
Spectrum Access System: Design and Implementation of
the Decision-Feedback Equalizer in Software

Heyi Sun
Anant Sahai, Ed.
John Wawrzynek, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-112
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-112.html

May 23, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Acknowledgement

Sahai, Anant
Wawrzynek, John
Christopher, Yarp

1

University of California, Berkeley College of Engineering

MASTER OF ENGINEERING - SPRING 2017

Electrical Engineering and Computer Science

Signal Processing and Communications

Spectrum Access System

Heyi Sun

This Masters Project Paper fulfills the Master of Engineering degree

requirement.

Approved by:

1. Capstone Project Advisor:

Signature: __________________________ Date ____________

Print Name/Department: Anant Sahai/Electrical Engineering and Computer

Science

2. Faculty Committee Member #2:

Signature: __________________________ Date ____________

Print Name/Department: John Wawrzynek/Electrical Engineering and Computer

Science

https://people.eecs.berkeley.edu/~johnw/biography.html

2

Technical Report Copyright

Copyright © 2017r, by Heyi Sun.

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission.

3

Abstract

 The spectrum access system project is part of the Defense Advanced Research

Projects Agency (DARPA) challenge project at University of California, Berkeley. The aim of

the DARPA spectrum challenge is to achieve a cooperative communication system. The

Spectrum Access System team focuses on implementing an equalizer for the DARPA challenge

team. The equalizer is introduced to reduce the distortion caused by intersymbol interference

(ISI). The goals are to implement the equalizer in GNU Radio function block; assess the

performance of combinations of different adaptive equalization models and adaptive algorithms.;

Replacing the linear filter of Decision Feedback Equalizer with neural network and performance

assessment on Decision Feedback Equalizer with neural network.

Software Implementation:
The signed Least Mean Square, Normalized LMS, Variable-Step LMS and Recursive

Least Square adaptive algorithms are implemented in Python to extend their applications into

more telecommunication-related software (ex. GNU Radio).

Performance Assessment:
 The performance assessment is based on four metrics: steady-state error rate,

convergence time, computational time complexity and computational space complexity.

Neural Network:
The linear filter of equalizer is replaced by the neural networks. The structure of Neural

network is composed of an input layer, a hidden layer and an output layer. The performance of

common activation function is examined based on their convergence time.

4

Spectrum Access System

Technical Contributions
Heyi Sun

1. Introduction and Background

1.1 Introduction to the Project

Distortion in data transmission can cause signal overlap making the original message

indistinguishable. This loss of information, however, can be reduced by a well-designed

equalizer (signal processing technique). This paper will cover the introduction of 2 equalization

models and 4 adaptive algorithms, which will include a description of their software

implementation as well as an assessments in performance and accuracy.

 1.2 Multi-path Problem

There are many obstacles or objects (ex. buildings, people, plants and equipment in the

lab) in the real world that reflect communication signals by creating additional paths for the

signal in instead of a straight line of transmission. (As illustrated in Figure 1). These new paths

will transmit the same data packet to the receiver but with a delay, resulting in multiple

transmissions of the same signal at different times. The receiver unintelligently sums or overlaps

all incoming signals including redundant communication which leads to a multi-path

phenomenon and distortion of the original signal. The waveform of the distorted signal is

illustrated in Figure 2. Equalization (Signal processing technique) is used to compensate for the

distorted signal and the resulting loss in communication.

Figure 1. Illustration of Multi-Path

5

Figure 2. Waveform of direct sign vs. distorted signal

2. Theory of Equalizer

1

2. Theory of Equalization
2.1 Introduction to Equalization

Equalization is a signal processing technique that can reverse the distortion of the

transmitted signal. The equalizer is composed of an equalization model and adaptive algorithms.

This paper will cover two adaptive equalization models: Linear Equalization and Decision

Feedback Equalization and four adaptive algorithms: Signed Least Mean Square (SLMS),

Normalized LMS (Norm LMS) Variable-Stepped Least Mean Square and Recursive Least

Square (RLS). In the real-world application, the adaptive algorithms are chosen based on

tradeoffs present within its predicted environment (e.g. Noise level). In table I, I provide an

overview of advantages and disadvantages of each adaptive algorithm with a specific focus on

performance and accuracy.

