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Abstract

This report is a partial summary of a research project that explores the use of synchrophasor

measurements at the distribution level of the electric grid. The project, which is sponsored by

ARPA-E, is now concluding its third year of work. During that time, a huge amount of analytical

effort has been undertaken by a number of researchers and students. That effort has been aimed at

everything from basic science applications to the advancement of an operational and commercial

case for synchrophasors in distribution systems. A sampling of these efforts are included in this

report, which is intended to double as a collection of updates that can be provided to individual

research partners. Therefore, the chapters into which it is divided are modular and can be read

in any order. The topics covered include: the initial performance validation of the Phasor Mea-

surement Units (PMUs) used in the project, along with their comparison to the present state of the

art in voltage measurement; a methodology for estimating line impedance from PMU measure-

ments and a description of a case in which it was successfully implemented; the limitations of that

methodology due to the specifics of another PMU deployment and an analysis of that failure case;

and an ongoing examination of voltage volatility and its potential application to customer-side PV

discovery.



Introduction

The following report is a summary of several studies undertaken for the ARPA-E project

”Micro-Synchrophasors for Distribution Systems.” The research sponsored by this project ex-

plored the possibilities for introducing synchrophasor data from Phasor Measurement Units (PMUs)

to the standard suite of tools used in analysis and operations at the distribution level of the electric

grid.

PMUs, which enable extremely precise measurement of voltages and currents, are a mature

technology widely used throughout high-voltage transmission applications. They have not yet been

utilized in lower-voltage, distribution-level operations, though, in part because electric failures and

power outages at the distribution level are much less costly. Hence, the business case for advanced

sensing is less clear. Our research group hopes to demonstrate the potential of synchrophasor data

at these lower voltage levels through the deployment of a network of PMUs on distribution feeders

throughout the country and analysis of the data returned.

We have installed µPMU-brand PMUs, developed by Power Standards Laboratory in Alameda,

on a number of distribution feeders managed by utility partners and other cooperating agencies.

These µPMUs are capable of sampling both voltages and currents 512 times per cycle on three

phases simultaneously, for a total of six data streams per µPMU. After the data is processed on the

device, it is reported 120 times per second as a set of voltage and current phasors with an accuracy

of .002◦ in angle and 2PPM magnitude resolution.

Time series phasor magnitude and angle data is then maintained in the Berkeley Tree Database

(BTrDB), a data storage system designed by Michael Andersen and David Culler of Berkeley’s

Computer Science Department. The data can be accessed through a convenient online plotter,

which also allows for five-minute increments of .csv formatted data to be pulled onto a local ma-

chine. More specialized time intervals can be pulled as needed using Python scripts, which are also

used to implement a distillate framework in which voltage and current phasors are used as inputs to

calculations that produce other data in near real time. With this structure, network characteristics

of interest such as frequency, phase angle differences between points, and real/reactive power can

be used in analysis as easily as can raw voltage/current data streams.



Our research group has performed a large amount of analysis on the available data, which

amounts to nearly a year’s worth of measurements for some of the longer-running µPMUs. Due

to the specifics of individual µPMU deployments, different types of analysis were conducted at

different locations. As such, this report will be divided into modular chapters, with each chapter

covering a single operating utility or research partner. There may be some repetition of basic

information about µPMU operation or data between chapters, as each chapter is also meant to stand

alone as a project update that can be provided to the relevant partner. In particular, a description of

the mathematical procedure for using µPMU measurements to estimate the impedance of a three-

phase line (the subsections titled ”Methodology”) will be very similar in both the Partner 2 and

Partner 3 chapters.

A few other notes on layout:

• Citations will be included as footnotes, rather than endnotes.

• Figure, table, and footnote numbering will be restarted at the beginning of each chapter,

and so any figure numbers should be understood to refer to the figures within the chapter in

which they were mentioned.

• The names of partnering utilities and distribution feeder operators have been redacted and

replaced with ”Partner numbers” where necessary due to customer privacy concerns.



