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Introduction

This capstone project consisted of expanding the existing Berkeley Telemonitoring to improve

its overall functionality, which we accomplished by creating an application to suit the needs

of a marathon trainee with design input from University of Chicago Medicine’s Doctor David

Liebovitz. The Telemonitoring cycle, depicted in Figure 1, allows for data from a remote

environment, for instance a marathon runner, to be transmitted to a centralized server for

processing, possibly viewed and acted upon by a doctor or coach, and responded to by the

system’s sending intervention back to the remote environment in real-time.

Figure 1: The Telemonitoring Cycle
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To the end of validating and strengthening the capacity of the framework to fulfill this full

Telemonitoring cycle, the ultimate deliverable of our project was a fully functional and well-

tested mobile application that tracks a trainee’s cadence and other parameters throughout

a training run and provides real-time audio feedback to tell the runner her proximity to a

specified target cadence. In order to achieve this goal our team worked to extend various

aspects of the existing framework (Aranki et al. 2016) including adding support for data

analysis at scale, generating capability to extract data from the phone’s on-board GPS and

accelerometer sensors, improving the robustness of the Bluetooth communications stack, and

enabling non-visual interventions to be communicated to the application user. Our overall

task breakdown with work distribution is displayed in Figure 2.

Figure 2: Work breakdown of tasks among team members

Many tasks were shared between all team members, as the design aspect of the project and

general understanding of the required data analysis techniques were important for everyone
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involved. My primary individual contributions to the project consisted of working on imple-

mentation of data analytics methods for our framework along with teammates Lucas Serven

and Eugene Song (described in Eugene’s paper), incorporation of GPS data extraction into

the framework, and refactoring the lifecycle of connections within the Bluetooth communica-

tions stack in order to support robust data collection from a peripheral heart rate monitor. In

this paper, I will describe the team’s initial strategy for developing a design of the marathon

application itself and detail the components to which I contributed most significantly as an

individual, including GPS data extraction and Bluetooth stack improvements.
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Chapter 1

Individual Contributions

1.1 Initial Application Design Iteration

1.1.1 Motivation for Application Design Process

The design of the functionality and interface of our target marathon training application was

crucial to planning out the implementation and testing work that constituted our project. As

this application development is central to our goal of expanding and testing the Telemonitor-

ing framework, we determined that the most benefit to the framework would be derived from

thinking through the features that users would desire in this application and then during

the implementation phase of the project ensuring that the framework could support them

sufficiently. The initial application design process was completed as a team, and delegated

to me for the purposes of this written deliverable.

1.1.2 Design Mockups

Given a general description of desired functionality from Dr. Liebovitz, we drafted visual

mockups of the application we would be creating. Starting with simple, fungible visual

prototypes allowed us to easily follow an iterative design process, soliciting feedback from our

stakeholders and potential users and altering our design without spending unnecessary time

and effort implementing full functionality for early design versions. This type of iterative
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design process is well-studied and widely accepted in academia and industry. According

to researcher Jakob Nielsen the use of iterative refinement of interfaces yields significant

usability improvement; in his study of four cases of iterative design change with user feedback

the median usability improvement from first to last version was 165% (Nielsen 1993).

Our mockups depicted the various screens that the user would see while using our appli-

cation, and thus helped inform the functions that we needed to implement in order to collect

and convey appropriate information to the user. Our next design iteration consisted of mov-

ing from these visual prototypes to the actual code implementation of these screens in the

functional prototype application, including design changes necessary to support additional

functionality we determined would be useful to the runner. These implemented screens are

distributed through the reports of my teammates for detailed discussion; this report includes

the newly added screen on which users scan for Bluetooth devices and choose one to collect

data from, detailed later in the Bluetooth Connection Lifecycle section. I’ll now show a full

user interaction flow through the screens that we designed in our first iteration and describe

in detail what value each screen gives to the user and what it dictated with regard to our

implementation work. For brevity, I will refer to the runner using our application as “she”

although the application is not targeted at any gender in particular.

