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Abstract

Solving the Cox Proportional Hazards Model and Its Applications

by

Jessica Ko

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Laurent El Ghaoui, Chair

The Cox proportional hazards model allows data to be analyzed with a concept of survival
and death over time. Unlike a lot of other traditional models, there is a clear relationship of
how the risk of death is a↵ected by time and the features of the data. The model is equivalent
to a generalized linear model, and the `1 regularized Cox model can be solved by coordinate
descent. In addition, a condition to eliminate features is explored to save computational time
in solving the maximization of the partial log likelihood. The Cox model can be applied to
many tasks because of its unique survival aspect. The probabilities of surviving past a
certain time are used to predict loan defaults. Understanding which characteristics correlate
with survival for dogs and cats in animal shelters is also possible through creating survival
curves.
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Chapter 1

Introduction

Survival analysis is a field dedicated to analyzing the time to the occurrence of an event
of interest. Traditionally, survival analysis is used in bio-statistics to determine the chances
of a patient surviving after undergoing some treatment. For example, this can be applied to
analyzing cancer patients after receiving chemotherapy. Data is recorded from the patient
over time, and the outcome after the study is noted. Some possible outcomes are dying,
being cured, or exiting the study. However, survival analysis can be applied to other areas
to analyze customers leaving over time and recidivism of prisoners once they were released.

One method used in survival analysis is the Cox proportional hazards model or Cox
model, which uniquely quantifies the risk of the event of interest occurring over time [7].
Throughout this work, survival will be considered as when the event of interest did not
occur. In addition, the model can define the e↵ect of features on survival and can determine
how likely the outcome will occur after a certain time for predicting whether an event will
occur. Moreover, features can be investigated to determine if there is a correlation for being
more likely to occur. In Chapter 2, the theory behind the Cox model will be described.

Throughout this work, the `1 norm is added to the Cox proportional hazards model
because regularization encourages sparsity and prevents overfitting. Then, cyclic coordinate
descent is used to solve this problem. Previous work has been done on using coordinate
descent for solving the Cox proportional hazards model with elastic net, which is implemented
in R. Cyclic coordinate descent is shown to be successful for convex problems with `1, `2, or
elastic net penalties because it exploits the sparsity of the model and has an explicit form
for each coordinate-wise maximization [11]. Furthermore, cyclic coordinate descent is an
e�cient algorithm for the regularized Cox model [20]. Coordinate descent has been proven
to be useful for solving other models such as elastic-net penalized regression models [13, 26].
In Chapter 3, a cyclic coordinate descent method for solving a regularized Cox model will
be explained, and its higher accuracy compared to existing methods will be discussed.

In addition, safe feature elimination (SAFE) is applied to the model to speed up the
computation of solving the model in Chapter 4. Applying SAFE to the Lasso problem has
shown to reduce running time [9]. The computational e↵ort of the feature elimination step
is negligible compared to solving the Lasso problem. Furthermore, SAFE can be applied on
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other `1 penalized convex problems like the Cox model.
After the Cox model is solved, the model can be used for a variety of applications.

Chapter 5 provides applications of the Cox model for two scenarios. Predicting defaults on
loans and analyzing characteristics of animals with di↵erent outcomes in animal shelters are
successful using the Cox model.
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Chapter 2

Cox Proportional Hazards Model

The Cox proportional hazards model accurately depicts interactions between the features
and risk in the hazard function [7]. Time-dependent features can also be easily used in the
model to account for features that may change with time. Even though time-dependent
features are not considered in this work, they are powerful for creating a model that precisely
describes the interactions of the features. Given a vector x 2 Rd of d features and a parameter
� 2 Rd, the hazard function is defined as

�(t|x) = �0(t)e
�

>
x

.

The baseline hazard function �0(t) does not need to be specified for the Cox model,
making it semi-parametric. This is advantageous because the Cox model will be robust
and have fewer restrictions. The baseline hazard function is appropriately named because
it describes the risk at a certain time when x = 0, which is when the features are not
incorporated. The hazard function describes the relationship between the baseline hazard
and features of a specific sample to quantify the hazard or risk at a certain time.

The model only needs to satisfy the proportional hazard assumption, which is that the
hazard of one sample is proportional to the hazard of another sample [6]. This property can
be checked by using p-values of the Cox model as described in Chapter 5. Two samples x1

and x2 satisfy this assumption when the ratio is not dependent on time as shown below.

�(t|x1)

�(t|x2)
=

�0(t)e�
>
x1

�0(t)e�
>
x2

=
e

�

>
x1

e

�

>
x2

Also, more generally the relative risk to the average risk of the training data is defined
below for sample x

k

and sample mean x̂.

