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ABSTRACT

In recent years, encrypted databases have emerged as a promising
direction that provides data confidentiality without sacrificing func-
tionality: queries are executed on encrypted data. However, existing
practical proposals rely on a set of weak encryption schemes that
have been shown to leak sensitive data. In this paper, we propose
Arx, a practical and functionally rich database system that encrypts
the data only with semantically secure encryption schemes. We
show that Arx supports real applications such as ShareLaTeX and
a health data cloud provider with a modest performance overhead.
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1 INTRODUCTION

Due to numerous data breaches [41, 73], the public concern over
privacy and confidentiality is likely at one of its peaks today. Unfor-
tunately, protecting the data is not as easy as encrypting it because
encryption precludes useful computation on this data.

In recent years, encrypted databases [19, 71, 76, 83] (EDBs)
have emerged as a promising direction towards achieving both
confidentiality and functionality: queries run on encrypted data.
CryptDB [76] showed that such an approach can be practical and
can support a rich set of queries, and was followed by a rich line of
work including Cipherbase [19] and Monomi [83]. The demand for
such systems is demonstrated by the adoption in industry such as
in Microsoft’s SQL Server [63], Google’s Encrypted Big Query [40],
and SAP’s SEEED [42] amongst others [5, 28, 30, 51]. Most of these
services are NoSQL databases of various kinds showing that a cer-
tain class of encrypted computation suffices for many applications.

At their core, these EDBs use a set of encryption schemes, some
of which are property-preserving (denoted PPE schemes) such as
order-preserving encryption (OPE) [21, 22, 75] or deterministic
encryption (DET). OPE and DET are designed to reveal the order
and the equality relation between data items, respectively, to enable
fast order and equality operations.

However, a series of recent attacks [33, 43, 66] have shown that
an attacker can extract a significant amount of sensitive information
from the leakage in these schemes when the attacker has certain
auxiliary information. These works demonstrate offline attacks in
which the attacker is able to steal a snapshot of the OPE-encrypted
or DET-encrypted database. We call this attacker model a snapshot
attacker. Because OPE and DET leak the order or frequency count
of values within a column, when combined with certain auxiliary
information, the attacker is able to decrypt a large fraction of the
sensitive column.

Preventing any leakage at the server is known to be very difficult
to achieve in a practical way. It would require (1) using only seman-
tically secure encryption schemes, and (2) oblivious protocols (e.g.,

ORAM [82]) to hide query access patterns, along with significant
padding [65], which are heavy protocols. For the latter, Naveed [65]
shows that in some cases it is more efficient to stream the database
to the client and answer queries locally than to use such a system
on the server. In this work, we focus on the former.

We consider the following question: how can we keep the data-
base encrypted only with semantically secure encryption schemes
while still providing rich functionality and good performance? Se-
mantic security implies that no partial information about the data is
leaked (other than size information), preventing the aforementioned
inference attacks on a stolen database.

Unfortunately, there is little work on such EDBs, with most work
focusing on PPE-based EDBs. The closest to our goal is the line
of work by Cash et al. [26] and Faber et al. [35], which builds on
searchable encryption. As a result, these are significantly limited
in functionality: not supporting common queries such as order-by-
limit, aggregates on ranges, and joins, as well as being inefficient
for write operations (e.g. updates, deletes), as we elaborate in §12.
Also, while these systems are significantly more secure for an of-
fline attacker, for certain online attackers (which we call persistent
attackers) they have an extra leakage not present in PPEs, as we
explain in §12. To replace PPE-based EDBs, we need a solution that
is always at least as secure as PPE-based EDBs.

In this paper, we propose Arx, a practical and functionally-rich
database system that encrypts the data only with semantically se-

cure encryption schemes. Arx supports a rich set of queries: equal-
ity, ranges, aggregates over ranges, order-by-limit, and a common
class of joins; importantly, Arx also integrates updates and deletes
seamlessly. At the same time, Arx is significantly more secure than
PPE-based EDBs. First, by using semantically-secure encryption
schemes, Arx protects against the recent offline attacks [33, 43, 66]
from which PPE-based EDBs suffer. Second, for online attackers,
Arx is always either more secure or as secure as PPE-based EDBs.
Thus, we propose Arx as an alternative to PPE-based EDBs.

1.1 Summary of techniques and contributions

To achieve rich computation, Arx introduces two new database
indices: Arx-Range for range and order-by-limit queries, and Arx-
Eq for equality queries. While Arx-Range can be used for equality
queries as well, Arx-Eq is substantially faster.

To enable range queries, Arx-Range builds a tree over the rele-
vant keywords, and stores at each node in the tree a garbled circuit
for comparing the query against the keyword in the node. Our tree
is history-independent [18] to avoid structural leakage. The main
challenge with Arx-Range is to avoid interaction (e.g. as needed
in BlindSeer [72]) at every node on a tree path. To address this
challenge, Arx draws inspiration from the theoretical literature on
Garbled RAM [36] and chains garbled circuits. Arx chains garbled
circuits on a tree in such a way that, when traversing the tree, a
garbled circuit produces input labels for the child circuit to be tra-
versed next. Thereby, the whole tree can be traversed in a single
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round of interaction. For security, each such index node may only
be used once, so Arx-Range essentially destroys itself for the sake

of security. Nevertheless, only a logarithmic number of nodes are
destroyed per query, and Arx provides an efficient repair procedure.

Arx-Eq builds a regular database index over encrypted values
by embedding a counter into repeated values. This ensures that the
encryption of two equal values is different and the server does not
learn frequency information. Arx-Eq provides forward privacy [25],
preventing old search tokens from being used to search new data.
When searching for a value v , the client can provide a small token
to the server, which the server can expand into many search tokens
for all the occurrences of v .

Arx speeds up aggregations with Arx-Agg by transforming an
aggregate into a tree lookup, and provides foreign-key joins with
Arx-Join, both indices being built on Arx-Eq and Arx-Range.

Because of the restrictions of encrypted indices, index and query
planning becomes challenging in Arx. The application’s developer
specifies a set of regular indices and thus expects a certain asymp-
totic performance. However, there is no direct mapping between
regular indices and Arx’s indices because Arx’s indices pose new
constraints. The main constraints are: the same index is not used
for both = and ≥ operations, an equality index on (a,b) cannot be
used to compute equality on a alone, and Arx can compute range
queries only via Arx-Range. With these in mind, we designed an

index planning algorithm that guarantees the expected asymp-
totic performance while building few additional indices.

Finally, we designed Arx’s architecture so it is amenable to
adoption. Two lessons [74] greatly facilitated the adoption of the
CryptDB system: do not change the database (DB) server and do
not change applications. Arx’s architecture, presented in Fig. 1,
accomplishes these goals. The difference over the CryptDB archi-
tecture [76] is that it has a server-side proxy, a frontend for the DB
server. The server proxy converts encrypted processing into regular
queries to the DB, allowing the DB server to remain unchanged.

We provide an implementation and evaluation of Arx on
top ofMongoDB, a popular NoSQL database.We plan to open source
our implementation. We show that Arx supports a wide range of
real applications, such as ShareLaTeX [12], the Chino health data
platform [4, 14], NodeBB forum [8], Leanote [6], and three others. In
particular, Chino [4] is a health data cloud provider that serves the
Europeanmedical project UNCAP [14]. Chino provides aMongoDB-
like interface to medical web applications, which run on premises
of hospitals. The leaders of UNCAP and Chino have expressed
interest in using Arx for their system, which currently runs on
plaintext data, and confirmed that Arx’s model fits Chino perfectly.
Finally, we show that Arx adds modest performance overheads. For
example, Arx decreases throughput for ShareLaTeX by 11% and for
the YCSB benchmark by 3–9%.

2 OVERVIEW

In this paper, we use MongoDB/NoSQL terminology such as col-
lections (for RDBMS tables), documents (for rows), and fields (for
columns), but we use SQL format for queries because we find Mon-
goDB’s JS format harder to read. While our implementation is on
top of MongoDB, Arx’s design applies to other databases as well.

2.1 Architecture

Arx considers the model of an application that stores sensitive
data at a database (DB) server. The DB server can be hosted on
a private or public cloud. Fig. 1 shows Arx’s architecture. The
application and the database system remain unmodified. Instead,
Arx introduces two components between the application and the
DB server: a trusted client proxy and an untrusted server proxy.
The client proxy exports the same API as the DB server to the
application so the application does not need to be modified. The
server proxy interacts with the DB server by calling its unmodified
API (e.g. issuing queries); in other words, the server proxy behaves
as a regular client of the DB server. Unlike CryptDB, Arx cannot
use user-defined functions instead of the server proxy because the
proxy must interact with the DB server multiple times and run DB
queries as part of one invocation.

The client proxy stores the master key. It rewrites queries, en-
crypts sensitive data, and forwards the encrypted queries to the
server proxy for execution along with helper cryptographic tokens.
It forwards any queries not containing sensitive fields directly to
the DB server. The client proxy is lightweight: it does not store the
database and does much less work than the server. The client proxy
stores metadata (schema information), a small amount of state, and
optionally a cache. The client proxy processes only the results of
queries (e.g. to decrypt them) in most cases (except for a few corner
cases we discuss). The server runs the expensive part of DB queries,
filtering and aggregating many documents into a small result set.

2.2 Admin API

We now describe the API exposed by Arx to an application admin-
istrator. The admin can take an existing application and enhance
it with Arx annotations. Arx’s planner, located at the client proxy,
uses this API to decide the data encryption plan, the list of Arx
indices to build, and a query execution plan for each query pattern.

Following the example of Google’s Encrypted BigQuery [40]
and Microsoft’s SQL Server [63], Arx requires the admin to declare
what operations will run on the database fields. By default, Arx con-
siders all the fields in the database to be sensitive, unless specified
otherwise. To use Arx, an application admin specifies the following
information to Arx during system setup:
(1) (optionally) field-specific information: which fields are unique,

their maximum size, and which fields are not to be encrypted;
(2) the operations that run on sensitive fields;
(3) the fields that should be indexed.
For the first, the admin uses the API: collection = { field1: info1, . . . ,
fieldn : infon }, to annotate the fields in a collection. This annotation
is optional, but it benefits the performance of Arx if provided. info
should specify “unique” if the values in the field are unique, e.g.
fields such as SSN or driver’s license number. Primary keys are
automatically inferred by Arx to be unique. info may also specify
the maximum length in bits for the field, which helps Arx choose a
more effective encryption scheme.

Arx encrypts all the fields in the database by default. However,
the admin may explicitly override this behavior by specifying info

as “nonsensitive” for a particular field. This should be only if (1) the
admin thinks this field is not sensitive and desires to reduce encryp-
tion overhead, or (2) Arx does not support the computation on this
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Figure 1: Arx’s architecture: A trusted client proxy deployed at the application server, and an untrusted server proxy deployed

at theDBMS server. The client proxy intercepts queries and encrypts sensitive information. The server proxymaintains indices

over the encrypted data, and executes incoming queries. Shaded boxes depict components introduced by Arx, and unshaded

boxes represent existing components. Locks indicate that sensitive data at the component always remains strongly encrypted.

field but supports everything else in the application, and the admin
still wants to use Arx for the rest of the fields. However, we caution
that though some fields may not be sensitive themselves, they may
provide auxiliary information about other sensitive fields in the
database. Hence, the admin should select such fields with care.

Second, Arx needs to know the query patterns that will run on
the database. Concretely, Arx needs to know what operations run
on what fields, but Arx does not need to know what constants will
be queried for. For example, for the query select * from T where
age = 10, Arx needs to know that there will be an equality check
on age. The admin can either specify these operations to Arx or
can provide a query trace from a run of this application and Arx
will automatically identify them.

Third, Arx needs to know the list of regular indices built by
the application. Arx requires this information in order to provide
the same asymptotic performance guarantees as an unencrypted
database. Note that this requirement poses no extra work on the
part of the admin, and is the same as required by a regular database.

2.3 Functionality

In this section, we describe the classes of read and write queries
that can be supported by Arx over encrypted data. As we show in
§11, this functionality supports a wide range of applications.
Read queries. Arx supports read queries of the form:

select [agg doc] f ields from collection
where clause [orderby f ields] [limit ℓ]

doc denotes a document and [agg doc] aggregations over docu-
ments, which take the form

∑
Func (doc ).

∑
can be any associative

operator and Func an arbitrary, efficiently-computable function.
Examples include sum, count, sum of squares, min, and max. More
aggregations can be computed with minimal postprocessing at the
client proxy by combining a few aggregations, such as average
or standard deviation. The predicate clause is

[
∧i op( fi )

]
where

op( fi ) denotes equality/range operations over a field fi such as
=,,, ≥ and <.

In addition to these queries, Arx supports a common form of
joins—namely, foreign-key joins—which we describe in §8. It does
not support other forms of join, which are part of our future work.
Write queries.Arx supports standard write queries such as inserts,
deletes, and updates.

Constraints. Not all range/order queries are supported by Arx.
First, the query may contain range operations over at most one
encrypted field. While f1 ≥ 3 and f1 ≤ 5 is supported, f1 ≥ 3
and f1 ≤ 5 and f2 ≤ 10 is not supported; but additional range
operations over nonsensitive and non-indexed fields are supported.
Second, if the query contains a limit along with range operations
over a sensitive field, then it may contain an order-by operation
over the sensitive field alone.

3 SECURITY GUARANTEES

3.1 Threat Model

Arx targets attackers to the database server. Hence, our threat model
assumes that the attacker does not control or observe the data or
execution on the client-side (users, the application, and Arx’s client
proxy)—including not issuing queries through the client proxy—
and may only access the server-side (which consists of Arx’s server
proxy and the database servers).

Arx considers passive (honest-but-curious) server attackers: the
attackers examine server-side data to glean sensitive information,
but follow the protocol as specified, including not modifying the
database or query results. The active attacker is part of our future
work, and will likely leverage existing techniques [49, 58, 62, 88].
Further, in the Arx model, an attacker cannot inject queries because
he does not have access to the client proxy, but only to the server.

