Sequential Quadratic Programming for Task Plan
Optimization

Christopher Lin

=i

WL REFLELL

i
']
|

i
i|

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-218
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-218.html

December 16, 2016

Copyright © 2016, by the author(s).
Al rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Acknowledgement

| would like to thank my advisor, Pieter Abbeel, for inspiring, guiding, and
supporting me throughout my undergraduate and graduate studies. | am
very grateful to Dylan Hadfield-Menell for mentoring me. | would also like
to thank Rohan Chitnis and Stuart Russell for all their contributions in this
work. Finally, | would like to thank my friends and family for all their love
and support.

This research was funded in part by the NSF NRI program under award
#1227536, and by the Intel Science and Technology Center (ISTC) on
Embedded Systems.

Preface

This work was done in collaboration with several colleagues. The final version was presented
[6, D. Hadfield-Menell, C. Lin, R. Chitnis, S. Russell and P. Abbeel] at the 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) with the initial version
presented [13, C. Lin*, D. Hadfield-Menell*; R. Chitnis, S. Russell and P. Abbeel] ! at the
2016 ICAPS Workshop on Planning and Robotics (PlanRob).

I* denotes equal contribution.

i

Abstract

We consider the problem of refining an abstract task plan into a motion trajectory. Task
and motion planning is a hard problem that is essential to long-horizon mobile manipulation.
Many approaches divide the problem into two steps: a search for a task plan and task plan re-
finement to find a feasible trajectory. We apply sequential quadratic programming to jointly
optimize over the parameters in a task plan (e.g., trajectories, grasps, put down locations).
We provide two modifications that make our formulation more suitable to task and motion
planning. We show how to use movement primitives to reuse previous solutions (and so save
optimization effort) without trapping the algorithm in a poor basin of attraction. We also
derive an early convergence criterion that lets us quickly detect unsatisfiable constraints so
we can re-initialize their variables. We present experiments in a navigation amongst movable
objects domain and show substantial improvement in cost over a backtracking refinement
algorithm.

iii
Acknowledgments

I would like to thank my advisor, Pieter Abbeel, for inspiring, guiding, and supporting me
throughout my undergraduate and graduate studies. I am very grateful to Dylan Hadfield-
Menell for mentoring me. I would also like to thank Rohan Chitnis and Stuart Russell for
all their contributions in this work. Finally, I would like to thank my friends and family for
all their love and support.

This research was funded in part by the NSF NRI program under award #1227536, and
by the Intel Science and Technology Center (ISTC) on Embedded Systems.

v

Contents

Contents iv
1 Introduction 1
1.1 Motivation 1
1.2 Contributions 2
1.3 Related Work 3
2 Trajectory Optimization with Sequential Quadratic Programming 4
2.1 Motion Planning as Constrained Trajectory Optimization 4
2.2 Sequential Quadratic Programmingo)
3 Task and Motion Planning 9
3.1 Problem Formulation 9
3.2 Example Domain: Navigation Amongst Movable Objects 10
4 Task Plan Optimization 13
4.1 Abstract Plans Encode Trajectory Optimizations 13
4.2 Trajectory Reuse Lo 15
4.3 Early Detection of Unsatisfiability 17
5 Experiments 18
5.1 Methodology 18
5.2 DISCUSSION e 20
6 Conclusion and Future Work 21

Bibliography 22

Chapter 1

Introduction

1.1 Motivation

Long-horizon mobile manipulation planning is a fundamental problem in robotics. Viewed as
trajectory optimization, these problems are wildly non-convex and direct motion planning is
usually infeasible. Viewed as a classical planning problem, there is no good way to represent
the geometry of the problem efficiently in a STRIPS or PDDL representation.

The robotics and planning communities have studied the problem of task and motion
planning (TAMP) as a way to overcome these challenges. TAMP integrates classical task
planning methods, that can handle long horizons, with motion planning approaches, that
can handle complex geometry. Recent years have seen a variety of approaches to finding
feasible task and motion plans [1, 5, §].

The approach to TAMP in [18, 1] relies on three components: a black box classical planner
that ignores geometry to find an abstract task plan, a black box motion planner that can
determine motion plans for a given abstract action, and an interface that shares information
between the two different planners. Task plans consist of bound object references (e.g., can;)
and unbound pose references (e.g., pose;). Pose references are continuous parameters that
are characterized by a set of constraints. For example, a task plan may require that pose;
be a grasping pose for can;.

The process of motion planning for an abstract plan is called plan refinement. If plan
refinement for a given task plan fails, the interface updates the task planner with information
that lets it plan around the failure. In this project report, we present a method for the task
plan refinement component of this system. Most task plan refinement approaches rely on a
backtracking search over the parameters of the plan to connect a sequence of independently
solved motion plans. These approaches often create solutions with high path costs because
not all of the plan parameters are optimized with cost in mind. To illustrate why this might
happen, consider a household robot whose goal is to grab a shirt from the closet but a chair
obstructs its path. To determine where to move the chair, the robot will sample a feasible
location. If the location is not optimized with respect to cost, the robot may place the chair

CHAPTER 1. INTRODUCTION 2

L e

a) Straight line b) Backtracking) Intermediate) Final
1n1t1ahzat10n. solutlon. Solutlon. Solutlon.

