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Abstract

Analysis and comparison of Fourier Ptychographic phase retrieval algorithms
by
Li-Hao Yeh
Master of Science in Electrcal Engineering
University of California, Berkeley

Professor Laura Waller, Chair

Fourier ptychography is a new computational microscopy technique that provides gigapixel-
scale intensity and phase images with both wide field-of-view and high resolution. By captur-
ing a stack of low-resolution images under different illumination angles, an inverse algorithm
can be used to computationally reconstruct the high-resolution complex field. Here, we com-
pare and classify multiple proposed inverse algorithms in terms of experimental robustness.
We find that the main sources of error are noise, aberrations and mis-calibration (i.e. model
mis-match). Using simulations and experiments, we demonstrate that the choice of cost
function plays a critical role, with amplitude-based cost functions performing better than
intensity-based ones. The reason for this is that Fourier ptychography datasets consist of
images from both brightfield and darkfield illumination, representing a large range of mea-
sured intensities. Both noise (e.g. Poisson noise) and model mis-match errors are shown to
scale with intensity. Hence, algorithms that use an appropriate cost function will be more
tolerant to both noise and model mis-match. Given these insights, we propose a global
Newton’s method algorithm which is robust and accurate. Finally, we discuss the impact of
procedures for algorithmic correction of aberrations and mis-calibration.
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Chapter 1

Introduction

1.1 LED array microscope

The LED array microscope is a powerful platform for computational microscopy in which
a wide range of capabilities are enabled by a single hardware modification to a traditional
brightfield microscope - the replacement of the source with a programmable LED array as
shown in Fig. (1.1} - . Each LED in the array corresponds to illumination of the sample by
a unique angle. In Fourier optics, illuminating the sample with different angles is equivalent
to shifting the sample’s Fourier space in different amounts. Thus, this simple, inexpensive
hardware modification allows programming of the Fourier space measurement of our sample.
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Figure 1.1: (a) Experimental setup for Fourier ptychography with an LED array microscope.
(b) The sample’s Fourier space is synthetically enlarged by capturing multiple images from
different illumination angles. Each circle represents the spatial frequency coverage of the
image captured by single-LED illumination. Brightfield images have orders of magnitude
higher intensity than darkfield (see histograms), resulting in different noise levels.
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The range of illumination angles that can be programmed is much larger than the range
of angles that pass through the objective [set by its numerical aperture (N Agp;)]. This means
that illumination by the central LEDs produces brightfield images, whereas illumination by
the outer LEDs (outside the N Ayp;) produces dark field images as shown in Fig. [L.I|(b) [1].
Alternatively, by sequentially taking a pair of images with either half of the source on, we
obtain phase derivative measurements by differential phase contrast (DPC) [2,[3, |4]. Finally,
a full sequential scan of the 2D array of LEDs (angles), while taking 2D images at each angle,
captures a 4D dataset similar to a light field |5 or phase space measurement ﬂ§ﬂ This enables
all the computational processing of light field imaging. For example, angular information
can be traded for depth by using digital refocusing algorithms to get 3D intensity or 3D
phase contrast.

Up to this point, all these techniques can be realized by a simple replacement of the light
source with the LED array. The capability of combination of digital signal processing and
optical imaging has been well demonstrated with the LED microscope. In the following, we
will talk about one more powerful capability of this microscope named Fourier ptychography.

1.2 Fourier ptychography

Full Field of View image

“l

Bright-field central LED Reconstructed image

q
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Figure 1.2: The full field of view and the zoomed region of the USAF resolution target for
the brightfield raw image from central LED illumination and FPM reconstructed image in
the central region of the FOV, demonstrating the super-resolution capability.

In the previous paragraph, sequentially scanning LEDs in the array and then taking
images of our sample corresponds to measuring the Fourier space of the sample in different
regions as Fig. [1.1(b) shows. When LEDs illuminate the sample from angles smaller than
that allowed by the N A,y;, brightfield images result. Conversely, when the illumination NA
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is larger than the objective NA, darkfield images result. Although darkfield images alone
do not have higher resolution than the objective allows, they do contain information about
sub-diffraction-limit sized features, which occupy a shifted area of the sample’s Fourier space
(assuming a thin sample). By collecting many images that cover a wide region of Fourier
space and stitching them together coherently through an nonlinear optimization algorithm,
one can achieve spatial resolution beyond the objective’s diffraction limit, corresponding to
the sum of illumination and objective NAs (N Aoy = N A, + NAg;). It is a combination
of synthetic aperture and translational-diversity phase retrieval , . This method, named
Fourier Ptychographic microscopy (FPM) []9]], enables one to use a low NA objective, having
a very large field of view (FoV), but still obtain high resolution across the entire image,
resulting in gigapixel images as shown in Fig. [[.2] In addition, since FPM solves the super-
resolved intensity and quantitative phase altogether, we can image biological cells with better
contrast as shown in Fig. [1.3] The phase image contains quantitative shape and density
information about the samples, providing details about small sub-cellular structures.

Brightfield FPM reconstructed phase

Figure 1.3: The full field of view and the zoomed region for both brightfield and FPM
reconstructed phase of the Hela cell, respectively.

On the algorithm side, FPM is a very large-scale nonlinear non-convex optimization
problem. A single full FoV image taken under microscope contains ~ 2000 x 2000 pixels
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and around 300 images are taken in each experiment. Since it is a super-resolution phase
imaging technique, the final reconstruction has ~ 10* x 10* pixels of complex values to solve
for, which corresponds to 0.2 giga-variables. In addition, this problem is a nonlinear and
non-convex optimization problem because it is a phase retrieval problem. It becomes very
challenging for every algorithm to prove convergence to the global minimum, though many
have been shown to succeed consistently in practice when appropriate parameters are used.
This is one of the important issue that will be discussed in this thesis.

On the application side, FPM’s scan-free high space bandwidth product imaging capa-
bility has great potential for revolutionizing biomedical imaging, with applications in optical
disease diagnosis, digital pathology |9} |10 |11} 12] and in vitro live cell imaging [13]. The
original FPM method only applies to 2D thin objects, however, new models and reconstruc-
tion algorithms also enable 3D reconstruction of thick samples [14]. The ability to achieve
such capabilities with a simple and inexpensive hardware modification to a commercial mi-
croscope (with no moving parts) opens up new opportunities for opensource distribution
and wide-scale adoption in biological imaging applications requiring large-scale in vitro mi-
CTOSCODY.

1.3 Overview of Fourier ptychographic phase retrieval
algortihms

Multiple algorithms have been proposed for solving the nonlinear non-convex inverse FPM
problem, which amounts to phase retrieval and synthetic aperture. Amongst these, there
are the usual trade-offs between accuracy, noise performance and computational complexity:.
However, we will show that FPM has new noise performance considerations that become
crucial to successful experimental results. Here, we review existing and new methods for
comparison.

Gerchberg-Saxton FPM algorithm

The original FPM algorithm used a Gerchberg-Saxton approach [15], which is a type of
alternating projections [16, 17, 18, [19], first developed for traditional ptychography [7, |20,
21}, 22, 23, §] and later for FPM [9, 24} 25]. Shifted support constraints (finite pupil size)
are enforced in the Fourier domain as the corresponding amplitude constraints (measured
images) are applied in the image domain, while letting the phase evolve as each image is
stepped through sequentially. The Gerchberg-Saxton method, which is a type of gradient
descent, represents a natural way to solve phase retrieval problems by trying to directly
minimize some cost function that describes the differences between actual and predicted
measurements. Unfortunately, these formulations are often non-convex in nature and do not
come with global convergence guarantees.
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Figure 1.4: Schematic of the phase retrieval procedure for the Gerchberg-Saxton (gradient
descent) iterative algorithm. The sample’s complex field is iteratively updated as its estimate
is propagated back and forth between real space and Fourier space constraints, for each of
the measured intensity images taken at multiple Fourier regions.

Since this is the first proposed algorithm to solve FPM, we give a brief introduction on
how the algorithm stitch all low-resolution image to get one high-resolution phase image.
Figure shows the reconstruction procedure for Gerchberg-Saxton approach. First, we
use the on-axis illuminated image as our initialization. Second, we crop the Fourier region
corresponding to the image illuminated with the next LED and then do inverse Fourier
transform to get our estimate complex field. Third, we replace the estimated amplitude with
the measured amplitude from our dataset. Fourth, we Fourier transform the updated image
and put this information to its corresponding region. By doing this process through all the

images and repeating this whole process many times, we can get a final reconstruction as
shown in the fifth step of Fig.
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Other FPM algorithms

1. Setup a forward model and
optimization cost function

R 2

2. Initialization

e B Ipp——— ———

3. Calculate the gradient (and hessian)

of the cost function to form a descent 5
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direction and a proper step size

5. Reconstructed object
. J

Figure 1.5: The general flow of iterative nonlinear optimization algorithms for Fourier pty-
chographic micrscopy.

