
Optimal Architecture Selection for an Aircraft

Environmental Control System

John Finn
Alberto L. Sangiovanni-Vincentelli

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-28

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-28.html

May 1, 2016

Copyright © 2016, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Abstract

Cyber Physical Systems (CPS) are characterized by a tight coupling between the
physical and the computational worlds. As system complexity and heterogeneity
increase, it is becoming more difficult to perform design space exploration at the
system level and analyses between the system architecture and control algorithms.
Often, designers are expected to solve combinatorial problems over a large discrete
variable space that is coupled to a continuous space, where expensive, high-fidelity
simulations must be run to achieve the desired accuracy. In this thesis, I build upon
a design methodology, based on the principles of Platform Based Design, to address
the challenges associated with next generation CPS. The CPS design methodology
is a series of three steps including: Architecture Selection, Control Synthesis and
Verification/Optimization. I extend Architecture Selection to support a mixed dis-
crete and continuous design space. The proposed approach is an iterative process,
where a discrete architecture SELECTION engine is placed in a loop with a continu-
ous SIZING engine. First, the SELECTION engine proposes a candidate architecture
to the SIZING engine. Then, the SIZING engine attempts to optimize continuous
parameters subject to formalized design requirements, which are monitored using
simulation. If the SIZING engine cannot find a feasible solution, the SELECTION

engine is queried for another candidate architecture and the process repeats. I illus-
trate the methodology on an industrial case study, namely an aircraft Environmental
Control System. Finally, I show how balance equations and conservation laws can
be used to prune the discrete search space and reduce the number of simulations.
In my experiments, I obtain more than an order of magnitude reduction in design
runtime.

i

Acknowledgements

First and foremost, I must sincerely thank my advisor, Prof. Alberto Sangiovanni-
Vincentelli, for the opportunity and support during my graduate career at the Uni-
versity of California, Berkeley. His guidance and expertise allowed me to grow as
a student and become more independent as an engineer. His exuberant passion for
design has most certainly inspired me and has had such a positive influence on my
future.

I also sincerely thank Pierluigi Nuzzo for his constant collaboration and in-
sight throughout my stay at Berkeley. He always made himself available to provide
helpful discussions and interesting research directions. I very much appreciate all
of his support along the way. I must also thank Prof. Edward Lee, Sanjit Seshia
and Jaijeet Roychowdhury for offering inspiring and fascinating courses in system
design, modeling, simulation, analysis and verification as well as their effective
teaching abilities. I would also like to thank Professors Lee and Seshia for taking
the time to read this thesis.

I greatly appreciate the support from the MuSyc, iCyPhy and TerraSwarm
research centers over the years. I would like to thank the entire iCyPhy community
for their help in creating the models used in my thesis. In addition, I must thank
United Technologies Corporation for their continued support and internships during
my graduate career. I am very grateful for the collaboration with industry, which
has been both fun and interesting. Specifically, I would like to thank Jeff Ernst, Earl
LaVallee, Eelco Scholte and Clas Jacobson.

I also thank all of the members of the DOP Center for fostering an envi-
ronment full of collaboration and excitement. I thank my colleagues: Fabio Cre-
mona, Antonio Iannopollo, Marco Marazza, Nikunj Bajaj, Shromona Ghosh, Al-
berto Puggelli, Baihong Jin, Lianpang Guo, Xuening Sun, Chung-Wei Lin, Michele
Lora, Michael Zimmer, Chris Shaver, Marten Lohstroh, Jon Tamir, Zach Wasson,
Gage Eads, Nishant Tolta, Mohammad Mozumdar, Mehdi Maasoumy and Alexan-
dre Donze for their friendship, support and collaboration. I thank the EECS staff
including Shirley Salanio, Jessica Gamble, Barb Hoversten and Christopher Brooks
for all of their help with administrative tasks, organizing meetings and travel. It has
been a pleasure to work with all of you.

Finally, I must thank my parents and brother for their unwavering love and
support. None of this would have ever been possible without you. Words cannot
express my appreciation for all you have done for me.

ii

Contents

Chapters Page

1 Introduction . 1

1.1 Cyber-Physical Systems . 1

1.2 Platform Based Design for Cyber Physical Systems 2

1.3 Aircraft Environmental Control Systems . 2

1.4 Outline and Contributions . 4

2 Previous Work . 5

2.1 Cyber Physical System Design . 5

2.2 Aircraft Environment Control Systems . 6

3 Methodology . 8

3.1 Optimization Mapping Framework . 8

3.2 Requirement Formalization . 9

3.3 System and Component Modeling . 10

4 ECS Problem Formulation . 12

4.1 System Modeling . 12

4.2 Simulation-based Requirement Formalization 20

4.3 Optimization Problem . 21

4.4 Algorithm Properties . 32

5 Experimental Results . 33

iii

6 Conclusion . 37

6.1 Conclusion . 37

6.2 Future Work . 37

References . 38

iv

List of Figures
Page

1 Aircraft ECS Patent Architecture inspired by [1] . 3

2 Design Methodology for Cyber-Physical Systems inspired by [2] and [3] 6

3 Architecture Selection . 9

4 Simplified ECS Architecture . 13

5 ECS Ducts . 19

6 ECS Physical Structure and Ducts . 19

7 Single Nelder-Mead SIZING Parameter Optimization Trace 35

8 Single Nelder-Mead SIZING Requirement Optimization Trace 36

v

List of Tables
Page

1 Duct Library D. Heat exchanger material library M consists of
materials 1 and 2. 33

2 Model Constants . 34

3 Continuous Design Space P . 34

4 Runtime vs. Library Size . 36

vi

Chapter 1
Introduction
In this chapter, I introduce the notion and challenges of Cyber-Physical System
design and outline how Platform-Based Design can be used to address such chal-
lenges. Then, I provide an overview of aircraft Environmental Control Systems,
which is the design driver for this thesis. Finally, I conclude this chapter with a
summary of contributions.

1.1 Cyber-Physical Systems

Cyber-Physical Systems (CPS) are characterized by a tight coupling of the physi-
cal world to the computational or cyber world. Technology advancements in high
performance embedded processors have enabled the “electrification” of systems for
improved cost, reliability and efficiency. This trend is very apparent in the auto-
motive and aerospace industries [4] as traditionally mechanical, pneumatic or hy-
draulic systems are being replaced in part by embedded processors with various
sensors and actuators. However, this trend poses significant design challenges, es-
pecially for safety critical systems such as cars or airplanes. Challenges arise when
designing and verifying large, complex systems with tightly coupled heterogeneous
domains. Today, more than ever before, CPS span several domains, such as electri-
cal, mechanical, chemical or computational, and there is little support for designers
to analyze tradeoffs between them. For example, designers would like to perform
rich trade studies between the design of the control protocol and the architecture.
However, this often requires solving combinatorial problems with a large discrete
variable space coupled to a continuous space, where expensive, high-fidelity simu-
lations must be run for the desired accuracy.

Traditionally, the design process is carried out according to imprecise re-
quirements, designer experience, previous design iterations or the V-Model [5].
Unfortunately, such practices are typically very manual and ad-hoc, especially at
the interface between domains, and no longer scale with the complexity of today’s
CPS. A severe limitation, which is causing long and costly redesign cycles, is the
inability to foresee the impact of design decisions made early in the design cycle on
the final implementation. Furthermore, design requirements are generally written in
a natural language, and therefore, they are often ambiguous or conflicting, which
usually leads to implementations that do not meet the requirements.

1

1.2 Platform Based Design for Cyber Physical Systems

Platform Based Design (PBD) [6] is a design methodology developed to address the
complexity and design challenges associated with CPS. At its core, PBD formalizes
the design process, raises the level of abstraction and hides unnecessary lower-level
details with abstract models to reduce complexity while enabling efficient design
verification early in the design cycle. More concretely, design is carried out as a
sequence of refinement steps at well-defined levels of abstraction. At each level of
abstraction, a design is selected by a mapping or “meet-in-the-middle” of a top-
down process with a bottom-up process. The top-down process maps the specified
behavior and function (i.e what the system is supposed to do) to a library of avail-
able components. The bottom-up process abstracts away unnecessary details of the
library components to implement the desired behavior. Once the function has been
coupled to the architecture at a given level of abstraction, the outcome becomes the
specification to the next, lower level of abstraction and the process is repeated. De-
sign continues as a sequence of refinement steps until a physical implementation is
achieved. PBD has been successfully deployed in the automotive [7] and consumer
electronic domains [8]. Furthermore, the iCyPhy consortium has been established
to develop and implement PBD methodologies for industrial CPS. In [2], we pro-
pose a CPS design methodology to address CPS design challenges and implement
the methodology for the design of an aircraft Electric Power System’s (EPS) archi-
tecture and supervisory control. The goal of this thesis is to extend this work to a
more complex physical system, namely an aircraft Environmental Control System.

1.3 Aircraft Environmental Control Systems

An aircraft Environmental Control System (ECS) [9] is responsible for condition-
ing the high pressure, high temperature engine bleed air to ensure a comfortable
and fresh cabin for all passengers and crew. A typical ECS architecture is shown in
Figure 1, which is inspired from the patent in [1]. Engine bleed air comes in from
valve 1 on the left and is then fed into the primary heat exchanger, which cools
the bleed air with ambient ram air from the environment. From the primary heat
exchanger, the air is sent to a compressor and then through the secondary heat ex-
changer, which utilizes the same ambient air for further cooling. Then, to remove
moisture in the air, it is passed through a condenser and water separator. After the
condenser, the air is sent through a series of turbines. In Figure 1, there are two by-
pass valves, which control the mixing ratios of air at various temperatures. A mixer
combines the output of turbine 2 with the bypass air and recirculated air from the
cabin. This mixture is then delivered to the cabin. The control of the valves and

2

the ambient ram air flow allow the system to maintain comfortable cabin tempera-
tures, pressures and flow rates, while reacting to disturbances and set point changes
in a timely manner. Finally, air ducts connect all the ECS components to transport
gaseous air from one to another.

