is assigned an
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HTML string that is complete except for data-dependent fields, represented by placeholders.
To synthesize the interface for specific data records, these fields are extracted from the
records and substituted for the template’s placeholders. Templates for specific task types can
either be hardcoded in the system (the default approach), generated based on the semantic
operation performed (e.g. ‘sort’ or ‘check equality’) [52], or registered via system APIs [102,
63].

2.3.4 Recruiting Workers

The assumption that a worker can be hired on-demand when data is ready for analysis
underlies many human-powered data analysis systems. Interestingly, the model of recruit-
ment popularized by MTurk is somewhat inverted from this: available tasks are published
in a large listing, and workers choose which tasks to work on according to their preference.
This means that a task is not guaranteed to have a worker assigned to it unless the task
is sufficiently desirable (i.e., interesting, high-paying, etc.). The mismatch between sys-
tem assumptions and platform realities has significant consequences for the performance of
crowd-powered systems, which has led to the development of several alternate recruitment
models, including:

In-house crowds. Especially at larger companies, platforms like MTurk are increasingly
eschewed in favor of directly hiring contract or temp workers in-house to perform manual
data analysis tasks [4]. These workers are paid hourly or proportionally to the number of
tasks completed. This approach gives companies much more control over the size, training,
and skill of the available workforce and the speed with which new tasks are assigned to
workers.

Retainer pools. First suggested by Bernstein et al. [16], the retainer model builds on top
of existing platforms to explicitly place task assignment in the hands of the system. Retainer
pools recruit workers in advance of work becoming available and pay them cents per minute
to wait if there is no work available (though they are free to perform other work during that
time). When the system has new tasks to process, it directly assigns them to workers waiting
in the pool. The retainer model has been shown to effectively eliminate the overheads of
recruitment time, and the added cost of paying workers to wait is not unreasonable when
amortized over a large batch of data or deployed in a high-load streaming setting.

In this thesis, I focus exclusively on the retainer pool model of worker recruitment. This
is because, as I demonstrate in Chapter 4, not doing so has severe consequences for system
performance. The design of performant crowd systems cannot be accomplished on top of a
worker recruitment model that undermines key assumptions about worker availability.
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2.3.5 A Sample of Applications

The entity resolution application I have used as an example thus far, while illustrative, is
only one of the many uses of crowd-powered data analysis systems. The workflow described
in Figure 2.1 is quite general, and a wide variety of applications have been developed using
it. Here I describe some of the most common classes of human-in-the-loop data analysis
applications.

Machine learning. Due to the recent surge in the volumes of data collected worldwide
and the ease of acquiring the computational resources to process them, there has been an
increasing ubiquity of use cases for machine learning. The most widely used machine learn-
ing techniques fall into the category of supervised learning, in which a predictive model is
built by running a statistical algorithm on a labeled training set. In the rare instance that
users already possess labeled data, this works well. However, for many use cases, a labeled
training set does not exist a priori, and the labeling process is often complex enough that
human input is needed to generate accurate labels. As a result, crowd-powered data la-
beling for machine learning has been widely adopted in industry [100], and the academic
community has designed approaches for generating training data [46, 91], using active learn-
ing techniques to pick the most useful training points [58, 104], or using crowd workers to
generate useful features for machine learning [33]. Because of humans’ natural expertise,
many crowd machine learning applications focus on the areas of vision and natural language
understanding.

Data cleaning. Another consequence of the availability of large quantities of data is the
opportunity to analyze data combined across many different datasets. Unfortunately, merg-
ing datasets frequently leads to missing, incorrect, or duplicate data. Though some errors
can be fixed only by domain experts, others are amenable to processing by non-expert
crowd workers, and crowd systems have been proposed for tasks such as integrating multiple
datasets [130], performing entity resolution to eliminate duplicates [58, 142], fixing missing
or incorrect values [103, 112], and supporting end-to-end multi-stage cleaning workflows [34].

Data extraction. Much of the data on the web is locked up in hard-to-analyze formats
such as HTML, pdfs, flash animations, or even paper forms. Data extraction techniques
seek to identify the structure in such data and translate them into more machine-readable
formats, often relational tables. Again, though automated approaches to extraction can be
successful if the data have relatively consistent latent structure [22, 14], in many cases humans
are required to reliably identify structured data. Human-in-the-loop systems have been
proposed to extract data from spreadsheets [32], paper forms [30], various web formats [63],
and unstructured fields within a structured dataset [82].

Data acquisition. Traditional data systems have been built around the closed world as-
sumption: if a record is not in the system, then it does not exist. In reality, this assumption
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seldom holds, as there are no existing systems that capture universal knowledge. Crowd-
sourcing offers a unique opportunity to relax the closed world assumption, since workers
can be asked to search for and contribute knowledge to a system storing incomplete in-
formation. As a result, crowd-powered systems have been proposed to answer open-world
relational queries [52, 102, 110], enumerate lists of unknown length [137], fill in tables con-
taining unknown data [112], or search for data with properties that can only be verified by
humans [41, 109].

2.4 Challenges in Human-Powered System Design

Designers of performant human computation systems must resolve a key tension between
human behavior and programmatic abstraction. On the one hand, we would like to build
high-quality, easy-to-program, low-latency, low-cost, high throughput systems that treat
workers as abstract computational resources. On the other, we must acknowledge that
workers are not CPUs, and that there are human factors that will confound performance
if we don’t take them into account. As a result, a good system abstraction must model
enough of these factors to avoid surprises in performance without falling down the rabbit-
hole of attempting to capture all of human behavior. In this section, I discuss the challenges
that arise when using human workers to power systems and how the existing literature has
addressed them.

2.4.1 Quality Control

One important difference between workers and computers is that workers have varying levels
of skill and experience, and may not complete work with consistent accuracy over time
due to familiarization or fatigue [74]. As a result, crowd-powered systems cannot assume
that the output of a task is guaranteed to be 100% accurate, and a prominent focus of the
crowdsourcing literature has been on quality control : mitigating errors introduced by workers.
Past errors made by workers provide an important signal for predicting errors made on the
current task, so many approaches to improving task quality involve simultaneously fixing
errors and learning worker quality.

Most of the tasks necessary for data analysis (with the notable exception of data extrac-
tion, see, e.g., [63]) fall into the category of microtasks : short, simple work that requires little
to no training and has a well-defined categorical output. For example, entity resolution task
outputs are binary yes/no answers, and image object detection task outputs are categorical.

Quality control for microtasks has received the most attention in the literature. One
approach to quality control is algorithmic. These techniques weigh worker responses based
on quality inferred from previous answers [75, 83]. Beyond simple weighted averaging, other
algorithms have been adopted from the statistics literature to address crowd quality, most
popularly Expectation Maximization [42] algorithms that simultaneously estimate the an-
swers to tasks and the error rates of workers [83, 80]. Another approach to quality control
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uses additional crowd workers to improve the quality of tasks. For example, the Find-
Fix-Verify design pattern [18] verifies task outputs by having other workers vote on their
correctness. Finally, machine learning can be used to predict and control quality. Rzeszo-
tarski et al. [122] use behavioral measures such as mouse movements and task completion
time to train a predictive model of task error.

In complex macrotasks where task output may not be binary or categorical, quality
control is more challenging. The main approaches include using machine learning based on
task-specific and worker-specific features to predict task quality [63] and organizing workers
into hierarchies so that more senior workers can efficiently identify and correct errors in work
completed by those less experienced [63, 106].

In practice, most real-world crowd deployments use a combination of two simple ap-
proaches. First, so-called “gold standard tasks” with known answers are assigned to work-
ers and used to assess their baseline accuracy, and workers with low quality are excluded
(CrowdFlower [39] provides this service, for example). Second, incoming tasks are assigned
to multiple workers, and a majority vote of their responses is used as the task output. These
techniques, though repeatedly shown to be less effective then the more sophisticated ap-
proaches described above, are easy to implement and frequently perform “well enough” for
many use cases.

2.4.2 Cost

Though there exist platforms for ‘volunteer-sourcing’ data analysis (CrowdCrafting [38] and
GalaxyZoo [54], for example), workers employed to process data typically expect to be paid.
As a result, systems making heavy use of human computation need to account for the
monetary costs associated with crowd labor. Workers are typically paid in one of two ways:
on a per-task basis, with each completed task earning a few cents, or hourly, based on a
fixed rate. The retainer model described in Section 2.3.4 does both at once: idle workers are
paid an hourly wage to wait for work to arrive, and active workers are paid for each task
they complete. These costs can grow quite large, especially as the size of the dataset being
processed grows. There are two main classes of technique used by crowd-powered systems to
reduce costs. One class reduces the fraction of a dataset examined by the crowd to lower the
number of tasks that must be paid for. The other class dynamically adjusts task features like
pricing or redundancy to pay the minimum amount necessary to meet system performance
and quality goals.

Reducing the data processed. Several approaches to reducing cost by considering less
data have been successful. Some approaches improve the efficiency of specific operations.
For example, in entity resolution, blocking rules eliminate crowd tasks that would compare
pairs of items very unlikely to be duplicates [142]. Marcus et al. [99] ask workers to estimate
counts (for example, of the number of males vs. females in a large set of images) in order to
avoid having a separate task for each data point. Das Sarma et al. [41] find items possessing
human-verifiable properties in a dataset using algorithms that can ask fewer questions of the
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crowd in order to be cost-optimal. Parameswaran et al. [111] describe multiple workflows
for crowdsourced information retrieval that vary the number of questions asked to crowd
workers in order to maximize precision and recall.

Domain-independent techniques can reduce costs by carefully sampling the dataset. For
example, the SampleClean system uses the crowd to clean a fraction of the data, then uses
statistical techniques to estimate query results on the whole dataset [143]. Additionally,
machine learning techniques show the crowd a small set of training examples, then extrapo-
late from that data to process the remainder of the data set. Active learning techniques in
particular, which iteratively use a point selection algorithm to pick a small set of informative
points to label, then retrain their model on the new labels, are useful for reducing the amount
of training data needed to produce an accurate model [36, 126]. As a result, they have been
used in several crowd-powered systems to reduce cost [58, 104], and I make use of them in
Chapter 4.

Adjusting tasks for efficiency. In addition to simply considering less data, crowd-
powered systems can reduce costs by modifying the way in which tasks are run. For example,
interfaces can be redesigned to make workers more efficient. A common strategy is batching,
where a worker processes multiple data records in a single task [99, 101, 142]. In a batched
interface, a worker is paid slightly more per task, but the system saves money per record
because each task contains several records (5-10 records per task is typical). Another way
to save costs is to dynamically adjust pricing in order to pay workers just enough to encour-
age them to accept and process tasks fast enough to meet system performance or quality
goals [55, 24]. Finally, in settings where multiple workers process each datapoint in order to
improve quality, cost can be reduced by adaptively varying the number of workers assigned
to a record based on the expected quality improvement of getting another opinion [127].

2.4.3 Performance

Perhaps the most obvious drawback to embedding humans in automated data analysis sys-
tems is the fundamental difference in speed between a human and a computer: computers
perform billions of operations per second, but even at their fastest, humans can only process
one or two records in a second. In addition, human response times tend to exhibit high
variance, as a multitude of factors from inherent speed to temporary attention or fatigue
differ between individuals. In order to prevent human steps from becoming the bottleneck in
automated data analysis, crowd-powered systems must find ways to mitigate the latency and
variance of worker response times. Crowd system performance has only recently received
attention, as it is significantly harder to reason about and experiment with than cost or
quality. Here, I list some important considerations that should be taken into account when
designing crowd systems for performance, and survey related work that has addressed them.
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Problem domain. The easier the crowd work, the less potential for human factors to
affect system performance. For example, microtasks such as image labeling where the result
is objectively correct or incorrect, the output data is well structured, and the data domain
is easily understood by most workers can be incorporated into systems that use simple
API calls to show workers tasks and aggregate their results. Systems that intentionally
decompose complex problems into microtasks [18, 95, 85] or those that recruit experts who
better understand the problem domain [119, 90] explicitly address this issue.

Desired latency and throughput. When workers are processing tasks at high speed,
they will not behave as consistently as CPUs. It is well-known that crowd workers take
breaks, exhibit fatigue or lack of attention to tasks, and eventually abandon the system
entirely [121, 17]. If latency is an important system metric and individual workers complete
many tasks, these human factors must be taken into account. For example, inserting micro-
breaks [121] can keep workers better focused during actual working time, and careful task
design can help reduce the latency of the crowd [86, 99]. In Chapter 4, I describe techniques
to reduce latencies by an additional order of magnitude, and in Chapter 5, I discuss how to
improve throughput when supporting multiple low-latency crowd systems simultaneously.

Desired availability of crowd workers. Workers cannot be reliably provisioned on de-
mand like cloud compute resources, and exhibit incredibly high variance in the latency with
which they accept tasks posted on marketplaces like MTurk. In addition, for complex work,
new workers may require overhead for onboarding and training. Systems where availabil-
ity is a concern use techniques like retainer pools [16], variable task pricing [55, 24], and
over-recruitment [20] to ensure that recruitment time doesn’t become an issue.

2.4.4 A Focus on Latency

This thesis describes novel techniques and algorithms for improving the performance of
crowd-powered data analysis systems. Though the previous section provided an introduction
to the performance challenges of crowd systems, properly motivating latency reduction in
crowd systems requires a deep understanding of where latency in human systems arises.
This subsection comprehensively lays out the potential sources of delay in a crowd system
to provide that understanding. Figure 2.2 shows the sources of latency in the context of the
crowd-powered system workflow introduced in Section 2.3.

A multitude of factors can increase latency, from algorithm choice to worker and envi-
ronmental factors. Categorizing the factors based on the granularity of work provides a clear
decoupling of algorithmic contributions from systems concerns. Specifically, latency might
arise from the speed of a single task, a fixed batch of tasks, or the full run of multiple batches
(of possibly varying sizes).
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Figure 2.2: The flow of data through a human-powered data analysis system shown in
Figure 2.1, with sources of latency labeled.

Terminology. To better characterize the flow of tasks in a crowd system, I first introduce
some terminology. A task is a single unit of work2 that is assigned to a worker. The per-
task latency is the time between the task’s creation on the crowd platform (via an API
call such as the CreateHIT call of Table 1.1) and the worker’s submission of the completed
work. Multiple tasks are grouped into a batch, which is sent to the crowd and processed
by multiple workers in parallel. The per-batch latency is the time between the creation of
the first task in the batch and the submission of the last task in the batch. The next batch
does not begin until the current batch ends. Tasks in each batch are sent to a retainer pool
of crowd workers (which I will refer to interchangeably as the pool, the crowd pool, or the
worker pool). Workers in the pool are assigned tasks in parallel, and receive a new task as
soon as they submit a completed one. An application is data analysis software that runs
multiple batches of tasks serially. An application’s full-run latency is the time between the
start of an application’s first batch and the end of its last batch.

Per-task latency. The latency of a single task can be viewed as arising from a linear
sequence of three phases:

2though it may contain multiple data records, e.g. an entity resolution task that asks a worker to compare
two items.
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1. Recruitment: workers do not immediately begin working on newly submitted tasks,
and recruitment latency consists of the time until an interested crowd worker accepts
a newly posted task. Due to the worker-oriented task assignment policies of platforms
like MTurk, recruitment times of minutes to hours are not unusual.

2. Qualification and Training: once workers accept a task for the first time, they are often
presented with tutorials or qualification tasks before they are permitted to perform
actual work.

3. Work: the amount of time a worker spends to complete a task can vary depending on
the worker competency, the time of day, fatigue, and numerous other factors [89, 74].
Note that a single task may produce multiple labels if records are batched into tasks
(a common practice).

Per-batch latency. The latency of a fixed-size batch of tasks is the time for all tasks in
the batch to receive responses. Batch latency is affected by the latency distribution of all
available workers, in addition to each worker’s individual variations. On microtask platforms
like MTurk, it is common to observe extremely slow batch completion times. This effect is
driven by three sources:

1. Mean Pool Latency (MPL): If all workers processing a batch are slow on average, the
batch latency will be high. Different workers have different average processing speeds,
so identifying fast workers is important.

2. Pool Variance: because the batch cannot complete until every task receives a response,
per-batch latency is set by the slowest workers in the pool. In a high variance pool,
the slowest workers are significantly slower than the average worker. Workers who take
breaks or are unusually slow can exhibit work times of up to 3 orders of magnitude
slower than the median, significantly increasing the per-batch latency.

3. Worker Variance: individual workers do not complete every task in the same amount
of time. At the high end, workers have been observed with standard deviations of over
2 hours. In order to program reliable crowd-powered systems, this variance must be
accounted for.

Both worker and pool variance increase the frequency of straggler tasks that are abnor-
mally slow compared to the rest of the batch. Reducing the MPL and mitigating the effects
of stragglers are therefore important for keeping the per-batch latency low.

Full-run latency. Rather than require crowd workers to label terabytes of data, machine
learning is often used to infer labels once enough records have been labeled to train a high-
quality model. Active learning can reduce the size of this training set, however training the
model requires acquiring small batches of labels in a blocking fashion. This induces four
latency sources:
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1. Decision Latency: The time to pick the next batch of tasks (e.g., uncertainty sampling
for active learning).

2. Task Count: The number of labeling tasks, which machine learning approaches seek
to reduce.

3. Batch Size: The batch size affects both active learning convergence as well as the
amount of parallelism within a batch.

4. Pool Size: The number of workers completing tasks controls the maximum parallelism
possible, however is often dictated by operational constraints.

Active learning can drastically reduce the task count, but incurs increased decision latency
and requires limited batch sizes to be effective. In contrast, passive learning (selecting
random records in each batch) can leverage the parallelism of all available workers, but
might require many more tasks to train a model of equivalent accuracy. The choice ultimately
depends on the task.

The variety of potential sources of delay underscores the fact that crowd-powered systems
are not slow just because people are slow. Rather, the realities of passing data between
human and automated components and effects related to trends in the overall population
of workers contribute significantly to latency, and unlike human nature, these effects can be
identified and corrected. In this thesis, particularly Chapter 4, I consider and account for
each of the sources of latency above when designing performant crowd-powered systems.

2.5 Other Related Work

One of the main contributions of this thesis is the insight that if a crowd of workers can be
modeled as a distributed cluster of computers, well-known methods for programming clusters
efficiently can inform how we approach programming humans. As a result, I draw on a wide
range of knowledge from other fields, ranging from the theory of infinite-armed bandits to
techniques for auto-scaling cloud software services. Though each of these fields deserves
(and has received!) significant attention in its own right, I use this section to introduce the
ideas most relevant to my work. Subsequent chapters will dive deeper into the literature
specifically relevant to that chapter.

2.5.1 Declarative Systems and Database Optimization

The use of relational databases to maintain and query organized collections of data dates
back to the 1970s [35]. Key principles introduced by the field include data independence,
which states that the way applications refer to data need not correspond to the way that the
system stores the data, and declarativity, which states that queries should ask for what data
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they want, not how the data should be retrieved (The SQL language [8] is the most well-
known instance of declarative querying). Together, these two principals allow for powerful
optimizations [125], since the system can change how data is stored and retrieved without
affecting how the user refers to and asks for data.

Data independence, declarativity, and optimization are all key principles underlying
crowd-powered data analysis systems. The first crowd systems for data analytics were de-
signed as relational databases [52, 102, 110] that extended the SQL language with crowd
primitives and operators, allowing for the existing optimizer to plan queries that required
human involvement. Further, all of the performance optimizations presented in this work
are made possible due to a strict declarative interface. The user provides a dataset and an
analysis task, but because of the independence between this API and the details of assigning
specific records to specific workers, the system is free to change assignment schemes, manage
workers, and adjust redundancy.

2.5.2 Distributed Cluster Computation

With the rise of modern datacenters and the introduction of the MapReduce paradigm [43],
it is increasingly common to run programs on large datasets by distributing the computa-
tion across a cluster of coordinated computers, using frameworks such as Hadoop [68] or
Apache Spark [147]. These frameworks typically operate according to the Bulk-Synchronous
Processing (BSP) model, wherein computation proceeds in rounds alternating between inde-
pendent computation by all machines and synchronization barriers where results are shared
between machines [139]. Because of the desire to shield framework users from the com-
plexities of maintaining a cluster, scheduling computation on worker machines, and sending
computation and data across the network, these frameworks have developed techniques to
automatically handle failed compute nodes [43, 147], schedule which tasks run on which ma-
chines [44, 140, 108], share hardware resources between multiple users applications running on
the same cluster [56], and mitigate the effects of slow, or straggler machines [43, 10, 11, 148].

A key analogy in this thesis is that a crowd of workers can be thought of as a cluster
of machines coordinated by a crowd-powered system, and many of the challenges of dis-
tributed computation have analogues in the crowd setting. For example, the workflow in
Figure 2.2 is an instance of BSP, with synchronization barriers at the end of each batch of
tasks. As a result, techniques for accelerating BSP computation (straggler mitigation [10],
for example) can be used to reduce the crowd system’s per-batch latency. I apply this tech-
nique in Chapter 4. Similarly, crowd systems must react to workers abandoning the system
mid-task (like a machine failure in a cluster), and assign tasks to workers based on their
preferences, skills, and speed (like task scheduling in a cluster). Additionally, crowd systems
that support multiple user applications must share crowd workers efficiently but fairly be-
tween applications, like a multi-tenant cluster. I describe performant approaches to handling
worker abandonment, task assignment, and worker sharing in Chapter 5.
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2.5.3 Cloud Infrastructure Management

Because the number of users of modern web applications can increase or decrease rapidly
over short time periods, a common architecture used to ensure consistent performance for
users is to run the application on multiple stateless worker machines, with a separate load
balancer machine that directs incoming requests to workers with available resources. How-
ever, picking the right number of worker machines to handle the number of incoming requests
is challenging, especially if workloads change over time. As a result, both industry cloud
providers [6, 59] and researchers [107, 79, 5] have focused on autoscaling : adaptively in-
creasing and decreasing the number of worker machines to support changing workloads.
[116] provides a recent survey of techniques for autoscaling, which include using static rules,
control theory, or machine learning to adjust the cluster size.

Again, crowd systems face a similar problem: how many workers should be hired to
keep up with incoming requests for data analysis tasks? This issue is particularly important
under the retainer model, where worker hiring decisions are fine-grained and under complete
control of the system (as opposed to the standard model where workers choose which tasks
to work on, effectively assigning themselves to the system workforce). I describe techniques
for autoscaling pools of crowd workers in Chapter 5.

2.5.4 Multi-Armed Bandits

The performance of a crowd-powered system is limited by the speed of its workers, so when
making hiring decisions, it is important for the system to take speed into account. However,
on most crowd platforms, hiring via the API allows arbitrary workers from the global pop-
ulation to pick up a task, so the system doesn’t know a priori any information about either
how fast a new worker is, or what the distribution of speeds in the population is like. It
therefore must navigate a delicate tradeoff between learning more about the workers it has
already hired or taking a chance on a new worker in the hope that they will be fast com-
pared to the existing workforce. This tradeoff can be seen as an instance of the multi-armed
bandit problem (see [77] for a brief survey), which provides a useful framework to reason
about crowd hiring.

The multi-armed bandit problem3 proceeds in a series of rounds. In each round, the
player chooses an ‘arm’ i from an available set of K arms, and observes information about
that arm (typically given as a sample from an iid random variable with mean µi), with
the goal of identifying the arm associated with the highest mean µ∗ using as few pulls as
possible. If we think of the player as a crowd-powered system, the arms as all workers in the
population (already hired if the arm has been chosen, unknown otherwise), and the ‘choice’
of arm i as sending a task to worker i and observing the worker’s response time, then the
game describes algorithms that attempt to quickly identify workers with high average speeds.
Because the total population of workers who might be hired on a platform like MTurk is

3The problem is named for and inspired by the challenge of choosing from a casino full of slot machines
(one-armed bandits), each with different probabilities of hitting the jackpot.



CHAPTER 2. BACKGROUND 26

potentially very large, a useful modification of the problem setting, known as infinite armed
bandits [25], allows the player to hire potentially infinitely-many new workers, each of whom
get assigned µi according to a population distribution that describes the overall speeds of
all workers. Work in this setting has focused on an assumed population distribution that
satisfies Eεβ ≤ P(µi ≥ µ∗ − ε) ≤ E ′εβ for some µ∗ ∈ [0, 1] where E,E ′ are constants, ε
tends towards zero, and β is known [19, 145, 21, 25]. This constraint bounds the tail of
the distribution, preventing scenarios where arms with mean µ∗ are very rare compared to
the rest of the distribution. However, the parameter β is unlikely to be available for the
population of workers on a crowd platform, making the approach impractical.

In Chapter 6, I consider the infinite armed bandit problem with a different population
distribution that is amenable to analysis even when the player has no knowledge about the
population. I prove lower bounds on the number of task assignments necessary to find fast
workers, and develop novel near-optimal algorithms for doing so, still without knowing the
parameters of the population distribution.
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Chapter 3

Wisteria: An Interactive Data
Cleaning System

Having given some context and introduction to the design of crowd-powered systems for data
analytics, I next examine in depth one particular application that requires crowd-powered
data processing at interactive latencies. Though several examples of crowd-powered systems
were described in the previous chapter, it was not necessarily obvious that they needed to
have low-latency human input. For example, machine learning models are often trained
offline, so it could be argued that there are no time constraints on using the crowd to label
training data.1 Data cleaning, on the other hand, is a challenge not only hard enough to
require human input, but integrated tightly enough with subsequent analysis steps that if
it runs slowly, it will delay the entire data analysis process. In this chapter, I describe
Wisteria, a system that allows users to design multi-stage data cleaning workflows (referred
to as cleaning plans) with human components that can be modified over time. Because users
typically want to make rapid, iterative changes to data cleaning plans, it is imperative that
the entire plan, including crowd-powered steps, run quickly enough to provide rapid feedback
to the user. The Wisteria system exemplifies the kind of application that relies upon low-
latency crowds, and therefore serves as a useful motivation for the techniques described in
later chapters.

3.1 Introduction

The ease of acquiring and merging many large-scale data sources has led to a prevalence of
dirty data. Unfortunately, blindly using results that are derived from dirty data can lead
to hidden yet significant errors in modern data-driven applications, so data must be cleaned
before it is used. But because data cleaning is often specific to the domain, dataset, and
eventual analysis, analysts report spending upwards of 80% of their time on problems in data

1Though as machine learning systems become increasingly interactive and adaptive, this is rapidly chang-
ing. See, e.g., [37].
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Figure 3.1: Example iterations on the design of the portion of a cleaning plan that extracts
restaurant addresses from their unstructured webpages. 1) An exploratory plan that uses a
sample to evaluate a simple address extraction method. 2) A plan that applies the method
to the entire dataset. The quality is unsatisfactory. 3) An alternate plan that uses manual
crowd extraction. The quality is now high, but the crowd-based extractor is slow. 4) A
hybrid plan that sends only difficult webpages to the crowd, maximizing accuracy without
sacrificing latency.

cleaning [81]. The analyst is faced with a breadth of possible errors that are manifest in the
data and a variety of options to resolve them. She must go through the cleaning process via
trial and error, deciding for each of her data sources what to extract, how to clean it, and
whether that cleaning will significantly change results.

Data cleaning is inherently iterative and Figure 3.1 shows a common progression for the
development of a data cleaning plan, in this case the extraction of a restaurant’s address from
its unstructured webpage. While this operation can easily be represented at a logical level by
its input and output schema, there is a huge space of possible physical implementations of the
logical operators. For example, extraction could depend on manually specified rules (rule-
based), use models trained on previously extracted ground truth records (learning-based),
ask crowd workers to extract the desired data fields (crowd-based), or some combination of
the three (e.g., active learning, which uses crowd workers to provide labels for a learning-
based approach). Even after selecting (say) a crowd-based operator, many parameters might
influence the quality of the output data or the speed and cost of cleaning: the number of
crowd workers who vote on the extraction for a given webpage, the amount each worker is
paid, etc. A priori, a data analyst has little intuition for what physical plan will be optimal
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in this large space.
Note that in the evolution of the data cleaning plan in Figure 3.1, our data analyst needed

to make many decisions manually about the choice of physical operators by reasoning about
their latency, accuracy, and cost. Making the wrong decision, for example using the crowd
when it only marginally improves accuracy, can be very costly. A general, scalable, and
interactive system that supports rapid iteration on candidate plans would greatly aid this
process.