User Settings Input

During initial setup of the application, the user enters some detailed physical information

into a settings screen (Figure 1.1b) in order for our data-informed server to estimate an

appropriate target cadence for her to work towards. We will ultimately use the data analytics

algorithms described in Eugene’s report to determine what is a realistic good target based on

data from other users, so in our design mockups a generated target is shown depicting this

ideal future feature although in our functional application for pilot testing we instead allow

the user to choose a target cadence value and improvement trajectory to reach this goal. If

the runner wishes to later change any of her entered parameters or training trajectory she

can reach the settings screen through a side navigation drawer (Figure 1.1a).
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(a) (b)

Figure 1.1: (a) Settings Navigation Drawer Mockup (b) User Settings Screen Mockup

Home Screen

From the main home screen (Figure 1.2a) the user can see her history of past runs and select

one to view in more detail. She can also press the Start button to begin tracking data for

a new training run, or access the application settings in the upper left corner to specify

physical parameters and other setup information.

Run Screen

Upon pressing the Start button from the home screen, the runner will be taken through two

options to collect a starting heart rate estimate using the camera sensors on the phone. After

their completion, she will arrive at the run screen (Figure 1.2b) where she sees her current

9



cadence and proximity to her target, as well as total time and distance of the current run

and, if applicable, her current heart rate as monitored by a peripheral device. There is a

clear indication of whether, given the training regime she is following (additional detail on

training models presented in Eugene’s paper), she is sufficiently close to her target cadence

for the given day. The cadence section of the screen changes color to indicate whether she

should be going faster or slower to match this target. From this screen she can also pause

or end her run.

(a) (b)

Figure 1.2: (a) Home Screen Mockup (b) Run Screen Mockup
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Cadence Detail Screen

If the user selects a particular completed run from the home screen, a detailed view of

cadence information from that run will appear (Figure 1.3), showing measured cadence over

time with minimum, maximum, and average cadence clearly indicated. These data will be

useful to the runner in terms of tracking performance over time and planning future training

runs.

Route Detail Screen

A neighboring tab on the cadence detail screen (shown second in Figure 1.3) shows infor-

mation about the route taken for that particular run based on collected GPS data and the

runner’s total distance covered during the run, as derived from the GPS data points.

Due to time and resource constraints during implementation of the functional application,

we determined that while conveying basic information on the average and target cadence

of each run is important to the core purpose of the application, the graphical depiction of

these data was of a lower priority. Thus for our pilot study application implementation we

decided to combine these cadence and route detail screens from our initial mockups into a

unified run summary screen showing pertinent information more concisely.

Non-Visual Intervention

From our first mockup design iteration we received feedback from our project advisor, Daniel

Aranki, to include other sources of intervention feedback rather than only a visual display

of the measured cadence data and proximity to the target cadence, as this is not an effective

way to communicate information to a runner during a run. This problem identified with our

design encouraged us to focus more on the end user experience of our application and update

the interface to better suit the needs of our users. In order to provide a useful intervention

while the user is currently running, we identified a few non-visual feedback options: have

the phone vibrate in a specified pattern to indicate the runner should run faster or slower to

match her target, have the application give explicit audio prompts telling the user what to

11



Figure 1.3: Post-Run Cadence and Route Detail Screen Mockups

do, or integrate with the phone’s music player to increase or decrease the beats per minute

(BPM) of the music playing to indicate the appropriate change in the runner’s behavior.

For the initial application implementation, we decided to include only the vibration cues

as the non-visual communication mechanism. We chose this in order to keep the application

simple and minimally invasive to the runner’s existing routine, as well as to ensure that our

technical work would be achievable and robust. The spoken audio and music BPM feedback

methods are left as a future improvement to the application, and are discussed further in

Uma’s paper.
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Figure 1.4: Non-Visual Intervention Mechanisms

Having an overall design for our application helped us to plan out and track our implemen-

tation progress towards our final functional project deliverable, and provided a framework for

us to maintain focus on usability as we developed and tested the features of our application.

