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1.1	Problem	Definition	

Our	capstone	project	is	to	port	BIDData	over	onto	Apache	Spark,	an	open	source	

engine	used	for	large-scale	data	processing,	so	real-world	developers	at	companies	such	

as	Yahoo,	Twitter,	and	Facebook	can	leverage	the	10x	performance	and	cost	benefits	of	

GPU	accelerated	machines	at	a	large	scale	for	machine	learning	tasks.	BIDData	is	a	

machine	learning	library	that	runs	on	a	single	machine	that	is	GPU-optimized,	

outperforming	other	setups	that	run	on	hundreds	of	multi-core	CPU	machines	due	to	

the	parallel	structure	of	many	machine	learning	algorithms.	In	fact,	it	holds	the	

benchmark	for	a	plethora	of	common	algorithms	such	as	k-Nearest	Neighbors,	Random	

Forests,	and	Latent	Dirichlet	Allocation,	beating	other	setups	that	use	hundreds	of	multi-

core	CPU	computers	(Canny	2015).		

System nodes/cores nclust Time Cost Energy(KJ) 

Spark 32/128 256 180s $0.45 1150 

BIDMach 1 256 320s $0.06 90 

Spark 96/384 4096 1100 $9.00 22000 

BIDMach 1 4096 735 $0.12 140 

Running	KMeans	on	the	MNIST-8M	(25GB)	dataset	(Canny	2015)	

	
However,	running	BIDData	on	a	single	machine	can	only	process	data	on	the	

scale	of	hundreds	of	gigabytes.	For	comparison,	many	companies,	like	Yahoo,	process	

petabytes	of	data	every	day	(Feng	2013).	Developers	that	want	to	scale	up	BIDData	to	



match	their	data	processing	needs	have	to	handle	all	of	the	problems	that	arise	when	

creating	a	scalable,	distributed	platform,	such	as	incompatible	library	dependencies	and	

data	storage	and	synchronization	issues	with	their	database	files.	However,	by	

integrating	BIDData	into	Apache	Spark,	we	can	eliminate	this	overhead	so	developers	

can	focus	on	performing	actual	analytics.		

1.2	Task	Breakdown	

We	split	our	project	into	two	major	components.	Pradeep	and	Yiheng	focused	on	

the	first	component:	to	create	an	automated	build	management	system	for	running	

BIDData	on	multiple	platforms.	Currently,	developers	that	want	to	use	BIDData	to	run	

machine	learning	algorithms	on	the	GPU	need	to	build	the	libraries	themselves.	This	

represents	a	huge	barrier	to	entry	as	many	alternative	machine	learning	libraries	have	

released	pre-built	versions	that	simplify	the	deployment	process.	However,	as	Pradeep	

and	Yiheng	will	discuss	in	greater	detail	in	their	reports,	establishing	an	automated	build	

management	system	for	BIDData	is	complicated	by	the	fact	that	we	are	supporting	

multiple	different	host	architectures	and	each	of	these	architectures	have	distinct	native	

libraries	upon	which	BIDData	depends.	Meanwhile,	Richard	and	I	worked	on	the	second	

component:	to	port	BIDData	on	top	of	Apache	Spark	and	the	Hadoop	Distributed	File	

System	(HDFS).	Since	BIDData	will	now	be	reading	and	writing	to	HDFS	instead	simply	

writing	to	disk,	we	need	to	extend	BIDData’s	existing	API	this	new	requirement.	

Furthermore,	we	also	need	to	implement	several	parallel	machine	learning	algorithms	in	

order	to	document	the	performance	of	running	BIDData	on	top	of	Spark	and	compare	



against	other	alternatives.	Richard	worked	on	implementing	distributed	logistic	

regression	and	I	worked	on	extending	support	to	reading	and	writing	from	HDFS	as	well	

as	implemented	the	distributed	K-Means	algorithm.	