Existing systems seldom address the end-to-end iterative data cleaning process described
above. Extract-transform-load (ETL) systems [72, 131, 13] require developers to manually
write data cleaning rules and execute them as long batch jobs, and constraint-driven tools
allow analysts to define “data quality rules” and automatically propose corrections to max-
imally satisfy these rules [40]. Unfortunately, neither provide the opportunity for iteration
or user feedback, inhibiting the user’s ability to rapidly prototype different data cleaning
solutions. Projects such as Wrangler [82, 136] and OpenRefine [141] support iteration with
spreadsheet-style interfaces that enable the user to compose data cleaning sequences by di-
rectly manipulating a sample of the data and applying these sequences to the full dataset.
However, they are limited to specific cleaning tasks such as simple text transformations,
do not support crowd-based processing at scale, and cannot incorporate user feedback to
optimize the physical implementation of the data cleaning sequences. Crowd-based [58, 130]
systems have been proposed to relieve the data analyst of the burden of rule specification or
manual cleaning, but are usually specific to a single cleaning task (e.g., [58, 112, 103, 32]),
preventing end-to-end optimization of the entire cleaning plan. These existing limitations
suggest the need for a system that is general enough to adapt to a wide range of data clean-
ing applications, scales to large datasets, and natively supports fast-feedback interactions to
enable rapid data cleaning iteration.

In this chapter, I introduce Wisteria, a system designed to support the iterative develop-
ment and optimization of data cleaning plans end to end. Wisteria allows users to specify
declarative data cleaning plans composed of rule-based, learning-based, or crowd-based op-
erators, then iterate rapidly on plans with cost-aware recommendations for improving the
accuracy or latency of a plan. The effects of a plan can be viewed early using sampling and
approximate query processing techniques [143].

Supporting these capabilities requires a combination of careful engineering and interface
design as well as tackling several research challenges:

• Sampling: Wisteria provides sampling as a first-class logical operator for data cleaning
plans that tolerate approximation, and uses it to speed up iteration on early-stage
plans.

• Recommendation: Wisteria recommends cost-aware changes to in-flight cleaning
plans that allow users to trade off accuracy and latency, and provides efficient mecha-
nisms for implementing recommended changes without re-executing the plan on already
cleaned tuples.
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Figure 3.2: Wisteria system architecture, with an example entity resolution plan.

• Crowd Latency: Wisteria leverages techniques for straggler mitigation [140] and mod-
els crowd worker speed and accuracy to reduce the (often rate-limiting) latency of crowd
data cleaning, consistently retrieving results in seconds rather than hours.

3.2 System Architecture

In this section, I provide a brief overview of the Wisteria system and its APIs. Figure 3.2
depicts the system architecture.

3.2.1 Architecture Overview

The Wisteria architecture provides UI, language, and systems tools for building data cleaning
plans. Users interact with the system through the Planning UI, which allows them to
compose data cleaning workflows from modular operators. These workflows are represented
as expressions in a novel data cleaning language (section 3.2.2), then synthesized as data
cleaning plans by a DSL compiler. As the Data Cleaning Plan Executor executes
the compiled plans, users can interact with the plans via tight feedback loops in two ways.
First, users can issue queries to the Sampling-based Approximate Query Processing (SAQP)
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module and observe approximate results based on the data that has been cleaned thus
far. Second, the Recommendation Engine displays a set of suggested modifications to
the active cleaning plan (for example, making a similarity join more permissive) in the
Planning UI, and users can update the data cleaning plan in-flight by accepting a suggestion
and using the Hot Swapper to modify components of the pipeline. Intermediate results
and cleaned data are maintained in a Lineage and Storage engine that tracks each
tuple’s lineage in order to enforce the semantics of hot-swapping correctly on in-flight tuples.
Logical cleaning operators may have a number of physical implementations (section 3.2.3).
Automated rule-based or learning-based operators leverage Spark and MLLib for efficient
distributed computation, and operators that require human intervention call out to Wisteria’s
Crowd Manager API, which renders and displays data cleaning tasks to crowd workers
from multiple crowds (e.g., Amazon Mechanical Turk) in a web-based Cleaning UI for
processing.

3.2.2 Cleaning DSL

Wisteria provides a language for specifying the composition of data cleaning operators. The
logical operators define the input and output behavior of the operation and the physical
operators specify the implementation. The general syntax of this language is:

<logical operator > on <relations >
with <physical operators > , <params >

These expressions are composable. For example, the following represents the cleaning
plan in Figure 3.2 (an entity resolution plan):

Filtering on (
SimilartyJoin on (

Sampling on BaseTable
with Uniform)

with Jaccard , thresh =0.8)
with CrowdDeduplication , numVotes =3

Additionally, Wisteria provides integration of the DSL with Scala/Apache Spark, allowing
DataFrames (Spark RDDs with additional schema information) to serve as base tables in
expressions.

3.2.3 Cleaning Operators

Wisteria supports a small set of operators that can express a wide variety of common data
cleaning workflows. For example, the pipeline depicted in Figure 3.2 performs crowd-based
entity resolution: the SimilarityJoin operator generates candidate tuple pairs (the blocking
step), and the crowd-based Filter operator uses humans to identify duplicates from the can-
didates (the matching step). Additional operators include Extraction and Sampling.

Individual logical operators have multiple physical implementations, each with its own
cost, latency, and accuracy profile. For example, crowd-based implementations tend to be
high cost, high latency, and high accuracy, whereas rule-based implementations tend to be
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Figure 3.3: Wisteria’s plan-level view.

low cost, low latency, and low accuracy. The with clause of the data cleaning language
allows users to explicitly specify physical operators, and Wisteria’s recommendation engine
suggests pipeline modifications to navigate the tradeoff space.

3.3 Planning Interface

In order to enable data analysts to easily specify plans and iterate on them, Wisteria provides
a planning UI. The interface is made up of two views: the plan-level view and the operator-
level view.

3.3.1 Plan-Level View

The plan-level view, pictured in Figure 3.3, allows users to specify and modify the end-to-end
plan. The dashboard contains both a visual plan interface and a text box to specify data
cleaning operations. Using the DSL, operations are specified at a logical and physical level
simultaneously. Using the visual interface, new logical operators are dragged onto the visual
plan and are then instantiated as logical operators using the operator-level view described
in Section 3.3.2. When the user is satisfied, she can run the plan and see the results at any
stage of the plan by clicking on the relevant line segment of the visual plan.

3.3.2 Operator-Level View

To create, view, and change individual operators in the plan, Wisteria provides an operator-
level view, pictured in Figure 3.4. This view lists the parameters of an operator. When
a user selects a specific parameter, the system automatically displays recommendations for
modifying the parameter if any are available. For example, in Figure 3.4, the system rec-
ommends switching the similarity metric used by the Similarity Join operator from Jaccard
similarity to edit distance, which might be more appropriate if the join attribute does not
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Figure 3.4: Wisteria’s operator-level view.

have many tokens. Alternatively, users can manually adjust parameter values. When the
operator-level view is closed, Wisteria automatically re-runs the plan if changes have been
made.

3.4 Supporting Interactive Plan Generation

In order to support cleaning plan specification and evolution, Wisteria leverages three tech-
niques: sampling, recommendation, and crowdsourcing.

3.4.1 Sampling

Prior work has explored the problem of estimating aggregate query results over dirty data [143,
87]. The SampleClean system [143] showed that aggregate queries can often be answered
with very high accuracy (i.e 99%) with only a small fraction of clean data, so that it is only
necessary to clean just enough for the application’s data quality requirements. In Wisteria,
sampling is implemented as a logical operator that can be used for quickly prototyping and
optimizing workflows on samples of data and then transferring these optimizations to full
datasets. I find that many important features of iterative data cleaning workflows can be
posed as aggregate queries on samples with confidence intervals. To determine whether a
data cleaning operation has a significant effect, a query can be used to test the effects of this
operation on a sample. For example, a cleaning plan that deduplicates restaurant categories
could count the number of Chinese restaurants in a sample to test if different deduplication
algorithms significantly affect the count. Sampling and result estimation are salient features
of Wisteria that allow for parameter tuning and recommendations for changing a workflow
without evaluating all possible workflows on the full data. Next, I discuss how to efficiently
generate these recommendations.
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3.4.2 Recommendation

Wisteria contains a basic recommendation engine that recommends changes to a data cleaning
plan based on user feedback. A user can specify a set of ground truth tuples, and our system
will optimize over data cleaning plans that best reproduce the ground truth. There are
three types of recommendations: (1) parameter change, (2) operator replacement, and (3)
operator addition. To realize and execute the recommendations, the system uses caching
and lineage to efficiently re-evaluate a workflow.

Parameter Change. Many of the physical operators in Wisteria have tunable parameters,
whose values are often very dataset-specific, and the user feedback provides a way to evaluate
the quality of the initial parameter choice. For example, Similarity Joins have a similarity
threshold and a similarity function. Increasing this threshold reduces the selectivity of the
join, and Wisteria needs to choose a threshold that maximizes accuracy. This problem can
be solved by a minimum-cost spanning tree over a similarity graph (edges represent non-zero
similarity) over tuples.

Operator Replacement. Wisteria recommends changes to physical operators when the
user indicates that they are not satisfied with the output. For example, user feedback
(e.g., indication of tuples that were not cleaned correctly) can be viewed as crowd labels
and used to estimate the quality of the current operator. If the quality is low, Wisteria
recommends replacing a physical operator with an active learning variant that leverages the
crowd to achieve high accuracy. Additionally, Wisteria can try different variants of automated
operators to test how accurate they are with respect to the user feedback.

Operator Addition. There are also cases where the system may want to add another
physical operator, while still preserving the logical input-output behavior of the workflow. It
is common in extraction tasks to have most tuples accurately extracted with an automated
extractor but only a small subset requiring additional inspection. For these cases, Wisteria
can add a crowd-based Filter operator to separate these examples for additional cleaning.

Cost Estimates. Of course, changing a plan when using crowdsourcing may significantly
change its cost. For every recommendation, Wisteria estimates the number of additional
tuples processed by the crowd operators and provides the user with an estimated cost.
Based on a user-specified cost per task, the system can estimate the number of tasks needed
to clean the dataset.

Caching allows for result re-use if a downstream operator is modified or added. If the
system has sufficient memory, then it can näıvely cache all intermediate results. Otherwise,
the key challenge is to select a subset of results to cache. Wisteria chooses which results
to cache by integrating the caching framework with its recommendation engine. When the
system makes a recommendation for a change, it caches the results of the preceding operator
in order to improve the performance of evaluating potential recommendations and switching
to the new plan.

Lineage allows the system to understand how results change if upstream operators are
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modified. For example, decreasing a similarity join threshold increases the number of output
pairs without affecting existing output pairs. The key property here is monotonicity, and
some types of monotone Filter and SimilarityJoin operators are data cleaning analogs for
a Select-Join relational algebra. Wisteria therefore models upstream hot-swapping as an
incremental view maintenance problem and updates the final result based on the insertion
or deletion of tuples earlier in the plan.

3.4.3 Crowdsourcing

As described in Chapter 2, working with crowds is inherently challenging. Unlike when
using automated operators, the accuracy and speed of processing each tuple might vary
widely with the crowd worker assigned to it. Completion time of an operator depends on
the response times of individual workers, and on real-world crowdsourcing platforms, the
distribution of response latencies is highly skewed. In contrast, in order to provide high-
quality recommendations to users (and in order for plans to evaluate efficiently), Wisteria
requires crowd-based operators to provide consistent output at reliable rates. Otherwise,
cost and time estimates will be inaccurate, and Wisteria will make poor recommendations.

Wisteria addresses this problem by maintaining a pool of high-speed, high-quality crowd
workers and developing task routing strategies that can avoid assigning tasks to slow workers
and leverage redundancy to significantly reduce the time that is required to clean data with
the crowd. Additionally, active learning techniques reduce the number of tuples that require
crowd work to clean the data. The Crowd Manager component of Wisteria’s architecture
has evolved into the AMPCrowd system [9], which is described in detail in Chapter 4.

3.5 Conclusion

Dirty data is a fundamental obstacle to modern data analytics applications, and cleaning
it requires people to play a key role. In this chapter, I introduced Wisteria, a system that
supports the iterative development of data cleaning workflows. Wisteria allows the user to
construct, adapt, and optimize cleaning plans with automated parameter recommendations,
separating logical data cleaning operators from their physical implementations (e.g., rules,
learning, or crowdsourced). A version of this system containing the core mechanisms for spec-
ifying cleaning plans, the operator API, and implementations of several physical automated
and crowdsourced operators has been made open source [124].

A key insight from this work is that users cannot easily iterate on cleaning plans unless
they are able to rapidly observe and evaluate the quality of their proposed modifications.
To provide this functionality, the system must repeatedly evaluate slightly different plans on
carefully chosen samples of data, and since many data cleaning operations use the crowd,
this relies on having highly available workers processing data at interactive latencies. In the
next chapter, I describe the design of a system that focuses on precisely the goal of getting
reliable low-latency responses from crowd workers who may not all be sufficiently fast.
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Chapter 4

CLAMShell: Speeding up Crowds for
Low-Latency Data Labeling

The Wisteria system described in Chapter 3 must repeatedly process data with the crowd at
interactive latencies in order to allow the user to rapidly iterate on data cleaning plans. At
first glance, this seems like a nearly impossible requirement. How can human workers process
data fast enough so that the system is not constantly waiting for crowd tasks to complete,
especially as the size of the dataset grows? And even if crowd tasks can be accelerated to
near-machine timescales, how can the system guarantee that this will occur consistently?

These questions are fundamental to the design of performant crowd systems, and in
this chapter I demonstrate that it is in fact possible to answer them. As I alluded to
in Section 2.4.4, much of the crowd performance bottleneck arises not because humans
are unable to perform work at the necessary speeds, but because existing systems are not
designed with crowd performance in mind. The gap between optimal human performance
(for example, humans can complete individual image labeling or entity resolution tasks in
under a second) and average-case observed behavior (tasks can take minutes to hours to
complete!) provides an opportunity for optimization. CLAMShell, the system I describe in
this chapter, takes advantage of that opportunity to accelerate crowd-powered data labeling
by an order of magnitude and reduce its variance by two orders of magnitude.

4.1 Introduction

Though crowd-based data labeling systems seek to reduce cost and speed while maximizing
quality, most research has focused only on the trade-off between quality and cost, routinely
reporting task latencies on the order of minutes to hours to complete an average task [18, 84,
52]. For systems that iterate between human input and automated processing, these latencies
are clearly unacceptable, as users cannot interpret the data until it has been processed.

In this chapter, I explicitly tackle the trade-off between cost and latency for crowd-
sourced labeling tasks. Though there are a few existing works that explicitly aim at tackling
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latency, they are either tailored to specific tasks [99, 101, 137], targeted towards a single
source of latency such as recruitment time [16, 20, 55], or focused on machine learning
techniques (e.g., active learning) that ignore the practicalities of live crowdsourcing and may
be counterproductive in terms of wall clock latency [104].

In addition, predictability of overall task latency is an important consideration that
has not been carefully studied. Depending on numerous external factors, the quantity,
quality, and speed of available workers on crowd platforms such as Amazon’s Mechanical
Turk (MTurk) [105] can fluctuate wildly [74, 73] and result in individual task latencies from
seconds to even days. I argue that the variance of task latency must be within single-digit
seconds before it can be usefully embedded in interactive user-facing applications such as
Data Wrangler [82].

In this chapter, I introduce CLAMShell1, a system that speeds up crowds in order to
achieve consistent, low-latency data labeling. Rather than focus on a single algorithm or
step in the data labeling lifecycle, the goal is to develop a collection of pragmatic techniques
to clamp down on latency and variance during all stages of labelling.

To this end, I systematically address each of the dominant sources of latency in crowd
systems introduced in Section 2.4.4 (per-task latency, batch-wise latency, and end-to-end
overall latency) with three novel techniques: Straggler mitigation uses redundant labelers
to mitigate ‘straggler tasks’ at the end of batches, decreasing the variance of batch labeling
time from minutes to fractions of seconds. Pool maintenance uses threshold-based eviction
techniques to maintain a pool of fast, high-quality workers and decrease the average time
to label each task. Hybrid learning combines active and passive learning to exploit crowd
pool parallelism when there are more workers available than the active learning batch size,
and dynamically favors passive learning on datasets where active learning performs poorly. I
then evaluate CLAMShell on real MTurk workers, demonstrating up to 8× speedups in label
acquisition time and over 2 orders of magnitude reduction in variance compared to typical
non-optimized deployments. A key benefit of this work is that all of these optimizations
are compatible with standard quality control algorithms such as redundancy-based voting
schemes and worker quality estimation algorithms.

An open source implementation of CLAMShell, AMPCrowd [9], augments the techniques
described in this chapter with an extensible declarative API, support for additional crowd
platforms, and automated quality control. It is being used in industry and to support other
crowdsourcing research projects [146].

4.2 Tackling Crowd Latency

Section 2.4.4 categorized the primary sources of crowd system latency into task latency,
batch latency, and full-run latency. Table 4.1 summarizes the sources of latency described in
that section, and notes with an asterisk sources that have been addressed in the literature.

1Crowd LAtency Mitigation Shell.
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From the table, it is clear that there is ample opportunity to improve the state of crowd-
sourced latency. This section reviews existing approaches to speeding up crowd systems,
then describes how CLAMShell comprehensively covers all of the sources of latency.

Task Latency Batch Latency Full-Run Latency
Recruitment* Stragglers Decision Time

Qual & Training Mean pool latency Task Count*
Work* Pool variance Batch Size

Pool Size

Table 4.1: Classification of sources of latency in data labeling.

4.2.1 Existing Literature

The first work in low-latency crowdsourcing addressed recruitment time, a dominant source
of task latency. Bigham et al. [20] frequently repost tasks (among other techniques) to
improve the chances of workers accepting their tasks. However, if widely adopted, such
techniques would likely exacerbate recruitment time. Gao et al. [55] algorithmically increase
prices over time to encourage workers to accept tasks by a deadline. Bernstein et al. [16, 17]
proposed the retainer model, which pre-recruits a pool of crowd workers (a retainer pool)
and pays them to wait until tasks arrive. In settings where tasks are streaming or come in
batches, this model can effectively eliminate recruitment time at a small cost. In our work,
we build on top of the retainer model.

Work time has been reduced by re-designing task interfaces [99]. For example, Marcus
et al. [101] study join interfaces for images, and design interface batching techniques that
let workers complete up to 9 pair-wise comparisons in the same time as a single pair-wise
comparison task. However, these approaches are task specific, so CLAMShell views them as
complementary to its general task optimization framework and does not explicitly address
them.

Finally, algorithmic analysis and machine learning have been used to reduce task count.
The former focus on efficient algorithms for specific operations (e.g., entity resolution [142],
counting [99], or information retrieval [41, 111]). These focus on full-run latency, and could
leverage CLAMShell’s per-task, per-batch, and machine learning techniques.

The latter fits models to data from already completed tasks, then uses those models to
predict remaining task outputs once the prediction quality exceeds a user-defined threshold.
In this setting, active learning [36] is a commonly used method [104, 58]. Given unlabeled
data, active learning iteratively uses a point selection algorithm to pick a small set of in-
formative points to acquire labels for, and incorporates the new labels into its model. The
algorithm continues until the model accuracy (evaluated via cross-validation, e.g.) converges.
Active learning is indispensable when there are more items than can be practically labeled,
and can be used in conjunction with algorithmic approaches that rely on the labels [41, 142].
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Despite reducing the task count, active learning may counter-intuitively increase the
overall latency by constraining the parallelism due to its batch size limitations. Its conver-
gence properties have only been proved when the batch size is 1. and larger batch sizes (e.g.,
10) have only been tested empirically. When the number of workers significantly exceeds
the batch size, active learning can be much slower than labeling as many random tasks in
parallel as possible and using a passive learner.

4.2.2 Towards a Comprehensive Solution

Improving the performance of data labeling requires a trade-off between cost, accuracy and
latency: a user wants to label a set of items accurately at high speed and low cost. This
work focuses especially on reducing latency by sacrificing cost. To this end, CLAMShell
systematically tackles the primary sources of latency (Table 4.1) in a general purpose labeling
system:

1. Task Latency: CLAMShell addresses task latency by adopting retainer pools to reduce
recruitment costs. CLAMShell automatically maintains the pool size at p as workers
abandon the pool, and provides guidance about how the cost and latency will be
affected by changing p. In addition, CLAMShell trains and verifies worker qualifications
as part of recruitment, ensuring that every worker in the pool is immediately available
to provide useful work when new tasks arrive.

2. Batch Latency: Straggler mitigation uses worker redundancy on slow tasks to com-
pensate for long-tail latencies. Pool maintenance selectively replaces pool workers to
progressively shift and tighten the latency distribution towards faster responses. To-
gether, they eliminate straggler effects, reduce mean pool latencies over time, and
significantly reduce batch variance.

3. Full-Run Latency: CLAMShell uses a hybrid strategy that allocates subsets of the
worker pool to active and passive learning. In addition, CLAMShell pipelines the
expensive model retraining and uncertainty sampling steps with crowd labeling to
eliminate decision latency at the cost of slightly stale model results.

Note that CLAMShell does not explicitly address work time or pool size: work time is
often specific to the task interface, which we view as an orthogonal interface optimization
problem, and pool size is typically set by operational constraints. Chapter 5 considers the
setting where pool sizes can be dynamically adjusted to improve performance. Instead, this
chapter focuses on the other sources of latency listed in Table 4.1.

4.3 The CLAMShell System

In this section, I present an overview of CLAMShell, a system for fast label acquisition.
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Figure 4.1: CLAMShell architecture diagram.

The CLAMShell architecture is illustrated in Figure 4.1. The user submits a set or
stream of labeling tasks to the Batcher and uses the Task selector (Section 4.5.1) to pick B
incomplete tasks to process in the current iteration. The tasks are selected via uncertainty
sampling using the most recently trained model to pick tasks that benefit active learning,
and random sampling to pick tasks for passive learning. The resulting batch is sent to
LifeGuard, which schedules tasks within the batch to be sent to the Crowd Platform. This
level of indirection is necessary when the batch size exceeds the size of the retainer pool, and
so the Mitigator can control redundancy when there are slow tasks.

The Crowd Platform holds a set of slots (S1 . . . S4) in the current retainer pool. Each
slot corresponds to a persistent retainer task that a crowd worker has accepted, and may
be empty (e.g., S4) or contain a task (e.g., T0). The Scheduler immediately sends new
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tasks to available slots (e.g., S3). If all tasks have been sent, then the Mitigator sends
duplicate (mitigation) tasks for slow, incomplete tasks (e.g., S1). If a slot is consistently
performing slowly, the Maintainer may recruit and train a worker for a replacement slot in
the background, then evict the slow slot (7 in S4).

Completed labels are sent directly to the Batcher, which retrains the machine learning
model. The Task Selector uses different sampling algorithms such as uniform sampling,
active learning-based uncertainty sampling, or our hybrid sampler, to pick the next batch
of tasks. At all times, the user can access the completed labels and query the currently
trained model for new predictions. The following example illustrates the use of CLAMShell
in practice.

Example 4.1 Consider a news outlet that is covering a live political debate, and wants to
monitor and visualize the public’s reaction to candidates’ comments on hot-button issues by
analyzing the sentiment of related tweets. Because automated sentiment analysis techniques
on tweets are often inadequate [2], the company asks a crowd to label tweets as “positive”,
“negative”, or “neutral”. If the system suffered from high crowd latency, the sentiment
visualization would be unable to keep up with the changes in public opinion as the debate
proceeded, rendering the tool unhelpful.

CLAMShell can be used to address this issue with both per-batch and full-run optimiza-
tions. The per-batch optimizations, including straggler mitigation and pool maintenance
techniques, are designed to reduce the time that is required to label a batch of tasks using
crowds, e.g., asking for crowd labels for a batch of ten tweets. Once the company has enough
labeled data, they hope to switch to an automated process in the long term. The full-run
optimizations, including hybrid learning, are designed to reduce the number of iterations that
a learning model needs to converge, i.e., the total number of batches that crowds are asked to
label.

4.4 Per-batch Latency Optimization

Per-batch optimizations aim to reduce the latency for a single batch of labeling tasks —
the Batcher sends a batch of tasks to a pool of workers, and waits for the batch of work to
complete. In this model, the dominant costs are due to the variability of worker latencies
within the pool, as well as the variability within the tasks that a single worker performs.

For example, Figure 4.2 shows the CDFs of per-worker mean and standard deviation
latencies from a real crowd deployment that ran ∼60,000 tasks to label medical publication
abstracts. The figure reveals that average worker speeds are spread out from tens of seconds
to hours. In addition, even workers who are very fast on average (∼ 1 minute) can take as
long as an hour or more to complete some tasks. This variation is bad for per-batch latency
because the batch must block until all of its tasks are complete.

So in order to reduce per-batch latency, a system must reduce both the mean of the
latency distribution (workers who are slow on average) and its variance (workers who are
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Figure 4.2: Distribution of worker latencies.

inconsistent). This section describes the mechanisms for each of these approaches respec-
tively, along with mathematical models and simulation results. In Section 4.6, I evaluate
these strategies on a live deployment on MTurk.

Throughout the following sections, references are made to experiments run in simula-
tion. The simulated experiments are run on a python simulator that models a retainer-pool
crowd data labeler and implements uncertainty sampling on top of scikit-learn’s model train-
ing [113]. To simulate crowd workers, I use traces from the medical deployment described in
Section 2.4.4. From each trace, the simulator measures each worker’s mean labeling latency
µi, variance in labeling latency σ2

i , and mean accuracy λi. It then simulates a worker’s la-
tency on an assigned labeling task by drawing a sample i.i.d from N (µi, σ

2
i ), and generates

the label itself by returning the correct label with probability λi and the incorrect label with
probability 1 − λi. Using these worker pools, the simulator can model recruitment (adding
random workers to the pool), pool maintenance (releasing workers with high observed µi
from the pool), straggler mitigation (assigning multiple simulated workers to the same task
and returning the minimum of the sampled latencies), and active learning (using simulated
workers to label batches of points and measuring the latency of the whole batch).

4.4.1 Straggler Mitigation: Reducing Variance

In cluster computing frameworks such as Hadoop [68] or Spark [147] where the presence
of straggler tasks in a stage (e.g., reduce stage of MapReduce [43]) can delay downstream
computation, replicating the slow tasks [10, 43, 11, 148] via speculative execution or task
cloning [10] is an effective counter-measure.

We take a similar replication-based approach to human stragglers in our crowd pool. We
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call a worker active if she is currently working on a task, and available otherwise. Similarly,
a task is either active, complete, or unassigned. By default, CLAMShell routes only unas-
signed tasks to available workers until all tasks are complete. Once all tasks are active or
complete, available workers must wait until the next batch to receive a task. With straggler
mitigation, in contrast, such workers are immediately assigned active tasks, creating dupli-
cate assignments of those tasks. CLAMShell returns the first completed assignment of a
task to the user and immediately reassigns all other workers still working on that task to a
new unassigned or active task (though it pays them for their partial work on the old task
regardless). The effect of straggler mitigation is that when an inconsistent worker takes a
long time to complete a task, the system hides that latency by sending the task to other,
faster workers. As a result, the fastest workers complete the majority of the tasks and earn
money commensurate with their speed. For example, in the medical publication abstract
labeling deployment described above, the fastest worker (µ = 28.5 seconds) could complete,
on average, 8× as many tasks as the median worker (µ = 4 minutes).

Simulation. A natural question arises when performing straggler mitigation: which task
should be assigned to an available worker? In simulation, I tested several straggler routing
algorithms, including routing to the longest-running active task, to a random task, to the
task with fewest active workers, or to the task known by an oracle to complete the slowest.
Surprisingly, the selection algorithm didn’t affect end-to-end latency, and random performed
as fast as the oracle solution because the fast workers complete almost all of the tasks in the
batch.

A second question is: at what batch sizes is straggler mitigation effective? This can be
studied in simulation by varying the pool size to batch size ratio R =

Npool
Nbatch

using the random
selection algorithm and different pool sizes. The benefit of straggler mitigation comes from
its ability to remove the overhead of slow workers at the end of a batch of tasks. When
R is higher, each batch gains the full benefit of straggler mitigation and completes at the
speed of the fastest workers, however the number of tasks completed in each batch is lower.
Conversely, with a small ratio, workers spend most of their time working on unassigned
tasks, and the impact of straggler mitigation is lessened.

Impact on Crowdsourcing Systems. Straggler mitigation is a general technique that
does not affect the programming interface of the system it is applied to. It can therefore
be used easily in conjunction with any existing crowdsourcing system that processes batches
of microtasks. One important benefit of hiding the variance in worker latencies is that
task completion times become much more predictable. This characteristic is vital to the
development of declarative crowd systems such as crowdsourced query processors, because
optimizers need to be able to accurately estimate the cost of executing a declarative crowd
workflow.
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4.4.2 Pool Maintenance: Better Mean Latency

Straggler mitigation reduces the variance of task latencies, but if many workers in the labeling
pool are slow on average, variance reduction will be ineffective at reducing per-batch latency.
To improve the average speed of the pool over time, CLAMShell uses pool maintenance, a
technique that continuously replaces slow workers in order to converge to a pool of mostly
fast workers. Because a fast pool will label each task more quickly, pool maintenance reduces
per-batch labeling latency over time.