Table 1. Advantages and Disadvantages Overview of Adaptive algorithms

 Advantage Disadvantage

Signed LMS ● Low Computation Complexity

● Good fit for High-Speed

Communication

● Relatively low accuracy

Normalized LMS ● Well adapt to Input vector with

different magnitude and length

Variable-Step LMS ● Good balance of convergence

time and steady-state error

● Adaptive Step-size changing

based on error

RLS ● High accuracy ● Complexity grows

exponentially within Taps

● Not ideal for high-speed

communication

 2.2 Introduction to Adaptive Equalization Model

The introduction of equalization models are adapted from professor Schober’s lecture

notes on Equalization of channels with ISI. [2]

2. Theory of Equalizer

2

An adaptive equalizer is the equalizer that adaptively updates its weights in response to

the error.

2.2.1 Introduction to Linear Equalizer

Linear equalizer is relatively simple equalization model. The distortion is modeled by a

channel transfer function H(z). In linear equalizer, the inverse function of channel transfer

function F(z) is modeled by a linear filter. The linear filter inverts the channel transfer function

without amplifying the noise by adaptively updating the weights based on the error (difference

between the equalized signal and original signal). The block diagram of the linear equalizer is

shown in Figure 3.

Figure 3. Block diagram of Linear Equalizer. I denote for input, H is channel transfer function and F is filter. I-hat is the output.

2.2.2 Introduction to Decision Feedback Equalizer

In linear equalizer, the linear filter may introduce additional noise variance at the output signal,

this may led to poor performance. This drawback can be avoided in a Decision feedback

equalizer at the expense of a more complex model. The decision feedback equalizer will predict

the noise level of the channel through the noise predictor based on previous noise samples. Then

predicted noise is subtracted from the input signal by using a feedback filter to reduce the noise

level of the channel. The block diagram of decision feedback filter is shown in Figure 4.

Figure 4. Block diagram of Decision Feedback Equalizer, where f(n) is feedforward

2.3 Introduction to Adaptive Algorithms

The introduction of adaptive algorithms is adapted from Professor Schober’s lecture

notes of Equalization of channels with ISI. [2]

2. Theory of Equalizer

3

In order to optimize the performance of the equalizer, the adaptive algorithms are introduced to

update the weight taps.

2.3.1 Updating Weight Factor through Least Mean Square

Least Mean Square is the most common fundamental adaptive algorithm. It is a gradient

descent algorithm that updates its weight taps based on the magnitude of the error. The pace of

updating is controlled by the step size. The larger step size will speed up the training process but

may come with low accuracy. The smaller step size can lead to higher accuracy but at the

expense of longer training time.

2.3.2 Updating Weight Factor through Signed Least Mean Square

Signed Least Mean Squares (SLMS) is a variant of the LMS algorithm that aims at speeding up

computations and adapts to high speed communication. The difference between the SLMS and

LMS is that SLMS only takes the sign of errors instead of the value of errors. If the step size

chosen is the multiple of 2, then only shifting and adding operations are needed for computation.

This can significantly reduce the complexity of the computational costs from weight taps

updating processes. However, the SLMS speeds up the computation process at the expense of the

accuracy. Since only the sign of error is taken, it can perceived as a rough quantization of

gradient estimates. The drawbacks are the longer convergence time and increasing steady state

error.

2.3.3 Updating Weight Factor through Normalized Least Mean Square

Normalized Least Mean Squares (NormLMS) is a variant of LMS algorithm that

designed to compensate for the effect of large fluctuations in the power level of the input signal.

NormLMS’s step size is data-dependent or input dependent. The NormLMS compensates both

the input vector with large value as well as large input vector length by reducing step size

accordingly. The step size is inversely proportional to the modulation of the input vector. The

disturbance caused by the difference of input signal is therefore minimized. The NormLMS

significantly promotes the accuracy and stability of the system at the expense of a little

increasing computation complexity.

2.3.4 Updating Weight Factor through Variable-Step Least Mean Square

Variable-Step Least Mean Square (VSLMS) is an adaptive algorithm that effectively

resolves the inherent contradiction between convergence time and steady-state error rate in LMS

model. In LMS model, The smaller step size leads to lower steady-state error but longer

convergence time while the larger step size leads to faster convergence rate but higher steady-

state error. VSLMS resolves the contradiction by changing the step size dynamically while

2. Theory of Equalizer

4

updating weight factor of the equalizer. The formula shown below is an example of VSLMS that

based on sigmoid function. u(n) stands for step size.

