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Abstract

First Order Driving Simulator

by

Wesley Hsieh

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Ken Goldberg, Chair

Autonomous driving is a complex task that features high variability in everyday driving condi-
tions due to the presence of vehicles and different road conditions. Many data-centric learning
models require exposure to a high number of data points collected in various driving conditions
to be robust to this variability. We present the First Order Driving Simulator (FODS), an open-
source lightweight driving simulator designed for data collection and benchmarking performance
for autonomous driving experiments, with a focus on customizability and speed. The car model is
controlled using steering, acceleration, and braking as inputs. The car features the choice between
kinematic and dynamic bicycle models with slip and friction, as a first-order approximation to the
dynamics of a real car. Users can customize features including the track, vehicle placement, and
other initial conditions of the environment, as well as environment interface features such as the
state space (images, positions and poses of cars) and action space (discrete or continuous controls,
limits). We benchmark our performance against other simulators of varying degrees of complex-
ity, and show that our simulator matches or outperforms their speeds of data collection. We also
feature parallelization with Ray [36], a distributed execution framework aimed at making it easy
to parallelize existing codebases, which allows for significant speed increases in data collection.
Finally, we also perform experiments analyzing the performance of various imitation learning and
reinforcement learning algorithms on our simulator environment.
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Autonomous driving is a complex task that features high variability in everyday driving condi-
tions due to the presence of vehicles and different road conditions. Many data-centric learning
models require exposure to a high number of data points collected in various driving conditions
to be robust to this variability. We present the First Order Driving Simulator (FODS), an open-
source lightweight driving simulator designed for data collection and benchmarking performance
for autonomous driving experiments, with a focus on customizability and speed. The car model is
controlled using steering, acceleration, and braking as inputs. The car features the choice between
kinematic and dynamic bicycle models with slip and friction, as a first-order approximation to the
dynamics of a real car. Users can customize features including the track, vehicle placement, and
other initial conditions of the environment, as well as environment interface features such as the
state space (images, positions and poses of cars) and action space (discrete or continuous controls,
limits). We benchmark our performance against other simulators of varying degrees of complex-
ity, and show that our simulator matches or outperforms their speeds of data collection. We also
feature parallelization with Ray [36], a distributed execution framework aimed at making it easy
to parallelize existing codebases, which allows for significant speed increases in data collection.
Finally, we also perform experiments analyzing the performance of various imitation learning and
reinforcement learning algorithms on our simulator environment.
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Chapter 1

Introduction

Autonomous driving has increasingly become a popular area of research especially in the past
few years. Many major companies including Google, Tesla, NVIDIA, and Uber have already
dedicated teams of researchers into development of self driving cars. Smaller companies and
startups built around autonomous driving and related products have also sprung up recently.

Autonomous driving requires precision in perception and robustness to varying conditions of
the environment. Due to the high-speed nature of driving, where critical decisions are often re-
quired within seconds, controllers for autonomous cars must also be able to plan and execute in
real-time. The environment itself is partially observed; sensor observations of the environment are
subject to noise and occlusion from other objects in the environment [30]. In addition to learning
how to navigate the desired path safely, controllers face a large degree of variability in everyday
driving conditions due to the presence of pedestrians, vehicles, and other occupants of the road
[48], making it necessary to re-plan based on changes in the environment for safe trajectory plan-
ning and execution. Additionally, safety is an especially important consideration of designing a
self-driving car controller due to the large costs of a collision with another vehicle or object on
the road. Driving tasks also have a large time horizon, making frequent planning and re-planning
extremely important to handle changes in the observed environment.

