
Beamforming and MIMO Digital Radio Baseband and

Testbed for Next Generation Wireless System

Yiduo Xu

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-98

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-98.html

May 13, 2016

Copyright © 2016, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Capstone Report

Beamforming and MIMO Digital Radio Baseband and

Testbed for Next Generation Wireless System

Niral Sheth, Yiduo Xu, Zhen Yuan

Advisors: Elad Alon, Vladimir Stojanovic

4/15/2016

1

University of California, Berkeley College of Engineering

MASTER OF ENGINEERING - SPRING 2016

Electrical Engineering and Computer Science

Physical Electronics and Integrated Circuits

BEAMFORMING AND MIMO DIGITAL RADIO BASEBAND AND

TESTBED FOR NEXT GENERATION WIRELESS SYSTEM

YIDUO XU

This Masters Project Paper fulfills the Master of Engineering degree requirement.

Approved by:

1. Capstone Project Advisor:

Signature: __________________________ Date ____________

Print Name/Department: ELAD ALON/EECS

2. Faculty Committee Member #2:

Signature: __________________________ Date ____________

Print Name/Department: BORIVOJE NIKOLIC/EECS

2

Chapter 1: Technical Contribution

Yiduo Xu

3

Introduction

The past several decades have seen the development of wireless telecommunication

industry at an unparalleled speed, which has connected more and more people together all

over the world. This wouldn’t be possible without the rapid evolution of wireless

technologies like cellular data network. From the first generation (1G) to the current

generation (4G), mobile phone data network has continued pushing its maximum speed

limit, due to the growing demand of data-heavy tasks. Behind this trend lies fast generation

evolution of supporting technologies and standards in the wireless industry. It has posed

great challenges to developers and manufacturers of wireless products, since constantly

designing and manufacturing new products are essential for them to keep up with the

latest technology.

In light of this challenge comes our capstone project, which aims to design a

hardware generator to produce flexibly structured wireless systems. With this generalized,

easy-to-modify generator, wireless product companies would be able to reduce the time

and monetary cost for next-generation product development. Then, consumers can enjoy

the latest wireless technology at an earlier time with lower costs. Therefore, our research

will benefit not only the producers, but also the consumers of wireless technologies.

Specifically, within the project’s digital radio baseband structure, our capstone team is

responsible for building the beamforming and multiple input multiple output (MIMO)

blocks. These blocks play an important role in the whole system, serving as the outermost

device interface for transmitting and receiving wireless signals.

To optimize the efficiency of our capstone project, we created a task plan with a mix

of individual and cooperative tasks. Each individual task was assigned to a team member,

4

and each cooperative task also had a person in charge. The cooperative tasks include Chisel

learning, CORDIC (coordinate rotation digital computer) implementation and demodulator

implementation. They were designed to familiarize us with the tools and knowledge

needed in the project. The rest of the tasks were core designing tasks, which were split

among the three team members. I worked on integrating the CORDIC block, Niral designed

the MIMO matrix multiplication block, and Zhen developed the beamforming matrix block.

The work breakdown structure in Figure 1 demonstrates the relationship of our project

deliverables and reporting deliverables.

Figure 1. Work breakdown structure.

This technical contribution paper is focusing on the development and testing of an

arithmetic calculation block called CORDIC. It was an essential component for many blocks

in the whole digital radio baseband system, including the beamforming and MIMO blocks

5

we built. In Niral’s paper, the development of the MIMO matrix multiplication block is

discussed, and Zhen’s paper detailed the design of the beamforming matrix block.

The rest of this chapter is organized as follows: The second section describes the

principle of the CORDIC algorithm; the third section presents the hardware structure

designed for CORDIC; the fourth section illustrates the design realization in the hardware

construction language Chisel; the fifth section explains the validation process and results;

and the sixth section is a conclusion of this chapter.

CORDIC Algorithm

As an important basic block for the whole digital radio baseband system, COordinate

Rotation DIgital Computer (CORDIC) is a collection of shift-add algorithms used for

computing various arithmetic functions (Volder 1959). In our project, it was chosen as the

basic block to perform calculations for many other blocks, including Carrier Frequency

Offset (CFO), beamforming and MIMO.