In ECS design, the critical design considerations are the individual duct size
and material selection, heat exchanger size (length, area and tube diameter), valve
positions and ram air flow rate. Typically, ducts are selected from a pre-existing
catalog or “off the shelf” as customization is too expensive. In contrast, it is more
cost effective and desirable to customize the heat exchanger sizing for the applica-
tion and design requirements. Therefore, the heat exchanger should be sized on a
continuous spectrum. Similarly, the control variables range continuously between
pre-defined limits. For example, a valve can range from anything between com-
pletely closed to completely open. Hence, for optimal ECS design, designers must
simultaneously reason about continuous and discrete choices. Unfortunately, the
discrete and continuous choices are strongly coupled, and therefore, it is not ef-
fective to separate the two domains. For example, duct sizing is directly related to
maximum flow, where flow is controlled by the valves.

X
Primary

Heat Exchanger

Secondary

 Heat Exchanger

Compressor Turbine 1 Turbine 2

Condenser

X

X

Mixer Cabin

Fan

Engine
Bleed

Air
Valve 1

Bypass Valve 1

Bypass
Valve 2

Ram Air Output

Ram Air Input

H2O

Figure 1: Aircraft ECS Patent Architecture inspired by [1]

3

1.4 Outline and Contributions

The objective of this thesis is to extend the current CPS design methodology in [2],
while also illustrating and implementing the proposed approach on a case study of
industrial interest. This thesis is organized as follows. In Section 2, I outline the
previous work in both CPS design and aircraft ECS design. Then in Section 3, I
outline the proposed methodology for Architecture Selection, while in Section 4, I
show how to implement the methodology and formulate the ECS design problem.
Section 5 summarizes the experimental results. Finally, I end with concluding re-
marks and outline future work in Section 6. The contributions of this thesis are as
follows:

– Propose an Architecture Selection optimization methodology for problems with
a mixed continuous and discrete design space

– Partition the design optimization into separate, but interacting, discrete and con-
tinuous problems, while offering a feedback function to prune the discrete space
and reduce design runtime

– Implement the methodology on a design driver inspired by industry, namely an
aircraft ECS

– Improve upon current ECS design techniques by:
– Formalizing design requirements
– Developing dynamic and static multi-view component models
– Leveraging simulation in the loop to enforce design requirements
– Optimizing over a large design space with the co-design of the architecture
and control

4

Chapter 2
Previous Work
In this chapter, I outline previous work in CPS with respect to the current CPS de-
sign challenges. Then, I give an overview of the current state-of-the-art in aircraft
ECS design.

2.1 Cyber Physical System Design

The work of this thesis follows and fits into the PBD design methodology for CPS
proposed in [2] and [3], which is illustrated in Figure 2 and represents the design
process at one level of abstraction. In this work, we propose a PBD approach to
address the challenges of CPS design and illustrate the approach on an aircraft
Electric Power System (EPS).

First, the designer must formalize the high-level system requirements, which
could be accomplished using assume/guarantee contracts [10], temporal logics (i.e.
LTL [11] or STL [12]) or mathematical constraints. By using formal languages,
requirements no longer suffer from the ambiguity that arises in natural languages.
Requirements formalized in LTL allow automatic, correct-by-construction, control
synthesis [13], while STL allows automatic requirement monitoring during simu-
lation [14]. Once the requirements are formalized, the design process becomes a se-
quence of steps including: Architecture Selection, Control Synthesis and Simulation-
Based Optimization/Verification. Each step leverages a parametrized component li-
brary of various dynamic and static multi-view models, which enable more efficient
design algorithms by hiding unnecessary details. Once complete, the result becomes
the set of requirements for the next (lower) level of abstraction as the design moves
toward an implementation. This principal is known as the fractal nature of design.

The Architecture Selection step aims at synthesizing a plant topology, i.e.
an interconnection of library components, as well as determining optimal parameter
values, i.e. sizing. For the EPS case study in [2], this step is concerned with topology
synthesis (populating an adjacency matrix) while satisfying reliability constraints.
Next, the Control Synthesis step looks to synthesize the high-level supervisory con-
trol logic such as a finite state machine. Within the EPS, the supervisory control is
responsible for the switching logic to route power from source to load under various
fault scenarios and was synthesized from requirements formalized in LTL. Lastly,
the Simulation-based Optimization/Verification looks to verify or optimize other
model constraints or parameters using simulation once the selected architecture has

5

Top-level System Requirements

Lower-level System Requirements

Simulation-based Optimization/Verification

Control Synthesis

Architecture Selection

Steady-state &
Topology Constraints

Control
Constraints

Real-time
ConstraintsTopology &

Component Sizing

Topology &
 Control Protocol

Component Library

Steady-state &
Functional Models

(i.e. Cost, Weight, Reliability)

Discrete Event
(i.e. Temporal Logic)

Continuous Time and
Hybrid Models

(i.e. ODE, DAE)

Figure 2: Design Methodology for Cyber-Physical Systems inspired by [2] and [3]

been coupled to the supervisory control. For the EPS, the tradeoff between the re-
sponsiveness of the control and switch delay was characterized. After Simulation-
based Optimization/Verification, the selected design become the specification of
the next level of abstraction toward an implementation. In this thesis, I follow this
methodology and extend this work by adding continuous design variables to the
Architecture Selection step and deploy the approach on an aircraft ECS.

2.2 Aircraft Environment Control Systems

The current state of aircraft ECS design is very ad-hoc and heavily relies on de-
signer experience and previous design iterations. However, with more strict perfor-
mance requirements and the increasing complexity of more electric architectures,
such design practices do not scale to meet cost and time-to-market requirements.
Current design techniques suffer from informal design requirements and do not ad-
dress the co-design of the control protocol with the physical plant. Furthermore,
these approaches only consider a small design space, which prevents rich trade
studies, overall cost minimization and higher performance. Instead, the result can
be long design cycles, cost overruns and implementations that may not even meet
the requirements.

6

Shang et al., in [15], evaluate three ECS architectures for temperature con-
trol and efficiency, while also comparing the results to experimental data. Similarly,
Tu et al., in [16], also look at the ECS control problem and propose a protocol based
on fuzzy logic. However, in both cases, they only consider design of the control
protocol without any consideration for sizing components (i.e. heat exchanger siz-
ing) nor are system requirements rigorously handled in the design process. In [17],
Mickelin et al. synthesize a correct-by-construction supervisory control protocol
from requirements formalized in LTL along with a state-estimation algorithm, but
again, architecture sizing is not considered. In contrast, Vargas et al., in [18], look
to size the heat exchanger to maximize fuel efficiency, however pay little attention
to control design. In other works such as [19] and [20], the focus is on developing
realistic models of the ECS and validation with experimental data. In what follows,
the heat exchanger model was inspired by [20], while the cabin and valve models
are similar to those in [17]. The most closely related work to this is in [21], where
Perez-Grande et al. look to determine the heat exchanger size along with the bypass
ratio, which is a control variable, to optimize efficiency and volume. As in the pre-
vious cases, the design process is ad-hoc relying on designer experience to make
important decisions at the various steps of the design. In summary, the previous
work in ECS design explores a small design space in a very manual approach.

In contrast, my proposed approach first formulates an optimization sub-
ject to formal design requirements. Then, I optimize ECS design and take into ac-
count the tradeoffs between the control and architecture. The optimization leverages
multi-view models (i.e. cost, weight, safety and behavioral) with simulation in the
loop to ensure design requirements are satisfied, while optimizing cost. To do this,
the combination of discrete design choices, including duct material and size selec-
tion, and continuous design variables, such as heat exchanger size and valve posi-
tion, are considered. The proposed approach formalizes the design process without
relying on designer experience or past designs.

7

Chapter 3
Methodology
This chapter is meant to be a very high-level introduction to the overall method-
ology for mixed discrete and continuous Architecture Selection. The actual imple-
mentation (i.e. cost functions, requirements, models, etc.) of the methodology is
application dependent. I also offer insight to requirement formalization and sys-
tem modeling. The next chapter goes into the details on how to implement such a
methodology on an real, industrial case study.

3.1 Optimization Mapping Framework

The proposed approach is an interaction between a discrete architecture SELECTION

engine and a continuous SIZING optimization engine with simulation. The overall
idea is illustrated in Figure 3. As an input, the design optimization takes system
and component requirements, behavioral and static component models and a cost
function. First, the SELECTION engine optimizes the cost function and proposes a
candidate architecture to the SIZING engine. The candidate architecture or topology
is an interconnection of the library components according to composition rules and
system requirements. Then, the SIZING engine attempts to determine the optimal
value of the continuous design parameters associated with the selected architecture
such as the length of a heat exchanger or position of a valve. Similarly, the SIZ-
ING engine aims to optimize the cost function subject to design specifications and
the selected component’s requirements. If unfeasible, the SIZING engine provides
feedback or a compact reason for unfeasibility to aid the SELECTION optimizer in
finding another candidate solution. Otherwise, the SIZING engine returns a solution.
At this point, the algorithm may or may not terminate. The termination criterion will
depend on the structure of the optimization problem and the application.

It can be very useful to formalize certain domain knowledge to improve
the interaction and feedback between the two optimizations. Being able to extract
information from the SIZING engine to help prune the SELECTION optimization can
drastically improve runtime for large discrete design spaces. For example, I give an
axiom based on conservation of mass to prune the discrete SELECTION search space
in the ECS case study. Similarly, it may also be possible to export information from
the SELECTION optimization to help shrink the continuous design space.