Chapter 1: Validation of µPMU Performance at NEETRAC

Our research team sent five µPMUs to Georgia Tech for performance validation by comparison

with the existing instrumentation in their NEETRAC test bed. The test bed is made up of five

interconnected buses with a controllable voltage magnitudes and phasor angles. Two of those

buses, numbered 1 and 5, are electrically connected and the other three (Buses 2, 3 and 4) are

connected through three-phase high-inductance lines as shown in Figure 1.

Figure 1: The electrical connections at the NEETRAC testbed.

The µPMUs were connected alongside NEETRAC’s own National Instruments-built PMUs

at each of the five buses shown above and used to gather two hours of data: August 21, 2015,

17:00 and 18:00 UTC. Unfortunately, difficulties in transferring that data resulted in the loss of all

measurements from Bus 1. Because the data collected at Bus 1 and Bus 5 were redundant, though,

this did not pose any problems for our team’s efforts.

To validate the data collected from the µPMUs at Bus 2 through Bus 5 against the measure-

ments of the NI PMUs, NEETRAC used the following experimental procedure (All times listed

below are given as UTC):



• 17:49.51: Began slowly raising the test bed voltage magnitude on all three phases.

• 17:51:30: Test bed voltage magnitude reaches its maximum value of approximately 7.2 kV.

• 17:51:59: Phase shifters begin changing the voltage phase of Buses 2 and 4 relative to Bus 5

in the order Phase A-Phase B-Phase C. Each phase shift is separated by several seconds.

• 17:52:10: Phase values at Buses 2 and 4 reach their maximum difference of 0.85 degrees.

• 17:53:46: Phase values are stepped back down to near zero over several seconds, again with

a slight delay between phases.

• 17:54:11: Test bed voltage is stepped back down to near zero over approximately a minute.

A sample of the resulting measurements is shown in Figures 2 and 3. As can be seen, there is

good agreement between the µPMU observations and the NEETRAC PMU measurements in both

voltage magnitude and phase angle. Some calibration is necessary, though, to take into account the

differences in PMU reporting:

• The NEETRAC PMU:µPMU voltage and current magnitude ratios were 60:1 and 300:1,

respectively.

• The time stamps between the NEETRAC PMUs and µPMUs were offset by 4 hours and 1

minute (e.g. 13:00 by the NEETRAC PMU clock would be 17:01 by the µPMU clock). This

can be ignored in the figures below, though, as the hours of the timestamps are aligned for

comparison in the display.

• µPMU data will occasionally change the sign of its angular representation, e.g. 120 degrees

will spontaneously become -240 degrees. Though this can be confusing graphically, in ab-

solute terms the µPMU measurements are consistent with those of the NEETRAC PMUs

throughout the testing period.

Accounting for the shift in timestamps, it is clear that both the µPMUs and NEETRAC's PMUs

are measuring the same test bed voltage. The agreement in angular difference is also very close, and

holds for both buses 2 and 4, as expected. Based on these observations, we have high confidence

that the µPMU measurements at buses 2 through 5 are generally accurate.



Figure 2: Testbed voltage measurements, NEETRAC NI PMU vs µPMU.

Figure 3: The angular difference at bus 4 relative to bus 5. The dip in angular difference on Phase C

represents a point at which the µPMU's angular representation shifts by 360 degrees and then quickly returns.



Two things are worth noting in Figures 2 and 3. The first is that the µPMU measurements

are of a higher precision than those of the PMUs in use at NEETRAC. This is not a commentary

on the National Instruments PMUs themselves, as user-defined settings play a significant role in

the nature of the data that is captured and reported. Rather, this is an observation that the data

being collected in BTrDB is of a precision beyond what NEETRAC has found sufficient for their

research purposes to date.

The second interesting point revealed by the measurement comparison is that there is disagree-

ment as to the ordering of the phase angle differences in Figure 3. While the NEETRAC PMUs

generally show the angle differences as slightly larger on Phase B than on Phase C, the µPMUs

report the opposite. The reason for this is still an open question. Technicians at NEETRAC have

confirmed that all connections for both µPMUs and NI PMUs were made correctly, which is cor-

roborated by the agreement between the two sets of PMUs on the ordering of voltage magnitudes

in Figure 2. It is possible that the disagreement is due to the difference in measurement precision

between the two sets of PMUs. In any event, any discrepancies are small enough that this can be

considered a successful validation of µPMU capabilities.



