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Abstract 

  The spectrum access system project is part of the Defense Advanced Research 

Projects Agency (DARPA) challenge project at University of California, Berkeley. The aim of 

the DARPA spectrum challenge is to achieve a cooperative communication system. The 

Spectrum Access System team focuses on implementing an equalizer for the DARPA challenge 

team. The equalizer is introduced to reduce the distortion caused by intersymbol interference 

(ISI). The goals are to implement the equalizer in GNU Radio function block; assess the 

performance of combinations of different adaptive equalization models and adaptive algorithms.; 

Replacing the linear filter of Decision Feedback Equalizer with neural network and performance 

assessment on Decision Feedback Equalizer with neural network. 

 

Software Implementation: 
The signed Least Mean Square, Normalized LMS, Variable-Step LMS and Recursive 

Least Square adaptive algorithms are implemented in Python to extend their applications into 

more telecommunication-related software (ex. GNU Radio).  

 

Performance Assessment: 
 The performance assessment is based on four metrics: steady-state error rate, 

convergence time, computational time complexity and computational space complexity. 

 

Neural Network: 
The linear filter of equalizer is replaced by the neural networks. The structure of Neural 

network is composed of an input layer, a hidden layer and an output layer. The performance of 

common activation function is examined based on their convergence time.  
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Spectrum Access System 

Technical Contributions 
Heyi Sun 

1. Introduction and Background 

1.1 Introduction to the Project 

Distortion in data transmission can cause signal overlap making the original message 

indistinguishable. This loss of information, however, can be reduced by a well-designed 

equalizer (signal processing technique). This paper will cover the introduction of 2 equalization 

models and 4 adaptive algorithms, which will include a description of their software 

implementation as well as an assessments in performance and accuracy.   

 1.2 Multi-path Problem 

There are many obstacles or objects (ex. buildings, people, plants and equipment in the 

lab) in the real world that reflect communication signals by creating additional paths for the 

signal in instead of a straight line of transmission.  (As illustrated in Figure 1).   These new paths 

will transmit the same data packet to the receiver but with a delay, resulting in multiple 

transmissions of the same signal at different times. The receiver unintelligently sums or overlaps 

all incoming signals including redundant communication which leads to a multi-path 

phenomenon and distortion of the original signal. The waveform of the distorted signal is 

illustrated in Figure 2. Equalization (Signal processing technique) is used to compensate for the 

distorted signal and the resulting loss in communication. 

 
Figure 1.  Illustration of Multi-Path 
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Figure 2. Waveform of direct sign vs. distorted signal 
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2. Theory of Equalization 
2.1 Introduction to Equalization 

Equalization is a signal processing technique that can reverse the distortion of the 

transmitted signal. The equalizer is composed of an equalization model and adaptive algorithms. 

This paper will cover two adaptive equalization models: Linear Equalization and Decision 

Feedback Equalization and four adaptive algorithms: Signed Least Mean Square (SLMS), 

Normalized LMS (Norm LMS) Variable-Stepped Least Mean Square and Recursive Least 

Square (RLS). In the real-world application, the adaptive algorithms are chosen based on 

tradeoffs present within its predicted environment (e.g. Noise level). In table I, I provide an 

overview of advantages and disadvantages of each adaptive algorithm with a specific focus on 

performance and accuracy. 

 

 
 

Table 1. Advantages and Disadvantages Overview of Adaptive algorithms 

 Advantage Disadvantage 

Signed LMS ● Low Computation Complexity 

● Good fit for High-Speed 

Communication 

● Relatively low accuracy 

Normalized LMS ● Well adapt to Input vector with 

different magnitude and length 

 

Variable-Step LMS ● Good balance of convergence 

time and steady-state error 

● Adaptive Step-size changing 

based on error 

 

RLS ● High accuracy ● Complexity grows 

exponentially within Taps 

● Not ideal for high-speed 

communication 

 

 

 2.2 Introduction to Adaptive Equalization Model 

The introduction of equalization models are adapted from professor Schober’s lecture 

notes on Equalization of channels with ISI. [2] 
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An adaptive equalizer is the equalizer that adaptively updates its weights in response to 

the error. 