8

Discrete Selection
Engine

(e.g. CPLEX)

Sizing Engine with
Simulation

(e.g. Nelder-Mead)

Selected
Architecture
(i.e. Graph)

Optimal
Sizing or

Unfeasible

Objective Function
(i.e. minimize cost)

System
Architecture

Top-level System
Requirements

Behavioral Models

Library Models
and Constraints

Figure 3: Architecture Selection

3.2 Requirement Formalization

Signal Temporal Logic: Signal Temporal Logic (STL) [12] is an extension of Lin-
ear Temporal Logic (LTL) [11] and gives the ability to formally reason about time
and simulation traces, which makes it very useful within simulation-based method-
ologies. Specifically, STL extends LTL by annotating operators with a time interval.
More formally, STL is a logic defined over real-valued, time-stamped signals, and
I use the STL grammar defined below, which is formally defined in [12].

ϕ := True | µ | ¬ϕ | ϕ1 ∨ ϕ2 |ϕ1 UI ϕ2|

Constraints on a real-valued, time-stamped signal s(t), or predicates, can
be reduced to the form µ = f(s(t)) ∼ π. Let f : Rm → R be a multidimensional
function that evaluates to a scalar, ∼∈ {<,≤, >,≥,=, 6=} be an operator, π ∈
R and µ : R → B be a mapping from a scalar to boolean signal. For example,
the signal s satisfies µ = f(s(t)) > 10 and evaluates to true at time t, written
(s, t) |= µ, if and only if f(s(t)) > 10, otherwise it is false. The grammar also
includes the traditional negation and disjunction operations. The until operator has

9

an interval of the form I = [a, b] associated with it, where 0 ≤ a < b. Formally,
(s, t) |= p U[a, b] q if and only if ∃t′ ∈ [t+a, t+b] s.t. (s, t′) |= p∧q, and ∀t′′ ∈ [t, t′],
(s, t′′) |= p. Furthermore, the traditional future and global operators can be defined
as ♦Ip = T UI p and �Ip = ¬♦I¬p, respectively.

Mathematical Inequalities: Requirements with no dependence on time can be for-
malized using inequality constraints.

3.3 System and Component Modeling

In following the PBD paradigm, system modeling is critical for evaluating design
alternatives or tradeoffs early in the design phase, especially in a simulation-based
framework. The benefits of modeling and simulation for complex, heterogenous
systems are invaluable to reduce design time and cost, while ensuring require-
ments are satisfied. However, it is of upmost importance to characterize accurate
and multi-view models for design. The need for accurate models is obvious, espe-
cially in safety critical systems. Multi-view modeling encourages designers to re-
duce model complexity and improve runtime performance by orthogonalizing con-
cerns. For example, a component may have a separate cost and behavioral model,
and when evaluating functionality, only the behavioral model is necessary. Simi-
larly, the behavioral model can be abstracted away when performing a cost analysis.
In this methodology, I construct models at multiple views to characterize equation-
based behavioral models for simulation and static performance models to build a
library of components.

Dynamic models such as Differential Algebraic Equations (DAE) are gen-
erally more complex than static models, but allow designers to develop low-level
control protocols, evaluate transients and real-time performance. Today, Matlab -
Simulink [23] is the most common system modeling tool used in industry. Simulink
is a data-flow modeling and simulation environment with toolboxes for many phys-
ical domains. As an alternative, Modelica [24] is gaining traction and interest from
industry. Modelica is an object-oriented, acausal modeling language, which allows
designers to declare equations as they appear in physics. Furthermore, since Mod-
elica is just a standardized language, it is tool independent, however, there are a
number of tools that support the language such as Dymola [25], JModelica [26],
Mathematica [27] and OpenModelica [28]. In this thesis, I develop Modelica mod-
els for ECS simulation using JModelica to monitor requirements.

Static modeling allows designers to quickly characterize or abstract compo-
nents using relevant metrics, such as cost, weight or performance, for example. This
type of modeling generally reduces complexity, while allowing designers to evalu-
ate high-level tradeoffs more efficiently. In the proposed approach, I create a library

10

of components characterized by performance, safety and physical attributes. There-
fore, part of the overall design problem is to select the optimal set of components,
with respect to a cost function, while satisfying the requirements.

The critical point in modeling is defining appropriate abstraction layers in
order to efficiently reason between design alternatives, however this is very appli-
cation dependent. In the remainder of this thesis, I validate and show how these
techniques can be effectively and efficiently used on an aircraft ECS.

11

Chapter 4
ECS Problem Formulation
In this chapter, I formulate the ECS design problem. Specifically, I start by describ-
ing the multi-view component models, which include a static library of weight, cost
and safety models with the component behavioral equations implemented in Mod-
elica. Then, I formalize the system and component requirements using STL. Lastly,
I formulate the optimization problem and show how to separate the SIZING and
SELECTION optimization problems, while also proposing a feedback function to
prune the discrete SELECTION design space.

4.1 System Modeling

Dynamic Models

A simplified ECS topology is shown in Figure 4, and in what follows, I describe the
component equations that make up the overall ECS Modelica model. Components
are connected together with a Modelica connector, and in the ECS, this is called
a port, which defines the interface between components. The components are con-
nected pneumatically, and therefore, transfer gaseous air at various temperatures
[K], pressures [Pa] and mass flow rates [kg/s]. The connector construct includes
flow variables such that the sum of these variables equals zero, which, in the ECS,
is used to enforce the mass flow rate entering a port equals the mass flow rate leav-
ing the port (with opposite sign). I use the convention that flows entering a port are
positive, while flows leaving a port are negative. A connector also allows non-flow
variables, which simply enforce equality. The ECS model uses these variables to
enforce the temperature and pressure leaving one component equals the tempera-
ture and pressure entering the connected component. Multiple connections can be
made to single connector.

By using ports, each component is described by DAEs, which describe the
relationships between the temperature, pressure and mass flow rate for each port
of that component. In what follows, let variables with subscript o represent outputs
and subscript i represent inputs, according to the arrows in Figure 4. The arrows
indicate the intended flow and operation of the ECS assuming no back-flow.

As an input, the ECS takes engine bleed air at a fixed pressure Pe and tem-
perature Te, which is cooled using a heat exchanger. The heat exchanger takes am-
bient ram air from the environment at a temperature Ta to cool the bleed air. The

12

ECS has three control inputs including each valve coefficient, C1 and C2, and the
ambient air mass flow rate into the heat exchanger, Fa.

X
Primary

Heat Exchanger

Engine
Bleed Air

Te, Pe Valve 1

Ram Air Input
Ta, Fa

Ram Air Output

Mixer Cabin

Fan

X
Valve 2

Container

T1
P1
F1

T2
P2
F2

T3
P3
F3,1

T3
P3
F3,3

T3
P3
F3,2

T5
P5
F5

T6
P6
F6

T8
P8
F8

T7
P7
F7

T9
P9
F9

C1

C2

Control Variables
Environmental Variables

State Variables

Figure 4: Simplified ECS Architecture

Valve: The valve controls the mass flow rate by restricting the size of the valve
opening, which is controlled byC, the valve coefficient. First, the temperature of air
leaving the valve equals the temperature entering the valve, as shown by Equation 1.
Equation 2 enforces no reverse flow and accounts for choked flow, while describing
the relationship between mass flow rate and pressure. In addition, the valve has a
maximum coefficient such that 0 ≤ C ≤ Cmax.

T = Ti = To (1)

F = Fi = −Fo =

6.67× 10−4CPi

√
1
T

Po <
1
2
Pi

4.72× 10−4C(Pi + 2Po)
√

1
T
(1− Po

Pi
) 1

2
Pi ≤ Po < Pi

0 Po ≥ Pi

(2)

Container: The container has a specified volume V [m3], which is a model param-
eter. The model also includes the mass m [kg] of air contained and corresponding
thermal energy Qc [J], which are state variables. First, Equation 3 requires equal
pressures between the input and output. The output temperature is equal to the air

13

temperature in the container T , which is also shown in Equation 3. Next, Equation 4
is the Ideal Gas Law relating the pressure, output temperature, mass and volume,
where R = 287.058 J/(kg K) is the gas constant for air. Equation 5 describes the
thermal energy as a function of the mass, temperature and Cair = 1003.5 J/(kg K),
which is the specific heat of air.

P = Pi = Po and T = To (3)

P =
mTR

V
(4)

Qc = CairmT (5)

The following equations describe the dynamic behavior of the container.
Equation 6 describes how the mass changes over time as a function of the incoming
and outgoing mass flow rates. Similarly, Equation 7 shows how the thermal energy
changes as a function of the input and output mass flow rates and temperature.
Recall by convention, Fi ≥ 0 and Fo ≤ 0, assuming no backward flow.

d

dt
m = Fi + Fo (6)

d

dt
Qc = Cair(FiTi + FoTo) (7)

Heat Exchanger: The heat exchanger is a component in which two flows of dif-
ferent temperature and at different flow rates are allowed to transfer energy. In this
model, the flows are separated and do not mix. This configuration amounts to cool-
ing the hot flow and heating the cold flow. In the context of the ECS, the heat
exchanger takes hot air from the engine and cools it with ambient cold air from
the ram air door. The model below is based on effectiveness [20]. In addition, the
pressure drop across the hot flow is also taken into account.

It is highly desirable to optimize the size of the heat exchanger, while still
satisfying the design requirements. The parameters to optimize are cross-sectional
area AHX [m2], length LHX [m] and tube diameter DHX [m]. Note, the cross-
sectional area is not the area of heat transfer. Instead, the heat transfer area is a
function of the number n and length LHX of the tubes as well as the cross-sectional
area AHX . Furthermore, one of the control variables of the ECS is the cold air input

14

flow rate Fa, which is controlled by adjusting the ram air door. In the equations
below, a subscript of h denotes the hot side, while a subscript of c denotes the cold
side.