There have been many data-centric methods that have been proposed to train controllers for
autonomous driving. All of these data-driven methods aim to acquire enough data and experience
to become robust to various changes in the environment that could occur during day-to-day driving.
Imitation learning is a class of methods that involves training an autonomous agent to imitate a
supervisor that is known to be proficient at the task at hand. In the case of autonomous driving,
this agent is often a human in the real world or a classical control model that has access to the
dynamics of the simulator environment. Examples of imitation learning methods applied to driving
environments include DAgger [42], SHIV [29], SafeDAgger [54], and Dart [28]. Reinforcement
learning methods have also been proposed and applied to driving environments; reinforcement
learning is a class of methods that involves learning from experience, where an agent’s actions are
given feedback indirectly through a reward signal. The agent aims to balance exploration of new
policies with exploitation of the currently known best policy. Examples of reinforcement learning
methods applied to driving environments include as Q-Learning [49], Vanilla Policy Gradient [50],
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Trust Region Policy Optimization [45], Deep Deterministic Policy Gradient [31], and A3C [34].
Because of the many safety and robustness requirements for autonomous driving, policies must

be able to re-plan quickly and adapt to various environments. Training a data-driven model requires
a large number of data samples to be robust to the environment due to the high dimensionality of
image observations and high variance in the state space [9].

Collecting training data in the real world often features the assistance of human operators for
legal requirements and to ensure safety and quality of feedback [4], making data collection costly.

Training in simulation presents an avenue for safely collecting data without the large conse-
quences of making a mistake, which is especially useful for training in the early stages of a model
where it is the most prone to crashing. Simulation also allows faster learning of safe driving be-
haviors in the presence of other vehicles, which can be fine-tuned to adapt to real-world situations
[16].

There exist many simulators that are currently being used in autonomous driving experiments.
Simulators are used to determine the effectiveness of a new method specifically for autonomous
driving and control. Driving simulators have also been used as a general benchmarking environ-
ment to evaluate the effectiveness of a new general-purpose algorithms. Many of these experiments
require large quantities of training data to perform, making data collection an expensive operation.
TORCS, an open-source racing simulator, has been used in many research experiments [34, 10, 37,
33, 32]. Similarly, Grand Theft Auto has also been used as a data source for experiments related
to the driving domain [17, 41]. Research groups and labs have also independently developed their
own driving simulators of varying complexities for their own experiments.

We present a lightweight driving simulator designed primarily for autonomous driving exper-
iments, with a focus on customizability and speed of integration with existing learning pipelines.
We design the simulator as a first-order approximation of a driving environment to be used as a
benchmarking tool to quickly evaluate the effectiveness of a new method for autonomous driving,
especially with consideration to the safety and data efficiency of the output policy. To simplify the
state space of the environment, we feature a 2D birds-eye view of the simulator centered around the
car, with simple graphics for performance. The car features the choice between point, kinematic,
and dynamic bicycle models with slip and friction, as a first-order approximation to car dynamics.
Its input controls include steering, acceleration, and braking, and can be input from an external
program or manually through a keyboard or Xbox controller. To facilitate ease of integration with
external modules, the simulator implements the OpenAI Gym interface [8], a popular environment
interface for learning problems.

Using the configuration module, many features of the simulator itself can be tweaked to fit the
desired task. On startup, the environment reads from this configuration file to set up its features
including the track, car placement as well as environment features such as state space (images,
positions and poses of cars) and action space (discrete or continuous, limits).

We also feature integration with Ray [36], a distributed execution framework aimed at making
it easy to parallelize existing codebases, including data collection for machine learning and rein-
forcement learning applications. Experiments using this framework can significantly improve the
rate of data collection, which is often a bottleneck for learning experiments. Using a parallelization
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framework like Ray is extremely important for reducing the costs of data collection especially for
data-intensive learning methods.

The goal of this simulator is to be able to quickly configure the environment to fit the desired
driving task, then quickly integrate with an existing learning model to start gathering data for
training. We perform experiments benchmarking performance against other driving simulators.
We also provide example code for integration with imitation learning and reinforcement learning
algorithms.
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Chapter 2

Related Work

2.1 Benchmarking
Our work is related to data-centric end-to-end systems developed for autonomous driving.

ALVINN [39] was one of the first systems that leveraged neural networks to train a policy to
map from images to controls for driving; a similar approach was performed by Chen et al. using a
more convolutional neural network model [13]. Xu et al. created an end-to-end system for learn-
ing vehicle motion models from video datasets [52]. Bojarski et al. used supervised learning to
train end-to-end convolutional neural networks for driving in the real world [6], as well as provide
explanations and insight into what the system learns [7].