 

2.2.1 Introduction to Linear Equalizer 

Linear equalizer is relatively simple equalization model. The distortion is modeled by a 

channel transfer function H(z). In linear equalizer, the inverse function of channel transfer 

function F(z) is modeled by a linear filter. The linear filter inverts the channel transfer function 

without amplifying the noise by adaptively updating the weights based on the error (difference 

between the equalized signal and original signal). The block diagram of the linear equalizer is 

shown in Figure 3. 

 
Figure 3. Block diagram of Linear Equalizer. I denote for input, H is channel transfer function and F is filter. I-hat is the output. 

 

2.2.2 Introduction to Decision Feedback Equalizer 

In linear equalizer, the linear filter may introduce additional noise variance at the output signal, 

this may led to poor performance. This drawback can be avoided in a Decision feedback 

equalizer at the expense of a more complex model. The decision feedback equalizer will predict 

the noise level of the channel through the noise predictor based on previous noise samples. Then 

predicted noise is subtracted from the input signal by using a feedback filter to reduce the noise 

level of the channel. The block diagram of decision feedback filter is shown in Figure 4. 

 
Figure 4. Block diagram of Decision Feedback Equalizer, where f(n) is feedforward 

   

 

2.3 Introduction to Adaptive Algorithms 

The introduction of adaptive algorithms is adapted from Professor Schober’s lecture 

notes of Equalization of channels with ISI. [2] 
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In order to optimize the performance of the equalizer, the adaptive algorithms are introduced to 

update the weight taps. 

2.3.1 Updating Weight Factor through Least Mean Square 

Least Mean Square is the most common fundamental   adaptive algorithm. It is a gradient 

descent algorithm that updates its weight taps based on the magnitude of the error. The pace of 

updating is controlled by the step size. The larger step size will speed up the training process but 

may come with low accuracy. The smaller step size can lead to higher accuracy but at the 

expense of longer training time. 

 
2.3.2 Updating Weight Factor through Signed Least Mean Square 

Signed Least Mean Squares (SLMS) is a variant of the LMS algorithm that aims at speeding up 

computations and adapts to high speed communication. The difference between the SLMS and 

LMS is that SLMS only takes the sign of errors instead of the value of errors. If the step size 

chosen is the multiple of 2, then only shifting and adding operations are needed for computation. 

This can significantly reduce the complexity of the computational costs from weight taps 

updating processes. However, the SLMS speeds up the computation process at the expense of the 

accuracy. Since only the sign of error is taken, it can perceived as a rough quantization of 

gradient estimates. The drawbacks are the longer convergence time and increasing steady state 

error. 

 
2.3.3 Updating Weight Factor through Normalized Least Mean Square 

Normalized Least Mean Squares (NormLMS) is a variant of LMS algorithm that 

designed to compensate for the effect of large fluctuations in the power level of the input signal. 

NormLMS’s step size is data-dependent or input dependent. The NormLMS compensates both 

the input vector with large value as well as large input vector length by reducing step size 

accordingly. The step size is inversely proportional to the modulation of the input vector. The 

disturbance caused by the difference of input signal is therefore minimized. The NormLMS 

significantly promotes the accuracy and stability of the system at the expense of a little 

increasing computation complexity.  

 
2.3.4 Updating Weight Factor through Variable-Step Least Mean Square 

Variable-Step Least Mean Square (VSLMS) is an adaptive algorithm that effectively 

resolves the inherent contradiction between convergence time and steady-state error rate in LMS 

model. In LMS model, The smaller step size leads to lower steady-state error but longer 

convergence time while the larger step size leads to faster convergence rate but higher steady-

state error. VSLMS resolves the contradiction by changing the step size dynamically while 
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updating weight factor of the equalizer. The formula shown below is an example of VSLMS that 

based on sigmoid function. u(n) stands for step size.  