Chapter 2: Line Impedance Estimation at Partner 2

As an inital step towards model validation applications, our research team has begun to explore

the network parameters that can be estimated from µPMU data. Specifically, we have begun by

attempting to determine the impedances of lines and other equipment in the area of our µPMU

deployments.

Six µPMUs are presently deployed in and are reporting data from feeders owned by Partner 2.

Among them are two µPMUs connected on a feeder between the substation and a 7.5MW PV site,

as shown in Figure 1. In combination, these two µPMUs present us with a simple base case: data

reporting from either side of a three-phase connecting line. We used the data from these µPMUs

to estimate the impedance of that line, which connects the substation and the point of common

coupling (PCC) of the PV site.

Figure 1: µPMU deployment at Partner 2's feeder.

Methodology

In this section, we describe the mathematics of our impedance estimation method. We desig-

nate the two µPMUs on either side of the three-phase line connecting the substation and the PCC

as α and β, respectively. Each µPMU delivers 120 samples per second, and each sample gives us

a 3x1 VABC vector and a 3x1 IABC vector, where A,B, and C denote phases.



For each sample, the relationships below follow from Ohm’s Law:

~VαA − ~VβA = ~ZAA~IA + ~ZAB~IB + ~ZAC~IC

~VαB − ~VβB = ~ZεAB~IA + ~ZBB~IB + ~ZBC~IC

~VαC − ~VβC = ~ZAC~IA + ~ZBC~IB + ~ZCC~IC

(1)

In reality, the β µPMU (labeled ”uPMU 2” in Figure 1) is located slightly north of the PCC,

on the line connecting the PV site. It is close enough, though, that the voltage drop between

the µPMU and the PCC is negligible and we can approximate the µPMU-measured voltage as

the PCC voltage Vβ . The current measurement will be very different from that of the connecting

line, however, and so we will need to use µPMU α to measure the current on our line of interest.

Therefore, ~IA = ~IαA, ~IB = ~IαB, and ~IC = ~IαC .

To estimate the six unique elements of the impedance matrix, ~ZAA through ~ZCC , we break

equations (1) into their complex parts and use the real component to relate impedances and µPMU

measurements:

<(VαA)−<(VβA) =

<(IA)<(ZAA)−=(IA)=(ZAA)−=(IB)=(ZAB)+<(IB)<(ZAB)−=(IC)=(ZAC)+<(IC)<(ZAC)

<(VαB)−<(VβB) =

<(IA)<(ZAB)−=(IA)=(ZAB)−=(IB)=(ZBB)+<(IB)<(ZBB)−=(IC)=(ZBC)+<(IC)<(ZBC)

<(VαC)−<(VβC) =

<(IA)<(ZAC)−=(IA)=(ZAC)−=(IB)=(ZBC)+<(IB)<(ZBC)−=(IC)=(ZCC)+<(IC)<(ZCC)

(2)

Though we have dropped the vector notation in equations (2) and will omit it moving forward, all

V, I, Z quantities should be understood to be complex-valued.

Equations (2) can be solved for the real and imaginary parts of the six unique impedance ele-

ments with a number of methods including least squares, gradient descent, and coordinate descent.

We did not find any significant differences in accuracy between these three methods. As such, we

will not present all three as separate cases, instead focusing only on ordinary least squares (OLS).



Recasting equations (2) into an OLS matrix form:


<(VαA)−<(VβA)

<(VαB)−<(VβB)

<(VαC)−<(VβC)

 =


<(IA) −=(IA) 0 0 0 0 <(IB) −=(IB) <(IC) −=(IC) 0 0

0 0 <(IB) −=(IB) 0 0 <(IA) −=(IA) 0 0 <(IC) −=(IC)

0 0 0 0 <(IC) −=(IC) 0 0 <(IA) −=(IA) <(IB) −=(IB)

 ∗


<(ZAA)

=(ZAA)

<(ZBB)

=(ZBB)

<(ZCC)

=(ZCC)

<(ZAB)

=(ZAB)

<(ZAC)

=(ZAC)

<(ZBC)

=(ZBC)



(3)

The three equations generated by each new sample can be added to the voltage vector and to

the matrix of currents until it is of full rank, at which point the impedance can be estimated with

OLS.

