
Exploring the Design Space of Deep Convolutional Neural
Networks at Large Scale

Forrest Iandola

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-207
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-207.html

December 16, 2016

Copyright © 2016, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Exploring the Design Space of
Deep Convolutional Neural Networks at Large Scale

by

Forrest Iandola

B.S. University of Illinois at Urbana-Champaign, 2012

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Kurt Keutzer, Chair
Professor Sara McMains
Professor Krste Asanović

Fall 2016

The dissertation of Forrest Iandola is approved.

Chair Date

Date

Date

University of California, Berkeley
Fall 2016

Exploring the Design Space of
Deep Convolutional Neural Networks at Large Scale

Copyright c© 2016

by

Forrest Iandola

Abstract

Exploring the Design Space of
Deep Convolutional Neural Networks at Large Scale

by

Forrest Iandola

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kurt Keutzer, Chair

In recent years, the research community has discovered that deep neural networks (DNNs) and
convolutional neural networks (CNNs) can yield higher accuracy than all previous solutions to a
broad array of machine learning problems. To our knowledge, there is no single CNN/DNN ar-
chitecture that solves all problems optimally. Instead, the “right” CNN/DNN architecture varies
depending on the application at hand. CNN/DNNs comprise an enormous design space. Quan-
titatively, we find that a small region of the CNN design space contains 30 billion different CNN
architectures.

In this dissertation, we develop a methodology that enables systematic exploration of the design
space of CNNs. Our methodology is comprised of the following four themes.

1. Judiciously choosing benchmarks and metrics.

2. Rapidly training CNN models.

3. Defining and describing the CNN design space.

4. Exploring the design space of CNN architectures.

Taken together, these four themes comprise an effective methodology for discovering the “right”
CNN architectures to meet the needs of practical applications.

Professor Kurt Keutzer
Dissertation Committee Chair

1

To my wife, Dr. Steena Monteiro.