1.3	Setting	up	EC2	

My	first	priority	was	to	set	up	a	sample	distributed	system	as	a	mock	

environment	that	we	could	use	for	future	development.	Without	such	an	environment,	

we	would	not	be	able	to	benchmark	the	parallel	variants	of	common	machine	learning	

algorithms	to	compare	against	the	serial	versions.		We	chose	to	use	Amazon	EC2	as	it	is	

the	predominant	cloud	computing	platform	used	in	both	academia	and	industry	to	

power	distributed	computation.	This	entailed	setting	up	Apache	Spark	on	the	master	

and	slave	nodes	with	the	appropriate	configuration	and	hooking	Spark	up	to	the	Hadoop	

Distributed	File	System	(HDFS)	in	which	we	house	our	data.		The	BIDData	libraries	and	

Apache	Spark	both	depend	on	native	libraries	that	are	specific	to	the	machine	that	one	

is	running	on.	This	meant	that	running	the	BIDData	libraries	on	top	of	Spark	requires	

additional	configuration	steps	beyond	downloading	and	building	Spark	and	Hadoop	on	

the	EC2	instances	–	we	needed	a	mechanism	to	specify	all	the	library	modules	that	

BIDData	requires	to	be	distributed	across	all	the	nodes	in	our	cluster.	Traditionally,	users	

who	want	to	run	BIDData	on	a	single	machine	run	a	shell	script	that	downloads	all	the	

library	dependencies.		The	Spark	guide	on	configuration	and	deployment	recommended	

adding	in	the	appropriate	library	paths	to	the	default	configuration	file	located	in	

SPARK_HOME/confs/spark-defaults.conf,	so	I	created	a	shell	script	that	deploys	the	



libraries	from	the	master	node	to	the	slave	nodes	and	included	the	file	path	in	the	

configuration	file	on	all	nodes.		Although	this	solution	is	not	robust	to	changes	in	library	

dependencies	from	version	upgrades	in	Spark	or	BIDData,	it	removed	the	bottleneck	

that	prevented	us	from	parallelizing	our	work	distribution.	Since	we	also	want	to	allow	

developers	to	build	Spark	with	BIDData	for	themselves,	I	documented	the	deployment	

process	as	well	as	the	command	line	invocations	to	import	the	BIDData	libraries	when	

running	Spark	as	a	standalone	cluster.		

1.4	Supporting	Reading	and	Writing	from	HDFS	

BIDData	has	its	own	specialized	matrix	data	types	that	characterize	the	different	

primitives	that	are	stored	within	the	matrix	as	well	as	the	representation	of	the	matrix	

itself	(sparse	or	dense).		As	the	abstractions	for	saving	and	loading	matrices	are	the	

same,	I	will	detail	the	process	for	saving	a	matrix	to	disk	for	brevity.	Currently,	to	save	a	

matrix	to	disk,	the	BIDMach	API	exposes	an	overloaded	saveMat	function	that,	at	

runtime,	calls	the	appropriate	save	function	based	on	the	matrix	type,	writing	it	to	an	

OutputStream.		In	order	to	support	reading	and	writing	from	the	Hadoop	Distributed	

File	System,	we	needed	to	revamp	the	matrix	I/O	routines	to	be	based	on	

DataInputStreams	and	DataOutputStreams	classes	rather	than	their	current	generic	

variants	and	implement	a	wrapper	over	these	custom	matrix	datatypes	in	order	to	allow	

Hadoop	to	serialize	the	data	for	transmission	across	the	network.		



	

	

	

	

	

	

	

	

	

	

	

To	update	the	matrix	I/O	routines,	Professor	Canny	rewrote	the	layer	that	writes	

the	matrix	data	to	disk	to	operate	on	DataOutputStreams	instead	of	OutputStreams.		

This	ensures	that	the	underlying	data	is	formatted	in	a	platform	independent	way	and	

adheres	to	HDFS’s	abstraction	for	I/O.	I	then	added	a	middle	layer	that	checks	the	

matrix’s	file	path.	If	the	path	is	addressed	to	the	HDFS,	I	invoke	the	new	HDFS	function	

to	wrap	the	matrix	in	a	serializable	format	for	Hadoop.	