The reasons why CORDIC was chosen over other algorithms were related to two

aspects: the trend in telecommunication industry and the characteristics of CORDIC

algorithm. In the past, digital signal processing (DSP) and communication industry was

dominated by microprocessors. As technology involved, the microprocessors encountered

a bottleneck in speed. With the development of reconfigurable hardware, people have been

looking into hardware solutions to reach higher speed (Andraka 1998). Thus, we need to

conduct research on hardware efficient algorithms and architectures to facilitate this

transition. CORDIC is one of the hardware efficient algorithms. It is a class of iterative

solutions for trigonometric, linear, logarithmic and other functions. The reason why it is

6

hardware efficient is that it only uses shifts and adds to perform all the functions. It is also

suitable for digital modulation and communication applications, because tasks like

phase/frequency estimation and correction require a lot of trigonometric operations

(Meher 2009). Thus, this algorithm is an ideal choice to be implemented in digital radio

hardware systems.

The CORDIC algorithm is derived from the vector rotation formula. If rotating vector

(x, y) for φ degrees results (x’, y’), we have:

cos sin

cos sin

x x y

y y x

 

 

  

  
 (1)

By extracting cosφ, we get:

cos (tan)

cos (tan)

x x y

y y x

 

 

  

  
 (2)

In order to simplify the calculation, we limit the value of tanφ to tan 2 i   . The

rotation by an arbitrary angle can be achieved by performing a series of fixed angle

rotations. The ± sign in tanφ can be represented with a direction variable di. Noticing that

cos cos()   , the above equations can be expressed as an iterative rotation:

1

1

(2)

(2)

i

i i i i i

i

i i i i i

x K x y d

y K y x d









   

   
 (3)

Where

1 2cos(tan 2) 1/ 1 2

1

i i

i

i

K

d

    

 
 (4)

7

During the iterations from i equals to 0 to n, we can ignore the constant Ki and add

them back in the end of the computation. Then the iterations will have a systematic gain of

An:

 21
1 2 1.647()i

n

ni

n

A n
K

    


 (5)

The gain converges to a constant value as the number of iterations approaches

infinity.

Lastly, in order to calculate the total angle accumulated during the iterations, an

angle variable zi is added:

 1

1 tan (2)i

i i iz z d  

    (6)

zi can be expressed either in degrees or in radius.

The final equations we get are:

1

1

1

1

2

2

tan (2)

i

i i i i

i

i i i i

i

i i i

x x y d

y y x d

z z d









 



   

   

  

 (7)

There are two ways to determine the direction of rotation in each iteration, which

separate the algorithm into two modes. The rotation mode rotates according to the value of

zi, which rotates the vector for a specified angle; the vectoring mode rotates according to

the value of yi, which rotates the vector to align it with x axis.

In rotation mode, the desired rotation angle is input as z0. The di is determined by

the sign of zi, in order to diminish the angle. In vectoring mode, the di is determined by the

8

sign of yi, which will diminish the vertical magnitude of the vector. If the initial angle z0 was

set to 0, the final angle zn represents the total traversed angle of the process. The complete

algorithm is summarized below in Figure 2.

Figure 2. CORDIC algorithm.

There is a limitation of rotation angle for the above algorithm. Because i starts with

0 in tan 2 i   , the total traversed angle can only be [-π/2, π/2]. If the inputs exceed this

region, they need to be rotated before passing into the algorithm. This is called pre-rotation,

and there are many ways to do it. In this paper, a rotation of ±π is performed if the input is

out of range.

By carefully setting inputs to specific values, or slightly changing the equations, the

CORDIC algorithm can directly perform many trigonometric functions. Some examples

include sine, cosine, arctangent, and polar/Cartesian transformation. Since the CORDIC

generally adds one bit of accuracy in each iteration, the total number of iterations n is

usually set to the number of bits of the inputs.

9

Hardware Structure

With the above understanding of the CORDIC algorithm, its hardware

implementation was designed based on the basic structures proposed in Andraka’s

paper(1998). By combining two basic implementation structures, we developed the final

mixed structure for our CORDIC block, which meets the flexible and parameterizable

requirements of the final digital radio baseband system generator.

