
Fault Tolerant Control and Localization for

Autonomous Driving: Systems and Architecture

ByungHyun Shin

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-83

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-83.html

May 13, 2016

Copyright © 2016, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Thank you to Professor Francesco Borrelli and Ashwin Carvalho for their
support and guidance throughout this project. The consistent feedback was
key to building and achieving what we wanted to. Thank you to Professor
Trevor Darrell for advising the project and reading the report. I am also
grateful for the help of Amy Lee and Alexandre Beliaev in their support
throughout the writing process. And of course thank you to the UC Berkeley
EECS staff and Master of Engineering staff and instructors for this past
year.

Fault Tolerant Control and Localization for

Autonomous Driving: Systems and Architecture

by

ByungHyun Shin

Submitted to the Department of Electrical Engineering and Computer

Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

UNIVERSITY OF CALIFORNIA AT BERKELEY

May 2016

c○ ByungHyun Shin, MMXVI. All rights reserved.

The author hereby grants to UC Berkeley permission to reproduce and

to distribute publicly paper and electronic copies of this thesis document

in whole or in part in any medium now known or hereafter created.

Author .

Department of Electrical Engineering and Computer Science

May 13, 2016

Certified by. .

Francesco Borelli

Associate Professor

Thesis Supervisor

Certified by. .

Trevor Darrell

Professor

Thesis Supervisor

Accepted by .

2

Fault Tolerant Control and Localization for Autonomous

Driving: Systems and Architecture

by

ByungHyun Shin

Submitted to the Department of Electrical Engineering and Computer Science
on May 13, 2016, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Fault tolerant localization is a critical component of autonomous driving technology.
In order to perform any control and perception of objects around its environment,
a vehicle must possess an accurate estimate of its own location in the environment
despite potential sensor failures. This paper describes the system and architecture
developed to peform fault tolerant localization on a prototype test vehicle using a
differential GPS and INS coupled system, a camera, and laser rangefinder sensors. A
ROS-based system was developed to allow modularization and interfacing with other
modules such as perception and control. The system permits parameter tuning and
automated testing for both software-in-the-loop and hardware-in-the-loop, as well as
interchanging of different algorithms for the localization itself. The framework for
developing and testing new localization algorithms has been built in order to test a
particle-filter based implementation that provides an accurate estimate of the vehicle’s
location despite failures in GPS, camera, or laser rangefinder.

Thesis Supervisor: Francesco Borelli
Title: Associate Professor

Thesis Supervisor: Trevor Darrell
Title: Professor

3

4

Acknowledgments

Thank you to Professor Francesco Borrelli and Ashwin Carvalho for their support and

guidance throughout this project. The consistent feedback was key to building and

achieving what we wanted to. Thank you to Professor Trevor Darrell for advising

the project and reading the report. I am also grateful for the help of Amy Lee

and Alexandre Beliaev in their support throughout the writing process. And of

course thank you to the UC Berkeley EECS staff and Master of Engineering staff and

instructors for this past year.

5

6

Contents

1 Introduction 9

1.1 Project Specifications . 11

1.2 Methodology . 12

2 Individual Technical Contribution 13

2.1 Software Architecture . 13

2.1.1 Fault Tolerance . 17

2.2 Testing . 17

2.2.1 Methodology . 17

2.2.2 Results . 19

2.3 Discussion . 21

2.4 Conclusion . 22

3 Project Context 23

7

8

Chapter 1

Introduction

The problem of localization is essential to solve within the context of autonomous

driving in order to realize widespread adoption of self-driving vehicles. One of the

many tasks that an autonomous vehicle must constantly execute, estimating its pre-

cise position relative to its surroundings relies on various sensor measurements and

signal processing techniques. Furthermore, to achieve widespread adoption, local-

ization must be reliable and sufficiently accurate in the presence of potential sensor

failures or faults. As one of three capstone teams in the umbrella project of fault

tolerant control in autonomous driving, the localization team worked to develop the

methods and systems an embedded computer running on a vehicle can execute to

achieve this task in real time. In addition to developing new algorithms to achieve

centimeter-level accuracy that is robust against sensor failures and missing informa-

tion, the team has built the modularized software infrastructure that can run these

techniques on the vehicle’s embedded computer.