Our work is also related to vision benchmarks and tasks that are necessary for autonomous
driving. There exist benchmarks in the real world evaluate the ability of an autonomous driving
system to perceive important features of the surrounding environment. Dubbelman et al. created
a dataset to benchmark stereo based motion estimation [15]. Geiger et al. created a dataset to
benchmark various perception tasks including stereo, optical flow, visual odometry, and 3-D object
detection [19]. Fritsch et al. created a dataset to benchmark road area and lane detection in urban
areas [18].

Driving simulators have also been used to provide synthetic data for various tasks. Richter et
al. created a synthetic dataset generated from Grand Theft Auto V to supplement real-world data
for training semantic segmentation systems [41]. TORCS [51], an open-source driving simulator,
has been used to learn mid-level cues for autonomous driving that generalized to real images [12],
and to benchmark imitation learning [10, 54], reinforcement learning [33], and genetic algorithms
[37].

2.2 Driving Simulators
There are many existing simulators with varying degrees of complexity and different target

audiences. We compare to other simulators used for autonomous driving projects. All of these
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Figure 2.1: TORCS

feature similar control schemes, with steering, acceleration, and braking as the primary control
inputs to the car.

TORCS [51] is an open-source 3-D racing car simulator that allows implementation of con-
trollers to race against computer opponents. The project is more complex than FODS and includes
dynamics such as gears, fuel, damage, wheel velocities as well as other vehicles. Direct communi-
cation with the game is possible with Java and C++, while there exists third-party Python interfaces
[53] for communicating with the game through a client-server interface. There also exists a third-
party Python library that also implements the Gym interface for ease of integration with external
learning pipelines. The viewpoint of the simulator is from the driver’s point of view. In comparison
to FODS, this simulator is more complex and features more customizability.

DeepGTAV [43] is an interface for communicating with an instance of Grand Theft Auto, a
popular 3-D open-world sandbox game with a driving component. The game itself is proprietary,
and requires purchase of a license to use. It communicates with the game through a client-server
interface in Python, which transmits messages in JSON format. The simulator is in 3-D and the
viewpoint is from behind the car. The environment includes realistic graphics and can include other
cars. In comparison to FODS, this simulator is proprietary and more complex, and the environment
itself is designed for gaming purposes rather than for driving experiments.

Udacity features an open-source 3-D driving simulator rendered in Unity for their online course
on using deep learning to train an autonomous driving agent. The viewpoint for collecting data is
from behind the car, while labeled images are generated from a first-person drivers perspective of
the road. The project features two built-in tracks, as well as a custom track creation module. In
comparison to FODS, this simulator has less customizability, more complex graphics, and does not
feature other cars.

OpenAI Gym [8] features many built-in environments for evaluation of learning algorithms.
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Figure 2.2: GTA V

Figure 2.3: Udacity’s Driving Simulator

Their driving environment is an open-source 2-D driving simulator implemented with Box2D [11].
The state space is a top-down view of the environment, with the camera centered around the car.
Slip and friction dynamics are implemented, and skid marks are rendered when the car slips. In
comparison with FODS, this simulator has less customizability and does not feature other cars on
the track.

Many research groups and labs have also independently developed their own driving simulators
of varying complexities for their own experiments. Sadigh et al. created their own 2-D driving
simulator as an environment for evaluating inverse reinforcement learning algorithms with a focus
on interactions between different vehicles [44]. The viewpoint is a 2-D birds-eye view centered
around the car and its surrounding environment. The dynamics model is specified symbolically



CHAPTER 2. RELATED WORK 8

Figure 2.4: OpenAI Gym: CarRacing-v0 Environment

through Theano [5], which facilitates usage of classical control and other algorithms that require
knowledge of the dynamics.
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Figure 2.5: Driving Interactions: Simulator
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Chapter 3

Dynamics

There are many existing car dynamics models with differing degrees of complexity. We opted
to use relatively simpler dynamics for the car to facilitate performance and simplicity while main-
taining a first order approximation of a car. The car features the choice between point, kinematic,
and dynamic bicycle models with slip and friction, as a first order approximation. Both models use
steering and acceleration and braking as input controls. The models are discretized using SciPy’s
[24] ordinary differential equation integrator and is sampled at td = 100 ms. For simplicity and
simulator performance reasons, we opt not to use complete full vehicle dynamics models [2, 35,
40].