We consider two models of passive attackers, snapshot and per-
sistent attackers. The snapshot attacker corresponds to an attacker
that manages to steal one snapshot of the database: the snapshot
is made of collections and indices. It does not contain in-memory
data related to the execution of current queries (which falls under
the persistent attacker). This is an offline attacker in the sense that
the attacker steals the database and works offline for as long as it
wishes to extract data out of it. The persistent attacker is a generic
passive attacker: it can log and observe any information available
at the server (i.e. all changes to the database, all in-memory state,
and all queries) at any point in time for any amount of time.

3.2 Security guarantees

Arx provides different guarantees for the two attacker models.

Snapshot attacker.Arx’smost visible contribution over PPE-based
EDBs is for this attacker. Such an attacker corresponds to many
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real-world instances because many attacks are steal-and-run (e.g.,
hackers often extract a dump or part of the database). A cloud
employee or insider could steal a copy of the database for offline
analysis. This attacker encompasses the recent attacks of Durak et
al. [33], Grubbs et al. [43], and Naveed et al. [66].

For this attacker, Arx provides strong security guarantees reveal-
ing nothing about the data beyond schema and sizing information
(the number of collections, documents, items per field, the size
of the items, which fields have indices and for what operations).
Padding is a standard procedure for hiding sizes at a performance
cost. The contents of the database (collections and indices) are pro-
tected with semantically secure encryption, and the decryption key
is never sent to the server.
Comparison to PPE-based EDBs. In PPE-based EDBs, the attacker
readily sees the order or the frequency of all the values in the
database for PPE-encrypted fields. This is significantly less secure
than the semantic secure schemes in Arx, in which the attacker
does not see such relations. Hence, Arx protects against the recent
offline attacks [33, 43, 66] that succeed in extracting significant
information from PPE-based EDBs.

Persistent attacker. This attacker additionally watches queries
and their execution. Arx hides the constants in the queries, but
not the operations performed. Moreover, Arx does not hide timing
information (e.g. the time when a query arrives), query metadata
and access patterns (e.g. which positions in the database or index
are accessed/returned and how many).

All known practical approaches leak some information due to
queries. We specify Arx’s leakage profile due to queries in Def. 3.3.
Kellaris et al. [50] showed that any generic encrypted database,
without Oblivious RAM [81] and output padding, leaks ordering
information to a persistent attacker over time. To fully remove
such leakage [50], the state-of-the-art techniques are Oblivious
RAM [39, 81] or similar constructs [36] plus padding, which are
known to be too slow, and in fact, might be worse than streaming
all data locally as shown by Naveed [65].

Arx’s goal for this attacker is to always remain more secure
or as secure as PPE-based EDBs. Indeed, for all operations, Arx’s
leakage is always upper-bounded by the leakage in PPE-based EDBs.
This is not trivial: for example, a prior EDB aiming for semantic
security [35] is not always more secure than PPE-based EDBs, as
explained in §12.

We note that, in practice, mounting a persistent attack for a
long time is significantly more difficult than a snapshot attack. For
example, cloud providers have effective tracking systems to monitor
what customer data a cloud employee is accessing, and effective
intrusion detection monitors that detect logging (e.g., of queries)
and data exfiltration [1, 2]. Avoiding such detection for a long time
is significantly more unlikely. If the attacker sees only a few queries,
the attacker does not learn much more than the snapshot attacker.
Moreover, some client applications do not query every value in
the DB for equality queries, and similarly for range queries, so the
attacker will still not be able to gather as much information as for
PPE-based EDBs. For example, some applications query only a small
set of meaningful ranges on some data fields (e.g. age over 18 or
over 21), compute aggregates over a range (in which case Arx does
not reveal which documents are in the range), or order-by-limit

which might include only a part of the data. Nevertheless, pushing
the envelope further for the persistent attacker is an important
problem and part of our future work.

3.3 Leakage definitions

We now explain Arx’s security guarantees. A database DB is com-
prised of multiple collections. Each collection is comprised of a
set of (attribute, keyword) pairs. A database system is a pair of
stateful random access machines (Client, Server). Server stores the
database and Client can through interaction with Server compute
queries out of a set of supported queries (§2.3), which may modify
the database.

Query execution leakage. We now define the leakage profile of
Arx: first for the DB itself (snapshot attacker), then for the execution
of each query (persistent attacker). The latter leakage includes
(1) the IDs of the documents returned, (2) for Arx-Range (§5), the
rank of the range bounds, and (3) for EQ (§4) and Arx-Eq (§6), the
match patterns including for documents not in the database any
more. Our leakage in Arx-Eq is similar to Sophos [25].

Definition 3.1 (Leakage of Database). The leakage of a database
itself Leak(DB) is
• the schema: the name of collections, the number of documents in

each collection and which fields they contain (but not the content
of the fields), unique or size information per field declared by
the application admin, indices built by the application,

• size: the size of each field, and
• query patterns (list of operations per field, but no constants).

Definition 3.2 (Preliminaries). We define the following:
• The rank of an element x in a list L = (ai )i ∈N is rk(L,x ) :=
|{ai | ai ≤ x }|, and we write rk(x ) if L is clear from the context.

• Our leakage function Leak is stateful and stores a query history
Q which contains tuples (i,w ) for a query with timestamp i
searching for a keyword w , and tuples (i,o,d ) for an update
query, where d is the data and o ∈ {insert, delete}.

• The search pattern of a keywordw is sp(w ) := {j : (j,w ) ∈ Q }.
• The history of w is Hist(w ) := (DB0 (w ),UpHist(w )) where

DB0 (w ) lists the matching document IDs of the initial database,
and UpHist(w ) is the list of document updates matchingw .

Definition 3.3 (Leakage of a query). The leakage of a query is the
entire query except for the constants in the query, the timestamp,
the IDs of documents that match any filter, and the IDs of docu-
ments being created. Additionally there is leakage depending on
the schemes used to execute the query, as detailed in Fig. 2.

Security definition. We provide an adaptive indistinguishability-
based security definition for the overall system, which we call
IND-CQA (i.e. indistinguishability under a chosen query attack).
This definition, Def. 3.4, is quite standard and similar to definitions
in prior work [35]. In the indistinguishability game, the attacker
chooses two databases and queries to execute on them, with the
requirement that the leakage function returns the same values
in these two worlds. The game consists of two phases in order to
accommodate for the model of the snapshot attacker: the first phase
corresponds to the execution when the attacker does not see query
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Scheme Operation Leakage
EQ where f ield = c sp(w ), Hist(w )
(§4) insert sp(w )

delete –
Arx-Eq where f ield = c sp(w ), Hist(w )

(§6) cleanup (§6.3) sp(w ), Hist(w )
insert, delete –

Arx-Range where a ≤ f ield ≤ b rk(a − 1), rk(b)
(§5) orderby limit ℓ ℓ

insert, delete v rk(v )
Arx-Join (§8) the same information as Arx-Eq or Arx-

Range, depending on which Arx-Join was
built on, as well as leakage as in EQ for the
foreign key, where each match identifies a
primary key.

Figure 2: Query leakage in Arx’s protocols.

execution, followed by a second phase when the attacker can see
this execution.

Definition 3.4 (IND-CQA). Let (Client,Server) be a database sys-
tem and Adv an adversary adaptively trying to distinguish two
execution traces that have the same leakage. We consider the fol-
lowing experiment:

IndClient,Server,Adv,Leak (1λ ):
(1) A random bit b ← {0, 1} is chosen.
(2) Adv generates two initial databases and a list ofm queries

for each:

(DB0, (q01, . . . ,q
0
m ),DB1, (q11, . . . ,q

1
m )) ← Adv(1λ ).

We require that both databases produce the same leakage
after the queries are executed on them, i.e.
Leak(DB0 (q01, . . . ,q

0
m )) = Leak(DB1 (q11, . . . ,q

1
m )).

(3) The queries qbi are executed on DBb .
The next phase simulates the break-in of Adv. From now
on, Adv is given access to Server’s random coins and the
communication transcript.
(4) Adv is given a copy of the state of Server and proceeds

to adaptively generate pairs of queries (q0i ,q
1
i ) which are

required to produce the same leakage.
(5) Query qbi is executed between Client and Server.
(6) After a polynomial number of rounds, Adv outputs a bit

b ′. The output of the experiment is 1 if b = b ′, else 0.

In the case that the experiment outputs 1, we say Adv wins the
experiment. We call the database system adaptively secure in the

indistinguishability sense with leakage Leak, if for all polynomial
Adv, there exists a negligible function negl such that

Pr[IndClient,Server,Adv,Leak (1λ ) = 1] ≤ 1/2 + negl(λ)

Theorem 3.5. The Arx database system is secure as defined in

Def. 3.4 with leakage defined in Def. 3.1–Def. 3.3, under standard

cryptographic assumptions.

The proof strategy is to compose sub-proofs for the different
Arx indices and schemes, as we discuss in §B.4. In appendix §B,

we provide formal definitions and proofs for the security of Arx-
Range because this is the most nonstandard of our schemes. The
proofs for Arx-Eq and the other schemes are quite standard (similar
to [25, 35]), and we plan to include them in a full paper version.

4 ENCRYPTION BUILDING BLOCKS

In addition to Arx’s indices, Arx uses three semantically-secure
encryption schemes. These schemes already exist in the literature,
so we do not elaborate on them.
BASE is standard encryption, AES-CTR in our case.
EQ enables equality checks. The client uses EQEnck (v ) → ct to
encrypt a value v and EQTokenk (w ) → tok to produce a token tok
used to search forw . To search, the server uses EQMatch(ct, tok),
which returns true if v = w . To implement EQ , we use a searchable
encryption scheme similar to those of Cash et al. [26] and Sherry
et al. [78]. EQEnck (v ) = (IV,AESKDFk (v ) (IV)), where IV is a ran-
dom value and KDF is a key derivation algorithm based on AES.
To search for a word w , the token is EQTokenk (w ) = KDFk (w ).
To identify if the token matches an encryption, the server proxy
combines tok with IV and checks to see if it equals the ciphertext:
EQMatch((IV,x ), tok) = (AEStok (IV)

?
=x ). Note that one cannot

build an index on this encryption directly because it is randomized.
Hence, Arx uses this scheme only for non-indexed fields (i.e. for
linear scans). When the developer desires an index on this field,
Arx uses our new Arx-Eq index. Arx uses this scheme only for non-
indexed fields (i.e. for linear scans). When the developer desires an
index on a field with equality operations, Arx uses our new Arx-EQ
index instead.

EQunique is a special case of EQ . In many applications, some
fields have unique values (e.g. primary keys, SSN). In this case,
Arx makes an optimization. Instead of implementing EQ with the
scheme above, it uses deterministic encryption. Deterministic en-
cryption does not leak frequency when values are unique. Such a
scheme is very fast: to check for equality, the server simply uses
the equality operator, as if the data were not encrypted. Moreover,
databases can build indices on this field as before so this case is an
optimization for Arx-Eq too.
AGG enables addition using the Paillier scheme [70].

5 ARX-RANGE AND ORDER-BASED QUERIES

We now present our index enabling order operations.

5.1 Strawman

We begin by presenting a helpful but inefficient strawman. This
strawman corresponds to the protocols in mOPE [75] and the
startup ZeroDB [34]. For simplicity, consider the index to be a
binary search tree (instead of a regular B+ tree). To obtain the de-
sired security, each node in the tree is encrypted using a standard
semantically secure encryption scheme. Because such encryption
is not functional, the server needs the help of the client to traverse
the index. To locate a value a in the index, the server and the client
interact: the server provides the client with the root node, the client
decrypts it into a value v , compares v to a, and tells the server
whether to go to the left or to the right child. The server then pro-
vides the relevant child to the client, which again tells the server
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which way to go. This procedure repeats until the server reaches a
leaf node. However, this procedure is too slow because each level
in the tree requires a roundtrip. Some web applications issue tens
of queries for one user click. The ZeroDB developers confirmed
that this is a main issue they are struggling with.

5.2 Non-interactive index traversal

Arx-Range enables the server to traverse the tree by itself. Say the
server receives BASEk (a) and must locate the leaf node correspond-
ing to a. For this goal, the server must be able to compare BASEk (a)
with the encrypted value at a node, sayBASEk (v ). Inspired from the
theoretical literature on garbled RAM [36, 37], we store a garbled

circuit at each tree node that performs the comparison, while
hiding a and v from the attacker.

Using a garbling scheme (Garble, Encode, Eval) [38, 85], the
client can invoke (F , e ) ← Garble(1λ , f ) on a boolean circuit f
to obtain a garbled version F along with encoding secret e . The
algorithm ea ← Encode(e,a) uses e to produce an encoding ea
for some input a. For each bit ai in the input, ea contains a label
I0i (if ai is 0) or I1i (if ai is 1). Given encoding ea , the server can
invoke y ← Eval(F , ea ) on the garbled circuit to obtain y = f (a).
The security of garbled circuits guarantees that the server learns
nothing about a or the data hardcoded in f other than the output
f (a). This guarantee holds as long as the garbled circuit is used
only once. That is, if the client provides two encodings ea and eb
using the same encoding information e to the server, the security
guarantees no longer hold. Hence, our client provides at most one
input encoding for each garbled circuit.

To allow the server to traverse the index without interaction,
each node in the index must re-encode the input for the next node in
the path, because the encoding ea of the input to a node is different
from the encoding for its children. We therefore chain the garbled

circuits so that each circuit outputs an encoding that can be used
with the relevant child circuit.