2.3.5 Updating Weight Factor through Recursive Least Square

The theory part of Kalman filter is adapted from professor Faragher’s lecture note.[8]

Recursive Least Square (RLS) is an adaptive algorithm that explicitly solves for weight factor

recursively using Kalman filter. Kalman filter is the optimal estimator for one-dimensional linear

system with Gaussian noise. Kalman filter estimates the parameter of interest of current state

based on the previous state and inverse correlation matrix. The terms laid on the the main-

diagonal represent the variance of each terms in the state vector(input vector). The off-diagonal

terms stand for co-variance within the terms of the state vector. Unlike the stochastic algorithms

like SLMS and VSLMS, RLS solves for weight factor explicitly which gives it extremely fast

convergence rate at the cost of high computational complexity.

 𝐾 =
𝑃𝑢

𝐹𝑜𝑟𝑔𝑒𝑡𝐹𝑎𝑐𝑡𝑜𝑟+𝑢𝐻𝑃𝑢

K stands for kalman gain vector, u is the input vector, P is the inverse correlation matrix and

forget factor is introduced to penalized the weight of the older data.

3. Software Implementation

1

3. Software Implementation
The signed Least Mean Square, Normalized LMS, Variable-Step LMS and Recursive Least

Square adaptive algorithms are implemented in Python to extend their applications into more

telecommunication-related software (ex. GNU Radio).

3.1 Implementing LMS in GNU Radio

The three variants of LMS’ (Signed LMS, Normalized LMS and Variable-Steped LMS)

implementation are referred to the mechanism described in Muhammad Wasimuddin and

Navarun Gupta’s paper [4] about the design of Least Mean Square adaptive filter and the

Matlab’s documentations [5] about LMS filter system. The Python function initializes the

adaptive filter by creating weight taps based on the number of taps user entered and then sets the

value to zero. The step size is also set to the value specified by the user.

N is the number of Taps, w is the weight factor and alpha is the step size

Let’s denote the number of weight taps len(w). In this specific implementation, all the

predicative output before len(w) will omitted and it starts compute the

predictive output (y(n)) from (len(w)+1)th element. The predicative

output is computed based on the formula on the left, which extracts the

slice of the input signal which is equal to the number of the weight taps

then performs an element wise multiplication with weight taps.

Xt is sliced input vector with the same length of the weight factor. The sum of element wise

multiplication is computed by the dot product. The error of the signal is computed next based on

the formula e(n) = d(n) - y(n) where d(n) is desired output or reference signal.

Then the weight factors are updated based on the formula w(n+1) = w(n) + step size*u(n)*e(n).

The weight factor will be updated iteratively until the window is moved to the end of the input

signal. The overall process of the algorithm can be visualized as the diagram below. After the

weight taps are trained by the training signal, the equalizer is ready to use. After the input signal

passed through the equalizer the output signal will then be mapped to constellation points in

order to restore the original signal. The block diagram of first iteration of LMS is shown in

Figure 5.

3. Software Implementation

2

Figure 5. LMS Block Diagram First Iteration

3.2 Implementing Signed LMS in GNU Radio

Signed LMS is a variant of LMS that is aimed at speed up the computation. Instead of

updating the weight factor based on the magnitude of the error, only the sign of the error is taken.

In order to optimize the performance of the Signed LMS GNU Radio function block, the

function block will round the step size to the nearest number that is the multiple of 2 implicitly in

the case that the step size entered by user is not the multiple of 2. The function block will round

the step size based on the formula: # 𝐵𝑖𝑡 𝑠ℎ𝑖𝑓𝑡 = 𝑅𝑜𝑢𝑛𝑑(
1

𝑆𝑡𝑒𝑝 𝑠𝑖𝑧𝑒
) , then perform binary

shifting.