3.1 Point Model
The point model is the most simple dynamics model available for the simulator. The continuous

differential equations that describe the point bicycle models are as follows.

ẋ = vcos(δ f ) (3.1)

ẏ = vsin(δ f ) (3.2)

ψ̇ = δ f (3.3)

v̇ = a (3.4)

x and y are the coordinates of the center of mass in an inertial frame (X ,Y ). ψ is the inertial
heading and v is the speed of the vehicle. a is the acceleration of the center of mass in the same
direction as the velocity. The control inputs are the front and rear steering angles δ f , δr, and a.
Since in most vehicles the rear wheels cannot be steered, we assume δr = 0.
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3.2 Kinematic Bicycle Model
The inertial position coordinates and heading angle in the kinematic bicycle model are defined

in the same manner as those in the point model. The continuous differential equations that describe
the kinematic bicycle models are as follows [40, 27].

ẋ = vcos(ψ +β ) (3.5)

ẏ = vsin(ψ +β ) (3.6)

ψ̇ =
v
lr

sin(β ) (3.7)

v̇ = a (3.8)

β = tan−1(
lr

l f + lr
tan(δ f )) (3.9)

l f and lr represent the distance from the center of the mass of the vehicle to the front and rear
axles, respectively. β is the angle of the current velocity of the center of mass with respect to the
longitudinal axis of the car.

3.3 Dynamic Bicycle Model
The inertial position coordinates and heading angle in the dynamic bicycle model are defined

in the same manner as those in the kinematic bicycle model. The continuous differential equations
that describe the kinematic bicycle models are as follows.

ẍ = ψ̇ ẏ+ax (3.10)

ÿ =−ψ̇ ẋ+
2
m
(Fc, f cosδ f +Fc,r) (3.11)

ψ̈ =
2
Iz
(l f Fc, f − lrFc,r) (3.12)

Ẋ = ẋcosψ− ẏsinψ (3.13)

Ẏ = ẋsinψ + ẏcosψ (3.14)

ẋ and ẏ denote the longitudinal and lateral speeds in the body frame, respectively and ψ̇ denotes
the yaw rate. m and Iz denote the vehicles mass and yaw inertia, respectively. Fc, f and Fc,r denote
the lateral tire forces at the front and rear wheels, respectively, in coordinate frames aligned with
the wheels.

For the linear tire model, Fc,i is defined as

Fc,i =−Cαiαi (3.15)

where i ∈ { f ,r},αi is the tire slip angle and Cαi is the tire cornering stiffness.
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Table 3.1: Road Friction Coefficients

Road Type µ

Dry 0.9
Wet 0.6
Snow 0.2
Ice 0.05

We estimate the cornering stiffness as follows [47].

c f = µ ·m · lr
l f + lr

·
ȧ f

δ̇ f −
a f
v + r

(3.16)

This estimate is restricted to δ̇ f −
a f
v + r 6= 0. Under the assumption of the linearized single

track model equations, this term is identical to α̇ f . We therefore use the following estimate.

c f = µ ·m · lr
l f + lr

(3.17)

We use the value of Iz ≈ 2500, which is a typical value for a smaller car [22].
We also list the different coefficients of friction based on the road type [20].
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Chapter 4

System Features

4.1 System Architecture
The project is written in Python with the PyGame library for visualization [46]. The project

implements the OpenAI Gym environment interface for ease of integration with learning exper-
iments [8]. Sample code for interaction between a generic environment and agent is as follows.
The standardized interface allows easy integration with different learners.