Let N be a node in the index with value v , and let L and R
be the left and right nodes. Let eN , eL , and eR be the encoding
information for these nodes. The garbled circuit at N is a garbling
of a boolean circuit implementing the comparison of the input with
the hardcoded value v that additionally outputs the re-encoded
input labels for the next circuit:

if a < v then

e ′a ← Encode(eL ,a); output e ′a and ‘left’
else

e ′a ← Encode(eR ,a); output e ′a and ‘right’
end if

Fig. 3 shows how the server traverses the index without

interaction. The number at each node indicates the value v hard-
coded in the relevant garbled circuit. Now consider the query:
select * from patients where age ≤ 5. The client provides
an encoding of 5, Encode(5) encrypted with the key for the root
garbled circuit. The server runs this garbled circuit on the encoding
and obtains “left” as well as an encoding of 5 for the left garbled
circuit. The server then runs the left circuit on the new encoding,
and proceeds similarly until it reaches the desired leaf node.
Repairing the index. A part of our index gets destroyed during
the traversal because each garbled circuit may be used at most once.

> 69_?

> 28_?

> 4_? > 32_?

Enc('ID:91') Enc('ID:23')

> 80_?
...

Arx-Range index on patients.age:
5

5

5

ID diagnosis
Enc(Lyme)
Enc(flu)

Enc(23)
Enc(91)

age
Enc(26)
Enc(3)

patients collection:

Figure 3: Arx-Range example. Enc is encryption with BASE.

To repair the index, the client needs to supply new garbled circuits
to replace the circuits consumed. Fortunately, only a logarithmic
number of garbled circuits get consumed. Consider that a node N
and its left child L were consumed. However, for each node N , the
client needs two pieces of information from the server: the value v
encoded in N and the encoding information for the right child R.
The server therefore sends an encryption of v (i.e. BASE(v ), stored
separated in the index), and the ID of the garbled circuit at R that
together with the secret key was used to compute eR . Sending ID
instead of eR saves bandwidth because the encoding information is
not small (1KB for a 32-bit comparison).

5.3 A secure database index

We need to take two more steps to obtain a secure index.
First, the shape of the index should not leak information about

the order in which the data was inserted. Hence, we use a history-
independent treap [18] instead of a regular search tree. This data
structure has the property that its shape is the same independent
of the insertion or deletion order. One needs to be careful that
when implementing a history-independent data structure the im-
plementation of it is history-independent as well. For example, in
our Java implementation, we have no control of where in mem-
ory the language runtime places certain data which depends on
history. Implementing history-independent data structures [64] is
orthogonal to our work.

Second, we store at each node in the tree the encrypted primary
key of the document containing the value. This enables locating
the documents of interest. Note that the index does not leak the

order of values in the database even though the leaves are ordered:
the mapping between a leaf and a document is encrypted, and the
index can be simulated from size information. If the primary key
were not encrypted, the server would learn such an order.
Running queries using the index. Consider the query select *
from patients where 1 < age ≤ 5. Each node in the index tree
has two garbled circuits to allow concurrent search for the lower
and upper bounds. The client proxy provides tokens for the values
1 and 5 to the server, which then locates the leftmost and rightmost
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leaves in the interval (1, 5] and fetches the encrypted primary keys
from all the nodes in between. The server sends this information
to the client proxy which decrypts them, randomizes their order,
and then selects the documents based on these primary keys from
the server. The randomization hides from the server the order of the

documents matching the range.
For order-by-limit ℓ queries, the server simply returns the left-

most or rightmost ℓ nodes. Order-by queries without a limit are
not performed using Arx-Range. Since they do not have a limit,
they do not do any filtering, so the client proxy can simply sort the
result set itself.

Updating the index. For inserts and deletes, the server traverses
the index to the appropriate position, performs the operation, and
balances the index as required. For updates, the server first per-
forms a delete followed by an insert. Some update or delete queries
delete by filtering on a different field. In this case, we maintain an
encrypted backwards pointer from the document in a collection to
the corresponding leaf in the tree.

A common case are monotonic inserts: inserts in increasing or
decreasing order. In such cases, a cheap optimization is for the client
proxy to remember the position in the tree of the last value so that
most values can be inserted directly without requiring traversal
and repair.

5.4 Optimizations

We employ several techniques to improve the performance of Arx-
Range. The highlights are: (1) we chain garbled circuits together
using transition tables instead of computing the encoding function
inside the circuit; (2) we make the index concurrent by caching the
top few levels of the tree at the client proxy; and (3) we incorporate
recent advances in garbling in order to make our circuits short and
fast. We defer the details to §A.1.

6 ARX-EQ AND EQUALITY QUERIES

The Arx-Eq index enables equality queries and builds on insights
from the searchable encryption literature [24], as explained in §12.
We aim for Arx-Eq to be forward private, a property shown to
increase security significantly in this context [25]: the server can-
not use an old search token on newly inserted data. We begin by
presenting a base protocol that we improve in stages.

6.1 Base protocol

Consider an index on the field age. Arx-Eq will encrypt the value
in age (as follows) and it will then tell the DB server to build a
regular index on age.

The case when the fields are unique (e.g. primary key, IDs, SSNs)
is simple and fast: Arx-Eq encrypts the fields with EQunique and
the regular index suffices. The rest of the discussion applies to
non-unique fields.

The client proxy stores a map, called counter, mapping each
distinct value v of age that exists in the database to a counter indi-
cating the number of times v appears in the database. For example,
for age, this map has about 100 entries.

Encrypt and insert. Suppose the application performs an insert
for a document where age has value v . The client proxy first incre-
ments counter[v]. Then, the proxy encrypts v into:

Enc(v ) = H (EQunique(v ), counter[v]), (1)
where H is a cryptographic hash (modeled as a random oracle).
This encryption provides semantic security because EQunique(v )
is a deterministic encryption scheme which becomes randomized
when combined with a unique salt per value v: counter[v]. This
encryption is not decryptable, but as discussed in §9.2, Arx encrypts
v with BASE as well. The document with the encryption of v is
then inserted in the database.
Search token. When the application sends the query select ∗
where age = 80, the client proxy computes a search token using
which the server proxy can search for 80. The search token for a
valuev is the list of encryptions fromEq. (1) for every counter from 1
to counter[v]:H (EQunique(v ), 1), . . . ,H (EQunique(v ), counter[v]).
Search. The server proxy uses the search token to construct a query
of the form: select ∗ where age = H (EQunique(v ), 1) or . . .
or age = H (EQunique(v ), counter[v]) (with the clauses in a
random order). The DB server uses the regular index built on age
for each clause in this query. The results correspond to the search
results.

Note that this provides forward privacy: the server cannot use
an old search token to learn if the new values are equal tov because
the new values would have a higher counter.

6.2 Reducing the work of the client proxy

The protocol so far requires the client proxy to generate as many
tokens as there are equality matches on the field age. If a query
filters on additional fields, the client proxy does more work than
the size of the query result, which we want to avoid whenever
possible. We now show how the client proxy can work in time
(log counter[v]) instead of counter[v].

Instead of encrypting a value v as in Eq. (1), the client proxy
hashes according to the tree in Fig. 4. It starts with EQuniquek (v )
at the root of a binary tree. A left child node contains the hash of
the parent concatenated with 0, and a right child contains the hash
of the parent with 1. The leaves of the tree correspond to counters
0, 1, 2, 3, . . . , counter[v].

The client proxy does not materialize this entire tree. Given a
counter value ct, the proxy can compute the leaf corresponding to
ct, simply by using the binary representation of ct to compute the
corresponding hashes.

T00 = H(T0|| 0) T01 = H(T0|| 1) T10 = H(T1|| 0)

T1 = H(T || 1)T0 = H(T || 0)

T = EQuniquek(v)

Figure 4: Search token tree.

New search token.To search for a valuev with counter counter[v],
the client proxy computes the covering set for leaf nodes 0, . . . ,
counter[v] − 1. The covering set is the set of internal tree nodes
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whose subtrees cover exactly the leaf nodes 0, . . . , counter[v] − 1.
For the example in Fig. 4, counter[v] = 3 and the covering set of
the three leaves is node T0 and node T10. The search token are the
nodes in the covering set. The covering set can be easily deduced
from the binary representation of counter[v] − 1.
Search. The server proxy expands the covering set into the leaf
nodes, and proceeds as before.

6.3 Updates

We have already discussed insert. To delete a document, Arx simply
deletes this document. An update is a delete followed by an insert.

As a result, encrypted values for some counters will not return
matches during search. This does not affect accuracy, but as more
counters go missing, it affects throughput because the DB server
wastes cycles looking for values with no matches. It also provides
a small security leakage because a future search leaks how many
items were deleted. As a result, Arx-Eq runs a cleanup procedure
after each deletion. As a performance optimization, one can run a
cleanup procedure when a search query for a valuev indicates more
than a threshold of missing counters, relaxing security slightly.
Cleanup.The server proxy tells the client proxy howmanymatches
were found for a search, say ct. The client proxy updates counter[v]
with ct, chooses a new key k ′ for v , and generates new tokens as
in Fig. 4: T ′00, . . . , T

′
ct using k

′. It gives these tokens to the server,
which replaces the fields found matching with these.

In this case, the client proxy does as much work as the number
of matches for v . If the search query filters only on age, the proxy
does as much work as the result set. If the query had additional
filters outside of age, the proxy does more work than the result set,
which is not ideal. This case might be rare if deletes are not common.
Nevertheless, avoiding this case is interesting future work.

6.4 Arx-Eq counter map

We now discuss the implications of storing the counter map of
Arx-Eq at the server or at the client proxy. While the counter map
can be stored encrypted at the server and still provide our strong
guarantees against a snapshot attacker, we recommend storing it
at the client for increased security against the persistent attacker.
Countermap at server. The counter map can be stored encrypted
at the server. An entry of the sortv → ct becomes EQuniquek∗1 (v ) →
EQuniquek∗2 (ct), where k

∗
1 and k∗2 are two keys derived from the

master key, used for the counter map. When encrypting a value in
a document or searching for a value v , the client proxy first fetches
the encrypted counter from the server by providing EQuniquek∗1 (v )
to the server. Then, the algorithm proceeds the same as above.

To avoid leaking the number of distinct fields, Arx pads the
counter map to the number of documents in the relevant collection.
The security of this scheme satisfies Arx’s goal in §3: a stolen data-
base remains encrypted with semantic security and leaks nothing
other than size information.
Counter map at client. However, we recommend keeping the
counter map at the client proxy for added security. This approach
provides higher security against a persistent attacker, who observes
access patterns over time beyond stealing a snapshot of the database.
For every newly inserted value, the attacker sees which entry of

the counter map is accessed and which document is inserted in
the database. In this way, the attacker can compute the number of
times each entry appears in the database and which documents it
corresponds to. Even though the encryption hides the value of the
entry, if an attacker manages to watch for a sufficiently long time,
sensitive frequency information can leak. Storing the counter map
at the client hides entirely such correlations. For each insert query,
the only access pattern is inserting that document.

Moreover, there are many fields for which the counter map is
very small (e.g. gender, age, letter grades). Furthermore, when all
values are unique (the maximum size for a counter map), Arx-Eq
defaults to the regular index built over EQunique encryptions, not
needing any counter map. The case when there are many distinct
values with few repetitions is less ideal, and we implement an
optimization for this case: to decrease the size of the counter map,
Arx groups multiple entries into one entry by storing their prefixes.
As a tradeoff, the client proxy has to filter out some results.

7 AGGREGATION QUERIES USING ARX-AGG

We now explain Arx’s aggregation over the encrypted indices. It is
based on AES and is faster than homomorphic encryption schemes
like Paillier [70]. Many aggregations happen over a range query,
such as computing the average days in hospital for people in a
certain age group. Arx computes the average by computing sum
and count at the server, and then dividing them at the client proxy.
Hence, let’s focus on the query: select sum(daysInHospital)
from patients where 70 ≤ age ≤ 80.

The idea behind aggregations in Arx is inspired from literature
on authenticated data structures [59]. This work targets integrity
guarantees (not confidentiality), but interestingly, we use it for
computations on encrypted data. Consider the Arx-Range index in
Fig. 3 built on age. At every node N in the tree, we add the partial
aggregate corresponding to the subtree of N . For the query above,
N contains a partial sum of daysInHospital corresponding to the
leaves under N . The root node thus contains the sum of all values.
This value is stored encrypted with BASE.

When the server needs to compute the sum over an arbitrary
range, such as [70, 80], the server locates the edges of the range as
before, and then it identifies a perfectly covering set. Note that this
set of nodes is logarithmic in the size of the index. For each node in
the covering set, the server returns the encrypted aggregates of all
its children and the encrypted value of the node itself to the client
proxy, which decrypts them and sums them up.

In the case of (1) inserting/deleting a document, or (2) modifying
a field having an aggregate, the partial sums on the path from N to
the root need to be updated, where N is the node corresponding
to the changed document. In the second case, the client also needs
to repair the path in the tree, so the partial sum update happens
essentially for free.

This aggregation strategy supports any aggregation function of
the form

∑
F (doc ) where F is an arbitrary function whose input is

a document, as explained in §2.3. For aggregates over fields with
an Arx-Eq index, we have a similar strategy to the aggregates over
a range, but we do not describe it here due to space constraints. For
all other cases, we use AGG . However, the number of such cases is
reduced significantly.
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8 JOINS USING ARX-JOIN

We now describe how Arx supports a common class of join opera-
tions, namely, foreign-key joins. Arx extends Arx-Eq or Arx-Range
for this purpose. This assumes that the join contains:

select [. . . ] from C1 join C2
on C1.fkey = C2.ID
where clause (C1) [and eq(C2)]

where C1 and C2 are the two collections being joined, fkey is the
foreign key in C1 pointing to the primary key ID in C2, and clause
is a predicate that can be evaluated using an Arx-Eq or Arx-Range
index. The query may additionally filter the joined documents in
C2 using equality operations, denoted by eq(C2).
Arx-Eq-based joins. Consider an example with collection C2 hav-
ing a primary key ID, and collection C1 having a field age with
Arx-Eq, and diagnosis which is a foreign key pointing to C2.ID.