�(t|x
k

)

�(t|x̂) =
�0(t)e�

>
x

k

�0(t)e�
>
x̂

=
e

�

>
x

k

e

�

>
x̂
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2.1 � Estimation by Partial Likelihood

The parameter � can be found by maximizing the partial likelihood because the hazard
function is not specified. The following sections explain the formulation of the optimization
problem. In order to be used for the Cox model, each sample i needs:

• x

i

a feature vector;

• T

i

time when event occurred or the censoring time, which is the last time the sample
is observed if the event of interest did not occur in the time period;

• D

i

death indicator where 1 is for when death occurred and 0 is for censoring

2.1.1 Equivalence to Poisson Regression

The partial likelihood of the Cox model can be fitted by the likelihood of Poisson regres-
sion, a generalized linear model, because the likelihoods are proportional to each other [25].
The advantage of the estimates of � being the same is that it can be fitted using software
for generalized linear models like in R. Alternatively, the estimate from the Cox model can
be used for Poisson regression. In Chapter 3, a coordinate descent method is proposed for
solving the maximum partial likelihood of the Cox model.

The Cox model can be interpreted in terms of a Poisson regression. Given the cumulative
hazard ⇤(t) and sample i, the estimates of � can be obtained by treating the death indicator
D

i

as Poisson distributed with mean µ

i

= ⇤(t
i

)e⌘i where ⌘ = �

>
x. The link function is

modified to be �

>
x = log(µ

i

) � log(⇤(t
i

)) [16]. More information about the cumulative
hazard is in Chapter 2.2.

2.1.2 Partial Likelihood

In order to formulate the partial likelihood, the f unique failure times are ordered in-
creasingly t1 < · · · < t

f

and j(i) is the index of the sample failing at time t

i

. When at most
one sample failed at each time, the partial likelihood for the Cox model can be written as

L(�) =
fY

i=1

�0(ti)e�
>
x

j(i)

P
j2R

i

�0(ti)e�
>
x

j

=
fY

i=1

e

�

>
x

j(i)

P
j2R

i

e

�

>
x

j

where the risk set R

i

is the set of indices of samples with death or censor times occurring
after t

i

or R
i

= {k|T
k

� t

i

}. This represents the probability of failure occurring to a sample
at time t

i

among those at risk at time t

i

. The semi-parametric property can be exhibited
here because the baseline hazard �0 gets canceled out.
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However, the partial likelihood above does not take tied events into account, so the
probabilities are not as accurate. Tied events occur if the number of deaths d

i

at time t

i

is
greater than 1. Breslow introduces a di↵erent partial likelihood function to deal with the
ties [5]. Given that I(i) is the set of indices where a sample fails at time t

i

or I(i) = {k|D
k

=
1 and T

k

= t

i

}, the partial likelihood can be redefined as shown below.

L(�) =
fY

i=1

e

(
P

s2I(i) �
>
x

s)
⇣P

j2R
i

e

�

>
x

j

⌘
d

i

This work will refer to the Breslow ties version as the partial likelihood because ties often
occur in the datasets.

2.1.3 Minimize Negative Partial Log Likelihood

The parameter � can be found by minimizing the negative partial log likelihood `(�),
which is defined below.

`(�) = log(L(�))

=
fX

i=1

log
e

P
s2I(i) �

>
x

s

⇣P
j2R

i

e

�

>
x

j

⌘
d

i

=
fX

i=1

2

4

0

@
X

s2I(i)

�

>
x

s

1

A� d

i

log
X

j2R
i

e

�

>
x

j

3

5

The minimization of the negative log likelihood with `1 regularization is formed below in
the optimization problem with objective f(�).

f(�) = �`(�) + �k�k1

min
�

f(�) (2.1)

Regularization is included because there are many benefits such as being more accurate
than stepwise selection and yielding interpretable models [22]. In addition, the regularization
prevents degenerate behavior when there are more predictors than observations.

2.2 Survival Function of Cox Model

The survival function obtained from the Cox model can be used to make predictions on a
sample surviving because it’s the probability of a sample surviving after time t. The survival
function is defined as
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S(t) = exp (�⇤(t)).

The cumulative hazard or cumulative risk ⇤(t) is defined as

⇤(t) =

Z
t

0

�(s)ds

where �(t) is the hazard function, the instantaneous probability of death at time t, given
survival until t [18]. It can also be rewritten as

�(t) = � d

dt

logS(t).