 
2.3.5 Updating Weight Factor through Recursive Least Square 

The theory part of Kalman filter is adapted from professor Faragher’s lecture note.[8] 

 

Recursive Least Square (RLS) is an adaptive algorithm that explicitly solves for weight factor 

recursively using Kalman filter. Kalman filter is the optimal estimator for one-dimensional linear 

system with Gaussian noise. Kalman filter estimates the parameter of interest of current state 

based on the previous state and inverse correlation matrix. The terms laid on the the main-

diagonal represent the variance of each terms in the state vector(input vector). The off-diagonal 

terms stand for co-variance within the terms of the state vector. Unlike the stochastic algorithms 

like SLMS and VSLMS, RLS solves for weight factor explicitly which gives it extremely fast 

convergence rate at the cost of high computational complexity.  

 𝐾 =
𝑃𝑢

𝐹𝑜𝑟𝑔𝑒𝑡𝐹𝑎𝑐𝑡𝑜𝑟+𝑢𝐻𝑃𝑢
 

K stands for kalman gain vector, u is the input vector, P is the inverse correlation matrix and 

forget factor is introduced to penalized the weight of the older data. 
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3. Software Implementation 
The signed Least Mean Square, Normalized LMS, Variable-Step LMS and Recursive Least 

Square adaptive algorithms are implemented in Python to extend their applications into more 

telecommunication-related software (ex. GNU Radio).  

 

3.1 Implementing LMS in GNU Radio 

The three variants of LMS’ (Signed LMS, Normalized LMS and Variable-Steped LMS) 

implementation are referred to the mechanism described in Muhammad Wasimuddin and 

Navarun Gupta’s paper [4] about the design of Least Mean Square adaptive filter and the 

Matlab’s documentations [5] about LMS filter system. The Python function initializes the 

adaptive filter by creating weight taps based on the number of taps user entered and then sets the 

value to zero. The step size is also set to the value specified by the user.  

 
N is the number of Taps, w is the weight factor and alpha is the step size 

 

Let’s denote the number of weight taps len(w). In this specific implementation, all the 

predicative output before len(w) will omitted and it starts compute the 

predictive output (y(n)) from (len(w)+1)th element. The predicative 

output is computed based on the formula on the left, which extracts the 

slice of the input signal which is equal to the number of the weight taps 

then performs an element wise multiplication with weight taps.  

 
Xt is sliced input vector with the same length of the weight factor. The sum of element wise 

multiplication is computed by the dot product. The error of the signal is computed next based on 

the formula e(n) = d(n) - y(n) where d(n) is desired output or reference signal.  

 

Then the weight factors are updated based on the formula w(n+1) = w(n) + step size*u(n)*e(n).  

 
The weight factor will be updated iteratively until the window is moved to the end of the input 

signal. The overall process of the algorithm can be visualized as the diagram below. After the 

weight taps are trained by the training signal, the equalizer is ready to use. After the input signal 

passed through the equalizer the output signal will then be mapped to constellation points in 

order to restore the original signal. The block diagram of first iteration of LMS is shown in 

Figure 5. 
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Figure 5. LMS Block Diagram First Iteration 

3.2 Implementing Signed LMS in GNU Radio 

Signed LMS is a variant of LMS that is aimed at speed up the computation. Instead of 

updating the weight factor based on the magnitude of the error, only the sign of the error is taken. 

 
In order to optimize the performance of the Signed LMS GNU Radio function block, the 

function block will round the step size to the nearest number that is the multiple of 2 implicitly in 

the case that the step size entered by user is not the multiple of 2. The function block will round 

the step size based on the formula: # 𝐵𝑖𝑡 𝑠ℎ𝑖𝑓𝑡 = 𝑅𝑜𝑢𝑛𝑑(
1

𝑆𝑡𝑒𝑝 𝑠𝑖𝑧𝑒
) , then perform binary 

shifting.  