Several methods exist to perform localization for self-driving vehicles, as this is

an active area of research in the robotics community. Offline map-building using

cameras and/or laser rangefinder sensors followed by online localization against the

map is an increasingly common approach, although often requiring expensive sensors

and computational resources [8], [7], [1], [17]. Extensive progress has been made in

the field of simultaneous localization and mapping (SLAM), often using just one or

two cameras and/or a laser rangefinder sensor [19], [20], [16]. While this project did

9

Figure 1-1: The prototype test vehicle was a Hyundai Grandeur. It is equipped with
a camera, GPS/INS system, six laser rangefinders, and radar sensors.

not implement these methods which require unhindered access to a camera and its

images, future work building upon this project may utilize these newer methods with

an additional camera sensor to achieve higher performance. Our approach utilizes

a combination of an RTK GPS/INS system, an out-of-the-box camera system that

produces polynomial estimates of lane markings in front of the vehicle, and Ibeo Lux

laser rangefinder sensors and an iterative closest points (ICP) matching algorithm

[12], [13].

The first part of this paper briefly describes the methodology and overall system

built by the team and how the various aspects fit together for running real-time on a

vehicle (Fig. 1-1).

In addition, this paper describes in detail the author’s technical individual contri-

bution, namely the software architecture that was designed and implemented to run

our localization algorithm as well as the infrastructure built to test the system. Our

capstone team work breakdown consists of the following: theoretical development of a

global positioning system (GPS) localization, theoretical development of a particle fil-

ter using both GPS and lane information from camera measurements, an exploration

of laser rangefinder localization methods and implementation of the iterative closest

point algorithm, and a development of the software architecture that runs these algo-

10

rithms. Our project involved several parallel processes in which we developed, tested,

and refined localization algorithms in one programming language, while also building

software that implemented the algorithm and was ready for deployment on a vehicle.

For a more theoretical treatment of developing the localization algorithms, see Wu

[18] and Schindler [15]. Leo Li’s paper describes in detail an additional algorithm

that we are used to improve our algorithm using laser rangefinder sensors, and also

explains the data interfacing required for testing in simulation and in real time [9].

This paper explores how the software to actually run these algorithms on an embed-

ded computer was designed and built, including the Robot Operating System (ROS)

architecture and testing infrastructure.

1.1 Project Specifications

Before starting the design process, several requirements were established to under-

stand the goals and metrics to be used in evaluating the project and for making

design decisions. The first and primary goal of this capstone project was to develop

localization software that could actually be deployed on the test vehicle, which could

produce an estimate of the vehicle’s location readily accessible by other modules of

the autonomous driving platform and which was accurate enough to use with a con-

troller that could then perform path planning. Second, the goal of this project was

to develop this localization in a fault tolerant manner able to handle failures in sen-

sors. Even with failures of GPS or camera for instance, the vehicle should be able

to produce a decent estimate of its position. While a specific quantitative target was

not set for the localization accuracy, an accuracy target on the order of decimeters

was good for a localization estimate that could interact with other modules of the

deployable autonomous driving platform.

11

1.2 Methodology

A particle filter algorithm was developed to perform localization. By using position

and heading information from a coupled differential GPS/INS unit, lane information

from a front-facing camera on the car, and a fused point cloud of the surrounding en-

vironment using six laser rangefinder sensors located on the vehicle, a global estimate

of the vehicle’s position and heading are produced. The process model uses a hybrid

kinematic bicycle/dynamic car model which uses the best model based on the current

driving, e.g. high speed turns vs. low speed straight driving. The implementation of

the particle filter and process model are discussed in [18] and [15].

12

Chapter 2

Individual Technical Contribution

2.1 Software Architecture

Building upon preliminarily developed algorithms in MATLAB using just global po-

sitioning satellite (GPS) data, Wu and Schindler have tested new algorithms that

use additional sensor information and are able to provide accurate enough estimates

despite sensors that may fail for period of time, or that provide low-quality infor-

mation. They has developed an algorithm that uses GPS data as well as visual

camera measurements of lane markings to output an estimate of the car’s real-time

location. Using MATLAB allows faster development and iterations of the new tech-

niques, leveraging some previously built infrastructure of the laboratory that allows

for easy testing, evaluation, and visualization of results.

The software infrastructure needed to deploy the autonomous driving technology

was designed and built to run on Robot Operating System (ROS).