The survival function can be rewritten at time t for a given sample x

S(t|x) = exp(�⇤(t)) = exp

✓
�
Z

t

0

�(s|x)ds
◆

= exp

✓
�
Z

t

0

�0(s)e
�

>
x

ds

◆

= exp

✓
�e�>

x

Z
t

0

�0(s)ds

◆

= S0(t)
e

�

>
x

where the cumulative baseline hazard is ⇤0(t) =
R

t

0 �0(s)ds and the baseline survival function
is S0(t) = e

�⇤0(t) [19] . The survival function S(t|x) or probability of survival after time t

is defined by S0(t)e
�

>
x

. The parameter � can be recovered by a coordinate descent method
discussed in Chapter 3. Although the hazard function is not needed for the parameter
estimation by partial likelihood, it is necessary to find the survival function for prediction.
In the following sections, two methods for estimating the cumulative baseline hazard ⇤0(t)
will be discussed.

Breslow Estimator

The Breslow estimator of the cumulative baseline hazard is defined below [15].

⇤0(t) =
X

i:T
i

t

d

iP
j2R

i

e

�

>
x

j

(2.2)

The cumulative hazard is estimated by using the expected number of failures in a time
period (t, t+ �t).
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d

i

⇡ �t

X

j2R
i

�0(t)e
�

>
x

j

�t�0(ti) ⇡
d

iP
j2R

i

e

�

>
x

j

By summing over the times, the cumulative hazard function is derived to show Equation 2.2
[27].

Weibull Distribution

The hazard function can be estimated by the Weibull distribution �0(t) ⇠ Weibull(�, k)
[21].

�0(t) = (�k)(�t)k�1

The cumulative hazard function can then be written as

⇤0(t) = 1� e

�(�t)k
.

The hazard or risk is increasing when k > 1, so deaths or failures are more likely to occur
as time progresses. Similarly, hazard or risk is decreasing when k < 1.

After the parameter � and the cumulative baseline hazard is estimated, the probability of
surviving after time t or the survival function can be recovered. The probability of survival
after time t can be used for predictions by considering samples where S(t) > 0.5 as surviving.
Chapter 5 shows an application of using survival functions to predict loan defaults.
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Chapter 3

Solving the Model by Coordinate
Descent

Cyclic coordinate descent is used to solve the minimum partial log likelihood with the `1
norm. Throughout this chapter, it is assumed that the `1 norm is included in the optimization
problem as shown in Equation 2.1. The separability structure of the cost function, where
the partial log likelihood `(�) is di↵erentiable and convex and k�k1 is convex, guarantees
that the coordinate descent algorithm will converge to the optimal solution [23, 24]. The
algorithm cycles between fixing each index and solving the minimization problem. Each
individual problem is written as below where f

k

is the objective function corresponding to
fixing all indices of � except for k.

min
�

k

f

k

(�
k

)

Each individual minimization problem for a fixed index is solved by the bisection method.
The benefit of this method is that calculating the derivative with respect to one variable is
not as costly as calculating the gradient [8].

3.1 Coordinate Descent Bound

The method starts with an interval where the optimal index k of the parameter �⇤
k

falls
under. A lower bound L and upper bound U can be found such that �

⇤
k

2 [L
k

, U

k

] and
L

k

 U

k

. Using some guidelines, it is possible to find bounds for the optimal parameter.
Property 1. If f 0

k

(L
k

) < 0 < f

0
k

(U
k

), then �

⇤
k

2 [L
k

, U

k

] and L

k

 U

k

.
Proof : f

k

(�
k

) is a convex function, so the derivative is monotonically increasing. L
k

 U

k

because f

0
k

(L
k

)  f

0(U
k

). The derivative of a convex function is continuous, so by the
Intermediate Value Theorem, 9�⇤

k

such that f

0
k

(�⇤
k

) ⇡ 0 and �

⇤
k

2 [L
k

, U

k

]. The global
minimum is found at this critical point.

When the bound, L
k

and U

k

, can be found for all indices k of �, Property 1 can be used.
The first estimate can be a number closer to 0 because the `1 regularization will likely cause
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the parameters to be sparse. A simple guideline is to set the bounds so that L
k

< 0 < U

k

.
The bounds can be continually doubled until Property 1 is satisfied.

However, it is possible that f 0
k

(�
k

) < 0 or f 0
k

(�
k

) > 0 for all �
i

and Property 1 will never
be satisfied. In this case, when the bounds get su�ciently large, then a bound cannot be
defined precisely and the optimal values likely lie close to infinity. The heuristics used to
find a bound for coordinate descent are shown in Algorithm 1.