Figure 6. The Signed LMS function block (GNU Radio)

Figure 6 is the screenshot of the GNU function block of Signed LMS implemented. The top-left

pin accepts the input signal to be equalized. The bottom-left pin accepts the desired signal to

train the weight factor of the Signed LMS equalizer. The top-right pin outputs the equalized

3. Software Implementation

3

signal and the bottom-right pin outputs the output signal that mapped to constellation point. The

length of weight factor (Number of Taps), step size and train length can be specified by click on

the block and then fill the corresponding field.

3.3 Implementing Normalized LMS in GNU Radio

For the Normalized LMS, if the length of the input vector is too large, then the

denominator of the weight factor update function will dominate and cause the weight factor stick

with the same value no matter how big the error is. There is a minor modification made to the

updating function to fix this problem neatly. The term ||u(n)||^2 is divided by the length of weight

factor in order to better accommodate to different setting of the length of the weight factors. The

update function now turns out to 𝑤(𝑛 + 1) = 𝑤(𝑛) +
(𝒔𝒕𝒆𝒑 𝒔𝒊𝒛𝒆) 𝒖∗(𝒏)𝒆(𝒏)

||𝒖(𝒏)||
𝟐

/𝒍𝒆𝒏(𝒘) + 𝑩𝒊𝒂𝒔
 . The step size

will now remain stable for lengthy input vector.

Figure 7. The Normalized LMS function block (GNU Radio)

Figure 7 is the screenshot of the GNU function block of Normalized LMS implemented. All the

four pins function exactly same as the Signed LMS function block illustrated above. The

Normalized LMS equalizer has one more hyper parameter to tune compared to Signed LMS

which is the bias. Users can tune the bias based on the characteristics of input vector to optimize

the performance of the equalizer.

3.4 Implementing Variable-Step LMS in GNU Radio

For the Variable-Step function block of GNU Radio, the step size is updated based on the

formula: 𝜇(𝒏 + 𝟏) = 𝝁(𝒏) + (𝑰𝒏𝒄𝑺𝒕𝒆𝒑)𝑹𝒆𝒂𝒍(𝒈 ∗ 𝒈𝒑𝒓𝒆𝒗). IncStep denotes an increment step,

Real denotes taking the real part of the input, 𝒈 = 𝒖(𝒏) 𝒆∗(𝒏) and gprev denotes the value

of g in the previous iteration. The Real(g*gprev) maps the magnitude of error to step size. There

will be a large step size in the case that error is large and smaller step size while the error gets

smaller.

In order to handle the edge case of overflow of the step size value, the maximum step size and

minimum step size is set beforehand to refrain the step size from getting too large. If the step size

is greater than the predefined maximum step size, the step size is set as maximum step size.

3. Software Implementation

4

Similarly, if the step size computed is less than minimum step size, the step size is set as

minimum step size.

The update function maps the magnitude of error to magnitude of step size to fasten the process

of training weight factor without sacrificing the steady-state error.

Figure 8. The Variable Step LMS function block(GNU Radio)

Figure 8 is the screenshot of the GNU function block of Variable Step LMS implemented. All

four pins function exactly the same as the Normalized LMS and Signed LMS. There are four

more hyper parameters to tune in Variable-Step LMS function block: the initial step, the

incremental step, the minimum step and the maximum step.

3.5 Implementing RLS in GNU Radio

For the RLS function block of GNU Radio implemented, the inverse correlation matrix will be

initialized at first by setting the value of diagonal elements to the value user specified.

 All the matrixes are initialized and their dimensions are confined to make the utilization of

resources more efficient. The Kalman gain vector and the inverse correlation matrix are

computed alternatively throughout the training process. The Kalman gain vector with

dimension N by 1 is computed based on the formula 𝐾 =
𝑃𝑢

𝐹𝑜𝑟𝑔𝑒𝑡𝐹𝑎𝑐𝑡𝑜𝑟+𝑢𝐻𝑃𝑢
, where the forget

factor is used to reduce the weight of older data, the superscript H denotes for Hermitian

Transpose and P denotes for inverse correlation matrix with dimension of N by N. After that, the

inverse correlation matrix will be updated based on the formula 𝑃 =
𝑃− 𝐾𝑢𝐻𝑃

𝐹𝑜𝑟𝑔𝑒𝑡𝐹𝑎𝑐𝑡𝑜𝑟
.

Eventually, the weight factor will updated based on the formula: 𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝐾∗𝑒(𝑛),

where the * denotes for complex conjugate.