	

	



1.5	Parallelizing	BIDData	

1.5.1	BIDData	Architecture	Overview	

Within	the	BIDData	architecture,	the	Model	class	is	an	abstraction	that	

implements	the	specific	machine	learning	algorithm.	For	example,	there	is	a	KMeans	

model	that	implements	the	KMeans	model	update	and	prediction	methods.	The	

Datasource	and	Datasink	classes	encapsulate	the	logic	for	reading	from	and	writing	to	

the	various	data	formats	that	we	support.		Professor	Canny	created	a	datasource	called	

IteratorSource	designed	to	work	with	the	Iterators	class	provided	by	Spark.	Finally,	the	

Learner	class	orchestrates	the	flow	of	model	training	and	prediction.		It	iteratively	

updates	the	model	and	outputs	the	predictions	to	the	datasink.		The	learner	also	has	a	

reference	to	an	options	class,	which	as	the	name	implies,	stores	the	configurations	that	

the	developer	provide.	The	developer	creates	an	instance	of	a	learner,	passing	in	the	

data	source,	the	data	sink,	and	the	model	that	is	appropriate	for	their	machine	learning	

task,	trains	the	learner	using	a	subset	of	the	data,	and	makes	a	prediction	with	the	

remaining	data	(Canny	2015).		

1.5.2	Extending	the	Learner	

The	learner	class	previously	assumed	that	the	model	is	run	on	a	single	machine,	

and	thus	runs	through	the	iterations	of	training	all	at	once	upon	invocation.	However,	

val (mm, opts) = KMeans.learner(data_path) 
mm.train 

val (pp, popts) = KMeans.predictor(mm.model, test_data_path) 
pp.predict 

	
Sample	code	for	running	KMeans	on	a	single	machine	(Canny	2015)	



when	running	BIDData	on	a	distributed	platform,	we	need	to	synchronize	the	models	

within	the	learners	that	are	running	on	the	separate	executors	after	each	pass	through	

the	dataset.			

	 I	abstracted	away	the	logic	that	handles	one	pass	through	the	dataset	into	two	

functions,	firstPass	and	nextPass,	and	instead	have	train	call	the	appropriate	pass	

function	based	on	the	current	iteration	index.	This	more	fine-grain	control	over	the	

learner	logic	lets	the	distributed	learner	to	perform	model	synchronization	after	each	

pass	through	the	dataset,	while	still	allowing	the	single-machine	variant	to	iterate	

through	all	at	once.	The	distinction	between	firstPass	and	nextPass	is	based	on	the	fact	

that,	in	certain	algorithms,	the	first	pass	through	the	dataset	is	fundamentally	distinct	

from	the	remaining	passes.		As	an	example,	the	K-Means	algorithm	instantiates	the	

centroid	clusters	in	the	first	pass,	whereas	the	remaining	passes	improve	the	centroids.		

Comparison	between	iterative	training	and	distributed	training 



1.5.3	API	for	Distributed	Machine	Learning	

We	distribute	our	model	and	our	data	across	the	executors.	One	benefit	of	this	

approach	is	that	we	can	train	models	that	do	not	fit	into	the	memory	of	a	single	GPU.		

However,	this	also	brings	additional	challenges	of	needing	to	synchronize	the	model	

after	each	pass	through	the	dataset.	At	a	high	level,	we	want	to	create	a	learner	for	each	

executor	and	iterate	through	the	data	that	exists	locally	on	that	executor	on	each	pass,	

synchronizing	the	learner’s	model	between	the	passes.		Although	we	later	want	to	

utilize	Kylix,	a	butterfly	all-reduce	communication	network	to	synchronize	the	model	for	

optimum	network	performance,	I	currently	use	Spark’s	implementation	of	treeReduce	

as	a	baseline	for	comparison.	

I	created	an	application	programming	interface	(API)	that	abstracts	away	the	

implementation	details	for	running	BIDData	on	top	of	Spark.	The	API	takes	in	several	

parameters:	the	spark	context	of	class	SparkContext,	the	learner	of	class	Learner,	and	

the	data	of	class	RDD[(SerText,MatIO)]	on	which	to	run	the	learner,	and	the	number	of	

executors	in	the	cluster.	The	SparkContext	variable	is	required	to	operate	on	the	RDD	

abstraction,	the	learner	and	data	are	necessary	to	run	the	machine	learning	algorithm	

on	the	dataset,	and	the	number	of	executors	is	passed	in	so	the	program	can	load	

balance	across	the	executors.		