ROS is often referred to as a “meta operating-system” - while it is different from

the functions of a traditional operating system such as Microsoft Windows, it is a

framework that allows various tools and libraries to be used in an easy-to-develop

manner for application to robotics. Using ROS, “nodes” can be built which, while

running their own separate processes and calculations, are provided standardized

methods of communication and interaction amongst themselves.

The capstone team has been building the ROS infrastructure that is needed to

13

implement, test, and ultimately run the new localization algorithms that the MAT-

LAB sub-team develops. While the laboratory already owns MATLAB code that can

unpack test data to the correct format, read it in, feed it to the localization algorithm,

record output data, and evaluate the performance, any such analogous functionality

must be built from scratch in ROS. Leo Li’s paper describes our team’s work in

developing part of the ROS architecture that loads (post-test) data output by the

many sensors on the car, picks the relevant information needed by the localization

algorithms, and sends this to the correct programs that need it. He also explains

the process of translating the GPS algorithm MATLAB code to a Python program,

which may be called in a ROS environment to be actually used. In addition to the

data interfacing and translating of the original GPS algorithm, our team has been

able to decide upon, and implement, a structure of ROS programs which will be able

to take as inputs GPS and camera sensor data, and publish the estimated position

of the car to whatever other programs in ROS may need the information. This may

include perception modules that attempt to identify various moving objects around

the vehicle, and control modules that use the location to plan specific maneuvers and

send commands to actuators (steering wheel, acceleration pedal).

Because ROS provides several ways that nodes can communicate with each other,

our team first decided on how our localization module could communicate within

itself and interface with outside modules. One method of asynchronous communica-

tion is the publisher/subscriber method: one node “publishes” information to a certain

“topic,” and another, separate node can then “subscribe” to the same “topic” to receive

the first node’s output information. This method requires that the subscriber node

constantly receive any and all information that is published on the topic, however

frequent (or infrequent) this may be. The other method that our team considered

was the server/client model: one “server” node holds relevant information, and is in a

“sleep” mode that, until called upon, does nothing. A “client” node can then make a

request to the server requesting certain information, at which point the server wakes

up, fulfills the information request, and then returns to the idle, sleeping state. The

advantage of this method is that, unlike the publisher/subscriber model, this is an

14

on-demand model that provides information to nodes that need it when they need

it, instead of having a constant flow of published information. After further research

and preliminary implementations of both systems with simple published data, our

team decided to implement the publisher/subscriber model to implement localiza-

tion. While the on-demand model is desirable, there appeared to be a high overhead

cost of servers fulfilling a client’s request. This meant that, as more and more clients

(perception modules, control modules, etc.) make requests of the server that contains

the current location information of the car, the server would take longer to respond,

resulting in irregular, and possibly fatally slow, responses. The publisher/subscriber

model allows the publication of location information at a fixed sample rate, guar-

anteeing the timely arrival of location information to any and all nodes that need

it.

The publisher/subscriber model is ideal for embedded systems that contain several

modules that may need to communicate, but by virtue of hardware differences cannot

be synchronized against a clock like traditional threads. The GPS, for instance, may

record measurements at highly variable frequencies, depending on whether it can

capture a good enough signal. The camera and laser range finders, on the other

hand, though running at a fixed rate, may run at two different frequencies that

cannot easily be up/down-sampled to match each other. Furthermore, in the case

of the laser range finder sensors, data can sometimes be delayed as it communicates

over a difference protocol (Ethernet) than all other sensors. By allowing publisher

nodes to publish messages containing sensor readings or data calculations as they

become available, subscribers listening for such messages can process them as they

come without trouble.

This model also allows communication between disjoint modules. The localization

module is one of many modules necessary to achieve autonomous or semi-autonomous

driving. A perception module uses data published from the localization module to

classify static and dynamic objects, a path planning module needs to subscribe to the

location to plan a trajectory and corresponding actions to actuators (gas pedal/brake,

steering), and in the future, modules may be needed for vehicle-to-vehicle communi-

15

Figure 2-1: The ROS architecture.