3. Software Implementation

5

.

Figure 9. The Recursive Least Square function block (GNU Radio)

The Figure 9 is the screenshot of the GNU function block of RLS implemented. All four pins

function exactly same as all the function blocks mentioned above. However, the hyper

parameters of RLS are very different to the function block mentioned above. The forget factor

and the initial coefficient need to be specified by click on the block and fill in corresponding

field before running the function block.

4. Performance Assessment

1

4. Performance Assessment
4.1 TestBench for the Equalizers

 QPSK (Quadrature Phase-Shift Keying) modulation scheme is deployed in assessment.

QPSK uses 4 points in the constellation diagram, which means it can transmit two bits per

symbol (which takes value from 0 to 3). The data stream with 100 thousand symbols that is

randomly generated is used to make the result of test more generalizable. The distortion caused

by multi-path is simulated in different channel models. (802.11a, 802.11b, 802.11g and a FIR

filter with 512 taps.) The noise in wireless transmission is characterized by gaussian noise with

mean of zero and standard deviation of 0.01. The different combinations of equalizer models and

adaptive algorithms are used to equalize the distorted signal. Eventually, the equalized signal is

demodulated and then compared with the original data packet. The performance of the equalizer

is evaluated based on the symbol error rate of the equalized signal. The symbol error rate (SER)

is computed by the formula:𝑆𝐸𝑅 =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒚𝒎𝒃𝒐𝒍𝒔 𝒘𝒊𝒕𝒉 𝒆𝒓𝒓𝒐𝒓𝒔

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒚𝒎𝒃𝒐𝒍
. The test for each combination

is repeated for 20 times to ensure the generalizability of the result. The test of SER for Decision

Feedback Equalizers is conducted within the equalizer object in Communications System

Toolbox of the Matlab, while the SER of Linear equalizers is conducted within self-implemented

GNU Radio function blocks.

 4.2 Symbol Error Rate of the Equalizers

Table 2. Symbol error rate(SER) of equalizers. Where SER = Number of symbol with errors / Total Number of the symbol

 Signed LMS Normalized LMS Variable-Step LMS RLS

Linear

Equalizer

3.9% 1.3% 1.0% 0.2%

Decision

Feedback

Equalizer

3% 0% 0% 0%

From Table II, it is apparent that the decision feedback equalizers give lower steady-state error

than linear equalizers. This coincides with the initial expectation, since the feedback filter

reduces the noise in the incoming signal, the overall performance of the equalizer benefits from

the lower noise level. For the adaptive algorithms, the RLS gives the lowest steady-state error

under the linear equalization model. The performance of Normalized LMS and Variable-Step

LMS almost tied. For the decision feedback equalizer, Normalized LMS, Variable-Step Least

Mean Square and Recursive Least Square all give zero steady-state error rate.

4.3 Convergence Time of the Equalizers

4. Performance Assessment

2

The convergence time is the time it takes for the error of the system to converge. As the

data stream is transmitted at a constant speed, the time to converge is proportional to the number

of symbols transmitted. Convergence time is measured by the number of symbols it takes for the

error to converge. The criteria of convergence in this test is the timestamp that the average error

for 20 symbols is below 0.2. The test of convergence time is conducted within self-implemented

GNU Radio function blocks.

Figure 10. The plot of Error vs. Number of Symbols of Signed LMS

As Figure 10 shows, the error rate of Signed LMS converged after 231 symbols. The plot also

looks “noisy”, because Signed LMS updates the weight factor at exactly the same stride for

every iteration. The stride only depends on predefined step size instead of the magnitude of error.

Thus, it turns out that the Signed LMS cannot make a more precise adjustment on weight factor

once the error gets smaller.

Figure 11. The plot of Error vs. Number of Symbols of Normalized LMS

4. Performance Assessment

3

As shown in Figure 11, the error rate of Normalized LMS converged after 147 symbols. It is

apparently faster than Signed LMS, since the weight factor was updated adaptively based on the

magnitude of error. The plot also looks much smoother compared to Signed LMS, since the

Normalized LMS compensates for the fluctuation in magnitude of input vector by changing the

step size accordingly.

Figure 12. The plot of Error vs. Number of Symbols of Variable-Step LMS

As shown in Figure 12, the error rate of Variable-Step LMS converged after 146 symbols.