1.5.4	Implementing	Distributed	KMeans	

To	test	out	the	framework	to	run	machine	learning	algorithms	on	Spark	using	

BIDData,	I	implemented	a	distributed	variant	of	the	existing	KMeans	algorithm	in	the	

BIDData	machine	learning	library.	This	required	adding	a	general	reduction	operator,	



combineModels,	to	the	Model	class,	which	the	KMeans	model	overrides	with	its	model-

specific	reduction	operation.		Since	the	first	iteration	of	a	model	update	may	be	

different	from	the	other	iterations,	the	function	also	takes	in	the	iteration	index.		

In	the	first	iteration	of	distributed	KMeans,	we	want	to	randomly	sample	n	

clusters	from	our	dataset	with	equal	probability.	I	do	so	by	counting	the	number	of	data	

points	that	have	been	processed	by	each	model,	and	sample	n	clusters	from	the	two	

models’	clusters	with	probability	proportional	to	the	number	of	processed	datapoints.	In	

the	other	iterations	of	model	reduction,	I	add	up	all	the	centers’	features	and	average	

them	post-reduction.	

1.5.5	KMeans	Benchmarks	

256	clusters,	batch	size	of	10000,	10	epochs	

 
Total Time Per Epoch 

Sequential BIDMach 349 seconds 37 seconds 

Distributed BIDMach  
with 16 clusters 

45.6 seconds 1.7 seconds 

Spark with 16 clusters 263.1 seconds 26 seconds 

	

	

	



5000	clusters,	batch	size	of	10000,	10	epochs 
 

Total Time Per Epoch 

Sequential BIDMach 1605 seconds 169.2 seconds 

Distributed BIDMach  
with 16 clusters 

235 seconds 14.4 seconds 

Spark with 16 clusters 5779 seconds 576 seconds 

These	benchmarks	were	obtained	from	running	on	AWS	g2.2xlarge	instances,	each	with	

one	1,5360	CUDA	cores	NVIDIA	GPU	and	eight	Intel	Xeon	processors	(Amazon	2016).	

From	the	benchmarks	we	see	that	running	BIDMach	on	Spark	vastly	outperforms	both	

BIDMach	running	on	a	single	machine	as	well	as	Spark	running	on	the	same	EC2	setup.	

As	expected,	there	is	some	overhead	for	reducing	the	model	at	the	end	of	each	epoch	

and	redistributing	the	updated	model	back	to	the	workers	at	the	beginning	of	the	

following	epoch.	
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2.1	Introduction	

As	data	storage	becomes	increasingly	commoditized,	companies	are	collecting	

transactional	records	on	the	order	of	several	petabytes	that	are	beyond	the	ability	of	

typical	database	software	tools	to	store	and	analyze.	Analysis	of	this	“big	data”	can	yield	

business	insights	such	as	customer	preferences	and	market	trends,	which	can	bring	

companies	benefits	such	as	new	revenue	opportunities	and	improved	operational	

efficiency	(Manyika	et.	al	2011).	To	analyze	this	big	data,	companies	typically	build	or	

use	third	party	machine	learning	(ML)	tools.	

Professor	John	Canny	of	UC	Berkeley’s	EECS	department	has	developed	BIDData,	

a	set	of		GPU-based	ML	libraries	that	is	capable	of	completing	common	ML	tasks	an	

order	of	magnitude	faster	than	rival	technologies,	when	run	on	a	single	machine.	

However,	most	“big	data”	tasks	require	greater	computational	power	and	storage	space	

than	that	offered	by	a	single	machine.	