 
Figure 6. The Signed LMS function block (GNU Radio) 

  

Figure 6 is the screenshot of the GNU function block of Signed LMS implemented. The top-left 

pin accepts the input signal to be equalized. The bottom-left pin accepts the desired signal to 

train the weight factor of the Signed LMS equalizer. The top-right pin outputs the equalized 
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signal and the bottom-right pin outputs the output signal that mapped to constellation point. The 

length of weight factor (Number of Taps), step size and train length can be specified by click on 

the block and then fill the corresponding field. 

3.3 Implementing Normalized LMS in GNU Radio 

For the Normalized LMS, if the length of the input vector is too large, then the 

denominator of the weight factor update function will dominate and cause the weight factor stick 

with the same value no matter how big the error is. There is a minor modification made to the 

updating function to fix this problem neatly. The term ||u(n)||^2 is divided by the length of weight 

factor in order to better accommodate to different setting of the length of the weight factors. The 

update function now turns out to 𝑤(𝑛 + 1)  =  𝑤(𝑛)  +
(𝒔𝒕𝒆𝒑 𝒔𝒊𝒛𝒆) 𝒖∗(𝒏)𝒆(𝒏) 

||𝒖(𝒏)||
𝟐

/𝒍𝒆𝒏(𝒘) + 𝑩𝒊𝒂𝒔
 . The step size 

will now remain stable for lengthy input vector.  

 

 
Figure 7. The Normalized LMS function block (GNU Radio) 

 

Figure 7 is the screenshot of the GNU function block of Normalized LMS implemented. All the 

four pins function exactly same as the Signed LMS function block illustrated above. The 

Normalized LMS equalizer has one more hyper parameter to tune compared to Signed LMS 

which is the bias. Users can tune the bias based on the characteristics of input vector to optimize 

the performance of the equalizer. 

3.4 Implementing Variable-Step LMS in GNU Radio 

For the Variable-Step function block of GNU Radio, the step size is updated based on the 

formula: 𝜇(𝒏 + 𝟏) = 𝝁(𝒏) + (𝑰𝒏𝒄𝑺𝒕𝒆𝒑)𝑹𝒆𝒂𝒍(𝒈 ∗ 𝒈𝒑𝒓𝒆𝒗). IncStep denotes an increment step, 

Real denotes taking the real part of the input, 𝒈 = 𝒖(𝒏) 𝒆∗(𝒏) and gprev denotes   the value 

of g in the previous iteration. The Real(g*gprev) maps the magnitude of error to step size. There 

will be a large step size in the case that error is large and smaller step size while the error gets 

smaller.  

 
 

In order to handle the edge case of overflow of the step size value, the maximum step size and 

minimum step size is set beforehand to refrain the step size from getting too large. If the step size 

is greater than the predefined maximum step size, the step size is set as maximum step size. 
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Similarly, if the step size computed is less than minimum step size, the step size is set as 

minimum step size.  

 
The update function maps the magnitude of error to magnitude of step size to fasten the process 

of training weight factor without sacrificing the steady-state error. 

 
Figure 8. The Variable Step LMS function block(GNU Radio) 

Figure 8 is the screenshot of the GNU function block of Variable Step LMS implemented. All 

four pins function exactly the same as the Normalized LMS and Signed LMS. There are four 

more hyper parameters to tune in Variable-Step LMS function block: the initial step, the 

incremental step, the minimum step and the maximum step. 

3.5 Implementing RLS in GNU Radio 

For the RLS function block of GNU Radio implemented, the inverse correlation matrix will be 

initialized at first by setting the value of diagonal elements to the value user specified. 

 
 All the matrixes are initialized and their dimensions are confined to make the utilization of 

resources more efficient. The Kalman gain vector and the inverse correlation matrix are 

computed alternatively throughout the training process.  The Kalman gain vector  with 

dimension N by 1 is computed based on the formula 𝐾 =
𝑃𝑢

𝐹𝑜𝑟𝑔𝑒𝑡𝐹𝑎𝑐𝑡𝑜𝑟+𝑢𝐻𝑃𝑢
, where the forget 

factor is used to reduce the weight of older data, the superscript H denotes for Hermitian 

Transpose and P denotes for inverse correlation matrix with dimension of N by N. After that, the 

inverse correlation matrix will be updated based on the formula 𝑃 =
𝑃− 𝐾𝑢𝐻𝑃

𝐹𝑜𝑟𝑔𝑒𝑡𝐹𝑎𝑐𝑡𝑜𝑟
.  