Results

We carried out the OLS impedance estimation methodology on a 25-second block of µPMU

data, arbitrarily chosen to begin at noon on October 21, 2015. Feeder models from Partner 2 pro-

vided our group with a ”ground truth” value against which to compare our results. Written as a



vector, the modeled impedance of the cable is given as



<(ZAA)

<(ZBB)

<(ZCC)

<(ZAB)

<(ZAC)

<(ZBC)


=



0.523 + 1.135j

0.523 + 1.135j

0.523 + 1.135j

0.146 + 0.387j

0.146 + 0.387j

0.146 + 0.387j


, while

the OLS method returns



<(ZAA)

<(ZBB)

<(ZCC)

<(ZAB)

<(ZAC)

<(ZBC)


=



0.5 + 1.29j

0.59 + 1.24j

0.45 + 1.08j

0.12 + 0.37j

0.21 + 0.18j

0.1 + 0.29j


.

This gives us a total vector error of 14.4%, as defined in terms of vector 2-norms.

This is reasonably good agreement, with several well-understood sources of error that could

account for the discrepancy. First, the values from Partner 2's model doubtless have some error;

it is very unlikely that the self and mutual impedance values of the line are completely uniform,

as stated. It is possible that the OLS-estimated values are closer to the true impedance of the line

than is our ground truth. We also must consider the error introduced by the voltage drop across the

small line segment connecting the PCC to the true location of µPMU #2. Without a more rigor-

ous physical examination to determine the precise properties of the line, it is impossible to know

exactly how accurate are the results of the OLS estimation. However, given the reasonable agree-

ment between the OLS results and the modeled impedance values, we believe we have developed

a serviceable method of impedance estimation for use on distribution lines.

It is worth mentioning that this same method failed when applied to much shorter cables on a

feeder owned by another research partner. This was most likely due to an insufficiently high voltage

drop across the cable, which was then lost in the noise introduced by instrumentation transformers

at the µPMU inputs. Future work on this topic could involve searching for the minimum data

excitation vs. noise threshold past which it is no longer possible to use OLS to estimate line

impedance.



Chapter 3: Difficulties with Line Impedance Estimation at Partner 3

A number of µPMUs have been deployed on a feeder at Partner 3. Among them are two

matched sets of µPMUs on either side of two underground cables, Cable X and Cable Y, which are

connected on different branches of the feeder. We used the data from these µPMUs in an effort to

establish that, with sufficient µPMU measurements from either side of a cable, we would be able

to determine the impedance of the cable itself.

Though we developed a straightforward model for which impedance could be accurately esti-

mated on sets of simulated data, we were unsuccessful implementing it in the field. We found that

the measurement error introduced by instrumentation transformers created noise that interfered

with our ability to solve the set of equations relating our µPMU data to the desired impedance

values. This noise was especially significant at Partner 3, as the cables that we used as test cases

were short and had low resistance that did not cause a significant voltage drop. A similar test of

our method on a longer cable at another utility partner was more successful.

Methodology

In this section, we describe the mathematics of our impedance estimation method. We desig-

nate the two µPMUs on either side of the three-phase line as α and β. Each µPMU delivers 120

samples per second, and each sample gives us a 3x1 VABC vector and a 3x1 IABC vector, where

A,B, and C denote phases. For each sample, the relationships below follow from Ohm’s Law:

~VαA − ~VβA = ~ZAA~IA + ~ZAB~IB + ~ZAC~IC

~VαB − ~VβB = ~ZεAB~IA + ~ZBB~IB + ~ZBC~IC

~VαC − ~VβC = ~ZAC~IA + ~ZBC~IB + ~ZCC~IC

(1)

Note that the equations (1) involve the approximation Iα = Iβ = I . In reality, the currents

measured at either side of the cable are slightly different. But, the effect is very small and trying to

take it into account would introduce massive mathematical complexity into the modeling effort.