The first structure, called the iterative structure, is a straightforward hardware

realization of the iterative CORDIC algorithm. It simply translates the three equations in the

algorithm into shifters and adder/subtractors, shown in Figure 3. It performs one iteration

in one cycle, and three registers are used to store the intermediate results after each

iteration. A multiplexer (MUX) is placed at the input of each register to select appropriate

value to put in. Before the algorithm starts, the MUXs select the block inputs x0, y0, and z0, to

initialize the registers; during the execution of the algorithm, the outputs of the registers go

through the shifters and adder/subtractors, and the MUXs select the results after the

adder/subtractors to put back in the registers, so the outputs from current iteration are fed

back as inputs for next iteration. The number of bits shifted in the shifters is increased by 1

bit in each iteration. A Read-Only Memory (ROM) is used to store the angle values (in

degrees or radians) corresponding to each arctangent value in each iteration. The address

pointer to the ROM is also shifted by one address in each iteration to access the right

angular value. Finally, the direction variable di is determined by the sign of yi (vectoring

mode) or zi (rotation mode) in each iteration. In the last iteration, the final results can be

read from the outputs of the adder/subtractors. Apparently, some control logic is necessary

to realize the above described operation pattern.

10

Figure 3. Iterative structure for CORDIC.

The second structure is called the unrolled structure, which is derived from the

iterative structure to improve its performance. As concise and simple as the iterative

structure is, its speed is limited because it can only produce one result after n cycles, so the

data have to be passed in n times slower than the operating clock frequency. To finish all

the calculations in one cycle, we can unroll the iterative structure, making n copies of it and

connecting them together. This leads to the following unrolled structure in Figure 4. In this

structure, the data are passed into the top adder/subtractors and shifters, go through n

11

layers of the iterative structure, and then the results will appear at the outputs of the

bottom adder/subtractors.

Figure 4. Unrolled structure for CORDIC.

Three major simplifications and related advantages resulted from the usage of the

unrolled structure. First, all the shifters are now performing a fixed bit shift instead of a

variable bit shift. Depending on where the shifter is in the unrolled chain, it still shifts the

12

input by different bits; but each individual shifter doesn’t change the bits shifted during the

whole operation. This means they can simply be substituted by hard wiring. The second

simplification is in the angle accumulation chain. Since the angle traversed in each iteration

is fixed (ignoring the direction), the ROM in the iterative structure can be replaced with a

set of constants connected to the angle adder/subtractor in each layer. These constants can

also be hard wired, which will take much less space than a ROM. Because of these

simplifications, the control logic can be reduced substantially. Third, the registers are no

longer needed to keep the intermediate values, so the total delay to finish this algorithm

will be reduced too.

However, this structure still has room for improvement. As the unrolled structure

consists of the combinational logic entirely, its delay will be significant, which will limit the

speed of the clock. Thus, registers can be asserted between the adder/subtractors along the

same chain to pipeline this structure. Although this might worsen the total delay to the

same level as the original iterative structure (n cycles with registers), the throughput will

be improved by n times. As long as the data can be input at the clock frequency, this

pipelined unrolled structure can produce one valid result in each time period needed to

finish one iteration.

Based on the iterative structure and the pipelined unrolled structure, we came up

with the mixed structure, which is the final design used in the project. As indicated by the

name of the structure, it is a mixture of the previous two structures. A new term “CORDIC

stage” was introduced to describe the components of the structure. Each CORDIC stage is

an iterative structure with registers to hold values, and a series of CORDIC stages are

connected to form the whole structure. The difference between this structure and pipelined

13

unrolled structure is that the number of stages in mixed structure can be arbitrary. Each

stage performs certain iterations, and then passes the data to the next stage. Also, the

reference angle values are now stored in a lookup table (LUT), instead of ROM or hard

wired. The total delay is still n cycles, and the throughput is dependent on the number of

stages.

The mixed structure is ideal for our project, because it is generalized and provides

flexibility for exploration. An unrolling factor R is used to parameterize this flexibility. It

represents the degree of unrolling of the mixed structure. The number of CORDIC stages

Nstage (N) in the structure equals to the unrolling factor R times total iterations n.

 (0,1]stageN R n R   (8)

If the unrolling factor is 0, there is only one stage in the block, so it equals to the area

saving iterative structure; if the unrolling factor is 1, there are n stages which means the

structure becomes pipelined unrolled with high performance. Therefore, by changing R, we

can explore the tradeoff between area and performance for the CORDIC block. Depending

on the applications, the optimal structure for CORDIC can be easily set with an appropriate

unrolling factor.

Design in Chisel

The design of the mixed hardware structure of CORDIC was implemented in Chisel.

Defined as a high-level hardware construction language, Chisel was developed at UC

Berkeley (Bachrach 2012). It provides hardware construction flexibility by adopting

parameterized generators and layered design. It also provides features like built-in

14

standard interfaces and DSP support which comes handy in our project. Thus, it’s very

suitable for our project to make the hardware implementation flexible and generalized.