The pool maintenance algorithm takes as input a latency threshold PM`, and continuously
releases workers slower than the threshold asynchronously as labeling proceeds. To do so, it
computes an empirical latency for each pool worker based on the worker’s completed tasks
and flags the worker as a candidate for removal if his latency is significantly above PM`

(determined using a one-sided significance test).
Instead of removing a slower worker before recruiting a replacement, CLAMShell contin-

uously recruits and trains workers in the background in order to maintain a reserve of new
workers. Although this might seem costly, pipelining recruitment means that pool main-
tenance can proceed without blocking on worker recruitment, and empirically, the latency
savings of pool maintenance translate to cost savings that overwhelm the cost of background
recruitment (Section 4.6.2). The removed worker is paid for their active job (if any), and
informed that there are no more tasks available for the experimental run. They are not
blacklisted, so that future experiments are not biased.

Pool speed convergence. The following analysis derives the mean latency to which a
maintained pool will eventually converge. Assume a population of workers with mean la-
tencies µi distributed according to some global distribution W , and sample an initial pool
P0 ⊂ W uniformly at random from W . Let PM` be a latency threshold splitting the dis-
tribution W into two parts, with probability densities q and 1 − q above and below PM`

respectively. Further, let µf be the mean latency among fast workers having µi < PM`, and
let µs be the mean latency among slow workers having µi > PM`.

Then the initial pool has a mean latency EP0 [µi] = (1−q)µf+qµs. If at each maintenance
step, all slow workers having µi > PM` are removed and replaced with workers drawn
randomly from W , and letting Pi be the pool after i steps, it can be seen that P1 has mean
latency EP1 [µi] = (1− q)µf + (q(1− q)µf + q2µs), and in general Pn has mean latency:

EPn [µi] = (
n∑
i=0

qi)(1− q)µf + qn+1µs

= (1− qn+1)µf + qn+1µs.

An important observation is that limn→∞ EPn [µi] = µf , that is, the pool converges to the
mean latency of all workers below PM`. This implies that it is desirable to set PM` as
low as possible: in practice, setting the threshold too low leads to thrashing, as I show in
section 4.6.2.
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Simulation. I simulated how pool maintenance affects batch latency with respect to the
task to pool size ratio R using a latency threshold PM` of one standard deviation below
the mean. After each batch, all workers slower than PM` are replaced with new samples
from the worker distribution. With pool maintenance, the batch latency falls quickly, nearly
halving in just 15 to 20 batches. When there are many more tasks than pool workers, the
effect becomes less pronounced, because there are enough tasks that slow workers who only
complete a small fraction of tasks do not impact the per-batch latency.

To better understand how the distribution of mean worker latency is changing over time,
I measure the mean pool latency (MPL) of the worker pool over time with and without
maintenance, and compare the MPL to the mathematical model’s predictions. With main-
tenance, the pool’s MPL converges quickly to the model’s predicted asymptote, following
the model closely across pool-size to task ratios R.

Latency Threshold. The pool maintenance latency threshold determines which workers
are slow and should be removed from the pool. To pick a good threshold, the system can
observe the empirical distribution of the mean latencies of all workers ever seen, and estimate
the threshold as k standard deviations below that mean. The goal is to find a threshold low
enough to decrease average pool latency by releasing slow workers, but high enough to avoid
discarding the fastest workers from the pool. Section 4.6.2 contains experiments showing
that varying the threshold and has significant impact on the benefits of pool maintenance.

Extensions. As described, pool maintenance is focused only on reducing the mean latency
of the pool. However, it can be easily extended to optimize for other criteria by choosing
an objective function other than worker speed. For example, using a quality metric (e.g.,
inter-worker agreement [23]) would converge to a high-quality worker pool, using a weighted
average of quality and latency could trade off the quality and speed of the pool, and other
metrics could optimize for other desired worker properties such as worker variance. Ramesh
et al. [118] take a similar approach to identifying high-quality workers, though they use an
oracle for accuracy and evaluate their technique only in simulation.

4.4.3 Combining Per-Batch Techniques

Interference Effects. Both straggler mitigation and pool maintenance deal with tail la-
tencies — maintenance detects and removes workers whose average speeds are outliers, and
straggler mitigation hides individual workers’ outlier tasks. Unintuitively, in initial live ex-
periments, I found that naively combining the two techniques together resulted in zero or
even negative gains as compared to straggler mitigation alone. For example, the average
number of workers replaced in each batch was reduced from ∼ 30 to less than 5 despite
similar worker distributions.

The reason is that straggler mitigation terminates slower tasks, artificially skewing every
worker’s completion times towards the latency of the fastest workers. This makes directly
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measuring true worker latency infeasible. In response, I developed a simple model called
TermEst to estimate the average latencies of terminated tasks based on the number of times
a worker’s task is terminated.

Assume the worker pool is represented by two worker types — slow workers ws and fast
workers wf that take latencies of ls,j and lf,j to complete task tj respectively. The goal
is to estimate the latency of ws’ terminated tasks. I adopt this model again in Chapter 6
to simplify the analysis of adaptive algorithms for finding fast workers. Let ws start N
tasks T = {t1, . . . , tN}, where Tt ⊆ T are terminated, and Tc = T − Tt are completed. Let
lk,T = 1

N

∑
ti∈T lk,i be the average latency for worker wk to complete a random task in T , and

let lk be wk’s true mean latency. Since wf can start working on tj at any time after ws with
uniform probability, the probability that wf starts early enough to cause ws to terminate is
ls,j−lf,j
ls,j

. Thus, ws is expected to be terminated Nt times over N tasks:

Nt =
∑
ti∈Tt

ls,i − lf,i
ls,i

≈ ls,Tt − lf
ls,Tt

×N.

Rearranging the terms and using Nc = N −Nt, ls,Tt can be estimated as:

ls,Tt =
lf ×N
Nc

.

In order to compensate for the lack of latency evidence when N is small and avoid divide-
by-zero errors when all of a worker’s tasks are terminated (N = Nt), I add a smoothing term
α to N . In practice, lf is estimated as the empirical mean of the workers that caused any of
ws’ past jobs to terminate:

ls,Tt =
lf (N + α)

Nc + α
.

Finally, the overall latency of ws can be estimated by taking the the weighted average of ls,Tt
and the empirical mean latency of the tasks ws is able to complete, ls,Tc :

ls =
Nt

N
× ls,Tt +

Nc

N
× ls,Tc .

Note that this formulation is equivalent to modifying the latency threshold on a per worker
basis. Thus, while changing the global latency threshold is important for setting a worker
replacement rate, this adjustment replaces workers who are frequently terminated.

Working with Quality Control. One potential drawback of this approach is that by
selecting workers based only on speed, these techniques might reward spammers or other
fast but inaccurate workers. Luckily, empirical data from the experiments in this chapter
show that faster workers are no more likely to be inaccurate than slow workers, but it is
worth mentioning that traditional quality control techniques are entirely complementary to
these per-batch techniques. For example, CLAMShell implements redundancy-based quality
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control algorithms such as [75] or [83] that use votes from multiple workers to better estimate
the true answer by simply acquiring more labels using straggler mitigation and pool mainte-
nance. This might appear confusing, as straggler mitigation also acquires extra labels, but
there is a key difference: straggler mitigation asks for extra labels but doesn’t wait for them,
whereas quality control requires extra labels and waits for all of them.

4.5 Full-Run Latency Optimization

In order to eliminate the need to manually label all points in a potentially large set, CLAMShell
acquires labels for only as many points as needed to train a predictive model of sufficient
quality, then uses that model to impute labels for all remaining points. As described in Sec-
tion 4.2, there are many factors that influence the latency of the labeling process. Relying
on learning greatly decreases the task count necessary to label the entire dataset, but has
implications for the decision latency and batch size involved. In particular, CLAMShell uses
uncertainty sampling to reduce the task count even further, but trades this improvement
for increased decision latency (the learner must choose which points to label next) and de-
creased batch size (active learning is inherently iterative and cannot label as many points in
parallel).

In this section, I describe how CLAMShell ameliorates the drawbacks of active learning
for low-latency labeling. I introduce hybrid learning, a novel technique which combines
active and passive learning to maximize pool parallelism and hide the inherent limits of
active learning batch size. I also describe how CLAMShell leverages existing techniques to
set an effective batch size for active learning and uses asynchronous model retraining to hide
active learning’s decision latency.

4.5.1 Hybrid learning

Active learning uses the current trained model to decide which points to label in the point
selection phase, reducing the number of points needing labels in order to train a high-quality
model. In practice, however, there are two major challenges to active learning at low latency.
First, at each iteration, active learning has a limited batch size—setting the batch size too
high can cause the model to converge even more slowly than passive learning [126]. This
limits the wall-clock speed at which active learning can proceed. Second, when labeling work
is challenging, it will be hard to train a good model. As a result, the current trained model
may misguide the point selection phase, and active learning may perform poorly, perhaps
even worse than passive learning. On the other hand, passive learning that trains a model
using a randomly sampled data points can proceed as fast as the crowd can label, but it will
waste human effort for easy labeling work.

To address these issues, I propose hybrid learning in CLAMShell, with the basic idea
of preserving the best traits of both passive and active learning, allowing for fast model
convergence on both easy and hard data labeling work. Hybrid learning simultaneously
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acquires labels using the active selection strategy and random sampling, maximizing crowd
worker parallelism and compensating for datasets where active learning alone would perform
poorly. As a result, label acquisition can proceed at high speed in spite of a low active
learning batch size.

Point Selection. Once a batch size has been selected for active learning (Section 4.5.2,
below), hybrid learning attempts to maximize crowd worker parallelism by ensuring that
each worker in the pool has at least one point to label. That is, given a batch size k and a
pool size p, hybrid learning uses the active selection criterion to choose k points for labeling,
then randomly selects max(0, p− k) points for passive labeling. Because CLAMShell caches
all previously labeled points, if the points chosen for active or passive labeling overlap, their
labels are read from the cache and additional points are selected for labeling.

Model Retraining. Once a new batch of points has been labeled, hybrid learning re-
trains a model on all previously observed labels. These points come from two sampling
distributions: uncertain sampling (active learning) and random sampling (passive learning).
Currently, CLAMShell retrains the model on the union of these points without distinguish-
ing between them, though it does weight points based on the active-to-passive ratio (i.e.,
k
p−k ). If users provide hints to CLAMShell about how hard their labeling work is (e.g., very

difficult), CLAMShell can adjust these weights accordingly.

4.5.2 Active learning batch size

Because the speed of active learning is constrained by the size of its batches, setting a good
batch size is important for fast convergence. Too small, and training will be slow because
it will take a long time to label all the points. Too large, and training will be slow because
each batch contains less useful points, slowing down convergence to a good model (or even
converging to a bad one!). The literature provides no guidance on an appropriate batch size
for batch-mode active learning, assuming that that the batch size is chosen by the user in
advance. Chakraborty et. al [27] offer an active learning technique that dynamically sets
the batch size, but it is not generic across learners and requires knowledge of the labeling
time for each instance. I experimented extensively with the active learning batch size, and
found that once batch size was within a reasonable range (10-40), there was no significant
correlation between batch size and convergence rates on any single dataset, let alone across
datasets.

As a result, CLAMShell relies on empirical results from the hybrid learning experiments
in Section 4.6.5 to set an active learning batch size that works well with our hybrid strategy.
Those experiments show that the fraction of the pool r = k

p
allocated to active learning has

a significant impact on the convergence of the learner, and that r = 0.5 is a reasonable value
for multiple datasets. In end-to-end experiments, I set k = 0.5p accordingly.
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4.5.3 Active learning decision latency

The time taken by the active learner to retrain a model and select a new batch of points
after the previous batch has been labeled has a significant impact on full-run latency, because
the labeling process blocks until the learner is ready with the next batch. To mitigate this
latency (which is not an issue for passive learning), CLAMShell uses two known techniques.

First, rather than consider all unlabeled points for selection in the next batch, we consider
only a uniform random sample of the points. This has been shown to have little impact on
active learning convergence, and offers significant performance improvements: the point
selection time is linear in the sample size, not the size of the entire unlabeled dataset, which
might include millions of examples.

Second, rather than performing retraining and selection synchronously at the end of each
batch, CLAMShell continually retrains models asynchronously on the latest available points.
A new batch of points is selected based on each new model, so at any point in time there is an
available model and an available selection of points for the next batch. When each batch of
points completes the labeling process, the next batch is selected based on the most recently
computed model. This trades off decision latency for staleness of points to be selected, and
empirically I find that it does not significantly impact model convergence.

4.5.4 Putting it all together

CLAMShell is powered by three novel techniques: Straggler Mitigation (straggler), Retainer
Pool Maintenance (pool), and Hybrid Learning (hybrid). Table 4.2 summarizes their impact
on system performance across four axes: (1) Can they improve the mean latency of labeling?
(2) Can they mitigate the variance of individual workers’ labeling latency? (3) Do they
require additional cost to use? (4) Are they general or restricted to a certain labeling
setting?

CLAMShell Latency Cost General
Technique Mean Variance
straggler Yes Yes Increase Yes
pool Yes Yes No Change Yes
hybrid Yes No Increase AL

Table 4.2: CLAMShell techniques (AL: Active Learning).

4.6 Evaluation

In this section, I evaluate CLAMShell both in simulation and on live crowd workers on
MTurk in order to show that it enables data labeling to proceed at interactive speeds. After
evaluating each technique in isolation, I provide end-to-end experiments demonstrating the
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Param Description
PM` Latency threshold for pool maintenance
SM Straggler mitigation: on (SM), off (NoSM).
Np Number of workers in the retainer pool.
Ng Task size: # records grouped a HIT.

Small (1), Medium (5), Large (10 records)
R Pool-batch ratio.
Alg Learning algorithm: active (AL), passive (PL),

hybrid learning (HL), or none (NL)

Table 4.3: Experimental Parameters

total time it takes to label unlabeled datasets. Table 4.3 summarizes important parameters
varied in the experiments.

4.6.1 Experimental Setup

Live Experiments. The live experiments discussed below were run on AMPCrowd [9], a
custom implementation of the retainer model for MTurk. Recruitment occurs by repeatedly
re-posting recruitment tasks every 3 minutes to MTurk until the desired number of workers
have joined the pool. Workers are paid $.05 / minute to wait for available work once they
join a pool, and $.02 / record to perform the work once it becomes available. MTurk tasks
require a minimum qualification of 85% worker approval to join a pool. Experiments in
these pools were run at multiple times of day on both weekdays and weekends. In contrast
with prior work, I found that results were remarkably consistent across these parameters
when using our latency mitigation techniques. This may be the result of the relatively strict
qualification requirement, or may reflect more systemic changes in the MTurk marketplace.
Following the retainer pool model, the experiments assume recruitment time is amortized
across batches and measure latency from the moment the first task is sent to the pool, rather
than from the beginning of the recruitment process. Overall, I collected timing results for
nearly 250,000 individual task assignments over the span of several weeks.

Datasets. The active learning tasks run in this evaluation are all classification tasks, based
on publicly available datasets. The MNIST dataset [93] contains 70,000 black and white
images of handwritten digits, and the multi-class classification task is to detect which digit is
in each image. Raw pixel values were used as features, leading to 784 features per image, and
entropy was used as the uncertainty metric when performing active learning. The CIFAR-10
dataset [88] contains 60,000 color images of various objects, and the classification task is to
identify the category of the primary object in each image. In order to make the learning task
simpler, the number of topic categories was limited to two: “Birds” and “Airplanes”. Again,
raw pixel values were used as features, generating 3072 features per image. In addition to
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the real datasets, which have concrete labeling tasks that can be sent to human workers,
the scikit-learn data generator, which builds classification problems following the algorithm
from [62], was used to generate datasets of varying difficulty to illustrate the relationship
between problem hardness and the performance of our techniques.

4.6.2 Pool Maintenance

In this section, I evaluate the effects of pool maintenance on batch time. The experiments
execute 500 tasks that label MNIST digit images. I compare tasks of varying size (Small,
Medium, Large) that use Ng = 1, 5, or 10 MNIST images, respectively. The latency threshold
is set to PM` = 8 and PM` =∞ (no maintenance).

Figure 4.3: # points labeled over time in 2 typical runs.

Figure 4.3 is an overview of the total number of labeled points (Ng×Ntasks) over time for
each configuration. The slope of each curve describes the speed of task completion, where a
flat curve denotes stragglers that take a very long time to complete a task. Task completion
for smaller tasks is uniformly fast, so pool maintenance provides little additional benefit;
however, larger tasks are affected by outliers, and maintenance’s ability to cull slow workers
helps reduce the presence of very long tasks.

Overall. Ultimately, pool maintenance does not improve end-to-end latency for small tasks
significantly, but is able to reduce the latency for medium and large tasks by 1.3× and 1.8×
on average, respectively (Figure 4.4). Interestingly, despite the added cost of recruiting
workers concurrently with labeling tasks, pool maintenance is able to reduce the overall cost
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Figure 4.4: Summary of end-to-end cost and latency experiments with and without pool
maintenance.

Figure 4.5: Comparison between age of the worker in the pool when starting a given task
and the time to complete the task. Tasks where the latency per labeled point is greater than
8 seconds are colored in blue.
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Figure 4.6: Mean pool latency over time.

of the medium and large tasks by 7 − 16%. This is due to finishing the experiment faster
and saving the cost of paying workers to stay in the retainer pool. Changing the rate paid
to waiting workers may increase or reduce this effect.

Latency Distribution. To better understand how pool maintenance effects the compo-
sition of the worker pool, Figure 4.5 plots task completion speeds against the age of the
worker when starting a given task. A worker’s age is defined with respect to task ti as the
number of tasks the user has already completed in the experimental run. The y-axis shows
the latency to acquire a single label, computed as task latency

Ng
; each column shows all tasks

across the runs for a given task size; and the top and bottom rows are with maintenance
turned on (PM8) and off (PM∞). In addition, the points are categorized as fast (< 4 sec per
label), medium (5− 7 sec), or slow (≥ 8 sec). Although workers that are new to the worker
pool naturally exhibit high task latency variability, maintenance is able to purge the slow
workers over time. For every task size, the slow and even medium latency tasks are nearly
all removed once workers have remained in the pool for more than 4 minutes. In contrast,
the lack of pool maintenance allows slow and highly variable workers continue working on
tasks, so that slow tasks are seen throughout the entire experiment.

Mean Pool Latency. Figure 4.6 provides a different view on pool maintenance’s effects on
the worker pool – it measures the mean pool latency (MPL) for each batch of tasks sent to the
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pool throughout the experiment. MPL is computed as the average latency of all completed
tasks in the pool. Each subplot compares the MPL with and without maintenance for a
given experimental run and task size. While the average of each pair of curves is similar,
pool maintenance shows significantly less variance across the batches because it effectively
removes the long tail of the latency distribution. The variation in the pool maintenance
curve is simply due to the variation of the newly recruited workers.

Figure 4.7: The number of workers replaced over time for varying maintenance latency
thresholds.

Figure 4.8: 50th, 95th, and 99th percentiles of task latency as maintenance latency threshold
varies. Each facet is a different amount of time into the experiment.

Latency Threshold. The analysis of MPL shows that pool maintenance is able to remove
outliers from the worker pool. However, the reduction in MPL is not as fast as predicted
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by the model or simulations presented in Section 4.4.2. This is expected, as workers may
not maintain consistent speed over time, and empirical estimates of worker’s speed may be
inaccurate. Another potential issue may be that the latency threshold is poorly tuned, so
in our final experiment (Figures 4.7 and 4.8), I study whether varying the latency threshold
between 2 and 32 seconds can affect the median task latency in addition to the variance.
Figure 4.7 demonstrates that decreasing the threshold causes more workers to be replaced
during a run, as expected. Figure 4.8 shows the latency percentiles at different worker-age
slices (e.g., < 5 tasks) in the experiment. Varying the threshold affects both the median and
higher percentiles, with a more pronounced effect on the extrema task latencies. For this
workload, the optimal threshold is PM8, which can reduce the straggler latencies by nearly
2×. However, further reducing the threshold to 4 or 2 seconds goes beyond the point where
even fast workers are able to complete tasks, and effectively replaces all workers with the
mean of the underlying MTurk distribution. The curves reduce across work slices due to the
effects of pool maintenance, consistent with the analysis in Figure 4.5.

4.6.3 Straggler Mitigation

In this section, I evaluate the performance of straggler mitigation along two key metrics:
task latency and task variance. An important parameter of straggler mitigation is R, the
ratio of workers in the pool to tasks in a batch (Table 4.3), because it controls how many
workers are assigned on average to eliminate stragglers. Set too low, and stragglers will
occur unfettered. Set too high, and money and effort will be wasted unnecessarily. In these
experiments, I set task size to Ng = 5, the pool size to Np = 15, and give workers CIFAR-10
tasks.

Variance. One of the key properties of straggler mitigation is its ability to reduce the
variance of individual task latencies. Figure 4.9 plots the standard deviation of the latencies
of task completion times for each batch. Straggler mitigation consistently decreases the
standard deviation by 5 to 10× (a decrease in variance of up to 100×!), very important
when trying to predict the run-time of a batch consistently. One interesting observation is
the jaggedness of the R = 3 plots. This is likely because with 3 times as many workers as
tasks, workers spend much more time waiting, and are slow to respond when work becomes
available because they are involved in other work.

Latency. Because straggler mitigation enables task batches to finish without waiting for
high-latency straggler task assignments to complete, it significantly reduces the latency of
each batch, up to 5× on some runs (Figure 4.10). Increasing R can increase those gains,
but comes at an additional cost, as it pays more workers to complete each task. Although
intuitively one might expect straggler mitigation to become more and more effective as R
increases, there are practical limitations that prevent this effect. With high R, even fast
workers are often terminated before finishing their tasks because many workers are working
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Figure 4.9: Straggler mitigation dramatically reduces the standard deviation of per-task
latency across batches.

on every task at once. In addition to the added latency of this termination (workers must
click a dialog to finish the old task and be presented with a new one, which takes seconds),
this creates a frustrating environment for workers, who feel as though they aren’t being
allowed to work. As a result, keeping R between 0.75 and 1 is attractive, as it limits cost
and still shows impressive speedups. The effects of straggler mitigation are summarized in
figure 4.11.

4.6.4 Combining Per-Batch Techniques

Figure 4.12 summarizes the effects of combining both straggler mitigation and pool main-
tenance when labeling CIFAR-10 tasks. The two techniques can be complementary, but in
some experiments we observe destructive interference between straggler mitigation and pool
maintenance. This is most likely the result of fluctuating conditions on the underlying crowd
platform across experiments: sometimes the initial pool selection is high-quality, rendering
pool maintenance ineffective, and other times very slow workers join the pool and mainte-
nance is invaluable. In all cases, it is worth noting that combining per-batch techniques still
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Figure 4.10: Points labeled over time with straggler mitigation in 2 typical runs.

Figure 4.11: Straggler mitigation increases costs by 1 to 2×, improves latency by 2.5− 5×,
and variance by 4− 14×.
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Figure 4.12: End-to-end Latency, Variance, and Costs for different straggler mitigation and
pool maintenance configurations.

Figure 4.13: Per-assignment view of each straggler mitigation and churn configuration. Each
horizontal segment is the length of an assignment. Red and blue dots denote batch bound-
aries
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Figure 4.14: Replacement rate when using TermEst (Section 4.4.3) with α = 1.

results in a significant speedup over not using either technique, leading to a reduction in
latency of up to 6×, and reduction in standard deviation of up to 15×.

Detailed View. Figure 4.13 shows the latency of every task for a single experimental run
with every combination of straggler mitigation and pool maintenance. Each line segment
depicts the start and end time of a specific task. Red tasks are successfully completed, while
blue tasks are terminated due to the worker leaving the pool or because another worker
finished the task in less time. Red and blue dots denote the start and end of a batch, and
the tasks completed by a given worker are aligned vertically along the y-axis.

The top two subplots show the value of pool maintenance – although stragglers are still
present under pool maintenance, there are considerably fewer and lower magnitude stragglers
as compared to the baseline pool. The bottom two subplots show that maintenance can
further improve straggler mitigation by reducing the number of stragglers that must be
ameliorated.

Effect of TermEst. Figure 4.14 measures the effectiveness of our model for estimating
the latency of terminated tasks (Section 4.4.3). As expected, without TermEst, the worker
replacement rate decreases dramatically, because workers are estimated to be faster than PM`

and are not replaced. Adding TermEst adjusts for the gap: with it turned on, replacement
happens just as frequently as with no straggler mitigation.

4.6.5 Hybrid Learning

In this section, I evaluate the hybrid learning strategy, demonstrating that it is effective on
datasets where either active or passive learning would perform better, and that it successfully
takes advantage of pool parallelism to reduce the time required to train a good model.

Accuracy. The Hybrid algorithm depends on the assumption that active learning does
not outperform passive learning in all settings. Figure 4.15 validates this assumption in the
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Figure 4.15: Active, Passive, and Hybrid strategies for learning on crowds run on generated
datasets in the simulator.

simulator. It plots learning curves for active and passive learning on generated datasets of
increasing hardness (rows show number of generated features), and shows how each learner
performs given different amounts of the crowd’s resources (columns show the percentage of
the crowd pool used for active learning). On easier datasets, active learning significantly
outperforms passive learning, but when given as many resources as active learning, passive
learning is the better choice on harder learning tasks where active point selection is ineffective.
This reinforces our belief that a successful hybrid strategy can trade off between the two
approaches, and the hybrid lines in both Figure 4.15 and Figure 4.16 (wherein we replicate
the simulator results on real-world datasets with live workers) demonstrate that the strategy
is indeed successful. In all cases, hybrid performs as well as or better than either active or
passive learning.

Latency savings. As a result of the fact that hybrid learning leverages the full parallelism
of the crowd (as opposed to active learning with a limited batch size), the hybrid learning
strategy is able to train better models faster. Figure 4.16 shows the hybrid learning strategy’s
performance compared to pure active or pure passive over time on the MNIST and CIFAR
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Figure 4.16: Active, Passive, and Hybrid strategies for learning on crowds run on real-world
datasets on live workers.

datasets. The x and y axes of each plot show the accuracy improvement over time as points
are labeled, the rows depict the datasets, and the columns represent the setting of the AL
batch size as a percentage of the crowd pool size. In the same amount of time, the hybrid
strategy is always the preferred solution for model training. In fact, on average, hybrid trains
models of 85% accuracy on CIFAR (70% accuracy on MNIST) 1.2× (1.7×) faster than pure
active learning and 1.6× (1.2×) faster than pure passive learning.

4.6.6 End-to-End Evaluation

In this section, I evaluate the end-to-end performance of CLAMShell against two baselines.
Base-NR, which represents a typical crowd labeling deployment, sends labels out all at once,
uses no retainer pool, and trains passive learning models to infer labels for unlabeled records.
Base-R, which leverages the latest techniques for low-latency crowdsourcing, uses a retainer
pool to label points in batches and active learning to infer labels for unlabeled records. In
this experiment, 500 points were labeled by each strategy on the CIFAR-10 and MNIST
datasets, and the accuracy of the resulting models were measured.
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Figure 4.17: Summary of end to end time to reach models of varying accuracy

Figure 4.18: Wall clock time vs Model Accuracy
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Results. Figures 4.17 and 4.18 summarize the results of this evaluation. In Figure 4.17,
the rows represent an accuracy threshold for the model, and the plots show the wall-clock
time taken by each strategy to train a model of that accuracy. Note that neither baselines
reach an accuracy of 80% on the MNIST dataset in 500 points. To reach an accuracy of 75%,
CLAMShell requires 4 to 5× less time than Base-NR. On the CIFAR dataset, CLAMShell
does not significantly outperform Base-R, because passive learning performs well on CIFAR
and the benefits of hybrid learning are limited. Figure 4.18 displays the full learning curves
for each strategy, demonstrating that CLAMShell dominates both baselines in terms of model
accuracy.

I also measured the raw time to acquire 500 labels from the crowd, and found that
CLAMShell increases the labeling throughput by 7.24× compared to Base-NR. In addition,
CLAMShell reduces the variance of labeling by 151×, and the absolute values are extremely
low: 3.1 seconds vs. 475 seconds.

4.7 Conclusion

In this chapter, I have introduced CLAMShell, a system for data labelling that acquires
labels from human crowd workers at interactive speeds. Latency can arise from many points
in the labeling lifecycle, and CLAMShell addresses the key sources of latency with techniques
that explore novel regions of the cost-accuracy-speed tradeoff. Straggler mitigation reduces
the variance of task latencies within a batch by assigning additional workers to complete the
task. Pool maintenance increases the average speed of workers in a labeling pool by replacing
slow workers with faster ones over time. Hybrid learning reduces end-to-end labeling time
by combining the fast convergence of active learning with the parallelism of passive learning.

All told, in our experiments CLAMShell reduces the latency of data labeling by an order
of magnitude, and its variance by over 150×. These techniques make it possible to process
large datasets with the crowd in just one or two minutes, timescales that are consistent with
processing steps in automated data analysis pipelines. As a result, it is now possible to
design crowd-powered components that fit into interactive systems for data analysis.