for index k in � do
initialize L

k

, U

k

where L

k

< 0 < U

k

;
while U

k

� L

k

< Max Limit and ( f

0
k

(L
k

) � 0 or f

0
k

(U
k

)  0 ) do
if f

0
k

(L
k

) � 0 then
L

k

 2L
k

;
end
if f

0
k

(U
k

)  0 then
U

k

 2U
k

;
end

end
end

Algorithm 1: Optimal �
k

Bound

3.2 Coordinate Descent Algorithm

After finding the bound for the optimal �, coordinate descent and the bisection method
can be used on the model. For coordinate descent, all indexes in � are fixed except �

k

. The
derivative of the objective function, f 0

k

(�
k

), with respect to index k where x

s,t

indicates the
t feature of sample s is defined by Equation 3.1 . Because the `1 is not di↵erentiable at 0, a
subgradient is introduced to handle this case [4] . Thus, the subgradient of kxk1 = g(x).

g(x) =

(
+1, if x > 0

�1, otherwise

Using this as the subgradient for `1 norm, the following can be defined as

f

0
k

(�
k

) =
d

d�

k

[�`(�) + �k�k1]

=
fX

i=1

2

4

0

@
X

s2I(i)

x

s,k

1

A�
 

d

iP
j2R

i

e

�

>
x

j

! 
X

j2R
i

x

j,k

e

�

>
x

j

!3

5+ �g(�
k

). (3.1)

The bisection method will attempt to find � such that f 0(�⇤) ⇡ 0. The full algorithm is
shown in Algorithm 2.
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initialize � ;
while � Not Converged do

for index k in � do
Fix all indexes except i in �;
Consider interval [L

k

, U

k

] 2 �

⇤
k

;
l  L

k

;
u U

k

;
while �

k

Not Converged do
x (l + u)/2 ;
if f

0
k

(x) < 0 then
l  x ;

else
u x ;

end
end
�

i

 x;
end

end
Algorithm 2: Coordinate Descent

In Appendix A, more optimizations can be included to speed up computation time by
writing the equations in matrix form and caching values.

3.3 Comparison with Existing Packages

In this section, there is a brief comparison of the coordinate descent algorithm mentioned
in this chapter to existing packages in R. The survival package in R contains a function
coxph that also fits data to the Cox model, but the model is not regularized. This R package
will not be as good for sparse data and may tend to overfit.

While the survival package does not have the regularization term, the glmnet package
includes the regularization term in the form of elastic net, which includes the `1 and `2 norm
[12]. In addition, glmnet can solve other generalized linear models. Using 12,000 samples
with 14 features from the loan dataset that will be explored in Chapter 5, the glmnet package
performs very fast in less than one second for any value of �, but the coordinate descent
method ranges from a few seconds to about one minute using L

k

= �10 and U

k

= 10 for all
indices. The exact timings of the coordinate descent method are described in more detail
in Table 4.1. However, for glmnet, accuracy in the minimizing the negative log likelihood is
sacrificed for faster computation times.

The objective function values shown in Table 3.1 are obtained by solving the Cox model
with glmnet or the coordinate descent method and computing the objective function values
using the optimal parameter. The glmnet package seems to aggressively zero out many
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indices, which may lead to its reduced accuracy. This e↵ect is noticeable in the table because
the objective function value is the same for � � 0.5.

Table 3.1: Compare Objective Function of glmnet and Coordinate Descent

� glmnet Coordinate Descent
0 51695.84 51120.60
0.5 51536.44 51121.23
10 51536.44 51128.52
50 51536.44 51153.70
100 51536.44 51179.85

The coordinate descent method achieves better accuracy by getting a smaller value for
the objective function at optimum at the expense of a longer computation time. The longer
computation time can be justified because the model only needs to be fit to the data once
for every � value.
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Chapter 4

Safe Feature Elimination

By forming the dual of the Cox model, safe feature elimination (SAFE) can be applied to
the model to eliminate features that are not present after solving the optimization problem.
Performing the feature elimination has many computation benefits because it can greatly
reduce the time needed to solve the optimization problem. The feature elimination step
can be parallelized because each feature can be screened independently of each other. In
addition, each elimination step requires significantly little computation to perform. This
method of feature elimination is shown to be very beneficial for `1-penalized least-square
regression problems [9].

4.1 Dual of Cox Model

In order to define the dual, the optimization problem for the Cox model can be rewritten,
assuming the data is in a matrix X = [x1, . . . , xn

] 2 Rd⇥n for n samples and � 2 Rd. A
failure times matrix can be defined as � := (�

ij

) 2 {0, 1}f⇥n where f is the number of unique
failure times and �

ij

= 1 if j 2 R

i

.
Assuming Z = 1�>

X 2 Rf⇥n such that Z

ij

= �

>
x

j

for every i where 1 is a vector of
ones in Rf , the maximization problem from Chapter 2 can be rewritten as

p

⇤ = max
�,Z

c

|
� �

fX

i=1

d

i

log

 
X

j2R
i

e

Z

ij

!
� �k�k1

= max
�,Z

c

|
� �

fX

i=1

d

i

log

 
nX

j=1

�

ij

e

Z

ij

!
� �k�k1

where c =
X

{i|D
i

=1}

x

i

2 Rd.
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Using a dual variable U 2 Rf⇥n, the dual can be written as

p

⇤ = min
U

max
�,Z

c

|
� �

fX

i=1

d

i

log

 
nX

j=1

�

ij

e

Z

ij

!
� �k�k1 + TrU>(Z � 1�>

X). (4.1)

Using U

> = [u1, . . . , uf

] and Z

> = [z1, . . . , zf ] where u

i

, z

i

2 Rn, the trace can be rewritten

TrU>
Z =

fX

i=1

u

|
i

z

i

.