Our	capstone	project	integrates	BIDData	with	Apache	Spark,	a	fast,	open-source	

big	data	processing	framework	with	rapid	adoption	by	the	software	industry.	Integration	

of	BIDData	with	Spark	will	enable	more	complex	big	data	analysis	and	generate	time,	

energy,	and	cost	savings.	

2.2	Trends	and	Market	

The	market	opportunity	for	big	data	is	astronomical.	Due	to	the	convenience	of	

consumer	electronics,	more	and	more	daily	services	such	as	banking	and	shopping	are	

being	conducted	online.	These	transactions	generate	a	gargantuan	amount	of	user	and	



market	data	that	companies	can	benefit	from.	As	an	example,	the	social	networking	and	

search	engine	industries	often	use	machine	learning	in	order	to	increase	their	profits	on	

selling	advertising	space	to	various	companies,	optimizing	the	pricing	model	for	each	ad	

spot	as	well	as	determining	the	best	advertisement	placement	to	maximize	the	

likelihood	of	user	clicks	(Kahn	2014:7).	Determining	the	optimal	pricing	and	placement	

strategy	is	especially	pivotal	to	Google	and	Yahoo’s	operations,	since	most	of	these	ad	

spaces	are	paid	for	through	a	pay-per-click	model	and	constitute	98.8%	of	the	total	

revenue	of	$11.2	billion	in	2014	(Kahn	2014:14).	

Processing	gigantic	amounts	of	information	within	sub-second	time	intervals	is	

computationally	demanding.	Modern	computer	processing	units	(CPUs)	can	process	

data	at	1	billion	floating	point	operations	per	second,	but	typical	big	datasets	are	on	the	

order	of	quadrillions	of	bytes	(Intel	2016).	Traditional	CPUs	would	take	hours	to	process	

a	single	big	dataset,	and	will	become	increasingly	inefficient	as	dataset	sizes	continues	

to	grow.	Thus,	there	exists	a	great	opportunity	for	companies	that	focus	on	cost-

efficient	data	analytics	tools	which	provide	easy	integration	and	process	data	quickly.	

For	instance,	McKinsey	Global	Institute	estimates	that	retailers	that	use	efficient	big	

data	tools	could	increase	their	operating	margins	by	more	than	60	percent	(Manyika	et.	

al	2011).		

Recent	technology	trends	show	that	in	order	to	accelerate	the	speed	of	big	data	

ML	algorithms,	CPU	technology	is	being	replaced	by	the	graphic	processing	unit	(GPU).	

Because	GPUs	are	optimized	for	mathematical	operations,	they	are	orders	of	

magnitudes	faster	than	CPUs	on	tasks	related	to	big	data	analysis,	and	both	industry	and	



academia	are	moving	towards	using	GPUs	(Lopes	and	Ribeiro	2010).	As	a	GPU-based	ML	

library,	BIDData	also	offers	numerous	improvements	compared	to	rival	technologies.	In	

terms	of	single-machine	processing	speed	and	electricity	expenditure,	BIDData	already	

beats	the	performance	of	other	competitors,	including	distributed	ML	libraries,	by	an	

order	of	magnitude,	assuming	the	dataset	can	be	housed	under	a	single	machine	(Canny	

2015).		

However,	single-instance	ML	libraries	such	as	BIDData	are	currently	not	widely	

used	in	industry,	as	they	lack	the	scalability	to	handle	increasing	sizes	and	complexities	

of	big	datasets.	Instead,	most	companies	are	turning	towards	efficient	distributed	

computing	platforms	to	process	the	data	(Low	et.	al	2012).	Thus,	our	capstone	project	

aims	to	integrate	BIDData	with	the	distributed	framework	of	Spark,	a	leading	machine	

learning	software	in	the	market	today.	Moreover,	the	project	also	incorporates	Amazon	

Web	Services	for	big	data	storage,	another	platform	which	many	companies	are	already	

leveraging	today	(Amazon	2016).	By	using	this	underlying	infrastructure,	BIDData	is	

more	likely	to	be	viewed	as	a	highly	desirable	big	data	analysis	tool	by	the	market.		