Benefiting from the precise adjustment of step size based on the error, the variable-step LMS

achieves lower steady-state error within shorter convergence time compared to signed LMS. The

variable-step LMS picks relatively large step size at beginning in order to get closer to optimal

point at shorter time which lead to relative large fluctuation in magnitude of error at beginning.

Figure 13. The plot of Error vs. Number of Symbols of Recursive Least Square

4. Performance Assessment

4

As shown in Figure 13, the error rate of Recursive Least Square converged after 101 symbols. As

the most complex model among the models in this performance assessment, the RLS gives out

lowest steady-state error. Furthermore, the error rate drops down drastically right after a few

iterations which is much faster compared to the other models.

The convergence time of adaptive algorithms under different channel are summarized in Table

III and visualized in Figure 14.

Table 3. Table of Convergence time within adaptive algorithms

 Signed LMS Normalized

LMS

Variable-Step

LMS

RLS

802.11a 417 168 146 101

802.11b 111 48 103 101

802.11g 148 98 124 124

FIR with 512

taps

231 147 146 101

Figure 14. Convergence time of adaptive algorithms

4.4 Time Complexity of the Equalizers

The computation time of Signed LMS grows linearly with respect to the number of

weights taps (O(N)). Since weight factors of Signed LMS can be computed by binary shift

4. Performance Assessment

5

instead of floating point computation, its constant coefficient is much smaller than that of the

other three algorithms which should give it remarkably short running time in theory.

The computation time of Normalized LMS also stays within linear time (O(N)).However, its

computation process incorporates floating-point computation and matrix multiplication that turns

out its constant coefficient to be greater than that of Signed LMS.

Same as Signed LMS and Normalized LMS, Variable-Step LMS’s computation time is within

linear time(O(N)). The computation complexity of Varaible-Step LMS is basically the same as

the Normalized LMS except the threshold check takes extra-time to execute. So its constant

coefficient is slightly greater than that of Normalized LMS.

RLS’s time complexity is proportional to the square of the number of weight taps which is the

highest among the four adaptive algorithms(O(N^2)).

The actual runtime test is conducted within GNU Radio function block within 1500 symbols

input datastream while set the number of weight taps to 100.

The runtime analysis and actual runtime of adaptive algorithms are summarized in table IV.
Table 4. Table of running time of adaptive algorithms

 Signed LMS Normalized

LMS

Variable-Step

LMS

RLS

Time Complexity

Analysis
O(N) O(N) O(N) O(N^2)

Actual Running

Time

0.01557s 0.01559s 0.01560s 0.468s

In the actual runtime measurement, the Signed LMS did not significantly reduce the runtime as

expected. There are several reasons for this. First of all, there are multiple steps for computation

while updating weight factor is only the last step, it turns out the binary shift does not have much

influence on the overall runtime. Secondly, Python is a weakly typed programming language;

this means that extra time must be spent on checking the data type of the operand; in turn, this

reduces the weight of the time saved by binary shift reflects on the total runtime. As what is

expected, the RLS takes much longer time (Quadratics) than that of LMS algorithms.

4.4 Space Complexity of the Equalizers

“Space complexity” describes computer resources allocated to the function (ex. register,

memory space). The space complexity of Signed LMS and Normalized LMS are linearly

proportional to the length of weight taps(O(N)). Since the all the variables take space at most of

4. Performance Assessment

6

N (ex. Input vector). The Variable-Step LMS still takes linear space(O(N)). However, there are

more variables, for instance g (which maps error to step size) and gprev (g in previous iteration).

The constant coefficient of Variable-Step LMS is larger than that of Signed LMS and

Normalized LMS. Unlike the three variant of LMS adaptive algorithms, the RLS takes quadratic

space(O(N^2)). For instance, the inverse correlation matrix has dimension of N by N, the

Kalman gain vector also takes space of N. Sum up the space to store all the variables, the space

complexity of RLS is much larger than the other three adaptive algorithms.

The space complexity of adaptive algorithms are summarized in table V.

Table 5. Table of space Complexity of adaptive algorithms

Signed LMS Normalized LMS Variable-Step LMS RLS

O(N) O(N) O(N) O(N^2)

5. Neural Network

1

5. Neural Network
5.1 Introduction to Neural Network Design

The linear equalizer is not efficacious for severely distorted channel or nonlinear channel.