The dual problem can be rewritten as

p

⇤ = min
U

fX

i=1

max
z

i

u

|
i

z

i

� d

i

log

 
nX

j=1

�

ij

e

Z

ij

!
: kXU

>1� ck1  �.

For each i, consider each optimization problem

max
z

i

u

|
i

z

i

� d

i

log

 
nX

j=1

�

ij

e

Z

ij

!
: kXU

>1� ck1  �.

The solution is

=

8
><

>:
d

i

nX

j=1

U

ij

logU
ij

if u
i

� 0,1>
u

i

= 1, 8 j : u

ij

(1��
ij

) = 0,

+1 otherwise

where �
j

is the jth column of �. The dual can then be written as

p

⇤ = min
U

fX

i=1

d

i

nX

j=1

U

ij

logU
ij

: kXU

>1� ck1  �, U1 = 1, U � 0, U �� = 0

where � represents element-wise multiplication.

4.2 Feature Elimination

After the dual is formed, the criteria for the safe feature elimination can be derived. For
each feature k = 1, . . . , d, if the following holds, then �

k

= at optimum where f

k

is the kth
row of X.

� > max
U

|f>
k

U

>1� c

k

| : U1 = 1, U � 0, U �� = 0 (4.2)

This can be shown by looking at Equation 4.1 to get �⇤
k

= 0 the following must be true at
optimum

��|�⇤
k

|+ (f>
k

U

>1� c

k

)�⇤
k

< 0. (4.3)
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If all U in the feasible set satisfies Equation 4.3, then the feature can be eliminated. The
following shows how the equation can be related to Equation 4.2.

max
U,�

k

(f>
k

U

>1� c

k

)�
k

= max
U,�

k

|(f>
k

U

>1� c

k

)�
k

| < �|�
k

|

By dividing both sides by |�⇤
k

| and dropping the maximization of �
k

, the equivalence is
shown. In addition, the absolute value can be added to the objective function because �

k

is
a scalar and the signs of f>

k

U

>1� c

k

and �

k

will be matching when maximized.
To obtain the feature elimination rule, the maximization problem needs to be solved.

First, consider the below expression for each f

k

S+(fk) = max
U

f

>
k

U

>1 : U1 = 1, U � 0, U �� = 0.

Using duality, a lower bound is found

S+(fk) = min
Z

max
U�0, U1=1

f

>
k

U

>1+ TrZ>((�� 11>) � U)

= min
Z

max
U�0, U1=1

TrU>((�� 11>) � Z + 1f>
k

)

= min
Z

fX

i=1

max
1jn

((�
ij

� 1)Z
ij

+ f

kj

)

=
fX

i=1

min
z

max
1jn

(f
kj

+ (�
ij

� 1)z
j

)

=
fX

i=1

min
z

max

✓
max

j : �
ij

=1
f

kj

, max
j : �

ij

=0
f

kj

� z

j

◆

�
fX

i=1

max
j : �

ij

=1
f

kj

.

It can also be shown that S+(fk) 
P

f

i=1 max
j : �

ij

=1 f

kj

by choosing Z

ij

= 0 for �
ij

= 1,
Z

ij

= max
h : �

ih

=0 fih �max
h : �

ih

=1 fih otherwise. As a result, the expression can be written
as

S+(fk) =
fX

i=1

max
j : �

ij

=1
f

kj

.

This implies

S�(fk) = min
U

f

>
k

U

>1 : U1 = 1, U � 0, U �� = 0

= �S+(�fk)

=
fX

i=1

min
j : �

ij

=1
f

kj

.
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Using these two expressions, Equation 4.2 can be written as

� > max (|S+(fk)� c

k

|, |S�(fk)� c

k

|)

� > max

 
c

k

�
fX

i=1

min
j : �

ij

=1
X

kj

,

fX

i=1

max
j : �

ij

=1
X

kj

� c

k

!
. (4.4)

If the kth feature satisfies the SAFE condition (Equation 4.4), then �

k

= 0 at optimum.