 

Eventually, the weight factor will updated based on the formula: 𝑤(𝑛 + 1)  =  𝑤(𝑛)  +  𝐾∗𝑒(𝑛), 

where the * denotes for complex conjugate.  
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.  

Figure 9. The Recursive Least Square function block (GNU Radio) 

 

The Figure 9 is the screenshot of the GNU function block of RLS implemented. All four pins 

function exactly same as all the function blocks mentioned above. However, the hyper 

parameters of RLS are very different to the function block mentioned above. The forget factor 

and the initial coefficient need to be specified by click on the block and fill in corresponding 

field before running the function block.  
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4. Performance Assessment  
4.1 TestBench for the Equalizers 

            QPSK (Quadrature Phase-Shift Keying) modulation scheme is deployed in assessment. 

QPSK uses 4 points in the constellation diagram, which means it can transmit two bits per 

symbol (which takes value from 0 to 3). The data stream with 100 thousand symbols that is 

randomly generated is used to make the result of test more generalizable. The distortion caused 

by multi-path is simulated in different channel models. (802.11a, 802.11b, 802.11g and a FIR 

filter with 512 taps.) The noise in wireless transmission is characterized by gaussian noise with 

mean of zero and standard deviation of 0.01. The different combinations of equalizer models and 

adaptive algorithms are used to equalize the distorted signal. Eventually, the equalized signal is 

demodulated and then compared with the original data packet. The performance of the equalizer 

is evaluated based on the symbol error rate of the equalized signal. The symbol error rate (SER) 

is computed by the formula:𝑆𝐸𝑅 =  
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒚𝒎𝒃𝒐𝒍𝒔 𝒘𝒊𝒕𝒉 𝒆𝒓𝒓𝒐𝒓𝒔

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒚𝒎𝒃𝒐𝒍
. The test for each combination 

is repeated for 20 times to ensure the generalizability of the result. The test of SER for Decision 

Feedback Equalizers is conducted within the equalizer object in Communications System 

Toolbox of the Matlab, while the SER of Linear equalizers is conducted within self-implemented 

GNU Radio function blocks.     

 

 4.2 Symbol Error Rate of the Equalizers 

 
Table 2. Symbol error rate(SER) of equalizers. Where SER = Number of symbol with errors / Total Number of the symbol 

 Signed LMS Normalized LMS Variable-Step LMS  RLS 

Linear 

Equalizer 

3.9% 1.3% 1.0% 0.2% 

Decision 

Feedback 

Equalizer 

3% 0% 0% 0% 

   

From Table II, it is apparent that the decision feedback equalizers give lower steady-state error 

than linear equalizers. This coincides with the initial expectation, since the feedback filter 

reduces the noise in the incoming signal, the overall performance of the equalizer benefits from 

the lower noise level. For the adaptive algorithms, the RLS gives the lowest steady-state error 

under the linear equalization model. The performance of Normalized LMS and Variable-Step 

LMS almost tied. For the decision feedback equalizer, Normalized LMS, Variable-Step Least 

Mean Square and Recursive Least Square all give zero steady-state error rate.  

4.3 Convergence Time of the Equalizers 
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The convergence time is the time it takes for the error of the system to converge. As the 

data stream is transmitted at a constant speed, the time to converge is proportional to the number 

of symbols transmitted. Convergence time is measured by the number of symbols it takes for the 

error to converge. The criteria of convergence in this test is the timestamp that the average error 

for 20 symbols is below 0.2. The test of convergence time is conducted within self-implemented 

GNU Radio function blocks. 

 
Figure 10. The plot of Error vs. Number of Symbols of Signed LMS 

  

As Figure 10 shows, the error rate of Signed LMS converged after 231 symbols. The plot also 

looks “noisy”, because Signed LMS updates the weight factor at exactly the same stride for 

every iteration. The stride only depends on predefined step size instead of the magnitude of error. 