In general, the procedures of all proposed Fourier ptychographic phase retrieval algorithms
including the Gerchberg-Saxton method can be summarized by an optimization procedure
as shown in Fig. [I.5] They are all based on minimizing a certain cost function defined by
measuring the difference between the measured intensity images and the estimated intensity
from propagating the estimate through the forward model. We first give an initialization as
mentioned in the last paragraph. To minimize the cost function, we then follow an iterative
process, which involves calculating the gradient (and possibly Hessian) of the cost function.
Using the gradient (and possibly Hessian), we form the search direction and update the
estimation along this direction with appropriately chosen step size. We then repeat this
process until we reach convergence. In the following, we will give an overview of the recently
proposed algorithm in the context of optimization and put them into different classes.
A brief introduction of algorithms that have been proposed to solve the FPM problem:

Gradient descent: Use the gradient of the cost function and a proper step size to minimize
the cost function value to update the unknown variables.

Wirtinger Flow: Similar to gradient descent but with special initialization and step size
to guarantee global convergence of the coded-mask phase retrieval problem [26].
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Newton’s method: Approximate the cost function to be a quadratic function and use
both the gradient and Hessian of the cost function to give a better update direction of
the unknown variables. If the Hessian is approximated, the method is called a quasi-
Newton method. Gauss-Newton method is a kind of quasi-Newton method, which
approximates the Hessian with the outer product of the gradient.

PhaseLift: Instead of solving the known variable vector x, this method reformulates the
phase retrieval problem and solve for optimal xx!. For this case, the problem becomes
convex and there will be a global convergence, at a cost of significantly increased
computational complexity.

Depending on whether we only use the gradient or we use both the gradient and Hes-
sian to update our complex field, the algorithm can be classified as a first-order method or
a second-order method, respectively. Gradient descent and Wirtinger Flow [26] are first-
order methods. The Wirtinger Flow algorithm has been shown to have global convergence
guarantees. This method has been successfully applied to FPM [27], though the actual
implementation deviates from theory somewhat. In the Wirtinger Flow framework, the op-
timization procedure is similar to gradient descent, except that the step size and initial guess
are carefully chosen for provable convergence. For the second-order methods (e.g. Newton’s
method), they have been shown to provide faster convergence rates [28]. In our studies, we
also observe improved performance when using second-order methods. For example, in the
top row of Fig. .4 the Gerchberg-Saxton algorithm is a first-order method, whereas the
other three methods are second-order (or approximate second-order) methods. All results
achieve a similar resolution, but the first-order (Gerchberg-Saxton) result is corrupted by
low-frequency artifacts. While computing second-order derivatives increases complexity, we
find that it usually reduces the number of iterations needed, enabling fast overall run times.
In addition, more iterations for GS method cannot even get rid of the artifacts.

Another class of algorithms that have been proposed are based on convex relaxations |29,
30, 31, 132, |33]. This class of phase retrieval algorithms, called PhaseLift, re-frames the
problem in higher dimensions such that it becomes convex, then aims to minimize the cost
function between actual and predicted intensity via semidefinite programming. These al-
gorithms come with the significant advantage of rigorous mathematical guarantees [34] and
were successfully applied to FPM data [33]. The actual implementations of these algorithms,
however, deviate from the provable case due to computational limitations.

Algorithms can be further classified as sequential or global, depending on whether the
update is done for each image, one at a time (sequentially), or all at once with the full set
of images (globally) for each iteration. Global methods are expected to perform better, at a
cost of additional computational requirements. In our studies, results show little difference
between the sequential and global implementation of any particular algorithm (see Fig. ,
suggesting that sequential procedures may be sufficient, allowing reduced computational
requirements.

One seemingly unimportant classification of algorithms is whether their cost function
minimizes differences in intensity or amplitude. Throughout this thesis, we refer to algo-
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rithms that minimize intensity differences as intensity-based algorithms, and algorithms that
minimize amplitude differences as amplitude-based algorithms. Since intensity is amplitude
squared, both drive the optimization in the correct direction; hence, one might expect that
the choice between the two is of little consequence. Surprisingly, however, we find that
the cost function is the key predictor of experimental performance for our ex-
perimental dataset. Intensity-based algorithms suffer from strong artifacts (see Fig. ,
which we show to be due to noise and model mis-match errors. Hence, amplitude-based
algorithms perform better on imperfect data, so are more robust. Our goal is to explain why
this happens.

We will show that in order for a phase retrieval scheme to be robust to experimental
imperfections, the choice of cost function is of crucial importance. One source of error in
our experimental data is measurement noise, including Gaussian noise or Poisson shot noise.
Another main source of error is model mis-match, caused by experimental imperfections such
as aberrations and LED misalignment. A particular problem of FPM datasets is that they
contain both brightfield and darkfield images, which have drastically different intensity levels
(see Fig. . Brightfield images can have several orders of magnitude higher intensity than
darkfield images; thus, the amount of Poisson noise will also be significantly higher. If this
difference in the noise levels is not properly accounted for, the brightfield noise may drown
out the darkfield signal. We will further show that aberrations and LED mis-calibration -
the two main model mis-match errors in our experiments - result also in intensity-dependent
errors. Thus, by carefully designing the the cost function, we can develop algorithms that
are significantly more robust to both noise and model mis-match.

In Chapter [2] and [3] we develop a maximum likelihood theory which provides a flexible
framework for formulating the FPM optimization problem with various noise models. In
particular, we will focus on Gaussian and Poisson noise models. We find that amplitude-
based algorithms effectively use a Poisson noise model, while intensity-based algorithms use
a Gaussian noise model. In Chapter [ we simulate four FPM datasets, three of which
are contaminated with measurement errors (see Fig. : Poisson noise, aberrations, and
LED misalignment. We compare the performance of various algorithms on these datasets
to demonstrate that the imperfections in our experimental data are more consistent with
a Poisson noise model. This explains our observations that amplitude-based algorithms
are more experimentally robust than intensity-based algorithms. In Chapter [5 we develop
additional step in original FPM algorithm to correct for the two main model mis-matches,
which are aberrations and LED mis-calibration.



Chapter 2

Optimization formulation to Fourier
ptychographic microscopy

After getting a rough idea of Fourier ptychographic microscopy and some of its algorithms,
here we continue to talk about more detailed formulation. In this chapter, we start from
introducing the physical forward model of Fourier ptychography and then move on to talk
about how to use this forward model to form optimization problems. Based on noise as-
sumptions with different statistics, the cost functions of the FPM optimization problem can
be classified as intensity-based (white Gaussian noise), amplitude-based (most commonly
used ), and the Poisson-likelihood-based (Poisson noise) cost functions. These cost functions
are then used in later chapters to derive different FPM algorithms. In the end of this chapter,
we define the notation used in this thesis.

2.1 Forward problem for Fourier ptychography

Consider a thin sample with transmission function o(r), where r = (z,y) represents the
2D spatial coordinates in the sample plane. Assuming that the LED array is sufficiently
far from the sample, each LED will illuminate the sample by a plane wave from a different
angle, defined by exp(i2mu,-r), where uy = (us4, ue,) is the spatial frequency corresponding
to the ¢-th LED, ¢ = 1,..., Ny, After passing through the sample, the exit wave is the
product of the sample and illumination complex fields, o(r) exp(i2mu, - r). The tilted plane
wave illumination means that the Fourier transform of this exit wave is just a shifted version
of the Fourier spectrum of the object, O(u — uy), where O(u) = F{o(r)} and F is the 2D
Fourier transform. This exit wave then passes through the objective lens, where it is low-pass
filtered by the pupil function, P(u), which is usually a circle with its size defined by N Agp;.
Finally, with 7! being the 2D inverse Fourier transform, we can write the intensity at the
image plane as [25]

I(x) = |F{Pw)O(u — u)} . 2.1)
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2.2 Optimization problem based on different noise
models

Most algorithms solve the FPM problem by minimizing the difference between the measured
and estimated amplitude (or intensity), without assuming a noise model. Hence, the FPM
problem can be formulated as the following optimization

mlnf mlnzzwh — |F Y P(u)O(u —uy)}|% (2.2)

O(u)

Since the cost function here, f4(O(u)), aims to minimize the difference between the esti-
mated amplitude and the measured amplitude, this is the amplitude-based cost function.
By optimizing this cost function, the projection-based algorithms for Fourier ptychography
can be obtained [9, [24] 25|, which treat each measurement as an amplitude-based sub-
optimization problem. The formulation is used in the traditional Gerchberg-Saxton phase
retrieval approach.