First, what flows into the heat exchanger’s hot/cold side also flows out, so
there is no accumulation of mass, as shown in Equation 8. The control input Fa
is equal to the cold flow input Fc,i. The number of tubes is shown in Equation 9,
which is approximated as a real number. The area for heat transfer AHT is shown in
Equation 10.

Fh,i + Fh,o = 0 and Fc,i + Fc,o = 0 (8)

n =
AHX
D2
HX

(9)

AHT = nπDHXLHX (10)

Next, Equations 11 through 18 describe the algebraic equations of the heat
exchanger, where Cair is the specific heat of air and Cm [J/(kg K)] is the specific
heat of the metal separating the two flows. Using empirical data, the heat transfer
coefficients have been approximated by the linear relationships hh = ahFh,i + bh
and hc = acFc,i + bc, where [ah, bh, ac, bc] = [41.987, 23.049, 6.787, 19.409] × 103

assuming Th,i ≈ 450K and Tc,i ≈ 240K. UA is the overall heat exchanger heat
transfer coefficient multiplied by the area with units of [W/K], and NTU is the
number of transfer units with no units. Finally, the heat exchanger effectiveness is
calculated in Equation 18.

Fmax = max(Fh,i, Fc,i) (11)

Fmin = min(Fh,i, Fc,i) (12)

Ths = Th,i − ε
Fmin(Th,i − Tc,i)

Fh,i
(13)

Tcs = Tc,i + ε
Fmin(Th,i − Tc,i)

Fc,i
(14)

1

UA
=

1

hhAHT
+

1

hcAHT
(15)

15

NTU =
UA

FminCair
(16)

Cr =
Fmin
Fmax

(17)

ε = 1− exp
(
NTU0.22

Cr

(
e−CrNTU0.78 − 1

))
(18)

Next, Equations 19 and 20 describe the heat exchanger dynamics, where
MHX [kg] is the mass of the heat exchanger. Note, the mass MHX and specific heat
Cm depend on the material selected, which is a discrete design variable.

d

dt
Th,o +

UA

MHXCm
(Th,o − Ths) = 0 (19)

d

dt
Tc,o +

UA

MHXCm
(Tc,o − Tcs) = 0 (20)

Lastly, the pressure drop across the hot side of the heat exchanger is modeled
as defined below. A headloss [29] model calculates the pressure drop as a function
of headloss hl and density ρ, which is shown in Equation 21.

∆P = Ph,i − Ph,o = hlρ (21)

The headloss hl is calculated by Equation 22, where f is the friction coeffi-
cient and Vh,i is the velocity [m/s] of the hot flow.

hl =
fLHXV

2
h,i

2DHX

(22)

The velocity is a function of the mass (Wh,i) and volumetric (Qh.i) flow rates
and density as shown in Equation 23.

Vh,i =
4Qh,i

πD2
HX

=
4Fh,i
πρD2

HX

(23)

In general, the density of air can be calculated as ρ = P
RT

, where P is
the pressure and T is the temperature. An acceptable practice is to average the
hot side inlet and outlet densities as ρ =

ρh,i+ρh,o
2

in Equations 21 and 23. Next,

16

the Reynolds number and friction coefficient equations are shown in Equations 24
and 25, respectively. ν is the kinematic viscosity, which is 2.5× 10−5 [m/s2].

Re =
Vh,iDHX

ν
(24)

f =

{
64
Re

0 < Re < 2300
0.316
Re0.25

2300 ≤ Re < 105
(25)

In the context of the ECS design problem, LHX , AHX , DHX and Fc,i are
continuous design parameters, while Cm is a discrete design choice. Note, MHX is
a function ofLHX ,AHX ,DHX and ρm, which is the density of the material selected.

Mixer: The mixer allows multiple input ports to be mixed into a single output port.
Equations 26 through 28 define the algebraic equations of the mixer, where the in-
put ports are indexed by k. The mixer requires all ports to have the same pressure
and also balances the sum of flows and thermal energy.

Po = Pi[k],∀k (26)

Fo = −
∑
k

Fi[k] (27)

FoTo = −
∑
k

Fi[k]Ti[k] (28)

Cabin: The goal of the ECS is to maintain a comfortable environment in the cabin.
The cabin is parameterized by the volume V , thermal energy per passenger Qpass,
the number of passengers n and the heat gain from the environment dQ. The cabin
is also parameterized at a constant pressure Pc, which is acceptable since there is a
release valve to ensure the desired pressure.

Pc = Pi = Po (29)

Just like the container, the Ideal Gas Law also holds as shown in Equa-
tion 30. Let T denote the temperature in the cabin and m the mass of the air within
the cabin. Furthermore, the output cabin temperature To is equal to T .

Pc =
mTR

V
(30)

17

To = T (31)

The thermal energy of the cabin Qcab is shown in Equation 32, which is
constant as enforced by Equation 33. Fl is the air lost to the environment to maintain
pressure.

Qcab = CairmT =
CairPcV

R
= constant (32)

0 =
d

dt
Qcab = Cair

(
FiTi + FoTo + FlTo

)
+ nQpass + dQ (33)

Lastly, the cabin mass m obeys the following differential equation.

d

dt
m = Fi + Fo + Fl (34)

Fan: A fan enforces a specified flow rate, which is given as a parameter Ff . Fur-
thermore, the input and output temperatures are equal.

Ff = Fi = −Fo (35)

To = Ti (36)

Static Models

Ducts and Materials: The air ducts allow gaseous air to flow throughout the system
by connecting each component together. In order to reduce complexity of the dy-
namic Modelica model described above, abstraction is used to simplify the ducts.
Specifically, a static library of ducts with various sizes and materials is created.
Each duct j in the library D is represented by the following tuple: {cj , wj , rj ,
Tj,max, Fj,max, SPj }, which denotes the cost per area, weight per area, radius, max
temperature, max flow rate and specific heat, respectively. It is assumed that the
maximum flow rate is directly related to the duct radius. This assumption simplifies
the plant model by abstracting away the pressure drop across each duct. Let M
be heat exchanger material library, which may consist of the unique materials (i.e.
unique pairs of {wj, SPj}) in D.

18

Furthermore, in order to ensure the size of the ECS is reasonable, the phys-
ical structure as shown in Figures 5 and 6 is assumed. Let T denote the set of ducts
{1, 2, 3, 4, 5} in the topology. The lengths of ducts 1, 2 and 5 are given as l1, l2 and
l5, respectively. However, since the length of the heat exchanger LHX is a design
parameter, the lengths of ducts 3 and 4 are initially unknown. It is assumed that
l3 = l4 = (l2 − LHX)/2.

X
Primary

Heat Exchanger

Engine
Bleed Air

Te, Pe Valve 1

Ram Air Input
Ta, Fa

Ram Air Output

Mixer Cabin

Fan

X
Valve 2

Container

C1

C2

Duct 1 Duct 3 Duct 4

Duct 5

Duct 2

Figure 5: ECS Ducts

Duct 3 Duct 4

Duct 5Duct 1

Duct 2

l1 l4 l5
l2

l3 LHX

Heat
Exchanger

Figure 6: ECS Physical Structure and Ducts

19

4.2 Simulation-based Requirement Formalization

Steady-State Requirements: There are a few key requirements in ECS architec-
ture design [9]. First, to ensure cabin comfort, it is required that the cabin reaches
a comfortable steady-state temperature and maintains a desirable flow of fresh air.
Furthermore for safety, the heat exchanger shall not freeze. Finally, the duct tem-
perature and flow rate must not exceed a maximum value. In order to ensure steady-
state is achieved, a quasi steady-state, where the magnitude of the time-derivatives
are less than σ for 0 < σ << 1, is defined. Note, the time derivative of a state
variable is very easy to obtain in Modelica using the der() function. Furthermore, it
is required that this quasi steady-state is achieved within 15 minutes of startup. Fi-
nally, the requirements are written as safety properties, meaning they should never
be true.
1.0 - The cabin temperature Tc(t) shall reach the interval [294K, 300K] and
steady-state within 15 minutes of startup. The first requirement ensures a com-
fortable temperature is reached, while the second ensures steady-state.

¬♦[15min,∞]

[
Tc(t) < 294K ∨ Tc(t) > 300K

]
(37)

¬♦[15min,∞]

[
|Ṫc(t)| > σ

]
(38)

2.0 - The cabin input flow rate Fc(t) shall reach the interval [0.8 kg/s, 1.2kg/s]
and steady-state within 15 minutes of startup. The first requirement ensures an
adequate flow rate is reached, while the second ensures steady-state.

¬♦[15min,∞]

[
Fc(t) < 0.8kg/s ∨ Fc(t) > 1.2kg/s

]
(39)

¬♦[15min,∞]

[
|Ḟc(t)| > σ

]
(40)

3.0 - The heat exchanger temperature Tx(t) shall not fall below freezing in
steady-state.

¬♦[15min,∞]

[
Tx(t) ≤ 273K

]
(41)

¬♦[15min,∞]

[
|Ṫx(t)| > σ

]
(42)

4.0 - Each duct temperature Ti(t) and flow rate Fi(t) shall not exceed the max-
imum allowed in steady-state. These requirements ensure the safety of each duct,
where i ∈ T represents a duct in the system, Ti,max represents a corresponding
maximum temperature and Fi,max represents a corresponding maximum flow rate.

¬♦[15min,∞]

[
Ti(t) > Ti,max

]
,∀i ∈ T (43)

20

¬♦[15min,∞]

[
Fi(t) > Fi,max

]
,∀i ∈ T (44)

4.3 Optimization Problem

Next, I formulate an optimization problem for the steady-state, open-loop design
space exploration of the ECS. The overall design problem is a minimization of
monetary cost, where the optimizer decides the optimal set of ducts, heat exchanger
size and steady-state control subject to the component and system requirements.
The control parameters of interest are the positions of each valve (C1 and C2) and
the necessary amount of ambient ram air (Fa). The high-level SELECTION problem
selects the ducts from a library as well as the heat exchanger material to minimize
cost subject to a weight constraint. The low-level SIZING optimization sizes the heat
exchanger (LHX , AHX and DHX) and decides the steady-state control values sub-
ject to the system requirements and the behavioral model, while also minimizing
cost. Figure 3 gives a high-level overview of the interaction between the two opti-
mization problems. In this section, I first propose the entire optimization problem
as one, and then describe how to separate it into two interacting subproblems.