i

Contents

Contents ii

List of Figures iv

List of Tables v

1 Introduction and Motivation 1

1.1 Motivating the search for the “right” Deep Neural Network (DNN) architecture . . . 1

1.2 Ingredients for success in deep learning . 4

1.3 The MESCAL Methodology for Design Space Exploration 7

1.4 Organization of this dissertation . 9

1.5 How this dissertation relates to my prior work . 10

2 Comprehensively defining benchmarks and metrics to evaluate DNNs 12

2.1 Finding the most computationally-intensive
DNN benchmarks . 13

2.2 Transfer learning: amortizing a few large labeled datasets over many applications . . 17

2.3 Beyond accuracy: metrics for evaluating key properties of DNNs 18

2.4 Orchestrating engineering teams to target specific DNN benchmarks and metrics . . 26

2.5 Relationship of our approach to the MESCAL methodology 29

3 Rapidly training DNNs on compute clusters 30

3.1 The need for efficient and scalable DNN training . 30

3.2 Hardware for scalable DNN training . 32

3.3 Preliminaries and terminology . 32

3.4 Parallelism strategies . 34

3.5 Choosing DNN architectures to accelerate . 36

3.6 Implementing efficient data parallel training . 37

ii

3.7 Evaluation of FireCaffe-accelerated training on ImageNet 41

3.8 Complementary approaches to accelerate DNN training 46

3.9 Conclusions . 47

4 Defining and describing the design space of DNN architectures 48

4.1 Introduction . 48

4.2 Key building blocks of CNN architectures . 50

4.3 Understanding the dimensionality of CNN layers . 57

4.4 A mental model for how CNN dimensions impact the quantity of computation and
other metrics . 58

4.5 Local changes to CNN architectures . 60

4.6 Global changes to CNN architectures . 72

4.7 Intuition on the size of the design space of CNNs . 76

4.8 The design space of techniques for training CNNs . 77

4.9 Conclusions . 79

5 Exploring the design space of DNN architectures 81

5.1 Introduction and motivation . 81

5.2 Related work . 82

5.3 SqueezeNet: preserving accuracy with
few parameters . 84

5.4 Evaluation of SqueezeNet . 87

5.5 CNN Microarchitecture design space exploration . 89

5.6 CNN Macroarchitecture design space exploration . 92

5.7 Conclusions . 93

6 Conclusions 95

6.1 Contributions . 95

6.2 Impact of our FireCaffe work on accelerating CNN/DNN training 98

6.3 Impact of our work on exploring the design space of CNN architectures 101

iii

List of Figures

1.1 Machine learning in 2012 . 2

1.2 Machine learning in 2016 . 3

1.3 Considerations when designing DNNs to use in practical applications 3

1.4 Ingredients for success with deep neural networks . 5

1.5 Impact of training set size on a DNN’s accuracy . 6

2.1 The difference in single-GPU training times across different DNN applications. . . . 14

2.2 Multicore CPU server . 22

2.3 Implementing autonomous driving . 27

3.1 Anatomy of a convolution layer. 33

3.2 Data parallel DNN training in FireCaffe . 35

3.3 Deep neural network architectures with more parameters do not necessarily deliver
higher accuracy. 37

3.4 Illustrating how parameter servers and reduction trees communicate weight gradients 40

3.5 Comparing communication overhead with a parameter server vs. a reduction tree . . 40

3.6 Impact of learning rate on GoogLeNet accuracy . 45

4.1 Network-in-Network (NiN) . 49

4.2 Dimensions of a convolution layer. 51

4.3 Pooling with stride=1 . 53

4.4 Pooling with stride=2 . 54

5.1 Microarchitectural view of the Fire module . 85

5.2 Macroarchitectural view of the SqueezeNet architecture 86

5.3 Squeeze ratio, model size, and accuracy . 91

5.4 pct3x3, model size, and accuracy . 92

iv

List of Tables

1.1 Organization of this dissertation. 9

2.1 Training times and quantities of data in large-scale DNN application domains 13

2.2 Which aspects of a DNN-based system are evaluated by each metric? 19

3.1 Volumes of data and computation for widely-used CNN/DNN architectures 35

3.2 Accelerating the training of midsized deep models on ImageNet-1k. 44

3.3 Accelerating the training of ultra-deep, computationally intensive models on
ImageNet-1k. 46

4.1 Summary of local and global changes to CNN architectures 60

4.2 Dimensions of the NiN CNN architecture . 62

4.3 NiN architecture with 4x more input channels . 65

4.4 NiN architecture with 4x more filters in conv8 . 67

4.5 NiN architecture with 4x larger filter resolution in one layer 69

4.6 NiN architecture with 4x more categories to classify 71

4.7 NiN architecture with pool3 removed . 73

4.8 NiN architecture with 4x larger input data resolution 75

4.9 A CNN architect is responsible for considering and exploring these design choices. . 78

5.1 SqueezeNet architectural dimensions . 88

5.2 Comparing SqueezeNet to model compression approaches 89

5.3 SqueezeNet accuracy and model size using different macroarchitecture configurations. 93

v

vi

Chapter 1

Introduction and Motivation

1.1 Motivating the search for the “right” Deep Neural Network

(DNN) architecture

Thus far, most computer science research and development has focused on problems for which
a mathematical solution or clear step-by-step procedure can be derived. These approaches are
feasible in popular computer science topics and applications including databases, numerical linear
algebra, encryption, and programming systems. However, there is an extremely broad space of
important problems for which no closed-form solution is known. What is the right equation to
take pixels of an image and understand its contents? What equation should we use to take audio
frequencies and interpret speech? Nature and evolution has developed solutions to some of these
problems, but so far there is no foolproof mathematical solution or series of steps that we can
write down that will comprehensively solve these problems. For problems where no procedural or
mathematical solution is known, we often turn to machine learning (ML), which we can broadly
define as enabling the computer to automatically learn without explicitly being programmed.

Over its history, the field of machine learning has churned out numerous approaches including
decision trees, clustering, hidden Markov models (HMMs), support vector machines (SVMs), and
neural networks. Given a new problem for which no mathematical/procedural solution is known,
machine learning practitioners have often done some combination of (a) experimenting with several
families of machine learning algorithms, and (b) attempting to design new algorithms. In Figure 1.1,
we show a number of widely-studied machine learning problems, along with high-accuracy solutions
to these problems as of 2012.

Since 2012, we have had the opportunity to play a role in the dramatic transformation in
the landscape of machine learning algorithms. Over the last few years, the machine learning
community has discovered that deep neural networks (DNNs) can give higher accuracy than all
previous solutions to a broad array of ML problems. Compared to Figure 1.1, notice that as of
the year 2016 (Figure 1.2), the highest-accuracy solutions to these problems are based on DNNs.
However, that’s not to say that a single DNN configuration is able to singlehandedly solve all of

1

these problems with high accuracy. Rather, DNNs are a broad family of algorithms that are (a)
comprised of multiple layers of automatically-learned data transformations, and (b) the layers are
trained in an end-to-end fashion. Thus far, the design of DNN architectures is driven primarily
by human intuition and empirical experimentation, and we do not see an overarching theory on
the horizon that will supplant this experimental craft. Therefore, the search for the “right” DNN
architectures is replacing broader algorithmic exploration in many ML application areas.1 In this
dissertation, we propose and codify the best practices for undertaking the search for the right DNN
architectures.

Machine(Learning(in(2012(

Computer)
Vision)

Audio)
Analysis)

Text)
Analysis)

Deformable)Parts)Model)

2nd)Order)Pooling)(O2P))

Fisher)Vectors)+)SVMs)

Hidden)Markov))
Model)

Speech(Recogni3on(Audio(Concept((
Recogni3on(

iGVector)+)HMM)

Object(Detec3on(

Seman3c(Segmenta3on(

Image(Classifica3on(

LDA)

Word(Predic3on(

Linear)InterpolaJon)
+)NGGram)