To estimate the six unique elements of the impedance matrix, ~ZAA through ~ZCC , we break



equations (1) into their complex parts and use the following real equations:

<(VαA)−<(VβA) =

<(IA)<(ZAA)−=(IA)=(ZAA)−=(IB)=(ZAB)+<(IB)<(ZAB)−=(IC)=(ZAC)+<(IC)<(ZAC)

<(VαB)−<(VβB) =

<(IA)<(ZAB)−=(IA)=(ZAB)−=(IB)=(ZBB)+<(IB)<(ZBB)−=(IC)=(ZBC)+<(IC)<(ZBC)

<(VαC)−<(VβC) =

<(IA)<(ZAC)−=(IA)=(ZAC)−=(IB)=(ZBC)+<(IB)<(ZBC)−=(IC)=(ZCC)+<(IC)<(ZCC)

(2)

Though we have dropped the vector notation in equations (2) and will omit it moving forward, all

quantities should be understood to be complex-valued.

Equations (2) can be solved for the real and imaginary parts of the six unique impedance

elements with either ordinary least squares (OLS) or one of a number of other options. In addition

to OLS, we attempted three more advanced methods at Partner 3:

Constrained Least Squares: This method uses the standard equation for solving a linear least

squares problem of the form Ax = b, with the solution bounded to return positive real portions of

the impedance. In practice, the bounds were unnecessary for our synthetic data in the cases where

we obtained a successful estimation, in which cases the method reduces to OLS.

Coordinate Descent: Coordinate descent is an iterative technique for minimizing a function. It

solves the Ax = b equation by moving through the x vector element-by-element, starting from an

initial guess of the value of x. Every iteration updates a single element of the x vector using the

formula xi = A∗
i (b− A−ix−i)/(A

∗
iAi).

Gradient Descent: For future applications, we expect gradient descent to be the most effective

method for dealing with field data. It avoids the problems associated with both least squares (which

may require more widely varying currents and voltages than are available on Cable X or Y in order

to be a well-conditioned matrix) and with coordinate descent (which is not guaranteed to converge,

even for convex functions). Gradient descent is essentially no different from coordinate descent,



except that it simultaneously updates all of the elements in its x vector with every iteration. During

the iteration, x is updated according to the formula xn = xn−1 − 2A∗(Axn−1 − b)γ, where γ is an

arbitrary step size.

We did not find any significant differences in accuracy between these three methods; all three

were very successful when used on simulated data with minimal errors, but failed when applied

to Partner 3’s underground cables. As such, we will not present the results of all four methods as

separate cases, instead focusing only on ordinary least squares (OLS).

We recast equations (2) into a matrix form for use in OLS:


<(VαA)−<(VβA)

<(VαB)−<(VβB)

<(VαC)−<(VβC)

 =


<(IA) −=(IA) 0 0 0 0 <(IB) −=(IB) <(IC) −=(IC) 0 0

0 0 <(IB) −=(IB) 0 0 <(IA) −=(IA) 0 0 <(IC) −=(IC)

0 0 0 0 <(IC) −=(IC) 0 0 <(IA) −=(IA) <(IB) −=(IB)

 ∗


<(ZAA)

=(ZAA)

<(ZBB)

=(ZBB)

<(ZCC)

=(ZCC)

<(ZAB)

=(ZAB)

<(ZAC)

=(ZAC)

<(ZBC)

=(ZBC)



(3)

The three equations generated by each new sample can be added to the voltage vector and to

the matrix of currents until it is of full rank, at which point the impedance can be estimated with

OLS.



Synthetic Data Results

Using MATLAB, we generated a set of synthetic data to serve as a proof of the impedance

estimation method. This began with the creation of 3-phase currents by generating sets of three

I vectors. The distribution of the I vector angles was completely random, while the magnitudes

were constrained to lie between 25 and 50. These magnitude constraints were arbitrarily chosen

to keep our simulation relatively realistic, though mathematically speaking the actual upper and

lower magnitude bounds have no effect on the method’s success or failure.

We then had to generate a three-phase voltage difference vector ∆~V that represented ~Vα − ~Vβ ,

the voltage difference between the α and β ends of the line. For this, we multiplied each of our

synthetic, 3-phase current samples by a ”ground truth” matrix of self and mutual impedance values

taken from a Partner 3 feeder model. This guaranteed that our synthetic voltages and currents sat-

isfied Ohm’s Law for our assumed values of cable impedance. Each (I,V) pair generated using this

technique represented what would be one µPMU sample in the total absence of measurement error

of any type. As would be expected when using this error-free data, the elements of the impedance

matrix could be estimated exactly with OLS using only the minimum number of samples necessary

to create an invertible matrix.