Figure 1.1: The robot, shown in red, moves a green can to the goal location. The backtrack-
ing solution samples and fixes a trajectory waypoint. This leads to an unnecessarily long path.
(c) and (d) show an intermediate and final trajectory computed by running sequential quadratic
programming on the task plan.

far away from the chair’s current location instead of moving it just enough so that it isn’t
obstructing the closet anymore.

1.2 Contributions

We present an approach for task plan refinement which jointly optimizes over all of the
parameters and trajectories in a given abstract plan. This leads to final solutions with
substantially lower cost, when compared with approaches that compute motion plans for each
high level action independently. Figure 1.1 shows an example that compares the result from
joint optimization with the result from a backtracking search. Our approach has applications
to systems that use a similar decomposition and as a trajectory smoother for general TAMP
algorithms.

The optimization problems we consider are highly non-convex. We rely on randomized
restarts to find solutions: if we fail to converge, we determine variables associated with in-
feasible constraints and sample new initial values. After a fixed budget of restarts, we return
to the task planning layer and generate a new task plan. We contribute two algorithmic
modifications that facilitate efficient randomized restarts.

The first modification uses a minimum velocity projection [4] of the previous solution
to re-initialize trajectories. This preserves the overall global structure of the trajectories
without trapping new solutions in the same basin of attraction. The second modification is
an early convergence criterion that checks to see if a constraint is likely to be unsatisfiable.
This allows us to restart more frequently and reduces solution time.

CHAPTER 1. INTRODUCTION 3

1.3 Related Work

The most closely related work largely comes from plan-skeleton approaches to task and
motion planning. These are approaches that search over a purely discrete representation of
the problem and then attempt to refine the task plans they obtain. One advantage of these
approaches is that all the geometric decisions can be considered together. This is especially
important when the geometric decisions early on in the plan effect the feasibility of actions
much later in the plan.

Toussaint [8] also considers joint trajectory optimization to refine an abstract plan. In-
stead of achieving a symbolic goal, his approach optimizes a specific objective. To optimize
the objective, his approach optimizes at three levels, first the end state or the final config-
uration of all the objects, then the kinematic switches (e.g. establishment of a grasp and
releasing an object) and lastly over the entire path. The first two levels of optimization
is similar to our initialization scheme in which we solve the motion planning problem with
only the constraints at intermediate states. However, the problems we consider are different.
The problems they consider are difficult because the intermediate states are complicated
structures that must satisfy stability constraints. In contrast, the problems we consider are
difficult because motion planning problems are hard to solve. This leads us to focus on
trajectory re-use and early convergence detection.

Lozano-Pérez and Kaelbling [14] consider a similar approach. They enumerate plans that
could possibly achieve a goal. For each such abstract plan, they discretize the parameters in
the plan and formulate a discrete constraint satisfaction problem. They use an off-the-shelf
CSP solver to find a trajectory consistent with the constraints imposed by the abstract plan.
Our approach to refinement draws on this perspective, but we do not discretize the plan
parameters; instead, we use continuous optimization to set them.

Lagriffoul and Andres [11] define the fluents in their task planning formulation in a similar
way to ours. They use these constraint definitions to solve a series of linear programs to
obtain intervals over the plan parameters. As they assign values to plan parameters during
geometric backtracking, they solve more linear programs to narrow the intervals and detect
infeasibilities, effectively reducing the effort of the geometric backtracking search. This is
similar to the initialization steps that we and [8] use, in that it only considers the intermediate
states.

For the pick-and-place domain, Zhang and Shah’s approach [20] optimizes for cost by
incorporating the cost of individual actions into the task planning level. They formulate
task planning as a traveling salesman problem which they model as a weighted graph. As
they refine the task plan into a motion plan, they update the edges with the cost of the motion
plan and replan if the motion plan’s cost is greater than their estimate by a predetermined
threshhold. However, the robot poses connecting each action’s motion plans aren’t optimized
over. Our approach is complementary to theirs because we focus on the optimality of the
motion plan for a given task plan whereas they focus on the optimality of the task plan.

Chapter 2

Trajectory Optimization with
Sequential Quadratic Programming

Our approach uses sequential quadratic programming to do task plan refinement. In this sec-
tion, we describe the motion planning algorithm from [17], which applies sequential quadratic
programming to motion planning.

2.1 Motion Planning as Constrained Trajectory
Optimization

A core problem in robotics is motion planning: finding a collision-free path between fixed
start and goal poses. A motion planning problem is defined by:

e a configuration space of robot poses

e a set of obstacles O

e an initial and goal configuration.

We define configuration spaces by a set of feasible robot poses X and a dynamics constraint.
The dynamics constraint is a Boolean function f : X x X — {0,1}. It takes as input a pair
of poses p1, po and is 1 iff py is directly reachable from p;.

Figure 1.1 shows a 2D motion planning problem that will serve as the starting point
for a running example. The pose of the robot is represented by a pair (z,y). We let X
be a bounding box so = € [0,7] and y € [—2,7]. The dynamics function ensures that the
distance between subsequent states of the trajectory is always less than a fixed constant:
f(p1, p2) = (11 — P2 < dinaz)-

There are three main approaches to motion planning that are used in practice: discretized
configuration space search [2], randomized motion planners [10], [12], and trajectory opti-
mization [17], [16]. In this work, we build on trajectory optimization approaches.