Thus, it turns out that the Signed LMS cannot make a more precise adjustment on weight factor 

once the error gets smaller.  

 
Figure 11. The plot of Error vs. Number of Symbols of Normalized LMS  
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As shown in Figure 11, the error rate of Normalized LMS converged after 147 symbols. It is 

apparently faster than Signed LMS, since the weight factor was updated adaptively based on the 

magnitude of error. The plot also looks much smoother compared to Signed LMS, since the 

Normalized LMS compensates for the fluctuation in magnitude of input vector by changing the 

step size accordingly. 

 
Figure 12. The plot of Error vs. Number of Symbols of Variable-Step LMS 

    

 

As shown in Figure 12, the error rate of Variable-Step LMS converged after 146 symbols. 

Benefiting from the precise adjustment of step size based on the error, the variable-step LMS 

achieves lower steady-state error within shorter convergence time compared to signed LMS. The 

variable-step LMS picks relatively large step size at beginning in order to get closer to optimal 

point at shorter time which lead to relative large fluctuation in magnitude of error at beginning.  

 
Figure 13. The plot of Error vs. Number of Symbols of Recursive Least Square 
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As shown in Figure 13, the error rate of Recursive Least Square converged after 101 symbols. As 

the most complex model among the models in this performance assessment, the RLS gives out 

lowest steady-state error. Furthermore, the error rate drops down drastically right after a few 

iterations which is much faster compared to the other models. 

 

The convergence time of adaptive algorithms under different channel are summarized in Table 

III and visualized in Figure 14.  

 
Table 3. Table of Convergence time within adaptive algorithms 

 Signed LMS Normalized 

LMS 

Variable-Step 

LMS 

RLS 

802.11a 417 168 146 101 

802.11b 111 48 103 101 

802.11g 148 98 124 124 

FIR with 512 

taps 

231  147 146 101 

 

 

 
Figure 14.  Convergence time of adaptive algorithms 

 

4.4 Time Complexity of the Equalizers 

The computation time of Signed LMS grows linearly with respect to the number of 

weights taps (O(N)). Since weight factors of Signed LMS can be computed by binary shift 
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instead of floating point computation, its constant coefficient is much smaller than that of the 

other three algorithms which should give it remarkably short running time in theory.  

 

The computation time of Normalized LMS also stays within linear time (O(N)).However, its 

computation process incorporates floating-point computation and matrix multiplication that turns 

out its constant coefficient to be greater than that of Signed LMS.  

 

Same as Signed LMS and Normalized LMS, Variable-Step LMS’s computation time is within 

linear time(O(N)). The computation complexity of Varaible-Step LMS is basically the same as 

the Normalized LMS except the threshold check takes extra-time to execute. So its constant 

coefficient is slightly greater than that of Normalized LMS.  

 

RLS’s time complexity is proportional to the square of the number of weight taps which is the 

highest among the four adaptive algorithms(O(N^2)). 

    

The actual runtime test is conducted within GNU Radio function block within 1500 symbols 

input datastream while set the number of weight taps to 100. 

 

The runtime analysis and actual runtime of adaptive algorithms are summarized in table IV. 
Table 4. Table of running time of adaptive algorithms 

 Signed LMS Normalized 

LMS 

Variable-Step 

LMS 

RLS 

Time Complexity 

Analysis 
O(N) O(N) O(N) O(N^2) 

Actual Running 

Time 

0.01557s 0.01559s 0.01560s 0.468s 

 

In the actual runtime measurement, the Signed LMS did not significantly reduce the runtime as 

expected. There are several reasons for this. First of all, there are multiple steps for computation 

while updating weight factor is only the last step, it turns out the binary shift does not have much 

influence on the overall runtime. Secondly, Python is a weakly typed programming language; 

this means that extra time must be spent on checking the data type of the operand; in turn, this 

reduces the weight of the time saved by binary shift reflects on the total runtime. As what is 

expected, the RLS takes much longer time (Quadratics) than that of LMS algorithms. 