The techniques introduced in this chapter make two important assumptions: that the
size of the worker pool is fixed, and that only a single user sends tasks to the crowd at a
given time. In the next chapter, I relax both of these assumptions to provide support for
a more general class of performant crowd-powered systems for data analysis. In doing so,
I demonstrate opportunities for further performance improvements that arise when the size
of the pool is adjusted to meet user workloads and workers are balanced efficiently between
multiple users’ requests.
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Chapter 5

Cioppino: Multi-Tenant Crowd
Management

The CLAMShell system presented in Chapter 4 demonstrated that a single user application
running crowd tasks on a fixed-sized pool of crowd workers can be accelerated to near-
machine latencies. However, the human computation needs of organizations frequently span
multiple use cases, and it would be inefficient to implement individual crowd-powered systems
to support each application. A better idea is to follow the approach taken by crowd platforms:
maintain a single group of workers and assign them to work on the tasks requested by multiple
applications. Because workers are shared between applications, the system can make global
decisions about which tasks to assign to which workers, and react to changes in the volume
of requests issued by each application.

In this chapter, I extend CLAMShell with support for multiple user applications running
at the same time. The chief challenge to doing so is managing the workforce: sizing it
correctly to support the workloads of the system’s many users, maintaining that size as
workers leave the system or workloads change, and assigning workers to applications on
whose tasks they actually prefer to work. While CLAMShell assumed that the crowd pool
size was fixed and determined by operational constraints, here I relax that assumption, and
demonstrate that allowing the system to auto-scale the pool to support incoming requests
can yield significant performance improvements over maintaining static pool sizes.

More so than in the previous chapters, this chapter focuses on the human aspects of
crowd workers, which can all too easily be lost among systems analogies and abstracted
mathematical theory. In general, being explicit about which aspects of human behavior
(incredibly complex and impossible to model in its entirety) a system accounts for, how those
aspects are modeled, and how the system has been designed to react to them is an important
step in the design of any crowd-powered system. The work described here very intentionally
models a set of human behaviors and preferences that can affect system performance and
worker satisfaction in a multi-user system, and designs techniques that account for them
directly.
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5.1 Introduction

Most work in low-latency crowd systems, including that presented so far in this thesis, has
assumed that tasks performed by human workers are short and homogeneous. However,
at organizations that rely heavily on human computation for data analysis, workers often
work on a variety of tasks of varying difficulty and length [100]. These tasks range from
simple binary question answering, such as labeling training data for machine learning mod-
els [104, 127, 33] or identifying duplicate records for entity resolution [58, 142], to complex
and content-heavy work such as data extraction [63], text translation [23] or video analy-
sis [31].

A system where workers work on heterogeneous tasks requested for multiple different use
cases has been called a multi-tenant crowd system [49]. Optimizing the performance of a
such a system presents unique challenges. The following example illustrates the issues faced
by a multi-tenant crowd.

Example 5.1 Company X maintains a searchable database of products with public APIs,
and has hired a pool of workers on a popular crowd platform to improve the quality of their
data and services. Some workers monitor and filter incoming data containing explicit content,
others extract structured records from newly scraped data sources, and still others provide
search relevance feedback to improve API results. Though Company X currently hires and
trains workers separately for each of these tasks, they often find that spikes and lulls in the
volume of work leave workers overloaded or idle.

In this chapter, I address the challenges of Example 5.1 head on. How should Company
X size their crowd to meet demand? Can the crowd be resized adaptively? Should workers
be trained for just one type of work, or moved between task types to meet demand despite
the training overhead? Following existing work on real-time crowdsourcing [17], I model
a crowd pool as a queueing system where crowd workers process incoming tasks as they
arrive. An important insight is that this queueing system bears many similarities to a cloud-
based software-as-a-service (SaaS) provider. SaaS systems handle requests to multiple service
endpoints while attempting to maintain high overall throughput at low cost. To do so, they
leverage techniques such as elastic cluster resizing [5], handling of nodes that fail or leave a
cluster [43], and resource sharing between applications that run on the same cluster [56]. A
multi-tenant crowd system faces many analogous challenges: sizing the worker pool for the
task workload, reacting when workers abandon the system, and ensuring that workers are
assigned tasks that they enjoy. As a result, existing approaches to cloud service management
provide insight into managing crowds.

However, because workers are human beings, they cannot be treated as idealized pro-
cessors. Unlike CPUs, human crowd workers abandon tasks due to fatigue, confusion, or
boredom. Individual workers exhibit varying preferences and skill for different tasks, and
improve over time as they become familiar with their work. When modeling a crowdsourced
computation system, these human factors simply cannot be ignored.
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In this work, I explicitly model a subset of human factors which matter for system
performance, and simulate multi-tenant crowd workloads to demonstrate the advantages
of the model. I build on top of the CLAMShell system presented in Chapter 4 to extend
performant crowd systems to the multi-tenant setting where pool sizes are not fixed. The
state-of-the-art in low-latency crowd systems does not automatically adapt the workforce
size to workload changes, responds to worker abandonment reactively as workers leave, and
either ignores under-utilized workers or assumes they have a static set of skills and cannot be
trained on new tasks. In contrast, this chapter describes Cioppino1, a system that explicitly
models worker abandonment, task preferences, and training overheads, and addresses them
with three novel techniques. Pool elasticity dynamically resizes the pool of workers to meet
application demand without over-recruiting, leveraging techniques from the cloud autoscaling
literature. Pool stability models the problem of worker abandonment. It maintains a worker
pool of constant size by automatically recruiting new workers in a fashion adaptive to the
rate of worker departure. Pool balance shares idle workers among applications to maximize
throughput, balancing application demands against worker preferences. Together, these
techniques demonstrate that adjusting simple models to account for human behavior can
significantly improve the performance of crowd systems. I evaluate Cioppino in simulation
using both synthetic data and a trace from a live crowd pool deployment and show a 19×
decrease in cost over the crowd worker management used in today’s systems, while doubling
worker preference for the tasks they are assigned and improving throughput by 20%.

5.2 Related Work

As described in Chapter 2, existing research has focused on optimizing crowd systems in
three ways. Quality optimizations improve the accuracy of data processing tasks (e.g., by
weighting worker responses based on inferred measures of worker skill [75, 83]). Cost opti-
mizations improve the cost-efficiency of specific crowd-powered operators such as joins [101],
filters [109], entity resolution [144, 58] or active learning [104, 133]. Latency optimizations
have attempted to accelerate human processing steps by recruiting human workers faster
or in advance [20, 16], adaptively changing task pricing to encourage participation [55, 24],
modifying task interfaces to reduce individual worker latencies [86, 99], recruiting and re-
leasing workers to converge on a crowd of faster, more accurate workers [118], or leveraging
redundancy to mitigate the effects of straggling workers (Chapter 4 of this thesis). While
these techniques indeed accelerate the rate at which crowds process data, they are mostly
focused on the batch-oriented, single-application scenario in which a dataset is processed
in a single task interface by workers already trained in using that interface. This ignores
important realities of today’s crowdsourcing systems: work is varied in its complexity and
latency requirements, and workers have innate preferences and skills that make them better
suited for some tasks than others.

1A delicious Italian stew of CLAMs and other seafood.
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Technique System Dynamic Addressed Worker Pool Actions Taken
Pool Elasticity (5.4) Changing task workload Worker recruitment and release
Pool Stability (5.5) Worker abandonment Worker recruitment
Pool Balance (5.6) Excess idle workers Inter-pool worker transfer

Table 5.1: Summary of techniques used by Cioppino.

The practicalities of managing a crowd of workers completing tasks in real time has
received little attention in the crowdsourcing systems literature. The closest work is that
of Bernstein et. al. [17], which models a pool of workers using queueing theory and finds
the optimal size for a pool to minimize wait times given task and worker arrival rates. The
goal is to avoid ‘misses’, where a task is available for processing but all workers are busy.
Also, the pool maintenance technique described in Chapter 4 and the algorithms described
in Chapter 6 dynamically recruit and release workers from the pool to maximize the average
speed of pool workers. The pool management techniques described in this chapter also aim
to minimize pool and task latency, but additionally take into account variable task duration,
worker preferences, and training overheads to accommodate the heterogeneous nature of
shared crowd pools. Additionally, I introduce techniques for autoscaling the crowd pool to
handle increased or decreased load adaptively.

Separate from system optimization, human factors that affect crowd worker performance
have received significant attention. There has been research into the effects of worker exper-
tise [119], fatigue [121], pool abandonment [17] and motivation [67, 120], along with attempts
to model and address the issues. For example, Rzeszotarski et al. [122] train a machine learn-
ing model on observed worker behavior to predict task performance, and Ikeda et al. [71]
design worker collaboration schemes that account for inter-worker affinity.

5.3 The Cioppino System

In this section, I describe the architecture and queuing model of Cioppino, as well as sum-
marizing its novel techniques.

5.3.1 Cioppino: a multi-tenant crowd system

The goal of a multi-tenant crowd system is to process requests with low latency and high
throughput for client applications with varying workloads and task types. Taking into ac-
count the design considerations of Section 2.4, Cioppino is domain-agnostic, uses retainer
pools for high availability, is compatible with existing quality control strategies, and in-
troduces several novel techniques (summarized in Table 5.1): autoscaling worker pools to
improve latency and throughput, explicitly modeling and compensating for worker abandon-
ment, and transferring workers between applications to maximize throughput with consid-
eration for worker preference and training overhead.
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Figure 5.1: Cioppino architecture diagram.

A key insight is that managing crowds of human workers bears a strong resemblance to
distributed cluster management. For example, cluster schedulers that support multiple appli-
cations must assign each task to a compute node, taking into account heterogeneous hardware
and other factors that affect compute latency such as data placement [44, 140, 108]. Sim-
ilarly, Cioppino assigns application tasks to human workers, accounting for varying worker
preferences and training. Handling fluctuating task load by autoscaling compute clusters
has also received attention. There are a number of approaches to autoscaling (see [116] for
a recent survey). Techniques that translate well to the crowdsourcing setting include mod-
eling the system with queues or queueing networks [5, 79] and making decisions to increase
or decrease the cluster size using static rules [107], currently the state of the art for most
cloud providers [6, 59], control theory [60], or machine learning [76].

Figure 5.1 shows the architecture of Cioppino. Client applications issue requests for tasks
to be completed. Incoming tasks are enqueued and serviced by workers in a dedicated appli-
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cation crowd worker pool. Cioppino recruits workers from the crowd to perform autoscaling
(Section 5.4) and to compensate for worker abandonment (Section 5.5). Workers are also
transferred between applications’ worker pools to improve efficiency (Section 5.6).

5.3.2 System model

At its core, Cioppino is a queuing system: each type of crowd task (or client application)
maintains its own queue of tasks, which is serviced by a pool of ci workers held on retainer.
Bernstein et al. [17] model retainer pools as M/M/c/c queues, in which workers arrive ac-
cording to a Poisson process and are sent away if there is no demand for new workers. In
this setup, however, queues hold arriving tasks, not arriving workers. Since it is undesirable
to discard tasks, the system uses M/M/c queues (the theory of which is well-established:
see [57] for an overview). In an M/M/c queue, the arrival rate of tasks is assumed to follow
an exponential distribution with parameter λi, task completion times are distributed expo-
nentially with parameter µi, and incoming tasks queue up (potentially infinitely) if there are
no available workers. In practice, since the true values of λi and µi are unknown, the system
periodically re-estimates them empirically from the observed task arrival and completion
rates in a recent time window.

The value of the queuing model is that it permits analysis of the expected wait time
for a task in the queue. With this information, one can estimate the optimal pool size
to service a given workload (Section 5.4) and estimate the latency impact of transferring
workers between applications’ worker pools (Section 5.6). Now, I describe in turn each of
the techniques Cioppino uses to manage crowd workers efficiently.

5.4 Pool Elasticity

In order to optimize its performance, Cioppino must determine a good size for the crowd
pool, and adjust that size to meet changes in application workloads. Sizing the worker pool
is an important decision. Too small, and its workers will be unable to keep up with the
workload, causing a decrease in throughput. Too large, and workers will sit idle, incurring
greater cost without any performance benefits. Cioppino leverages its core queueing theory
model to identify an optimal queue size, and uses several algorithms for cloud autoscaling
to adapt to changing workloads.

5.4.1 Optimal queue size

In the M/M/c queueing model, the tradeoff between performance and cost is captured as
follows: the larger the number of workers c is, the lower the expected wait time for an
incoming task (leading to a system-wide decrease in latency and increase in throughput).
However, the larger c is, the higher the probability of idle workers. Under the retainer pool
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model, the system must pay workers an additional salary to wait if there is no available
work, so idle workers have a direct cost.

This tradeoff can be quantified as follows. Let ρ = λ
µc

be a measure of the ‘traffic intensity’

of the system. In an M/M/c queue, the probability that an incoming task must wait is given
by

ΠW =
(cρ)c

c!

(
(1− ρ)

c−1∑
n=0

(cρ)n

n!
+

(cρ)c

c!

)−1

.

This is referred to as Erlang’s C formula, and can be used to compute both the expected
wait time for incoming tasks,

E[W ] = ΠW
1

(1− ρ)cµ
(5.1)

and the expected queue length,

E[L] = ΠW
ρ

1− ρ
.

The expected cost of the system’s execution is given by the expected number of idle workers
times the salary paid for waiting. Following [66], the salary is set to be s = $0.05/minute,
but this can easily be adjusted. So it is clear that

E[Cost] = s(max{0, c− E[L]}). (5.2)

To find an optimal pool size, Equations 5.1 and 5.2 must be explicitly traded off. This can
be done by minimizing a weighted average of the two: c∗ = arg minc ηE[W ] + (1−η)E[Cost],
where η is a system parameter establishing a preference for one or the other. This equation
has no clean closed form, but since it is convex, the exact optimum c∗ can be solved for
numerically.

5.4.2 Autoscaling algorithms

The optimal queue size c∗i for an application derived in Section 5.4.1 depends on the parame-
ters λi and µi. While µi is expected to remain fairly stable over time for a specific task type,
λi varies with the application workload, which is not guaranteed to be constant. Cioppino
intentionally estimates λi over a recent window of time to take this into account, and every
time λi changes, the pool must be re-sized to compensate. Inspired by the literature on
cloud infrastructure, Cioppino makes use of two types of autoscaling: rule-based autoscaling
and control-theoretic autoscaling.
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Figure 5.2: Control system block diagram.

Rule-based autoscaling. Most cloud IaaS providers (e.g., EC2 [6], GCE [59], etc.) cur-
rently offer threshold-based policies for autoscaling application hardware, for example, “add
2 VMs to my application if the average CPU utilization among current VMs rises above
80%”. This approach is attractive because it is easy to deploy and understand, but writing
effective rules requires deep understanding of the application workload. In Cioppino, rules
may be written based on system performance metrics (e.g., queue length, observed through-
put, observed latency, pool size) or queueing model metrics (e.g., λi, µi, or the optimal pool
size estimate c∗i ).

All rules are composed of a condition that triggers the rule and an action to take if
the rule is triggered. A condition relates a parameter to a threshold, and may contain
multiple clauses connected by boolean operators. For example, the following rule recruits a
new worker whenever the queue builds up or the pool becomes smaller than the estimated
optimum:

if Li > 10 or c∗i − ci > 5

then action("recruit", 1).

Rules that rely on c∗i have particular promise, since they retain the ease-of-use of metric-
based rules, but rely on the system model instead of requiring administrators to understand
application workload.

Control-theoretic autoscaling. Systems for cloud autoscaling use a variety of control-
theoretic models to compute the number of additional VMs that need provisioning, including
fixed-gain controllers, adaptive controllers, and fuzzy models [96]. Cioppino uses fixed-gain
PID controllers, which use a simple linear model to relate the control action to the observed
error in the process variable or parameter of interest. Figure 5.2 shows a block diagram of
our closed-loop control system. At each iteration of the loop, the user provides a target
value (set point) for the process variable. The controller computes the desired change in the
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number of crowd workers, then takes action to recruit or release workers. In a PID controller,
the desired change in the number of workers is computed as

ut = Kpet +Ki

t∑
j=0

ej +Kd(et − et−1).

The first (Proportional) term reflects the current gap between the set point and the observed
value of the process variable (et). The second (Integral) term reflects the history of observed
errors. The third (Derivative) term reflects the current rate of change in error. The relative
magnitude of these terms are controlled by the three weight parameters Kp, Ki, and Kd.
We tune these parameters manually, though techniques for offline and online autotuning of
PID systems has received considerable attention in the literature. In our experiments, we
evaluate PID controllers built on two process variables: system throughput, for which et is
the number of arrived tasks minus the number of completed tasks at timestep t; and pool
size, for which et is the optimum c∗i minus the pool size ci at timestep t.

5.4.3 Cooling period

Though recruiting additional workers to a crowd pool is easily accomplished via platform
API calls, it does not occur instantly. Rather, there is a non-deterministic delay until a new
worker joins the pool. As a result, running an auto-scaling policy in a continual loop could
lead to thrashing, where the system recruits and releases workers in rapid succession around
an unstable equilibrium pool size. To alleviate this problem, I introduce a cooling period
after each autoscaling decision wherein no additional autoscaling can occur. The length of
the cooling period must be long enough to avoid thrashing, but not so long that the system
cannot react to workload changes. A natural length is the mean worker recruitment time,
so that on average additional autoscaling decisions will not be made until newly recruited
workers have arrived. However, since worker recruitment times have high variance, Cioppino
allows the cooling time to be set to k standard deviations above the mean, a parameter that
can be adjusted upwards to reduce the odds of thrashing.

One additional consideration is that scaling down the crowd pool occurs instantaneously–
the pool simply informs the worker that there is no work available to them, and stops sending
tasks. In this case, Cioppino sets the cooling time to be the average task duration 1

µi
, a period

long enough that there will likely be observable changes in the metrics used to make scaling
decisions.

5.5 Pool Stability

There are a number of challenges to running crowd retainer pools in production systems.
One crucial limitation is that of worker abandonment.
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5.5.1 Worker abandonment

In an idealized model of retainer pools, the requester hires a pool of workers, employs them
until the desired work is complete, then pays and releases them. In reality, especially in
online crowd marketplaces, workers abandon tasks without warning for a variety of reasons—
fatigue, boredom, accidentally closing browser tabs, etc. For example, [16] found that about
10-20% of workers abandoned the pool before accepting their next task, and analysis of
the CLAMShell trace described in Section 5.7.1 shows that workers on average only remain
in the pool for 5-6 minutes. As a result, a production deployment of crowd worker pools
must account for abandonment by constantly recruiting new workers to the pool. Cioppino
introduces a novel mechanism to do so called pool stability.

5.5.2 Pool stability

Though it would be nice to be able to simply recruit another worker every time one leaves, the
delay associated with hiring new workers might leave the pool short-handed for a significant
period of time. Here, I examine three recruitment strategies to mitigate this effect: rule-
based, average-rate, and hybrid. These approaches are evaluated in Section 5.7.3.

Rule-based recruitment. As with autoscaling techniques, rules can be explicitly defined
to respond to worker abandonment. Cioppino permits rules of the form:

if ci < thresh, then action("recruit", n).

Rules can also be defined in terms of the rate of abandonment. As before, rules are easy to
define and apply, but hard to tune without knowledge of the dynamics of abandonment.

Average-rate recruitment. Rule-based approaches might perform poorly if the rule con-
dition is poorly tuned to the abandonment rate. Average-rate recruitment seeks to avoid
this problem. It continually maintains a count nwindow of the number of workers who aban-
doned the pool in the last twindow seconds, then recruits âi = nwindow

twindow
workers every second.

If âi is non-integral, then the algorithm recruits bnwindow
twindow

c workers, and with probability
nwindow mod twindow

twindow
recruits an additional worker. In expectation, this achieves the correct

rate.

Hybrid recruitment. Average-rate recruitment avoids overreacting to spikes in abandon-
ment by recruiting at a constant rate based on the empirical observed average. However, it
ignores the current size of the pool, and cannot react if the pool size grows too large due to
over-recruitment. Hybrid recruitment seeks to achieve the best of both worlds. It runs the
average-rate recruitment algorithm, but additionally uses a threshold-based rule to prevent
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recruitment if the pool is too large. That is, it can be summarized with the rule:

if ci < thresh, then action("recruit",

avg rate recruitment(awindow, nwindow)).

5.5.3 Interaction with pool elasticity

Since both pool stability and pool elasticity recruit workers automatically, the system must
ensure that there is no destructive interference between the two techniques. To do so, all
recruitment API calls are batched into short windows of time, and the net total of new
workers is requested. For example, if pool elasticity attempts to release 2 workers (due to
lightened workload) but pool stability attempts to recruit 1 worker (due to increased observed
worker abandonment), the system will release 1 worker. This can be justified intuitively:
pool stability recruits additional workers so that the pool behaves according to the queueing
model that pool elasticity relies on. To avoid impacting performance, the length of the
window should be made small enough so that two recruitment decisions are not made by the
same pool within the same window. Due to the cooling period discussed in Section 5.4.3,
this is not difficult: the experiments in Section 5.7 use a window of 1 second, and do not
observe any impact on performance. One final point: since ci might be changing due to both
worker abandonment and autoscaling, rule-based techniques should be designed jointly to
avoid redundant recruitment.

5.6 Pool Balance

Autoscaling each application’s pool individually will successfully adjust to changing work-
loads, but it may result in inefficiency because it doesn’t take into account the scaling needs
of other pools. Cioppino uses a novel algorithm called Pool Balance to determine when it
is efficient to shift workers between applications, taking into account two subtleties: first,
there is a training overhead associated with assigning a worker a task type they’ve never
done before; and second, worker preferences should be taken into account when performing
transfers.

5.6.1 Approach overview

Algorithm 5.1 describes Cioppino’s algorithm for choosing a set of idle workers to transfer
to other pools (a transfer set, consisting of zero or more (worker, destination-pool)

pairs). For each transfer set we consider, we simulate the transfers, then estimate how it
will affect the processing of currently backed up tasks and the preferences of workers for
their current work. Because the space of possible transfer sets is large, we use heuristics to
limit the candidate transfer sets we consider. The pool balance algorithm runs in a loop
during system execution: periodically, it generates candidate transfer sets, evaluates them,
and applies the best one.
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Algorithm 5.1 Pool Balance.

best tset score = −∞, best tset = None

for tset in generate candidate tsets():
completion times = {}
preferences = {}
for pool in All Pools:

new pool = simulate transfer(tset, pool)
completion times += completion est(tset, new pool)
preferences += net preference(new pool)

perf score = perf ts(completion times)
h score = h ts(preferences)
net score = ω∗ h score + (1− ω)∗ perf score
if net score > best tset score:

best tset = transfer set
best tset score = net score

apply tset(best tset)

5.6.2 Estimating queue completion time

The function completion est in Algorithm 5.1 estimates the time it will take for an indi-
vidual queue to empty given its current length Li and its current workforce ci. This estimate
is equivalent to the expected wait time of the next item to arrive in the queue, E[Wi|Li].
To compute the estimated waiting time, it can be observed that the task will wait in line
until Li items have been processed and exited the queue. Let Dk be the kth interdeparture
time since the arrival of the last task in the queue. Then E[Wi] = E[

∑Li
k=1 Dk]. Clearly, the

Dk are independently exponentially distributed with mean 1
ciµi

. The sum of n independent
exponentially distributed random variables with identical mean µ is Erlang-distributed with
shape parameter n and rate µ, so we have that:

E[Wi] = E
[ Li∑
k=1

Dk

]
= E[Er(x;Li, ciµi)] =

Li
ciµi

. (5.3)

When workers are transferred between pools, however, they must learn to do the new task
type. Thus, Equation 5.3 must be adjusted to account for training time. To simplify the
analysis, Cioppino makes the conservative assumption that new workers aren’t added to the
pool until all workers have completed training. A transfer thus breaks queue processing
time into two phases: during training, the queue can’t make use of new workers, but once
training is done, it can. Let us assume that training times, like task times, are exponentially
distributed with parameter tri, let kTSi be the number new workers in pool i under transfer
set TS, and let cTSi be the total workers after TS is applied: ci + kTSi = cTSi .

First, I analyze the expected length of the training period. Training ends when all workers
have finished training, so (using that the expectation of the maximum of n independent
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exponential random variables with parameter λ is 1
λ

∑n
j=1

1
j

— see [97] for a proof):

E[ttrain] = E[max(tri,1, . . . , tri,kTSi )] =
1

tri

kTSi∑
j=1

1

j
.

During training, the queue processes tasks at an average rate of µi(c
TS
i −kTSi ), so an expected

µi(c
TS
i −kTSi )

tri

∑kTSi
j=1

1
j

tasks exit the queue during training. Call this quantity Ltr. Now the

adjusted E[Wi] can be expressed in terms of the training and post-training phases:

E[W TS
i ] =

{
Li

(cTSi −kTSi )µi
if Li ≤ Ltr,

E[ttrain] + Li−Ltr
cTSi µi

otherwise.
(5.4)

That is, if the queue is small enough to be completely processed during training, then the
expected processing time is as if the new workers didn’t exist. If not, then the expected
processing time is the expected training time plus the time to process the tasks that weren’t
processed during training, using the newly trained workers.

5.6.3 Evaluating candidate transfer sets

Performance. With an estimate for the expected time to process an individual queue, the
performance utility of a transfer set TS can be evaluated. First, the set W = {E[W TS

i ] :
0 ≤ i < |Apps|} is computed using Equation 5.4. Then, the performance score PerfTS (the
perf ts function in Algorithm 5.1) is computed by evaluating the utility of this set. The
experiments in section 5.7 use PerfTS = 1/median(W), though other utility functions could
be used based on system performance goals.

Worker preferences. PerfTS only accounts for the performance effects of a transfer set.
However, transferring a worker may be undesirable if the worker doesn’t enjoy the task type
of the destination application, and two equally efficient transfer sets might not be equally
sensitive to workers’ task type preferences. To model this, let pi,j ∈ [0, 1] represent the jth
worker’s preference for the task type of application i. In simulation, the pi,j are generated
uniformly at random, but in a live system new workers could establish preferences for the
available task types when they join. To evaluate a transfer set TS, in addition to computing
E[W TS

i ], the pool balance algorithm computes the net preference of the transfer set,

HTS =
∑
i∈Apps

∑
j∈AppsTSi

pi,j. (5.5)

Then, overall transfer set score is updated to take the weighted average of the two metrics:

ScoreTS = ω ∗HTS + (1− ω) ∗ PerfTS, (5.6)

where ω is a system parameter that sets the relative importance of worker satisfaction to
system performance. I evaluate the pool balance algorithm’s effect on net preference in
Section 5.7.4.
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5.6.4 Searching the transfer set space

Unfortunately, the space of candidate transfer sets is large, making a brute-force comparison
of all possible transfer sets impractical. To see this, observe that any subset of idle workers
in the system could be transferred to any other app in the system, so if there are A apps in
the system and C =

∑A−1
i=0 ci total workers, there are up to

∑C
j=0

(
C
j

)
Aj = (A+ 1)C possible

transfer sets.
Instead, Cioppino applies heuristics to cut down the space it searches over. First, the

system doesn’t consider transfer sets that send workers to applications having Li = 0, since
those applications are unlikely to need additional workers. Note that this rules out transfer
sets that swap workers symmetrically between pools, since all applications with idle workers
have Li = 0. Additionally, the size of a transfer set is capped at 10. Finally, instead
of considering all Ak transfer sets for a worker subset of size k, the system uses a greedy
heuristic to generate a single assignment of workers to destinations. The heuristic works as
follows: for each worker pool, the system computes E[Wi] from Equation 5.3 and HTS from
Equation 5.5. Then each worker in the subset is assigned to the destination pool with the
largest ω ∗ HTS + (1 − ω) ∗ E[Wi], incrementing ci and recomputing the score after each
assignment.

Further, the system uses a caching approach to avoid redundant computation while
searching the space. In order to evaluate candidate transfer sets, the pool balance algo-
rithm repeatedly computes E[W TS

i ] according to Equation 5.4. Because this computation
relies only on cTSi , kTSi , µi, and Li, results can be reused whenever simulating a transfer set
results in an application with a previously seen cTSi , kTSi , µi, and Li. The algorithm maintains
a hash table mapping the tuple (ci, ki, µi, Li) to the result E[Wi], and uses it whenever possi-
ble. This occurs fairly often—for example, there will be many ways to transfer k workers to
application i from different source applications, and for each, E[W TS

i ] will be identical. The
map remains valid across multiple iterations of transfer as well, so it is maintained across
runs of the algorithm.

5.7 Evaluation

In this section, I evaluate Cioppino’s techniques in isolation and together, demonstrating
simultaneously a 20% improvement in throughput and a 19× decrease in cost over the
current state of the art in crowd pool management.