The primary key in the secondary collection C2.ID is encrypted
with EQunique as before. Consider inserting a document with age
10 and diagnosis ‘flu’ in C1, and let’s discuss how the client proxy
encrypts this pair. Since foreign keys are not unique, C1.diagnosis
is encrypted with BASE. Additionally, to perform the join, the client
proxy computes an encrypted pointer for C1.diagnosis. When de-
crypted, this pointer will point to the appropriate encrypted C2.ID.
Instead of using one key for Arx-Eq, the client proxy now uses two
keys k1 and k2. It generates a token for each key as before: t1 and
t2. The client proxy includes t1 in the document as before, and uses
t2 to encrypt the diagnosis ‘flu’ as in: J = BASEt2 (EQunique(‘flu’)).
J will help with the join. Hence, upon insert, the pair (10, ‘flu’)
becomes (BASE(10), t1, BASE(‘flu’), J ). Note that the client does not
add t2 to the document: this prevents an attacker from decrypting
the join pointer and performing joins that were not requested.

Now consider the join query: select [. . .] from C1 join C2
on C1.diagnosis = C2.ID where C1.age = 10. To execute this
query, the server proxy computes t1 and t2 for the age of 10, as
usual with Arx-Eq. It locates the documents of interest using t1, and
then uses t2 to decrypt J and obtain EQunique(‘flu’). This value is
a primary key in C2, and the server simply does a lookup in C2.

The where clause of the query may additionally filter docu-
ments in C2 using an equality predicate, e.g. where age = 10
and C2.symptom = 'fever'. To filter the joined documents by
symptom, Arx employs the EQ protocol for equality checks as de-
scribed in §4. Note that this additional filtering cannot make use of
an index; hence, it is restricted to equality predicates and may not
contain range operations.
Arx-Range-based joins. Arx employs a different strategy in case
the where clause of the join query requires an Arx-Range index for
execution, e.g. where C1.age > 10. In such a scenario, Arx-Join’s
tokens for C1.age cannot be computed as described above.

Instead, the foreign key values encrypted with BASE are directly
added to the nodes of the Arx-Range index over C1.age, which
already contain the encrypted primary keys of documents in C1 (as
described in §??). While traversing the index in order to resolve
the where clause, the server fetches the encrypted foreign keys as
well from the nodes of interest, and sends them to the client proxy
for decryption as with regular Arx-Range. The client decrypts the
encrypted foreign keys, re-encrypts them with EQunique, shuffles

them, and returns them to the server. The server then uses these
values to locate the corresponding documents in C2, and performs
the join. Note that this strategy does not bring any extra round
trips between the proxies.
Updates. The semantics of updates remain unchanged in the pres-
ence of Arx-Join. Updates to the foreign key C1.fkey simply update
the underlying index, Arx-Eq or Arx-Range. Updates to C2.ID are
also straightforward, and do not affect the pointers in C1. This is
because ID is a primary key in C2 and its values are unique.

9 ARX’S PLANNER

Arx’s planner takes as input a set of query patterns, Arx-specific
annotations (optionally), and a list of regular indices, and produces
a data encryption plan, a list of Arx-style indices to build, and a
query plan for each pattern.

9.1 Index planning

Before deciding what index to build, note that Arx-Range and
Arx-Eq support compound indices, which are indices on multiple
fields. For example, an index on (diagnosis, age) enables a quick
search for diagnosis = 'flu' and age ≥ 10. Arx enables these
by simply treating the two fields as one field alone. For example,
when inserting a document with diagnosis= 'flu', age = 10,
Arx merges the fields into one field 'flu' | | 00010, prefixing each
value appropriately to maintain the equality and order relations,
and then builds a regular Arx index.

When deciding what indices to build, we aim to provide the
same asymptotic performance as the application admin expects: if
she specified an index over certain fields, then the time to execute
queries on those fields should be logarithmic and not require a
linear scan. At the same time, we would like to build few indices to
avoid the overhead of maintaining and storing them.

Deciding what indices to build automatically is challenging be-
cause (1) there is no direct mapping from regular indices to Arx’s
indices, and (2) Arx’s indices introduce various constraints, such
as:
• A regular index serves for both range and equality operations.

This is not true in Arx, where we have two different indices
for each operation. We choose not to use an Arx-Range index
for equality operations because of its higher cost and different
security.

• Unlike a regular index, a compound Arx-Eq index on (a,b) can-
not be used to compute equality on a alone because Arx-Eq
performs a complete match.

• A range or order-by-limit on a sensitive field can be computed
only via an Arx-Range index, so it can no longer be computed
after applying a separate index.
All these are further complicated by the fact that the application

admin can explicitly specify certain fields to be nonsensitive (as
described in §2.2), and simultaneously declare compound indices
on a mixture of fields, both sensitive and not. Similarly, queries can
have both sensitive as well as nonsensitive fields in a where clause.

As a consequence of our performance goal and these constraints,
interestingly, there are cases when Arx builds an Arx-Range index
on a composition of a nonsensitive and a sensitive field. Consider,
for example, that the developer built an index on a, a nonsensitive
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field, and wants to perform a query containing where a = and
s ≥, where s is sensitive. The developer expects the DB to filter
documents by a rapidly based on the index, and then, to filter the
result by “s ≥”.

If we follow the straightforward solution of building an Arx-
Range index on s alone, the resulting asymptotics are different.
The DB will filter by s and then, it will scan the results and filter
them by a, rendering the index on a useless. The reason the devel-
oper specified an index on a might be that performance is better
if the server filters on “a =” first; hence, the new query plan could
significantly affect the performance of this query especially if the
Arx-Range index returns a large number of matches. To deliver the
expected performance, Arx builds a composite Arx-Range index
on (a, s ). Note that this is beneficial for security too because the
server will not learn which documents match one filter but not the
other filter: the server learns only which documents matched the
entire where clause in an all-or-nothing way.

Despite all these constraints, our index planning algorithm is
quite simple. It also applies to queries that havemultiple query plans
using different indices, in which case it maintains the asymptotics of
every query plan. The index planner runs in two stages: per-query
processing and global analysis. Only the where clauses (including
order-by-limit operations) matter here. The first stage of the planner
treats sensitive and nonsensitive fields equally.
Example: For clarity, we use three query patterns as examples. Their
where clauses are:W1: “a = and b =”,W2: “ x = and y ≥ and z =”.
The indices specified by the developer are on x and (a,b).

Stage 1: Per-query processing. For each where clauseWi , extract
the set of filters Si that can use the indices in a regular database.
Example: ForW1, S1 = {(a =,b =)} and forW2, S2 = {(x =)}.

Then, ifWi contains a sensitive field with a range or order-by-
limit operation, append a “≥” filter on this field to each member
of Si , if the member does not already contain this. Based on the
constraints in §2.3, a where clause cannot have more than one such
field. Example: ForW1, S1 = {(a =,b =)}, and forW2, S2 = {(x =
,y ≥)}.

Stage 2: Global analysis. Union all sets S = ∪iSi . Remove any
memberA ∈ S if there exists a member B ∈ S such that an index on
B automatically implies an index on A. The concrete conditions for
this implication depend on whether the fields involved are sensitive
or not, as we now exemplify.
Example: If a and b are nonsensitive, and S contains both (a =,b =)

and (a =,b ≥), then (a =,b =) is removed. If all of a, b and c are
sensitive and S contains both (a =,b =, c ≥) and (a =,b ≥), then
(a =,b ≥) is removed. If b and y are sensitive (a,x , z can be either
way), for S above, the indices Arx builds are: Arx-Eq (a,b) and
Arx-Range (x ,y).

One can see why our planner maintains the asymptotic perfor-
mance of the developer’s index specification: it ensures that each
expression that was sped up by an index remains sped up. In §11,
we show that the number of extra indices Arx builds is modest and
does not blow up in real applications.

9.2 Data layout

Next, laying out the data encryption plan is straightforward:

• All values of a sensitive field are encrypted with the same key,
but this key is different from field to field.

• For every aggregation in a query, decide if the where clause in
this query can be supported entirely by using Arx-Range or Arx-
Eq. Concretely, the where clause should not filter by additional
fields not present in the index. If so, update the metadata of
the respective index to follow our index aggregation strategy
described in §7. If not, encrypt the respective fields with AGG if
the aggregate requires the computation of a sum.

• For every sensitive field projected by at least one query, encrypt
it with BASE, because EQ cannot decrypt.

• For every query pattern, if the where clause Wi performs an
equality on a field that is not part of every element of Si , encrypt
the field with EQ . The reason is that at least one query plan will
need to filter this field by equality without an index.

10 IMPLEMENTATION

While the design of Arx is decoupled from any particular DBMS, we
implemented our prototype for MongoDB 3.0, one of the most pop-
ular NoSQL data stores. Arx’s implementation consists of ∼11.5K
lines of Java, and ∼600 lines of C/C++ code. We used the Netty I/O
framework [7] to implement Arx’s proxies. Additionally, we imple-
mented a C++ library for garbled circuits, ArxGarble, in ∼1200 LoC.
We plan to release the source code of both Arx and ArxGarble.

11 EVALUATION

We now show that Arx supports real applications with a modest
performance overhead.

11.1 Functionality

To understand if Arx supports real applications, we evaluate Arx on
seven existing applications built on top of MongoDB. We manually
inspected the source code of each application to obtain the list of
unique queries issued by them, and cross-verified the list against
query traces produced during an exhaustive run of the application.
All these applications contain sensitive user information. Some
fields are clearly sensitive (heart rate, private messages), but other
fields are less clearly so, such as timestamps. Nevertheless, Arx
encrypts all fields in these applications, which is the default in Arx.

Fig. 5 summarizes our results.With regard to unsupported queries
across the applications, 4 of the 11 were due to timestamps, which
are less sensitive in nature (and might therefore be explicitly speci-
fied as nonsensitive by the application admin). The limitation was
the number of range/order operations Arx allows in the query,
as explained in §2.3. For NodeBB, the two unsupported queries
performed text searches, and for Leanote, the five queries were
evaluating regular expressions on fields, both of which Arx cannot
support. Nevertheless, these are only a small fraction of the total
queries issued, which are tens to hundreds in number. In general,
the table shows that Arx can support almost all the queries issued
by real applications. In cases where an application contains queries
that are not supported by Arx, the application admin should con-
sider whether the application needs the query in that form and
if she can adjust it (e.g. by removing a filter that is not necessary
or that can be executed in the application). The admin could also
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Application Examples of fields

Unsupported queries No. of

Arx-Eq

No. of

Arx-Range

Total indices

Total Excl. timestamps Vanilla Arx

ShareLaTeX [12] document lines, edits 1 – 12 4 12 16
Uncap (medical) [14] heart rate, medical tests – – 0 2 2 2
NodeBB (forum) [8] posts, comments 2 2 13 4 12 17
Pencilblue (CMS) [9] articles, comments 3 – 46 27 70 73
Leanote (notes) [6] notes, books, tags 5 5 64 28 69 92
Budget manager [3] expenditure, ledgers – – 5 0 5 5
Redux (chat) [10] messages, groups – – 3 0 3 3

Figure 5: Examples of applications supported by Arx: examples of fields in these applications (Arx encrypts all fields in the

applications); the number of queries not supported by Arx when all fields were considered sensitive, and when timestamps

were excluded; how many Arx-specific indices the application requires; and the total number of indices the database builds

in the vanilla application and with Arx. Since Arx-Agg is built on Arx-Eq and Arx-Range, we do not count it separately.

Scheme Enc. Dec. Token Operation
BASE 0.327 0.13 – –
EQ 4.998 – 2.353 Match: 2.368

EQunique 0.012 0.047 – Equality: ∼0
AGG 16,254 15,116 – Sum: 8

Figure 6: Microbenchmarks of cryptographic schemes used

by Arx in µs

consider if the unsupported data field is nonsensitive and mark it
as such, but this should be done with care.

The table also shows that though Arx’s index planner increases
the number of indices by 20%, this number does not blow up. The
main reason is that the number of fields that both have order queries
and are not indexed by the application is small.

11.2 Performance evaluation setup

To evaluate the performance of Arx, we used the following setup.
Arx’s server proxy was collocated with MongoDB 3.0.11 on 4 logical
cores of a machine with two 2.3GHz Intel E5-2670 Haswell-EP 12-
core processors and 256GB of RAM. Arx’s client proxywas deployed
on 4 logical cores of an identical machine. A separate machine with
four 2.0GHz Intel E7540 Nehalem 6-core processors and 256GB of
RAM was used to run the clients. In throughput experiments, we
ran the clients on all 48 logical cores of the machine to measure the
server at maximum capacity. All three machines were connected
over a 1Gb Ethernet network.

We start the evaluation with low level microbenchmarks and
work our way to end-to-end experiments.

11.3 Encryption schemes microbenchmarks

The cryptographic schemes used by Arx are efficient, as shown in
Fig. 6. The reported results are the median of a million iterations.

11.4 Performance of Arx-Eq

The Arx-Eq protocol encrypts a value v as (BASE(v ), t ), where t
is a token for the value computed using the search token tree as
described in §6. The time to compute t is directly proportional to
the height of the tree, involving a hash computation at each level.
We evaluate the time taken to compute t for different tree heights,

Height Token Cover Expansion
8 3.7 9.5 131.9
10 4.6 14.5 542.3
12 5.5 20.5 2164.9

Figure 7: Microbenchmarks of Arx-Eq operations in µs

and report the results as the median of a 100K iterations in Fig. 7.
The results show that Arx-Eq encryption is efficient.

To search for v , the client proxy computes the covering set of
all tokens and sends it to the server. The computation depends
on the number of existing tokens for v , which ranges from 1 to
2h where h is the height of the tree. We compute the cover for a
randomly selected number of tokens, and report the median time
over 100K iterations. The server proxy searches for v by expanding
the covering set into all possible tokens. Fig. 7 shows that the
operations are efficient, and that the client proxy does little work
in comparison to the server.

We now evaluate the overall performance of Arx-Eq (without
the optimization for unique values) using relevant queries issued
by ShareLaTeX. These queries filter by one field using Arx-Eq,
allowing us to focus on Arx-Eq. We first loaded the database with
100K documents representative of a ShareLaTeX workload.