cation. ROS provides the framework for these distributed systems to be built, ab-

stracting away specific hardware configurations. We implemented a localization node

which subscribes to the data interfacing node described in detail in [9]. The data

interfacing reads in historical test data and feeds our localization node GPS and lane

measurement data, simulating how data would come in during real-time autonomous

vehicle driving tests. The localization node takes the data, calls the particle filter pro-

gram translated from MATLAB [18],[15], and then publishes the calculated location

information to the “location"’ topic. This program, like the other programs developed

in ROS, is then able to run on the vehicle’s embedded computer, allowing real tests

to be run. Our localization node can be configured to run at a fixed frequency, able to

be changed by the user as a parameter [15], and which determines the rate at which

the particle filter runs. This means that if sensor measurements are received by the

localization node at a faster rate than it is running the particle filter, then it only

keeps the latest measurements received and throws away old measurements. Because

sensors generally run at a much higher rate than the particle filter needs to run, this

is necessary to prevent accumulation of massive amounts of data that are not needed.

By incorporating laser rangefinder data into our algorithm, we can further provide

for reliability of the localization module while improving its overall accuracy. Because

of the flexibility of our ROS architecture, a complete redesign of our nodes and the

way they communicate is unnecessary. The laser rangefinders collectively output data

that can be sent in the same manner as previous sensor measurements: packaged in

a ROS message and sent over a specific topic. Scan matching is performed in real

16

time using an iterative closest point approach [9]. A separate ROS node is developed

to subscribe to the laser rangefinder data, which comes in the form of a collection of

three dimensional points (a point cloud), which calculates the estimated movement

between two time steps. This estimated change in pose is then published and re-

ceived by our original localization node. The particle filter is then called, inputting

this change in vehicle pose along with the GPS and lane measurements. While the

implementation of the particle filter needs to be changed, instead of fundamental

changes to the algorithm, the new sensor measurements are easily integrated, com-

pared to the process model of how much the algorithm believes the vehicle should

have moved between scans, and updating each particle accordingly (Fig. 2-1). While

all nodes for interacting in real-time with the laser rangefinder data has been imple-

mented, the performance of the algorithm using all three sensors had not been tested

at the time of writing.

2.1.1 Fault Tolerance

In order to accommodate for the faulty sensors [18], the localization node passes in to

the specific algorithm flags along with the sensor data to indicate whether a particular

sensor’s readings have not come in. This allows partial data to be sent to the particle

filter [15]. If, for instance in the case of the merged particle filter, GPS measurements

have not arrived for a few seconds, then the localization node can only give to the

particle filter lane measurements. While this may result in a worse estimate than

having had GPS measurements available, it is far better than waiting for the next

GPS measurement to send all data at once.

2.2 Testing

2.2.1 Methodology

After development of the algorithms in MATLAB, testing was further conducted

in three parts. In order to ensure proper translation of all algorithms into Python

17

for compatibility with ROS, the algorithms were tested with the same data used to

develop and refine the algorithms using Python test scripts. Further, the overall

software running in ROS was tested by simulating online measurements using prere-

corded historical data. After continual improvements with both methods of testing,

field tests were conducted to perform online localization in real time running on the

actual vehicle.

While development and tuning of the localization algorithm was done in MAT-

LAB, testing after translation of the code into a Python program was needed to

ensure that all aspects of the algorithm were preserved while undergoing changes in

data structure and use of libraries specific to Python. While the stochastic nature of

the algorithm prevented a deterministic comparison of output values of the algorithm

between MATLAB and Python, a test script was developed that ran through several

historical datasets of vehicle test runs and recorded the difference between the algo-

rithm’s estimation of the location and the continuous differential GPS measurement

of the vehicle location. By comparing the first order statistics of this error with those

of the MATLAB output, a high degree of confidence was established in the accuracy

of the Python algorithm with respect to the MATLAB code.

Before conducting field tests, software-in-the-loop testing is used to evaluate the

performance of the particle filter and make necessary improvements. This allows for

fast iterations of inexpensive tests to ensure the fault tolerance and safety of the

software without needing to conduct actual online tests with the vehicle. In order to

perform software in the loop testing, additional ROS nodes and scripts were developed

that simulates real-time data. By publishing historical data on the same topic used by

the ROS node performing the state estimation, past test runs can effectively be run

in almost the exact same manner as it had been actually produced when running the

vehicle. For every test run of the vehicle, all sensor data is recorded in a standardized

format. A node was built to read this historical data and publish the GPS pose

information, lane coefficients, and other necessary data (i.e. odometry) one time step

at a time on the correct topics. This allows for automated testing with no modification

of the main localization algorithm node, which only sees incoming data in real time

18

and cannot distinguish whether it is historical data being replayed or real time data.