 

4.4 Space Complexity of the Equalizers 

“Space complexity” describes computer resources allocated to the function (ex. register, 

memory space). The space complexity of Signed LMS and Normalized LMS are linearly 

proportional to the length of weight taps(O(N)). Since the all the variables take space at most of 



 

4. Performance Assessment 

6 

 

N (ex. Input vector). The Variable-Step LMS still takes linear space(O(N)). However, there are 

more variables, for instance  g (which maps error to step size) and gprev (g in previous iteration). 

The constant coefficient of Variable-Step LMS is larger than that of Signed LMS and 

Normalized LMS. Unlike the three variant of LMS adaptive algorithms, the RLS takes quadratic 

space(O(N^2)). For instance, the inverse correlation matrix has dimension of N by N, the 

Kalman gain vector also takes space of N. Sum up the space to store all the variables, the space 

complexity of RLS is much larger than the other three adaptive algorithms. 

 

The space complexity of adaptive algorithms are summarized in table V. 

 
Table 5. Table of space Complexity of adaptive algorithms 

Signed LMS Normalized LMS Variable-Step LMS RLS 

O(N) O(N) O(N) O(N^2) 
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5. Neural Network 
5.1 Introduction to Neural Network Design 

The linear equalizer is not efficacious for severely distorted channel or nonlinear channel. 

This problem can be addressed by replacing the linear filter by neural networks, considering the 

nonlinear processing capacity of neural networks. Three-layer perceptron is proposed to balance 

the performance and computation time. There are two configurations for modifying decision 

feedback equalizer: (1) the regular decision feedback equalizer is modified by replacing 

feedforward filter with neural network while retaining the linear feedback filter; (2) the regular 

decision feedback equalizer is modified by replacing both feedforward and feedback filters with 

neural networks. 

 

 5.2 Structure of Neural Network 

As shown in Figure 15, three-layer perceptron is composed of an input layer, a hidden 

layer and an output layer. The hidden layer is composed of a linear combiner and an activation 

function. The output of the previous layer forms the input of next layer. The number of input 

node is set to 6. The hidden layer has exactly same numbers of neurons as the input layer. There 

is two node in output layer, one for real part and one for imaginary part. 

  
The linear combiner and activation function 

The loss function is 𝑙𝑜𝑠𝑠 =  (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑦)2, where y is the label or desired output. The 

neural networks is trained by the gradient descent optimizer.  
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Figure 15. The structure of neural network 

5.3 Preprocessing of the Input Signal 

Since the deep learning frameworks (ex. TensorFlow) do not support complex 

computation, special preprocessing is needed to address this problem. The N by 1 complex input 

vector is separated into two arrays (one for real part and the other for imaginary part). Then the 

imaginary array is appended to end of real part array to form 2N by 1 vector.  

 
Figure 16. The format of input vector 

 

 5.4 Convergence Time of Neural Network 

The testBench is same as the before except the signal is modulated by BPSK modulation 

scheme. The criteria of convergence (the timestamp that the average error for 20 symbols is 

below 0.2) is exactly same as that of linear equalizer mentioned above. The most common 

activation functions for neural network are examined based on their convergence time. 

 

 

 

5.4.1 Perfomance of Neural Net with Rectifer (Relu) Activation function 

Relu (x) = max(0,x). The Relu activation function ignores all the negative data points and 

retains only positive data points.  The rectifier function can be illustrated by the graph below.  
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Figure 17. The plot of Error vs. Number of Symbols of Neural net with Relu activation function 

Both neural networks with configuration (1) (replacing feedforward filter while retaining linear 

feedback)  and configuration (2) (replacing both feedforward filter and feedback filter) with Relu 

activation function fails to converge.  

5.4.2 Performance of Neural Net with Sigmoid Activation function 

Sigmoid Activation function is a bounded differentiable real function with “S” shaped curve.  
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Figure 18. The plot of Error vs. Number of Symbols of Neural net of configuration (1) with sigmoid activation function 

 
Figure 19. The plot of Error vs. Number of Symbols of Neural net of configuration (2) with sigmoid activation function 

The error rate of neural network of configuration (1) with sigmoid activation function converge 

after 187 symbols. The error rate of neural network of configuration (2) with sigmoid activation 

function converge after 304 symbols. The plot looks noisy at beginning and gradually converge 

to zero. 