4.3 Speed Ups Using SAFE

The feature elimination is computationally faster than not using SAFE because many
computations are saved. The SAFE condition only needs to be checked once for every feature
in the beginning of the optimization. In addition, the SAFE condition is very quick to check
because of the form of the expression. An experiment was run on 12,000 samples with
14 features from the loan dataset that will be explored in Chapter 5. The results of the
timings with and without the SAFE condition are shown in Table 4.1. For these times, the
coordinate descent bound is chosen to be [�10, 10] for each index. The computations are
run on a machine with 8 GB of memory and an 2.6GHz dual-core Intel Core i5 processor.

With smaller values of �, the model does not eliminate as many features, so using SAFE
is only 16% faster than not using SAFE for solving the minimization problem. However,
when the regularization weight is larger and more features are eliminated, there is significant
computation advantage. As shown in the table, the largest regularization weight performs
442% faster when using the SAFE conditions. Using safe feature elimination will speed up
the time it takes to solve the optimization problem especially when the regularization weights
are larger.

Table 4.1: Timing Computations with and without SAFE in Seconds

� No SAFE SAFE
% Faster

Using SAFE
# Features Satisfying

SAFE Condition
0.0001 131.0 109.70 19.42% 2
0.5 116.29 99.77 16.56% 2
10 107.5 92.49 16.23% 2
50 77.42 65.84 17.59% 3
100 71.35 33.85 110.78% 4
200 36.48 15.79 131.03% 7
300 30.41 5.61 442.07% 9
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Chapter 5

Applications

In this chapter, the Cox model will be applied to two di↵erent datasets: predicting
loan defaults and investigating the relationship of characteristics of animals in shelters and
survival. In order for the Cox model to be applicable to a dataset, there needs to be a clear
definition of elapsed time and what event is considered to be death or failure. The following
datasets have both properties, so the Cox model can be applied to these tasks. Both of these
applications solve the regularized Cox model by using coordinate descent with SAFE.

5.1 Predicting Loan Defaults

Deciding whether or not to approve a loan is important for banks because issuing loans
that are likely to default are risky and decrease the bank’s profitability. By using the Cox
model to aid in predicting loan defaults, banks can make a better decision about issuing
loans. In addition, this will help borrowers financially plan by allowing them to understand
how likely they can get a loan. Furthermore, this can be applied to loans on Lending Club
to help investors discover good investments by finding loans that are less likely to default.
Lending Club is one of the world’s largest online credit marketplace that allows for peer-to-
peer lending.

In the following sections, the dataset on loans issued from 2007 to 2016 is used for
predicting loan defaults, a binary task [14]. The dataset contains about one million samples
and 110 features, but only 15,000 samples and a subset of features will be used for the
predictions. The training, validation, and testing sets were split so that the two classes are
balanced.

Data

The time period was calculated by finding the number of months that have passed since
the loan was issued and when the last payment was received. Even though loans are issued
on di↵erent dates, all the start dates can be assumed to be the same time without loss of
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generality [25]. Failure of the loan is defined as ’Charged O↵’, ’Default’, or ’Does not meet
the credit policy. Status:Charged O↵’.

The loan default dataset contains many features, and a subset of these features was
selected to use for prediction. First, the features were preprocessed. Features with continu-
ous values were normalized into their z-scores like annual income, and categorical variables
were one-hot encoded like home ownership. The following features were selected and their
descriptions from the dataset are shown [14]

• ’annual inc’: Self-reported annual income.

• ’dti’: A ratio calculated using the borrowers’ total monthly debt payments on the total
debt obligations, excluding mortgage and the requested Lending Club loan, divided by
the borrowers self-reported monthly income.

• ’emp length’: Employment length in years. Possible values are between 0 and 10 where
0 means less than one year and 10 means ten or more years.

• ’funded amnt’: The total amount committed to that loan at that point in time.

• ’grade’: Lending Club assigned loan grade (’A’, ’B’, ’C’, ’D’, ’E’, ’F’, or ’G’)

• ’home ownership’ : Home ownership status of the borrower such as own, rent, mort-
gage, or other.

• ’int rate’: Interest rate of loan

• ’loan amnt’ : Listed amount of the loan applied for by the borrower. The credit
department can reduce the loan amount.

• ’mort acc’: Number of mortgage accounts.

• ’num bc sats’: Number of satisfactory bankcard accounts.

• ’num bc tl’: Number of bankcard accounts.

• ’pub rec bankruptcies’: Number of public record bankruptcies.

• ’revol bal’: Total credit revolving balance.

• ’term’: Number of payments on the loan can either be 36 or 60 months.