ECS Optimization Problem: For duct selection, let si,j = 1 iff library duct j ∈ D
is selected for a duct i ∈ T of the architecture, otherwise si,j = 0. Let, shx,j denote
the heat exchanger material decision variable for j ∈ M, and let S denote the set
of all binary design variables. Furthermore, the cost of a duct Ci for i ∈ T is shown
in Equation 45, and similarly, the weight of a duct Wi is shown in Equation 46. The
equations simply determine the area of material and multiply by the cost or weight
per area of the selected material, assuming an appropriate thickness. Note, C3 and
C4 are also functions of LHX since l3 = l4 = (l2−LHX)/2, and for readability this
is generalized for all Ci. The same is true for the weight.

Ci(S, LHX) = 2πli
∑
j∈D

si,jcjrj (45)

Wi(S, LHX) = 2πli
∑
j∈D

si,jwjrj (46)

Similarly, the cost and weight of the heat exchanger is defined in Equa-
tions 47 and 48 for the selection variable shx,j . In this equation, the area of a single
tube πDHXLHX is multiplied by the number of tubes AHX/D2

HX .

CHX(S,AHX , DHX , LHX) = πLHX
AHX
DHX

∑
j∈M

shx,jcj (47)

21

WHX(S,AHX , DHX , LHX) = πLHX
AHX
DHX

∑
j∈M

shx,jwj (48)

AHX , DHX and LHX are continuous design variables along with the con-
trol variables C1, C2 and Fa, which makes up the continuous parameter space P .
Let p = {AHX , DHX , LHX , C1, C2, Fa} denote an assignment to each continuous
design variable. Maximum and minimum bounds define P as a multi-dimensional
box. Let AHX,min, DHX,min, LHX,min, C1,min, C2,min and Fa,min define the lower
bounds, while AHX,max, DHX,max, LHX,max, C1,max, C2,max and Fa,max define the
upper bounds. Let the cost function be the summation of the cost of each duct and
the heat exchanger as shown in Equations 49.

C(S,AHX , DHX , LHX) = CHX(S,AHX , DHX , LHX) +
∑
i∈T

Ci(S, LHX) (49)

Next, I discuss the constraints. First, the optimization must satisfy the Mod-
elica behavioral model byF(ẋ, x, y, S, p) = 0, where x is the set of differential vari-
ables, y is the set of algebraic variables, S is an assignment to the discrete variables
and p is an assignment to the continuous parameters. Because it is known experi-
mentally that the behavioral model achieves steady-state within 15 minutes of sim-
ulation time, the requirements can be simplified. Therefore, let Tc,ss = Tc(15min),
Tx,ss = Tx(15min) and Fc,ss = Fc(15min) denote the steady state cabin tempera-
ture, heat exchanger temperature and cabin flow rate, respectively and in accordance
with the steady-state requirements formalized in STL. Similarly, let Ti,ss and Fi,ss
represent the steady-state temperature and flow rate of duct i, ∀ i ∈ T . The set of
steady-state requirements are shown in Equation 50.

22

Tc,ss − 300 ≤ 0 (1)

294− Tc,ss ≤ 0 (2)

Fc,ss − 1.2 ≤ 0 (3)

0.8− Fc,ss ≤ 0 (4)

273− Tx,ss ≤ 0 (5)

Tx,ss −
∑
j∈M

shx,jTj,max ≤ 0 (6)

Ti,ss ≤
∑
j∈D

si,jTj,max, ∀i ∈ T (8)

Fi,ss ≤
∑
j∈D

si,jFj,max, ∀i ∈ T (9)

(50)

Specifically, (1) and (2) specify the cabin must settle to a comfortable tem-
perature within [294, 300]K. Requirements (3) and (4) specify the mass flow rate
into the cabin must be within [0.8, 1.2]kg/s, while (5) and (6) specify the heat ex-
changer must not freeze or exceed the maximum temperature allowed by the se-
lected material. Requirements (7) and (8) ensure the maximum temperature and
flow rate of each topology duct is not exceeded. The weight requirement is formal-
ized below given a maximum weight Wmax.

W (S,AHX , DHX , LHX) = WHX(S,AHX , DHX , LHX)+
∑
i∈T

Wi(S, LHX) ≤ Wmax

Lastly, another set of constraints must be added to ensure a duct is selected
for each duct in the topology T and a material for the heat exchanger, which is
shown below in Equation 51.

∑
j∈D

si,j = 1, ∀i ∈ T and
∑
j∈M

shx,j = 1 (51)

23

Now, the optimization problem for ECS design is formally stated in Equa-
tion 52.

minimize
p∈P,S∈{0,1}(|T |+1)×|D|

C(S,AHX , DHX , LHX)

subject to F(ẋ, x, y, S, p) = 0

W (S,AHX , DHX , LHX) ≤ Wmax

Tc,ss − 300 ≤ 0

294− Tc,ss ≤ 0

Fc,ss − 1.2 ≤ 0

0.8− Fc,ss ≤ 0

273− Tx,ss ≤ 0

Tx,ss −
∑
j∈M

shx,jTj,max ≤ 0

Ti,ss ≤
∑
j∈D

si,jTj,max, ∀i ∈ T

Fi,ss ≤
∑
j∈D

si,jFj,max, ∀i ∈ T∑
j∈D

si,j = 1, ∀i ∈ T∑
j∈M

shx,j = 1

(52)

Next, I present a scheme to solve this nonlinear, mixed integer program with
simulation in the loop. Specifically, I separate the problem into a binary architec-
ture SELECTION problem and a continuous SIZING optimization. The SELECTION

engine will solve for the binary matrix S and propose a candidate solution to the
continuous SIZING engine to determine an assignment of p ∈ P . In order to split
the problem, the cost and weight functions are rewritten as shown in Equations 53
and 54, respectively.

C(S,AHX , DHX , LHX) =
AHXLHX
DHX

Cf1(S) + LHXCf2(S) + Cf3 (53)

W (S,AHX , DHX , LHX) =
AHXLHX
DHX

Wf1(S) + LHXWf2(S) +Wf3 (54)

24

First, I leverage a very convenient property of the cost and weight functions
in Equations 53 and 54. It can be shown for our continuos design space P and com-
ponent librariesD andM, that the cost and weight functions in Equations 53 and 54
are monotonically increasing with LHX and AHX and monotonically decreasing in
DHX . Therefore, cost and weight are minimized when AHX = AHX,min, LHX =
LHX,min and DHX = DHX,max. However, it is unknown if this assignment satisfies
the steady-state requirements, which requires simulation. Therefore, I propose the
following setup for the bi-level optimization algorithm.

The process begins by solving the SELECTION problem assuming the best
case scenario for minimal cost and weight, AHX = AHX,min, LHX = LHX,min and
DHX = DHX,max, which is denoted as p̂. At iteration k, the SELECTION engine
proposes the candidate solution S∗k with cost C∗k , along with the duct and system
constraints, to the continuous SIZING engine to find a feasible heat exchanger size
and steady state control. After executing the SIZING engine, one of three things can
happen: (1) the SIZING engine returns no solution; (2) the SIZING engine returns a
less than ideal solution i.e. at least one of the following is true A∗HX > AHX,min,
L∗HX > LHX,min or D∗HX < DHX,max; or (3) the SIZING returns the ideal solution
i.e. A∗HX = AHX,min, L∗HX = LHX,min and D∗HX = DHX,max.

Under case (1), the SIZING engine returns no solution and it must ask the
SELECTION engine for another candidate solution and rerun the continuous opti-
mization on the new solution. In this case, a super set of the proposed solution S∗k is
added to a set of constraints U enforcing the rejected assignment is not found again.
In addition to simply adding the exact SELECTION solution to the set of rejected
assignments and constraining against it in the next iteration, it would be very useful
to explore different FEEDBACK functions to reject multiple discrete assignments at
each SELECTION iteration. If case (2) occurs, the cost must re-evaluated since at
least one of the following are A∗HX , L∗HX or D∗HX are no longer ideal. Let this up-
dated cost from the sizing engine be C∗∗k > C∗k , and let Cbest be the current lowest
cost found. If this solution is the current lowest cost option found, i.e. C∗∗k < Cbest,
it may not be the overall optimal solution and termination is not safe. In general,
there may be a more expensive discrete assignment, i.e C∗k+z ≥ C∗k for some z > 0,
but the SIZING engine is able to further reduce the cost, i.e C∗∗k+z < C∗∗k . Therefore,
the SELECTION engine must be queried for another solution by adding S∗k to U .
This process repeats until the SELECTION engine returns a best case cost that is
more expensive than the current lowest cost solution, i.e. C∗k > Cbest, or if Case (3)
C∗k = C∗∗k occurs. At this point, a near optimal solution has been found, and it is
safe to terminate. The algorithm is shown explicitly in Algorithm 1.

It can be proven that if C∗k > Cbest, it is safe to terminate the SELECTION

optimizer early. Because the SELECTION function assigns the best case assignment

25

(LHX = LHX,min,AHX = AHX,min,DHX = DHX,max) andC(S,AHX , DHX , LHX)
is monotonically increasing in AHX and LHX and decreasing in DHX , the contin-
uous problem cannot decrease the cost i.e. C∗k ≤ C∗∗k ∀ k ≥ 1. Therefore, since
C∗k > Cbest is assumed, C∗∗k > Cbest is also true, and it is safe to terminate. Sim-
ilarly, it is safe to terminate if C∗k = C∗∗k because further iterations can never de-
crease the cost. Next, I go into the exact details of the SELECTION and SIZING

optimization engines within Algorithm 1.