This problem can be addressed by replacing the linear filter by neural networks, considering the

nonlinear processing capacity of neural networks. Three-layer perceptron is proposed to balance

the performance and computation time. There are two configurations for modifying decision

feedback equalizer: (1) the regular decision feedback equalizer is modified by replacing

feedforward filter with neural network while retaining the linear feedback filter; (2) the regular

decision feedback equalizer is modified by replacing both feedforward and feedback filters with

neural networks.

 5.2 Structure of Neural Network

As shown in Figure 15, three-layer perceptron is composed of an input layer, a hidden

layer and an output layer. The hidden layer is composed of a linear combiner and an activation

function. The output of the previous layer forms the input of next layer. The number of input

node is set to 6. The hidden layer has exactly same numbers of neurons as the input layer. There

is two node in output layer, one for real part and one for imaginary part.

The linear combiner and activation function

The loss function is 𝑙𝑜𝑠𝑠 = (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑦)2, where y is the label or desired output. The

neural networks is trained by the gradient descent optimizer.

5. Neural Network

2

Figure 15. The structure of neural network

5.3 Preprocessing of the Input Signal

Since the deep learning frameworks (ex. TensorFlow) do not support complex

computation, special preprocessing is needed to address this problem. The N by 1 complex input

vector is separated into two arrays (one for real part and the other for imaginary part). Then the

imaginary array is appended to end of real part array to form 2N by 1 vector.

Figure 16. The format of input vector

 5.4 Convergence Time of Neural Network

The testBench is same as the before except the signal is modulated by BPSK modulation

scheme. The criteria of convergence (the timestamp that the average error for 20 symbols is

below 0.2) is exactly same as that of linear equalizer mentioned above. The most common

activation functions for neural network are examined based on their convergence time.

5.4.1 Perfomance of Neural Net with Rectifer (Relu) Activation function

Relu (x) = max(0,x). The Relu activation function ignores all the negative data points and

retains only positive data points. The rectifier function can be illustrated by the graph below.

5. Neural Network

3

Figure 17. The plot of Error vs. Number of Symbols of Neural net with Relu activation function

Both neural networks with configuration (1) (replacing feedforward filter while retaining linear

feedback) and configuration (2) (replacing both feedforward filter and feedback filter) with Relu

activation function fails to converge.

5.4.2 Performance of Neural Net with Sigmoid Activation function

Sigmoid Activation function is a bounded differentiable real function with “S” shaped curve.

5. Neural Network

4

Figure 18. The plot of Error vs. Number of Symbols of Neural net of configuration (1) with sigmoid activation function

Figure 19. The plot of Error vs. Number of Symbols of Neural net of configuration (2) with sigmoid activation function

The error rate of neural network of configuration (1) with sigmoid activation function converge

after 187 symbols. The error rate of neural network of configuration (2) with sigmoid activation

function converge after 304 symbols. The plot looks noisy at beginning and gradually converge

to zero.

5.4.3 Performance of Neural Net with Tanh Activation function

The tanh denotes for hyperbolic tangent function. It is a bounded differentiable real

function.

5. Neural Network

5

Figure 20. The plot of Error vs. Number of Symbols of Neural net with tanh activation function

Both neural networks of configuration (1) and configuration (2) with tanh activation function

fails to converge.

5.4.4 Performance of Neural Net with Softplus activation function

The softplus activation function is smooth approximation of rectifier (Relu).

𝑺𝒐𝒇𝒕𝒑𝒍𝒖𝒔(𝒙) = 𝒍𝒐𝒈(𝒆𝒙 + 𝟏)

Figure 21. The plot of Error vs. Number of Symbols of Neural net of configuration (1) with softplus activation function

5. Neural Network

6

The neural network of configuration (1) with softplus activation function converge after 157

symbols while the neural network with configuration (2) fails to converge..

The convergence time of the common activation functions is summarized in table VI.