In order to use the Cox model, the proportional hazard assumption must hold for the data.
The assumption can be verified with a p-value < 0.05 for the features selected using coxph in
R. Using this assumption, there are 14 features selected : ’dti’, ’emp length’, ’funded amnt’,
’grade = C’, ’grade = D’, ’grade = F’, ’home ownership=OWN’, ’home ownership=OTHER’,
’int rate’, ’mort acc’, ’num bc sats’, ’num bc tl’, ’pub rec bankruptcies’, and ’term= 36
months’.



CHAPTER 5. APPLICATIONS 18

Results

Using the survival function of the Cox model, the failure of a loan can be predicted
when the probability of surviving after time t is less than 0.5 or S(t) < 0.5. In addition,
if the relative risk to the average of the samples is greater than one, then the sample may
be considered to fail. Using di↵erent � values for regularization and di↵erent methods of
determining failure, the test set accuracy can be compared in Table 5.1. Accuracy is defined
as the number of correctly classified samples divided by the total number of samples. Overall,
the predictions based on survival probabilities were better than predictions based on relative
risk. The Breslow estimator seems to perform very poorly as most of the accuracies are
worse than randomly guessing. Accuracies using the Weibull estimator are slightly better.

Table 5.1: Accuracies from Survival Probabilities and Relative Risk

�

Survival Prob.
Breslow Estimator

Survival Prob.
Weibull Estimator Relative Risk

0 0.48933 0.5 0.36
0.5 0.489 0.5793 0.35933
10 0.48833 0.57267 0.361
50 0.485 0.57633 0.36033
100 0.48766 0.58133 0.361
150 0.48667 0.58 0.45067

Even though the survival probabilities and relative risk were not good for predicting loan
failures, properties from the Cox model can be used to enhance predictions by combining
them with the original features and using them on di↵erent machine learning algorithms.
The test accuracies of using di↵erent machine learning models and feature sets are shown
in Table 5.2. Hyperparameters of each model are chosen by tuning them based on the
accuracy of the validation set. In addition, the neural network with two hidden layers had
the activation function, optimization solver, learning rate, and layer sizes adjusted according
to the performance on the validation set. The first column is the accuracies for only training
on the original features mentioned earlier. The other three columns contain not only the
original features but also features from the Cox model like relative risk.
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Table 5.2: Accuracies of Models Using Di↵erent Features

Model
Original Features

Only
Relative Risk

from Cox Model
Survival Prob.
from Cox Model

Risk and Prob.
from Cox Model

Logistic Regr. 0.66367 0.66067 0.664 0.66367
SVM 0.588 0.591 0.589 0.59167

Decision Tree 0.67667 0.68967 0.68767 0.66867
Random Forest 0.66067 0.66633 0.66833 0.66367
Neural Network 0.65633 0.65367 0.65733 0.65667

Overall, the features from the Cox model, relative risk and survival probabilities, slightly
increased the accuracy of predicting the loan failures. Even though the survival probabilities
were bad predictors on their own, combining them with the original features improved the
accuracy. This is shown when comparing the accuracies of only using the original features
with the accuracies of also using Cox model features. When comparing the di↵erent models,
the decision tree performs the best across the di↵erent feature sets. Further improvements
in the accuracy can possibly be made by using the Cox model in the loss function of a neural
network [2].

5.2 Survival Analysis on Dogs and Cats in Animal
Shelters

Animal shelters are often overcrowded with animals because they lack the resources to
care for homeless pets and more people disown their pets than adopt them. In this section,
correlations between animal characteristics and survival once entering an animal shelter over
time will be explored. Understanding these correlations can help improve animal shelters and
the well-being of these animals. Many di↵erent factors can a↵ect the survival of animals in
pet shelters. In order to understand the correlations between these features like color, breed,
and etc. on survival, an appropriate model like the Cox model must be used. Survival
analysis is applied on the Austin Animal Shelter dataset to explore survival of animals
in shelters [1]. The Austin Animal Shelter operates the largest No Kill municipal animal
shelter in the United States. Even though the animals are not killed for population control,
overcrowding can still be a problem if there are too many animals in the shelter and not
enough resources to care for them in the facilities.

The dataset contains 49,970 animals recorded from 2013 to 2016 such as outcome time,
outcome type (adoption, transfer, euthanasia, or death), and etc. Even though the animals
have di↵erent dates for when they entered the animal shelter, the start times can be inter-
preted as starting at the same with no loss of generality [25] . The time is measured as the
di↵erence between intake time and outcome time. The animal shelter collected a variety
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of categorical features like intake type (Owner, Stray, or PublicAssist), injured/sick or not,
pregnant or not, dog or cat, spayed/neutered or not, gender, purebred or mix, and black col-
ored or not. Similar to Chapter 5.1, features satisfying the Cox proportionality assumption
can only be used, so this reduces the feature set to only spayed/neutered or not, gender,
and black colored or not. For this dataset, survival is defined as an animal being adopted
or transferred to another center. Failure, or death, is defined as when an animal dies or is
euthanized.