The downside of trajectory optimization approaches is that they are usually locally op-
timal and incomplete, while the other approaches have completeness or global optimality
guarantees. The upside of trajectory optimization is that it scales well to high dimensions

CHAPTER 2. TRAJECTORY OPTIMIZATION WITH SEQUENTIAL QUADRATIC
PROGRAMMING 5

and converges quickly. The second property is useful in a task and motion planning context
because it quickly rules out infeasible task plans.

Trajectory optimization generates a motion plan by solving the following constrained
optimization problem.

: 2

2.1
min Tl (2.1)
subject to flr,) =1

SD(1t,0) > dsape Yo € O

To = Po, T = Pr

We optimize over a fixed number of waypoints 7, with ¢ = 0, ..., T. The objective ||7]||? is
a regularizer that produces smooth trajectories. A standard choice is the minimum velocity

regularizer
17112 =Y 1 = 7
t

The first constraint is the dynamics constraint that ensures that the pose at time ¢+ 1 is
reachable from the pose at time t. The second constraint is a collision avoidance constraint.
It requires that the distance! from any robot pose to an object be larger than a fixed safety
margin. The final constraint ensures that the trajectory begins (resp. ends) at the initial
(resp. final) pose.

2.2 Sequential Quadratic Programming

[17] applied sequential quadratic programing (SQP) to trajectory optimization. Practically,
this treats a robot trajectory as variables in a mathematical program and applies standard
solution algorithms. SQP is an iterative non-linear optimization algorithm that can be seen
as a generalization of Newton’s method. [15] Ch. 18 describes several variants of SQP.
The most important attribute of SQP for trajectory optimization is that it can typically
solve problems with very few function evaluations. This is useful in trajectory optimization
because function evaluation (i.e., collision checking) is a computational bottleneck.

SQP minimizes a non-linear f subject to equality constraints h; and inequality constraints

9i-
min f(x) (2.2)
subject to hi(z) =0 i=1,...,n¢
gi(x) <0 t=1,..., Nineg

IThis is actually the signed-distance, which is negative is the robot and object overlap.

CHAPTER 2. TRAJECTORY OPTIMIZATION WITH SEQUENTIAL QUADRATIC
PROGRAMMING 6

Loosely speaking, the approach iteratively applies two steps. The first is to make a convex
approximation to the constraints and objective in Equation 2.2. We write the approximations

as f,hi, g;. SQP makes a quadratic approximation to f and linear approximations to the
constraints h;, g;.

Once we have obtained a convex local approximation we can minimize it to get the next
solution (Y. We need to ensure that the approximation is accurate so we impose a trust-
region constraint. This enforces a hard constraint on the distance between x® and z(+1).

Let f,h;, g; be convex approximations to f, h;, g;. The optimization we solve is

min f+u (Z i) +) |§i($)|+) (2:3)
1 1
subject to |z — 29| <6 (2.4)

where ¢ is the trust-region size. The ¢;-norm to penalize constraint violations results
in a non-smooth optimization, but can still be efficiently minimized by standard quadratic
programming solvers. We elect to use an ¢;-norm, as opposed to an ¢, norm, because it
drives constraint violations to 0 and performs well with large initial constraint deviations.
Algorithm 1 shows pseudocode for this optimization method.

As an example, consider the behavior of SQP on the motion planning problem from
Figure 2.1. The initial pose is in the top right at location (0, 2) and the target pose is around
a corner at location (3.5,5.5). We initialize with an infeasible straight line trajectory. We
use 20 time-steps for our trajectory. We let the x coordinate for the robot take values in
[0,7] and the y coordinate take values in the range [—2,7]. The corresponds to the following
trajectory optimization:

20
TtE[OT%IXI%—Zﬂ tz_; HTt N Tt+1||2
subject to |7t — Te1| < dinaz
SD(r, Wall) > dsg e

70 = (7,3)

To0 = (3,7)

The first step of the algorithm makes a linear approximation to the signed distance
constraint. The details of the approximation can be found in [17]. The first image shows
this initialization and superimposes the local approximation to the signed distance constraint
on top of it. It pushes each pose towards the outside of the walls.

The next step of the algorithm minimizes the approximation to this constraint subject
to a trust region constraint. This makes progress on the objective, so we accept the move
and increase the size of the trust region. After several iterations, we obtain the trajectory

CHAPTER 2. TRAJECTORY OPTIMIZATION WITH SEQUENTIAL QUADRATIC
PROGRAMMING 7

Algorithm 1 /; Penalty Sequential Quadratic Programming [15].

Define: SQP((E(O), f7 {hz}7 {gl})
Input: initial point z(?), the function being minimized f, a set of non-linear equality
constraints {h;}, a set of non-linear inequality constraints {g;}.
/* increase the penalty for violated nonlinear constraints in each iteration */
for = 10°,10%,10%. .., fiynee do
fori=1,..., ITER_LIMIT do
/* compute a quadratic approximation for f*/
fﬁ {]{z}v {g~z} = ConvexifyProblem(f, {hz}v {gz})
for j=1,2,... do
z = argmin, f + p (1 [hi(@)| + X ()|)
subject to |2 — 2| < § and linear constraints
if Truelmprove / Modellmprove > ¢ then
/* expand trust region */
0 < improve_ratio - §
break
end if
/* shrink trust region */
0 < decrease_ratio - §
if converged() then
/* converge if trust region too small or current solution is a local optimum */
return locally optimal solution x*
end if
end for
end for
end for

in the middle of the image. At termination we arrive at the motion plan in the left most
image: a collision-free, locally-optimal trajectory.