Fig. 8 compares the read throughput of Arx-Eq with a regular
MongoDB index, when varying the number of duplicates per value
of the indexed field. The Arx-Eq scheme expands a query from
a single equality clause into a disjunction of equalities over all
possible tokens. The number of tokens corresponding to a value
increases with the number of duplicates. The DB server essentially
looks up each token in the index. In contrast, a regular index maps
duplicates to a single reference and can fetch them all in a scan. At
the same time, both indices need to fetch the documents for each
primary key identified as amatching, which constitutes a significant
part of the execution time. Overall, Arx-Eq incurs a performance
penalty of 55% in the worst case, of which ∼8% is due to Arx’s
proxy. Further, when all fields are unique, the added latency due to
Arx-Eq is small—1.13ms as opposed to 0.94ms for MongoDB. As
the number of duplicates increases, the latency of both MongoDB
and Arx increase in similar proportions—at 100 duplicates, Arx’s
latency is 42.1ms, while that of MongoDB is 18.8ms.
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Figure 8: Arx-Eq read throughput with

increasing no. of duplicates.
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Figure 9: Arx-Eq write throughput with

increasing no. of duplicates.
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Figure 10: Arx-Range latency of reads

and writes.

Fig. 9 compares the write throughput of Arx-Eq with increasing
number of duplicates. The write performance of a regular B+Tree
index slowly improves with increased duplication, as a result of a
corresponding decrease in the height of the tree. In contrast, writes
to an Arx-Eq index are independent of the number of duplicates
by virtue of security: each value looks different. Further, since
each individual insert requires the computation of a single token (a
constant-time operation), the write throughput of Arx-Eq remains
stable in this experiment. As a result, the net overhead grows from
18% (when fields are unique) to 25% when there are 100 duplicates
per value.

Latency follows a similar trend and remains stable for Arx-Eq at
∼3.3ms. For a regular MongoDB index, the latency slowly improves
from ∼2.7ms to ∼2.5ms as the number of duplicates grows to 100.

11.5 Performance of Arx-Range

Our garbled circuits are implemented in AES, which takes advan-
tage of existing hardware implementations. For a 32-bit value, the
garbled circuit is 3088 bytes long, the time to garble is ∼19.8K cy-
cles and the time to evaluate is ∼7.8K cycles. For a 128-bit value,
the circuit is ∼12.3KB in size, the time to garble is ∼70.1K cycles
(0.03ms) and the time to evaluate is ∼29.1K cycles.

We now evaluate the latency introduced by Arx-Range. We
pre-inserted 1M values into the index, and assumed a length of
128 bits for the index keys, which is sufficient for composite keys.
We cached the top 1000 nodes of the index at the client proxy,
which amounted to a mere 88KB of memory. We subsequently
evaluated the performance of different operations on the index.
Fig. 10 illustrates the latency of each operation, divided into two
parts: (1) the time taken to perform the operation, and (2) the time
taken to repair the index. The generation of fresh garbled circuits
in order to repair the index contributes the most towards latency.

Range queries cost more than writes because the former traverse
two paths in the index (for bounded queries), while the latter tra-
verse a single path. The latency for a range query is ∼6ms. We note
that using the strawman in §5.1, one incurs a roundtrip overhead
for each node in the path, which is roughly as long our entire query.
Fig. 10 also highlights the improvement when the index can be opti-
mized for monotonic inserts, whichwas common in the applications
we evaluated. In fact, all three Arx-Range indices maintained for
ShareLaTeX could be optimized for monotonic inserts, since the
indexed fields included timestamps and version numbers.

11.6 Performance of Arx-Agg

Computing an aggregate over a rangewith Paillier as in CryptDB [76]
takes significantly longer than with Arx. In Arx, this cost is essen-
tially zero because traversing the index for a range query auto-
matically computes the cover set. In CryptDB, one has to do a
homomorphic multiplication for every value in the range. As a
result, aggregating over a range size of 10, 000 values, Arx takes ∼0
ms for the aggregate and CryptDB takes 80ms. With the cost of the
range, Arx is 13 times faster.

11.7 Performance of Arx-Join

Arx-Join builds on top of Arx-Eq and Arx-Range. As a result,
the performance of joins is closely tied to the performance of the
underlying index. In this section, we report only on the additional
performance overhead Arx-Join brings.

For joins based on Arx-Eq, the client proxy computes two sets
of covers instead of one, thereby incurring an additional latency
of 14.5µs for a token tree of height 10 (Fig. 7). The server proxy
expands the additional set, and uses it to decrypt the foreign key
pointers. Therefore, the latency at the server increases by (i) the
cost of expanding the second covering set (Fig. 7), and (ii) the cost
of decrypting the foreign key pointers in the filtered documents
(Fig. 6). As a result, a query that joins 10, 000 documents increases
the latency of Arx-Eq by 542.3µs +10, 000 × 0.13µs = 2.38ms at the
server.

Joins over Arx-Range are executed by adding the encrypted
foreign key pointers to the index nodes, which are sent to the client
proxy for decryption. Such joins increase the latency of Arx-Range
by the time taken by the client proxy to decrypt the foreign key
pointers. As a result, a join over 10, 000 documents takes 10, 000 ×
0.13µs = 1.3ms longer.

11.8 Comparison to CryptDB

Comparing functionality in a strict sense, Arx supports fewer queries
than CryptDB, but we find that their functionalities are neverthe-
less comparable and that Arx also enables a rich class of applica-
tions as shown above. Arx does not support group-by operations
(for security issues), arbitrary conjunctions of range filters, and
more generic joins, supported by CryptDB. For example, CryptDB
supports all queries in the TPC-C benchmark [13], a widely used
industry benchmark, while Arx supports 30 out of 31 queries.

12



��

�����

�����

�����

�����

������

�
���������

�
�����

�
������

�
������

�
������

���� ����
���� ���� ����

�
�
��
�
�
�
�
�
��
��
�
�
��
��
�

������� ���

Figure 11: ShareLaTeX performance

with Arx’s client proxy on varying cores
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Figure 12: ShareLaTeX performance

with increasing no. of client threads
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Figure 13: YCSB throughput for differ-

ent workloads.

For performance, we cannot compare Arx to CryptDB directly
because CryptDB is implemented on MySQL and applications vary.
On one hand, CryptDB’s order queries via order-preserving en-
cryption are faster than Arx’s, but this scheme is significantly less
secure. On the other hand, Arx’s aggregate over a range is an order
of magnitude faster than CryptDB’s for the same security, as evalu-
ated in §11.6. Overall, Arx is a heavier solution due to the significant
extra security, but it remains in the same category as CryptDB in
terms of the performance impact it has on applications: both Arx
and CryptDB report a throughput overhead on the order of 10%,
and an added latency on the order of milliseconds per operation.

11.9 End-to-end evaluation

In this section, we evaluate Arx on ShareLaTeX and YCSB.

Evaluation on ShareLaTeX. We evaluate the end-to-end over-
head of Arx using ShareLaTeX [12], a popular web application
for real-time collaboration on LaTeX projects, that uses MongoDB
for persistent storage. We chose ShareLaTeX because it uses both
of Arx’s indices, it has sensitive data (documents, chats) and is a
popular application. ShareLaTeX maintains multiple collections in
MongoDB corresponding to users, projects, documents, document
history, chat messages, etc. We considered all the fields in the appli-
cation to be sensitive, which is the default in Arx. The application
was run on four cores of the client server.

Before every experiment, we pre-loaded the database with 100K
projects, 200K users, and other collections with 100K records each.
Subsequently, using Selenium (a tool for automating browsers [11]),
multiple clients launch browsers in parallel and collaborate on
projects, continuously editing documents and exchanging mes-
sages via chat. Fig. 11 shows the throughput of ShareLaTeX in a
vanilla deployment with regular MongoDB, compared to its perfor-
mance with Arx in various configurations. The client proxy is either
collocated with the ShareLaTeX application sharing the same four
cores, or deployed on extra and separate cores. The application’s
throughput declines by 29% when the client proxy and ShareLaTeX
are collocated, but the performance improves considerably when
two separate cores are allocated to Arx’s client proxy, in which case
the reduction in throughput stabilizes at a reasonable 10%.

Fig. 12 compares the performance of Arx with increasing load
at the application server, when four separate cores are allocated
to Arx’s client proxy. It also shows the performance of MongoDB
with the Netty [7] proxy without the Arx hooks. Note that each

client thread issues many requests as fast as it can, bringing a load
equivalent to many real users. At peak throughput with 40 client
threads and 100% CPU load at the application, the reduction in
performance owing to Arx is 11%, of which 8% is due to Arx’s
proxy, and the remaining 3% due to Arx’s encryption and indexing
schemes.

Finally, the latency introduced by Arx is modest in comparison to
the latency of the application. Under conditions of low stress with
16 clients, performance remains bottlenecked at the application,
and the latency added by Arx is negligible, which increases from
an average of 257ms per operation to 258ms. At peak throughput
with 40 clients, the latency of vanilla ShareLaTeX is 343ms, which
grows by 12% to 385ms in the presence of Arx, having marginal
impact on user experience.

In sum, Arx brings a modest overhead to the overall web appli-
cation. There are two main reasons for this. First, web applications
have a significant overhead themselves at the web server. Second,
even though Arx-Range is not cheap, Arx-Range is just one oper-
ation out of a set of multiple operations Arx runs, with the other
operations being faster and overall more common, such as Arx-Eq
and the building blocks in §4.

YCSB Benchmark. Since Arx is a NoSQL database, we also evalu-
ate its overhead on the YCSB benchmark [31] running against the
client proxy. We first loaded the database with 1M documents. Arx
considers all fields to be sensitive by default, including the primary
key. Hence, the primary key has an Arx-Eq index and the rest of
the fields are encrypted with BASE.

Fig. 13 shows the average performance of Arx versus vanilla
MongoDB, across different workloads with varying proportions of
reads and writes. In the figure, “R” refers to proportion of reads, “U”
to updates, “I” to inserts, and “RMW” to read-modify-write. The
reduction in throughput is higher for read-heavy workloads as a
result of the added latency due to sequential decryption of the result
sets. Overall, the overhead of Arx ranges from 3%-9%, based on the
workload. Increase in latency due to Arx is also unremarkable—for
example, average read latency increases from 2.31ms to 2.43ms
under peak throughput, while average update latency increases
from 2.36ms to 2.47ms in the 50% read-50% update workload. Arx’s
performance on YCSB is high because YCSB conforms to Arx-Eq’s
optimized case when fields are unique. In general, this shows that
indexing primary keys is fast with Arx.
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11.10 Storage

Arx increases the amount of data stored in the database for the fol-
lowing reasons: (1) ciphertexts are larger than plaintexts for certain
encryption schemes, and (2) additional fields are added to docu-
ments in order to enable certain operations, e.g. equality checks
using EQ , or tokens for Arx-Eq indexing. Further, Arx-Range
indices are larger than regular B+Trees, because each node in the
index tree stores garbled circuits. Vanilla ShareLaTeX with 100K
documents per collection required 0.56GB of storage in MongoDB,
with an additional 48.7 MB for indices. With Arx, the data storage
increased by ∼1.9× to 1.05GB for the reasons described above. The
application required three compound Arx-Range indices, which to-
gether occupied 8.4GB of memory at the server proxy while indices
maintained by the database occupied 56.5MB. This resulted in a net
increase of ∼16× at the DB server, for storing the encrypted data
along with Arx’s indices. However, there remains substantial scope
for optimizing the size of the indices in our implementation. For ex-
ample, a serialized dump of the three Arx-Range indices occupied
3.1GB of memory. Moreover, our choice of workload did not include
large data items such as images or videos, which typically would
not require indexing by Arx-Range. In such cases, the overhead
imposed by Arx would proportionately decrease.

Finally, the application required two Arx-Eq indices for which
counter maps were maintained at the client proxy, which in turn
occupied 8.6MB of memory, illustrating that Arx-Eq imposes mod-
est storage overhead at the application server. Moreover, the values
inserted into the counter maps were distinct; in case of duplicates,
the memory requirements would be proportionately lower.

12 RELATEDWORK

We divide related work into two categories: (1) we compare Arx
with state-of-the-art EDBs, and (2) we discuss protocols related to
Arx’s building blocks, Arx-Eq and Arx-Range.

12.1 Encrypted databases

Early approaches [44] used heuristics instead of encryption schemes
with provable security. Regarding PPE-based EDBs [19, 71, 76, 83],
we have already compared Arx against them extensively in §1 and
§3.2. Seabed [71] hides frequency in some cases, but still uses PPE.
EDBs using semantically-secure encryption. This category is
the most relevant to Arx, but unfortunately, there is little work
done in this space.

First, the line of work in [26, 35] is based on searchable encryp-
tion. The main drawback is that it is too restricted in functionality.
It does not support (i) joins; (ii) order-by-limit queries, which are
commonly used for pagination (more common than range queries
in TPC-C [13]); and (iii) aggregates over a range because the range
identifies a superset of the relevant documents for security, yielding
an incorrect aggregate. Further, inserts, updates and deletes are not
efficient as discussed in §12.2. Regarding security, while being sig-
nificantly more secure than PPE-based EDBs for a snapshot attacker,
for persistent attackers, they could leak more than PPE-based EDBs
because their range queries leak the number of values matching
sub-ranges as well as some prefix matching information—leakage
that is not implied by order. In Arx, we address all these aspects.
Similarly, concurrent works [47, 52] support equality-based queries

but are too restricted in functionality. They do not support range,
order-by-limit, or aggregates over range queries, and the former
does not support updates and inserts either.

Second, BlindSeer [72] is another EDB providing semantic secu-
rity. BlindSeer provides stronger security than Arx and even hides
the client query from the server through two-party computation.
The drawbacks of BlindSeer with respect to Arx are performance
and functionality. BlindSeer requires a high number of interactions
between the client and the server. For example, for a range query,
the client and the server need to interact for every data item in
the range, and a few times more, because tree traversal is inter-
active. If the range contains many values, this query is slow. In
Arx, there is no interaction in this case. Additionally, BlindSeer
does not handle inserts easily, and does not support deletes (also
needed for updates), which are crucial for the applications targeted
in Arx. BlindSeer’s Bloom filter approach is fundamentally not fit
for deletes/updates. It also does not handle aggregates over ranges
or order-by-limit.