5.7.1 Experimental Setup

I evaluated Cioppino’s techniques on a multi-tenant crowd pool simulator implemented in
python. The experiments were conducted on an Amazon EC2 c4.4xlarge instance with 16
vCPUs and 30 GB of RAM. The workloads and crowd behavioral data were either generated
or trace-based.
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Generated data. In some experiments, crowd worker behavior is simulated, including the
rate of crowd worker abandonment, the recruitment time for new workers, and preferences of
workers. Abandonment rates are modeled by a parameter α: each worker chooses to abandon
the system with probability α at the end of their task. Recruitment time is modeled as a
Poisson process with rate r. Worker preferences are generated uniformly at random in [0, 1)
for each task type (client application) in the system, then normalized to sum to 1. In
addition, workload data are simulated, including the task completion rate µi, the arrival
rate of tasks λi, and initial pool sizes ci for client applications. Specific workloads will be
described in the context of the experiments that use them.

Trace-based data. Some experiments are trace-based simulations. The trace was ex-
tracted from a live deployment of the CLAMShell system running simple labeling tasks on
MTurk described in Chapter 4.2 It consists of three streams of data in chronological order:
the worker recruitment times for all new workers who joined the pool (n=6126 recruitments,
mean time 91.3 seconds, standard deviation 113.9 seconds), the task duration for all tasks
processed in the pool (n=6725 tasks, mean time 1.97 seconds, standard deviation 0.87 sec-
onds), and the duration that workers remained in the pool before abandoning it (n=2999
abandonments, mean time 316.6 seconds, standard deviation 211.1 seconds).

(a) Pool Size (b) Throughput (c) Cost

Figure 5.3: Response of pool elasticity algorithms to workload decrease or increase, averaged
over 50 runs. The workload change begins at the 400 second mark.

5.7.2 Pool elasticity

First, I evaluate the Pool Elasticity techniques that autoscale crowd pools in response to
changing application workloads. I compare four techniques. Rule-based autoscaling (RB)
uses two rules: “if Li > 10 or c∗i − ci > 5 then action(’recruit’, 1)”, and “if

2The trace data can be found at http://thisisdhaas.com/clamshell_trace.html.

http://thisisdhaas.com/clamshell_trace.html
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Abbrev. Technique Description

RB Rule-based Scales pool when rule conditions
are met.

CT-t Control-theoretic (throughput) PID controller with throughput
as process variable.

CT-p Control-theoretic (pool size) PID controller with pool size as
process variable.

S Static Constant pool size, set to the
workload optimum.

Table 5.2: Summary of pool elasticity techniques evaluated in Section 5.7.2.

c∗i − ci < −5 then action(’release’, 1).” Control-theoretic autoscaling uses the PID
controller described in Section 5.4.2, and is evaluated with two different process variables:
system throughput (CT-t) and pool size (CT-p). Finally, the static technique (S) begins
with the optimal pool size for the entire workload and does no autoscaling, for comparison.
The static technique cannot be used in practice without advance knowledge of the entire
workload. Table 5.2 summarizes these techniques.

To capture the responsiveness of the techniques to workload changes, I evaluate them
against sudden increases and decreases in workload. In both cases, the optimal pool size is
computed following the calculation in Section 5.4.1 with η = 0.5, which assigns equal weight
to minimizing cost and maximizing performance. In the increase scenario, the workload
starts at λi = 10, µi = 0.1 (making c∗i = 126), then increases to λi = 50, µi = 0.1, c∗i = 545.
The decrease scenario reverses the order of the two phases. In both scenarios, the initial pool
size ci is set to the initial c∗i so that the experiment begins at equilibrium. These experiments
are run on synthetic, not trace-based data.

Figure 5.3a shows how the techniques react to workload changes. Qualitatively, though
all techniques other than S converge to the new optimal value after a workload change,
the control-theoretic techniques react more quickly. The technique based on the Cioppino
queueing model (CT-p) most smoothly and rapidly converges to the new optimal value,
where as CT-t has a tendency to overshoot.

Figure 5.3b evaluates the total system throughput achieved by the techniques. In the
Decrease scenario, all techniques achieve high throughput, since throughput is unaffected
if the crowd pool remains too large (though CT-t has a 10% lower throughput due to its
overshoot, 17 tasks/sec vs. 19 task/sec for CT-p). In the Increase scenario, rapid scaling is
rewarded, and the control theoretic techniques (CT-p=38.72, CT-t=38.0) see a 12% increase
in throughput over RB and a 17% increase in throughput over S.

Finally, figure 5.3c shows the average cost per second of the techniques. Here the results
are dramatic: CT-t costs 5-8× less than the other techniques and 88× less than the baseline
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strategy S in the Increase scenario. In the Decrease scenario, the rule-based strategy is
penalized for its slow reaction time (57× more expensive than CT-t), and the S and CT-p
strategies are 21 and 31× more expensive as well. The dominance of CT-t arises from the
fact that the PID control system is designed to keep throughput at exactly the same rate
as task arrival, which when successful means there are no idle workers. In contrast, the
setting η = 0.5 for CT-p means that the pool is intentionally kept slightly larger to trade off
increased throughput for cost.

Summary: If cost is a factor, CT-t is the obvious best choice for pool autoscaling.
However, CT-p consistently achieves the best throughput by keeping the worker pool at the
optimal size prescribed by the Cioppino queuing model.

5.7.3 Pool stability

In this section, I evaluate the Pool stability algorithms that compensate for worker abandon-
ment. In these experiments, a constant workload of λi = 10, µi = 0.1 is maintained, and the
initial pool size is set to be ci = c∗i = 126. This allows the impact of abandonment on normal
performance under the null technique (N) to be measured. I additionally compare three
techniques. Rule-based stability (RB) recruits new workers whenever the pool size dips too
low, implementing the rule: “if c∗i − ci > 5, then action(’recruit’, 1)”. Average-rate
recruitment (AR) recruits new workers at a constant average rate. Hybrid recruitment (HR)
uses the same rule as RB combined with the rate of AR, as described in Section 5.5.2. These
experiments are run on synthetic, not trace-based data.

Figure 5.4 illustrates the performance of the various techniques under varying abandon-
ment rates α and recruitment rates r. The baseline N illustrates the effect α has on how
quickly workers leave the pool. As α increases, the rule-based technique (RB) starts los-
ing more and more workers. Since rules have hard-coded thresholds, RB cannot adapt to
changing alpha in the way that average-rate recruitment techniques can. The parameter
r describes the responsiveness of the system to recruiting decisions: on average, recruited
workers arrive after 1

r
seconds. As a result, the pool size exhibits more variance as r de-

creases. Finally, the hybrid strategy (HR) acts as expected: it is a more conservative version
of AR because it doesn’t recruit if the pool size is sufficiently large.

Figures 5.5a and 5.5b demonstrate the techniques’ average throughput and cost. Values
of α are restricted to values observed in real deployments for readability. AR, the strategy
that recruits most aggressively, shows the strongest performance, ranging from 5-15% higher
throughput than HR, 14% - 2× higher throughput than RB, and up to 14× higher throughput
than N. However, because it over-recruits, it incurs significant cost: 3.3× HR, and 47× RB.

Summary: Though the AR strategy maintains the pool’s stability and achieves high
throughput, the HR strategy takes a small performance hit for significantly decreased costs.
The RB strategy performs relatively well when the rule is tuned to a particular α, but does
not react well to changes in the system dynamics.
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Figure 5.4: Pool stability techniques and the effects of the parameters α (the probability
that each worker abandons the pool after completing a task) and r (the mean recruitment
rate, 1

r
is the average delay before a recruited worker arrives), averaged over 50 runs. The

chart for α = 0.5, r = 0.02 is omitted because the y axis would be scaled too high as a result
of over-recruitment by AR and HR.
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(a) Throughput (b) Cost

Figure 5.5: Throughput and cost of pool stability algorithms for varied α and r, averaged
over 50 runs.

5.7.4 Pool balance

To evaluate the pool balance algorithm, I examine the net cost, performance, and worker
preferences of using different strategies to transfer idle workers. In addition to the pool
balance algorithm (PB) described in Section 5.6, I compare against two baselines: no trans-
ferring (NT), as is typically done in today’s crowd deployments, and random transferring
(RT), where all idle workers are immediately sent to a random pool with a queue length
Li > 0.

In order to observe how the algorithms rebalance workers, I run a multi-tenant pool with
three applications: a high-load application (λi = 50, µi = 0.1, c∗i = 545), a medium-load
application (λi = 30, µi = 0.1, c∗i = 338), and a low-load application (λi = 10, µi = 0.1, c∗i =
126). The system begins with the total optimal number of workers, balanced sub-optimally
between the applications. The high-load application is given 126 workers, the medium-load
application is given 545 workers, and the low-load application is given 338 workers. These
experiments are run on synthetic, not trace-based data.

Figure 5.6a shows how workers are rebalanced across the applications by the various
techniques. Both the RT and PB strategies successfully rebalance workers to arrive at the
optimal pool size; however, the PB algorithm rebalances much more quickly, since it picks
high-quality transfer sets. The speed of the rebalancing has important consequences for
both performance and cost. Figure 5.6b shows that PB consistently achieves an average
throughput about 18% higher than RT and 76% higher than NT. Figure 5.6c shows that PB
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(a) Pool size (b) Average throughput

(c) Average cost (d) Net worker preference

Figure 5.6: Performance of pool balance algorithms on the 3-application system faceted by
tri, averaged over 50 runs.
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is also significantly less expensive, on average costing 10× less than RT and 27× less than
NT.

Finally, Figure 5.6d shows the average preferences of workers in each application pool for
their current task at the end of system execution (after workers have been rebalanced). While
NT and RT show worker preferences of 33% per pool, equivalent to random assignment, PB
is successful in making workers happier on average: up to 47% preference of workers for the
pool they are assigned to. This might still sound low, but it represents a 43% increase in
the average preference a worker has for the tasks they are assigned to work on.

Summary: Cioppino’s pool balance algorithm shows significantly higher throughput,
lower cost, and increased net worker preference than the baselines.

5.7.5 End-to-end evaluation

To evaluate the overall efficiency of Cioppino, I compare two scenarios, a state-of-the-art
baseline and a combination of the best performing techniques of Cioppino. The baseline
behaves like typical crowd systems today: it does not autoscale its crowd pool (pool elasticity
policy S), it uses rule-based recruitment to respond to worker abandonment (pool stability
policy RB), and it does not do any inter-pool worker training and transfer (pool balance
policy NT). The Cioppino system uses throughput-based control-theoretic autoscaling (CT-
t), hybrid recruitment for pool stability (HR), and the novel pool balancing algorithm (PB).

Synthetic data. In order to evaluate all techniques simultaneously, I use a synthetic
workload designed to exercise each of Cioppino’s crowd management techniques. It runs
three apps simultaneously with different workloads. The Increase and Decrease apps are
the same as used in the Pool Elasticity experiments (Section 5.7.2). Increase starts with a
low-load workload (µi = 0.1, λi = 10, c∗i = 126), and then switches sharply to a high-load
workload (µi = 0.1, λi = 50, c∗i = 545). The additional app, Static, maintains a medium
workload the entire time (µi = 0.1, λi = 30, c∗i = 338). This creates enough diversity
in workloads that the pool balance technique is able to contribute. I additionally run the
system modeling worker abandonment (α = 0.1), recruitment latency (r = 0.1), and training
latency (tri = 1/60 = 0.017).

Figures 5.7a-d illustrate how the two systems react to the workloads. In every case,
Cioppino offers a significant improvement over the baseline system. Because rule-based pool
stability is reactive and inflexible, the baseline has trouble keeping the pool size constant in
response to worker abandonment, especially across the varying workloads. Overall, Cioppino
shows a 36% higher throughput, 28× lower cost, and 2.5× higher net worker preference than
the baseline system.

Trace-based data. In addition to the generated behavioral data, I evaluate the two end-
to-end systems on the CLAMShell trace described in Section 5.7.1. To keep the evaluation
consistent with the fully synthetic experiments, I use the same app workloads: Increase,
Decrease, and Static. However, since the CLAMShell trace contains task completion time
data, I use CLAMShell completion times instead of generating them from an exponential
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(a) Pool size (b) Average throughput

(c) Average cost (d) Net worker preference

Figure 5.7: Simulated end to end system comparison, averaged over 50 runs.
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(a) Pool size (b) Average throughput

(c) Average cost (d) Net worker preference

Figure 5.8: End to end system comparison, executed against the CLAMShell trace.
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distribution given µi. In the CLAMShell trace, the average task duration is 1.97 seconds,
making µi = 0.51. Combined with the λi for the app workloads, I compute that c∗i is 28
for the Increase app, 119 for the Decrease app, and 76 for the static app, so I use these
values as starting pool sizes. Additionally, the CLAMShell trace is used to provide worker
abandonment times instead of the workload parameter α, and recruitment times instead of
the workload parameter r.

Figures 5.8a-d show the techniques’ performance on the trace. In the results, we observe
similar trends as with the synthetic end to end evaluation. Qualitatively, the Cioppino sys-
tem is much better at keeping the pool size close to the optimal value in spite of changing
workloads (though there is increased noise now that the data is real, not generated). Quan-
titatively, Cioppino dominates Baseline on all metrics in the cases examined: it has 20%
higher throughput, 19.4× lower cost, and 2.3× higher net worker preference.

Summary: Cioppino improves significantly over the state of the art in managing crowd
pools, both on auto-generated and real trace-based crowd behavioral data. It simultaneously
improves throughput and net worker preference while drastically reducing cost.

5.8 Conclusion

In this chapter, I introduced Cioppino, a system for holistic crowd pool management that
reduces cost and increases efficiency while accounting for human factors that affect system
performance. Cioppino builds on the CLAMShell system of Chapter 4, models crowd task
processing as a queueing system, and introduces novel algorithms for autoscaling, compensat-
ing for worker abandonment, and rebalancing workers across application pools. Multi-tenant
crowd systems should incorporate these techniques to make the most of their crowdsourced
workforce.

Together, CLAMShell and Cioppino represent an architecture for designing performant
human-powered systems for data analysis that support multiple applications running in
parallel on elastic worker pools. However, to maximize performance, both systems need
access to a pool of fast workers. Cioppino is concerned with choosing when to hire, release,
or transfer workers between pools, but it does not specify which individual workers to transfer
or hire and therefore provides no insights into identifying fast workers. The Pool Maintenance
technique presented in Chapter 4 converges on a pool of fast workers, but relies on a user-
defined threshold to separate ‘fast’ workers from ‘slow’ ones, and provides no guarantees on
how quickly fast workers can be identified. In the next chapter, I investigate the identification
of fast workers in an anonymous population with no a priori information about their speeds,
and prove strong guarantees on the time required for their identification.
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Chapter 6

Identifying Fast Workers in Unknown
Populations

In Chapters 4 and 5, I described systems that accelerate human-powered data analysis to
near-machine timescales, and demonstrated via simulated and real crowd experiments on
MTurk that the techniques are effective. Though MTurk workers are a sensible choice for
evaluation due to the platform’s popularity and accessibility, empirical experiments cannot
make high-probability guarantees as to how the systems would perform on other worker pop-
ulations, an important consideration as crowd platforms evolve and companies increasingly
rely on crowds of in-house employees.

Instead, in this chapter I rely on statistical theory to describe the behavior of crowd
systems with access to arbitrary worker populations. I describe a key building block of
performant crowd systems, the ability to recruit fast workers, in terms of the theoretical
framework of a statistical problem known as the most biased coin problem. I then analyze
the framework to characterize the difficulty of identifying a fast worker in an unknown
population, and design provably near-optimal algorithms for doing so. Along the way, I
establish connections between the most biased coin problem and statistical anomaly detection
that have important consequences for the analysis of sequential decision processes in general.

6.1 Introduction

Human-powered systems cannot run without humans to power them, and the choice of which
workers to recruit can heavily impact the performance of the system. The ultimate goal is
for the system to converge on and maintain a pool of fast workers who will consistently
process incoming data quickly. An efficient system will arrive at such a pool as fast and
cost-effectively as possible.

Because the system can only recruit and send tasks to so many workers at once, identifying
fast workers requires navigating an interesting tradeoff between the breadth and depth of
the system’s exploration. On the one hand, the system needs to improve its confidence in
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the speeds of workers that have already been recruited, so that it doesn’t erroneously keep
slow workers around. On the other hand, the system would like to explore the population
for new, faster workers to improve the overall speed of the pool and learn more about the
speed distribution of the worker population. Unfortunately, the speeds of workers can only be
observed by assigning them tasks, so the system must carefully allocate its resources between
deeper exploration of known workers and broader exploration of the unknown population.

In Chapter 4, I described a technique called pool maintenance that converges on a pool
of fast workers by repeatedly releasing slow ones and recruiting unknown ones. Pool mainte-
nance navigates the breadth-depth tradeoff using a user-defined cutoff threshold for workers’
average latency. Workers are repeatedly assigned tasks until their average latency is observed
to be above the threshold with high confidence (depth), then they are released from the pool
to be replaced with new workers (breadth). Though I showed that pool maintenance can be
effective in practice, setting the threshold requires significant knowledge of both the worker
population and the task being performed, and provides no guarantees on how quickly the
system can converge on a pool of fast workers.

This chapter explicitly models the breadth-depth tradeoff of fast worker identification
using a statistical setup called the most biased coin problem [28]. Focusing on the setting
where (as on a crowd platform with an unknown population of workers) the distribution
of worker speeds is unknown, I prove novel lower bounds on the number of observed tasks
necessary to identify fast workers. Then, I describe algorithms that are guaranteed to identify
fast workers with high probability using at most a log factor more tasks than the lower
bounds require. Because the analysis is kept general, these algorithms are useful not only
for identifying fast workers, but for other important problems unrelated to the topic of this
dissertation such as anomaly and intrusion detection and discovery of vacant frequencies in
the radio spectrum.

6.1.1 The Most Biased Coin Problem

The most biased coin problem uses a simple setup to describe the breadth-depth tradeoff of
exploration. Consider a bag that contains an infinite number of two kinds of biased coins:
“heavy” coins with mean θ1 ∈ (0, 1) and “light” coins with mean θ0 ∈ (0, θ1). When a player
picks a coin from the bag, with probability α the coin is “heavy” and with probability (1−α)
the coin is “light.” The player can flip any coin she picks from the bag as many times as
she wants, and the goal is to identify a heavy coin using as few total flips as possible. When
α, θ0, θ1 are unknown, the key difficulty of this problem lies in distinguishing whether the
two kinds of coins have very similar means, or whether heavy coins are just extremely rare.
That is, one must balance flipping an individual coin many times to better estimate its mean
against considering many new coins to maximize the probability of observing a heavy one.

In the same way, crowd systems must balance sending tasks to individual workers many
times to better estimate their speed against hiring many new workers to maximize the
probability of observing a fast one. As a result, solutions to the most biased coin problem can
be used to identify fast workers on crowdsourcing platforms. Doing so makes an important
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simplifying assumption about what is meant by a ‘fast’ worker, however. Instead of having a
cutoff latency that separates fast workers from slow workers, the most biased coin approach
assumes that workers are either fast (with mean speed θ1) or slow (with mean speed θ0). This
assumption, though restrictive, allows for more powerful analysis of the algorithms, which can
still be used to identify workers whose mean speed deviates significantly from the population
mean. The most biased coin problem also assumes that coin means do not change over time,
which may not be true of crowd workers who get faster as they become more familiar with
the work. However, the algorithms in this chapter could be extended to handle this in a
straightforward fashion by periodically ‘forgetting’ about a worker’s previously completed
tasks and learning about them anew.

Previous work has only proposed solutions to the most biased coin problem that rely on
some or full knowledge of α, θ0, θ1, limiting their applicability. This work proposes the first
algorithm that requires no knowledge of α, θ0, θ1, is guaranteed to return a heavy coin with
probability at least 1−δ, and flips a total number of coins, in expectation, that nearly matches
known lower bounds. Moreover, the fully adaptive algorithm proposed here supports sub-
Gaussian sources in addition to just coins (important because worker speeds are not observed
as heads or tails, but as real numbers), and only ever has one “coin” outside the bag at a
given time (important because a crowd system cannot send tasks to workers not currently
in the pool).

In order to derive bounds on the most biased coin problem, I connect it to anomaly
detection, so these results are useful not only to crowdsourcing systems, but to any appli-
cation that seeks to detect the presence of a mixture versus just a single component of a
known family of distributions (e.g. X ∼ (1 − α)gθ0 + αgθ1 versus X ∼ gθ for some θ). I
show that in detecting the presence of a mixture distribution, there is a stark difference in
difficulty between when the underlying distribution parameters are known (e.g. α, θ0, θ1)
and when they are not. The most biased coin problem can be viewed as an online, adaptive
mixture detection problem where source distributions arrive one at a time that are either gθ0
with probability (1 − α) or gθ1 with probability α (e.g. null or anomolous) and the player
adaptively chooses how many samples to take from each distribution (to increase the signal-
to-noise ratio) with the goal of identifying an anomolous distribution fθ1 using as few total
number of samples as possible. One consequence of this work is drawing a contrast between
the power of adaptive versus non-adaptive (e.g. taking the same number of samples each
time) approaches to this problem, specifically when α, θ0, θ1 are unknown.

6.1.2 Related Work

The most biased coin problem was first proposed by Chandrasekaran et al. [28]. In that
work, it was shown that if α, θ0, θ1 were known then there exists an algorithm based on the
sequential probability ratio test (SPRT) that is optimal in that it minimizes the expected
number of total flips to find a “heavy” coin whose posterior probability of being heavy is at
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least 1− δ, and the expected sample complexity of this algorithm was upper-bounded by

16

(θ1 − θ0)2

(
1− α
α

+ log

(
(1− α)(1− δ)

αδ

))
. (6.1)

However, the practicality of the proposed algorithm is severely limited as it relies critically
on knowing α, θ0, and θ1 exactly. In addition, the algorithm returns to coins it has previously
flipped and thus requires more than one coin to be outside the bag at a time, ruling out
some applications. Malloy et al. [98] addressed some of the shortcomings of [29] (a preprint
of [28]) by considering both an alternative SPRT procedure and a sequential thresholding
procedure. Both of these proposed algorithms only ever have one coin out of the bag at
a time. However, the former requires knowledge of all relevant parameters α, θ0, θ1, and
the latter requires knowledge of α, θ0. Moreover, these results are only presented for the
asymptotic case where δ → 0.

The most biased coin problem can be viewed through the lens of multi-armed bandits.
In the best-arm identification problem, the player has access to K distributions (arms) such
that if arm i ∈ [K] is sampled (pulled), an iid random variable with mean µi is observed;
the objective is to identify the arm associated with the highest mean with probability at
least 1− δ using as few pulls as possible (see [77] for a short survey). In the infinite armed
bandit problem, the player is not confined to K arms but an infinite reservoir of arms
such that a draw from this reservoir results in an arm with a mean µ drawn from some
distribution; the objective is to identify the highest mean possible after n total pulls for any
n > 0 with probability 1 − δ (see [25]). The most biased coin problem is an instance of
this latter game with the arm reservoir distribution of means µ defined as P(µ ≥ θ1 − ε) =
α1ε≥0+(1−α)1ε≥θ1−θ0 for all ε. Previous work has focused on an alternative arm distribution
reservoir that satisfies Eεβ ≤ P(µ ≥ µ∗ − ε) ≤ E ′εβ for some µ∗ ∈ [0, 1] where E,E ′ are
constants and β is known [19, 145, 21, 25]. Because neither arm distribution reservoir can
be written in terms of the other, neither work subsumes the other. Note that one can always
apply an algorithm designed for the infinite armed bandit problem to any finite K-armed
bandit problem by defining the arm reservoir as placing a uniform distribution over the
K arms. This is appealing when K is very large and one wishes to guarantee nontrivial
performance when the number of pulls is much less than K1. The most biased coin problem
is a special case of the K-armed reservoir distribution where one arm has mean θ1 and K−1
arms have mean θ0 with α = 1

K
.

Given that [28] and [98] are provably optimal algorithms for the most biased coin problem
given knowledge of α, θ0, θ1, it is natural to consider a procedure that first estimates these
unknown parameters first and then uses these estimates in the algorithms of [28] or [98].
Indeed, in the β-parameterized arm reservoir setting discussed above, this is exactly what
[25] propose to do, suggesting a particular estimator for β given a lower bound β̂ ≤ β. They
show that this estimator is sufficient to obtain the same sample complexity result up to log

1All current algorithms for the K-armed bandit problem begin by sampling each arm once so that until
the number of pulls exceeds K, performance is no better than random selection.
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factors as when β was known. Sadly, through upper and lower bounds I show that for the
most biased coin problem this estimate-then-explore approach requires quadratically more
flips than our proposed algorithm that adapts to these unknown parameters. Specifically,
when θ1−θ0 is sufficiently small, one cannot use a static estimation step to determine whether
α = 0 or α > 0 unless a number of samples quadratic in the optimal sample complexity are
taken.

This chapter’s contributions to the most biased coin problem include a novel algorithm
that never has more than one coin outside the bag at a time, has no knowledge of the
distribution parameters, supports distributions on [0, 1] rather than just “coins,” and comes
within log factors of the known information-theoretic lower bound and Equation 6.1 which
is achieved by an algorithm that knows the parameters. See Table 6.1 for an overview of
the upper and lower bounds proved in this work for this problem. This algorithm is the
first solution to the most biased coin problem that does not require prior knowledge of the
problem parameters, and its approach can be reworked to solve more general instances of the
infinite-armed bandit problem, including the β-parameterized and K-armed reservoir cases
described above. Finally, if an algorithm is desired for arbitrary arm reservoir distributions,
this work rules out an estimate-then-explore approach.

6.1.3 Problem Statement

Let θ ∈ Θ index a family of single-parameter probability density functions gθ and fix θ0, θ1 ∈
Θ, α ∈ [0, 1/2]. For any θ ∈ Θ assume that gθ is known to the procedure. Note that in
the most biased coin problem, gθ =Bernoulli(θ), but in general it is arbitrary (e.g. N (θ, 1)).
Consider a sequence of iid Bernoulli random variables ξi ∈ {0, 1} for i = 1, 2, . . . where each
P(ξi = 1) = 1 − P(ξi = 0) = α. Let Xi,j for j = 1, 2, . . . be a sequence of random variables
drawn from gθ1 if ξi = 1 and gθ0 otherwise, and let {{Xi,j}Mi

j=1}Ni=1 represent the sampling
history generated by a procedure for some N ∈ N and (M1, . . . ,MN) ∈ NN . Any valid
procedure behaves according to Algorithm 6.1:

Algorithm 6.1 The most biased coin procedure. Only the last distribution drawn may be
sampled or declared heavy, enforcing the rule that only one coin may be outside the bag at
a time.
Initialize an empty history (N = 1,M = (0, 0, . . . )).
Repeat until heavy distribution declared:

Choose one of
1. draw a sample from distribution N , MN ←MN + 1

2. draw a sample from the (N + 1)st distribution, MN+1 = 1, N ← N + 1

3. declare distribution N as heavy

Definition 1 A strategy for the most biased coin problem is δ-probably correct if for all
(α, θ0, θ1) it identifies a “heavy” gθ1 distribution with probability at least 1− δ.
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Definition 2 (Strategies for the most biased coin problem) An
estimate-then-explore strategy is a strategy that, for any fixed m ∈ N, begins by sampling
each successive coin exactly m times for a number of coins that is at least the minimum
necessary for any test to determine that α 6= 0 with probability at least 1− δ, then optionally
continues sampling with an arbitrary strategy that declares a heavy coin. An adaptive
strategy is any strategy that is not an estimate-then-explore strategy.

Estimate-then-explore strategies are worth considering because there exist optimal algo-
rithms [28, 98] for the most biased coin problem if α, θ0, θ1 are known, so it is natural to
consider estimating these quantities then using one of these algorithms. Note that the al-
gorithm of [25] for the β-parameterized infinite armed bandit problem discussed above can
be considered an estimate-then-explore strategy since it first estimates β by sampling a fixed
number of samples from a set of arms, and then uses this estimate to draw a fixed number
of arms and applies a UCB-style algorithm to these arms. A contribution of this work is
showing that such a strategy is infeasible for the most biased coin problem.

For all strategies that are δ-probably correct and follow the interface of Algorithm 6.1,
the goal is to provide lower and upper bounds on the quantity E[T ] := E[

∑N
i=1Mi] for any

(α, θ0, θ1) if N denotes the final number of coins considered.