If we have information about the statistics of the noise, we can use it in our optimization
formulation via the maximum likelihood estimation framework [35]. If we assume that our
measured images suffer only from white Gaussian noise, then the probability of capturing
the measured intensity I,(r) at each pixel, given the estimate of O(u), can be expressed as

1 [_ (o(r) — Mr))?]

exp 202

plL(r)|O(w)] = (2.3)

2
2moy,

where I,(r) = |F Y{P(u)O(u — uy)}?> and o, is the standard deviation of the Gaussian
noise. I,(r) and I,(r) denote the estimated and measured intensity, respectively.

The likelihood function is the overall probability due to all the pixels in all the images
and can be calculated as [],[[, p[¢(r)|O(u)], assuming measurements from all pixels are
independent. In maximum likelihood estimation, the goal is to maximize the likelihood
function. However, it is easier to solve this problem by turning the likelihood function
into a negative log-likelihood function which can be minimized. The negative log-likelihood
function associated with this probability distribution can be calculated as

Liaussian(O(1)) = — log H Hp[[g(r) |O(u)]

- Z Z log (2mo2) + (To(r) = L(x))* : (2.4)

2
20,

The next step is to minimize this negative log-likelihood function by estimating O(u) so
that the overall probability is maximized. For white Gaussian noise, it is assumed that o2
are the same across all pixels for all images (i.e. all measurements have the same amount
of noise), though this will not be the case for FPM datasets. By making a Gaussian noise
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assumption, the first term in is a constant and can be ignored. The optimization
problem then reduces to
—1 212

i fr(0 mlnzz 1I,(r) — |FHP()O(u —uy)} )% (2.5)
We call this cost function, fr(O(u)), the intensity-based cost function because it aims to
minimize the difference between the estimated intensity and the measured intensity. It also
implies that noise from each pixel is treated the same and independent of the measured
intensity. It will be shown later that the previous implementations of PhaseLift [33] and
Wirtinger flow algorithms [27] for FPM aimed to optimize this intensity-based cost function.
However, both can be implemented instead with a Poisson likelihood cost function.

If we assume instead that our measured images suffer from Poisson shot noise, then the
probability of the measured intensity, I;(r), given the estimate of O(u) can be expressed as

L) expl—fyr)] 1 [_Uﬁ(ﬂ—f?(r)f].

~ exp
Ig( ) /27].0,%][‘ 20-?,r

Note that the Poisson distribution is used to describe the statistics of the incoming photons
at each pixel, which is a discrete probability distribution. Here, we assume that the intensity
is proportional to the photon count, so we can treat the distribution of the intensity as a
Poisson distribution. When the expected value of the Poisson distribution is large, then this
Poisson distribution will become more like a Gaussian distribution having a standard devi-
ation proportional to the square root of the intensity, o, ~ \/Iy(r), from the central limit
theorem. This means that a large measured intensity at a particular pixel will imply large
noise at that pixel. In the simulation, we impose Poisson noise on the measured intensity by
distributing each pixel value with a Gaussian distribution and setting the standard deviation
to 204/ 1,(r). The negative log-likelihood of the Poisson noise model can then be calculated;
the optimization problem is formed by minimizing the negative log-likelihood function with
estimation of O(u),

min Lpoisson (O(1)) = min Y > " (=I,(r) log[Le(r)] + I(r) + log[L(r)!))

plL(r)|O(u)] =

(2.6)

O(u) Ow) 4~ &

~min 3y ”“‘“)2;;(”) . 2.7)

This cost function comes from the likelihood function of the Poisson distribution, so we
call it the Poisson-likelihood-based cost function. It implies that the pixels with larger
measured intensity are weighted smaller because they suffer from more noise. Since the
brightfield images have more large-value pixels, they are assumed to be more noisy and thus
are weighted smaller in the cost function. It is shown in the next chapter that the gradient
of this cost function is very similar to that of the amplitude-based cost function ((3.4]),
which suggests that the amplitude-based cost function deals well with Poisson-like noise or
model mis-match.
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2.3 Vectorization Notation

For multivariate optimization problems such as and , it is convenient to reformulate
the problem using linear algebra. First, the functions need to be vectorized. Each of the
captured images, I,(r), having m x m pixels, are raster-scanned into vectors, I,, with size
m? x 1. Since the estimated object transmission function will have higher space-bandwidth
product than the raw images, the estimated object should have nxn pixels, where n > m. For
convenience, we actually solve for the Fourier space of the object, O(u), which is vectorized
into a vector O with size n? x 1. Before multiplying the pupil function, the Fourier space
of the object is downsampled by a m? x n? matrix Q,. The matrix Q, transforms a n? x 1
vector into a m? x 1 vector by selecting values out of the original vector, so the entries of
this matrix are either 1 or 0 and each row contains at most one nonzero element. The pupil
function P(u) is vectorized into a vector P with size m? x 1. The 2D Fourier transform and
inverse transform operator are m? x m? matrices defined as F and F~1. |- |, |- |, /-, and
-/- are element-wise operators, and the diag(-) operator puts the entries of a vector into the
diagonal of a matrix.

The second step is to rewrite the optimization in vector form using the new parameters.
First, the forward model can be vectorized as

I, = |gi|* = |F~diag(P)Q,O[". (2.8)

The amplitude-based cost function (2.2]) can be vectorized as

i Ja(0) = i 37V - ) (VB - e (2.9)

where the hyperscript t denotes a Hermitian conjugate.
Likewise, the intensity-based cost function (2.5 can be vectorized as

(I, — (I, — : 2.1
min f;(O mmz ¢ — lgel) (T — gel?) (2.10)
The Poisson likelihood cost function is more complicated to be expressed in vector form.
First, we rewrite |g,|? as
a};,l
lg|* = diag(g,)F 'diag(P) Q0O =A,0=| : |O, (2.11)
az,mQ

where A, = diag(g,)F 'diag(P)Q, is a m? x n? matrix with m? x 1 row vectors, azj,

j = 1,...,m? and g, denotes the complex conjugate of vector g,. Then the likelihood
function can be rewritten as

min Lpoisson(0) = > Z[_IM log(af ;0) +a} ;0 +log(I;;!)]. (2.12)

2 2
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To minimize (2.9)), (2.10]) or (2.12)) using an iterative optimization algorithm, the gradients
(and possibly Hessians) of the cost functions need to be calculated, both of which are shown

in the next chapter. Since , and are all real-valued functions of a complex
vector O, that means that O and O should be treated independently in the derivative
calculation, which is based on the CR-calculus discussed in [36] and the similar formulation
for traditional ptychography discussed in [23].
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Chapter 3

Algorithms for Fourier ptychographic
microscopy

3.1 Solving the phase retrieval optimization problem

To solve an optimization problem, the general flow is summarized in Fig. [[.5] The key
component of every algorithm is to calculate the gradient and Hessian of the cost function
and form the descent direction. With the descent direction, we can then update the complex
field with proper step sizes to get the final reconstruction. Here, we calculate the gradient
and Hessian of the amplitude-based, intensity-based, and the Poisson-likelihood-based cost
functions for later explanation of various algorithms.

Gradient of cost functions
Consider that equations (2.9)) and (2.10|) can be expressed as

fa(0) =) £ ta
l

f1(0) = flfr, (3.1)
¢

where fa, = VI, — |g¢|, and f7, = I, — |g/|*.
Then, calculate the derivative of f4 with respect to O, and it can then be expressed as

T f
9 (fIlEfAZ)

Ol Far) OFas
00

—_— 2
ofyy 00 (3:2)

Vofa(0) =)

14
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Using |g¢|? = diag(g,)g, and |g¢| = (|g¢|?)/?, two chain rule parts in (3.2)) are calculated as

T
O(fafae) ot
O O(lgel*)'/? O(diag(ge)gr) < g ) 1
— == ———da Fdiag(P)Qy, 3.3
50~ o(gl) 90 & e 8P)Q  33)
if g does not contain any zero entries for £ =1,..., Njy,.