We then added simulated measurement error terms to our synthetic ∆~V and ~I vectors. The

errors were generated with random angles and Gaussian-distributed magnitudes of zero mean. We

altered the size of the standard deviation of the error distribution σE and noted the accuracy of the

OLS method at each step, as seen in Table 1. The percentage values given in the table refer to the

accuracy of the impedance estimation, given by 1 less the Total Vector Error in our estimation.

σE = 10−6 σE = 10−4 σE = 10−2

10 Samples 99.216% 98.363% 13.749%

103 Samples 99.965% 99.065% 75.27%

104 Samples 99.976% 99.692% 79.38%

Table 1: OLS accuracy given σE and number of samples used in the OLS calculation.

As we can see, the OLS method should be more than capable of handling errors of the size ex-



pected from the µPMUs. The method is disrupted at Partner 3, though, by further error introduced

by instrumentation transformers.

Transformer Measurement Error on Cables X and Y

We have yet to use field measurement data to successfully obtain an estimate of the impedance

at Cable X or Cable Y that is even physically possible. Not only has OLS failed, but coordinate and

gradient descent methods have as well. The most probable reason for this, as has been mentioned

in previous sections, is the error introduced by the instrumentation transformers that bring line

voltage down to a level at which it can be measured by a µPMU.

From the transformer’s manufacturer specifications, we are given maximum possible multi-

plicative measurement errors of 0.003∠0.2◦ in all voltages and 0.012∠1◦ in all currents. These

errors would primarily be due to mismatch in the transformer windings or other manufacturing de-

fects that are constant in time. The primary hindrance to the accuracy of the OLS method, though,

is time-varying error.

While it is difficult to determine to what extent transformer measurement error changes with

time, one aspect of our µPMU deployment at Partner 3 can give us some idea of the order of

magnitude: a second µPMU is installed on a bus to which Cable Y is connected. While this

second µPMU measures a different current than does the µPMU on Cable Y itself, it is measuring

a point with near-identical voltage. We would expect the two µPMUs’ voltage measurements to

be offset due to differences in the individual measurement errors of each transformer, but we can

observe the difference between the two voltages over time as an indicator of the constancy of those

measurement errors.

As can be seen in Figure 1, a representative time period, voltage magnitude measurements can

range over 0.03% and .018◦ in very short time periods. An OLS estimation that makes use of even

a few seconds’ worth of data can see fairly wide time variance in transformer error. Compounding

these fluctuations is the independent voltage error from the transformer on the opposite side of the

cable, as well as the errors in current measurements generated by both transformers.



Figure 1: Time variance of measurement error over a representative interval.

Insufficiency of Current Excitation

In addition to the possible data issues caused by the time-variance of PT and CT measurement

error discussed above, there are questions about the sufficiency of excitation in our current data.

If the current flowing through Cable X, for example, does not change over the 5-minute data sets

that we examine, our methods will not be able to estimate line impedance in the presence of noise,

regardless of how well that noise is suppressed or accounted for. In addition, the current must

change differently on different phases in order for the effects of self and mutual impedance to be

distinguished.

The excitation problem can best be visualized as a distribution of the per-sample change of

the difference between currents on separate phases. This is displayed in Figures 2 and 3, which

were generated from a representative 5-minute set of Cable X current measurements. To create

the figure, we began by taking the magnitude difference in currents flowing in phases A and B

(IA0 − IB0) for a single sample. That difference was then compared with the same difference for

the succeeding sample (IA1−IB1), and binned according to the quantity (IA1−IB1)− (IA0−IB0).

This distribution of the difference in time of the difference between two phases gives us some idea

of the cross-phase variability of currents, the component of the data necessary for separating and

accounting for the effects of self and mutual impedances.