6.2 From Identifying Coins to Detecting Mixture

Distributions

Addressing the most biased coin problem, Malloy et al. analyze perhaps the most natural
strategy: fix an m ∈ N and flip each successive coin exactly m times [98]. The relevant
questions are how large does m have to be in order to guarantee correctness with probability
1 − δ, and for a given m how long must one wait to declare a “heavy” coin? The authors
partially answer these questions and Section 6.3.2.1 improves upon them, which leads to
further study of the difficulty of detecting the presence of a mixture distribution. As an
example of the kind of lower bounds shown in this work, given observations of a sequence of
random variables X1, . . . , Xn, consider the following hypothesis test:

H0 : ∀i X1, . . . , Xn ∼ N (θ, σ2) for some θ ∈ R,
H1 : ∀i X1, . . . , Xn ∼ (1− α)N (θ0, σ

2) + α N (θ1, σ
2)

(P1)

which will henceforth be referred to as Problem P1 or just (P1). We can show that if θ0, θ1, α
are known and θ = θ0, then it is sufficient to observe just max{1/α, σ2

α2(θ1−θ0)2
log(1/δ)}

samples to determine the correct hypothesis with probability at least 1 − δ. However, if

θ0, θ1, α are unknown then it is necessary to observe at least max
{

1/α,
(

σ2

α(θ1−θ0)2

)2
log(1/δ)

}
samples in expectation whenever (θ1−θ0)2

σ2 ≤ 1 and max{1/α, σ2

α2(θ1−θ0)2
log(1/δ)} otherwise

(see Section 6.4).
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Recognizing (θ1−θ0)2

σ2 as the KL divergence between two Gaussians of H1, there are
startling consequences for anomaly detection when the parameters of the underlying dis-
tributions are unknown: if the anomalous distribution is well separated from the null distri-
bution, then detecting an anomalous component is only about as hard as observing just one
anomalous sample (i.e. 1/α) multiplied by the inverse KL divergence between the null and
anomalous distributions. However, when the two distributions are not well separated then
the necessary sample complexity explodes to this latter quantity squared. In Section 6.5 we
will investigate adaptive methods for dramatically decreasing this sample complexity.

The lower bounds in this chapter are based on the detection of the presence of a mixture of
two distributions of an exponential family versus just a single distribution of the same family.
There has been extensive work in the estimation of mixture distributions [69, 53] but this
literature often assumes that the mixture coefficient α is bounded away from 0 and 1 to ensure
a sufficient number of samples from each distribution. In contrast, this work highlights the
regime when α is arbitrarily small, as is the case in statistical anomaly detection [51, 135, 3].
Property testing, e.g. unimodality, [1] is relevant but can lack interpetability or strength in
favor of generality. Considering the exponential family allows for interpretable statements
about the relevant problem parameters in different regimes.

Preliminaries Let P and Q be two probability distributions with densities p and q,
respectively. For simplicity, assume p and q have the same support. Define the KL Divergence

between P and Q as KL(P,Q) =
∫

log
(
p(x)
q(x)

)
dp(x). Define the χ2 Divergence between P

and Q as χ2(P,Q) =
∫ (p(x)

q(x)
− 1
)2

dq(x) =
∫ (p(x)−q(x))2

q(x)
dx. Note that by Jensen’s inequality

KL(P,Q) = Ep
[

log
(
p
q

)]
≤ log

(
Ep
[
p
q

])
= log

(
χ2(P,Q) + 1

)
≤ χ2(P,Q). (6.2)

Examples: If P = N (θ1, σ
2) and Q = N (θ0, σ

2) then KL(P,Q) = (θ1−θ0)2

2σ2 and χ2(P,Q) =

e
(θ1−θ0)

2

σ2 − 1. If P = Bernoulli(θ1) and Q = Bernoulli(θ0) then KL(P,Q) = θ1 log( θ1
θ0

) + (1−
θ1) log(1−θ1

1−θ0 ) ≤ (θ1−θ0)2/2
θ0(1−θ0)−[(θ1−θ0)(2θ0−1)]+

and χ2(P,Q) = (θ1−θ0)2

θ0(1−θ0)
.

Proofs of theorems are omitted from this chapter for clarity of exposition, and can be found
in Appendix A.

6.3 Lower bounds

This section presents lower bounds on the sample complexity of δ-probably correct strategies
for the most biased coin problem that follow the interface of Algorithm 6.1. Lower bounds
are stated for any adaptive strategy in Section 6.3.1, non-adaptive strategies that may have
knowledge of the parameters but sample each distribution the same number of times in
Section 6.3.2.1, and estimate-then-explore strategies that do not have prior knowledge of
the parameters in Section 6.3.2.2. These lower bounds, with the exception of the adaptive
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strategy, are based on the difficulty of detecting the presence of a mixture distribution, and
this reduction is explained in Section 6.3.2.

6.3.1 Adaptive strategies

The following theorem, reproduced from [98], describes the sample complexity of any δ-
probably correct algorithm for the most biased coin identification problem. Note that this
lower bound holds for any procedure even if it returns to previously seen distributions to
draw additional samples and even if it knows α, θ0, θ1.

Theorem 1 [98, Theorem 2] Fix δ ∈ (0, 1). Let T be the total number of samples taken of
any procedure that is δ-probably correct in identifying a heavy distribution. Then

E[T ] ≥ c1 max

{
1− δ
α

,
(1− δ)

αKL(gθ0|gθ1)

}
whenever α ≤ c2δ where c1, c2 ∈ (0, 1) are absolute constants.

The above theorem is directly applicable to the special case where gθ is a Bernoulli
distribution, implying a lower bound of max

{
1−δ
α
, 2 min{θ0(1−θ0),θ1(1−θ1)}

α(θ1−θ0)2

}
for the most biased

coin problem. The upper bounds of this work’s proposed procedures for the most biased
coin problem presented later will be compared to this benchmark.

6.3.2 The detection of a mixture distribution and the most
biased coin problem

First observe that identifying a specific distribution i ≤ N as heavy (i.e. ξi = 1) or de-
termining that α is strictly greater than 0, is at least as hard as detecting that any of the
distributions up to distribution N is heavy. Thus, a lower bound on the total expected num-
ber of samples of all considered distributions for this strictly easier detection problem is also
a lower bound for the estimate-then-explore strategy for the most biased coin identification
problem.

The estimate-then-explore strategy fixes an m ∈ N prior to starting the game and then
samples each distribution exactly m times, i.e. Mi = m for all i ≤ N for some N . To
simplify notation let fθ denote the distribution of the sufficient statistics of these m samples.
In general fθ is a product distribution, but when gθ is a Bernoulli distribution, as in the
biased coin problem, we can take fθ to be a Binomial distribution with parameters (m, θ).
Now the problem is more succinctly described as:

H0 : ∀i Xi ∼ fθ for some θ ∈ Θ̃ ⊆ Θ,

H1 : ∀i ξi ∼ Bernoulli(α), ∀i Xi ∼

{
fθ0 if ξi = 0

fθ1 if ξi = 1

(P2)
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If θ0 and θ1 are close to each other, or if α is very small, it can be very difficult to decide
between H0 and H1 even if α, θ0, θ1 are known a priori. Note that when the parameters
are known, one can take Θ̃ = {θ0}. However, when the parameters are unknown, one

takes Θ̃ = Θ to prove a lower bound on the sample complexity of the estimate-then-explore
algorithm, which is tasked with deciding whether or not samples are coming from a mixture
of distributions or just a single distribution within the family. That is, lower bounds on
the sample complexity when the parameters are known and unknown follow by analyzing
a simple binary and composite hypothesis test, respectively. In what follows, for any event
A, let Pi(A) and Ei[A] denote probability and expectation of A under hypothesis Hi for
i ∈ {0, 1} (the specific value of θ in H0 will be clear from context). The next claim is
instrumental in proving lower bounds on the difficulty of the hypothesis tests.

Claim 1 Any procedure that is δ-probably correct also satisfies P0(N < ∞) ≤ δ whenever
α = 0.

Proof Suppose there exists a δ-probably correct procedure with P(N < ∞) > δ on a
problem instance (α, θ0, θ1) when α = 0. Then there exists a finite n̂ ∈ N such that P(N ≤

n̂) > δ. For some ε ∈ (0, 1) to be defined later, define α̂ =
log(

1
1−ε )

2n̂
and note that for this

α̂, P(
⋂n̂
i=1{ξi = 0}) = (1 − α̂)n̂ ≥ e−2n̂α̂ ≥ 1 − ε. Thus, the probability that the procedure

terminates with a light distribution under α = α̂ is at least

Pα=α̂(N ≤ n̂,∩n̂i=1{ξi = 0}) = Pα=α̂(N ≤ n̂| ∩n̂i=1 {ξi = 0})Pα=α̂(∩n̂i=1{ξi = 0})
= Pα=0(N ≤ n̂)Pα=α̂(∩n̂i=1{ξi = 0}) > δ(1− ε).

Because we can make ε arbitrarily small, the above display implies that the procedure makes
a mistake with probability at least δ, but this is a contradiction as the procedure is δ-probably
correct.

6.3.2.1 Sample complexity when parameters are known

Theorem 2 Fix δ ∈ (0, 1). Consider the hypothesis test of Problem P2 for any fixed θ ∈ Θ̃ ⊆
Θ. Let N be the random number of distributions considered before stopping and declaring
a hypothesis. If a procedure satisfies P0(N < ∞) ≤ δ and P1(∪Ni=1{ξi = 1}) ≥ 1 − δ, then

E1[N ] ≥ max
{

1−δ
α
, log(1/δ)
KL(P1|P0)

}
≥ max

{
1−δ
α
, log(1/δ)
χ2(P1|P0)

}
. In particular, if Θ̃ = {θ0} then

E1[N ] ≥ max
{1− δ

α
,

log(1/δ)

α2χ2(fθ1|fθ0)

}
.

The next corollary relates Theorem 2 to the most biased coin problem and is related
to [98, Theorem 4] that considers the limit as α → 0 and assumes m is sufficiently large
(specifically, large enough for the Chernoff-Stein lemma to apply). In contrast, this result
holds for all finite δ, α,m.
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Corollary 1 Fix δ ∈ (0, 1). For any m ∈ N consider a δ-probably correct strategy that flips
each coin exactly m times. If Nm is the number of coins considered before declaring a coin
as heavy then

min
m∈N

E[mNm] ≥
(1− δ) log

(
log(1/δ)

α

)
α

θ0(1− θ0)

(θ1 − θ0)2
.

One can show the existence of such a strategy with a nearly matching upperbound when
α, θ0, θ1 are known (see Section 6.6.1). Note that this is at least log(1/α) larger than the sam-
ple complexity of (6.1) that can be achieved by an adaptive algorithm when the parameters
are known.

6.3.2.2 Sample complexity when parameters are unknown

If α, θ0, and θ1 are unknown, fθ0 cannot be tested against the mixture (1 − α)fθ0 + αfθ1 .
Instead, the challenge is to perform the general composite test of any individual distribution
against any mixture, which is at least as hard as the hypothesis test of Problem P2 with
Θ̃ = {θ} for some particular worst-case setting of θ. Without any specific form of fθ, it is
difficult to pick a worst case θ that will produce a tight bound. Consequently, in this section
I consider single parameter exponential families (defined formally below) to provide a class
of distributions in which it is easy to reason about different possible values for θ. Since
exponential families include Bernoulli, Gaussian, exponential, and many other distributions,
the following theorem is general enough to be useful in a wide variety of settings. The
constant C referred to in the next theorem is an absolute constant under certain conditions
outlined in the following remark and corollary. Its explicit form is given in the proof.

Theorem 3 Suppose fθ for θ ∈ Θ ⊂ R is a single parameter exponential family so that
fθ(x) = h(x) exp(η(θ)x−b(η(θ))) for some scalar functions h, b, η where η is strictly increas-

ing. If Θ̃ = {θ∗} where θ∗ = η−1
(
(1 − α)η(θ0) + αη(θ1)

)
and N is the stopping time of any

procedure that satisfies P0(N <∞) ≤ δ and P1(∪Ni=1{ξi = 1}) ≥ 1− δ, then

E1[N ] ≥ max
{

1−δ
α
,

log(
1
δ

)

C( 1
2
α(1−α)(η(θ1)−η(θ0))2)

2

}
.

where C is a constant that may depend on α, θ0, θ1.

The following remark and corollary apply Theorem 3 to the special cases of Gaussian
mixture model detection and the most biased coin problem, respectively.

Remark 1 When α, θ0, θ1 are unknown, any procedure has no knowledge of Θ̃ in Problem P2
and consequently it cannot rule out θ = θ∗ for H0 where θ∗ is defined in Theorem 3. If

fθ = N (θ, σ2) for known σ, then whenever (θ1−θ0)2

σ2 ≤ 1 the constant C in Theorem 3 is

an absolute constant and consequently, E1[N ] = Ω
((

σ2

α(θ1−θ0)2

)2
log(1/δ)

)
. Conversely, when
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α, θ0, θ1 are known, Problem P2 reduces to determining whether samples came from N (θ0, σ
2)

or (1 − α)N (θ0, σ
2) + αN (θ1, σ

2), and it is sufficient to take just O
(

σ2

α2(θ1−θ0)2
log(1/δ)

)
samples (see Section 6.4).

Corollary 2 Fix δ ∈ [0, 1] and assume θ0, θ1 are bounded sufficiently far from {0, 1} such
that 2(θ1 − θ0) ≤ min{θ0(1− θ0), θ1(1− θ1)}. For any m let Nm be the number of coins a δ-
probably correct estimate-then-explore strategy that flips each coin m times in the exploration
step. Then

mE[Nm] ≥
c′min{ 1

m
, θ∗(1− θ∗)}(

α(1− α) (θ1−θ0)2

θ∗(1−θ∗)

)2 log(1
δ
) whenever m ≤ θ∗(1− θ∗)

(θ1 − θ0)2
.

where c′ is an absolute constant and θ∗ = η−1 ((1− α)η(θ0) + αη(θ1)) ∈ [θ0, θ1].

Remark 2 If α, θ0, θ1 are unknown, any estimate-then-explore strategy (or the strategy de-
scribed in Corollary 1) would be unable to choose an m that depended on these parameters,
so it can be treated it as a constant. Thus, for the case when θ0 and θ1 are bounded away
from {0, 1} (e.g. θ0, θ1 ∈ [1/8, 7/8]), the above corollary states that for any fixed m, whenever
θ1 − θ0 is sufficiently small the number of samples necessary for these strategies to identify

a heavy coin scales like
(

1
α(θ1−θ0)2

)2
log(1/δ). This is striking example of the difference when

parameters are known versus when they are not and effectively rules out an estimate-then-
explore strategy for practical purposes.

6.4 A Discussion of Gaussians

The theorems thus far have been stated as generally as possible to permit them to apply
to applications, for example crowd worker identification, where no assumptions are made
regarding the distributions of individual coins (or workers). In this section, I relate the
specific setting of Problem P1, where individual distributions are Gaussians, to the general
bounds presented so far.

6.4.1 On the detection of a mixture of Gaussians

For known σ2, consider the hypothesis test of Problem P1. In what follows, let χ2(θ1, θ0)
and KL(θ1, θ0) be the chi-squared and KL divergences of the two distributions of H1. Note

that for (θ1−θ0)2

σ
≤ 1, we have that χ2(θ1, θ0) = e

(θ1−θ0)
2

σ2 − 1 ≤ 2 (θ1−θ0)2

σ2 = 4KL(θ1, θ0).

Theorem 2 says that for (θ1−θ0)2

σ2 ≤ 1, a procedure that has maximum probability of error

less than δ requires at least max
{

1−δ
α
, log(1/δ)

4α2KL(θ1,θ0)

}
samples to decide the above hypohesis

test, even if α, θ0, θ1 are known. The next subsection shows that if α, θ0, θ1 are unknown
then one requires at least log(1/δ)

2[αKL(θ1,θ0)]2
samples to decide the above hypothesis test correctly

with probability at least 1− δ. This is likely achievable using the method of moments [69].
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6.4.2 Lower bounds

Theorem 4 For known σ2, consider the hypothesis test of Problem P1. If θ∗ = (1− α)θ0 +
αθ1 and θ1−θ0

σ
≤ 1 then

χ2((1− α)fθ0(x) + αfθ1(x)|fθ∗(x)) ≤ c′
(
α(1− α)

(θ1 − θ0)2

σ2

)2

for some absolute constant c′.

6.4.3 Gaussian Upper bound for known α, θ0, θ1

For known σ2, consider the hypothesis test of Problem P1 with θ = θ0. We observe a sample
X1, . . . , Xn and are trying to establish whether it came from H0 or H1.

Consider the test

1

n

n∑
i=1

1Xi>θ1
H1

≷
H0

P1(X1 > θ1) + P0(X1 > θ1)

2
=: γ.

If ε = P1(X1 > θ1)− P0(X1 > θ1) then

P1

(
1

n

n∑
i=1

1Xi>θ1 ≤ γ

)
= P1

(
1

n

n∑
i=1

1Xi>θ1 ≤ P1(X1 > θ1)− ε/2

)
≤ e−nε

2/2

and

P0

(
1

n

n∑
i=1

1Xi>θ1 ≥ γ

)
= P0

(
1

n

n∑
i=1

1Xi>θ1 ≥ P0(X1 > θ1) + ε/2

)
≤ e−nε

2/2

by sub-Gaussian tail bounds. If Q(x) =
∫∞
x

1√
2π
e−z

2/2dz and ∆ = θ1−θ0
σ

then

P0(X1 > θ1) = Q (∆)

P1(X1 > θ1) = (1− α)Q (∆) + α
1

2
so

ε = α

(
1

2
−Q (∆)

)
= α

∫ ∆

0

1√
2π
e−x

2/2dx ≥ min{ α∆

4
√

2π
,
1

4
α}.

Thus, the test fails with probability at most

exp

[
−nα2 min

{
(θ1 − θ0)2

64πσ2
,

1

32

}]
.

We conclude that if ∆ = θ1−θ0
σ
≤ 1 and n ≥ (θ1−θ0)2 log(1/δ)

64πα2σ2 =
KL(Pθ1 ,Pθ0 ) log(1/δ)

64πα2 the correct
hypothesis is selected. The 1/α sufficiency result holds for large enough ∆ since one merely
needs to observe just one sample since the probability of it coming from θ0 is negligible.
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Setting Upper Bound Lower Bound

Fixed, known α, θ0, θ1
log(1/(δα))

αε2
, Thm. 7 log(log(1/δ)/α)

αε2
, Cor. 1

Adaptive, known α, θ0, θ1
1
ε2

(
1
α

+ log(1
δ
)
)
, [28, 98], Thm. 5 1

αε2
, [98]

Est+Expl, unknown α, θ0, θ1 Unconsidered†
(

1
αε2

)2
log(1

δ
), Cor. 2

Adaptive, unknown α, θ0, θ1
c log( 1

αε2
) log(log( 1

αε2
)/δ)

αε2
, Thm. 6 1

αε2
, [98]

Table 6.1: Upper and lower bounds on the expected sample complexity of different δ-probably
correct strategies. Fixed refers to the strategy of Corollary 1. This table assumes min{θ0(1−
θ0), θ1(1 − θ1)} is lower bounded by a constant (e.g. θ0, θ1 ∈ [1/8, 7/8]) and ε = θ1 − θ0 is
sufficiently small. Also note that the upper bounds apply to distributions supported on [0, 1],
not just coins. All results without bracketed citations were unknown prior to this work. †
Due to the discouraging lower bound for any estimate-then-explore strategy, it is inadvisable to propose an
algorithm.

6.5 Near optimal adaptive algorithm

In this section I propose an algorithm that has no prior knowledge of the parameters α, θ0, θ1

yet yields an upper bound that matches the lower bound of Theorem 1 up to logarithmic
factors. I assume that samples from heavy or light distributions are supported on [0, 1], and
that drawn samples are independent and unbiased estimators of the mean, i.e., E[Xi,j] = µi
for µi ∈ {θ0, θ1}. All results can be easily extended to sub-Gaussian distributions.

Algorithm overview. The near-optimal algorithm has two pieces, an outer loop that re-
peatedly guesses values for α and ε (Algorithm 6.3), and an inner loop that, given one such
guess, draws multiple distributions and attempts to identify a heavy one (Algorithm 6.2).
The key contribution of the inner loop is that it will identify a heavy distribution with high
probability if it is given an underestimate of α and ε, and will output null with high prob-
ability if it is given an overestimate. As a result, the outer loop can simply pass decreasing
estimates of α0 and ε0 to the inner loop until a heavy distribution is found. The main
contribution of the outer loop is in the choice of the estimates α0 and ε0. The algorithm
identifies ‘landmarks’ that balance decreasing α0 against decreasing ε0, shrinking them both
simultaneously. As a result, it arrives at a low enough estimate very quickly.

As written, the algorithm describes how to find only a single heavy distribution, so it
would require some minor modifications to run on a pool of crowd workers. To identify c
fast workers at once, it suffices to run c instances of Algorithm 6.3 in parallel. Since each
instance of the algorithm only considers a single worker at a time, the worker pool will
always have c workers in it, as desired. In addition, the algorithm only describes how to
identify a fast worker, not how to maintain fast workers over time. Maintaining the pool
is a concern if workers abandon the pool, or if their speeds change over time. Again, this
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only requires minor modifications to the algorithm. If a worker abandons the pool, a new
worker can be hired to replace them (e.g., using the Pool Stability technique of Chapter 5),
and the algorithm can continue running on that worker. Similarly, if workers’ mean speeds
display empirical drift, their work history can be periodically erased and the algorithm can
treat them as a previously unseen worker.

Now, I state the theorems describing the complexity of the algorithm. Consider Algo-
rithm 6.2, an SPRT-like procedure [128] for finding a heavy distribution given δ and lower
bounds on α and ε = θ1− θ0. It improves upon prior work by supporting arbitrary distribu-
tions on [0, 1] and requires only bounds on α, ε.

Algorithm 6.2 Adaptive strategy for heavy distribution identification with inputs α0, ε0, δ

Given δ ∈ (0, 1/4), α0 ∈ (0, 1/2), ε0 ∈ (0, 1).
Initialize n = d2 log(9)/α0e,m = d64ε−2

0 log(14n/δ)e, A = −8ε−1
0 log(21),

B = 8ε−1
0 log(14n/δ), k1 = 5, k2 = d8ε−2

0 log(2k1/min{δ/8,m−1ε−2
0 })e.

Draw k1 distributions and sample them each k2 times.
Estimate θ̂0 = mini=1,...,k1 µ̂i,k2 , γ̂ = θ̂0 + ε0/2.
Repeat for i = 1, . . . , n:

Draw distribution i.
Repeat for j = 1, . . . ,m:

Sample distribution i and observe Xi,j.
If
∑j

k=1(Xi,k − γ̂) > B:
Declare distribution i to be heavy and Output distribution i.

Else if
∑j

k=1(Xi,k − γ̂) < A:
break.

Output null.

Theorem 5 If Algorithm 6.2 is run with δ ∈ (0, 1/4), α0 ∈ (0, 1/2), ε0 ∈ (0, 1), then the
expected number of total samples taken by the algorithm is no more than

c′α log(1/α0) + c′′ log
(

1
δ

)
α0ε20

(6.3)

for some absolute constants c′,c′′, and all of the following hold: 1) with probability at least
1− δ, a light distribution is not returned, 2) if ε0 ≤ θ1− θ0 and α0 ≤ α, then with probability
4
5

a heavy distribution is returned, and 3) the procedure takes no more than c log(1/(α0δ))

α0ε20
total

samples.

The second claim of the theorem holds only with constant probability (versus with
probability 1 − δ) since the probability of observing a heavy distribution among the n =
d2 log(4)/α0e distributions only occurs with constant probability. One can show that if the
outer loop of algorithm is allowed to run indefinitely (with m and n defined as is), ε0 = θ1−θ0,
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α0 = α, and θ̂0 = θ0, then a heavy coin is returned with probability at least 1 − δ and the
expected number of samples is bounded by (6.3). If a tight lower bound is known on either
ε = θ1−θ0 or α, there is only one parameter that is unknown and the “doubling trick”, along

with Theorem 5, can be used to identify a heavy coin with just log(log(ε−2)/δ)
αε2

and log(log(α−1)/δ)
αε2

samples, respectively (see Section 6.6.2).
Now consider Algorithm 6.3 that assumes no prior knowledge of α, θ0, θ1, the first result

for this setting that we are aware of. We remark that while the placing of “landmarks”
(αk, εk) throughout the search space as is done in Algorithm 6.3 appears elementary in
hindsight, it is surprising that so few can cover this two dimensional space since one has to
balance the exploration of α and ε. We believe similar a similar approach may be generalized
for more generic infinite armed bandit problems.

Algorithm 6.3 Adaptive strategy for heavy distribution identification with unknown pa-
rameters
Given δ > 0.
Initialize ` = 1, heavy distribution h = null.
Repeat until h is not null:

Set γ` = 2`, δ` = δ/(2`3)
Repeat for k = 0, . . . , `:

Set αk = 2k

γ`
, εk =

√
1

2αkγ`

Run Algorithm 6.2 with α0 = αk, ε0 = εk, δ = δ` and Set h to its output.
If h is not null break

Set ` = `+ 1
Output h

Theorem 6 (Unknown α, θ0, θ1) Fix δ ∈ (0, 1). If Algorithm 6.3 is run with δ then with
probability at least 1 − δ a heavy distribution is returned and the expected number of total
samples taken is bounded by

c
log2( 1

αε2
)

αε2
(α log2( 1

ε2
) + log(log2( 1

αε2
)) + log(1/δ))

for an absolute constant c.

6.6 Other Upper Bounds

The previous section presented the main contribution of this chapter, Algorithm 6.3, which
is adaptive to unknown θ0, θ1, α. In this section, I describe efficient algorithms for solving
the most biased coin problem for the fixed sample size setting and settings where partial,
but not all, information is known.
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6.6.1 Fixed sample size strategy

Consider a fixed sample strategy that knows α, θ0, θ1 and flips each coin exactly m times until
it declares a coin as heavy (the algorithm can use the parameters to choose m). Note the
result below is within a log(1/δ) factor of the lower bound proved in Corollary 1 in general
and is tight when α ≤ δ.

Theorem 7 (Fixed sample size, known α, θ0, θ1) Fix δ ∈ (0, 1/4) and set n̂ =
⌈

1
α

log(2
δ
)
⌉

and m =
⌈

2 log(4n̂/δ)
(θ1−θ0)2

⌉
. There exists a fixed sample size strategy with stopping time Nm ≤ n̂

that is δ-probably correct and satisfies

E[mNm] ≤ 3 log(1/α)+log(12 log(6/δ)/δ)
α(θ1−θ0)2

≤ 12
log(

2
δα

)

α(θ1−θ0)2
.

6.6.2 Either α or ε is unknown, but not both

Algorithm 6.4 Algorithm for unknown θ1, θ0.

Given δ ∈ (0, 1), α ∈ (0, 1/2).
Initialize k = 1
While Algorithm 6.2 run with inputs δ/(2k2),
α0 = α, ε0 = 2−k returns null:

Set k = k + 1.
Output distribution k.

Algorithm 6.5 Algorithm for unknown α.

Given δ ∈ (0, 1), ε ∈ (0, 1].
Initialize k = 1
While Algorithm 6.2 run with inputs δ/(2k2),
α0 = 2−k, ε0 = ε returns null:

Set k = k + 1.
Output distribution k.

First we consider the case when α is known but a lower bound on θ1−θ0 is not, and then
opposite.

Theorem 8 (Known α, unknown θ0, θ1) Fix δ ∈ (0, 1). If Algorithm 6.4 is run with δ, α
then with probability at least 1− δ a heavy distribution is returned and the expected number
of total samples taken is no more than

c log
(

log
(

1
(θ1−θ0)2

)
/δ
)

α(θ1 − θ0)2
.

for an absolute constant c.

Theorem 9 (Unknown α, known θ0, θ1) Fix δ ∈ (0, 1). If Algorithm 6.5 is run with
δ, θ1 − θ0 then with probability at least 1 − δ a heavy distribution is returned and the the
expected number of total samples taken is no more than

c log
(
log
(

1
α

)
/δ
)

α(θ1 − θ0)2

for an absolute constant c.
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6.7 Conclusion

While all prior works have required at least partial knowledge of α, θ0, θ1 to solve the most
biased coin problem, the algorithm presented in this chapter (Algorithm 6.3) requires no
knowledge of these parameters yet obtains a near-optimal sample complexity. In addition, I
have proved lower bounds on the sample complexity of detecting the presence of a mixture
distribution when the parameters are known or unknown. This has consequences for any
estimate-then-explore strategy, an approach previously proposed for infinite-armed bandit
problems. Extending this adaptive algorithm to arbitrary arm reservoir distributions is of
significant interest. A successful algorithm in this vein could have a significant impact on
how researchers think about sequential decision processes in both finite and uncountable
action spaces.

In the broader context of this thesis, the analysis of Algorithm 6.3 provides provable
guarantees on the rate at which a crowd system can converge on a fast pool of workers.
Though the assumption that workers are either ‘fast’ or ‘slow’ is somewhat restrictive, the
analysis techniques used here are an important step in the development of algorithms that
model crowd behavior. The success of the adaptive approach to identifying fast workers
and the disappointing lower bounds on estimate-then-explore strategies suggest that simply
observing worker speeds and thresholding (as done by the system presented in Chapter 4)
might be highly inefficient compared to the algorithms presented here.

Together, Chapters 3-6 describe the theory, design, and implementation of performant
crowd-powered systems for data analysis. In the next and final chapter, I summarize the con-
tributions of this thesis and conclude with thoughts about future opportunities for research
in this space.
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Chapter 7

Future Work and Conclusions

In this thesis, I have taken a comprehensive approach to the design, theory, and imple-
mentation of performant human-powered systems for data analysis. I have demonstrated
how to build crowd systems that are fast enough to integrate into automated workflows,
derived novel algorithms for identifying fast workers quickly, and described techniques to
support many user applications running simultaneously on the same crowd. Throughout, I
have leveraged existing work in database optimization, statistical learning theory, and cloud
computing to demonstrate that approaching crowds of human workers with techniques from
distributed computing can lead to significant improvement in performance, provided that
human behavior is modeled as a part of the system. In this chapter, I conclude by sum-
marizing the contributions of this work and describing the challenges that remain for future
research.