By plugging these two terms into (3.2), the gradient of f4 with respect to O becomes

Vofa(0) =~ Qjding(PIFis (&) Vil

=— Z Q| diag(P) (Fdlag ( ’\g) g — diag(P )QgO) : (3.4)

The gradient for f; can be calculated in the similar way, and the chain rule part of fy,
can be calculated as

Ot O(diag(go)ge) . g
50 50 = —diag(g,)F~ diag(P)Q.. (3.5)

With (3.5)), it is clear to express the gradient of f; as

T
o(f! £,,) Of
Vofi(O) = Z [(8%14”) 83
¢

= -2 Qldiag(P)Fdiag(g,) (T, — [g|*). (3.6)
¢

The calculation of gradient of Lpisson(O) with respect to O is different from the other
two. With the expression ([2.12)), the gradient of Poisson likelihood function can be calculated

as
)T

;
= (Z(Ie — |gel*) diag (|g1€‘2> diag(ge)Fldiag(P)Qé>

¢

= — Z demg )Fdiag ( g£2
|2l

This is equivalent to the gradient of the intensity-based cost function with added weight
1/|ge|? to the component from each image. In addition, this gradient is very similar to that
from the amplitude-based cost function in (3.4)).

VOL:Poisson(O) - <8£POISSOH> (Z Z [ ,j + a};,j

aéj

T
1
_ <zg:2]: |:I€,j — a}ﬂO} aT Oa};J)

£7j

) (T~ g, (3.7)
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Since we have gradients for all cost functions, the updating equation for the gradient
descent method can then be expressed as

0l — ol _ a(i)vof(o(i)), (3.8)

where ¢ denotes the iteration number, « is the step size chosen by the line search algorithm,
and f(O) can be either intensity-based or amplitude-based cost function.

Looking at Vo f4(O), Vo f1(O) and Vo Lpsisson(O), they all contain the term QZdiag(P)
following by a residual term. The residual term basically finds the difference between the
estimation and the measurement. This difference carries the information to update the
previous estimation. Since each measurement carries the information for a specific region in
the Fourier space, the deiag(f_’) term brings this updating information back to the right
place corresponding to some spatial frequency. For Vg f4(O), the first term in the residual
shows the replacement of the amplitude in the real domain, which is the projection from the
estimation to the modulus space. Thus, the gradient descent method using the amplitude-
based cost function is similar to the projection-based phase retrieval solver.

Hessian of cost functions

The second-order Taylor expansion on an arbitrary real function f (c) with a complex vector
c = (07, 07)T at certain point ¢y = (O}, OF)T can be written as [36]

f(e) = f(eo) + Vf(co)'(c — o) + %(C — ¢9) Hee(eo)(c — ¢o), (3.9)

where the matrix He. is the Hessian of f(c). For the case of a single-value function, the
second-order term in the Taylor expansion denotes the curvature of the function at that
expansion point. Thus, this Hessian matrix similarly contains the curvature information of
the original multi-variate function.

If the Hessian is a diagonal matrix, each diagonal entry denotes the curvature in each
corresponding dimension. If the Hessian is not diagonal, a coordinate transformation can
be found to make the Hessian diagonal by using eigenvalue decomposition. For a convex
problem, the Hessian is positive semidefinite. The curvatures of the cost function in different
dimensions are always nonnegative. A standard optimization process can lead to a global
minimum. However, if the problem is non-convex, a standard optimization process will
probably lead to a local minimum. Calculating the Hessian of a cost function is useful either
to examine the optimization process or to speed up the convergence rate by using Newton’s
method.

From |23} 36], the definition for the Hessian of a real-value function with multiple complex
variables is a 2n? x 2n? matrix and can be expressed as

Hoo Hoo}

H.. = 3.10
{Hoo Hoo (3.10)
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where each component n? x n? matrices can be further calculated as

AN o (9f\'
Hoo—a—o(a—o) ‘Hoo %(a_o)
) of B of
Hoo = 55 (ao) ‘Hoo = 55 (ao) ‘ (3:11)

Similar to the calculation of the gradient, the components of the Hessians for amplitude-based,
intensity-based, and Poisson-likelihood-based cost functions can be calculated by taking an
additional derivative on the gradient of the cost functions. The components of the Hessian
for the amplitude-based cost function are

Hbo = 3 Qltins(PF { L ding (\/17)} Fldiag(P)Q

|ge\

Te2\ 1y o
Hjo = ZQEdwg P)Fdiag (\(g_j’g?f)Fldlag(P)Qg

= Lg7\ oo,
Héo Zdilag P)Fdiag <\|/g_j\g3€> F'diag(P)Qq

VI

|gz|

Hjo =) Q/diag(P)F [1 - —d iag ( )} F~ldiag(P)Qq, (3.12)

where 1 is the m? x m? identity matrix.
Likewise, the Hessian of the intensity-based cost function is

H{o = 2ZQZd1ag P)Fdiag(2|g|” — I,)F'diag(P)Q,
HS, =2 Z Q! diag(P)Fdiag(g?)F'diag(P)Q,
Hog =2 Z Q/ diag(P)Fdiag(g})F ' diag(P)Q;
4

Hjo =2 Qf diag(P)Fdiag(2|g|* — L) F ' diag(P) Q. (3.13)
4
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Finally, the Hessian of the Poisson likelihood cost function is

Hoo = Z Qjdiag(P*)Q

I, gQ) _
HEZ dla Fdla < F'diag(P

: L8\ 1,
Hf 5 = Z Q/ diag(P)Fdiag ( édi) Fldiag(P)Qq
Hgo = Z Q7 diag(|P[*) Qs (3.14)
¢

In general, Newton’s method, which is the second-order method using the inversion of
Hessian matrix, is preferred in solving nonlinear least square problems because of its fast
convergence and stability compared to the first-order methods such as gradient descent. The
updating equation for Newton’s method can be expressed as

O+ o) iyt | Vof(0®)

3.2 First-order methods

Sequential gradient descent method (GS algorithm) [9, 24]

For the implementation in [9, |24], the algorithm aims to optimize the amplitude-based cost
function (2.9). It is the simplest to implement and, in this case, equivalent to the Gerchberg-
Saxton approach of simply replacing known information in real and Fourier space. Since the
sequential strategy treats a single image as an optimization problem, the cost function for
each problem is just one component of Eq. and is defined as

f4.000) = (VI — lge)) (VI — lge), (3.16)

where ¢ denotes the index of each measurement.
The derivative of this cost function is thus a component of Eq. (3.4 and can be expressed
as

Vo/4:(0) = —Qldiag(P >[Fdlag(|“j) g —ding(P)QO|.  (3.17)

The update equation for this sequential amplitude based algorithm is then a gradient
descent with the descent direction given by Eq. ( and step size 1/|P|2,,.:

Olt+) — QG0 _ Vofae1(009) (3.18)

|P|max



CHAPTER 3. ALGORITHMS FOR FOURIER PTYCHOGRAPHIC MICROSCOPY 19

where ¢ indicates the iteration number, which goes to 7 4+ 1 after running through all the

measurements from ¢ = 1 to { = Nj,,. This algorithm adopts the alternating projection

phase retrieval approach. The first projection in the real domain is the amplitude replace-
vin

ment operation diag (Ig_d) gs, and the second projection is to project the previous estimated

Fourier region diag(P)Q,O onto the updated Fourier region Fdiag (g) gs.

It is worth noting that the algorithm in |9] directly replaces Fdiag <T/g_g> gy in the Fourier

domain at each sub-iteration. A similar algorithm in [24], introduced for simultaneous aber-
ration recovery, has the same form as Eq. that implements gradient descent in the
Fourier domain. However, when there is no pupil estimation, then P becomes a pure sup-
port function with one inside the support and zero outside. In this situation, these two
algorithms become exactly the same, and thus we refer to both as sequential gradient de-
scent or Gerchberg-Saxton algorithm.

Wirtinger-flow algorithm [27] [26]

The Wirtinger flow optimization framework was originally proposed to iteratively solve the
coded-mask phase retrieval problem using nonlinear optimization [26]. It is a gradient de-
scent method implemented with a special initialization and special step sizes. For the FPM
implementation described in [27], the intensity-based cost function is used. Thus, the update
equation for the object transmission function O can be expressed as

0 = 0% — oV f,(09), (3.19)
where the step size is calculated by

min(1 — e, Oy )

(00O

al) = (3.20)
where Vo f7(0) is the gradient of the intensity-based cost function calculated in , and
19 and 6., are user-chosen parameters to calculate the step size.