Table 6. Table of convergence time of activation functions

 Sigmoid Relu tanh Softplus

Replace

feedforward

filter

187 Fails to

Converge

Fails to

Converge

157

Replace both

feedforward and

feedback filter

304 Fails to converge Fails to converge Fails to converge

6. Summary

1

6. Summary & Recommendation

This paper provided:

● an overview of an equalizer and four adaptive algorithms

● the software implementation of the equalizers

● the assessment for combinations of different adaptive equalization models and adaptive

algorithms

● Replacing the linear filter of Decision Feedback Equalizer with neural network and

performance assessment on Decision Feedback Equalizer with neural network

Equalization Models:

Equalization is introduced to reverse the distortion caused by multi-path in the signal

transmission process without amplifying the noise.

● Decision feedback equalizer has a better performance over the linear equalizer insofar as

it reduces the noise in the incoming signal through the feedback filter.

● However, Linear Equalizer has lower computational complexity.

Adaptive Algorithms:

Signed LMS’s performance falls behind the Normalized LMS, Variable-Step Least Mean Square

and Recursive Least Square algorithms. Although Signed LMS has lowest computational

complexity in theory, it does not result in any notable reduction of runtime in runtime

assessment. Therefore, Signed LMS is not recommended for real application in software

implementation.

The Recursive Least Square outperformed the other three adaptive algorithms at the cost of

remarkably higher computational complexity and space complexity(Quadratics). This implies

that it is not a suitable choice for high-speed communication.

The performance of Normalized LMS and Variable-Step Least Mean Square falls slightly behind

the Recursive Least Square. In the case of an incoming signal with a low noise level or used with

a decision feedback equalization model, Normalized LMS and Variable-Step Least Mean Square

perform as good as the Recursive Least Square with the significantly lower computational

complexity than of the Recursive Least Square. Their well-balanced performance and

computational complexity makes them a suitable choice for general application.

Neural Network:

6. Summary

2

The linear filter of equalizer is replaced by the neural networks. The structure of Neural network

is composed of an input layer, a hidden layer and an output layer. The performance of common

activation function is examined based on their convergence time. The Neural net of configuration

(1) with sigmoid activation function takes 187 symbols to converge, while Neural net of

configuration (1) with softplus function takes 157 symbols to converge. Both tanh and Relu fail

to converge. For neural net of configuration (2), only sigmoid function converged after 304

symbols. The neural net of configuration (1) outperformed configuration (2) with shorter

convergence time. Therefore, the configuration (1) is recommended for real world application.

Considering the complexity of neural network, it takes longer time to converge compared to

linear filter. Furthermore, configuration (2) takes even longer time.

Reference

1

Reference

[1]. GNU Radio. (2016, March 02).Tutorial: PSK Symbol Recovery. Retrieved November 11,

2016, from

http://gnuradio.org/redmine/projects/gnuradio/wiki/Guided_Tutorial_PSK_Demodulation

 [2]. Schober, R. (2010). Equalization of Channels with ISI. In Detection and Estimation of

Signals in Noise. Vancouver.

[3]. Zhang, J. (2012, December). Variable Step Size LMS Algorithm. Retrieved March 9, 2017,

from http://www.ijfcc.org/papers/104-F0012.pdf

[4]. Wasimuddin, M., & Gupta, N. (2014). Design and Implementation of Least Mean Square

Adaptive Filter on Fetal Electrocardiography . Retrieved March 12, 2017, from

http://www.asee.org/documents/zones/zone1/2014/Professional/PDFs/57.pdf

[5]. Mathworks, inc. (n.d.). Equalization. Retrieved March 12, 2017, from

https://www.mathworks.com/help/comm/ug/equalization.html

[6]. Tabus, I. (2012). Lecture 10: Recursive Least Squares Estimation. Retrieved March 12,

2017, from http://www.cs.tut.fi/~tabus/course/ASP/LectureNew10.pdf

[7]. Mathworks. Inc. LMS Filter System. (2017). Retrieved April 3, 2017, from

https://www.mathworks.com/help/dsp/ref/dsp.lmsfilter-class.html

[8]. Faragher, R. (n.d.). Understanding the Basis of the Kalman Filter Via a Simple and Intuitive

Derivation. Retrieved May 1, 2017, from

https://www.cl.cam.ac.uk/~rmf25/papers/Understanding%20the%20Basis%20of%20the%20Kal

man%20Filter.pdf

http://www.ijfcc.org/papers/104-F0012.pdf