CHAPTER 2. TRAJECTORY OPTIMIZATION WITH SEQUENTIAL QUADRATIC
8

PROGRAMMING

Y =

(a) Initialization (b) Optimization (c) Final trajectory
Figure 2.1: Trajectory optimization for a 2D robot. The gradient from the collision information

pushes the robot out of collisions despite the infeasible initialization.

Chapter 3

Task and Motion Planning

In this section, we formulate task and motion planning (TAMP). We present an example
formulation of the navigation amongst moveable objects (NAMO) as a TAMP problem. We
give an overview of the complete TAMP algorithm presented in [1].

3.1 Problem Formulation

Definition 1 We define a task and motion planning (TAMP) problem as a tuple
<T,O,FP,FD,[,G,U>.'

T a set of object types (e.g., movable objects, trajectories, poses, locations).

O a set of objects (e.g., cany, grasping_poseg, locations).

Fp a set of primitive fluents that collectively define the world state (e.g., robot poses,
object geometry). The set of primitive fluents, together with O, defines the configu-
ration space of the problem.

Fp a set of derived fluents, higher-order relationship between objects defined as boolean
functions that depend on primitive fluents.

I a conjunction of primitive fluents that defines the initial state.

G a conjunction of (primitive or derived) fluents that defines the goal state.

U a set of high-level actions (e.g., grasp, move, putdown). Each high-level action
a € U is parametrized by a list of objects and defined by: 1) a.pre, a set of pre-
conditions, fluents that describe when an action can be taken; 2) a.post, a set of
post-conditions, fluents that hold true after the action is performed; and 3) a.mid a
set of mid-conditions, fluents that must be true while the action is being executed.

A state in a TAMP problem is defined by a set of primitive fluents. Note that this defines
the truth value of all derived fluents. The solution to a TAMP problem is a plan

T = {so, (CLU,TO), st (CLl,Tl), . (aN’I,TN’l),sN}.

CHAPTER 3. TASK AND MOTION PLANNING 10

The s are states, defined as a set of primitive predicates that are true. The a’ are the actions
in the plan. 7¢ is the trajectory for action i and is defined as a sequence of states. A valid
solution satisfies the following constraints.

The first state is the initial state: s° € I.

Pre-conditions are satisfied: a’.pre € s°.

Mid-conditions are satisfied: a‘.mid € 7} Vt.

Post-conditions are satisfied: a’.post € s+,

Trajectories start in the states that precede them and end in the states that follow
i+1

them: 7§ = s', 74 = s
e The final state is a goal state: G € s".

Our formulation differs from the standard formulation of TAMP in two ways. The first
is that we explicitly differentiate between primitive fluents and derived fluents. We use the
difference between the two types of fluents to distinguish between variables and constraints
for the optimization in Section 4.

The second difference is the introduction of mid-conditions. These are invariants: con-
straints that must be satisfied on every step on of a trajectory that implements a high-level
actions. Mid-conditions define the space of trajectories than can implement a given high-level

action. An example mid-condition is a collision avoidance constraint.

3.2 Example Domain: Navigation Amongst Movable
Objects

Here, we formulate a 2D version of the navigation amongst moveable objects (NAMO) prob-
lem [19]. In our domain, a circular robot navigates a room full of obstructions. If the robot
is next to an object, it can attach to it rigidly via a suction cup. In the top middle of our
domain is a closet. The robot’s goal is to store objects in, or retrieve objects from, the
closet. Thus, we call the problem the 2D closet domain (CL-2D-NAMO). This domain is
characterized as follows.

Object types T. There are six object types: 1) robot, a circular robot that can move,
pick, and place objects; 2) cans, cylinders throughout the domain that the robot can grasp
and manipulate; 3) walls, rectangular obstructions in the domain that the robot can not
manipulate; 4) poses, vectors in R? that represent robot poses; 5) locs, vectors in R? that
represent object poses; and 6) grasps, vectors in R? that represent grasps as the relative
position of the grasped object and robot.

Objects O. There is a single robot, R. There are N movable objects: cany, ... ,cany. There
are 8 walls that make up the unmovable objects in the domain: wally, ... ,wallg. Robot poses,
object locs, and grasps make up the remaining objects in the domain. The are continuous
values so there are infinitely many of these objects. Robot poses and object locs are contained
in a bounding box around the room B. Grasps are restricted to the be in the interval [—1, 1]%.

CHAPTER 3. TASK AND MOTION PLANNING 11

Primitive Fluents Fp. The primitive fluents in this domain define the state of the
world. We define the robot’s position with a fluent whose sole parameter is a robot pose:
robotAt(?rp-pose). We define an object’s loc with a similar fluent that is parametrized by
an object and a loc: objAt(?o-can 7ol-loc).

Derived Fluents Fp. There are three derived fluents in this domain. The first is a
collision avoidance constraint that is parametrized by an object, a loc, and a robot pose:
obstructs(?obj-can ?loc-loc ?rp-pose). This is true when ?obj and the robot overlap at their
respective locations and poses. It is defined as a constraint on the signed distance: SD(?obj,
R) > dsafe-

We determine if the robot can pick up a can with isGraspPose(7obj-can ?rp-pose ?loc-
loc). This is true if a robot at 7rp touches the can at location ?loc. This is implemented as
an equality constraint on signed distance: SD(R, can) = e. We use this to determine when
the robot can pick up the object, and when it can put it down.