In this section, the high-level code structure of the CORDIC module will be described

as well as the functions realized in the submodules. For detailed description of CORDIC

module operation and how to set up parameters and input signals, please refer to Appendix

A. The schematic structure of the whole CORDIC module in Chisel is illustrated in Figure 5.

The Chisel hardware generator is in dashed lines. The main CORDIC block consists of N

CORDIC stages in the pipeline, together with an overhead control block and peripheral

blocks (Pre-rotation and scale multiplication blocks).

Figure 5. Chisel structure for CORDIC.

When the Chisel codes are compiled to generate hardware, the generator is run first

to configure the hardware structure with a set of configuration parameters. Parameter k

represents bit width of the vector (x, y), parameter l represents bit width of the angle z, and

15

R represents the unrolling factor. The maximum of k and l determines the number of

iterations n, and together with R, they can define the number of CORDIC stages (N) and the

number of iterations each stage needs to perform. With this information, the offsets and

iterations for each stage can be calculated. They are aggregated in two arrays of integers,

and passed to the control submodule to control all the CORDIC stages.

After the configuration, the generated submodules perform different functions and

work together to finish the CORDIC algorithm. As mentioned in hardware structure section,

each CORDIC stage is one implementation of the iterative CORDIC structure in Figure 3. It

takes in the inputs from the I/O interface with the previous block, calculates according to

the look-up table (LUT) in it, and outputs the results after the number of iterations

specified by the control block. The pre-rotation block is used to pre-rotate the input vectors

if it is not within the range of the CORDIC algorithm, and the scale multiplication block

compensates for the systematic gain before the start of the iterative calculation. Lastly, the

control block utilizes offsets and iterations arrays to keep track of and control the CORDIC

stage blocks. The same CORDIC stage block is reused for each stage from 1 to N, which is

simpler than traditional hardware implementation. The top module and the stage modules

also share the same uniformed control and data interface called IO, which is also essential

to the flexible and general design of the whole radio system.

This design scheme achieved the flexibility goal of the project by utilizing the

parameterized and hierarchical programming characteristics of Chisel. The configuration

parameters consist of k, l, and R, which ultimately decide the number of CORDIC stages and

the number of iterations each stage needs to perform. Thus, modification of the hardware

structure can be done by simply tweaking these configuration parameters. The CORDIC

16

module also supports two different data types, with the assist of a generic data type

variable gen. It can be either DSPFixed or DSPDouble, and the rest of the code is valid in

both conditions. Thus, with a single parameter during configuration, the generated

hardware data type can be switched between fixed and double. This added another degree

of flexibility. The design is also layered, with the instantiation of sub-modules like CORDIC

stage within the top module CORDIC. This can reduce the complexity of the codes in each

layer, and make programming more efficient and less vulnerable to bugs.

Validation

In order to verify the correct function of the CORDIC implementation in Chisel, a

testbench was designed to thoroughly test all the possible operation conditions and make

sure the results are as expected. This testbench was written in Scala language and can be

used with C++ emulator, as well as CVS simulation for RTL, post-synthesis and post-place-

and-route. In this section, the testbench is illustrated, and the results from the hardware

generation and simulations are presented.

The testbench consists of two sets of tests. The first set verifies the rotation mode of

the CORDIC and the second one tests the vectoring mode. Each set contains multiple

individual tests which sets up a unit vector and a certain angle as inputs. The input angles

of the tests in the same set can be either equally spaced out along the range [-π, π), or

randomly generated.

The testbench can conduct these tests in three modes. The first mode is called serial

mode. Inputs for a single test are passed into the circuit by the poke command, and then the

tester tells the simulator to advance the simulation by certain cycles with the step

17

command. At the cycle when the results are expected to appear at output ports, the tester

uses the check command to compare them with reference values. The reference values are

calculated in Scala with double precision floating point format and the original one step

vector rotation formula. A flexible error tolerance threshold is used to make sure the error

of the CORDIC module is reasonable. After the test passes, the tester proceeds to the next

one until all tests are conducted. The second mode is very similar to the first one, except

that the tests are run in a pipelined fashion instead of separately. This means the tester can

feed new tests into the module whenever it is ready, without having to wait for the

previous test to complete. In this mode, the CORDIC module’s ability to handle multiple

tasks in flight can be thoroughly tested. Some extra control in the tester is needed to keep

track of the running tasks and check the results at the correct cycle. The last mode, bit

accurate testing mode, is different from the previous two modes. As can be inferred from

the name, the tester is evaluating the module’s accuracy bit by bit. This is achieved by

simulating the exact hardware computation in software, and comparing the results after

each cycle. To match the bit width in hardware, round/truncate functions are used

accordingly on the double type variables in software. This is the strictest mode of the

testbench, in that it has zero error tolerance, which ensures the correctness of the module

to the greatest extent.