7.1 Summary of Contributions

In Chapter 3, I described Wisteria, a system for interactive data cleaning that allows users to
rapidly iterate on cleaning plans that involve human or automated operators. In addition to
a novel architecture that treats sampling and crowdsourcing as first-class operators, Wisteria
relies on consistent, low-latency responses from the crowd in order to provide a coherent user
experience. This system therefore serves as an important motivation for reliable, performant
crowd systems for data analytics.

In Chapter 4, I then described CLAMShell, a system designed to meet precisely those
goals. CLAMShell tackles crowd latency at all of its sources in human-in-the-loop systems,
including task latency, batch latency, and full-run latency. It uses straggler mitigation,
pool maintenance, and hybrid active-and-passive learning to reduce the time it takes to get
answers from the crowd from minutes or hours to seconds. My evaluation of the system
on over 1,000 workers running nearly 250,000 tasks demonstrates that these techniques can
reduce data processing latency by up to 8×, and reduce its variance by 150×. AMPCrowd,
an open-source implementation of CLAMShell, has already been adopted to power solutions
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in industry and novel research.
In Chapter 5, I described Cioppino, a multi-tenant crowd system that extends CLAMShell

to serve many user applications in parallel. Driven by the insight that managing a multi-
tenant crowd bears many similarities to distributed cluster management, Cioppino is archi-
tected around a queuing model of worker behavior. In addition, it leverages novel techniques
to improve the performance and efficiency of the crowd, including control-theoretic auto-
scaling of the crowd in response to changing application workloads, adaptive recruitment to
compensate for worker abandonment, and proactive transfer of workers between applications
to maximize utilization while respecting worker preferences. I evaluated Cioppino in simu-
lation on a trace derived from workers hired by the CLAMShell system of Chapter 4, and
found that costs were reduced by nearly 20×, while performance improved by 20%.

Finally, in Chapter 6, I turned my attention to the problem of identifying fast workers
in an anonymous crowd. I connected this problem to the theoretical framework of the most
biased coin problem, and identified an important relationship between that problem and sta-
tistical anomaly detection. I then proved lower bounds on the hardness of these problems,
importantly demonstrating that estimate-then-explore strategies that try to estimate un-
known distribution parameters and then use them to solve the most biased coin problem are
quadratically more expensive than adaptive algorithms. Next, I presented a novel adaptive
algorithm that finds fast crowd workers with no prior knowledge of the worker population
distribution parameters, and proved near-optimal guarantees on its runtime. I additionally
introduced near-optimal algorithms for doing so with only partial information.

7.2 Limitations

This work has demonstrated the practical viability of embedding low-latency crowdsourcing
systems into automated data analysis workflows. As such, it focused primarily on the tradeoff
between latency and cost rather than tradeoffs involving output quality. As I described in
Chapter 2, much effort has been devoted to improving the quality of crowdsourced tasks,
especially those involving sending each task to multiple workers and inferring task and worker
quality from the results. Though I intentionally design my latency-oriented optimizations
to be compatible with such quality control techniques, I do not evaluate the effectiveness of
using them together.

Further, the experimental evaluation in this thesis performed on crowd workers was
limited to workers hired on Amazon’s Mechanical Turk. Though MTurk is a good choice
for experimental evaluation due to its adoption by the academic community and its large
worker population, it represents only a single crowd, and it could be argued that other
crowds might display unaccounted-for behaviors that might impact the performance of the
systems introduced in this thesis. The theoretical guarantees of Chapter 6 are made with no
assumptions about the makeup of the crowd, and are therefore applicable to workers hired
on any platform.
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Finally, the systems in this thesis are most useful for applications running microtasks,
where the desired work is short and simple and the outputs are well-defined. For example,
in Chapter 4, the straggler mitigation technique assumes that it is feasible to send the same
task to multiple workers and accept the first response, which would not be true of subjec-
tive or creative crowd tasks such as critiquing an essay, and the hybrid learning technique
assumes task outputs can be used as labels for a machine learning training set. In general,
approaches to improving the performance of heterogeneous macrotasks cannot take advan-
tage of analogies to distributed computing, as do the techniques I have presented in this
thesis.

7.3 Future Work

The field of crowd-powered systems is still in its infancy, and optimizations related to per-
formance have only received attention in the past few years. As a result, there is ample
opportunity to extend the ideas in this thesis to future research. In this section, I highlight
a few of the more interesting potential directions.

Pushing individual techniques further. Because this thesis brings ideas and theory
from many related areas to bear on crowd-powered systems, it is possible to leverage even
more sophisticated ideas from those areas to improve the performance of crowd systems.
For example, the hybrid learning technique described in Chapter 4 uses uncertainty sam-
pling based on SVM margin distance to pick batches of points to be labeled by the crowd,
an approach that has been widely adopted due to its simplicity and practical performance.
However, the active learning community has developed theory for other algorithms such as
query-by-committee that could be extended to fit the large-batch setting of crowd labeling.
Similarly, the pool elasticity technique of Chapter 5 uses simple PID controllers to demon-
strate that control theory can indeed be used to manage pools of crowd workers. However,
the cloud autoscaling and control-theory literature takes advantage of more sophisticated ap-
proaches such as feed-forward control and time-series based regression analysis which could
proactively scale the crowd to meet predicted workload changes.

Relaxing algorithmic assumptions. The algorithms introduced in Chapter 6 made a
simplifying assumption that workers were either ‘fast’ workers with a high mean task pro-
cessing rate or ‘slow’ workers with a low mean task processing rate. Future work could relax
that assumption and look at the general case of worker means being drawn from an arbi-
trary distribution. The novel use of ‘landmarks’ to explore the parameter space described in
this thesis could make this harder setting more amenable to analysis. Further, though this
thesis proved guarantees on the number of tasks which must be completed to identify fast
workers, the algorithms were not empirically evaluated on a live crowd. Future work could
experimentally validate the theoretical guarantees.



CHAPTER 7. FUTURE WORK AND CONCLUSIONS 108

Optimizing system models. The systems in this thesis each represent a single point on
the spectrum between systems that treat humans as programming abstractions and those
that model human behavior exhaustively. Future work in the design of performant crowd
systems could investigate that spectrum itself. Identifying when it is necessary to model
specific human behaviors in order to guarantee system performance would allow system
designers to adaptively tune systems to the specific characteristics of the problem domain
and the crowd population. Such meta-analysis and dynamic generation of system models
could make designing performant crowd systems much easier for system users who do not
have deep expertise in the area.

Designing tools for crowd system administration. Most real-world systems for auto-
mated data analysis are designed with companion tools for monitoring jobs, understanding
performance bottlenecks, and debugging errors. Designing similar tools for the crowd is
important for system designers, but comes with a unique set of challenges. For example,
estimating overall job completion is challenging because of the high variance of crowd re-
sponses, and replaying tasks for debugging purposes is non-deterministic, and might incur
unexpected cost and latency. The techniques introduced in this thesis to reduce the variance
of data processing times are an important step towards meeting these challenges, but work
remains to make reliable tools that support users of performant crowdsourcing systems.

7.4 Final Remarks

As large-scale data analysis applications have become increasingly ubiquitous, their reliance
on human workers to label, clean, and extract data is growing in turn. In order to prevent
human-powered steps from becoming the bottleneck in data analysis workflows, there is a
clear need for performant crowd systems. In this thesis, I have described novel techniques for
designing crowd systems that support multiple applications processing data at near-machine
latencies, and presented provable algorithms for making them efficient. Many of the systems
described in this thesis have been released as open-source software that is already being
adopted by others in industry and academia.

In 1960, J.C.R. Licklider wrote about a future containing ‘Man-Computer Symbiosis’, a
partnership between human and machine that “will think as no human brain has ever thought
and process data in a way not approached by the information-handling machines we know
today” [94]. More than 50 years later, crowd-powered computer systems are in some sense
the fulfillment of his idea, thinking with the power of many human brains, augmented by
algorithms, and processing data at the speed of powerful clusters of computers. Symbiosis,
however, is just one model of human-computer interaction, and in a climate of growing
concern over the role of automation in the workforce, we are at a critical juncture in the
future of computing. Will machine learning become so advanced that it obviates the need
for human expertise to extract insights from data? Or will we as a society identify a way
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forward for people to collaborate with algorithms, even as those algorithms become more
advanced?

In my opinion, we have little to fear. Not only is automated data analysis still far
from being able to extract insights of human caliber consistently, but automated insights
are of little use without the context, intent, and attention of the people who generate and
consume them. Approaches that use algorithms to augment and synthesize the information
that humans use to make decisions, while simultaneously using human expertise to improve
those algorithms represents a promising path forwards. I firmly believe that in another 50
years, we will still have systems that allow humans and machines to work in concert, each
contributing where they are most able.
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Appendix A

Proofs of Chapter 6 Theorems

A.1 Proof of Theorem 2

Proof First, let N be the number of distributions considered at the stopping time T . Note
that T ≥ N . By assumption the procedure satisfies P1(N ≥ n| ∩n−1

i=1 {ξi = 0}) ≥ 1− δ for all
n ∈ N. And

P1(N ≥ n) ≥ P1(N ≥ n,∩n−1
i=1 {ξi = 0}) = P1(N ≥ n| ∩n−1

i=1 {ξi = 0})P1(∩n−1
i=1 {ξi = 0})

≥ (1− δ)(1− α)n−1

Thus, E1[N ] =
∑∞

n=1 P1(N ≥ n) ≥ (1 − δ)
∑∞

n=1(1 − α)n−1 = 1−δ
α

which results in the first
argument of the max.

Applying Theorem 2.38 of [128] we have

E1[N ]χ2 (P1|P0)
Eqn. 6.2

≥ E1[N ]KL (P1|P0)
Thm. 2.38

≥ log( 1
P0(N<∞)

)
assumption

≥ log(1
δ
),

which results in the second argument of the max.

If Θ̃ = {θ0} then χ2(P1|P0) = χ2((1− α)fθ0 + αfθ1|fθ0) and

χ2((1− α)fθ0 + αfθ1|fθ0) =

∫
((1− α)fθ0(x) + αfθ1(x)− fθ0(x))2

fθ0(x)
dx = α2χ2(fθ1 |fθ0)

Thus, E1[N ] ≥ log(
1
δ

)

α2χ2(fθ1 |fθ0 )
which results in the second part of the theorem.

A.2 Proof of Corollary 1

Proof For k = 0, 1 let gθk be a Bernoulli distribution with parameter θk and let fθk =
gθk ⊗ · · · ⊗ gθk be a product distribution composed of m gθk distributions. Then

χ2(gθ1|gθ0) =
(θ1 − θ0)2

θ0(1− θ0)
≤ e

(θ1−θ0)
2

θ0(1−θ0) − 1
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and

χ2(fθ1|fθ0) =
(
1 + χ2(gθ1|gθ0)

)m − 1 ≤ e
m

(θ1−θ0)
2

θ0(1−θ0) − 1.

Moreover, e
m

(θ1−θ0)
2

θ0(1−θ0) − 1 ≤ m (θ1−θ0)2

θ0(1−θ0)
whenever m ≤ θ0(1−θ0)

2(θ1−θ0)2
since ex/2 − 1 ≤ x for all

x ∈ [0, 1]. Applying Theorem 2 obtains

E[Nm] ≥ max

1− δ
α

,
log(1

δ
)

α2(e
m

(θ1−θ0)2
θ0(1−θ0) − 1)

 ≥ θ0(1− θ0) log(1
δ
)

mα2(θ1 − θ0)2
1
m≤ θ0(1−θ0)

2(θ1−θ0)2
.

The claimed result follows from loosening the integer constraint on m and minimizing the
lower bound on E[Nm] multiplied by m. To perform the minimization, we note that the

function max{1−δ
α
, 2 log(1

δ
)/[α2(e

m
(θ1−θ0)

2

θ0(1−θ0) − 1)]} reaches its minimum at the intersection of
the two arguments and solve for m at that point.

A.3 Proof of Theorem 3

Proof I begin by restating the theorem with the problem dependent parameters explicitly
defined.

Theorem 10 Suppose fθ for θ ∈ Θ ⊂ R is a single parameter exponential family so that
fθ(x) = h(x) exp(η(θ)x−b(η(θ))) for some scalar functions h, b, η where η is strictly increas-
ing. If Eθ[X] =

∫
xfθ(x)dx then let Mk(θ) =

∫
(x− Eθ[X])kfθ(x)dx denote the kth centered

moment under distribution fθ. Define

θ∗ = η−1
(
(1− α)η(θ0) + αη(θ1)

)
θ− = η−1

(
η(θ0)− α(η(θ1)− η(θ0))

)
θ+ = η−1

(
η(θ1) + (1− α)(η(θ1)− η(θ0))

)
and assume there exist finite κ, γ such that

sup
y∈[θ0,θ1]

b(2η(y)− η(θ∗))− [2b(η(y))− b(η(θ∗))] ≤ κ, and sup
x∈[ḃ(η(θ−)),ḃ(η(θ+))]

φx(ḃ
−1(x)) ≤ γ,

where φx(η(θ)) = fθ(x). Then

χ2((1− α)fθ0(x) + αfθ1(x)|fθ∗(x)) ≤ c

(
1

2
α(1− α)(η(θ1)− η(θ0))2

)2

where if ∆ = ḃ(η(θ+))− ḃ(η(θ−))

c = eκ
(

sup
θ∈[θ0,θ1]

M2(θ)2 (2 + γ∆) + 8M4(θ−) + 8M4(θ+) + 16∆4 + 2
5
γ∆5

)
.
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Thus, if Θ̃ = {θ∗} and N is the stopping time of any procedure that satisfies P0(N <∞) ≤ δ
and P1(∪Ni=1{ξi = 1}) ≥ 1− δ, then

E1[N ] ≥ max

{
1− δ
α

,
log(1

δ
)

c
(

1
2
α(1− α)(η(θ1)− η(θ0))2

)2

}
.

Proof Define φx(η) = h(x) exp(ηx− b(η)). By the properties of scalar exponential families,
note that b′(η) and b′′(η) ≥ 0 represent the mean and variance of the distribution. We deduce
that b′ is monotonically increasing. Define η0 = η(θ0), η1 = η(θ1), and µ = (1− α)η0 + αη1.
Noting that

χ2((1− α)φx(η0) + αφx(η1)|φx(µ)) =

∫
φx(µ)

(
(1− α)φx(η0) + αφx(η1)− φx(µ)

φx(µ)

)2

dx,

I will use a technique that was used in [115] to approximate the divergence between a single
Gaussian distribution and a mixture of them. Essentially, it involves taking the Taylor series
of each φx(·) centered at µ and bounding it. We have

φx(η) = h(x) exp(ηx− b(η))

φ′x(η) = (x− b′(η))φx(η)

φ′′x(η) = (−b′′(η) + (x− b′(η))2)φx(η)

so that

φx(y) = φx(µ)
[
1 + (x− b′(µ))(y − µ) + 1

2
(−b′′(µ) + (x− b′(µ))2)(y − µ)2 . . .

]
.

Noting that (η0−µ) = −α(η1− η0), (η1−µ) = (1−α)(η1− η0), and (1−α)α2 +α(1−α)2 =
α(1− α), we have∣∣∣∣(1− α)φx(η0) + αφx(η1)− φx(µ)

φx(µ)

∣∣∣∣
=

∣∣∣∣φ′x(µ)

φx(µ)
[(1− α)(η0 − µ) + α(η1 − µ)] +

1

2

φ′′x(µ)

φx(µ)
[(1− α)(η0 − µ)2 + α(η1 − µ)2] + . . .

∣∣∣∣
=

∣∣∣∣12 φ′′x(µ)

φx(µ)
α(1− α)(η1 − η0)2 + . . .

∣∣∣∣
≤ sup

z∈[η0,η1]

|φ′′x(z)|
φx(µ)

1

2
α(1− α)(η1 − η0)2.

Thus,

χ2((1− α)φx(η0) + αφx(η1)|φx(µ)) =

∫
φx(µ)

(
(1− α)φx(η0) + αφx(η1)− φx(µ)

φx(µ)

)2

dx

≤
(

1

2
α(1− α)(η1 − η0)2

)2 ∫
sup

z∈[η0,η1]

|φ′′x(z)|2

φx(µ)2
φx(µ)dx.
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By distributing the square and noting that b′′(η) ≥ 0, we have∫
sup

z∈[η0,η1]

|φ′′x(z)|2

φx(µ)2
φx(µ)dx =

∫
sup

z∈[η0,η1]

(
φx(z)

φx(µ)

)2

(−b′′(z) + (x− b′(z))2)2 φx(µ)dx

≤
∫

sup
z∈[η0,η1]

(
φx(z)

φx(µ)

)2

b′′(z)2 φx(µ)dx+

∫
sup

z∈[η0,η1]

(
φx(z)

φx(µ)

)2

(x− b′(z))4 φx(µ)dx

≤ sup
y∈[η0,η1]

b′′(y)2

∫
sup

z∈[η0,η1]

(
φx(z)

φx(µ)

)2

φx(µ)dx+

∫
sup

z∈[η0,η1]

(
φx(z)

φx(µ)

)2

(x− b′(z))4 φx(µ)dx.

The remainder of the proof bounds the integrals. Define η− = 2η0 − µ = η(θ−) and η+ =
2η1 − µ = η(θ+). Observe that

sup
z∈[η0,η1]

(
φx(z)

φx(µ)

)2

φx(µ)

= sup
z∈[η0,η1]

h(x) exp
(
(2z − µ)x− (2b(z)− b(µ))

)
= sup

z∈[η0,η1]

h(x) exp
(
(2z − µ)x− b(2z − µ)

)
exp

(
b(2z − µ)− (2b(z)− b(µ))

)
≤ eκ sup

z∈[η0,η1]

h(x) exp
(
(2z − µ)x− b(2z − µ)

)
= eκ sup

z∈[2η0−µ,2η1−µ]

h(x) exp
(
zx− b(z)

)
= eκ sup

z∈[η−,η+]

h(x) exp
(
zx− b(z)

)
≤ eκ

(
φx(η−) + φx(η+) + φx(ḃ

−1(x))1x∈[ḃ(η−),ḃ(η+)]

)
≤ eκ

(
φx(η−) + φx(η+) + γ1x∈[ḃ(η−),ḃ(η+)]

)
where the second inequality follows by observing that the maximum of the function φx(z)
will occur either at an endpoint of the interval z ∈ [η(θ−), η(θ+)] or at the point where
∂
∂z
g(z) = 0 (if that point occurs inside the interval), and loosely bounding the maximum by

simply adding the function values at all three points.
Consequently,

sup
y∈[η0,η1]

b′′(y)2

∫
sup

z∈[η0,η1]

(
φx(z)

φx(µ)

)2

φx(µ)dx ≤ sup
θ∈[θ0,θ1]

M2(θ)2eκ
(

2 + γ(ḃ(η+)− ḃ(η−))
)
.
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By Jensen’s inequality, (a+ b)4 = 16(1
2
a+ 1

2
b)4 ≤ 8(a4 + b4), so∫

sup
z∈[η0,η1]

φx(η−)(x− ḃ(z))4dx =

∫
sup

z∈[η0,η1]

φx(η−)(x− ḃ(η−) + ḃ(η−)− ḃ(z))4dx

≤
∫

8φx(η−)[(x− ḃ(η−))4 + sup
z∈[η0,η1]

(ḃ(η−)− ḃ(z))4]dx

≤
∫

8φx(η−)[(x− ḃ(η−))4 + (ḃ(η−)− ḃ(η1))4]dx

= 8[M4(θ−)− (ḃ(η−)− ḃ(η1))4].

Repeating an analogous series of steps for η+, we have∫
sup

z∈[η0,η1]

(
φx(z)

φx(µ)

)2

(x− b′(z))4 φx(µ)dx

≤ eκ
∫ (

φx(η−) + φx(η+) + γ1x∈[ḃ(η−),ḃ(η+)]

)
sup

z∈[η0,η1]

(x− ḃ(z))4dx

≤ eκ
(

8M4(θ−) + 8(ḃ(η1)− ḃ(η−))4 + 8M4(θ+) + 8(ḃ(η+)− ḃ(η0))4 + 2
5
γ(ḃ(η+)− ḃ(η−))5

)
≤ eκ

(
8M4(θ−) + 8M4(θ+) + 16(ḃ(η+)− ḃ(η−))4 + 2

5
γ(ḃ(η+)− ḃ(η−))5

)
.

The final result holds by Theorem 2.

A.4 Proof of Corollary 2

Proof A binomial distribution for fixed m is an exponential family fθ(x) = h(x) exp(η(θ)x−
b(η(θ))) with h(x) =

(
m
x

)
, η(θ) = log( θ

1−θ ), and b(τ) = m log(1 + eτ ). Note that η is

monotonically increasing, b is m-Lipschitz, and ḃ(τ) = m(1 + e−τ )−1 so that ḃ(η(θ)) = mθ.

Step 1: Relating θ+, θ− to θ1, θ0. I will make repeated use of the fact that if f is convex
then f(y) ≥ f(x) + f ′(x)T (y − x). Since x

1−x and 1−x
x

are both convex, we have

y

1− y
≥ x

1− x
+

y − x
(1− x)2

and
1− y
y
≥ 1− x

x
− y − x

x2

for all x, y ∈ [0, 1].
To begin, note η−1(ν) = (1 + e−ν)−1 so that for any θ we have θ(1− θ) = η−1(η(θ))(1−

η−1(η(θ))) = e−η(θ)

(1+e−η(θ))2
. Observe that

1

4
e−|η(θ)| ≤ e−η(θ)

(1 + e−η(θ))2
≤ e−|η(θ)|
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and recalling that θ∗ = η−1((1− α)θ0 + αθ1) ∈ [θ0, θ1] we have

θ+(1− θ+) ≥ 1

4
e−|η(θ+)| =

1

4
e−|2η(θ1)−η(θ∗)|

= 1
4
1θ+≤1/2

(
θ1

1− θ1

)2(
1− θ∗
θ∗

)
+ 1

4
1θ+>1/2

(
1− θ1

θ1

)2(
θ∗

1− θ∗

)
≥ 1

4
1θ+≤1/2

(
θ1

1− θ1

)2(
1− θ1

θ1

)
+ 1

4
1θ+>1/2

(
1− θ1

θ1

)2(
θ0

1− θ0

)
≥ 1

4
1θ+≤1/2

(
θ1

1− θ1

)
+ 1

4
1θ+>1/2

(
1− θ1

θ1

)2(
θ1

1− θ1

− θ1 − θ0

(1− θ1)2

)
≥ 1

4
1θ+≤1/2

(
θ1

1− θ1

)
+ 1

8
1θ+>1/2

(
1− θ1

θ1

)
≥ 1

8
θ1(1− θ1)

where the last line follows from the assumption that θ1(1− θ1) ≥ 2(θ1 − θ0). Analogously,

θ−(1− θ−) ≥ 1

4
e−|η(θ−)| =

1

4
e−|2η(θ0)−η(θ∗)|

= 1
4
1θ−≤1/2

(
θ0

1− θ0

)2(
1− θ∗
θ∗

)
+ 1

4
1θ−>1/2

(
1− θ0

θ0

)2(
θ∗

1− θ∗

)
≥ 1

4
1θ−≤1/2

(
θ0

1− θ0

)2(
1− θ1

θ1

)
+ 1

4
1θ−>1/2

(
1− θ0

θ0

)2(
θ0

1− θ0

)
≥ 1

4
1θ−≤1/2

(
θ0

1− θ0

)2(
1− θ0

θ0

− θ1 − θ0

θ2
0

)
+ 1

4
1θ−>1/2

(
1− θ0

θ0

)
≥ 1

8
1θ−≤1/2

(
θ0

1− θ0

)
+ 1

4
1θ−>1/2

(
1− θ0

θ0

)
≥ 1

8
θ0(1− θ0)

where the last line follows from the assumption that θ0(1 − θ0) ≥ 2(θ1 − θ0). We conclude
that

inf
θ∈[θ−,θ+]

θ(1− θ) ≥ 1

8
inf

θ∈[θ0,θ1]
θ(1− θ). (A.1)

Conversely,

sup
θ∈[θ−,θ+]

θ(1− θ) ≤ 11/2∈[θ−,θ+]
1

4
+ θ+(1− θ+)1θ+≤1/2 + θ−(1− θ−)1θ−>1/2.
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We consider these three cases in turn. If θ+ ≤ 1/2:

θ+(1− θ+) ≤ e−|η(θ+)| = e−|2η(θ1)−η(θ∗)|

=

(
θ1

1− θ1

)2(
1− θ∗
θ∗

)
≤
(

θ1

1− θ1

)2(
1− θ0

θ0

)
≤
(

θ1

1− θ1

)2(
1− θ1

θ1

+
θ1 − θ0

θ2
0

)
=

(
θ1

1− θ1

)(
1 +

θ1(θ1 − θ0)

(1− θ1)θ2
0

)
≤
(

θ1

1− θ1

)(
1 +

θ1(1− θ0)

2(1− θ1)θ0

)
=

(
θ1

1− θ1

)(
1 +

θ0(1− θ0) + (θ1 − θ0)(1− θ0)

2(1− θ1)θ0

)
≤
(

θ1

1− θ1

)(
1 +

θ0(1− θ0) + θ0(1− θ0)2/2

2(1− θ1)θ0

)
≤ 5

2

(
θ1

1− θ1

)
≤ 10θ1(1− θ1)

using the convexity of 1−x
x

, the assumption that 2(θ1− θ0) ≤ θ0(1− θ0), that θ1 ≤ θ+ ≤ 1/2,
and that 1− θ0 ≤ 1. If θ− > 1/2:

θ−(1− θ−) ≤ e−|η(θ−)| = e−|2η(θ0)−η(θ∗)|

=

(
1− θ0

θ0

)2(
θ∗

1− θ∗

)
≤
(

1− θ0

θ0

)2(
θ1

1− θ1

)
≤
(

1− θ0

θ0

)2(
θ0

1− θ0

+
θ1 − θ0

(1− θ1)2

)
≤
(

1− θ0

θ0

)(
1 +

(1− θ0)(θ1 − θ0)

θ0(1− θ1)2

)
≤
(

1− θ0

θ0

)(
1 +

(1− θ0)θ1/2

θ0(1− θ1)

)
=

(
1− θ0

θ0

)(
1 +

(1− θ1)θ1 + (θ1 − θ0)θ1

2θ0(1− θ1)

)
≤
(

1− θ0

θ0

)(
1 +

(1− θ1)θ1 + (1− θ1)θ2
1/2

2θ0(1− θ1)

)
≤ 5

2

(
1− θ0

θ0

)
≤ 10θ0(1− θ0)

using the same methods as above. From these two cases, we can conclude that if 1/2 /∈
[θ−, θ+],

sup
θ∈[θ−,θ+]

θ(1− θ) ≤ 10 sup
θ∈[θ0,θ1]

θ(1− θ). (A.2)

The remaining case, when 1/2 ∈ [θ−, θ+], also satisfies (A.2), which I now demonstrate.
When θ+ = 1/2 we have 1/4 = θ+(1−θ+) ≤ 10θ1(1−θ1) so that θ1(1−θ1) ≥ 1/40. Because θ1

is monotonically increasing in θ+ and supθ∈[θ−,θ+] θ(1−θ) ≤ 1/4 we conclude that (A.2) holds
whenever θ1 ≤ 1/2. A similar argument follows for all θ0 ≥ 1/2. Finally, if 1/2 ∈ [θ0, θ1], it
must be true that supθ∈[θ−,θ+] θ(1− θ) ≤ supθ∈[θ0,θ1] θ(1− θ) because θ− ≤ θ0 ≤ 1

2
≤ θ1 ≤ θ+

and the function θ(1 − θ) is concave taking its maximum at 1
2
. Thus, (A.2) holds for all

θ−, θ+.
We now turn our attention to bounding θ+−θ−. Let g(y) = η−1(y) then g(y) = (1+e−y)−1

and ġ(y) = e−y(1+e−y)−2. Observing that ġ(η(θ)) = θ(1−θ) we have by Taylor’s remainder
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theorem

θ+ − θ− = η−1(η(θ+))− η−1(η(θ−)) ≤ (η(θ+)− η(θ−)) sup
y∈[η(θ−),η(θ+)]

e−y(1 + e−y)−2

= (η(θ+)− η(θ−)) sup
θ∈[θ−,θ+]

θ(1− θ) = 2 (η(θ1)− η(θ0)) sup
θ∈[θ−,θ+]

θ(1− θ)

≤ 20 (η(θ1)− η(θ0)) sup
θ∈[θ0,θ1]

θ(1− θ).