Algorithm 1 ECS Architecture Exploration
Input: Duct/Material Library D/M, Steady State Requirements R, Modelica
Model F , Topology T , Wmax

Output: Duct and material assignment matrix Sbest, cost Cbest and parameters pbest
U ← {}
Cbest ←∞
Sbest ← {}
pbest ← {}
k ← 1
while true do

(S∗k , C∗k)← SELECTION(D,M, U , T , Wmax, p̂)
if S∗k == {} and Cbest ==∞ then

return NO SOLUTION

else if C∗k ≥ Cbest or S∗k == {} then
return (Sbest, pbest, Cbest)

(p∗k, C∗∗k)← SIZING(F ,R, Wmax, D,M, S∗k)
if C∗∗k < Cbest then

Cbest ← C∗∗k
Sbest ← S∗k
pbest ← p∗k

if C∗k == C∗∗k then
return (Sbest, pbest, Cbest)

U = U∪ FEEDBACK(S∗k , p
∗
k,F ,D,M)

k ← k + 1

26

SELECTION: The discrete SELECTION engine selects ducts and the heat exchanger
material from a library using the various component attributes including weight,
cost, radius, max temperature and max flow rate, which is shown in Equation 55 for
a given maximum weight Wmax and duct lengths li for i ∈ {1, 2, 5}.

minimize
S∈{0,1}(|T |+1)×|D|

C(S,AHX,min, DHX,max, LHX,min)

subject to W (S,AHX,min, DHX,max, LHX,min) ≤ Wmax (1)∑
j∈D

s3,jFj,max − s4,jFj,max = 0 (2)∑
j∈D

s1,jFj,max − s5,jFj,max ≤ 0 (3)∑
j∈D

si,jTj,max ≥ Te,∀i ∈ {1, 2, 3} (4)∑
j∈D

si,j = 1, ∀i ∈ T (5)∑
j∈M

shx,j = 1 (6)

fu(S,D,M) ≤ 0, ∀ u ∈ U (7)

(55)

Constraint (1) ensures the system does not exceed the maximum weight.
Constraints (2) and (3) help prune the search space by taking advantage of the bal-
ance equations enforcing conservation of flow. Such constraints can be found by
pre-processing the topology. For example, the flow through duct 3 must equal the
flow through duct 4 because no mass is accumulated in the heat exchanger. There-
fore, the size of duct 3 should be equal to the size of duct 4. A similar relationship
can be found for ducts 1 and 5, however, since duct 5 must be large enough for the
recirculated air from the cabin, it becomes an inequality. Furthermore, the topol-
ogy and component models can also be pre-processed to realize the valves do not
change the air temperature. Therefore ducts 1, 2 and 3, must have a maximum tem-
perature to accommodate the input environment temperature Te, which is shown in
constraint (4). Constraints (5) and (6) ensure a duct is selected for each duct in the
topology as well as a material for the heat exchanger. Lastly, Constraint (7) ensures
that rejected assignments are not found again. Let U represent a set of integer-linear
constraints that rule out rejected assignments from the SIZING engine. Then, let
fu(S,D,M) ≤ 0 ∈ U denote a constraint that enforces a previous solution is not
found again. For example, fu(S,D,M) = s1,1 would ensure library duct 1, is never
again selected for topology duct 1. Furthermore,

27

fu(S,D,M) = 1.0−
∑
j∈D

s1,jFj,max

would ensure the max flow through topology duct 1 is at least. 1.0 kg/s. The rejected
assignments come from the SIZING engine if a solution that satisfies the constraints
cannot be found. This problem can be efficiently solved in IBM CPLEX [30].

SIZING: The SIZING engine looks to determine the heat exchanger’s cross-sectional
area (AHX), length (LHX) and tube diameter (DHX) as well as determining the
steady control parameters including C1, C2 and Fa. The optimization aims to min-
imize the overall cost of the ECS, and therefore, it is sufficient to minimize C(S∗,
AHX , DHX , LHX), where S∗ is the solution found by the SELECTION engine. Re-
call, p = {AHX , LHX , DHX , Fa, C1, C2} is a configuration assignment to the
continuous design variables within the box P . The optimization problem is shown
in Equation 56

minimize
p∈P

C(S∗, AHX , DHX , LHX)

subject to F(ẋ, x, y, S, p) = 0

Tc,ss − 300 ≤ 0 (1)

294− Tc,ss ≤ 0 (2)

Fc,ss − 1.2 ≤ 0 (3)

0.8− Fc,ss ≤ 0 (4)

273− Tx,ss ≤ 0 (5)

Tx,ss −
∑
j∈M

s∗hx,jTj,max ≤ 0 (6)

Ti,ss −
∑
j∈D

s∗i,jTj,max ≤ 0, ∀i ∈ T (7)

Fi,ss −
∑
j∈D

s∗i,jFj,max ≤ 0, ∀i ∈ T (8)

W (S∗, AHX , DHX , LHX)−Wmax ≤ 0 (9)

(56)

Constraints (1) - (9), denoted by the setR, specify the system requirements.
Specifically, (1) and (2) specify the cabin must settle to a comfortable temperature
within [294, 300]K. Requirements (3) and (4) specify the mass flow rate into the
cabin must be within [0.8, 1.2]kg/s, while (5) and (6) specify the heat exchanger

28

must not freeze or exceed the maximum temperature. Requirements (7) and (8) en-
sure the maximum temperature and pressure of each topology duct is not exceeded.
Finally, requirement (9) ensures the weight requirement is still met.

To solve this problem, I take advantage of the Nelder-Mead [31] direct
search algorithm, which is already built into JModelica. Nelder-Mead is a very
convenient optimization algorithm for black-box functions and simulation in the
loop because it does not require derivatives. However, since Nelder-Mead does not
support explicit constraints, I resort to adding them as a penalty to the objective
function of an unconstrained optimization. Let fr(x, y, S, p) for r ∈ R denote the
set of constraints such that fr(x, y, S, p) ≤ 0 ∀r ∈ R. Let λr be the penalty as-
sociated with constraint r. An advantage to using a penalty function is that it is
easy to obtain a reason for unfeasibility and which constraints are violated. The
unconstrained optimization subject to the behavioral model becomes the following:

minimize
p∈P

C(S∗k , AHX , DHX , LHX) +
∑
r∈R

λrmax{0, fr(x, y, S, p)}

subject to F(ẋ, x, y, S, p) = 0

(57)

Non-convex, black-box optimizations can be very sensitive to the initial
guess. Therefore, the sizing algorithm is run on a user-defined number of itera-
tions and initial guesses, which will largely depend on the structure of the Modelica
behavioral model and the continuous design space.

If the SIZING engine returns an unfeasible solution, the current assignment
S is sent to a FEEDBACK function and the output is added to the rejected set, i.e
U ← FEEDBACK(S∗k , pk,F ,D,M) ∪ U , of the SELECTION optimization problem.
Note, the FEEDBACK function may add more than one constraint to U at each itera-
tion. Then, the SELECTION optimization is executed again and followed by another
SIZING optimization. The process continues until an optimal solution is found. In
what follows, two different FEEDBACK functions are evaluated.

FEEDBACK: The most simple FEEDBACK function is to only enforce the exact
previous discrete assignment is not found again, which is referred to as NAIVE

feedback. Let A(S) = {si,j, shx,l | si,j = 1, shx,l = 1, i ∈ T , j ∈ D, l ∈ M}

29

represent a SELECTION assignment, i.e. only the variables in S that are assigned to
one. More specifically, NAIVE feedback is shown in Equation 58.

NAIVE(S) =
∑

s∈A(S)

s ≤ |A(S)| − 1

s.t. A(S) = {si,j, shx,l | si,j = 1, shx,l = 1, i ∈ T , j ∈ D, l ∈M}
(58)

However, this method will only eliminate one assignment at a time, which
is inefficient, especially if the simulations are expensive or the discrete SELECTION

space is large. If instead, a smaller, more compact set can be obtained, many dis-
crete assignments can be eliminated at each iteration, which will drastically improve
runtime. Next, I will describe one method to help prune the discrete search space.
Furthermore, I will leave other methods as future work.

One way of eliminating multiple discrete assignments at each iteration would
be to enforce only the combination of selected components whose requirements are
violated in the SIZING engine are not repeated. I will refer to this approach as IM-
PATIENT feedback and will describe an approach with this idea in mind. In general,
this approach may rule out feasible solutions, especially if the root cause of unfea-
sibility is not due to the components whose requirements are violated. However, I
define an axiom related to duct size and maximum flow, which rules out the risk
of missing feasible solutions due to conservation of mass. Since cost is minimized,
this approach amounts to increasing the duct size, which increases cost. Intuitively,
if the flow constraint on Duct 1 in Figure 5 is violated, increasing the maximum
flow (i.e. duct size) for any of the other ducts will not fix the violation on Duct
1. Therefore, it is far more efficient to only constrain against this current size for
Duct 1 instead of the entire discrete solution. A similar thought process can be used
for the other ducts and the temperature requirements to define FEEDBACK rules.
In fact, the only way increasing the size of a duct, whose constraints are satisfied,
may help push another duct to feasibility, is if the two ducts are in parallel. For
example, lets assume ducts A and B are in parallel and duct A’s flow requirement
is violated. Assuming conservation of mass, increasing the maximum flow through
duct B gives the control the ability to route more air through duct B and reduce the
amount through duct A.

More formally, let F k
i,ss represent the steady-state flow rate through duct

i ∈ T at SELECTION iteration k, and let VkF be the corresponding set of ducts with

30

violated flow constraints, which is shown in Equation 59. Let the superscript k of
ski,j represent the SELECTION solution at iteration k.