Once the robot has picked up an object, we need to ensure that the grasp is maintained
during the trajectory. We do this with inManip(?obj-can 7g-grasp), which is parametrized
by a can and a grasp. It is defined by an equality constraint on the respective positions of
the object and the robot: (robotAt(?rp) A objAt(?obj ?loc) = 7rp-?loc = ?g). If the robot
is holding an object (i.e., inManip is true for some object and grasp) then it is treated as
part of the robot in all signed distance checks.

Dynamics. The dynamics of this problem are simple. The robot has a maximum distance it
can move during any timestep. The objects remain at their previous location. The inManip
fluent ensures that held objects are always in the same relative position to the robot.

High-level actions U. We have four high-level actions in our domain: MOVE, MOVEWITH-
OBJ, PICK, and PLACE.

The MOVE action moves the robot from one location to another, assuming it holds no
object. We use 7rp; to represent the robot pose at time ¢ within the move action’s trajectory.
MOVE(?rpl-pose “rp2-pose)

pre robotAt(?rpl)

A (V ?obj-can, ?g-grasp — inManip(?obj 7g)
mid (V ?c-can, 7l-loc = obstructs(?c, 71 7rp;))
post robotAt(7rp2)

The MOVEWITHOBJ action is similar to the move action. The primary difference is that
the preconditions require that the robot be holding an object and that said object remain
rigidly attached to the robot.

MOVEWITHOBIJ(?rpl-pose ?rp2-pose 7obj-can 7g-grasp)
pre robotAt(?rpl) A inManip(?obj 7g)
mid (V 7c-can, 7l-loc = obstructs(?c, 71 7rp;))
A inManip(7obj 7g)
post robotAt(?rp2)
The final two actions pickup objects from locations and put them down. They only

CHAPTER 3. TASK AND MOTION PLANNING 12

consist of a single timestep, so they have no mid-conditions. In order to pick up an object,
the robot must be holding nothing and be next to the object. To put an object down it must
be currently held and the robot has to be in the appropriate relative location.
PICK(?obj-can ?l-loc ?rp-pose 7g-grasp)
pre robotAt(?rp) A objAt(7obj 71)
A (V ?c-can, ?g-grasp — inManip(7c 7g)
A isGraspPose(7obj 7rp 71)
mid ()
post inManip(7obj ?7g)
PLACE(7obj-can 7l-loc ?rp-pose ?g-grasp)
pre robotAt(?rp) A inManip(?obj ?g)
A isGraspPose(7obj 7rp 71)
mid ()
post — inMaip(?obj 7g) A objAt(?obj 71)

13

Chapter 4

Task Plan Optimization

A common operation in task and motion planning is plan refinement. This is the process of
converted a partially specified abstract plan into a fully specified trajectory. We focus on a
special case of plan refinement where all discrete variables are fixed by the task plan. This
is a common type of abstract plan that is used in, e.g., [8],[14], [1], and [11].

First, we describe how our formulation of task and motion planning encodes a joint
trajectory optimization over intermediate states and plan parameters. Then, we discuss our
trajectory initialization and reuse schemes. These are important in light of the size and non-
convexity of the trajectory optimization problems we consider. We show how the movement
primitives of [4] can be used to leverage previous solutions to guide initialization. Finally,
we give an algorithm for early detection of infeasibility. This is crucial for task and motion
planning, because it is important to fail fast if no motion planning solution exists.

4.1 Abstract Plans Encode Trajectory Optimizations

We adopt the view taken in [8] that abstract plans encode trajectory optimizations. In our
formulation, we maintain a precise connection between pre-conditions and effects of actions
and the trajectory optimizations those actions encode. Before describing the optimization
formulation in general, we go through an example from the CL-2D-NAMO domain.

Example: Trajectory Optimization for a Pick-Place

Consider an abstract task plan for the cL-2D-NAMO domain.

MOVE(IPinit 8P1)

PICK(cany clin gp1 g1)

MOVEWITHOBI(gp; pdp; can; gi)

PLACE(can; ¢lyo pdp1 g1)

This plan moves to a grasping pose for cany, picks up can;, moves to a goal location, and then
places the object at the goal. The parameters plan refinement determines are the continuous

CHAPTER 4. TASK PLAN OPTIMIZATION 14

action parameters: the grasping pose, gpi; the grasp to use, g;; and the putdown pose, pdp;.

Setting the values for these parameters defines the intermediate states in the plan, so
these variables are directly constrained by the pre-conditions and post-conditions of actions
in the plan.

Next, we need to find trajectories through the state space that connect these intermediate
states. The variables in the trajectory optimization will be a sequence of world states. We
fully determine the world state by setting a value for each primitive predicate, so we optimize
over the continuous parameters for a sequence of primitive predicates, subject to the mid-
conditions from the high-level action and dynamics constraints. This results in the following
trajectory optimization:

min Z |7 — 7'to+1||2 + Z |7 — Tt2+1|’2'

gp1,91,pdp1,70,72

subject to) = TDinits Tp = gP1

7o = gp1, 71 = pdp)
|7_t0 - 7_to—s-1| <9
| — 7—z€2+1| <0

Vo € O SD(1),0) > dsufe

Yo € O SD(17,0) > dsage
isGraspPose(cany, clini, gp1)
isGraspPose(cany, clgoq, pdps)

inManip(cany, g1)

The constraints on the start and end of the trajectories come from the robot At preconditions.
The final inManip constraint holds for every state in 72. Each constraint defined above is
either linear or a signed distance constraint. This means that the problem is suitable for the
sequential quadratic programming approach described in Section 2.