Since η(θ) = log( θ
1−θ ) and η′(θ) = 1

θ
+ 1

1−θ = 1
θ(1−θ) , we have

θ+ − θ− ≤ 20 (η(θ1)− η(θ0)) sup
θ∈[θ0,θ1]

θ(1− θ) ≤ 20 (θ1 − θ0)
supθ∈[θ0,θ1] θ(1− θ)
infθ∈[θ0,θ1] θ(1− θ)

.

If θ1(1− θ1) ≥ θ0(1− θ0):

θ1(1− θ1)

θ0(1− θ0)
=
θ0(1− θ1) + (θ1 − θ0)(1− θ1)

θ0(1− θ0)

≤ θ0(1− θ1) + θ0(1− θ0)(1− θ1)/2

θ0(1− θ0)
≤ 1 + (1− θ1)/2 ≤ 3/2,

else if θ0(1− θ0) ≥ θ1(1− θ1)

θ0(1− θ0)

θ1(1− θ1)
=
θ0(1− θ1) + θ0(θ1 − θ0)

θ1(1− θ1)

≤ θ0(1− θ1) + θ0θ1(1− θ1)/2

θ1(1− θ1)
≤ 1 + θ0/2 ≤ 3/2.

Finally, if 1/2 ∈ [θ0, θ1] then supθ∈[θ0,θ1] θ(1 − θ) = 1/4 taking its maximum at 1/4. To
maximize the ratio of the sup to the inf, it suffices to just consider the case when θ0 = 1/2
or θ1 = 1/2. Thus, the above two bounds suffice for this case and we observe that

supθ∈[θ0,θ1] θ(1− θ)
infθ∈[θ0,θ1] θ(1− θ)

≤ 3/2. (A.3)

Thus, putting the pieces together, we conclude that

θ+ − θ− ≤ 30(θ1 − θ0). (A.4)
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Step 2: Bounding γ, κ, c. In what follows, define θh = arg supθ∈[θ0,θ1] θ(1 − θ) and θl =
arg infθ∈[θ0,θ1] θ(1− θ). We now continue to bound the terms of the theorem. Note

sup
x∈[ḃ(η(θ−)),ḃ(η(θ+))]

φx(ḃ
−1(x)) = sup

x∈[mθ−,mθ+]

φx(η(x/m))

≤ sup
x∈[mθ−,mθ+]

sup
y∈[0,1]

φx(η(y))

= sup
x∈[mθ−,mθ+]

sup
y∈[0,1]

Γ(m+ 1)

Γ(m− x+ 1)Γ(x+ 1)
yx(1− y)m−x

= sup
θ∈[θ−,θ+]

sup
y∈[0,1]

Γ(m+ 1)

Γ(m(1− θ) + 1)Γ(mθ + 1)
ymθ(1− y)m(1−θ)

≤ sup
θ∈[θ−,θ+]

sup
y∈[0,1]

e/2π√
mθ(1− θ)

ymθ(1− y)m(1−θ)

θmθ(1− θ)m(1−θ)

= sup
θ∈[θ−,θ+]

e/2π√
mθ(1− θ)

≤ 2√
mθl(1− θl)

=: γ

by Stirling’s approximation:
√

2π ≤ Γ(s+1)

e−sss+1/2 ≤ e [129] and (A.1). And for any y ∈ [θ0, θ1]

b(2η(y)− η(θ∗))− (2b(η(y))− b(η(θ∗)))

= m log(1 + e2η(y)−η(θ∗))− 2m log(1 + eη(y)) +m log(1 + eη(θ∗))

= m log

(
(1 + e2η(y)−η(θ∗))(1 + eη(θ∗))

(1 + eη(y))2

)
= m log

((
1 +

(
y

1− y

)2
1− θ∗
θ∗

)(
1

1− θ∗

)
(1− y)2

)

= m log

(
(1− y)2 1

1− θ∗
+ y2 1

θ∗

)
= m log

(
(1− 2y + y2)

θ∗
θ∗(1− θ∗)

+ y2 1− θ∗
θ∗(1− θ∗)

)
= m log

(
(1− 2y)

θ∗
θ∗(1− θ∗)

+ y2 1

θ∗(1− θ∗)

)
= m log

(
1 +

(y − θ∗)2

θ∗(1− θ∗)

)
so

sup
y∈[θ0,θ1]

b(2η(y)− η(θ∗))− (2b(η(y))− b(η(θ∗)))

≤ sup
y∈[θ0,θ1]

m log

(
1 +

(y − θ∗)2

θ∗(1− θ∗)

)
≤ m

(
(θ1 − θ0)2

θ∗(1− θ∗)

)
=: κ.
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Noting that M2(θ) = mθ(1− θ),

sup
y∈[θ0,θ1]

M2(y)2(2 + γ(ḃ(η(θ+))− ḃ(η(θ−)))) ≤ m2 (θh(1− θh))2 (2 + γm(θ+ − θ−))

≤ m2 (θh(1− θh))2

(
2 +

2m√
mθl(1− θl)

30(θ1 − θ0)

)

≤ m2 (θh(1− θh))2

(
2 + 60

√
m

(θ1 − θ0)2

θl(1− θl)

)
.

Since for any θ ∈ [0, 1]

M4(θ) = mθ(1− θ) (3θ(1− θ)(m− 2) + 1) < 3m2 (θ(1− θ))2 +mθ(1− θ),

we have

8M4(θ−) + 8M4(θ+) + 16
(
ḃ(η(θ+))− ḃ(η(θ−))

)4

+ 2
5
γ
(
ḃ(η(θ+))− ḃ(η(θ−))

)5

≤24m2 (θ−(1− θ−))2 + 8mθ−(1− θ−) + 24m2 (θ+(1− θ+))2 + 8mθ+(1− θ+)

+ 16m4(θ+ − θ−)4 +
4/5√

mθl(1− θl)
m5(θ+ − θ−)5

≤4800m2 (θh(1− θh))2 + 160mθh(1− θh)

+ 3240000m4(θ1 − θ0)4 + 19440000

√
m

(θ1 − θ0)2

θl(1− θl)
m4(θ1 − θ0)4

where we have applied (A.2) and (A.4). Finally, recall from above that

η(θ1)− η(θ0) ≤ θ1 − θ0

θl(1− θl)
≤ 3

2

θ1 − θ0

θ∗(1− θ∗)
.

Step 3: Putting the pieces together. Noting that θl(1− θl) ≤ θ∗(1− θ∗) ≤ θh(1− θh)
and θh(1−θh)

θl(1−θl)
≤ 3/2 by (A.3), we can use θ∗(1 − θ∗) throughout at the cost of a constant.

Putting it altogether, if m (θ1−θ0)2

θ∗(1−θ∗) ≤ 1 then κ ≤ 1 and

c ≤ c′
(
m2 (θ∗(1− θ∗))2 +mθ∗(1− θ∗) +m4(θ1 − θ0)4

)
≤ c′

(
m2 (θ∗(1− θ∗))2 +mθ∗(1− θ∗)

)
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for some absolute constant c′. Thus,

c
(

1
2
α(1− α) (η(θ1)− η(θ0))2)2

≤ c′
(
m2 (θ∗(1− θ∗))2 +mθ∗(1− θ∗)

)(9

8
α(1− α)

(θ1 − θ0)2

(θ∗(1− θ∗))2

)2

≤ c′
(
m2 +

m

θ∗(1− θ∗)

)(
9

8
α(1− α)

(θ1 − θ0)2

θ∗(1− θ∗)

)2

≤ 2c′m

(
min{ 1

m
, θ∗(1− θ∗)}

)−1(
9

8
α(1− α)

(θ1 − θ0)2

θ∗(1− θ∗)

)2

.

A.5 Proof of Theorem 4

Proof If fθ = N (θ, σ2) then fθ(x) = h(x) exp(η(θ)x − b(θ)) where h(x) = 1√
2πσ2

e−
x2

2σ2 ,

η(θ) = θ
σ2 , and b(η(θ)) = η(θ)2σ2

2
= θ2

2σ2 . Thus,

θ∗ = η−1
(
(1− α)η(θ0) + αη(θ1)

)
= (1− α)θ0 + αθ1

and

sup
y∈[θ0,θ1]

b(2η(y)− η(θ∗))− (2b(η(y))− b(η(θ∗))) = sup
y∈[θ0,θ1]

(y − θ∗)2

σ2
≤ (θ1 − θ0)2

σ2
=: κ

and

sup
x∈[ḃ(η(θ−)),ḃ(η(θ+))]

fḃ−1(x)(x) = sup
x∈[θ−,θ+]

sup
θ∈R

1√
2πσ2

e−
(x−θ)2

2σ2 ≤ 1√
2πσ2

=: γ.

Note that for any θ < θ′ we have ḃ(η(θ′))− ḃ(η(θ)) = θ′ − θ, M2(θ) = σ2, and M4(θ) = 3σ4.
Plugging these values into the theorem we have

c = eκ
(

sup
θ∈[θ0,θ1]

M2(θ)2
(

2 + γ
(
ḃ(η(θ+))− ḃ(η(θ−))

))
+ 8M4(θ−) + 8M4(θ+) + 16

(
ḃ(η(θ+))− ḃ(η(θ−))

)4

+ 2
5
γ
(
ḃ(η(θ+))− ḃ(η(θ−))

)5
)

=e
(θ1−θ0)

2

σ2

(
σ4

(
2 +

2(θ1 − θ0)√
2πσ

)
+ 48σ4 + 256 (θ1 − θ0)4 + 64

5
√

2π

(θ1 − θ0)5

σ

)
noting that θ+ − θ− = 2(θ1 − θ0). If θ1−θ0

σ
≤ 1 then c = c′σ4 for some absolute constant c′

and (η(θ1)− η(θ0))2 = (θ1−θ0)2

σ4 which yields the final result.
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A.6 Proof of Theorem 5

First, I prove several technical lemmas necessary to analyze Algorithm 6.2.

Lemma 1 For i ∈ N, let Xi ∈ [ai, bi] for |bi − ai| ≤ 1 be a random variable with E[Xi] = 0.
Then

P

(
∞⋃
n=1

{
n∑
i=1

Xi ≥ αn+ β

})
≤ 7 exp(−αβ/2)

whenever αβ ≥ 1.

Proof First, I break the bound into two pieces:

P

(
∞⋃
n=1

{
n∑
i=1

Xi ≥ αn+ β

})
≤ min

n0

P

(
n0⋃
n=1

{
n∑
i=1

Xi ≥ β

})
+ P

(
∞⋃

n=n0+1

{
n∑
i=1

Xi ≥ αn

})

where P (
⋃n0

n=1 {
∑n

i=1Xi ≥ β}) ≤ exp(−2β2/n0) by Doob-Hoeffding’s maximal inequality.
For any fixed k ∈ N:

P

 2k∑
i=1

Xi ≥ α2k/2

 ≤ exp(−α22k/2)

and

P

 2k+1⋃
n=2k+1


n∑

i=2k+1

Xi ≥ αn/2


 ≤ P

 2k+1⋃
n=2k+1


n∑

i=2k+1

Xi ≥ α2k/2




= P

 2k⋃
`=1

{∑̀
i=1

Xi ≥ α2k/2

} ≤ exp(−α22k/2)
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by Hoeffding’s and Doob-Hoeffding’s maximal inequality, respectively. Thus

P

(
∞⋃

n=n0

{
n∑
i=1

Xi ≥ αn

})

= P

 ∞⋃
n=n0


2dlog2(n)e∑
i=1

Xi +
n∑

i=2dlog2(n)e+1

Xi ≥ αn




= P

 ∞⋃
k=log2(n0)

2k+1⋃
n=2k+1


2k∑
i=1

Xi +
n∑

i=2k+1

Xi ≥ αn




≤
∞∑

k=log2(n0)

P

 2k∑
i=1

Xi ≥ α2k/2

+ P

 2k+1⋃
n=2k+1


n∑

i=2k+1

Xi ≥ αn/2




≤
∞∑

k=log2(n0)

2 exp(−α22k/2) ≤ 2

∫ ∞
log2(n0)

exp(−(α/2)22x)dx

=
2

log(2)

∫ ∞
n0

u−1 exp(−(α/2)2u)du ≤ 8 exp(−(α/2)2n0)

n0α2 log(2)
.

Putting the pieces together we have

P

(
∞⋃
n=1

{
n∑
i=1

Xi ≥ αn+ β

})
≤ min

n0

exp(−2β2/n0) +
8 exp(−(α/2)2n0)

n0α2 log(2)

≤ exp(−βα) +
4 exp(−βα/2)

βα log(2)
≤ 7 exp(−βα/2)

where the last inequality holds with βα ≥ 1.

Lemma 2 Given θ1 − γ̂ ≥ 2B
m

,

P

(
max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B
∣∣µi = θ1

)
≥ 1− exp

(
−m(θ1 − γ̂)2/2

)
.

Similarly, given γ̂ − θ0 ≥ 2|A|
m

,

P

(
min

j=1,...,m

j∑
s=1

(Xi,s − γ̂) < A
∣∣µi = θ0

)
≥ 1− exp

(
−m(γ̂ − θ0)2/2

)
.
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Proof We analyze the left hand side of the lemma:

P

(
max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B

∣∣∣∣µi = θ1

)

= P

(
m⋃
j=1

{
j∑
s=1

(Xi,s − γ̂) > B

∣∣∣∣µi = θ1

})

≥ P

(
m∑
s=1

(Xi,s − γ̂) > B

∣∣∣∣µi = θ1

)

= 1− P

(
1

m

m∑
s=1

(Xi,s − µi) ≤
B

m
− (µi − γ̂)

∣∣∣∣µi = θ1

)

= 1− P

(
1

m

m∑
s=1

(µi −Xi,s) ≥ (µi − γ̂)− B

m

∣∣∣∣µi = θ1

)

≥ 1− exp

(
−2m

[
(θ1 − γ̂)− B

m

]2
)

≥ 1− exp

(
−m(θ1 − γ̂)2

2

)
Where the second to last statement holds by Hoeffding’s inequality, and the last uses the
bound on B/m given in the lemma. A nearly identical argument yields the second half of
the lemma.

Lemma 3 If θ1 − γ̂ ≥ 2B
m

then

P

(
n⋃
i=1

{
µi = θ1, max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B, min
j=1,...,m

j∑
s=1

(Xi,s − γ̂) > A

})
≥ 1− exp [−αn(1− exp (−B(θ1 − γ̂))− 7 exp(−|A|(γ̂ − θ0)/2))] .

Proof Consider iid events Ωi for i = 1, . . . , n. Then P(
⋃n
i=1 Ωi) = 1 − P(

⋂n
i=1 Ωc

i) =
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1− P(Ωc
1)n = 1− (1− P(Ωi))

n ≥ 1− exp(−nP(Ωi)). We follow the same line of reasoning:

P

(
n⋃
i=1

{
µi = θ1, max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B, min
j=1,...,m

j∑
s=1

(Xi,s − γ̂) > A

})

= 1−

(
1− P

(
µi = θ1, max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B, min
j=1,...,m

j∑
s=1

(Xi,s − γ̂) > A

))n

= 1−

(
1− αP

(
max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B, min
j=1,...,m

j∑
s=1

(Xi,s − γ̂) > A
∣∣∣µi = θ1

))n

= 1−

(
1− α

(
1− P

(
max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) < B
∣∣∣µi = θ1

)

− P

(
min

j=1,...,m

j∑
s=1

(Xi,s − γ̂) < A
∣∣∣µi = θ1

)))n

≥ 1−
(
1− α

(
1− exp

(
−m(θ1 − γ̂)2/2

)
− 7 exp(−|A|(γ̂ − θ0)/2)

))n
≥ 1− exp

[
−αn(1− exp

(
−m(θ1 − γ̂)2/2

)
− 7 exp(−|A|(γ̂ − θ0)/2))

]
≥ 1− exp [−αn(1− exp (−B(θ1 − γ̂))− 7 exp(−|A|(γ̂ − θ0)/2))]

Where the third-to-last inequality applies Lemmas 1 and 2.

Now, these lemmas can be used to prove Theorem 5.

Proof First, I consider the estimation of θ̂0 of Algorithm 6.2, then turn to the sample
complexity of the algorithm, and then prove correctness.

Let ξ0 = {θ̂0 − θ0 ≥ − ε0
4
} and ξ1 = {θ̂0 − θ0 ≤ ε0

4
} be the events that we accurately

estimate the parameter θ0. We will show that P(ξ0) ≥ 1 − δ′ and P(ξ1) ≥ 3/4 where
δ′ = min{δ/8, 1

mε20
}. Let k1 = 5 and k2 = 8ε−2

0 log(2k1
δ′

). First note that

P

(
k1⋃
i=1

{
|µ̂i,k2 − µi| ≥

ε0
4

})
≤ 2k1 exp(−2k2(ε0/4)2) ≤ δ′

so that with probability at least 1−δ′ we have θ̂0 = mini=1,...,k1 µ̂i,k2 ≥ mini=1,...,k1 µi−ε0/4 ≥
θ0 − ε0/4, and in particular, P(ξ0) ≥ 1 − δ′. Let E = {

⋃k1
i=1{µi = θ0}} be the event that at

least one of the distributions is light. Then

P (E) = 1− αk1 ≥ 1− 2−k1 ≥ 31/32,

so that under E ∩ ξ0, we have θ̂0 = mini=1,...,k1 µ̂i,k2 ≤ mini=1,...,k1 µi + ε0/4 = θ0 + ε0/4 which
means P(ξc1) ≤ P(ξc0 ∪ Ec) ≤ δ/8 + 1/32 ≤ 1/16. Moreover, the total number of samples is
bounded by k1k2 = cε−2

0 log(1/δ′) ≤ cε−2
0 log(max{1

δ
, log( 1

α0δ
)}) which is clearly dominated

by log(1/δ)

α0ε20
.



APPENDIX A. PROOFS OF CHAPTER 6 THEOREMS 135

We now turn our attention to the sample complexity. By Wald’s identitity [128, Propo-
sition 2.18],

E[T ] = E

[
N∑
i=1

Mi

]
= E[N ]E[M1] = E[N ]((1− α)E[M1|µ1 = θ0] + αE[M1|µ1 = θ1]).

Trivially, E[N ] ≤ n and E[M1|µ1 = θ1] ≤ m, so we only need to bound E[M1|µ1 = θ0].
Clearly we have that

E[M1|µ1 = θ0] = E[M1|ξ0, µ1 = θ0]P(ξ0) + E[M1|ξc0, µ1 = θ0]P(ξc0) ≤ E[M1|ξ0, µ1 = θ0] + δ′m

so

E[M1|ξ0, µ1 = θ0] ≤
∞∑
t=1

P

(
arg min

j

{
j∑
s=1

(X1,s − γ̂) < A
∣∣∣ξ0, µ1 = θ0

}
≥ t

)

=
∞∑
t=1

1− P

(
min

j=1,...,t−1

j∑
s=1

(X1,s − γ̂) < A
∣∣∣ξ0, µ1 = θ0

)

=
∞∑
t=0

1− P

(
min
j=1,...,t

j∑
s=1

(X1,s − γ̂) < A
∣∣∣ξ0, µ1 = θ0

)

≤
∞∑
t=0

1− 1
γ̂−θ0≥ 2|A|

t

(1− exp
(
−t(γ̂ − θ0)2/2

)
≤ 2|A|
γ̂ − θ0

+ 2e1/2(γ̂ − θ0)−2 exp (−|A|(γ̂ − θ0)) ≤ 3|A|
γ̂ − θ0

≤ 293

ε20
.

where the second inequality follows by applying Lemma 2 and the last inequality holds by

ξ0 and the value of |A| since if ξ0 holds, γ̂ − θ0 = θ̂0 − θ0 + ε0
2
≥ ε0

4
. Thus

E[M1] ≤ (1− α)

[(
293

ε20

)
+ δ′m

]
+ αm ≤ δ′m+

1

ε20

(
293 + 64α log

(
14n
δ

))
≤
cα log

(
1
α0δ

)
ε20

for some c where we use the fact that δ′m ≤ ε−2
0 . So we have

E[T ] ≤ nE[M1] ≤
c′α log(1/α0) + c′′ log

(
1
δ

)
α0ε20

.

Now, we analyze the correctness claims. Under ξ0, γ̂ − θ0 ≥ ε0
4

. Note that this event
fails to occur with probability less than δ/2, and if it is used in conjunction with some other
event that fails to occur with probability δ/2, we may conclude that either of these events
fail with probability less than δ.
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To justify Claim 1, we apply Lemma 1 to observe that the probability that we output a
light distribution is no greater than

P(ξc0) + P

(
n⋃
i=1

{
max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B, µi = θ0

}∣∣∣ξ0

)
P(ξ0)

≤ P(ξc0) + n(1− α)P

(
max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B
∣∣µi = θ0, ξ0

)
≤ δ/2 + 7n exp(−B(γ̂ − θ0)/2) ≤ δ

where we have used γ̂ − θ0 ≥ ε0
4

and plugged in the values of B and n.
To justify Claim 2, assume α0 ≤ α and ε0 ≤ θ1− θ0. We apply Lemma 3 to observe that

the probability that we return a heavy distribution is at least

P

(
ξ0 ∩ ξ1 ∩

n⋃
i=1

{
µi = θ1, max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B, min
j=1,...,m

j∑
s=1

(Xi,s − γ̂) > A

})

= P(ξ0 ∩ ξ1)P

(
n⋃
i=1

{
µi = θ1, max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B, min
j=1,...,m

j∑
s=1

(Xi,s − γ̂) > A

}∣∣∣∣ξ0, ξ1

)
≥ P(ξ0 ∩ E)(1− exp [−αn(1− exp (−B(ε0/4))− 7 exp(−|A|(ε0/4)/2))])

≥ (15/16)(1− exp
[
−αn(1− ( δ

14n
)2 − 1/3)

]
) ≥ (15/16)(8/9) ≥ 4/5

where we have used P(ξ0 ∩ E) ≥ 1− P(ξc0)− P(Ec) ≥ 15/16, ( δ
14n

)2 ≤ 1/6, αn ≥ 2 log(9) and
plugged in the values for A and B.

To justify Claim 3, we simply observe that the algorithm always terminates after n×m
steps.

A.7 Proof of Theorem 6

Proof The proof is broken up into a few steps, summarized as follows. For any given

α0, ε0, Theorem 5 takes just O
(
α log(1/α0)+log(1/δ)

α0ε20

)
samples in expectation and the procedure

makes an error (i.e. returns a light distribution) with probability less than δ. Define ε =
θ1 − θ0. In addition, ifε = θ1 − θ0, α ≥ α0, and ε ≥ ε0 then with probability at least
4/5 a heavy distribution is returned after the same expected number of samples. We will
leverage this result to show that if we are given an upper bound γ0 such that 1

αε2
≤ γ0

then it is possible to identify a heavy distribution with probability at least 4/5 using just
O (log2(γ0)γ0 [α log2(γ0) + log(log2(γ0)/δ)]) samples in expectation. Finally, we apply the
“doubling trick” to γ so that even though the tightest γ is not known a priori, we can adapt
to it using only twice the number of samples as if we had known it. Because each of the
stages is independent of one another, the probability that the procedure requires more than
`∗ + i stages is less than (1/5)i, which yields our expected sample complexity.
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For all ` ∈ N define δ` = δ
2`3

and γ` = 2`. Fix some ` and consider the set {(α, ε) : 1
αε2

=

γ`}. Clearly, in this set, α ∈ [1/γ`, 1/2]. For all k ∈ {0, . . . , ` − 1}, define αk = 2k

γ`
and

εk =
√

1
2αkγ`

. The key observation is that

{(α, ε) :
1

αε2
≤ γ`} ⊆

log2 γ`−1⋃
k=0

{(α, ε) : α ≥ αk, ε ≥ εk}. (A.5)

To see this, fix any (α′, ε′) such that 1
α′ε′2
≤ γ`. Let k∗ be the integer that satisfies αk∗ ≤ α′ <

2αk∗ . Such a k∗ must exist since α`−1 = 1
2
≥ α′ ≥ 1

γ`ε′2
≥ 1

γ`
= α0. Then γ` ≥ 1

α′ε′2
≥ 1

2αk∗ε
′2

which means ε′ ≥
√

1
2αk∗γ`

= εk∗ which proves the claim of (A.5). Consequently, even if no

information about α or ε individually is known but 1
αε2
≤ γ`, one can cover the entire range

of valid (α, ε) with just log2(γ`) = ` landmarks (αk, εk).
For any ` ∈ N and k ∈ {0, . . . , ` − 1}, if Algorithm 6.2 is used with α0 = αk, ε0 = εk

and δ = δ` then the probability that a light distribution is returned, declared heavy is less
than δ`. And the probability that a light distribution is returned, declared heavy for any
` ∈ N and k ∈ {0, . . . , ` − 1} is less than

∑∞
`=1 `δ` = δ

∑∞
`=1 `/(2`

3) ≤ δ. Thus, given that
Algorithm 6.3 terminates with a non-null distribution h, h is heavy with probability at least
1− δ. This proves correctness. We next bound the expected number of samples taken before
the procedure terminates.

With the inputs given in the last paragraph for any k, `, Algorithm 6.2 takes an expected
number samples bounded by cγ`(α log(1/αk) + log(1/δ`)). Let L ∈ N be the random stage
at which Algorithm 6.3 terminates with a non-null distribution h. Let `∗ be the first integer
such that there exists a k ∈ {0, . . . , `∗ − 1} with α ≥ αk and ε ≥ εk (recall that in this
case 1

αkε
2
k
≤ γ`∗). Then by the end of stage ` ≥ `∗, at most c`γ`(α log(γ`) + log(1/δ`))

samples in expectation were taken on stage ` and with probability at least 4/5 the procedure
terminated with a heavy coin. By the independence of samples between rounds, observe
that P(L ≥ `∗ + i) =

∑∞
j=i P(L = `∗ + j) ≤ (5

4
)(1

5
)i. Thus, if M` is the number of samples

taken at stage ` then by Wald’s identify, the total expected number of samples taken before
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termination is bounded by

E

[
L∑
`=1

c`γ`(α log(γ`) + log(1/δ`))

]

=
∞∑
`=1

E[M`]P(L ≥ `) ≤
∞∑
`=1

c`γ`(α log(γ`) + log(1/δ`))P(L ≥ `)
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where we’ve used the fact that supα∈[0,1] α log(1/α) ≤ e−1.

A.8 Proof of Theorem 7

Proof Let µ̂i be the empirical mean of the ith distribution sampled m times with mean
µi ∈ {θ0, θ1}. Let N be the minimum of n̂ and the first i ∈ N such that µ̂i ≥ θ0+θ1

2
. Declare

distribution N to be heavy. The total number of flips this procedure makes equals mN .
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Define the events
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Chernoff’s inequality P (ξc2) ≤ 2n̂e−m(θ1−θ0)2/2 ≤ δ/2. Thus, the probability that ξ1 or ξ2 fail
to occur is less than δ, so in what follows assume they succeed.

Under ξ1 at least one of the n̂ distributions is heavy. Under ξ2, for any i ∈ [n̂] with
µi = θ0 we have µ̂i < µi+
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which implies that the procedure will never exit with
a light distribution unless N = n̂. On the other hand, for the first i ∈ [n̂] with µi = θ1 we
have µ̂i > µi − θ1−θ0

2
= θ0+θ1

2
which means the algorithm will output distribution i at time

N = i. Thus, N is equal to the first distribution that is heavy and
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Multiplying E[N ] by m yields the result.

A.9 Proof of Theorem 8

Proof On each stage k, Algorithm 6.2 is called with δ/(2k2). By the guarantees of The-
orem 5, the probability that Algorithm 6.4 ever outputs a light distribution is less than∑∞

k=1 δ/(2k
2) ≤ δ. Thus, if a distribution is output, it is heavy with probability at least

1− δ. We now show that the expected number of samples taken before outputting a distri-
bution is bounded.

Let K be the random stage in which Algorithm 6.4 outputs a distribution and let k∗ be
the smallest k ∈ N that satisfies 2−k ≤ θ1 − θ0. By the guarantees of Theorem 5 and the
independence of the stages k, P(K ≥ k∗ + i) ≤

∑∞
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1
5
)` = (5

4
)(1

5
)i. Moreover, if Mk is the

number of measurements taken at stage k, then by Wald’s identity the expected number of
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measurements is bounded by
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)k/2 ≤ 1. Noting that k∗ ≤ log2( 1

θ1−θ0 ) + 1 completes the proof.

A.10 Proof of Theorem 9

Proof The proof of this result is nearly identical to that of Theorem 8 except the following
changes. Let K be the random stage in which Algorithm 6.5 outputs a distribution and let k∗
be the smallest k ∈ N that satisfies 2−k ≤ α. Moreover, if Mk is the number of measurements
taken at stage k, then by Wald’s identity expected number of measurements is bounded by
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for any a ∈ (0, 1). The final inequality follows from k∗ ≤ log2(1/α) + 1 and that αk∗ =
α log2(2/α) ≤ 2.
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