Figure 2: Current vector magnitude variability

A similar chart for phase difference:

Figure 3: Current phase angle variability

We believe that these sets of data lie below a minimum excitation threshold past which the cur-

rent is too small for any of our methods to return a reasonable solution. Experimentation with the

bounds on the variability of current used to generate our synthetic data indicates that such a point

does indeed exist, even when PT and CT error are perfectly constant. Future analysis will involve

establishing precisely where that point lies, which will allow us to quickly determine which data



sets are suitable candidates for impedance analysis.

Conclusion

At Partner 3, the measurement errors are significant enough relative to our signal of interest that

our OLS method can not be used. At other locations, though, it has had some success in returning

an estimate that roughly agrees with modeled values. It is possible that, with some refinement, the

impedance estimation could be made to work at Partner 3 as well. More advanced techniques for

handling transformer error in the input to µPMUs, which have been explored at the transmission

level,1 could be incorporated into the method. We could also experiment with the averages of large

numbers of OLS solutions carried out on very small time periods (on the order of several cycles)

that would be less prone to measurement error fluctuation. On recommendation from our project’s

sponsors, though, we are no longer pursuing impedance estimation methods at Partner 3 for the

time being.

1Pal, A., Chatterjee, P., Thorp, J. S., & Centeno, V. A. (2016). Online Calibration of Voltage

Transformers Using Synchrophasor Measurements. IEEE Transactions on Power Delivery, 31(1), 370-380.

doi:10.1109/tpwrd.2015.2494058



Ongoing Work: Voltage Volatility Studies at Partner 4

Our research group’s µPMU deployment at Partner 4 encompasses five devices deployed on

two adjacent feeders served by a single substation. Four of the devices are spread throughout the

northern, ”Alpha” feeder, while the fifth monitors a location near the substation on the southern,

”Beta” feeder. Due to customer privacy concerns, these µPMUs are limited to measuring only

voltages, without reporting any current data.

Though we do not have comprehensive load data for either feeder, it is known that some of the

customers on the Alpha circuit have connected PV generators. This makes Partner 4 an ideal can-

didate for testing the suitability of µPMU measurements for use in load identification applications.

If synchrophasor data can be used to uncover and characterize PV generation behind the meter,

this will be a valuable use case for distribution-level PMUs.

Volatility

One potential means of establishing the amount of PV generation on a network is through the

use of voltage volatility measurements. Volatility, an expression of the extent to which the voltage

at a measurement point makes sudden, sharp changes in time, can serve as an indicator of nearby

PV presence. The output of a solar panel is usually more dramatically dependent on external

conditions than is the output of a legacy generator; passing clouds and unexpected shading are

enough to cause large reductions in PV output. Over the course of a day, then, we would expect to

see more voltage swings near PV panels than at similarly-loaded sites without PV.

Researchers have a great deal of flexibility in defining a metric for voltage volatility. To begin,

our team has decided to use a simple measure: the absolute difference between the present (time

t0) voltage magnitude and the voltage magnitude at the past time t0 −X .

volatility(t) = abs(Vmag(t)− Vmag(t−X)) (1)

Examining the statistics of that measure over set periods of time of length N gives us some idea of

the way that voltage volatility changes between N -sized time intervals.

We relied on previous research to select an appropriate X value across which to compare



voltage magnitudes. In particular, the LBNL report ”Dark Shadows”1 was very helpful. The

researchers involved described correlations between 1-minute differences in PV output and ex-

ternal events such as passing clouds. On the strength of that work, we elected to use X values

in the range of 1 minute as the most appropriate for our PV-discovery purposes. We selected an

N -interval value of 1 hour based on the availability of historical hourly weather and irradiance

conditions from Weather Underground.2

We are in the process of analyzing this data and have already seen some interesting charac-

teristics appear in graphs of daily volatility. With an initial X value of 10 seconds, the volatility

appears to roughly track the movement of the sun at a µPMU measuring a point that we believe

to be a PV generator. Though it is far too early to draw any definite conclusions, if this tracking

proves to be a dependable phenomenon on further testing, volatility analysis may lead to robust

µPMU-based capabilities in PV discovery.

1Mills, A., Ahlstrom, M., Brower, M., Ellis, et. al. (2011). Dark Shadows. IEEE Power and Energy Magazine,

9(3), 33-41. doi:10.1109/mpe.2011.940575
2https://www.wunderground.com/