Converting a General Abstract Plan to a Trajectory Optimization

To translate a general high-level action A(py, ps, ...) we apply the following sequence of
steps. First, determine the parameters in the high-level action that are not set. Second,
determine the variables for a trajectory for this action. In our formulation, these are defined
by the set of primitive predicates. In the cL-2D-NAMO domain, this adds variables for robot
poses and object locations.

Now that we have a set of variables, we can add in constraints. We iterate through A’s
pre-conditions. We add them as constraints on the parameters of the action and the first
state in the trajectory. We repeat that process with the post-conditions and the last state
in the trajectory. Finally, we add A’s mid-conditions as constraints on each intermediate

CHAPTER 4. TASK PLAN OPTIMIZATION 15

(a) Previous trajectory. (b) Straight line. (¢) £a-norm. (d) Minimum velocity.

Figure 4.1: Trajectory (a) has collisions, so the robot end pose is resampled. (b) initializes with a
straight line trajectory, and needs to rediscover the path around the wall. (c) uses an 12-norm to
find a similar trajectory with the new end point. This doesnt change the trajectory enough to get
to a new basin of attraction. The minimum-velocity trajectory (d) adapts to the new endpoint but
reuses information from the previous trajectory.

step of the trajectory. Algorithm 2 shows pseudocode to set up and refine this trajectory
optimization.

The sequential quadratic programming approach that we use is a local improvement
algorithm, so good initialization leads to faster convergence. Bad initializations often fail
to converge, even when a solution exists. This is a difficult challenge in regular trajectory
optimization and trajectories considered here are substantially longer than those considered
in typical motion planning.

To deal with this challenge, we use the structure of our formulation to help guide search.
We define a distribution over continuous values for each parameter type, called a genera-
tor [9]. Our first step in initialization uses these generators to obtain initial values for each
parameter. After, we need to initialize trajectories and make sure the the parameters are
self-consistent. We do this with an optimization that considers the trajectory costs but only
includes constraints at end states. Finally, we add in all constraints and optimize the full
problem.

4.2 'Trajectory Reuse

Often, the first attempt at refinement fails to converge. Figure 4.1 (a) shows an example of
one such trajectory. The initial grasp pose was sampled on the wrong side of the object, so it
is unreachable. At this point, we want to use a randomized restart to try to find a solution.
However, completely starting over from scratch as in Figure 4.1 (b) is undesirable because we
throw away a lot of information. In particular, the previous trajectory has figured out that

CHAPTER 4. TASK PLAN OPTIMIZATION 16

it should go around the corner, not through it. The optimization can figure this out again,
but it will require a lot of collision checks and will increase the total time. This problem
gets much worse with very long plans (e.g., 20 different move actions). If a single action has
no feasible trajectory, we do not want to throw away the rest of the solution.

We would like to re-initialize only the variables in violated constraints. This often fails
because the rest of the plan has too much ‘inertia:’ it has already settled into a local
optimum and so the first step of the optimization moves the re-initialized variables back to
their previous (infeasible) values.

Algorithm 2 Refining an Abstract Task Plan

Define: PLANOPT(7)
Input: partially specified abstract plan .
/* iterate through high-level actions in the plan */
for a € m.ops do
params = GetVariables(a)
for p € a.preconditions do
p-AddConstraint(params, 7)
end for
for p € a.postconditions do
p.AddConstraint(params, 7%)
end for
for p € a.midconditions do
fort=2,....,T—1do
p.AddConstraint(params, 7/*)
end for
end for
end for
/* call SQP to optimize all the 7¢ */

Instead, we run an optimization that keeps re-initialized variables at their (new) values
and propagates the changes to the rest of the trajectory. This is done by minimizing the norm
of the changes in the trajectories. The choice of trajectory norm is important. Figure 4.1
(c) shows what happens if this projection is performed under an ¢s-norm. Although some
of the trajectory moves to account for the new parameters, enough of it is stuck behind the
object that the optimization is still stuck in the same basin of attraction.

[4] formulates movement primitives as projections under different norms in a Hilbert
space of trajectories. We adopt their approach and use a minimum velocity norm to project
old trajectories onto new initializations. This is shown in Figure 4.1 (d). We can see that the
new trajectory maintains the qualitative structure of the previous solution (and so avoids
collisions) and naturally moves to the new pick pose.

CHAPTER 4. TASK PLAN OPTIMIZATION 17

4.3 Early Detection of Unsatisfiability

With long task plans, it is important that the optimization fail fast. Very often an opti-
mization quickly determines that a constraint is infeasible and converges for that constraint.
However, the rest of the plan may still be very far from a local optimum. Thus, a vanilla im-
plementation of the convergence check may spend a large number of extra QP minimizations
and collision checks optimizing a plan that we know to already be infeasible.

In SQP, one convergence test checks that approximate improvement in the objective value
is above a threshold. This is the improvement we make during a QP solve, but measured
with respect to the convex approximation. If the approximate improvement is small it is
likely that we are at a local optimum of the real objective.