# assume a g e n t i s i n t i a l i z e d
env = Dr iv ingEnv ( )
done = F a l s e
w h i l e n o t done :

a c t i o n = a g e n t . g e t a c t i o n ( env )
o b s e r v a t i o n , reward , done , i n f o = env . s t e p ( a c t i o n )

4.2 Customization
One of the goals of this project is to provide a highly customizable benchmarking environment

for different learning algorithms. Using the command-line based configuration module, many
features of the simulator itself can be tweaked to fit the desired task; the configurations are stored
in an external file in JSON format. On startup, the environment loads from this configuration file
to set up its features including initial conditions and environment interfaces. These files can be
saved and loaded from the configuration file for ease of editing later on.

Many of the features of the environment are customizable to fit the needs of the experiment.
Learning algorithms are often benchmarked to determine their model’s stability and robustness
to unseen states; we offer configuration options to provide control over the variance in the en-
countered state space. One feature is track placement including positions and orientations, which
allows testing of the policy’s generalization error when navigating previously unseen tracks. The
road conditions of the track can be configured to include dry, wet, snowy, and icy terrain to test
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Figure 4.1: Examples of different terrain, with different coefficients of friction.

robustness to different vehicle handlings; similarly, the dynamics model of the main car can be
changed between the point, kinematic, and dynamic bicycle models to offer control over the ve-
hicle’s handling. The number of computer-controlled cars, as well as their positions, velocities,
orientations, and color can be changed to test the robustness of the policy to avoiding cars at vary-
ing parts of the map. We also feature control over the randomization of car properties, including
positions withing specified bounding boxes, distances between car placements, and starting angles,
which allows for control over the large variance in the initial state distribution.

Additionally, many properties of the simulator itself can be customized to fit the needs of the
experimental pipeline and system. The simulator can be configured to set the rendering screen size
as well as enabling or disabling rendering, which allows for significant performance increases for
applications that do not require image data. Similarly, we can configure the output state space,
including rendered RGB color images, or positions, velocities, and orientations of cars. The size
of the output image can also be downsampled to be smaller than the original rendered image using
OpenCV [23]. These options allow the state space to match the data formats needed by the model,
as well as allow for performance increases for experiments without rendering. We also feature
customization of the action space, including choice of discrete or continuous controls. The control
limits of the action space can also be modified, as well as the step size and size of the action
space in the discrete case. Steering or acceleration and braking controls can also be disabled or
enabled. These features allow control over the action space for the needs of the experiment. The
time horizon of the environment can also be set, after which the environment automatically returns
True for its ”done” output when taking a step, to indicate that the environment should be reset;
this allows for performing experiments with varying time lengths. Finally, the sampling rate for
logging of the states and actions encountered can be set, as well as its respective output location.
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Figure 4.2: Examples of different track configurations.

Adding Features
Additional configuration features can be easily added by modifying the configuration module

to add an additional entry and prompt into the existing list of features. Afterwards, the corre-
sponding entry will appear to the environment on startup when it loads the configuration file. The
environment then can handle the entry as desired.

Advanced Customization
Additional features that are more complex and intrinsic to the environment, such as custom

reward functions, additional car dynamics models, or terrain models, can be implemented by cre-
ation of custom classes that inherit from the corresponding environment, car, or terrain class, and
overwriting the corresponding functions. Under the hood, most objects that the environment inter-
acts with has its own corresponding ”step” function for updates, which can be modified to handle
most changes.

4.3 Parallelization
We feature integration with Ray [36], a distributed execution framework aimed at making it

easy to parallelize existing codebases. including data collection for machine learning and rein-
forcement learning applications. Experiments using this framework can significantly improve the
rate of data collection, which is often a bottleneck for learning experiments. We provide an exam-
ple of integration of Ray with imitation learning experiments, where we iteratively parallelize our
data collection over multiple CPUs each with their own individual instance of the simulator, pool
our simulated trajectories and rewards from the workers, then update our model with the data and
train using a GPU.
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Figure 4.3: Architecture of Ray processing pipeline.
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Chapter 5

Benchmarking

5.1 Simulator Comparison
We benchmark our performance against other simulators of varying degrees of complexity,

and show that our simulator matches or outperforms their speeds of data collection. All trials are
performed on a 12-processor Intel Core i7 CPU. We benchmark by measuring the amount of time
the simulator takes to reach 1000 steps over n = 10 trials. We also attempt to disable rendering and
report the corresponding times; this option has not been found to be possible especially for more
complex simulators that couple rendering with the environment update.