In order to graph the survival curves, the best regularization weight � needs to be chosen.
Unlike classification tasks, there is not a well defined accuracy metric to pick the best � value,
so another metric must be used. The � with the lowest cross-validated deviance is chosen
for the model [17]. The deviance is calculated by doing 10-fold cross validation. Figure 5.1
shows how the deviances slowly increases as log(�) increases, so log(�) = �8.9 is chosen.

Figure 5.1: Picking the Best �

After finding � by coordinate descent and SAFE, the survival curves can now be graphed
to compare the di↵erence in the survival probabilities for certain features. For the feature of
interest, the data is separated by the feature values. For example, the data is separated by
male and female for gender. After, the mean x̂ of each feature is calculated, and the index
of the feature is marked as the respective value. For example, if gender is feature i, then
x̂1[i] = 1 for female and x̂0[i] = 0 for male. The two mean vectors, one for each binary class,
are then graphed using the survival function S(t|x̂0) or S(t|x̂1) for all failure times with the
Breslow estimator for the cumulative baseline hazards. The survival curves for the three
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features are shown in Figures 5.2, 5.3, and 5.4. Each downward step in the graphs indicates
an event of failure.

Figure 5.2:

Figure 5.3:
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Figure 5.4:

Figure 5.2 shows that spayed or neutered animals correlate more with survival. People
may be more likely to adopt a pet who has undergone this procedure because it can save
costs and help curb overpopulation. Figure 5.3 shows that black colored animals correlate
with lower survival. Black cats are sometimes symbolized as bad luck, and darker colored
dogs are often portrayed as being aggressive in media. This observation may be related
to black dog syndrome, which is a tendency for black dogs to be adopted less frequently.
Compared to the other factors, gender does not seem to correlate with survival as greatly as
shown in Figure 5.4.

Because other features did not satisfy the proportional hazards assumption, they could
not be analyzed with the model and limited what kind of features could be explored, even
though there are several other features available in the dataset like breed and intake type.
The modified version, the stratified general Cox, could adjust those features that do not
satisfy the proportional hazards assumption [3]. More work can be done in the future to
incorporate more features for the model.
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Chapter 6

Conclusion

In this work, the Cox proportional hazards model with `1 regularization is solved by co-
ordinate descent with the bisection method. Through experiments, this method is more ac-
curate but slower in computations compared to other methods. The safe feature elimination
step reduces the running time of solving the model without introducing long computations
to perform the step.

The Cox model may be used for many applications because of the relationship between
the risk of an event over time and features of the sample. Predicting loan defaults is explored
with the Cox model by using the survival function. Even though the survival function itself
performed poorly, using the Cox model for feature engineering such as the relative risk and
survival function is e↵ective in increasing the classification accuracy compared to models
that do not use these features. In addition, the Cox model is used to explore how features
a↵ect the survival of animals in animals shelters. Certain characteristics of animals such as
not being black colored and being spayed or neutered correlate to survival.

While solving the regularized Cox proportional hazards model with coordinate descent
for its applications was successful, there are still many improvements and explorations to be
made. Converging safe regions are shown to lead to faster convergence for Lasso and can
possibly be explored for the Cox model [10]. To deal with features that do not satisfy the
proportional hazards assumption, the stratified Cox model can be used, so the feature set
can be expanded [3]. The Cox model can also be incorporated into the loss function of a
neural network to further improve accuracies [2].
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Appendix A

Additional Optimizations

In order to save addition computation, the model can be written in matrix form. The
data is assumed to be X 2 Rn⇥d for n samples and d features and � 2 Rd. �

R

2 Rf⇥n is a
matrix where �

R

ij

= 1 if sample j failed at the time corresponding to index i and f is the
number of unique times a sample failed. �

F

2 Rn⇥1 is a matrix where �
F

j

= 1 if the sample
j failed. T 2 Rf⇥1 is a vector where T

i

= number of ties at the time corresponding to index
i.

The partial log likelihood is shown below where 1
i

is a one vector of shape i⇥ 1.

�>
F

X� � (log(�
R

exp(X�)))1>
f

The gradient can be written as shown below for index k where component-wise division
is used.

�>
F

x

k

�
✓
T � (�

R

(x
k

� exp(X�)))

�
R

exp(X�)

◆
1>
f

During the bisection method for index k, some values are saved to prevent calculating
the same value multiple times. For each k, set �

k

= 0 first and save �

k=0 = e

X�. When
using the bisection method, the value at �

k

changes at each step, so to get the correct value
perform the following

expX� = �

k=0 � exp �k

X

k

where X

k

2 Rn⇥1 is the kth column of X.
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