In the previously proposed FPM implementation of Wirtinger flow [27], the algorithm
deviates somewhat from the original theory proposed in [26]. First, there is an additional
term in the cost function to deal with additive noise. Second, the initialization used in [27] is
not the proposed one in [26], but rather a low-resolution captured image. So the algorithm
in [27] is essentially a gradient descent method with the special step size based on the
intensity-based cost function and is not guaranteed to converge to the global minimum.

The Wirtinger flow algorithm can be implemented with different cost functions simply
by replacing the original intensity-based gradient with the other gradients derived in the
Appendix. For comparison, we have implemented the Wirtinger flow algorithm using all
three of the cost functions described here: amplitude-based, intensity-based and Poisson-
likelthood-based. The results are compared in Fig. with experimental data and Section 77
with simulated data.
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3.3 Second-order methods

Beyond first-order, a second-order optimization method can improve the convergence speed
and stability of the algorithm, especially for nonlinear and non-convex problems. Second-
order methods (e.g. Newton’s method) use both the first and second derivatives (Hessian)
of the cost function to create a better update at each iteration. As a result, they generally
require fewer iterations and move more directly towards the solution. The difficulty of second-
order implementations is in computing the Hessian matrix, whose size scales quadratically
with the size of the image. As a result, approximations to the Hessian are often used (known
as quasi-Newton methods) to trade performance for computational efficiency.

Sequential Gauss-Newton method [25]

First, we look at a Gauss-Newton method based on the amplitude-based cost function, which
approximates the Hessian matrix as a multiplication of its Jacobian matrix:

HA ~ @ T @
cet Jc Jc
1Q}diag(|P2)Q, Qjdiag(P)Fdiag (£ ) F~'diag(P)Qr
[ diag(P)Fdiag (£ ) F~diag(P)Q 1Q7 diag(IP)Q

(3.21)

where ¢ = (OT,0T)T (See Appendix). Since the inversion of this Hessian matrix requires
very high computational cost, we approximate the Hessian by dropping all the off-diagonal
terms of the Hessian matrix. Further, the inversion of the Hessian matrix may be an ill-
posed problem, so a constant regularizer is adopted. In the end, the approximated Hessian
inversion becomes

2Q]diag <m> Qo 0

0 2Q7 diag (57 ) Qe
where A is a constant vector with all the entries equal to a constant regularizer d over all
pixels.

By applying Newton’s update, Eq. (3.15]), with this approximated Hessian inversion, the
new estimate of O can be expressed as

ol 1ot delag< T )QZ 0 4 -1 [Vofae(009)
{O(Mﬂ)] a {O(M)] - 0 Q/ diag (IP\ )Qg (Hee )™ {VofA 41(0! )}3 23)

(Hcc Z)_l ~ ’ (322)

P
|P[ma

constant having either 0 or 1 values, this method is reduced to the sequential gradient descent

where the diag ( ) part is the step size for this descent direction. Note that when P is a
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method with a tunable regularizer §. In practice, however, we also simultaneously update P
(see Section [5.1)), so the second-order optimization procedure becomes more crucial.

Global Newton’s method

Since we expect second-order methods to perform better than first-order, and also global
methods to be more stable than sequential, we propose a new global second-order (New-
ton’s) method, and show the results compared against other methods. For completeness,
we implement all three of amplitude, intensity, and Poisson-likelihood-based cost functions,
showing that the amplitude and Poisson-likelihood-based cost functions indeed perform bet-
ter. The difficult step in deriving a Newton’s method for this problem is in calculating the
gradients and Hessians of the cost functions directly, without approximations. In the Ap-
pendix, we show our derivation, and in this section we use the results with a typical Newton’s
update equation:

Qi+ (o)1 ; [V O
|:O(i+1)} = |:(_)(i):| - a()(Hcc> {VZ%O@)H . (3.24)

The inverse of the Hessian matrix, (He) !, is solved efficiently by a conjugate gradient
matrix inversion iterative solver as described in [37]. ! is determined by the backtracking
line search algorithm at each iteration, as described in [28]. The exact form of the cost
function and the Hessian depends on the algorithm used. For amplitude-based Newton’s
algorithm, f(O) = f4(O) and He. = HA; for intensity-based Newton’s algorithm, f(O) =
f1(0) and H. = HL_; for Poisson-likelihood-based Newton’s algorithm, f(O) = Lgaussian(O)
and He, = HZ..

Since this problem is nonlinear, its Hessian can be negative definite for some iterations.
For this case, the conjugate gradient solver can not directly be applied to solve this inverse
problem and the gradient descent direction is used instead to prevent this situation in that
specific iteration. In [23], they prove the Hessian of the intensity-based and amplitude-based
cost functions for ptychography is usually positive-semi-definite if the initial guess is close
to the solution. The same proof can be applied to the Fourier ptychography case. This is
why in the real implementation the negative difiniteness of the Hessian matrix is seldom
encountered.

3.4 Convex-based method

PhaseLift algorithm |33} 29| 30, 31|, 32|

The PhaseLift formulation for phase retrieval is conceptually quite different than the previous
methods described here. The idea is to lift the non-convex problem into a higher-dimensional
space in which it is convex, thereby guaranteeing convergence to the global solution. To do
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this, the cost function of O is reformulated into that of a rank-1 matrix X = OO and the
goal is to estimate X instead of O. The process of reformulation can be expressed as [33]

g1 F! ... 0 diag(P) --- 0 Q
g= : = : : : O
ENimg 0o .- F! 0 - diag(P) | | Quwi.,
di
-po=| : |o, (3.25)

where D is an Nimng X Nimng operator combining the inverse Fourier transform, pupil
cropping, and the downsampling operation with row vectors denoted by d}.
Hence, the estimated intensity |g|* as a function of X can be expressed

0id,dlo Tr(d,d!OOY) Tr(D;X)
g* = : = : = : = A(X)26)
O'dy,, m djvimgmz,o Tr(dNimgmzdijgmzooT) Tr(Dy,,,,m2X)

where A is a linear operator transforming X into |g|?. In Section we discussed three
different cost functions. Only the intensity-based and Poisson-likelihood-based cost functions
are convex on the estimated intensity, I,(r), which is a component of A(X). Thus, the
intensity-based and Poisson-likelihood-based cost functions can be turned into a convex
function on X through this transformation. For the implementation in [33], by defining
I=[I7,... .1}, ", the intensity-based cost function can be expressed as

f1(X) = (I—|gl*) - [g)
= (I- AX)"(I- AX)). (3.27)

Since X is a rank-1 matrix, we then minimize the rank of X subject to I = A(X).
However, the rank minimization problem is NP-hard. Therefore, a convex relaxation |29,
30, [31] is used instead to transform the problem into a trace minimization problem. Under
this relaxation, the optimization problem becomes

min f1(X) = min(T — AX)T(I — AX)) + aTr(X), (3.28)

where « is a regularization variable that depends on the noise level.

The problem with this new approach is that by increasing the dimensionality of the
problem, the size of the matrix X has become n? x n?, which is too large to store and
calculate eigenvalue decomposition on a normal computer. To avoid these computational
problems, we do not directly solve , but rather apply a factorization to X = RRI,
where R is an n? x k matrix. X is a rank-1 matrix so k is set to be 1 (R becomes O).
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This new problem is then solved effectively using the augmented Lagrangian multiplier, by
modifying the original cost function [33] 32|

min far,1(R) = min %(I — ARRN)(I - ARRN) +y" (I - ARR")) + Tr(RR'), (3.29)

where y, Ni,,m? x 1 vector, is the Lagrangian multiplier, and ¢ > 0 is the augmented
Lagrangian multiplier. Both are parameters that can be tuned to give a better reconstruction.
By taking the derivative of this cost function with respect to R and updating R in each
iteration, the optimization problem can then be solved [32]. Unfortunately, after these
modifications, the problem becomes non-convex because of the minimization with respect to
R instead of X, and thus is no longer provable.