2.3	Industry	Analysis	

2.3.1	Value	Chain	Analysis	



	
Figure	1:	The	above	value	chain	covers	how	users	and	companies	alike	benefit	from	big	data.	
As	consumers	use	products,	technology	companies	are	able	to	collect	data	on	their	habits	and	
preferences.	Analytics	firms	and	third-party	tools	process	this	data	and	sell	their	findings.	
Ultimately,	big	data	analytics	can	lead	to	improved	products	and	better	user	experiences.	

In	the	big	data	industry,	firms	processing	user	data	to	gain	insights	into	customer	

habits	and	preferences.	The	statistics	and	trends	that	they	discover	can	be	used	to	

refine	existing	products	and	services	or	be	sold	to	advertisers.	For	example,	users	either	

buy	a	product	(e.g.	FitBit)	or	sign	up	to	use	a	free	ad-supported	product	(e.g.	Gmail)	

from	various	tech	companies.	These	companies	collect	data	from	their	users	based	on	

their	usage	patterns:	FitBit	provides	anonymized,	aggregated	data	for	research	

purposes,	and	Gmail	provides	relevant	information	on	users	to	the	Google	Ads	team.	

This	data	is	passed	onto	organizations	that	specialize	in	big	data	analysis.	After	obtaining	

insights	on	the	data,	these	organizations	then	sell	their	findings	back	to	the	tech	

companies	or	to	firms	such	as	advertisers.	Ultimately,	big	data	analytics	can	be	used	to	

improve	products	and	user	experiences	for	consumers.	

While	these	big	data	analysis	companies	have	access	to	lots	of	data,	they	may	

not	have	the	understanding	or	the	resources	to	create	every	appropriate	tool	for	

analyzing	all	of	their	big	data,	which	can	come	in	various	formats.	Subsequently,	these	



big	data	analysis	organizations	must	turn	to	third-party	customers	to	process	some	of	

their	data.	Because	its	machine	learning	libraries	record	the	best	possible	benchmarks	

amongst	their	peers,	BIDData	has	a	strong	case	for	becoming	one	of	these	leading	third-

party	tools.	Subsequently,	a	startup	with	expertise	in	BIDData	on	Spark	could	act	as	both	

a	supplier	and	a	consultant	for	these	big	data	organizations.		

2.3.2	Porter’s	Five	Forces	Analysis	

According	to	Michael	Porter,	all	companies	face	five	forces	of	competition	within	

their	industry.	Despite	its	benchmark-leading	performances,	BIDData	faces	potential	

competition	from	existing	firms	and	future	entrants	in	the	big	data	industry.		

2.3.3	Threat	of	Substitutes	

Current	machine	learning	libraries	mostly	run	on	CPUs,	but	as	discussed	in	the	

Trends	and	Markets	section,	the	industry	has	shifted	away	from	them.	As	evidenced	by	

Netflix’s	recent	switch	to	using	GPUs,	the	industry	has	noticed	that	GPU-based	software	

solutions	record	higher	benchmarks	than	traditional	CPU-based	tools	(Morgan	2014).	

Thus	in	the	long	term,	the	threat	of	substitutes	is	relatively	weak,	as	CPU-based	

software	is	gradually	replaced.	

2.3.4	Bargaining	Power	of	Suppliers	

Typically,	programmers	are	the	main	individuals	involved	in	the	creation	of	

software	libraries.	Currently,	BIDData	is	open	source,	allowing	any	interested	

independent	programmers	to	collaborate	and	make	unpaid	contributions	to	the	project.	

Thus,	the	bargaining	power	of	suppliers	with	regard	to	wages	is	extremely	weak.	As	an	



additional	benefit,	the	open	source	model	can	potentially	lead	to	high-quality	products	

at	a	fraction	of	the	cost	(Weber	2005).		

2.3.5	Bargaining	Power	of	Consumers	

On	the	other	hand,	the	bargaining	power	of	consumers	in	this	space	is	strong.	

Although	lots	of	research	on	GPU-based	ML	techniques	has	been	conducted	in	recent	

years,	most	computers	used	by	consumers	and	companies	alike	still	only	use	CPUs.	