1.2 Application Components Overview

Starting from these initial design mockups, the team began implementation of the frame-

work additions and application-specific code components necessary to provide the required

functionality. The primary elements involved are the data extractors and estimators, the

performance training model, the data analytics support, and the user interface including
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data display and non-visual intervention techniques. The estimators for cadence and speed

along with the mathematical basis and communication to the user thereof are discussed in

Carlos’s, Uma’s, and Lucas’s papers. The training model and data analytics built into the

framework which will support assignment of a training target to the user based on entered

parameters as well as support for some mathematical operations needed for speed and ca-

dence estimation are discussed in Eugene’s paper. I will describe in detail the extraction and

display of GPS data and of heart rate information via Bluetooth in the following sections.

1.3 GPS Data Extraction

Information from the Global Positioning System (GPS) is one of a few types of data that

are provided by sensors on the phone but not supported by the existing Telemonitoring

framework prior to this project. The GPS is a spaceborne positioning system “conceived as

a ranging system from known positions of satellites to unknown positions on land, sea, in

air and space” (Hofmann-Wellenhof, Lichtenegger, and Collins 1997) through which devices

capable of receiving signals from GPS satellites can determine their own locations and track

this information over time. Collecting coarse location data provided by the phone’s GPS

receiver, often augmented by locationing information based on proximity to cell towers and

wireless network signals, allows us to calculate an approximate distance covered during each

run as described following. Additionally, one of the methods for estimating speed that we

researched 1 uses GPS data to calibrate the model for estimation (Altini et al. 2014), so if in

the future it is determined that the implemented speed estimation algorithm is insufficient

we will have the flexibility to change to that method or another that requires GPS data

integration. Finally, for future applications outside the marathon training space that will be

implemented using the Telemonitoring framework, GPS data may be critically useful, and

having support already built in will decrease development time for these applications.

The process of adding support for GPS data extraction involved understanding the frame-

1In the method discussed in Self-Calibration of Walking Speed Estimations Using Smartphone Sensors Estimations by Altini
et al. 2014, GPS data is used in conjunction with accelerometer data to personalize the speed estimations generated by their
model.
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work’s data extraction and storage models and writing new code to support these actions

specifically for GPS data, as well as testing the functionality of this new code by incorporat-

ing it into the existing sample application before we had begun the implementation phase

of our marathon coaching application. In order to write the new software classes necessary

for the application to stream GPS location data to the server, I needed to research and

understand how Android applications access the data from the onboard GPS sensor. The

infrastructure for developers using the Android operating system makes it very easy to ob-

tain a user’s location within a software application (Shu, Du, and Chen 2009). The Android

libraries provide support for reactionary event-based data exchange, causing an action to

happen only when the phone changes location, and for location data retrieval on demand,

based on the latest known coordinates if available.

One challenge involved in this effort was determining how best to fit these access pat-

terns into the Telemonitoring framework’s standardized process surrounding sensor data

extraction, which is mainly designed around timed periodic reading of sensors. The general

structure that is followed in data extraction within the framework is for each type of data

to have its own Encapsulator class which can store a datapoint of that type, and then an

Extractor or Estimator class which collects or estimates the data of the specified type to

generate standardized data points to be stored in instantiated encapsulators and sent to the

server for remote processing (see Figure 1.5 for clarification of the dataflow). On consultation

with the project advisor, I included code to support extraction of GPS coordinates in both

periodic and event-based manners, re-using the storage container code for the data since

datapoints can be stored in the same format in both cases. Although we will likely only use

one of these extraction methods in our application development this year, this initial effort

will leave the framework better able to support flexibility in future applications. One reason

that maintaining a minimum time between collecting datapoints, either through using the

periodic extraction method or setting a minimum span between events handled, is appealing

for this application is that use of the GPS sensor can dramatically increase the rate of power

usage on a cellular phone (Carroll and Heiser 2010), and given that we expect runners to
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be continuously using our application for durations of an hour or more we do not want to

unnecessarily drain their phones’ batteries due to too-frequent location tracking.