12.2 Work related to our building blocks

Work related to Arx-Eq. Arx-Eq falls in the general category of
searchable-encryption schemes and builds on insights from this lit-
erature. While there are many schemes proposed in this space [24–
26, 32, 35, 45, 48, 54, 55, 67, 68, 79, 80], none of them meet the
following desired security and performance from a database in-
dex. Besides semantic security, when inserting a field, the access
pattern should not inform the attacker of what other fields the
field equals, and an old search token should not allow searching
on newly inserted data (forward privacy), both crucial in reducing
leakage [25]. Second, inserts, updates and deletes should be efficient
and should not cause reads to become slow. Arx-Eq meets all these
goals. Perhaps the closest prior work to Arx-Eq is [26]. This scheme
uses revocation lists for delete operations, which adds significant
complexity and overhead, as well as leaks more than our goal in
Arx: it does not have forward privacy and the revocation lists leak
various metadata. Work concurrent to Arx-Eq, Sophos [25] also
provides forward privacy, but Sophos uses expensive public key
cryptography, instead of symmetric key as in Arx.

Work related toArx-Range.There has been a significant amount
of work on order-preserving encryption (OPE) both in the research
community [15, 16, 21, 22, 46, 56, 60, 61, 69, 75, 84, 86] and in in-
dustry [17, 29, 77]. OPE schemes are efficient but leak a significant
amount of information [66]. Order-revealing encryption (ORE) pro-
vides semantic security [23, 27, 57]. The most relevant of these is
the construction by Lewi and Wu [57] that is more efficient than
Arx-Range because it does not need replenishment, but is also less
secure because it leaks the position where two plaintexts differ. As
a result, it is not strictly more secure than OPE.

13 CONCLUSION

We presented Arx, a practical and functionally-rich database system
that encrypts data only with semantically secure schemes. Arx
provides significantly stronger security than databases based on
property preserving encryption. It supports real applications with
a modest performance overhead.

14



REFERENCES

[1] 2016. Amazon Web Services: Overview of Security Processes. (2016). http:
//d0.awsstatic.com/whitepapers/Security/AWSSecurityWhitepaper.pdf.

[2] 2016. Google Cloud Platform: Security Whitepaper. (2016). https://cloud.google.
com/security/whitepaper.

[3] 2017. Budget Manager. (2017). https://github.com/kdelemme/budget-manager/.
[4] 2017. Chino.io: Security and Privacy for Health Data in the EU. (2017). https:

//chino.io/.
[5] 2017. iQrypt: Encrypt and query your database. (2017). http://iqrypt.com/.
[6] 2017. Leanote. (2017). https://leanote.com/.
[7] 2017. Netty Project. (2017). http://netty.io/.
[8] 2017. NodeBB. (2017). https://nodebb.org/.
[9] 2017. PencilBlue. (2017). https://pencilblue.org/.
[10] 2017. Redux. (2017). https://github.com/raineroviir/react-redux-socketio-chat/.
[11] 2017. Selenium. (2017). http://www.seleniumhq.org/.
[12] 2017. ShareLaTeX. (2017). https://www.sharelatex.com/.
[13] 2017. TPC-C Transation Processing Benchmark. (2017). http://www.tpc.org/

tpcc/.
[14] 2017. UNCAP: Ubiquitous iNteropable Care for Ageing People. (2017). http:

//www.uncap.eu/.
[15] Divyakant Agrawal, Amr El Abbadi, Faith Emekci, and Ahmed Metwally. 2009.

Database Management as a Service: Challenges and Opportunities. In Proceedings
of the 25th International Conference on Data Engineering (ICDE). Shanghai, China.

[16] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2004.
Order preserving encryption for numeric data. In Proceedings of the 2004 ACM

SIGMOD International Conference on Management of Data. Paris, France.
[17] George Weilun Ang, John Harold Woelfel, and Terrence Peter Woloszyn. 2012.

System and Method of Sort-Order Preserving Tokenization. US Patent Applica-
tion 13/450,809. (2012).

[18] C. R. Aragon and R. G. Seidel. 1989. Randomized search trees. In Proceedings of

the 30th Annual Symposium on Foundations of Computer Science (FOCS).
[19] Arvind Arasu, Ken Eguro, Raghav Kaushik, Donald Kossmann, Ravi Ramamurthy,

and Ramarathnam Venkatesan. 2013. A secure coprocessor for database applica-
tions. In Proceedings of the 23rd International Conference on Field Programmable

Logic and Applications (FPL). Porto, Portugal.
[20] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. 2012. Foundations of

Garbled Circuits. In Proceedings of the 19th ACM Conference on Computer and

Communications Security (CCS). Raleigh, NC.
[21] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. 2009.

Order-Preserving Symmetric Encryption. In Proceedings of the 28th Annual Inter-

national Conference on the Theory and Applications of Cryptographic Techniques

(Eurocrypt). Cologne, Germany.
[22] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. 2011. Order-

Preserving Encryption Revisited: Improved Security Analysis and Alternative
Solutions. In Proceedings of the 31st International Cryptology Conference (CRYPTO).
Santa Barbara, CA.

[23] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe
Zimmerman. 2014. Semantically Secure Order-Revealing Encryption: Multi-
input Functional Encryption Without Obfuscation. In Proceedings of the 33rd

Annual International Conference on the Theory and Applications of Cryptographic

Techniques (Eurocrypt).
[24] Christoph Bösch, Pieter Hartel, Willem Jonker, and Andreas Peter. 2014. A

Survey of Provably Secure Searchable Encryption. ACM Computing Surveys

(CSUR) (2014).
[25] Raphael Bost. 2016. Sophos - Forward Secure Searchable Encryption. In Pro-

ceedings of the 23rd ACM Conference on Computer and Communications Security

(CCS). Vienna, Austria.
[26] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk,

Marcel Rosu, and Michael Steiner. 2014. Dynamic Searchable Encryption in
Very-Large Databases: Data Structures and Implementation. In Proceedings of the

21st Network and Distributed System Security Symposium (NDSS). San Diego, CA.
[27] Nathan Chenette, Kevin Lewi, Stephen A. Weis, and David J. Wu. 2016. Practical

Order-Revealing Encryption with Limited Leakage. In Proceedings of the 23rd

International Conference on Fast Software Encryption (IACR-FSE).
[28] CipherCloud. 2017. Cloud Data Protection Solution. (2017). http://www.

ciphercloud.com.
[29] CipherCloud. 2017. Tokenization for Cloud Data. http://www.ciphercloud.com/

tokenization-cloud-data.aspx. (2017).
[30] Cloud Threat Intelligence. 2017. Skyhigh Cloud Security labs, Skyhigh Networks.

(2017). https://www.skyhighnetworks.com/.
[31] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2011. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of

the 2nd ACM Symposium on Cloud Computing (SOCC). Cascais, Portugal.
[32] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Search-

able symmetric encryption: improved definitions and efficient constructions.
In Proceedings of the 13th ACM Conference on Computer and Communications

Security (CCS ’06). 79–88.

[33] F. Betül Durak, Thomas M. DuBuisson, and David Cash. 2016. What Else is
Revealed by Order-Revealing Encryption?. In Proceedings of the 23rd ACM Con-

ference on Computer and Communications Security (CCS). Vienna, Austria.
[34] Michael Egorov and MacLane Wilkison. 2016. ZeroDB white paper. CoRR

abs/1602.07168 (2016). http://arxiv.org/abs/1602.07168.
[35] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel Rosu, and

Michael Steiner. 2015. Rich Queries on Encrypted Data: Beyond Exact Matches.
In Proceedings of the 20th European Symposium on Research in Computer Security

(ESORICS). Vienna, Austria.
[36] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. 2015. Black-Box Garbled RAM. In

Proceedings of the 56th Annual Symposium on Foundations of Computer Science

(FOCS).
[37] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. 2015.

TWORAM: Round-Optimal Oblivious RAM with Applications to Searchable
Encryption. (2015). Cryptology ePrint Archive, Report 2015/1010.

[38] O. Goldreich, S. Micali, and A. Wigderson. 1987. How to Play ANY Mental Game.
In Proceedings of the 19th ACM Symposium on Theory of Computing (STOC). New
York, NY.

[39] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation
on Oblivious RAMs. J. ACM (1996).

[40] Google. 2017. Encrypted BigQuery client. (2017). https://github.com/google/
encrypted-bigquery-client.

[41] Tim Greene. 2015. Biggest data breaches of 2015. (2015). http://www.
networkworld.com/article/3011103/security/biggest-data-breaches-of-2015.
html.

[42] Patrick Grofig, Martin Haerterich, Isabelle Hang, Florian Kerschbaum, Mathias
Kohler, Andreas Schaad, Axel Schroepfer, andWalter Tighzert. 2014. Experiences
and observations on the industrial implementation of a system to search over
outsourced encrypted data. In Lecture Notes in Informatics, Sicherheit.

[43] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and
Thomas Ristenpart. 2016. Leakage-Abuse Attacks against Order-Revealing
Encryption. Cryptology ePrint Archive, Report 2016/895. (2016). http:
//eprint.iacr.org/2016/895.

[44] Hakan Hacigumus, Bala Iyer, Chen Li, and Sharad Mehrotra. 2002. Executing SQL
over Encrypted Data in the Database-Service-Provider Model. In Proceedings of

the 2002 ACM SIGMOD International Conference on Management of Data. Madison,
WI.

[45] Warren He, Devdatta Akhawe, Sumeet Jain, Elaine Shi, and Dawn Xiaodong Song.
2014. ShadowCrypt: Encrypted Web Applications for Everyone. In Proceedings

of the 2014 ACM SIGSAC Conference on Computer and Communications Security.
1028–1039.

[46] Hasan Kadhem, Toshiyuki Amagasa, and Hiroyuki Kitagawa. 2010. MV-OPES:
Multivalued-Order Preserving Encryption Scheme: A Novel Scheme for Encrypt-
ing Integer Value to Many Different Values. IEICE Trans. on Info. and Systems

(2010).
[47] Seny Kamara and Tarik Moataz. 2016. SQL on Structurally-Encrypted Databases.

Cryptology ePrint Archive, Report 2016/453. (2016). http://eprint.iacr.org/.
[48] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic

searchable symmetric encryption. In Proceedings of the 19th ACM Conference on

Computer and Communications Security (CCS ’12). 965–976.
[49] Nikolaos Karapanos, Alexandros Filios, Raluca Ada Popa, and Srdjan Capkun.

2016. Verena: End-to-End Integrity Protection for Web Applications. In Proceed-

ings of the 37th IEEE Symposium on Security and Privacy (IEEE S&P).
[50] Georgios Kellaris, George Kollios, Kobbi Nissim, and AdamO’Neill. 2016. Generic

Attacks on Secure Outsourced Databases. In Proceedings of the 23rd ACM Confer-

ence on Computer and Communications Security (CCS). Vienna, Austria.
[51] Jeremy Kepner, Vijay Gadepally, Peter Michaleas, Nabil Schear, Mayank Varia,

Arkady Yerukhimovich, and Robert K. Cunningham. 2014. Computing onMasked
Data: A High PerformanceMethod for Improving Big Data Veracity. CoRR (2014).

[52] Myungsun Kim, Hyung Tae Lee, San Ling, Shu Qin Ren, Benjamin Hong Meng
Tan, and Huaxiong Wang. 2016. Better Security for Queries on Encrypted
Databases. Cryptology ePrint Archive, Report 2016/470. (2016). http://eprint.
iacr.org/.

[53] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. 2009. Im-
proved Garbled Circuit Building Blocks and Applications to Auctions and Com-
puting Minima. In Proceedings of the 8th International Conference on Cryptology

and Network Security (CANS).
[54] Kaoru Kurosawa. 2014. Garbled Searchable Symmetric Encryption. In Financial

Cryptography and Data Security (FC) - 18th International Conference. 234–251.
[55] Billy Lau, Simon P. Chung, Chengyu Song, Yeongjin Jang, Wenke Lee, and

Alexandra Boldyreva. 2014. Mimesis Aegis: AMimicry Privacy Shield-A System’s
Approach to Data Privacy on Public Cloud. In Proceedings of the 23rd USENIX

Security Symposium. 33–48.
[56] Seungmin Lee, Tae-Jun Park, Donghyeok Lee, Taekyong Nam, and Sehun Kim.

2009. Chaotic Order Preserving Encryption for Efficient and Secure Queries on
Databases. IEICE Trans. on Info. and Systems (2009).

15

http://d0.awsstatic.com/whitepapers/Security/AWS Security Whitepaper.pdf
http://d0.awsstatic.com/whitepapers/Security/AWS Security Whitepaper.pdf
https://cloud.google.com/security/whitepaper
https://cloud.google.com/security/whitepaper
https://github.com/kdelemme/budget-manager/
https://chino.io/
https://chino.io/
http://iqrypt.com/
https://leanote.com/
http://netty.io/
https://nodebb.org/
https://pencilblue.org/
https://github.com/raineroviir/react-redux-socketio-chat/
http://www.seleniumhq.org/
https://www.sharelatex.com/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
http://www.uncap.eu/
http://www.uncap.eu/
http://www.ciphercloud.com
http://www.ciphercloud.com
http://www.ciphercloud.com/tokenization-cloud-data.aspx
http://www.ciphercloud.com/tokenization-cloud-data.aspx
https://www.skyhighnetworks.com/
http://arxiv.org/abs/1602.07168
https://github.com/google/encrypted-bigquery-client
https://github.com/google/encrypted-bigquery-client
http://www.networkworld.com/article/3011103/security/biggest-data-breaches-of-2015.html
http://www.networkworld.com/article/3011103/security/biggest-data-breaches-of-2015.html
http://www.networkworld.com/article/3011103/security/biggest-data-breaches-of-2015.html
http://eprint.iacr.org/2016/895
http://eprint.iacr.org/2016/895
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


[57] Kevin Lewi and David J. Wu. 2016. Order-Revealing Encryption: New Construc-
tions, Applications, and Lower Bounds. (2016).