While the CAN bus provides most sensor data collected by the vehicle, including

the GPS estimated pose, INS odometry, and the lane polynomial coefficents from the

camera, the LIDAR scans are sent over a separate bus via Ethernet. Two separate

programs were created to read the CAN bus historical data and publish to the relevant

topics, and to read the LIDAR historical data file and publish point cloud scans to

its respective topic. These separate simulator nodes allow testing of the algorithm

using real situations, allowing for a wide variety of past situations to be tested and

reviewed without field tests.

The final localization algorithm requires over thirty parameters to be set. Several

of these are arguments that may be modified by the user (the tester) to fit his/her

testing needs. These include the type of model used to predict the vehicle dynam-

ics, the different sensors that may be used, and the frequency at which estimation

should run. Other parameters describe specifically the parameters used for algorithm

and which have been tuned using past test run data. These include the variance of

the noise of every sensor as well as constants and parameters governing the actual

dynamics models. These parameters are all stored on the ROS parameter server,

which means that all ROS nodes running on the embedded systems may access these

values. In the future, this may be useful to change tuned parameters in real-time as

the algorithms “learn” the parameter values best tuned for the particular real-time

driving situation it is in.

Hardware in the loop The final step of testing involves hardware in the loop.

By running actual field tests on the vehicle running our localization algorithm, the

performance and robustness can be evaluated to make sure that the algorithm can

handle completely new situations.

2.2.2 Results

Extensive software in the loop testing was performed on several different vehicle tracks

using historical data. While one problem is the lack of a “ground truth” measurement

with which to compare our location estimate, the differential GPS signal is used to

19

0 1 2 3 4 5 6 7 8 9

GPS Acceptance Interval (s)

0

2

4

6

8

10

12

14

R
M

S
 p

os
iti

on
 e

rr
or

 (
m

)

Accuracy of estimate relative to DGPS

kinematic model, GPS only
kinematic model, GPS + lane
dynamic model, GPS only
dynamic model, GPS + lane

Figure 2-2: The average RMS error of the position estimate relative to differential
GPS measurements. We can see that the algorithm using the dynamic car model and
multiple sensors has the best accuracy.

measure error. For the purposes of testing fault tolerance, this comparison against

a continuous GPS was enough to determine how well the algorithm was performing.

By parameterizing the rate at which the algorithm accepts GPS measurements, we

are able to demonstrate fault tolerance of the localization algorithm. Figure 2-2

shows the performance of the algorithm. The average RMS difference between the

estimate and the measured differential GPS signal diverges the longer the GPS signal

is not acquired - by only using an internal dynamics model and lane information,

the estimate of its global position is off. However, for periods of time where GPS

is accepted every two seconds or less, the error of the algorithm is on the order of

decimeters.

While the computational limits of our algorithm were not tested on the embedded

system, it was found that the full system was able to run in real time with all sensors

active at 50 Hz with 100 particles. In particular, there was no trouble in processing

the LIDAR point clouds in real time and estimating the transformation between scans

with the ICP algorithm.

20

Figure 2-3: The final software package developed by the capstone team consists of the
algorithm and the programs needed to run it, as well as the testing and automation
files that allow parametrization and automatic testing.

2.3 Discussion

This project set out to build a fault tolerant localization software package that could

be deployed on a test vehicle and produce as accurate an estimate of the vehicle’s state

as possible. In order to properly test control techniques and validate other research at

the Model Predictive Control Lab, a functioning localization module was needed that

could interface with various functional modules of the autonomous driving system.

Furthermore, the goal of fault tolerance was a focus for the umbrella project that

included perception and simulation. In order to build an autonomous driving system

that was robust against potential sensor or actuator failures, the localization capstone

team built a system that could produce an accurate estimate even when the GPS,

camera, or laser rangefinder sensors went down. The software package that was built

for use by the lab is a highly modular component that can communicate with other

modules and which can be run in an automated fashion with user parametrization

(Fig. 2-3). This will allow future work to build on top of this project instead of

starting from scratch.