Figure 1.5: Simplified flow of GPS data from sensor to extractor to be encapsulated and transmitted to the
server in a serialized fashion

Once the encapsulator class for storing GPS location data and the extractor class for

retrieving these data from the phone’s sensor were written, they needed to be tested in the

context of a running Android application built on the Telemonitoring framework. For this

initial testing, I added to the existing test application in our shared codebase. This effort

involved adding GPS monitoring to the functionality of the application, and preference

control to the user interface to allow the user to turn on and off GPS monitoring. To run the

test application and verify that data were streaming properly, it was necessary to familiarize

myself with the entire software pipeline of our framework, including compiling the updated

server code, copying it to our remote server, and starting it running there, as well as launching

the client application on one of our lab-owned Android devices. Then with debug logging I

could verify that the data were being collected on the client side, and checking the logs on

the server I could ensure that it was correctly being synchronized for remote access.

Another major challenge to effectively extracting GPS location data is the extent of the

phone’s ability to contact GPS satellites and maintain clear signal reception. While testing

I found that GPS was frequently inaccessible when indoors or when the phone had just

come out of sleep or powered-off modes. This limitation required a slight re-design of the

extractor structure, as the code for other sensor extractors was written with the expectation
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of definitely retrieving a datapoint at each periodic cycle of checking for data. When the

GPS sensor cannot access the satellites’ signal and additionally does not have a stored most

recent location it returns a null value, which cannot be stored in the expected latitude and

longitude format and provides no useful information to an application. So this case needed

to be handled without causing an error, which I accomplished by ignoring null values and

sending no data to the server in these cases. This maintains functionality of the application,

but means that any algorithm that we implement in the future that relies on GPS data will

have to be designed to be robust to receiving no data on startup, and potentially less often

than the specified period should the sensor stop being able to retrieve data.

1.3.1 GPS Data Collection and Distance Calculation in Marathon Application

Once GPS data extraction was implemented and tested on its own, the task remained to

incorporate this functionality into the marathon training application. While we did want to

send GPS coordinates collected during each run to the server, we recognized that maintaining

easily visible location information on the phones of our pilot study participants posed a risk

to their privacy should their phones be lost or stolen. Thus we made the design decision to

collect GPS datapoints to send to the server but to store minimal accessible GPS data on

the phone and within the user interface to show only a calculated distance for the run based

on change between collected GPS datapoints. For the distance calculation, I implemented

the haversine formula (Equation 1.1) commonly used in navigation to determine the great-

circle distance between two points given their latitudes and longitudes and the radius r of

the Earth (Mwemezi and Huang 2011). Although for this running training application it is

unlikely that taking the Earth’s curvature into account would have significance, this code

could potentially be reused in future applications built on the framework that involve GPS

coordinates significantly further apart.

distance = 2r · arcsin(

√
sin2(

lat2 − lat1
2

) + cos(lat1)cos(lat2)sin2(
lng2 − lng1

2
)) (1.1)
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1.3.2 GPS and Distance Testing Data

We tested the location collection functionality within the marathon training application by

plotting the collected GPS datapoints from a brief test run using Google Maps, shown in

Figure 1.6a. Datapoints were logged upon location-change events up to every 10 seconds as

configured in the application code, and showed up on the map quite close to our expectations.

We additionally checked our distance calculation approximately using Google Maps’ visual

distance measurement tool, as shown in Figure 1.6b. This measurement indicated a total run

distance of 491 feet as compared to our application’s calculation of a cumulative distance of

517 feet. A likely reason for the small discrepancy between these distances is that our distance

calculation is accumulated by change between each subsequent pair of GPS coordinates

collected, so variation away from a straight line between the starting and ending points of

the total run will increase the calculated distance above the simple start-to-end value.

(a) (b)

Figure 1.6: (a) Google Maps Plot of Collected GPS Datapoints (b) Google Maps Distance Measurement of
Start to End Coordinates
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1.4 Heart Rate Data Extraction and Bluetooth Work

Along with cadence, speed, and location, we wanted to provide functionality for the runner

using our application to be able to easily record her heart rate throughout each of her training

runs. Although the existing Telemonitoring framework already included support for two

algorithms to detect and record a heart rate reading using the camera sensors on the phone2,

these methods require the user to be actively engaged in the activity of recording these data

and remain relatively still during the process and thus are not appropriate for tracking heart

rate continuously while the user is running (van Gaalen et al. 2015; Peng et al. 2015). Given

this limitation we decided to use a peripheral hardware monitor which can transmit sensed

heart rate data to the runner’s phone during her run via the Bluetooth Low Energy protocol.