This comprehensive testbench helped greatly during the debugging process.

Different sets of tests and modes revealed different bugs in the Chisel codes for CORDIC

module. It also automatically updates with the current hardware parameters, so the

testbench can be easily re-run after modifying the Chisel codes.

18

The CORDIC module was verified by the testbench and pushed through the ASIC

flow successfully. First, it passed the testbench in all conditions in the C++ emulator. After

that, we chose a set of parameters and pushed it through the Design Compiler (DC) and the

IC Compiler (ICC) to generate a complete circuit layout. The correctness of the circuit was

verified after each stage with the testbench. Table 1 and Table 2 below summarize the

setup and major results.

Table 1 CORDIC module ASIC flow input parameters

Table 2 CORDIC module ASIC flow result indexes

19

The design point used in this flow operates with 16 bit wide signals and an unrolling

factor of 0.5. The total occupied chip area is 43611 um2 and the total power dissipated is

10.3 mW. The maximum working frequency is about 768 MHz, with a slack of -0.09 ns in

the longest path for the specified 1.15ns clock period.

Conclusion

For the digital radio baseband generator that our capstone project was aiming to

build, a calculation module CORDIC was designed, realized and verified. A flexible

hardware structure for the algorithm was designed and implemented in Chisel. The

complete design passed the comprehensive testbench, went through the ASIC flow and

performed correctly in final stage simulation.

More research on the CORDIC block can be done in two aspects in the future. First,

the design space of the block can be thoroughly explored with parameter sets, so as to find

the optimal design point for a specific application. Second, the block can be integrated into

the digital radio baseband system, and be tested together with other blocks. After the

integration tests are finished for the whole system, it will be able to generate hardware for

various wireless technologies.

20

Chapter 2: Engineering Leadership

Niral Sheth, Yiduo Xu, Zhen Yuan

21

Introduction

With the recent surge in wireless communications, the radio industry has seen an

increase in the number of different communication standards, each requiring its own

specific hardware and processing. Our project intends to address the need for radio

interoperability with these various standards through the development of hardware

generators for a Software-Defined Radio (SDR) system. These hardware generators will be

created using Chisel (Bachrach 2012), a hardware construction language. When given a set

of parameters or constraints, the hardware generators will output automated circuit

designs for the given application, thereby accelerating the hardware design process and

introducing a new methodology for multi-standard support. In this paper, we discuss topics

relevant to bringing our project to market. These topics are divided into three sections: 1)

the project’s Intellectual Property (IP) approach, 2) the project’s industry analysis, and 3)

the project’s market segment.

Trends and IP Strategy

With recent advances in semiconductor technology, the Integrated-Circuit (IC)

industry has experienced rapid growth over the past few decades (Ulama 2015:6-9).

However, the industry is now starting to stagnate due to the increasing complexity

required in designing chips to provide competitive functionalities within demanding

constraints (Sangiovanni-Vincentelli 2007: 467-68). In particular, new opportunities rising

in the consumer electronics and Internet of Thing (IoT) domains have made time-to-

market the primary concern for IC companies due to first-mover advantages (Smith 2014).

22

With the demand for shorter design cycles and higher volumes of functionality to be

incorporated into designs, IC developers are facing costly project delays because changes in

project requirements often necessitate large loop iterations due to the sequential nature of

current industry design methodologies (Sperling 2014).

In addition to the design flow challenges, IC developers are facing problems with the

role of IP in the semiconductor industry. Given the increasing complexity of chips, it is too

costly and slow to develop all the functionalities from scratch. Hence, IC designers rely on

licensing reusable system building blocks from an external party, known as IP blocks

(Tamme, et al. 2013: 221). While these IP blocks can accelerate design cycles, the primary

issue arises during system integration and verification. When incorporating a supplier’s IP

block into the system, no guarantee exists that the IP block will interact with other system

components to provide correct functionality. Since these IP blocks are “black boxes”,

verification and modifications to the IP block to meet the developer’s need become difficult,

thereby creating delays and long design cycles.