Future work can utilize the infrastructure built by this project to improve local-

ization for autonomous driving. One direction to pursue is the improvement of the

algorithm by taking advantage of the laser rangefinders. While the algorithm cur-

rently makes use of the sensors by scan matching and using a noisy estimate of the

displacement of the vehicle between scans, it can be improved to utilize offline maps

21

that are created from historical laser rangefinder runs. By building a point cloud map

of the environment prior to online testing, and then by comparing online rangefinder

data to the stored map, the localization algorithm performance has the potential to

drastically improve. Furthermore, utilizing additional sensors on board the vehicle,

such as radar, to improve the fault tolerant nature of the system will help provide an

accurate estimate in many different situations. Additionally, integration with other

modules of the autonomous driving platform developed in the lab will not only be

useful for full realization of autonomous driving but also for finding additional faults

and failure cases of the localization platform. Furthermore, as more field tests are

performed in a variety of different driving scenarios, increasingly automated testing

infrastructure may greatly help the performance of the localization module. Being

able to perform many software in the loop tests automatically could pave the way for

learning of the many parameters governing the algorithm.

2.4 Conclusion

The Localization team has successfully implemented a software module to estimate

a vehicle’s pose using GPS/INS, camera, and LIDAR sensors. A particle filter-based

algorithm was used to combine sensor measurements and provide robust performance

with inconsistent or infrequent GPS information. The software was built on the

ROS platform, allowing for simple integration with other modules that require pose

information.

While further testing and work is required to build an extremely high performance

localization method, this project successfully built a ROS-based system that runs on

the actual vehicle, and which can interact with other modules to provide an accurate

estimate of the vehicle current location at all times. By building a redundant system

with multiple sensors, the capstone team was able to account for reasonable failures

in the system. With the software and testing infrastructure in place, this work can

be built upon to improve the algorithm as well as to build other modules of the

autonomous driving platform that require this first step of localization.

22

Chapter 3

Project Context

As the automobile industry faces disruptive changes and challenges from autonomous

driving, several contextual issues may inform the decisions that players developing

self-driving technology need to make. While our product, localization software, is

just one segment of the autonomous driving technology package, understanding the

broader industry and surrounding social issues not only helps drive its development

but clarifies ways to commercialize and realize value for society. This paper outlines

the state of the automobile industry and how autonomous driving technology may

fit in, the need to adopt technology strategies to break into and establish oneself in

the market, and suggestions for navigating the difficult and growing ethical dilem-

mas facing the industry. Examining the current automobile industry can inform how

well-positioned autonomous driving technology is to enter it, and how profitable the

industry may be. The automobile manufacturing industry is a mature industry with

a steady growth average at 3.5% per year projected over the next 10 years [14]. The

main resources, suppliers, for car manufacturers are: auto parts and accessories, auto-

mobile engine parts, iron and steel mills, and tire manufacturers. After manufacture,

cars are sold to the end consumer through the car and automobile sales industry.

Fig. 3-1 illustrates this value chain. We believe that our product, localization soft-

ware specifically, fits in more closely with the car manufacturers’ end of the value

chain because it requires well-developed sensors with their software packages and

configuration information of the cars which our algorithm will be deployed upon.

23

Figure 3-1: The automobile industry value chain

In addition to the value chain, PorterâĂŹs Five Forces model helps illuminate

how profitable the industry currently is (Fig. 3-2). The power of suppliers is weak, as

the supplier market for the automobile manufacturing industry is very fragmented.

Furthermore, the power of car buyers is relatively weak. Car buyers in general do

not collectively have leverage over manufacturers. However, as there do not exist

consolidated channels where large volumes of orders are bought, customersâĂŹ buying

power is not necessarily strong. The threat of substitutes is weak, as many places

require car travel for moving between places. Rivalry, however, is strong. While there

are a limited number of car manufacturers in each market segment, the product is

often hard to differentiate from those of competitors within each respective market

segment, potentially increasing the level of competition. Due to the complexity of

design and demand for resources, the barrier of entry has been high for the automobile

industry. Thus threats from new entrants have been low, though exceptions have

occurred, such as Tesla. Electric vehicles may not be the only potential breach point

for the automobile industry, however.