In order to provide a more familiar form for comparing the PhaseLift algorithm to the
others discussed in this paper, we define y = [y, ... ,y%img]T, where y; is m? x 1 vector, so
that the minimization problem in Eq. becomes

) .o 2
min f4,/(0) = min o [;(If — lge® + ;W)T(Ie — |g|*)| + O'O. (3.30)

Now, we see that the PhaseLift implementation is essentially an intensity-based cost function
with an additional constraint that may deal better with noise.
The corresponding derivative of the cost function is calculated as in the previous section:

Vofari(0O)=—0o Z QZdiag(P)Fdiag(gg) (Ig —lg* + %}%) + 0. (3.31)
¢

When o is large compared to the component of y, and O, the factorized PhaseLift formulation
with rank-1 X is equivalent to the intensity-based optimization problem discussed in the
previous section. To solve this optimization problem, a quasi-Newton algorithm called L-
BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno) method [28], which is a second-
order method using an approximated Hessian inversion from previous gradients, is adopted.
We note that although the PhaseLift algorithm can also be implemented with the Poisson-
likelihood-based cost function, the algorithm in the rank-1 case is equivalent to our global
Newton’s method discussed in Section for the same reason as in the above analysis.
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Chapter 4

Performance analysis of various
algorithms

In this section, we compare the algorithms described in Chapter [3| using experimental data,
as well as simulated data that mimics the experimental errors described in Section We
find that second-order optimization generally performs better than first-order, while global
methods do not give significant improvement over sequential. Further, we explain why the
cost function is a key consideration in choosing an algorithm by explaining the cause of the
high-frequency artifacts that result from intensity-based algorithms. Interestingly, the two
model mis-match errors (aberrations and LED mis-alignment) behave similarly to Poisson
noise, in that they also give intensity-dependent errors. Hence, the amplitude and Poisson
likelihood algorithms are more robust not only to Poisson noise, but also to model mis-match
errors.

4.1 Possible noise and simulated dataset

Ideally, all algorithms based on the forward model above should give good reconstructions.
However, noise and model mis-match errors cause deviations from our forward model. Thus,
a noise model that accurately describes the error will be important for noise tolerance.
Heuristically, we have identified three experimental non-idealities that cause error: Poisson
noise, aberrations and LED mis-alignment. We aim to separate and analyze the artifacts
caused by each through controlled simulations that incur only one type of error.

The simulated data (Fig. uses the same parameters as our experimental setup, where
a 32 x 32 green LED array (central wavelength A = 514 nm) is placed 77 mm above the
sample. LEDs are nominally 4 mm apart from each other and only the central 293 LEDs
are used, giving a maximum N A;;, = 0.45. Samples are imaged with a 4x objective lens
having NAg; = 0.1.

Using our forward model, we simulate four datasets:
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Figure 4.1: To explain the artifacts in our experimental results, as well as evaluate the
robustness of various algorithms under common types of errors, we simulate several FPM
datasets with different types of known error: (1) Ideal data, (2) Poisson noise data, (3)
aberrated data, (4) LED misaligned data (x: original position, o: perturbed position).

1. Ideal data: no noise is added. The object and pupil follow exactly the FPM forward
model that is assumed in the algorithm.

2. Poisson noise data: the ideal data is corrupted by Poisson-distributed noise at each
pixel. To emphasize the effect and to emulate experiments with lower-performance
sensors, we simulate 20x more noise than is present in our experiments (details in

Section .

3. Aberrated data: simulated images are corrupted by imaging system aberrations, which
are described by the aberrated complex pupil function shown in Fig. 4.1, The pupil
function used in these simulations was obtained from experimental measurements.

4. LED mis-aligned data: the illumination angle of each LED is perturbed slightly (fol-
lowing a normal distribution with standard deviation gy = 0.2°). The black x and
blue o in Fig. show the original and perturbed LED positions, respectively.
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4.2 Reconstruction results from simulated and
experimental dataset

Reconstructed Amplitude
Ideal Data  Poisson Noise Aberrated LED misal
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Figure 4.2: Reconstructed amplitude from simulated datasets with three types of errors, us-
ing different algorithms. The intensity-based algorithms suffer from high frequency artifacts
under both noise and model mis-match errors. The percentage on the top left corner of each
image is the relative error of each reconstruction.
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Reconstructed Phase
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Figure 4.3: Reconstructed phase from simulated datasets with three types of errors, using
different algorithms. The intensity-based algorithms suffer from phase wrapping artifacts
under both noise and model mis-match errors. The percentage on the top left corner of each
image is the relative error of each reconstruction.

Next, we use each of the algorithms described in Chapter [3| to reconstruct amplitude and
phase from the datasets simulated in Section in order to quantify performance under
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Figure 4.4: Fourier ptychographic reconstruction (amplitude only) of a test object with the
algorithms discussed here, all using the same experimental dataset. Algorithms derived
from the same cost function (amplitude-based, intensity-based, and Poisson-likelihood) give
similar performance, and first-order methods (Gerchberg-Saxton) suffer artifacts.

various experimental error types by comparing against the ground truth input. Figures
and show the reconstructed amplitude and phase, respectively. On the top left corner
of each image we give the relative error of the reconstruction, defined as

“ Orecover - Otrue ”%

: (4.1)
”Otrue”%

Error =
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where O ecover and Oypye are the reconstructed and true images, respectively, in vector form.
In order to ensure that all algorithms converge to their stable solutions, we use 200 iterations
for each algorithm, except for Wirtinger flow, which requires 500 iterations. The tuning
parameters for each algorithm are summarized in Table [1.1 We have attempted to optimize
each parameter as fairly as possible; for example, we use a large ¢ in the PhaseLift algorithm
to achieve a better reconstruction. Small o trades resolution for flatter background artifacts.

Table 4.1: Tuning Parameters

Gerchberg Sequential Amplitude | Amplitude | Poisson Poisson
Saxton | Gauss-Newton | Newton Wirtinger | Newton | Wirtinger
N/A =5 N/A em:i _ 1)905 N/A emzai _ 10(.)05

s | et | e

el e

In analyzing results from the simulated datasets, we find that algorithms with the same
cost function give similar reconstruction artifacts. For example, the intensity-based algo-
rithms suffer from high-frequency artifacts and phase wrapping when the data is not per-
fect. Almost all algorithms give a satisfactory reconstruction when using the error-free
ideal dataset, except for intensity-based Wirtinger flow, which suffers some phase-amplitude
leakage and phase blurring (see Figs. [£.2}f4.3). When the dataset contains noise or model
mis-match, we observe a distinct trend that amplitude-based and Poisson-likelihood-based
algorithms give a better result, compared with intensity-based algorithms. The exception to
this trend is the Gerchberg-Saxton algorithm, which is somewhat unstable and gets stuck in
local minima, so is not robust to any type of error.

The goal of our simulations was to determine the main error sources that cause artifacts in
the experimental reconstructions of Fig. [£.4] Since the experiments contain combined errors
from multiple sources, it is difficult to attribute artifacts to any particular type of error.
We find, however, that all three of our main error sources cause similar artifacts, hence
our experimental results may be corrupted by any of Poisson noise, aberration, or LED
misalignment. For example, notice that our simulated error-corrupted data all results in
high-frequency artifacts when using intensity-based algorithms, similar to the experimental
results. The Gerchberg-Saxton result also displays low-frequency errors in simulation, as
in experiment. The fact that both noise and model mis-match create similar artifacts is
unexpected, since they are very different error mechanisms. We explain below why all
three are intensity-dependent errors, which is the reason why the cost function choice is so
important for robustness. The consequence is that algorithms which use a more accurate
noise model (amplitude and Poisson likelihood-based) will not only be more robust to noise,
but also to model mis-match errors.



CHAPTER 4. PERFORMANCE ANALYSIS OF VARIOUS ALGORITHMS 30

(a) Ideal Data (b) Poisson noise
200 . 140
120
150 ~100
o~ =)
2 g soff
= 100 -
[¥] 4] :
= Z 60
g =
3 5
[ & 40
20
- 0 -
50 100 150 200 0 50 100 150 200
Iterations Iterations
(c) Aberrated Data (d) LED misaligned
200 . 200

150

150

Relative Error (%)
Relative Error (%)
2

50 pi

= 0
0 50 100 150 200 0 50 100 150 200
Iterations Iterations
—Gerchberg-Saxton - - Seq. Gauss-Newton ---Newton (Amplitude)
~-Wirtinger (Amplitude) ~—Newton (Poisson) - - Wirtinger (Poisson)
—Wirtingcr ([ntcnsity) - - Phaselift -=-Newton ([ntcnsﬁy)

Figure 4.5: Phase relative error as a function of iteration number for different algorithms
with the (a) ideal data, (b) Poisson noise data, (c¢) aberrated data and (d) LED misaligned

data. When the data is not perfect, some of the algorithms may not converge to a correct
solution.