Our project intends to address these problems in the wireless IC domain as it aims

to implement a new design paradigm based on Agile and platform-based schemes. The

development of flexible hardware generators achieves this by facilitating initial chip design

to be independent of specific processes or hardware implementations such as IP blocks. By

raising the level of design abstraction towards the desired functionality rather than a

specific implementation, large loop iterations can be avoided since system components can

dynamically change with requirements.

In bringing this project to market, our IP approach must maximize the project’s

impact on the wireless IC domain. A patent approach is not suitable for a few reasons. First,

23

the project is part of ongoing research at the Berkeley Wireless Research Center, which

follows a non-patent policy to encourage innovation. Second, the hardware generator

design flow is based on Chisel, an open source language for creating circuit generators.

Instead of obtaining a patent, we will be taking an open-source IP strategy to bring this

technology to market. The primary motivation for this approach comes from the project’s

holistic goal of reshaping wireless IC design flows towards an Agile scheme to shorten

design cycles and revive the growth of the IC and semiconductor industries. Taking an

approach to protect the IP of this technology would only result in inhibited adoption of the

new methodologies and limited growth of this new platform.

Industry Analysis

Within the broader wireless industry, our capstone project targets two specific

technologies: Wi-Fi and cellular data. These two industry sectors were chosen as they

contain common characteristics and challenges that our project addresses.

The first common characteristic of Wi-Fi and cellular data network is that they are

both widely used. Wi-Fi is becoming the standard Internet access method in various

environments such as households, offices and public places (Henry 2002). Cellular data

service is also reaching more and more people with the rapid development of the

smartphone industry. As we are building a completely new platform for the wireless

industry, choosing Wi-Fi and cellular data will allow us to maximize the number of

potential developers who will benefit from the adoption of our hardware generators.

24

Secondly, both Wi-Fi and cellular data have development patterns consisting of

rapid generation iterations and continuous improvement potential. Since the introduction

of first generation Wi-Fi in 1997, it has evolved to fifth generation within 15 years

(Nagarajan 2012). Cellular data networks exhibit the same pattern, as the fifth generation

is expected to be commercialized in the near future. These trends incentivize our design of

flexible and parameterizable generators to reduce application redesign costs resulting from

generation transitions.

The steep development curve and considerable future potential of Wi-Fi and cellular

data networks have brought great challenges to the hardware design process. In the past, it

would take engineers many years to design a series of new devices from scratch for each

generation of wireless technology. This has delayed the new technology from reaching

potential customers before the next generation emerges. In fact, some generations of the

technology have suffered from a lack of supporting devices (Ferro 2005). Our project aims

to ease this transition process by providing a flexible and generalized design framework.

Our generators will consider the key factors that change between generations of

technologies and will make them into parameters. Different hardware designs can then be

produced by the generators, thereby reducing the development time for new device design

and old device upgrade.

With the understanding of our industry above, we analyzed the five market forces

(Porter 2008) on the cellular data industry to determine the profitability of entering the

market. To be more specific, we are considering the market from the perspective of a

hardware company that sells signal processing chips for smart phones.

http://www.broadcom.com/blog/author/vnag/

25

First, the threat of new entrants would be weak. This is because the cellular data

network industry greatly relies on technology, which makes it difficult to enter without

substantial expertise of this area. New entrants would also struggle with the lack of

credibility, which is essential for selling products to the customers in this industry. This

leads to our second force, the bargaining power of buyers. The buyers of our signal

processing chips would be major mobile phone companies like Apple and Samsung. The

size of these companies indicates their strong bargaining power, because they could

compare the reliability, price, and performance of our product with many other alternative

offers. The third force, threat of substitutes, is weak according to our analysis. Even

though people can use Wi-Fi to connect to the Internet with their smartphones, the cellular

data connection is an indispensable feature for any smartphone nowadays. Thus, there is

almost no substitute technology. Fourth, the bargaining power of suppliers is also weak.

The fabrication process for integrated circuit chips is standardized and many fabrication

factories exist, thus allowing control of supplier costs. Lastly, the rivalry among existing

competitors would be strong and feature-based. With the rapid development of wireless

technology, the chip company that develops the first next-generation chip would obtain the

biggest share of the market. Before other companies can catch up, enter the market and

bring down the price, the industry might have already moved into the next generation.