With autonomous driving technology, big technology companies like Google and

Apple are seriously thinking of entering the market with a strong offering of tech fea-

tures [4]. Established players in the luxury market segment such as Mercedes-Benz,

BMW, and Audi already have advanced driver assistance systems incorporating as-

pects of autonomous driving technology. From our Five Forces analysis, the prof-

itability of the automobile industry may be considered high, and the introduction of

this new technology could bolster this even further for the players that beat out the

increasing competition. Facing such a big industry and complex technology, there are

two aspects to consider when deciding upon technology strategy. First is the strategy

of entering different segments of the market, and second is the question of how to

24

Figure 3-2: Porter’s Five Forces analysis of industry profitability.

differentiate oneself with respect to competitors.

The automobile industry can be separated into two main components: the truck-

ing industry with an annual revenue of $24 billion [14] and the sedan (passenger cars)

industry with an annual revenue of $527 billion. The trucking industry represents

roughly five percent of the automobile industry but its need for autonomous driving

technology is arguably stronger, based on the fact that trucking is a highly repeated

process and with long duration. Furthermore, trucks spend a majority of traveling

time on highways, which is a much simpler situation compared to urban streets for

autonomous driving technology. Targeting this market first would allow a new en-

trant to break into the market and gain customers. After establishment in the truck

industry and gaining enough experience, the company can approach the sedan market

segment, starting with the high-end. In general, more expensive luxury cars tend to

be better manufactured with higher quality equipment such as sensors and compu-

tational power, which are key to our localization software. With further algorithm

development and time, the robustness of the autonomous driving technology product

25

can be improved until it can be offered in lower-end market segments, where sensor

equipment and computational power are relatively limited.

Potential competitive advantages are proprietary technical barriers as well as

adaptable software architectures. In the case of our capstone team, highly precise

localization technology that is robust against sensor failures may serve to distinguish

against competitors in terms of performance. Additionally, developing high-level soft-

ware architectures that are flexible and adaptive to various hardware configurations

on different automobiles is crucial to build a large customer base with different car

model needs [2]. A car manufacturer developing localization software as part of their

autonomous driving package should have a clear go-to-market strategy and methods

of maintaining a competitive advantage in order to be successful.

Corroborated by the numerous public debates on the topic, a third key aspect of

autonomous driving requiring consideration is its ethical component. Currently, both

US and European legislation are discussing liability in autonomous driving [5],[3],[10],

and chapters on ethics have already found their way into autonomous driving books

[11]. Here, we focus on one central question, namely, who should be held responsible

for accidents involving autonomous cars?

To start with, we notice that questions of liability are often difficult to answer

even if only manually driven cars are involved in an accident. The involvement of

autonomous cars just makes the analysis more difficult. [6] presents an ethical analysis

of this question, in which the authors consider holding (i) the manufacturer or (ii) the

person using the autonomous car responsible for potential accidents. Both options

show important caveats. According to NHTSA (2015) human failure leads to over

90% of car crashes, which suggests that overall traffic safety is likely to benefit from

mature autonomous driving technology. For this reason, it is clear that any liability

system should not discourage manufacturers from developing this new technology.

Conversely, it seems evident that the person using an autonomous car cannot be

held liable for something upon which he or she cannot take action. Hevelke and

Nida-Rumelin argue, however, that by the very choice of using an autonomous car,

a person actually chooses to expose anyone on the road to a potential threat, hence

26

taking on some amount of responsibility. Consequently, they propose a notion of

shared responsibility among all users of autonomous cars, based on which one could

justify a special, mandatory insurance for the use of autonomous cars.

In our opinion, the introduction of a particular type of insurance policy would

be one viable option practically addressing the liability issue. Without necessarily

assigning a party at fault, it would recognize the fact that, despite leveraging the

most advanced autonomous driving technology, unforeseeable events may still occur

which cannot necessarily be attributed to specific agents. We advocate, however, that

once this new technology reaches a certain level of maturity, the manufacturer should

be held responsible for providing some sort of standardized safety guarantee on its

autonomous driving system. Such a hybrid solution of insurance as well as safety

standards would provide the advantage that manufacturers do carry a reasonable

amount of responsibility for accidents without being discouraged from pushing the

development of this new technology forward.