To examine the convergence of each algorithm, Figure [4.5|plots the error for each iteration
when using the aberrated dataset and LED misaligned dataset with different algorithms.
The intensity-based algorithms (red curves) clearly do not converge to the correct solution
and can incur large errors when the data is not perfect. Compared to PhaseLift and the
intensity-based Newton’s method, the Wirtinger-flow algorithm seems to have lower error;
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however, this is only due to its slow divergence. If run for many iterations, it will eventually
settle on a similarly error-corrupted result as the other two intensity-based algorithms (not
shown). We also observe that amplitude-based (blue curves) and Poisson-likelihood-based
(black curve) algorithms converge to points with lower errors in a similar fashion. This
behavior is well explained by the similarity of the algorithms in their use of gradients and
Hessians (as shown in the Appendix). Again, the exception to the trend is the first-order
Gerchberg-Saxton algorithm, which recovers the object fairly well with aberrated data, but
goes unstable in the case of LED misalignment. Note that, when there is no pupil estimation
step, the only difference between the Gerchberg-Saxton and the sequential Gauss-Newton
algorithm is the step size. Since the latter algorithm gives a good reconstruction, while the
former diverges, we conclude that the Gerchberg-Saxton step size is too large for a stable
update in this particular case.

Table 4.2: Convergence Speed

Ideal data Misaligned data
Iteration . Iteration .
Runtime (s) Runtime (s)
number number
Gerchberg . :
Saxton 4 2.22 diverges diverges
Sequential 23 12.97 83 46.8
Gauss-Newton ' '
Amplitude 13 100.49 20 154.6
Newton
Amplitude 46 26.28 158 89.52
Wirtinger
Poisson 28 211.68 77 582.1
Newton
Poisson
Wirtinger 96 54.46 153 87.36
Intensity . :
Wirtinger 1481 651.64 diverges diverges
PhaseLift 67 386.28 diverges diverges
Intensity . :
Newtow 12 74.44 diverges diverges

The convergence speed of each algorithm can be determined from Figure using two
metrics: number of iterations required and total runtime. We choose the convergence curves
from the cases of ideal data and LED misaligned data and compare their iteration numbers
and runtimes in Table [£.2] All the algorithms were implemented in MATLAB on an Intel
i7 2.8 GHz CPU computer with 16G DDR3 RAM under OS X operating system. We
define convergence as the point when the relative phase error reaches its stable point. The
comparison does not consider the divergent cases. In the ideal data case, we can see that the
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sequential methods outperform all the other algorithms in terms of runtime. The Gerchberg-
Saxton algorithm is the fastest in terms of both iteration number and runtime for this
perfect dataset. The global Newton’s method using intensity-based and amplitude-based
cost functions also converge very fast in terms of iteration number. The Wirtinger flow
algorithm takes much longer to reach convergence both in runtime and iteration number.
For the case of the LED misaligned data, only five algorithms converge. In terms of iteration
number, the amplitude-based Newton’s method converges much faster than the other four,
as expected. However, the sequential Gauss-Newton algorithm converges much faster in
terms of the runtime. Though the global Newton’s method is theoretically better than the
others, it takes significant time to calculate the full Hessian matrix. Thus, the sequential
Gauss-Newton method is our preferred algorithm in practice, because it provides excellent
robustness while also enabling fast runtimes and reasonable computational complexity.

The main conclusions to be drawn from this section are that the FPM optimization al-
gorithms which are formulated from amplitude-based and Poisson-likelihood-based cost func-
tions are more tolerant to imperfect datasets with both Poisson noise and physical deviations
like model mis-match, which were represented by aberrations and LED misalignment here.
In the next section, we will explain more about the causes for this trend.
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4.3 Noise model analysis
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Figure 4.6: Both Poisson noise and model mis-match (aberrations, LED misalignment) cause
errors that scale with mean intensity. Here, histograms show the intensity deviations under
Poisson noise, aberration, and misalignment for a brightfield and darkfield image.

The reason why amplitude-based and Poisson-likelihood-based algorithms have superior tol-
erance to experimental errors is due to their Poisson noise model. Each of these algorithms
makes an implicit or explicit assumption that the magnitude of the errors in the data scale
with the measured intensity. This is obviously a good model for Poisson noise errors, which
are defined as noise which scales with intensity. It is not as obvious that the model mis-match
errors (aberrations and LED misalignment) scale with intensity as well. To demonstrate this,
Fig. [4.6] shows the histogram of the difference between the deviated dataset and the ideal
dataset, for the cases of both brightfield and darkfield images. The histograms show a similar
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trend - all of the brightfield errors are much larger than the darkfield errors, with a similar
statistical variation. Thus, the errors from Poisson noise, aberrations and LED misalignment
all scale with the measured intensity. In our experimental data, there are always aberrations
in the objective lens, LED misalignment, and Poisson shot noise. Since the noise model for
the amplitude-based and Poisson-likelihood-based algorithms match the actual noise prop-
erties, these algorithms perform better than the intensity-based algorithms. And since the
images captured by FPM have drastically different intensity values, this effect dominates
the reconstruction artifacts. Note that these large variations in intensity values are specific
to FPM and likely do not play a major role in other phase imaging schemes (e.g. phase
from defocus or traditional ptychography), where images do not have such a wide range of
intensity values. In our experiments, the Poisson noise is fairly low (due to use of a high-
performance sCMOS sensor), but the model mismatch in the experimental data can cause
effects similar to strong Poisson noise.

gradient of amplitude gradient of Poisson gradient of intensity
cost function cost function cost function

0.5-025 0 025 0.5 0.5-025 0 025 05 0.5-025 0 025 05 — -80
NA_ NA_ NA,

Figure 4.7: The intensity-based cost function gives higher weighting to images in the low
spatial frequency region of the Fourier domain, resulting in high-frequency artifacts. Here,
we show the gradient of the amplitude-based, Poisson-likelihood-based and intensity-based
cost functions at the tenth iteration, using experimental data.

For further understanding, we look closer at the relationship between the noise model and
the cost function. Our optimization algorithms are derived from three cost functions. Each
of the cost functions makes a noise model assumption. The intensity-based cost function
assumes that noise in the data follows a white Gaussian noise model, which means that the
standard deviation of the noise is assumed to be the same across the brightfield and darkfield
images. Recall that the standard deviation of a Gaussian noise probability model is related
to the weight in the cost function for each pixel, as shown in Eq. The larger the standard
deviation (amount of noise) at any pixel in Fourier space, the smaller the weighting, since
noisy pixels should be trusted less. In the Gaussian noise model, the weights in the cost
function for large-valued pixels and small-value pixels are the same. However, the deviation
for brightfield images is much larger than that for darkfield images, as shown in Fig. [.6]



CHAPTER 4. PERFORMANCE ANALYSIS OF VARIOUS ALGORITHMS 35

Hence, the brightfield images will contribute more to the total cost function value if the
weights are all the same, due to their high intensity. The result is that the intensity-based
(Gaussian noise model) algorithms focus mostly on the brightfield images, which correspond
to low spatial frequency information, and the darkfield images do not contribute much. The
result is a failure in the high-frequency reconstruction, as we saw in Figs. [1.4] 4.2 4.3 and
loss of effective resolution since the darkfield images contain all the sub-diffraction-limit
information. To illustrate the dramatic difference in weights, Fig. [4.7] shows the gradient
of the different cost functions. Obviously, the intensity cost function gives much higher
weighting to low spatial frequencies, which causes the high-frequency artifacts.

Since the amplitude-based cost function shares a similar gradient and Hessian with the
Poisson likelihood function, as shown in the Appendix and Fig. [£.7], it is not surprising that
they both produce a similar quality reconstruction. Both of these cost functions assume
the noise in the data follow a Poisson distribution, with the standard deviation scaling with
the measured intensity. This assumption matches the actual error better than the white
Gaussian assumption. The actual noise or deviations in the experiments for brightfield
images have larger standard deviation, while that for darkfield images have smaller standard
deviation. Under the Poisson noise model, the weight in the cost function is smaller for
the noisy brightfield images and larger for the darkfield images. At the end, algorithms
based on the Poisson noise model put more emphasis on the darkfield images and thus get
a better reconstruction compared to the intensity-based algorithms. Figure [4.7| shows that
the gradients for the amplitude-based and Poisson-likelihood-based cost function are similar
and are more uniform throughout the whole Fourier space.
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Chapter 5

Joint estimation of pupil function and
LED positions
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Figure 5.1: The flow of model mis-match correction algorithms for Fourier ptychographic
micrscopy. Redundancy and diversity in the dataset enables algorithmic self-calibraiton of
aberrations (pupil function) and LED posisiton errors.