After researching several external hardware heart monitors, we chose the Jarv sensor as a

relatively inexpensive option that implements the standard Bluetooth Heart Rate Health

Device profile (Bluetooth SIG 2016). This means that the data transmitted by the sensor

follow a known format that is recognized by other systems that conform to the Bluetooth

standard, including having some basic support within the Android operating system (Mosa,

Yoo, and Sheets 2012) upon which our framework is built. This native Android support

in conjunction with the abstractions of the Bluetooth stack and health device connection

process added to the Telemonitoring framework last year made it relatively straightforward

to incorporate the Jarv into our marathon training application.

Although last year’s capstone team performed significant work to provide support in the

Telemonitoring framework for abstracting away from the developer the inner working of

the Bluetooth and Bluetooth Low Energy (BLE) communications in order to allow easy

handling of devices implementing a Bluetooth Health Device Protocol, there remained some

effort necessary to incorporate the Jarv heart monitor device into our marathon training

application. As mentioned in last year’s team’s reports, the system had only been tested

with a few device types and needed additional testing with new device types (Mani et al.
2These methods involve estimating a person’s heart rate based on coloration changes due to bloodflow which are detected

in sequential video frames of her face or finger. The implementation of these algorithms in the Telemonitoring framework is
detailed at length in the papers of last year’s team (van Gaalen et al. 2015; Peng et al. 2015). Their usage in our application
before and after a training run is discussed in detail in Uma’s paper.
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2015; Azar et al. 2015). As the framework’s Bluetooth support had not previously been

tested with a device using the Bluetooth Heart Rate Health Device profile, I first had to

make some minor code changes in order for this type of device to be recognized by the

system. The bulk of the work in effectively including the Jarv device in our application lay

in improving upon last year’s integration of Bluetooth functionality into the framework to

offer configurable flexibility in the lifecycle of applications’ connections to Bluetooth and

BLE devices. Finally, it was necessary to include the required scanning, connection, and

data collection code into our application in order to record heart rate datapoints from the

Jarv device during each training run if that preference is specified by the runner.

1.4.1 Bluetooth Stack Connection Lifecycle Modifications

A significant component of the effort to include BLE heart rate sensing in our application

was a redesign and corresponding implementation of the Bluetooth connection lifecycle in

the framework. Previously, the behavior of the system in terms of retrying a new connection

to a Bluetooth device as well as its behavior in reconnection attempts upon a lost connection

was non-apparent and non-configurable to the developer using the framework to build an

application with a Bluetooth device connection component. As suggested in the continuing

work sections of last year’s team’s papers, it is central in development of this framework’s

Bluetooth communications stack to ensure maintainable code that addresses both Bluetooth

and BLE devices (Azar et al. 2015; Mani et al. 2015). In order to make this development

experience more intuitive and flexible I worked with advisor Daniel Aranki to generate a

clear design of the possible desired behaviors within the context of Bluetooth connection

lifecycle and a developer configuration process including a set of reasonable default options

to maintain as much abstraction as possible for the developer using our framework. The

diagram in Figure 1.7 depicts the possible paths for a Bluetooth device from connection

attempt to connection close, with optional paths aligning with configuration settings that

include connection and reconnection retry attempts.

In order to allow developers to specify whether to try multiple connection or reconnec-
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Figure 1.7: Bluetooth Connection Lifecycle

tion attempts to Bluetooth devices in their applications, we designed a class to represent

Bluetooth Connection Configuration, which can be instantiated and passed to a Bluetooth

device object in order to dictate connection and reconnection behavior. In this new connec-

tion lifecycle paradigm, by default a given Bluetooth device will attempt a direct connection

when its connect method is called, and if this attempt fails the connection will close with-

out making another attempt at success. If the connection is successful but is then later

lost unexpectedly, the connection will close without making any attempt at reconnection.