VkF = {i ∈ T | F k
i,ss >

∑
j∈D

ski,jFj,max, i ∈ T , j ∈ D} (59)

Let Hi denote the set of ducts in parallel with duct i, including duct i. The
setHi can be determined from the balance equations of the topology. For example,
in this balance equation of flow variables, f1 − f2 − f3 = 0, it is known f2 and f3
are in parallel and both are in series with f1. For ducts without any other duct in
parallel (i.e.Hi = {i}), a constraint is added to U to increase its duct size as shown
in Equation 60, and let KFS denote the set of such constants. Let the superscript
k + 1 of sk+1

i,j represent the next iteration’s SELECTION variables. Note, at iteration
k + 1, the solution at the previous iteration k is constant. Therefore, constraints are
added to eliminate all assignments with the previous violated maximum flow rates.
Intuitively, temperature constraints behave the same way as series flow constraints.
Therefore, let VT represent the ducts with temperature violations and KT represent
this set of constraints.

KFS =
⋃

i∈Vk
F s.t. Hi={i}

∑
j∈D

sk+1
i,j Fj,max >

∑
j∈D

ski,jFj,max (60)

For ducts in parallel, one of them must increase its size, which is shown in
Equation 61. Let this set of constraints be KFP .

KFP =
⋃

n∈Vk
F s.t. Hn 6={n}

∑
i∈Hn

∑
j∈D

sk+1
i,j Fj,max >

∑
i∈Hn

∑
j∈D

ski,jFj,max (61)

Finally, the IMPATIENT feedback method is shown in Equation 62. Note,
IMPATIENT depends on the selected sizing p, behavioral model F and the libraries
D andM because it must check (simulate) for violations. If there are no duct viola-
tions, the NAIVE approach is used. In the Experimental Results section, I evaluate
this heuristic for the ECS.

IMPATIENT(S, p,F ,D,M) =

{
KT ∪ KFS ∪ KFP if VT ∪ VF 6= {}
NAIVE(S) else

(62)

31

4.4 Algorithm Properties

Unfortunately, the SIZING function implemented with Nelder-Mead is neither sound
nor complete because it is dealing with an infinite design space with black-box func-
tions. However, the methodology in no way restricts users to particular optimization
algorithms. In fact, designers are encouraged to exploit the structure of the problem
and leverage appropriate optimization algorithms or approximations for better guar-
antees and faster results. I outline this as a future work for the ECS.

32

Chapter 5
Experimental Results
In this section, I illustrate the experimental results from implementing the Architec-
ture Selection methodology on the ECS. First, the problem is setup with the various
constants within the ECS Modelica model and the component library. The duct li-
brary is shown in Table 1. Note, the same library is used for the heat exchanger
material selection. Materials 1, 4, 7, 10 and 13 are aluminum, 2, 5, 8, 11 and 14 are
steel and 3, 6, 9, 12 and 15 are composite. Let the heat exchanger material library
M consist of materials 1 and 2, only. Next, a table of the fixed constants and pa-
rameters within the Modelica behavioral model are shown in Table 2. Note, the heat
exchanger massMHX and specific heatCm depend on the material selected. Table 3
shows the continuous design space P , and a weight requirement of wmax = 44.5 kg
is used. Lastly, the duct lengths are: l1 = 0.1m, l2 = 0.5m and l5 = 0.25m.

ID rj (m) Fj,max (kg/s) Tj,max (K) cj($/m2) wj (kg/m2) SPj(J/(kg K))
1 0.1660 0.400 455 5.50 2.17 900
2 0.1660 0.400 800 3.00 3.85 450
3 0.1660 0.400 330 41.50 0.75 NA
4 0.2630 1.250 455 5.50 2.17 900
5 0.2630 1.250 800 3.00 3.85 450
6 0.2630 1.250 330 41.50 0.75 NA
7 0.2286 0.870 455 5.50 2.17 900
8 0.2286 0.870 800 3.00 3.85 450
9 0.2286 0.870 330 41.50 0.75 NA
10 0.2032 0.695 455 5.50 2.17 900
11 0.2032 0.695 800 3.00 3.85 450
12 0.2032 0.695 330 41.50 0.75 NA
13 0.1534 0.304 455 5.50 2.17 900
14 0.1534 0.304 800 3.00 3.85 450
15 0.1534 0.304 330 41.50 0.75 NA

Table 1: Duct Library D. Heat exchanger material libraryM consists of materials
1 and 2.

The boolean SELECTION problem is solved very quickly using IBM CPLEX.
Over an entire design space exploration execution, the average time to solve a sin-
gle SELECTION problem in CPLEX is on the order of a few milliseconds. Because
JModelica is implemented in Python, I leveraged PuLP [32], which is a Python API
for CPLEX, to connect the two optimization problems. Not surprisingly, nearly all

33

Component Name Value Units
All Cair 1003.5 J/(kg K)
All R 287.058 J/(kg K)

Container V 0.0049 m3

Heat Exchanger ah 41.987 × 103 W/(K m2)
Heat Exchanger bh 23.049 × 103 J/(K m2 Kg)
Heat Exchanger ac 6.787 × 103 W/(K m2)
Heat Exchanger bc 19.409 × 103 J/(K m2 Kg)
Heat Exchanger ν 2.5 × 10−5 m/s2

Cabin V 141.58 m3

Cabin Qpass 90 W
Cabin n 200 -
Cabin dq 0 W
Cabin P 101.325 kPa
Fan Ff 0.3042 kg/s

Environment Te 450 K
Environment Pe 350 kPa
Environment Ta 240 K

Table 2: Model Constants

of the computational effort is spent on simulation in the SIZING engine, which is
very characteristic of black-box optimization problems with simulation in the loop.

A single SIZING optimization trace using the Nelder-Mead algorithm is
shown in Figures 7 and 8 for λr = 1000 ∀ r ∈ R. Figure 7 shows how the op-
timal design parameters vary across each iteration for a given initial guess. Loosely
speaking, the goal is to minimize LHX and AHX and maximize DHX , all while
determining the steady-state control values of the valves and ram air usage. The
red lines indicate the parameter bounds (P), while the blue lines indicate the op-
timization traces. However, the performance and component requirements must be
satisfied as well. Figure 8 shows how the penalty function is able to drive the op-
timization parameters from a region where the cabin and heat exchanger require-
ments are all violated into a region where they are satisfied.

Name AHX (m2) DHX (m) LHX (m) F4 (kg/s) C1 (msK0.5) C2 (msK0.5)

Lower Bound 0.15 0.001 0.20 0.5 0.01 0.01
Upper Bound 0.30 0.005 0.40 1.0 0.08 0.08

Table 3: Continuous Design Space P

34

10 20 30 40 50 60 70
0.15
0.20
0.25
0.30

m
^

2 Cross-sectional Area

10 20 30 40 50 60 70
0.001
0.002
0.003
0.004
0.005

m

Tube Diameter

10 20 30 40 50 60 70
0.20
0.25
0.30
0.35
0.40

m

Length

10 20 30 40 50 60 70
0.02
0.04
0.06
0.08

m
*s

*K
^

0
.5

C1
C2

10 20 30 40 50 60 70
Iteration

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

kg
/s Fa

Figure 7: Single Nelder-Mead SIZING Parameter Optimization Trace

Next, the two optimization problems are coupled together to find an optimal
ECS architecture using both NAIVE and IMPATIENT feedback. The SIZING engine
is executed on three random starting points for each discrete solution. The initial
guess includesAHX = AHX,min,LHX = LHX,min andDHX = DHX,max, while Fa,
C1 and C2 are randomly chosen from a uniform distribution. Initially, Algorithm 1
was executed on the first six library elements in Table 1. For the NAIVE approach,
where the feedback from the SIZING engine only eliminates one discrete assignment
at a time, Algorithm 1 converged to a solution after 17 SELECTION iterations and
51 SIZING iterations. The optimization took 3.72 hours to explore 62,496 total con-
figurations. The optimal feasible cost was found to be $112.39, with a SELECTION

assignment of {s1,4, s2,1, s3,4, s4,4, s5,4, shx,1} and a SIZING of {AHX = 0.15 m2,
DHX = 0.005 m, LHX = 0.20 m, Fa = 0.72 kg/s, C1 = 0.08 m · s · K0.5,
C2 = 0.08m ·s ·K0.5}. Next, the IMPATIENT feedback approach was implemented,
which converged to the same optimal cost, but only took 2 SELECTION iterations
and 0.36 hours.

Finally, I show how the runtime scales with the size of the library from
Table 1 in Table 4. There is a very large reduction in runtime for the IMPATIENT

feedback function, especially in cases where the NAIVE function timed out. For

35

10 20 30 40 50 60 70
200

250

300

350

K

Tc
Tx

10 20 30 40 50 60 70
Iteration

0.4

0.6

0.8

1.0

1.2

kg
/s

Fc

Figure 8: Single Nelder-Mead SIZING Requirement Optimization Trace

each library, there is more than an order of magnitude reduction in design runtime.
All tests were executed on a Intel Xeon 3.59 GHz processor with 24 GB of RAM.