[58] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. 2010.
Authenticated Index Structures for Aggregation Queries. ACM Trans. Inf. System

Security (2010).
[59] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. 2010.

Authenticated Index Structures for Aggregation Queries. ACM Transactions on

Information and System Security 13, 4 (2010).
[60] Dongxi Liu and Shenlu Wang. 2012. Programmable Order-Preserving Secure

Index for Encrypted Database Query. In Proceedings of the 5th IEEE International

Conference on Cloud Computing (CLOUD). Honolulu, HI.
[61] Dongxi Liu and Shenlu Wang. 2013. Nonlinear order preserving index for

encrypted database query in service cloud environments. Concurrency and

Computation: Practice and Experience (2013).
[62] Ralph Merkle. 1979. Secrecy, authentication and public key systems / A certified

digital signature. Ph.D. Dissertation. Stanford University.
[63] Microsoft SQL Server 2016. 2017. Always Encrypted Database Engine. (2017).

https://msdn.microsoft.com/en-us/library/mt163865.aspx.
[64] Moni Naor and Vanessa Teague. 2001. Anti-persistence: History Independent

Data Structures. In Proceedings of the 33rd ACM Symposium on Theory of Com-

puting (STOC). Crete, Greece.
[65] Muhammad Naveed. 2015. The Fallacy of Composition of Oblivious RAM and

Searchable Encryption. Cryptology ePrint Archive, Report 2015/668. (2015).
http://eprint.iacr.org/2015/668.

[66] Muhammad Naveed, Seny Kamara, and Chares V.Wright. 2015. Inference Attacks
on Property-Preserving Encrypted Databases. In Proceedings of the 22nd ACM

Conference on Computer and Communications Security (CCS). Denver, CO.
[67] Muhammad Naveed, Manoj Prabhakaran, and Carl A. Gunter. 2014. Dynamic

Searchable Encryption via Blind Storage. In IEEE Symposium on Security and

Privacy, (SP). 639–654.
[68] Wakaha Ogata, Keita Koiwa, Akira Kanaoka, and Shin’ichiro Matsuo. 2013. To-

ward Practical Searchable Symmetric Encryption. In Advances in Information

and Computer Security - 8th International Workshop on Security, IWSEC. 151–167.
[69] Gultekin Özsoyoglu, David A. Singer, and Sun S. Chung. 2003. Anti-Tamper

Databases: Querying Encrypted Databases. In Proceedings of the 17th IFIP WG

11.3 Working Conference on Database and Applications Security (DBSec). Estes
Park, CO.

[70] Pascal Paillier. 1999. Public-key cryptosystems based on composite degree
residuosity classes. In Proceedings of the 18th Annual International Conference

on the Theory and Applications of Cryptographic Techniques (Eurocrypt). Prague,
Czech Republic.

[71] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ramachandran
Ramjee, Andreas Haeberlen, Harmeet Singh, Abhishek Modi, and Saikrishna
Badrinarayanan. 2016. Big Data Analytics over Encrypted Datasets with Seabed.
In Proceedings of the 12th Symposium on Operating Systems Design and Imple-

mentation (OSDI). Savannah, GA.
[72] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Se-

ung Geol Choi, Wesley George, Angelos Keromytis, and Steve Bellovin. 2014.
Blind Seer: A Scalable Private DBMS. In Proceedings of the 35th IEEE Symposium

on Security and Privacy (IEEE S&P).
[73] Fred Pennic. 2015. Anthem suffers the largest healthcare data

breach to date. (2015). http://hitconsultant.net/2015/02/05/
anthem-suffers-the-largest-healthcare-data-breach-to-date/.

[74] Raluca Ada Popa. 2014. Building Practical Systems that Compute on Encrypted

Data. Ph.D. Dissertation. MIT.
[75] Raluca Ada Popa, Frank H. Li, and Nickolai Zeldovich. 2013. An Ideal-Security

Protocol for Order-Preserving Encoding. In Proceedings of the 34th IEEE Sympo-

sium on Security and Privacy (IEEE S&P). San Francisco, CA.
[76] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Bal-

akrishnan. 2011. CryptDB: Protecting Confidentiality with Encrypted Query
Processing. In Proceedings of the 23rd ACM Symposium on Operating Systems

Principles (SOSP). Cascais, Portugal.
[77] Fahmida Y. Rashid. 2011. Salesforce.com Acquires SaaS Encryption Provider

Navajo Systems. eWeek.com (2011).
[78] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. 2015. Blind-

Box: Deep Packet Inspection over Encrypted Traffic. In Proceedings of the 26th

ACM Special Interest Group on Data Communication Conference (SIGCOMM).
[79] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. 2000. Practical Tech-

niques for Searches on Encrypted Data. In Proceedings of the 21st IEEE Symposium

on Security and Privacy (IEEE S&P). Oakland, CA.
[80] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. 2014. Practical Dy-

namic Searchable Encryption with Small Leakage. In 21st Annual Network and

Distributed System Security Symposium, NDSS.
[81] Emil Stefanov, Elaine Shi, and Dawn Song. 2012. Towards Practical Oblivi-

ous RAM. In Proceedings of the 19th Network and Distributed System Security

Symposium (NDSS). San Diego, CA.

[82] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: an extremely simple
oblivious RAM protocol. In ACM SIGSAC Conference on Computer and Commu-

nications Security. 299–310.
[83] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. 2013.

Processing Analytical Queries over Encrypted Data. In Proceedings of the 39th

International Conference on Very Large Data Bases (VLDB). Riva del Garda, Italy.
[84] Liangliang Xiao, I-Ling Yen, and Dung T. Huynh. 2012. Extending Order Pre-

serving Encryption for Multi-User Systems. Cryptology ePrint Archive, Report
2012/192. (2012).

[85] AndrewC. Yao. 1986. How to Generate and Exchange Secrets (Extended Abstract).
In Proceedings of the 27th Annual Symposium on Foundations of Computer Science

(FOCS).
[86] Dae Yum, Duk Kim, Jin Kim, Pil Lee, and Sung Hong. 2011. Order-Preserving

Encryption for Non-uniformly Distributed Plaintexts. In Intl. Workshop on Infor-

mation Security Applications.
[87] Samee Zahur, Mike Rosulek, and David Evans. 2015. Two Halves Make a Whole:

Reducing Data Transfer in Garbled Circuits using Half Gates. In Proceedings

of the 34th Annual International Conference on the Theory and Applications of

Cryptographic Techniques (Eurocrypt).
[88] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2015. Inte-

griDB: Verifiable SQL for outsourced databases. In Proceedings of the 22nd ACM

Conference on Computer and Communications Security (CCS). Denver, CO.

A FURTHER DESIGN DETAILS

A.1 Arx-Range Optimizations

A.1.1 Optimizing garbled circuit chaining. For performance we
do not compute the encoding function inside the garbled circuit.
Instead, we chain the garbled circuits together by augmenting each
garbled circuit with a transition table. The transition table aids in
translating an input label Ii for the current circuit to an input label
for the correct child circuit corresponding to the same bit value.
Note that the server should not be able to infer the underlying bit
value that the label corresponds to but nevertheless should be able
to translate it to the correct label for the next circuit.

The garbled circuit at each node first performs the comparison
a ≤ v , and outputs a key kL or kR based on the result of the
comparison.1

For each bit i of the input, the transition table stores four ci-
phertexts. Let I0i , I

1
i denote the i-th input labels in the encoding ea

for the current circuit; let L0i ,L
1
i be the corresponding labels for

the left child, and R0i ,R
1
i for the right child. The table stores the

four ciphertexts shown below. Here E denotes a double-key-cipher
implemented as E (A,B,X ) = O (A| |B) ⊕ X , where O is a random
oracle. Hence, without having both A and B, it is impossible to
learn any information about X . We note that there are many other
instantiations of such double-key-ciphers in the literature, with
different security guarantees under different assumptions but for
simplicity we just resort to a random oracle in this construction.

{
E (kL ,I

0
i ,L

0
i )

E (kL ,I
1
i ,L

1
i )

}

{
E (kR ,I

0
i ,R

0
i )

E (kR ,I
1
i ,R

1
i )

}

The values in the transition table are not
stored in a fixed order. Instead, the point-and-
permute technique [20] is employed, which
means that if the least significant bit of I0i is
0, the table entries are stored in the order as
written and otherwise switched. This way the
evaluator knows which ciphertext is the cor-

rect one without learning what bit value corresponds to the label.
A formal discussion follows in §B.1.

A.1.2 Concurrency. Arx-Range provides limited concurrency
because each index node needs to be repaired before it can be used
1This key is the label of the output wire in the instantiation of the scheme.
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Figure 14: Schematic diagram of a garbled comparison cir-

cuit

again. To provide a degree of concurrency, the client proxy stores
the top few levels of the tree. As a result, the index at the server
essentially becomes a forest of trees and accesses within each such
tree can be performed in parallel. At the same time, the storage at
the client proxy is very small because trees grow exponentially in
size with the number of levels. For example, for less than 40KB of
storage on the client proxy (which corresponds to about 12 levels of
the tree because the tree is not entirely full), there will be about 1024
nodes in the first level of the tree, so up to 1024 queries can proceed
in parallel. Queries to the same subtree still need to be sequential. A
common case for such queries are monotonic inserts. Fortunately,
for these, the optimization described in §5.3 avoids the tree traversal
and the repair. Of course, queries to another Arx-Range index or
to other parts of the database can proceed in parallel.

A.1.3 Garbled circuit design. One of the main drawbacks of gar-
bled circuits is that converting even a simple program to a circuit
often results in large circuits, and hence bad performance. We put
considerable effort into making our garbled circuits short and fast.
First, we used the short circuit for comparison from [53], which
represents comparison of n-bit numbers in n gates. Second, we
employ transition tables between two garbled circuits, to avoid
embedding the encoding information for a child circuit inside the
garbled circuit. Since the encoding information is large, this opti-
mization reduces the size of the garbled circuit by a factor of 128.
Third, we use the half-gates technique [87] to further halve the size
of the garbled circuit. Fourth, since all garbled circuits have the
same topology but different ciphertexts, we decouple the topology
from the ciphertext it contains. The server hardcodes the topology
and the client transmits only ciphertexts.

We now describe the design of our comparison circuit in greater
detail.

Short comparison circuit. An ℓ-bit comparison circuit takes
as input two ℓ-bit integers a = (aℓ−1, . . . ,a0),b = (bℓ−1, . . . ,b0)
represented in binary with the most significant bit first and outputs
(a < b), i.e. 1 if (a < b) and 0 if (a ≥ b). We use the comparison
circuit of [53] that, for comparing two ℓ-bit integers needs only ℓ
non-XOR gates, which is optimal. The ℓ-bit comparison circuit is
a concatenation of ℓ one-bit comparators. A one-bit comparator
takes as input three bits: one bit of a, one bit of b and a carry bit c .
The output z of the one-bit comparator is defined as follows:

z =



c a = b
1 a < b
0 a > b

The correct one-bit comparator circuit is implemented as z = b ⊕
((a ⊕ c ) ∧ (b ⊕ c )). The ℓ-bit comparator is just the concatenation
of ℓ one-bit comparators with the initial carry c0 = 0. The invariant
that holds in each step is that when the i-th one-bit comparator

is processed, the carry ci+1 = ((ai , . . . ,a0) < (bi , . . . ,b0)). Per
induction the final output cℓ+1 is hence correct.

Comparison against a constant. The circuits we are really inter-
ested in in our scheme are not generic comparison circuits but in
fact circuits that compare the input against a hardwired constant b.
To achieve this, we could garble a generic comparison circuit and
store the correct input labels for the bits of b along with it. But we
do not want to store the additional ℓ ciphertexts for the b-labels
as this would be a significant overhead. Instead we directly want
to garble a circuit that already represents the desired functionality.
In terms of the comparison circuit, the values of b are known in
advance and thus the one-bit comparator reduces to a single AND
gate if bi = 0 and a single NOR gate, if b = 1.

Though garbled circuits incur significant performance overheads in
general due to their size, this is not true in our setting. As a result
of our optimizations, a garbled 32-bit comparison circuit is only
1040 bytes in our implementation, which is as small as two Paillier
ciphertexts. Evaluating it takes only 64 fixed-key AES invocations
of which 32 come for free as they are independent and hence can
exploit instruction level parallelism. A single AES instruction has a
latency of 7 cycles on modern CPUs.

B PROOF PRELIMINARIES AND PROOFS

In this section, we first formalize the construction of relevant data
structures in Arx. We then prove the security of the individual
encryption schemes in our system, followed by the overall security
definition and proof sketch.

B.1 Branching Garbled Circuit Chains

Arx-Range makes use of a branching garbled circuit chain, which
we formally define in this section. Abstractly, this new crypto-
graphic primitive allows one to build a network of garbled circuits
where each node branches into other nodes and the output of the
garbled circuit inside every node determines which path to take.

We start by reminding the reader of the security definition of
a garbling scheme. In most settings where garbled circuits are
used, the circuit f is public. Circuit privacy can always be achieved
through a universal circuit but this incurs a significant performance
penalty. In Arx-Range, it is publicly known that the circuits are
comparison circuits, but it should remain secret which constant
those circuits compare against. To quantify the amount of informa-
tion that can be leaked without compromising security, we define
the XOR-topology of a circuit.

Definition B.1 (XOR-Topology). The XOR-topology Φxor ( f ) of a
circuit f is a function that maps the circuit f to a circuit where
every non-XOR gate is replaced with an AND gate.

Definition B.2 (Garbled Circuit Security).