5.2 Results
We find that the First Order Driving Simulator outperforms the other simulators that we bench-

mark against. We significantly outperform the 3-D simulators with over three times the speed of
the next best simulator, as expected due to their higher detail and complexity in rendering. We also
outperform the 2-D simulators with slightly under two times the speed of the next-best simulator.

Table 5.1: Steps (x1000) per Minute, Rendering

Simulator mean stdev
FODS 3.48 0.0372
Udacity 0.99 0.0623
TORCS 0.29 0.0004
Driving Interactions 0.56 0.0164
OpenAI Gym (CarRacing-v0) 1.84 0.0526
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Figure 5.1: Simulator performance benchmarking results. Left image is benchmarking with ren-
dering. Right image is benchmarking with rendering disabled.

Table 5.2: Steps (x1000) per Minute, No Rendering

Simulator mean stdev
FODS 58.3 6.321
Udacity - -
TORCS - -
Driving Interactions - -
OpenAI Gym (CarRacing-v0) 3.71 0.1017

5.3 Parallelization
We also benchmark the effects of parallelization on the performance of FODS. We benchmark

by measuring the amount of time the simulator takes to reach 10000 steps over n = 10 trials, while
varying the number of cores allotted to the simulator. We report results for rendering enabled and
disabled.

5.4 Results
We find that increasing the number of processors up to the maximum limit of 12 improves the

performance of the simulator, but there are diminishing returns due to additional overhead.
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Figure 5.2: Simulator parallelization benchmarking results. Left image is benchmarking with
rendering. Right image is benchmarking with rendering disabled.
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Chapter 6

Experiments

We benchmark the performance of imitation learning and reinforcement learning methods on
this environment.

6.1 Configuration
We include the particular set of configurations used for these experiments. The agent’s car has

initial state variance uniform over [-30, 30] for starting angles. There are five other cars uniformly
scattered within a grid that spans up to 100 time steps forward in the road from the car’s current
location. The agent only has control over its steering and is forced to accelerate up to its maximum
speed at twice the speed of the other cars, forcing it to learn to steer around the other cars while
avoiding travelling off the road. The road is also narrow enough to make it impossible to turn
around.

6.2 Evaluation
We evaluate performance of a learning algorithm based on the average number of steps the

agent travels before the current trajectory is terminated. The current trajectory is marked as ”done”
and terminated immediately when either the main car collides with another car or runs off the track,
or if the maximum time horizon of 100 time steps is reached.

6.3 Imitation Learning

Algorithms
One set of experiments we perform is analyzing the performance of different imitation learning

algorithms on this environment. We evaluate DAgger [42], Dart [28], and ordinary supervised
learning, as well as variants on these algorithms.
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Figure 6.1: Environment used for Experiments

Configurations
For this set of experiments, the state space of the simulator is gray-scale 8-bit images of the

rendered image, in the set S = [0,255]300×300. Our neural net architecture features a convolutional
layer with 5 filters of dimension 7x7 and a fully connected hidden layer of dimension 60. Each
layer is separated by ReLU non-linearities. The images are centered around the agent’s car. All ex-
periments feature a cost-based search planner as a supervisor to provide demonstrations, which has
access to the lower dimensional internal state space of the simulator. The cost function is weighted
to promote navigating around cars while keeping closer to the center of the road. The supervisor
is able to achieve a reward of approximately 70 on average on this particular environment. We
provide the results of these experiments, plotting average episode reward against the number of
demonstrations provided by the supervisor.

Results
On this particular environment, we find that Dart-0.5 performs the best with an average score

of approximately 60. The other three imitation learning methods achieve lower scores around 40-
50 by the end of the experiment. All of these imitation learning methods outperform ordinary
supervised learning, which achieves a score of approximately 20.
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Figure 6.2: Examples of states considered as crashes in the experiment. Left image illustrates an
example of colliding with a car. Right image illustrates an example of running off the main road.