 

5.4.3 Performance of Neural Net with Tanh Activation function 

The tanh denotes for hyperbolic tangent function. It is a bounded differentiable real 

function.  
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Figure 20. The plot of Error vs. Number of Symbols of Neural net with tanh activation function 

Both neural networks of configuration (1) and configuration (2) with tanh activation function 

fails to converge. 

5.4.4 Performance of Neural Net with Softplus activation function 

The softplus activation function is smooth approximation of rectifier (Relu). 

𝑺𝒐𝒇𝒕𝒑𝒍𝒖𝒔(𝒙)  = 𝒍𝒐𝒈(𝒆𝒙 + 𝟏) 

 
Figure 21. The plot of Error vs. Number of Symbols of Neural net of configuration (1) with softplus activation function 
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The neural network of configuration (1) with softplus activation function converge after 157 

symbols while the neural network with configuration (2) fails to converge.. 

 

The convergence time of the common activation functions is summarized in table VI.  

 

 
Table 6. Table of convergence time of activation functions 

 Sigmoid Relu tanh Softplus 

Replace 

feedforward 

filter 

187 Fails to 

Converge 

Fails to 

Converge 

157 

Replace both 

feedforward and 

feedback filter 

304 Fails to converge Fails to converge Fails to converge 
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6. Summary & Recommendation 

This paper provided: 

● an overview of an equalizer and four adaptive algorithms 

● the software implementation of the equalizers  

● the assessment for combinations of different adaptive equalization models and adaptive 

algorithms 

● Replacing the linear filter of Decision Feedback Equalizer with neural network and 

performance assessment on Decision Feedback Equalizer with neural network  

 

Equalization Models: 

 

Equalization is introduced to reverse the distortion caused by multi-path in the signal 

transmission process without amplifying the noise.  

● Decision feedback equalizer has a better performance over the linear equalizer insofar as 

it reduces the noise in the incoming signal through the feedback filter.  

● However, Linear Equalizer has lower computational complexity.  

 

Adaptive Algorithms: 

 

Signed LMS’s performance falls behind the Normalized LMS, Variable-Step Least Mean Square 

and Recursive Least Square algorithms.  Although Signed LMS has lowest computational 

complexity in theory, it does not result in any notable reduction of runtime in runtime 

assessment. Therefore, Signed LMS is not recommended for real application in software 

implementation.  

 

The Recursive Least Square outperformed the other three adaptive algorithms at the cost of 

remarkably higher computational complexity and space complexity(Quadratics). This implies 

that it is not a suitable choice for high-speed communication.  

 

The performance of Normalized LMS and Variable-Step Least Mean Square falls slightly behind 

the Recursive Least Square. In the case of an incoming signal with a low noise level or used with 

a decision feedback equalization model, Normalized LMS and Variable-Step Least Mean Square 

perform as good as the Recursive Least Square with the significantly lower computational 

complexity than of the Recursive Least Square. Their well-balanced performance and 

computational complexity makes them a suitable choice for general application.  

 

Neural Network:  
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The linear filter of equalizer is replaced by the neural networks. The structure of Neural network 

is composed of an input layer, a hidden layer and an output layer. The performance of common 

activation function is examined based on their convergence time. The Neural net of configuration 

(1) with sigmoid activation function takes 187 symbols to converge, while Neural net of 

configuration (1) with softplus function takes 157 symbols to converge. Both tanh and Relu fail 

to converge. For neural net of configuration (2), only sigmoid function converged after 304 

symbols. The neural net of configuration (1) outperformed configuration (2) with shorter 

convergence time. Therefore, the configuration (1) is recommended for real world application. 

Considering the complexity of neural network, it takes longer time to converge compared to 

linear filter. Furthermore, configuration (2) takes even longer time.    
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