Our approach is to check this convergence constraint independently for each constraint.
We terminate the optimization early if the following conditions are met: 1) there is a con-
straint that is unsatisfied; 2) the approximate improvement on the constraint’s infeasibility
is below a threshold; 3) constraints that share variables with this constraint are satisfied or
have low approximate improvement. The first two conditions extend the standard conver-
gence criterion to a per-constraint criterion. The final condition catches situations where the
optimization allocates its effort to satisfying a different, coupled, constraint.

18

Chapter 5

Experiments

5.1 Methodology

We evaluate our approach in the NAMO domain with two distinct experimental setups:
the swap task and the putaway task. In the swap task, there are two objects inside the
closet. The robot must reverse the positions of both objects. This requires reasoning about
obstructions and proper plan ordering. In the putaway task, two target objects are located
among several obstructions in the room. The robot must retrieve the two objects and place
them both anywhere inside the closet. An important aspect of this task is that once one
object is placed inside the closet, the robot cannot navigate behind it to the place the other.
We run experiments for this task with 0, 3, and 5 obstructing objects.

We compare performance with the backtracking baseline established in [1], which per-

forms exhaustive backtracking search over plan parameters. We implement the motion plan-
ning by applying SQP to each action independently.
Manipulated Variables. We perform two experiments. Experiment 1 compares the per-
formance of four systems: the backtracking baseline (B), standard SQP (S), SQP with our
early convergence criteria (E), and standard SQP initialized using the solution found by
backtracking (T). There are two manipulated variables in this experiment: which of these
systems is run, and which experimental scenario we test on (swap or putaway with 0, 3, or
5 obstructions).

Experiment 2 considers the effects of different types of trajectory reuse on each of our
novel systems, S and E. There are two manipulated variables in this experiment: which
system is run (S or E), and which trajectory reuse strategy we use. We consider three
such strategies: 1) straight-line initialization (i.e., ignore previous trajectories), 2) fo-norm
minimization (i.e., stay as close as possible to previous trajectories), and 3) minimum-velocity
{y-norm minimization (i.e., stay close to a linear transformation of the trajectory). Our
experiments reveal that minimum-velocity f;-norm minimization worked best, so Experiment
1 uses this technique.

Dependent Measures. We measure success rate, the sum of squared velocities on the

CHAPTER 5. EXPERIMENTS 19

Condition % Solved Traj Cost Time (s) # Replans

Swap, B 100 42.4 37.7 5.0
Swap, S 100 10.2 267.2 6.0
Swap, E 100 10.4 217.8 14.4
Swap, T 100 10.9 115.1 5.0
P(0), B 100 12.2 16.8 3.2
P(0), S 100 7.7 21.1 1.8
P(0), E 100 7.7 23.9 2.3
P(0), T 100 7.8 20.7 3.2
P(3), B 98 16.9 58.8 4.9
P(3), S 96 8.9 109.4 3.9
P(3), E 98 9.1 101.1 43
P(3), T 98 9.1 76.5 5.1
P(5), B 86 21.3 91.4 8.4
P(5), S 83 9.7 154.4 5.4
P(5), E 88 9.7 160.3 6.8
P(5), T 94 11.0 135.0 7.3

Table 5.1: Success rate, average trajectory cost, average total time, and average number of calls
to task planner for each system in each experimental scenario. P indicates a putaway task. The
number in parentheses is the number of obstructions. B: backtracking baseline. S: standard SQP.
E: SQP with early convergence criteria. T: SQP with initialization from B. Results are obtained
based on performance on fixed test sets of 50 randomly generated environments. All failures were
due to timeout: we gave 1200 seconds for each swap task problem and 600 seconds for each putaway
task problem.

trajectories, planning time, and number of new task plans generated.
Problem Distributions. Experiment 1 is evaluated on fixed test sets of 50 randomly
generated environments. FEnvironments for the putaway task are generated by randomly
spawning N objects within the room and designating two as the targets. Experiment 2 is
evaluated on a smaller test set of 30 environments for the swap task.

Our experiments are conducted in Python 2.7 using the OpenRAVE simulator [3]. Our
task planner is Fast-Forward [7]. Experiments were carried out in series on an Intel Core
i7-4770K machine with 16GB RAM. The time limit was set to 1200 seconds for the swap task
and 600 seconds for the putaway task. Tables 5.1 and 5.2 summarize results for Experiments

CHAPTER 5. EXPERIMENTS 20

Condition % Solved Traj Cost Time (s) # Replans

SL, S 100 10.7 338.6 94
SL, E 100 10.8 217.6 9.4
lo-norm, S 63 10.4 336.1 9.5
ly-norm, E 67 11.0 181.0 13.6
Min-V, S 100 10.0 247.3 5.7
Min-V, E 100 10.4 200.7 13.1

Table 5.2: Success rate, average trajectory cost, average total time, and average number of calls
to task planner for several systems. SL indicates straight-line initialization; fs-norm and Min-V
use an fo or minimum velocity projection to initialize; S denotes standard SQ; E denotes SQP
with early convergence criteria. Results are obtained based on performance on fixed test sets of 30
environments. All failures were due to timing out the 1200 second limit.

1 and 2.

5.2 Discussion

Experiment 2 shows that trajectory reuse with minimum-velocity projection outperforms
standard ¢y projection and straight-line initialization. ¢y projection performs poorly because
it gets trapped in bad local optima. Experiment 1 shows that full joint optimization (systems
S and E) over plan parameters leads to significant improvements in overall trajectory cost.
This comes at the expense of increased running time. Using our algorithm as a trajectory
smoother (System T) merges the benefits of both approaches.