• GCCircuit Privacy (gc-circuit-prv.simΦ): Intuitively, the
garbled circuit F should not reveal any more information
than Φ( f ). More concretely, there must exist a simulator S
that takes input (1λ ,Φ( f )) and whose output is indistin-
guishable from F generated the usual way.
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• GC Evaluation Privacy (gc-eval-prv.simΦ): Intuitively,
the collection (F ,X ) should not reveal any more informa-
tion about x than f (x ). More concretely, there must exist
a simulator S that takes input (1λ ,Φ( f ), f (x )) and whose
output is indistinguishable from (F ,X ) generated the usual
way.

We continue with the definition of a branching garbled circuit
chain:

Definition B.3 (BGCC). A branching garbled circuit chain is a
tuple of algorithms G = (Generate, Encode, Eval)

(F , e ) ← Generate(1λ , f , e0, e1)
On input the security parameter λ in unary, a boolean
circuit f , encoding information e0, e1, Generate outputs
(F , e ) where F is a branch-chained garbled circuit, and e is
encoding information.

X ← Encode(e,x )
On input encoding information e and a input x suitable for
f , Encode outputs a garbled input X .

(b,Xb ) ← Eval(F ,X )
On input (F ,X ) as above, Eval outputs a bit b = f (x ) and
garbled inputs Xb = Encode(ef (x ) ,x ).

Definition B.4 (BGCC Security).

• BGCC Circuit Privacy (bgcc-circuit-prv.simΦ):

Intuitively F should not reveal any more information than
Φ( f ). More concretely, there must exist a simulator S that
takes input (1λ ,Φ( f )) and whose output is indistinguish-
able from F generated the usual way.

• BGCC Evaluation Privacy (bgcc-eval-prv.simΦ):

Intuitively, the collection (F ,X ) should not reveal anymore
information about x than ( f (x ),Xf (x ) ). More concretely,
there must exist a simulator S that takes input (1λ ,Φ( f ),
f (x ),Xf (x ) ) and whose output is indistinguishable from
(F ,X ) generated the usual way.

B.1.1 BGCC Construction. Following the high-level description
in §A.1.1 we provide a formal description of our BGCC construction.
Our branching garbled circuit chain construction is based on a linear
garbling scheme. Concretely we use the half-gate garbled circuit
scheme [87] for efficiency, which satisfies Def. B.2.

Construction B.5 (BGCC). Let G∗ = (Garble∗, Encode∗, Eval∗,
Decode∗) be the half-gate garbling scheme. Let f be a boolean
circuit with n inputs and 1 output and O a random oracle.

Generate(1λ , f , e0, e1):
(1) (F ∗, e∗,d∗) ← Garble∗ (1λ , f )
(2) LetK0, respectivelyK1 be the 0-label respectively the

1-label for the output wire in F .
(3) I0 ← Encode∗ (e, 0n )
(4) I1 ← Encode∗ (e, 1n )
(5) O0

0 ← Encode∗ (e0, 0n )
(6) O1

0 ← Encode∗ (e0, 1n )
(7) O0

1 ← Encode∗ (e1, 0n )
(8) O1

1 ← Encode∗ (e1, 1n )

(9) for i = 1, . . . ,n do:
(a) b ′ = LSB(I0[i])
(b) T 0

d [i]← O (Kd ∥ Ib′[i]) ⊕ O
b′
d [i] ∀d ∈ {0, 1}

(c) T 1
d [i]← O (Kd ∥ I1−b′[i])⊕O

1−b′
d [i] ∀d ∈ {0, 1}

(10) Let F = (F ∗,d∗,Tbd [i]), e = e∗ and output (F , e )

Encode(e,x ) is the same as Encode∗ (e,x )
Eval(F ,X ):

(1) Parse the input as F = (F ∗,d∗,Tbd [i]).
(2) b ← Decode∗ (d∗, Eval∗ (F ∗,X ))
(3) Let Kb , be the b-label of the output wire
(4) for i = 1, . . . ,n do:

(a) b ′ = LSB(X [i])
(b) Xb [i]← Tb

′

d [i] ⊕ O (Kb ∥X [i])
(5) output (b,Xb )

Theorem B.6. The BGCC construction B.5 satisfies the syntax and

correctness guarantees as stated in definition B.3.

Proof. The correctness instantly follows from the correctness
of the garbling scheme. □

Theorem B.7. The BGCC construction B.5 satisfies the BGCC secu-

rity definitions bgcc-circuit-prv.simΦxor and bgcc-eval-prv.simΦxor .

Proof. As a first step, one needs to convince themselves of
the fact that the underlying half-gate garbling scheme satisfies
gc-circuit-prv.simΦ and gc-eval-prv.simΦ with leaking only the
XOR-Topology.

Evaluation-privacy can be seen by looking at theorem 1 in [87].
The theorem unnecessarily includes the whole circuit topology in
the leakage, but by looking at the proof one can see that in fact only
the XOR-Topology is leaked. Specifically, in the proof the simulator
only makes its decisions based on whether a particular gate is an
XOR gate or not and does not depend on the concrete type of the
gate if it is not an XOR gate.

Circuit-privacy of the half-gate scheme can be easily seen by
having a closer look at the garbling algorithm of the half-gate
scheme, which we omit in the interest of space.

The random oracle O is with probability 1 − negl(λ) never eval-
uated more than once on the same input, hence the transition table
is indistinguishable from random. Given this, the construction of
our simulators is easy:

Our simulator for bgcc-circuit-prv.simΦxor invokes the simula-
tor of the underlying garbling scheme to obtain a simulation of a
garbled circuit F . The simulator adds transition tables consisting of
random bits and the output is indistinguishable from a branching
garbled circuit generated the usual way.

Similarly, our simulator for bgcc-eval-prv.simΦxor on input (1λ ,
Φ( f ), f (x ),Xf (x ) ) invokes the simulator of the underlying garbling
scheme to get a simulation (F ,X ). The simulator adds a transition
table to F that would lead to the output of Xf (x ) . □

B.2 Treap data structure

In Arx-Range we want to ensure that an attacker upon intrusion
does not learn anything about the execution of past queries. A
standard balanced binary search tree, e.g. a red-black tree or an
AVL tree, may assume different shapes depending on the order of
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insertion. Therefore we use a history-independent treap [18] data
structure to implement our index.

A treap is a probabilistic tree data structure with expected run-
time guarantees, in which each key is given a (randomly chosen)
numeric priority. As with any binary search tree, the inorder tra-
versal order of the nodes is the same as the sorted order of the keys.
The structure of the tree is determined by the requirement that it
be heap-ordered: that is, the priority number for any non-leaf node
must be greater than or equal to the priority of its children. Thus,
the root node is the maximum-priority node, and its left and right
subtrees are formed in the same manner from the subsequences of
the sorted order to the left and right of that node.

We now discuss some properties of this data structure relevant
to our construction.

Definition B.8 (Shape of a Binary Search Tree). We define the
shape of a binary search tree to be the underlying directed acyclic
graphwith edges being either marked as left or right, corresponding
to the original tree.

Definition B.9 (Rank of an Insert). For a sequence of insert queries
Q = {q1, . . . ,qn } with qi represented as a pair of a key and the
number in the sequence, i.e. qi = (vi , i ), define the rank of a query
as rank (qi ) = |{(v ′, i ′) ∈ Q |v ′ < vi ∨ (v ′ = v ∧ i ′ < i )}|, i.e. the
number of queries in the sequence that either insert a smaller key
or the same key and come before.

Fact B.10. If a sequence of insert queries Q = {q1, . . . ,qn } gen-
erates a treap with certain shape, then the sequence of inserts Q ′ =
{(rank(q1), 1), . . . , (rank(qn ),n)} generates a treap with the same

shape.

Fact B.11. For a sequence of insert queriesQ = {q1, . . . ,qn }where
each insert query is already assigned the random treap-priority, the

order in which the queries are executed does not influence the shape

of the final treap. The final treap will always have the same shape

as the binary search tree that would be generated if the queries were

executed in the order of their priority without rebalancing.

B.3 Semantic security of the individual

encryption schemes

We remind the reader of the standard semantic security definition
of encryption schemes and then prove that our encryption schemes
provide this guarantee. This will aid in proving the indistinguisha-
bility of the initial databases after the first phase in Def. 3.4.

Definition B.12 (The generic indistinguishability experiment under

eavesdropping). We define the following experiment:

IndAdvGen,Enc (1
λ ) :

(1) (m0,m1,A) ← Adv(1λ ), where m0,m1 are valid mes-
sages of the same length.

(2) k ← Gen(1λ )
(3) b ← {0, 1}
(4) c ← Enck (mb )

(5) b ′ ← Adv(A, c )
(6) if b = b ′, the output is 1, otherwise it is 0.

Definition B.13 (Indistinguishability of ciphertexts). An encryp-
tion scheme with the algorithms Gen, Enc has indistinguishability

of ciphertexts if for every ppt adversaryAdv there exists a negligible
function negl such that

Pr[IndAdvGen,Enc (1
λ ) = 1] ≤

1
2
+ negl(λ)

BASE is implemented as AES in counter mode with a random
initialization vector and Enc denotes encryption with this scheme.

Fact B.14. BASE has indistinguishability of ciphertexts.

EQunique is cryptographically a pseudorandom function.

Lemma B.15. EQunique has indistinguishability of ciphertexts.

Proof. We proof that EQunique is a pseudorandom function.
Let’s assume there exists an adversaryA that has non-negligible ad-
vantage in distinguishing EQunique from a truly random function.
Let {mi }1≤i≤n be the requests A makes to the oracle. We distin-
guish two cases. In the first case, let h(mi ) , h(mj ), i , j. Then A
could also effectively distinguish AES from a random permutation.
In the second case, let h(mi ) = h(mj ) for some i , j, andmi ,mj .
ThenA has non-negligible advantage in producing collisions for h.
This completes the proof. □

EQ is implemented as Enck (m) = AESAESk (m) (r ) ∥ r for a randomly
chosen r ← {0, 1}λ and AES a pseudorandom permutation.

Lemma B.16. EQ has indistinguishability of ciphertexts.

Proof. By the security of AES we have that Enck (m) is indis-
tinguishable from AES$ (r ) ∥ r for a truly random $, which is again
indistinguishable from $ ∥ r which is truly random. □

AGG is the Paillier encryption scheme [70].

Lemma B.17. AGG has indistinguishability of ciphertexts.

Arx-Eq is implemented as Enck (x ∥ b,m) = h(Enck (x ,m) ∥ b)where
x is a binary string and b a single bit and for the empty string x = ϵ
we have Enck (ϵ,m) = EQuniquek (m) and h is a random oracle. An
alternative implementation not based in the random oracle model
is Enck (x ∥ b,m) = AESEnck (x,m) (b) with AES a pseudorandom
permutation.

To encrypt a list of plaintexts L = (m1, . . . ,mn ) with Arx-Eq, we
have ci = Enck (x ,mi ) where x is the ⌈logn⌉-bit binary string rep-
resentation of the number of occurrences ofmi in {m0, . . . ,mi−1}

Lemma B.18. Arx-Eq has indistinguishability of ciphertexts.

Proof. We prove the construction based on pseudorandom per-
mutations. The construction based in the random oracle model
is straight forward. Let c = (c1, . . . , cn ) be a list of ciphertexts
produced by Arx-Eq. We examine the list of hybrids Hi where
Hi = (c1, . . . , ci , ri+1, rn ) where r j is a random string. We have that
Hn = c and H0 is completely random. To see that Hi−1

c
≈ Hi , recall

that ci = AESki (bi ) for keys ki ,kj constructed accordingly to the
definition of Arx-Eq, and c j = AESkj (bj ) and by construction if
ki = kj for j < i then bi , bj . Hence ci is indistinguishable from
random. □

Arx-Range. We show indistinguishability of Arx-Range indices
of the same size. Then we show the indistinguishability of queries
to the index when they have the same leakage.
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Lemma B.19. Arx-Range has indistinguishability of indices.

Proof. Let I0 respectively I1 be two Arx-Range indices of the
same size n. We now prove I0

c
≈ I1.

First, the shape of both indices is perfectly indistinguishable
through the treap properties. Specifically, the facts B.10 and B.11
say that a set of inserts Q ′ = {rank (q1), . . . , rank (qn )}, which is
exactly {1, . . . ,n}, generates the same shape as any other set of
inserts of size n. Without loss of generality we therefore from now
on assume the shapes of I0 and I1 were the same.

We proceed by showing that a nodev ∈ I0 and the corresponding
node v ′ ∈ I1 are computationally indistinguishable: v c

≈ v ′. Each
node contains a BGCC, an encryption of the key and an encryp-
tion of the payload (the value). The BGCCs are indistinguishable
(Theorem B.7) and the latter two are indistinguishable through the
properties of the encryption scheme. □

Lemma B.20. Two queries on an Arx-Range index are indistin-

guishable (Def. 3.4) given that they have the same leakage as defined

in Def. 3.3.

Proof. Given that each pair of queries produces the same leak-
age, the outputs of the BGCCs in the execution are the same. It
follows from Theorem B.7 that the queries are indistinguishable.
The indistinguishability of the repair data follows with the same
arguments as in the indistinguishability of the initial indices. □

B.4 Overall Security Proof Sketch

Sketch of proof of theorem 3.5. We want to show that the
Arx database system is adaptively secure in the indistinguishability
sense with leakage Leak as defined in Def. 3.1 and Def. 3.3 under
standard cryptographic assumptions.

All encryption schemes and indices are used independent of each
other, therefore we show the security of the individual schemes. Let
DB0,DB1 be the databases after the first phase of the indistinguisha-
bility experiment. In §B.3 we already showed the semantic security
of all encryption schemes we use individually. Given that DB0,DB1
are structurally the same they are therefore indistinguishable.

It remains to show that individual queries leak nothing beyond
their specified leakage. We already showed this fact for Arx-Range
in Lemma B.20. The proof for Arx-Eq is similar to the one of Sophos
[25]. Aggregations and order-by queries do not leak anything on
top because no secret key is used to amend queries with these
operations and hence they can directly be simulated. We skip the
proof for Arx-Join as it is just a composition of the other schemes.

□
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