Library NAIVE IMPATIENT

Size Discrete
Choices Cost Discrete

Iterations Simulations
Run
Time
(hr)

Cost Discrete
Iterations Simulations

Run
Time
(hr)

6 15,552 $112.39 17 62,496 3.72 $112.39 2 5,812 0.36
9 118, 098 $112.03 72 257,141 15.42 $112.03 4 13,329 0.83
12 497,664 18hr Timeout $111.63. 6 21,418 1.34
15 1,518,750 21hr Timeout $111.14 9 31,874 1.91

Table 4: Runtime vs. Library Size

36

Chapter 6
Conclusion

6.1 Conclusion

In conclusion, I first summarized a design methodology based on principals of PBD
to address the challenges associated with next generation CPS. The methodology
consists of three steps, each leveraging parameterized, multi-view dynamic and
static component models. Then, I proposed an extension with respect to the pre-
vious work to support both a discrete and continuous design space for Architecture
Selection. The proposed approach is an iterative process between a discrete archi-
tecture SELECTION engine and a continuous SIZING engine, which is implemented
on an aircraft ECS. The SELECTION engine selects a set of air ducts and a material
for the heat exchanger to minimize cost subject to a weight requirement. Then, the
SIZING engine attempts to find a heat exchanger size, valve positions and ambient
ram flow rate that satisfies the system and component requirements, while also min-
imizing cost. When the SIZING engine fails to find a feasible solution, I explore an
IMPATIENT feedback method to prune out many discrete solutions each at iteration
by using conservations laws. I show the IMPATIENT method can improve the design
runtime by more than an order of magnitude when deployed on the ECS.

6.2 Future Work

In the future, I plan to extend the design problem to the full patent ECS plant
shown in Figure 1, which would include developing turbine, compressor and mois-
ture/humidity models. I also would like to explore the design for transient behavior
in addition to steady-state. In this direction, it would be necessary to formalize tran-
sient requirements as well as designing the low-level control protocol such as PID
control gains to close the loop. Finally, another possible direction is to explore the
performance of various optimization algorithms and feedback functions.

37

References
1. J. Warner, “Environmental Control System Condensing Cycle,” Patent EP 0

542 909 B1, 09 28, 1994.
2. P. Nuzzo, M. Xu, N. Ozay, J. B. Finn, A. Sangiovanni-Vincentelli, R. Murray,

A. Donze, and S. Seshia, “A Contract-Based Methodology for Aircraft Electric
Power System Design,” IEEE Access, November 2014. [Online]. Available:
http://icyphy.org/pubs/35.html

3. P. Nuzzo, A. Sangiovanni-Vincentelli, and R. Murray, “Methodology and Tools
for Next Generation Cyber-Physical Systems: The iCyPhy Approach,” IN-
COSE, June 2015.

4. A. Fisher, C. Jacobson, E. A. Lee, R. Murray, A. Sangiovanni-Vincentelli, and
E. Scholte, “Industrial Cyber-Physical Systems - iCyPhy,” in Proc. Complex
Systems Design & Management (CSD&M). Springer, December 2013, pp.
21–37, paris, France. [Online]. Available: http://icyphy.org/pubs/34.html

5. K. Forsberg, H. Mooz, D. K. Forsberg, M. Harold, and M. Co-principals, “Sys-
tem Engineering for Faster, Cheaper, Better,” 1998.

6. A. Sangiovanni-Vincentelli, “Quo Vadis, SLD? Reasoning About the Trends
and Challenges of System Level Design,” Proc. IEEE, no. 3, pp. 467–506,
2007.

7. A. Benveniste, W. Damm, A. Sangiovanni-vincentelli, D. Nickovic, and
R. Passerone, “Contracts for the Design of Embedded Systems Part I: Method-
ology and Use Cases.”

8. P. Nuzzo, A. Sangiovanni-Vincentelli, X. Sun, and A. Puggelli, “Methodology
for the Design of Analog Integrated Interfaces Using Contracts,” Sensors Jour-
nal, IEEE, vol. 12, no. 12, pp. 3329–3345, Dec 2012.

9. M. Dechow and C. Nurcombe, “Aircraft environmental control systems,” in Air
Quality in Airplane Cabins and Similar Enclosed Spaces, ser. The Handbook of
Environmental Chemistry, M. Hocking, Ed. Springer Berlin Heidelberg, 2005,
vol. 4H, pp. 3–24. [Online]. Available: http://dx.doi.org/10.1007/b107234

10. A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger, and
K. G. Larsen, “Contracts for System Design,” Research Report RR-8147, Nov.
2012. [Online]. Available: https://hal.inria.fr/hal-00757488

11. A. Pnueli, “The temporal logic of programs,” in Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, ser. SFCS ’77.
Washington, DC, USA: IEEE Computer Society, 1977, pp. 46–57. [Online].
Available: http://dx.doi.org/10.1109/SFCS.1977.32

38

http://icyphy.org/pubs/35.html
http://icyphy.org/pubs/34.html
http://dx.doi.org/10.1007/b107234
https://hal.inria.fr/hal-00757488
http://dx.doi.org/10.1109/SFCS.1977.32

12. O. Maler and D. Nickovic, “Monitoring temporal properties of continuous
signals,” in In: Proceedings of FORMATS-FTRTFT. Volume 3253 of LNCS.
Springer, 2004, pp. 152–166.

13. T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray, “TuLiP:
A Software Toolbox for Receding Horizon Temporal Logic Planning,”
in Proceedings of the 14th International Conference on Hybrid Systems:
Computation and Control, ser. HSCC ’11. New York, NY, USA: ACM,
2011, pp. 313–314. [Online]. Available: http://doi.acm.org/10.1145/1967701.
1967747

14. A. Donzé, “Breach, a Toolbox for Verification and Parameter Synthesis of
Hybrid Systems,” in Proceedings of the 22Nd International Conference on
Computer Aided Verification, ser. CAV’10. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 167–170. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-14295-6 17

15. L. Shang, G. Liu, and P. Hodal, “Development of High Performance Aircraft
Bleed Air Temperature Control System With Reduced Ram Air Usage,” Con-
trol Systems Technology, IEEE Transactions on, vol. 18, no. 2, pp. 438–445,
March 2010.

16. Y. Tu and G. P. Lin, “Dynamic Simulation of Aircraft Environmental
Control System Based on Flowmaster,” Journal of Aircraft, vol. 48, no. 6,
pp. 2031–2041, Nov. 2011. [Online]. Available: http://arc.aiaa.org/doi/abs/10.
2514/1.C031433

17. O. Mickelin, N. Ozay, and R. Murray, “Synthesis of correct-by-construction
control protocols for hybrid systems using partial state information,” in Ameri-
can Control Conference (ACC), 2014, June 2014, pp. 2305–2311.

18. J. V. C. Vargas and A. Bejan, “Thermodynamic optimization of finned cross-
flow heat exchangers for aircraft environmental control systems,” vol. 22, pp.
657–665, 2001.

19. R. Romani, L. Carlos, and S. Goes, “CABIN TEMPERATURE CONTROL
MODEL FOR COMMERCIAL,” no. Cobem, pp. 9311–9326, 2013.

20. D. Dias, E. L. Zaparoli, M. E. Gomes, W. H. L. Turcio, E. Brasileira, and
B. F. Lima, “DYNAMIC MODELING OF AN AERONAUTICAL AIR CON-
DITIONING SIMPLE AIR CYCLE MACHINE,” no. 1995, 2010.

21. I. Pérez-Grande and T. J. Leo, “Optimization of a commercial aircraft
environmental control system,” Applied Thermal Engineering, vol. 22, no. 17,
pp. 1885–1904, Dec. 2002. [Online]. Available: http://linkinghub.elsevier.com/
retrieve/pii/S1359431102001308

22. C. Baier and J.-P. Katoen, Principles of Model Checking (Representation and
Mind Series). The MIT Press, 2008.

39

http://doi.acm.org/10.1145/1967701.1967747
http://doi.acm.org/10.1145/1967701.1967747
http://dx.doi.org/10.1007/978-3-642-14295-6_17
http://dx.doi.org/10.1007/978-3-642-14295-6_17
http://arc.aiaa.org/doi/abs/10.2514/1.C031433
http://arc.aiaa.org/doi/abs/10.2514/1.C031433
http://linkinghub.elsevier.com/retrieve/pii/S1359431102001308
http://linkinghub.elsevier.com/retrieve/pii/S1359431102001308

23. Matlab/simulink - simulation and model-based design. [Online]. Available:
http://www.mathworks.com/products/simulink

24. Modelica - a unified object-oriented language for systems modeling. [Online].
Available: https://www.modelica.org/

25. Dymola. [Online]. Available: http://www.modelon.com/
26. Jmodelica. [Online]. Available: http://www.jmodelica.org/
27. Mathematica - systemmodeler. [Online]. Available: http://www.wolfram.com/

system-modeler/
28. Openmodelica. [Online]. Available: https://www.openmodelica.org/
29. R. Fox and A. McDonald, Introduction to fluid mechanics. Wiley, 1985.

[Online]. Available: http://books.google.com/books?id=JZlRAAAAMAAJ
30. IBM ILOG CPLEX Optimizer. [Online]. Available: www.ibm.com/software/

integration/optimization/cplex-optimizer/
31. J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,”

Computer Journal, vol. 7, pp. 308–313, 1965.
32. PuLP. [Online]. Available: https://pypi.python.org/pypi/PuLP

40

http://www.mathworks.com/products/simulink
https://www.modelica.org/
http://www.modelon.com/
http://www.jmodelica.org/
http://www.wolfram.com/system-modeler/
http://www.wolfram.com/system-modeler/
https://www.openmodelica.org/
http://books.google.com/books?id=JZlRAAAAMAAJ
www.ibm.com/software/integration/optimization/cplex-optimizer/
www.ibm.com/software/integration/optimization/cplex-optimizer/
https://pypi.python.org/pypi/PuLP

	Introduction
	Cyber-Physical Systems
	Platform Based Design for Cyber Physical Systems
	Aircraft Environmental Control Systems
	Outline and Contributions

	Previous Work
	Cyber Physical System Design
	Aircraft Environment Control Systems

	Methodology
	Optimization Mapping Framework
	Requirement Formalization
	System and Component Modeling

	ECS Problem Formulation
	System Modeling
	Simulation-based Requirement Formalization
	Optimization Problem
	Algorithm Properties

	Experimental Results
	Conclusion
	Conclusion
	Future Work

	References