In taking a solution to a highly complex and technical problem to a broader

commercial business that provides tangible value to society, we must understand the

solution’s surrounding situation. Autonomous driving technology has the potential to

radically disrupt a mature automobile industry, and with a well-planned technology

strategy to break into such a large, albeit pervasive, customer base, we can establish

and maintain a sustainable competitive advantage. As the technology matures, regu-

lations and standards may need adoption to deal with a potential shift in liability of

accidents. Industry players will need to keep abreast of these various contextual issues

in order to successfully, and profitably, commercialize autonomous driving technology.

27

28

Bibliography

[1] Ian Baldwin and Paul Newman. Road vehicle localization with 2d push-broom li-
dar and 3d priors. In Robotics and automation (ICRA), 2012 IEEE international
conference on, pages 2611–2617. IEEE, 2012.

[2] Christian Berger and Bernhard Rumpe. Autonomous driving-5 years after the
urban challenge: The anticipatory vehicle as a cyber-physical system. arXiv
preprint arXiv:1409.0413, 2014.

[3] Heather Bradshaw-Martin and Catherine Easton. Autonomous or âĂŸdriver-
lessâĂŹ cars and disability: a legal and ethical analysis. European Journal of
Current Legal Issues, 20(3), 2014.

[4] Joshua Dowling. Google and apple will get into the car business, says top auto
industry executive. News Corp Australia Network, 2015.

[5] Jeffrey K Gurney. Driving into the unknown: Examining the crossroads of crim-
inal law and autonomous vehicles. 2014.

[6] Alexander Hevelke and Julian Nida-Rümelin. Responsibility for crashes of
autonomous vehicles: an ethical analysis. Science and engineering ethics,
21(3):619–630, 2015.

[7] Henning Lategahn, Markus Schreiber, Jens Ziegler, and Christoph Stiller. Urban
localization with camera and inertial measurement unit. In Intelligent Vehicles
Symposium (IV), 2013 IEEE, pages 719–724. IEEE, 2013.

[8] Jesse Levinson and Sebastian Thrun. Robust vehicle localization in urban envi-
ronments using probabilistic maps. In Robotics and Automation (ICRA), 2010
IEEE International Conference on, pages 4372–4378. IEEE, 2010.

[9] Xiang Li. Name tba. Master’s project, University of California, Berkeley, De-
partment of Industrial Engineering and Operations Research, May 2016.

[10] Gary E Marchant and Rachel A Lindor. Coming collision between autonomous
vehicles and the liability system, the. Santa Clara L. Rev., 52:1321, 2012.

[11] Markus Maurer, J Christian Gerdes, Barbara Lenz, and Hermann Winner. Au-
tonomes Fahren: technische, rechtliche und gesellschaftliche Aspekte. Springer-
Verlag, 2015.

29

[12] François Pomerleau, Francis Colas, Roland Siegwart, and Stéphane Magnenat.
Comparing icp variants on real-world data sets. Autonomous Robots, 34(3):133–
148, 2013.

[13] François Pomerleau, Francis Colas, Roland Siegwart, and Stéphane Magne-
nat. Comparing ICP Variants on Real-World Data Sets. Autonomous Robots,
34(3):133–148, February 2013.

[14] Brandon Ruiz. Global car automobile manufacturing. IBISWorld Industry
Report, 2015.

[15] Kilian Schindler. Name tba. Master’s project, University of California, Berkeley,
Department of Industrial Engineering and Operations Research, May 2016.

[16] Thomas SchoÌĹps, Jakob Engel, and Daniel Cremers. Semi-dense visual odom-
etry for ar on a smartphone. In Mixed and Augmented Reality (ISMAR), 2014
IEEE International Symposium on, pages 145–150. IEEE, 2014.

[17] Markus Schreiber, Carsten Knoppel, and Ulrik Franke. Laneloc: Lane marking
based localization using highly accurate maps. In Intelligent Vehicles Symposium
(IV), 2013 IEEE, pages 449–454. IEEE, 2013.

[18] Jian Wu. Name tba. Master’s project, University of California, Berkeley, De-
partment of Mechanical Engineering, May 2016.

[19] Ji Zhang and Sanjiv Singh. Loam: Lidar odometry and mapping in real-time.
In Robotics: Science and Systems Conference (RSS), pages 109–111, 2014.

[20] Ji Zhang and Sanjiv Singh. Visual-lidar odometry and mapping: Low-drift,
robust, and fast. In Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pages 2174–2181. IEEE, 2015.

30