As a whole, the three weak forces and a strong feature-based rivalry suggest

promising profitability in this industry. Since our project would serve as a platform for this

industry’s developers, these results are great motivations for us.

26

Market Strategy

According to the end-user industries, the SDR market is mainly subdivided into

telecommunication, defense and public safety (Saha 2015). Considering SDR and Chisel, we

focus our market segment on the telecommunication industries for a few reasons. First, our

platform will be open-source, which heavily relies on a substantial contributor base. For

commercialized industries like telecommunication, there are many engineers contributing

to the open source community. However, for other industries such as conventional defense

and public safety, the aim of the communication system design is confidentiality and

reliability rather than commercialization, so it is difficult to work on open source code.

Second, the telecommunication industry has a big group of customers, so there will be

extensive user feedback regarding the products which utilize our platform. Last, the

competition among telecommunication industries is stronger than that in other industries.

In order to obtain a competitive advantage in this market, companies are in great need of

higher product quality and shorter design cycles, which can be achieved by using our

hardware generators.

Before going to market, the users of our hardware generators must be defined. The

two main categories of users that benefit from our project are university researchers and

industry engineers. They are responsible for developing code, verifying it, and improving

their design. University researchers can take advantage of the generators when designing

new frameworks for the communication system. On the other hand, industry engineers can

more effectively keep their designs up to date by using our generators, making it easier to

go to market.

27

Works Cited

Andraka, R.

1998 A survey of CORDIC algorithms for FPGA based computers. Proceedings of the

1998 ACM/SIGDA sixth international symposium on Field programmable gate

arrays, ACM, 191-200.

Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avižienis, R., ... and Asanović, K.

2012 Chisel: constructing hardware in a scala embedded language. Proceedings of

the 49th Annual Design Automation Conference, ACM, 1216-1225.

Ferro, E. and Potorti, F.

2005 Bluetooth and Wi-Fi wireless protocols: a survey and a comparison. Wireless

Communications, IEEE, 12(1):12-26.

Henry, P. S., and Luo, H.

2002 WiFi: what's next?. Communications Magazine, IEEE, 40(12):66-72.

Meher, P. K., Valls, J., Juang, T. B., Sridharan, K., & Maharatna, K.

2009 50 years of CORDIC: Algorithms, architectures, and applications. Circuits and

Systems I: Regular Papers, IEEE Transactions on, 56(9), 1893-1907.

Nagarajan Vijay

28

2012 5G WiFi: Introducing a Wi-Fi Powerful Enough to Handle Next-Gen Devices

and Demands. http://www.broadcom.com/blog/wireless-technology/5g-wifi-

introducing-a-wi-fi-powerful-enough-to-handle-next-gen-devices-and-demands/,

accessed October 18, 2015.

Porter, M. E.

2008 The five competitive forces that shape strategy. Harvard business review,

86(1):78-93.

Saha, Sudip

2015 FMI: Software Defined Radio (SDR) Market Analysis, Segments, Growth and

Value Chain 2014-2020. https://www.newswire.com/press-release/fmi-software-

defined-radio-sdr-market-analysis-segments-growth, accessed February 27, 2016.

Sangiovanni-Vincentelli, Alberto

2007 Quo vadis, SLD? Reasoning about the trends and challenges of system level

design. Proc. IEEE, 95(3):467-506.

Smith, Randy

2014 Is IC Design Methodology At The Breaking Point? Semiconductor Engineering.

http://semiengineering.com/is-ic-design-methodology-at-the-breaking-point/,

accessed February 7, 2016.

Sperling, Ed

http://www.broadcom.com/blog/wireless-technology/5g-wifi-introducing-a-wi-fi-powerful-enough-to-handle-next-gen-devices-and-demands/
http://www.broadcom.com/blog/wireless-technology/5g-wifi-introducing-a-wi-fi-powerful-enough-to-handle-next-gen-devices-and-demands/
https://www.newswire.com/press-release/fmi-software-defined-radio-sdr-market-analysis-segments-growth
https://www.newswire.com/press-release/fmi-software-defined-radio-sdr-market-analysis-segments-growth

29

2014 Time To Market Concerns Worsen. Semiconductor Engineering.

http://semiengineering.com/time-to-market-concerns-worsen/, accessed February

7, 2016.

Tamme, S., S. Schott, D. Gunes, J. Wallace, R. Boadway, F. Razavi, and M. Pépin

2013 Trends And Opportunities In Semiconductor Licensing. les Nouvelles : 216-

228.