If a developer wishes to override this default behavior, she may simply create a Bluetooth

Connection Configuration object with parameters set for either or both of initial connec-

tion and reconnection on lost signal and call the applyConnectionConfigurationSettings

method to apply these settings to the device before attempting connection. She can specify

21



for either of these whether to not retry at all and immediately close the connection, retry

up to a specified time interval before closing, also configurable, or to retry indefinitely until

success or an explicit call to close.

Implementation of this configuration mechanism and the underlying modifications of the

Bluetooth stack within the framework to support retry logic on initial and lost connections

required a deep dive into the existing Bluetooth stack in the Telemonitoring framework and

a testing effort to verify that the additional functionality was working correctly. Future work

to be done includes testing of the new connection configuration behavior with other devices

beyond the BLE Jarv heart rate monitor, and potential expansion of this connection retry

logic into a more abstract approach that could be applied to provide standardized connection

configuration not only for Bluetooth devices but for connections of other types such as WiFi

or Zigbee.

1.4.2 Incorporation Into Marathon Training Application

Scanning and Device Connection Screen

Within the user interaction flow of the marathon training application, if the runner would

like to specify a Bluetooth or BLE heart rate monitor device to collect heart rate data during

runs the first step is to enter the Bluetooth connection screen (Figure 1.8) in order to find

the device in a scan of nearby transmitting Bluetooth devices and select it to indicate that

the application should store the specified device identifier to enable automatic connection

and data collection upon starting any training run in the future.

Run Screen with Bluetooth Connection Indication

After initially selecting a heart rate monitor device, when the user later starts a new run

and is wearing the device its broadcast heart rate datapoints will immediately begin being

recorded and sent to the server. In addition, should the runner have the phone screen on she

will see an indication appear on the run screen displaying her current heart rate, as shown

in Figure 1.9.
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Figure 1.8: Screenshot of Bluetooth device scanning and selection screen with details of devices found upon
BLE scan for nearby signals, and confirmation dialog allowing the user to confirm her selection of a heart
rate monitor (HRM) device
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Figure 1.9: Run screen showing data being collected by a connected Bluetooth HRM device
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1.4.3 Bluetooth Connection Lifecycle Testing Results

We were able to test some of the modified Bluetooth connection and reconnection behavior

in the field in the context of the marathon training application, using the Jarv BLE heart

rate monitor device. With connection to the Jarv device configured to attempt connection

and reconnection indefinitely, we saw successful reconnection from the application to the

device after a few seconds to a minute of being disconnected, as shown in Figure 1.10. In

controlled manual tests, we were also able to confirm expected behavior of the retry timeout

and no retry logic configurations, as well as observing reconnection attempts in the range of

twenty to thirty minutes of being disconnected with indefinite retries configured.

1.5 Post Run Results Summary Screen

In addition to the GPS and heart rate data extraction, I contributed to some of the other

less-complex application elements including the screen to display the results of a run to the

application user in summary. This screen is shown immediately after the conclusion of a run

and can be accessed for the latest run from the left navigation bar as shown in Figure 1.11,

or when a previously-completed run is selected from the home screen. This screen shows the

target and average value for this particular run of each of the main types of data collected

during runs, so that the runner can easily tell how close she was to her goals for that run.
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(a)

(b)

Figure 1.10: (a) Heart rate data collected across a device disconnect and re-connection. Outlying low
datapoints result from the Jarv device beginning data collection. (b) Heart rate data collected across
multiple disconnects and re-connections over a few minutes.