In the previous chapter, we have shown that model mis-matches such as aberrations and
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LED mis-alignment do affect greatly in the final reconstruction no matter what kinds of
algorithms are used. Thus, it is important to develop a sub-routine in the main algorithm
that can correct for these mis-matches. In this chapter, we will describe how we correct for
these mis-matches by including sub-optimization steps within the main algorithms. The flow
to correct for these mis-matches are summarized in Fig. [5.1]

5.1 Pupil recovery

There are already more sophisticated FPM extensions to correct for some model mis-match
errors [24, 25|, similar to the probe correction algorithms in traditional ptychography [22].
Both of the methods previously developed for Fourier ptychography are derived from the
amplitude-based formulation. By taking the derivative of the cost function with respect to
P, the decent direction to estimate the pupil function can be calculated as

Ve fas(0,P) = —diag(Q,0) [Fdiag (g) g — diag(P)Q0| (5.1)

By applying the pupil estimation step after each object estimation using this gradient
or approximated Hessian, the sequential gradient descent [24] and the sequential Gauss-
Newton method [25] including pupil estimation can be derived. Here we only consider the
amplitude-based cost function, for simplicity.

We wish to investigate the improvements obtained by adding a pupil estimation step
to both first and second-order optimization algorithms. Figure shows the reconstruc-
tion result from the sequential gradient descent (first-order) and sequential Gauss-Newton
(second-order) algorithms, using the aberrated dataset from the previous simulations. The
numbers at the top left corner are the relative error compared to the ground truth simulated
image. As can be seen, adding the pupil estimation step gives a better complex-field recon-
struction, and the second-order (Gauss-Newton) method with pupil estimation provides the
best result.

Surprisingly, however, the second-order reconstruction without pupil estimation is better
than the first-order reconstruction with pupil estimation, for this case. This highlights the
robustness to aberrations that a second-order optimization scheme enables. The second-
order nature of the algorithm makes it faster in convergence, and also more stable. In terms
of runtime, the pupil estimation step takes about the same time as the object reconstruction
part, so the algorithm is two times slower when the pupil function step is incorporated.

5.2 LED position recovery

Another possible correction scheme for model mis-match is that for LED misalignment. Since
each LED position corresponds to a certain shift of the pupil function in the Fourier domain,
this is similar to the shift of the probe function in traditional ptychography. There, iterative
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Figure 5.2: Object and pupil reconstruction results using different algorithms, with and
without pupil estimation. The second-order method (sequential Gauss-Newton) with pupil
estimation gives the best result, as expected. In this case, we find that the second-order
method without pupil estimation is already better than first-order method (sequential gra-
dient descent) with pupil estimation.

algorithms have been proposed to correct for the positioning error of the probe function ,
38,39, [40]. In 40], a gradient of the cost function with respect to the shift of the probe
function has been calculated and the conjugate gradient method has been applied to correct
for the positioning error. In [38], a simulated annealing method is adopted to estimate the
shift of the probe function. The simulated annealing method is also adopted to correct for
the misalignment of the spatial light modulator in a overlapped Fourier coding system ,
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analogous to FPM. In our experiments, we observe that the simulated annealing method can
locate the LED positions more accurately than other methods. Thus, we only compare with
the simulated annealing method.

Simulated annealing position estimation

Simulated annealing is a method of searching unknown variables over a finite space to mini-
mize or maximize the function of merit - the cost function in our case. Instead of exhaustively
testing all the possible states, simulated annealing iteratively approaches the optimal state.
At the first iteration, the algorithm randomly searches several states in the space and selects
the one with the smallest cost function value. The algorithm then starts at this state for the
next iteration, slowly reducing the search range in the following iterations until convergence.
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Figure 5.3: (a) Adding LED misalignment correction improves the reconstruction results
(sequential Gauss-Newton method). (b) The original, perturbed, and corrected LED posi-
tions in angular coordinates. LED correction accurately retrieves the actual LED positions.

In our sequential algorithm, the whole optimization problem is divided into many sub-
optimization problems for different collected images. At each sub-optimization problem, a
gradient descent or Gauss-Newton method is applied to update that corresponding region
in Fourier domain. To add a LED mis-alignment correction step, the simulated annealing
algorithm can be incorporated into each sub-iteration to find an optimal shift of the pupil
function. In each sub-iteration, the down-sampling matrix, Q,, which contains the informa-
tion of the pupil shift, is tested according to the annealing process for several possible states
corresponding to different shifts of the pupil. The state with the smallest cost function value
is selected to update the old down-sampling matrix. Then, the new down-sampling matrix
is used to update the corresponding region in the Fourier domain.
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The simulated annealing method estimates the LED positions with good accuracy. Fig-
ure [5.3| shows the reconstruction result from the simulated LED misaligned dataset, both
with and without the LED correction step. The result using the LED correction clearly
shows better quality and smaller error, as seen in Fig. |5.3{a). Since the LED correction
scheme also estimates the actual LED positions, which we intentionally perturbed in order
to impose a known error, we can also compare the actual and recovered LED positions,
shown in Fig. |5.3{(b).

To complete the picture, we now show experimental reconstructions with and without the
two correction schemes: pupil correction and LED mis-alignment corrections (see Fig. |5.4)).
Since we do not know ground truth for our experiments, we can only make qualitative
observations. An incremental improvement is observed when adding the pupil estimation
and then the LED correction steps - the background variation becomes flatter. Figure (b)
shows the corrected LED positions compared to the original ones, in angular coordinates.
Corrected positions of LEDs in different regions share similar offset because the fabrication
process of the LED array can cause unexpected position misalignment for each LED. Notice
that the LEDs at the edges (corresponding to higher angles of illumination) incur more
variation, since these are more sensitive to calibration. Also, many of the large deviations
occur at the edges that are not along the horizontal and vertical axes. In these areas, the LED
position recovery is poor because the object has very little information there (the resolution
test target contains only square features) and so the data contains little information about
these areas. However, any errors in LED positions in this area will also not significantly affect
the reconstruction if they do not contribute much energy to the object spectrum. If the goal
was not to correct the image results, but rather to find the LED positions accurately, then
one should choose an object that contains uniformly distributed spatial frequencies (e.g. a
random diffuser or speckle field). Although the simulated annealing further improves our
reconstruction, we note that it is more than ten times slower to process the data because of
the local search performed at each sub-iteration.
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Figure 5.4: Experimental reconstructions with and without LED misalignment correction
(sequential Gauss-Newton method). (a) The reconstructed object and pupil. (b) The original
and corrected LED positions, in angular coordinates.
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Chapter 6

Conclusion

In this work, we formulated the Fourier ptychographic phase retrieval problem using maxi-
mum likelihood optimization theory. Under this framework, we reviewed the existing FPM
algorithms and classified them based on their cost functions as: amplitude-based algorithms
(akin to a Poisson noise model) and intensity-based algorithms (akin to a white Gaussian
noise model). We derived a new algorithm based on the Poisson likelihood function, which
is more robust to measurement imperfections. We compared the tolerance of these algo-
rithms under errors due to experimental noise and model mis-match (aberrations and LED
mis-alignment) using both simulated data and experimental data. Because the noise and
model mis-match error for brightfield and darkfield images depend on the measured inten-
sity, the amplitude-based and Poisson-likelihood-based algorithms that use a the Poisson
noise model are more robust than the intensity-based algorithms. This can be explained
by the standard deviation of the noise model determining the weight of each image in the
optimization. Hence, intensity-based algorithms over-weight the brightfield images, resulting
in poor high-frequency reconstruction, which is where the high-resolution details reside.

Next, We used existing pupil estimation algorithms and proposed a simulated-annealing-
based LED correction algorithm for algorithmic self-calibration of model mis-match. We
compared the performance of the pupil estimation algorithms and found that second-order
methods give the best results. We also showed the capability of the simulated annealing
method to correct for misaligned LEDs and find their actual positions.

Based on our studies, we conclude that the global Newton’s method gives the best recon-
struction, but with high computational cost. Considering both robustness and computational
efficiency, we find that the sequential Gauss-Newton method provides the best trade-offs for
large-scale applications. Its experimental robustness is verified in our recent time-series in
vitro experiments [13], where we demonstrate sub-seconde acquisition times for FPM.
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