Ulama, Darryle

2015 IBISWorld Industry Report 33441a Semiconductor & Circuit Manufacturing in

the US. http://www.ibis.com, accessed October 18, 2015.

Volder, J. E.

1959 The CORDIC trigonometric computing technique. Electronic Computers, IRE

Transactions on, (3), 330-334.

30

Appendix A Instructions for CORDIC Generator Users

CORDIC Generator

This repository contains the ChiselDSP code used to generate CODRIC module. The CORDIC

generator can generate the module with a configurable mixed structure, Fixed/Double type

and arbitrary bit width.

Generator Parameters

See ChiselDSP Readme for ChiselDSP-specific JSON parameters. Additionally, the CORDIC

requires the following fields (see JSON):

● Cordic

○ zIntBits: Number of integer bits of signal z.
○ zFracBits: Number of fractional bits of signal z.
○ R: Unrolling factor. Nstage = ceil(R × iterations). (R ∈ (0, 1]) When R = 0, the

number of stages is 1, the structure of the generated CORDIC is iterative;
when R = 1, the number of stages is the number of iterations, the structure of
the generated CORDIC is fully unrolled.

Note #1: The bit widths of signal x and y have to be the same. They are defined by the

intBits and fracBits parameters in the default complex field in the JSON file.

Note #2: The total width of a Fixed type signal is equal to integer width + fractional width +

sign bit (1).

Note #3: The number of iterations is the maximum of x/y width and z width.

https://github.com/shunshou/ChiselEnvironment/blob/master/README.md
https://github.com/ucb-art/CORDIC/blob/master/resources/CORDIC.json
https://github.com/ucb-art/CORDIC/blob/master/resources/CORDIC.json

31

Note #4: The CORDIC module achieves highest accuracy when the width of signal x and y is

the same as z (the position of the decimal point can be different). If you modify them to be

not the same, you may need to adjust the error tolerance error_Vec/error_Ang in

CORDICTester to pass the tests. I am not sure if it is due to the nature of CORDIC algorithm

or the hardware implementation.

External Interface

INPUTS

● reset: Only used for setting default values.

● clk: Calculation clock (See Note #2).

● io_in_valid: Standard valid IO interface with upstream. It should only go high for 1

clk cycle for each input.

● io_in_bits_x: Input signal x.

● io_in_bits_y: Input signal y. io_in_bits_x and io_in_bits_y forms the input vector (x,

y).

● io_in_bits_z: Input signal z. z is the input angle.

● io_in_bits_mode: This DSPBool signal determines CORDIC operation mode. True (1)

for ROTATION mode and false (0) for VECTORING mode.

OUTPUTS

● io_out_valid: Standard valid IO interface with downstream. It will go high when an

output is valid, and the downstream is expected to collect the data right away (ie.

the CORDIC module won't hold data for downstream).

● io_out_bits_x: Output signal x.

● io_out_bits_y: Output signal y. io_out_bits_x and io_out_bits_y forms the output

vector (x, y).

https://github.com/ucb-art/CORDIC/blob/master/scala/CORDICTester.scala

32

● io_out_bits_z: Output signal z. z is the output angle.

● io_out_bits_mode: CORDIC operation mode output (mainly for debugging purpose).

Note #1: Inputs are asserted slightly after the clk rising edge. The testbench also checks

the outputs slightly after the clk rising edge.

Note #2: The throughput of the CORDIC calculation is not always the inverse of the clock.

See the following Timing Details section.

Timing Details

● The maximum throughput of the CORDIC module is related to the unrolling factor R

and the total number of iterations. Approximately, new data can be input every 1/R

cycles, and a set of valid outputs are produced every 1/R cycles too. (See Note #1)

For example:

○ R = 1, 16 bits signal: New data can be fed in every (1) cycle.
○ R = 0.5, 16 bits signal: New data can be fed in every two (2) cycles.
○ R = 0, 16 bits signal: New data can be fed in every 16 cycles.

● The latency of the CORDIC module is always the number of iterations plus two (2)

cycles (for pre-rotation and scale multiplication). For example, for 16 bits signal, the

latency is 18 cycles regardless of R.

Note #1: The actual data processing rate is T = ceil(iteration/Nstage) =

ceil(iteration/ceil(R × iteration)).

Copyright (c) 2015 - 2016 The Regents of the University of California. Released under the

Modified (3-clause) BSD license.