26



Figure 1.11: Results screen showing summary of a completed run, accessible for the latest finished run via
the left navigation drawer menu.
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1.6 Conclusion

Although the project deliverable for our team is a standalone application for marathon

training, our more significant engineering contributions are in the form of expansion of func-

tionality of the Berkeley Telemonitoring framework presented by Aranki et al. 2016. Thus

for those continuing to build from our work and that of our predecessors on the framework,

there is great opportunity both in continuing to expand this framework, which is open-source

and available online (The Berkeley Telemonitoring Project 2016), to support additional uses

and in creating applications using the framework to address real health needs of patients

that can benefit from telemonitoring of their conditions. By testing existing functionality of

the framework through creation of our new application and adding support for new sensors,

data analytics techniques, and feedback intervention models, we have increased the potential

for this framework to serve medical professionals and other health-oriented application devel-

opers in the future, a need motivated in part by a previous study on real-time monitoring of

patients with chronic heart failure (Aranki et al. 2014). In addition, we created a pilot study

plan that has been approved by Berkeley’s Institutional Review Board (IRB) to complete a

larger-scale test of our application and its efficacy, which will allow significant further testing

and development of the functionality we have added to the telemonitoring framework.
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Chapter 2

Engineering Leadership

2.1 Industry and Market Analysis Overview

While there exist several smartphone based platforms that can be used to create applica-

tions for various purposes, such as Canvas, Appery.io and Mobile Rodie (Smith 2013) most

of these offer limited functionality and access to sensors. Additionally, these products lack

the ability to easily build predictive models for automated generation of personalized inter-

ventions. More generally, there are no such platforms that cater to the issue of telehealth.

Our telemonitoring framework, targeted towards doctors and coaches, addresses this unmet

need.

To guide the expansion of the framework, we will consider the design and implementation

of new features in the context of a commercial application that would be used by marathon

trainees. To this end, it is useful to perform a market and industry analysis on existing

fitness tracking technology. By examining consumer behavior and industry offerings, we can

better understand what functionality is missing and what features athletes desire.

2.2 Market Analysis

According to surveys (Running USA 2015) in 2014 there were more than 1200 marathon

events held within the US, with a total of 550,637 finishers. These are both all-time high
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statistics, with the number of marathon finishers growing about 1.8% from 2013 to 2014.

A survey of marathon runners showed that 74% of them relied on wearable technology for

training and 88% of them relied on said technology for motivation (Freescale 2014). Between

2014 and 2015, the number of wearables purchased is said to have nearly tripled from 17.6

million to 51.2 million (GfK 2015). Of Internet users who exercise between the ages of 18-34,

38% of males and 21% of females use wearable fitness trackers (Mintel 2014). Wearable

technology has clearly entered into the mainstream, especially in the area of fitness training

with fitness trackers. Marathon runners are no exception. With their ubiquity and proclivity

for training technology, they represent an acceptable target market for our application.

2.3 Porter’s Five Forces Analysis

We will now conduct a Porter’s Five Forces analysis of our mobile application for marathon

runners to contextualize it in the industry and develop a strategy for differentiating and

promoting it (Porter 2008).

2.3.1 Bargaining Power of Buyers

Buyers have strong bargaining power only when they are consolidated. Consumers of fitness

tracking products are numerous, but diffuse in their buying patterns. Buyers are many and

demand is great, weakening the bargaining power of buyers.

2.3.2 Bargaining Power of Suppliers

The power of suppliers refers to the power of businesses that provide materials to another

business to demand increased prices for materials (Porter 2008). The application is developed

for the Android platform, and cell phones have become a commodity, indicating a weak

bargaining power.
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2.3.3 Threat of New Entrants

New entrants have the potential to bring new ideas to a market. The market of activity

monitors poses few barriers and connected fitness trackers are projected to grow from $2

billion to $5.4 billion from 2014 to 2019 (Parks Associates 2015). With the burgeoning of

the Internet of Things, it is expected that there will be new players in many applications of

telemonitoring. Thus, the threat of new entrants is perceived to be strong.

2.3.4 Threat of Substitutes

A product from a different industry that offers the same benefits to consumers is referred

to as a substitute product. Substitute products pose a threat because there is possibility

of replacement for a company’s product (Porter 2008). One substitute product for runners

training for marathons is meeting one-on-one or in small groups with dedicated professional

trainers and coaches. There is an approximately $1.5 billion industry existing in intensive

personal athletic training in the United States (Witter 2015). This includes firms and inde-

pendent individuals who provide services granting personalized attention to athletes training

for sports seasons or upcoming events such as marathons. However, human trainers conduct-

ing in-person training generate problems not seen in the activity monitor/trainer application.