We attribute backtracking’s speed advantage to two factors. First, backtracking is able
to rule out plans faster than the joint optimization. Early-convergence helps, but leaves
room for improvement. Second, the joint optimization ends up making more collision check
calls. This is because the trust region in the optimization is shared across the whole plan.
So the algorithm will take small steps when one part of the plan is poorly approximated.

21

Chapter 6

Conclusion and Future Work

Our contributions are as follows: 1) we apply sequential convex programming to jointly
optimize over the trajectories and parameters in a plan refinement; 2) we show how to reuse
previous solutions without trapping the optimization in a bad basin of attraction; and 3) we
show how to do early convergence detection to avoid wasted effort on infeasible plans. We
present experiments that compare our approach to a backtracking refinement. Our approach
leads a 2-4x reduction in the total path cost of solutions at the cost of a 1.5-3x increase in
running time. We verify that our proposed modifications led to reductions in refinement
time.

The task and motion planning problems we consider are fairly simple. It is important
to evaluate our system on more challenging problems. We can apply our approach to more
realistic robots such as the PR2 and to other scenarios such as a multi-robot navigation
amongst movable objects environment that models warehouse management. To tackle the
large running time, we can optimize our implementation and explore optimization algorithms
that can better exploit the structure of the long-horizon trajectory optimization problem
posed in our formulation. Another interesting area for future work would be incorporating
our approach into other task and motion planning systems. In particular, [20] optimizes for
path cost with respect to the task plan so combining our approach with theirs can lead to
solutions with even lower path costs.

22

Bibliography

[10]

[11]

Rohan Chitnis et al. “Guided Search for Task and Motions Plans using Learning Heuris-
tics”. In: IEEE Conference on Robotics and Automation (ICRA). 2016.

Benjamin J Cohen, Sachin Chitta, and Maxim Likhachev. “Search-based planning for
manipulation with motion primitives”. In: International Conference on Robotics and
Automation (ICRA). IEEE. 2010, pp. 2902-2908.

Rosen Diankov and James Kuffner. OpenRAVE: A Planning Architecture for Au-
tonomous Robotics. Tech. rep. CMU-RI-TR~08-34. Pittsburgh, PA: Robotics Institute,
July 2008.

Anca D Dragan et al. “Movement primitives via optimization”. In: International Con-
ference on Robotics and Automation (ICRA). IEEE. 2015, pp. 2339-2346.

Caelan Reed Garrett, Tomas Lozano-Perez, and Leslie Pack Kaelbling. “Backward-
forward search for manipulation planning”. In: International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2015, pp. 6366-6373.

Dylan Hadfield-Menell et al. “Sequential Quadratic Programming for Task Plan Op-
timization”. In: International Conference on Intelligent Robots and Systems (IROS).
2016.

Jorg Hoffmann. “FF: The Fast-Forward Planning System”. In: AT Magazine 22 (2001),
pp. 57-62.

Marc Toussaint. “Logic-Geometric Programming: An Optimization-Based Approach to
Combined Task and Motion Planning”. In: International Joint Conference on Artificial
Intelligence (1JCAI). 2015.

Leslie Pack Kaelbling and Tomas Lozano-Pérez. “Hierarchical task and motion plan-
ning in the now”. In: International Conference on Robotics and Automation (ICRA).
2011.

Lydia Kavraki et al. Probabilistic Roadmaps for Path Planning in High-Dimensional
Configuration Spaces. Tech. rep. Stanford, CA, USA, 1994.

Fabien Lagriffoul et al. “Efficiently combining task and motion planning using geomet-
ric constraints”. In: International Conference on Robotics and Automation (ICRA).
2014.

BIBLIOGRAPHY 23

[12]
[13]

[14]

[19]

[20]

Steven M. Lavalle. Rapidly-FEzploring Random Trees: A New Tool for Path Planning.
Tech. rep. 1998.

Christopher Lin et al. “Sequential Quadratic Programming for Task Plan Optimiza-
tion”. In: ICAPS Workshop on Planning and Robotics (PlanRob). 2016.

Tomas Lozano-Pérez and Leslie Pack Kaelbling. “A constraint-based method for solv-

ing sequential manipulation planning problems”. In: International Conference on In-
telligent Robots and Systems (IROS). 2014.

Jorge Nocedal and Stephen Wright. “Numerical optimization”. In: Springer Science &
Business Media, 2006. Chap. 18.

N. Ratliff et al. “CHOMP: Gradient optimization techniques for efficient motion plan-
ning”. In: International Conference on Robotics and Automation (ICRA). 2009.

John D. Schulman et al. “Finding Locally Optimal, Collision-Free Trajectories with
Sequential Convex Optimization”. In: Proceedings of Robotics: Science and Systems

(RSS). 2013.

Siddharth Srivastava et al. “Combined Task and Motion Planning through an Exten-
sible Planner-Independent Interface Layer”. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). 2014,

Mike Stilman and James Kuffner. “Planning among movable obstacles with artifi-
cial constraints”. In: The International Journal of Robotics Research 27.11-12 (2008),
pp- 1295-1307.

Chongjie Zhang and Julie A. Shah. “Co-Optimizing Task and Motion Planning”. In:
International Conference on Intelligent Robots and Systems (IROS). 2016.