Figure 6.3: Performance of Imitation Learning Algorithms

6.4 Reinforcement Learning

Algorithms
We also perform another set of experiments evaluating the performance of different reinforce-

ment learning algorithms on this environment. We evaluate REINFORCE [50], Trust Region Pol-
icy Optimization [45], Truncated Natural Policy Gradient [25, 3], and Reward Weighted Regres-
sion [38, 26].
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Figure 6.4: Performance of Reinforcement Learning Algorithms

Configurations
We feature examples integrating the environment with Rllab [14], which features implemen-

tations of these as well as other reinforcement learning algorithms. For this set of experiments,
to reduce the state space of the simulator, we provide the state space as the positions and poses
of all of the cars, in the set R18. Each of these algorithms is run with a batch size of 40000 time
steps per update iteration, with a total of 500 iterations, and a step size of 0.01. Our neural net
architecture features two fully connected hidden layers of size 64. Each layer is separated by tanh
non-linearities. Including overhead from parallelization, we collect around 200-250 time steps per
second per thread. We provide the results of these experiments, plotting average episode reward
against the number of update iterations taken by the reinforcement learning algorithms.

Results
On this particular environment, we find that Truncated Natural Policy Gradient (TNPG) and

Trust Region Policy Optimization (TRPO) perform the best with a score of approximately 35.
Vanilla Policy Gradient (VPG) achieves a score around 32. Reward Weighted Regression (ERWR)
achieves a score of around 30. All of these algorithms plateau and achieve their best performance
around 250 iterations.
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Chapter 7

Discussion and Future Work

7.1 Discussion
We present a lightweight simulator designed for autonomous driving experiments, with a focus

on customizability and speed of integration with existing learning pipelines.The state space is a
2D birds-eye view of the simulator centered around the car, with simple graphics for performance.
The car features the choice between kinematic and dynamic bicycle models with slip and friction.
Its input controls include steering, acceleration, and braking, and can be input from an external
program or manually through a keyboard or Xbox controller.

To facilitate ease of integration with external modules, the simulator implements the OpenAI
Gym interface [8], a popular environment interface for learning problems. We also feature paral-
lelization with Ray [36], a distributed execution framework aimed at making it easy to parallelize
existing codebases, which allows for significant speed increases in data collection. We benchmark
our performance against other simulators of varying degrees of complexity, and show that our
simulator matches or outperforms their speeds of data collection.

7.2 Future Work
While the core functionality of the project has been implemented, there are multiple additional

features we wish to implement in the future to improve usability and performance.

GUI
One important feature is to create a graphical user interface for the configuration module, as

opposed to the current command-line interface. This will greatly improve the speed and usabil-
ity of configuring the environment, especially for features that are more intuitively represented
graphically such as track placement.
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Box2D
We also wish to investigate porting the core of the system to Box2D [11], a two-dimensional

physics simulator for games that offers a Python interface [21]. Box2D is a more complete game
engine than PyGame due to better supported rendering features as well as direct native support for
handling physics simulations. We may offer a choice between the different backends depending
on comparisons of performance.

Symbolic Dynamics Models
Another possible feature is to allow specification of dynamics models symbolically in Tensor-

flow [1] or Theano [5]. Currently, the dynamics models for most simulators including this one are
opaque and require inspection of the source code to extract. By specifying the models symboli-
cally, the dynamics models become more readily usable for traditional motion planning approaches
that require knowledge of the dynamics model. This allows for easier comparisons between an-
alytically planning models and data-driven machine learning approaches. Additionally, this will
allow for easier imports of custom dynamics models, rather than directly implementing a sub-class
of the car model and overwriting the corresponding functions.

Use Cases
From a usability perspective, we also wish to improve the documentation of use cases of the

simulator. We hope to provide more examples of configurations for different simulator setups.
We also hope to include more examples of scripts for running different imitation learning or rein-
forcement learning algorithms, as well as integration with classical control algorithms that require
symbolic specification of dynamics models.
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