For example, scheduling is a factor for this substitute, as the athlete would need to train

according to the trainer’s schedule and location. Having a human trainer is also significantly

more expensive than using an activity monitor. The application does not come with these

added cost and conditions. For these reasons we believe that the threat of substitutes is

weak.

2.3.5 Rivalry Amongst Existing Competitors

Rivalry can pose a great threat when the rivals compete over price instead of features. The

market for tracking and training of fitness, including endurance running, is a crowded one.

In this market, our application will be competing with a variety of technologies, such as

smartphone apps and specialized fitness tracking hardware. We will need to ensure that
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our feature offerings are differentiated in order to avoid significant threat from price-based

rivalry.

Wearable fitness tracking devices have seen widespread adoption among runners and other

athletes. There are several subcategories of device functionality in this area, ranging in

metrics measured, accuracy of these metrics, and price. These include step counters such as

the Fitbit One or Nike+ FuelBand at the lower end of functionality and price, GPS-based

speed and distance monitors like the Garmin ForeRunner 620 or TomTom Runner at the

higher end, and multi-functional devices like smartwatches, such as the Apple Watch or

Pebble Time that have some built-in fitness features (Carter 2013).

Other competing fitness devices include specialized peripheral hardware, such as chest

straps to monitor heart rate, shoe inserts to track impact and step duration, and devices

that help athletes recover from training in terms of bloodflow and muscle relaxation, such

as the Firefly Recovery System (Alger 2014). These products are more targeted at health

monitoring and feedback for runners, which we can compete with by providing without

specialized hardware outside of the mobile phone itself.

Additionally, given the demand for personal training, new products which provide per-

sonalized feedback, such as the Moov, have already begun to appear. Moov’s successful

crowdfunding campaign indicates a demand for fitness trackers that can provide this type of

feedback (Colao 2014). Major players are pushing for greater personalization. For example,

FitBit, a key player in wearable fitness tracking, acquired the startup FitStar in 2015 (Lawler

2015) which provides users with personalized instructional videos. Finally, our application

will be competing with a host of other smartphone fitness applications. A huge market for

personal fitness tracking exists in the app stores of the smartphones that so many Amer-

icans already carry with them daily. A study (Stanfy 2013) estimated that in 2012 there

were over 40 thousand health and fitness applications available for mobile phones, reaching

over 500,000 active users, and that number has only increased in the past few years. A wide

variety of fitness and run tracking, goal-setting and socially competitive, and motivational

applications are available. Some of the most popular apps specifically targeted at runners
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are RunKeeper, MapMyRun, and Runtastic (Carter 2013). On the more creative side are

apps like Zombies, Run which provides audio motivation in a narrative form, taking a runner

through customizable missions in a fictional environment.

Given the great number of players in this industry, the threat of existing rivals is strong.

However, given the still largely unexplored area of personalized coaching within the crowded

space of fitness tracking technology, we believe that this rivalry will primarily be features-

based.

2.4 Technology Strategy

Considering our market research and Porter’s Five Forces analysis, we have developed a

strategy for our product in order to minimize the threats posed to our product. Our strat-

egy revolves around marketing to customers based on the features offered by our product,

particularly focusing on measurement and real-time feedback regarding performance metrics,

such as speed and cadence. For instance, despite its importance, many fitness tracking solu-

tions do not measure cadence. In addition, the products that do are typically not transparent

about the estimation algorithms used and their accuracies. Even for those that do report

accuracy, the algorithms used are still unpublished, and the accuracy of specific metrics,

such as cadence, are conspicuously missing (Garmin 2016). Our application uses algorithms

backed by published scientific literature, and the accuracy of our implementation will be

further measured and published. Furthermore, the framework on which the application is

built includes a fault-tolerant client-server protocol for secure and convenient data syncing,

and a wide library of well-tested data collection and analytics functionality to support our

application’s features and ensure they remain reliable and easy to use. Raising the standards

of information transparency, estimation accuracy, and application reliability would not only

allow our application to gain traction in the market if we were to actively promote it, but

would also impose barriers to new entrants.
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