Subsequently,	customers	are	more	likely	to	choose	from	a	wide	variety	of	CPU-based	

ML	tools	to	use.	Moreover,	the	biggest	and	most	profitable	customers	(e.g.	Google)	

have	the	resources	to	create	their	own	data	analysis	tools	for	internal	use,	which	can	

further	depress	demand	for	third-party	machine	learning	tools	in	this	space.	While	

newer	computers	come	with	GPUs,	it	may	take	some	time	before	users	and	companies	

fully	invest	in	and	transition	to	GPU-based	ML	tools.		

2.3.6	Threat	of	New	Entrants	

In	general,	the	software	industry	has	an	extremely	low	barrier	to	entry,	as	it	only	

takes	a	single	programmer	with	one	computer	to	create	fully-functional	software.	

Additionally,	software	undergoes	lots	of	iterations	quickly.	Although	BIDData’s	

underlying	GPU	technology	is	still	relatively	new,	startups	and	existing	firms	alike	are	

growing	more	interested	in	GPU-based	solutions.	Subsequently,	the	industry	faces	a	

very	strong	threat	from	new	entrants.	

	



2.3.7	Competitive	Rivalry	

Because	big	data	comes	from	a	variety	of	sources	and	in	a	multitude	of	formats,	

consumers	require	many	different	ML	techniques	for	analysis.	If	BIDData	does	not	

contain	an	implementation	of	a	specific	ML	algorithm,	consumers	could	simply	use	

another	tool	that	offers	it.	As	a	result,	there	exists	an	intense	feature-based	rivalry	in	the	

third-party	tools	space,	in	which	several	firms	offer	a	multitude	of	services.	For	instance,	

one	firm	may	specialize	in	data		classification,	while	another	firm	may	provide	a	product	

optimized	for	data	regression.	Nonetheless,	this	feature-based	rivalry	could	allow	more	

players	to	co-exist	in	this	space.	

2.4	Go	to	Market	Strategy	

Although	GPU	acceleration	has	been	identified	as	a	promising	development,	it	is	

largely	still	in	its	infancy	and	has	not	seen	widespread	adoption	across	multiple	sectors.	

Rather	than	focusing	on	profitability	as	in	traditional	models,	we	will	focus	on	a	strategy	

that	helps	us	gain	market	share.	To	do	so,	we	are	going	to	target	a	particular	subset	of	

companies	that	have	big	data	problems,	specifically	companies	that	have	the	ability	to	

collect	large	amounts	of	data,	but	not	necessarily	access	to	the	computational	power	or	

resources	to	obtain	business	intelligence	from	it.	As	we	have	discussed	earlier,	Fitbit	is	a	

prime	example:	they	have	a	great	capacity	to	gather	information	from	their	devices	as	

an	auxiliary	effect	of	their	product,	but	it	would	require	an	extraordinary	amount	of	

technical	expertise	as	well	as	infrastructure	to	sift	through	the	vast	sea	of	data.	



With	this	in	mind,	our	go	to	market	strategy	has	three	main	emphases.	First,	we	

are	utilizing	a	“plug	and	play”	model	that	emphasizes	fluid	software	integration	to	

encourage	early	adoptions.	Since	we	are	also	going	to	remain	open	source,	this	will	also	

inspire	developers	to	contribute	back	to	our	codebase.	The	stronger	advocates	could	

also	serve	to	evangelize	within	their	companies,	giving	us	stronger	leverage	over	our	

competitors.	Lastly,	the	nature	of	our	product	is	inherently	scalable.	Once	we	have	

written	code	ready	for	production,	the	cost	to	have	an	additional	developer	use	our	

codebase	is	negligible.		

While	customers	may	cite	a	lack	of	technical	support	as	an	obstacle	to	adoption,	

there	exists	an	opportunity	for	startups	like	Databricks	to	gain	customers	through	their	

consulting	services.	Subsequently,	we	could	proactively	establish	potential	partners	with	

companies	like	Databricks	that	operate	on	a	consulting	model,	segmenting	our	solution	

as	the	leading	GPU-accelerated	machine	learning	library.		
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