Sen3ment(Analysis(

[1])F.(Iandola,)M.)Moskewicz,)K.)Keutzer.)libHOG:)EnergyGEfficient)Histogram)of)Oriented)Gradient)ComputaJon.)ITSC,)2015.)
[2])N.)Zhang,)R.)Farrell,)F.(Iandola,)and)T.)Darrell.)Deformable)Part)Descriptors)for)FineGgrained)RecogniJon)and)A\ribute)PredicJon.)ICCV,)
2013.))
[3])M.)Kamali,)I.)Omer,)F.)Iandola,)E.)Ofek,)and)J.C.)Hart.)Linear)Clu\er)Removal)from)Urban)Panoramas))InternaJonal)Symposium)on)
Visual)CompuJng.)ISVC,)2011.)
)
)

Figure 1.1. Contemporary approaches to machine learning problems, as of 2012. (References:

Latent Dirichlet Allocation (LDA) [1], Linear Interpolation + N-Gram [2], Hidden Markov Model (HMM) [3], i-

vector+HMM [4, 5], Deformable Parts Model [6], 2nd Order Pooling (O2P) [7], Fisher Vectors + Support Vector

Machines (SVMs) [8].)

1Prof. Alexei Efros of UC Berkeley, whose focus is on computer vision and graphics, says “My students used to
design new software and algorithms. Now, they design new Deep Neural Networks.”

2

Deep$Neural$Networks$(DNNs)$

DNN# Computer#
Vision#

Audio#
Analysis#

Text#
Analysis#

169layer#R9CNN#

199layer#FCN#

1529layer#CNN#

LSTM#NN#

Speech$Recogni8on$ Audio$Concept$$
Recogni8on$

49layer#DNN#

Object$Detec8on$

Seman8c$Segmenta8on$

Image$Classifica8on$

39layer#RNN#

Word$Predic8on$
word2vec#NN#

Sen8ment$Analysis$

[1]#K.#Ashraf,#B.#Elizalde,$F.$Iandola,#M.#Moskewicz,#J.#Bernd,#G.#Friedland,#K.#Keutzer.#Audio9Based#MulTmedia#Event#DetecTon#with#Deep#Neural#Nets#
and#Sparse#Sampling.#ACM#ICMR,#2015.#
[2]#F.$Iandola,#A.#Shen,#P.#Gao,#K.#Keutzer.#DeepLogo:#Hi[ng#logo#recogniTon#with#the#deep#neural#network#hammer.#arXiv:1510.02131,#2015.#
[3]#F.$Iandola,#M.#Moskewicz,#S.#Karayev,#R.#Girshick,#T.#Darrell,#K.#Keutzer.#DenseNet:#ImplemenTng#Efficient#ConvNet#Descriptor#Pyramids.#arXiv:
1404.1869,#2014.#
[4]#R.#Girshick,#F.$Iandola,#T.#Darrell,#J.#Malik.#Deformable#Part#Models#are#ConvoluTonal#Neural#Networks.#CVPR,#2015.#
[5]#H.#Fang,#S.#Gupta,#F.$Iandola,#et#al.#From#CapTons#to#Visual#Concepts#and#Back.#CVPR,#2015.##
#

Figure 1.2. As of the year 2016, Deep Neural Networks deliver highest-accuracy solutions
for each of these problems. (References: 3-layer RNN [9], word2vec NN [10], LSTM NN [11], 4-layer DNN [12]),

16-layer R-CNN [13], 19-layer FCN [14], 152-layer CNN [15].)

1.1.1 In the search for new DNN architectures, what do we hope to find?
Considera*ons+in+prac*cal+

deep+neural+network+applica*ons+

+++
+++
+++
+++
+++
En
er
gy
+E
ffi
ci
en

cy
+

Trainin
g+Spee

d+

Accuracy+

Figure 1.3. Considerations when designing DNNs to use in practical applications

3

Many machine learning researchers have spent their entire careers optimizing for one metric:
accuracy. Accuracy is often defined as the percentage of examples in a held-out test set that a
machine learning system can recognize or classify correctly.2 In the last few years, the rise of DNNs
has brought enormous improvements in accuracy. For example, on the PASCAL object detection
dataset [16], pre-deep-learning methods (typically based on Deformable Parts Models [6]) achieved
roughly 34% mean-average precision (mAP) on the PASCAL-2007 validation set. Today, DNN-
based object detectors are able to achieve much higher accuracy. For example, the DNN-based
Faster R-CNN [13] object detector has achieved 73% mean-average precision on the PASCAL-2007
validation set. This is a relative improvement of more than double the accuracy of the best pre-deep-
learning solutions. In short, DNNs have enabled enormous improvements in accuracy in application
areas such as computer vision. A by-product of this is that computer vision is now ready for prime
time in a number of practical industrial applications. In deploying solutions to real applications,
achieving high accuracy is necessary but not usually sufficient to enable the application’s success.
A number of other factors — such as the time required to train a model, the speed at which the
model can run in inference mode, the energy-efficiency of the system as a whole, and so on — are
important for enabling productive workflows and deployable applications. We summarize some of
these factors in Figure 1.3, and we give a more detailed account of these factors in Chapter 2. The
take-away here is that, when we explore the design space of DNN architectures, we are not only
aiming for high accuracy, but we are searching for tradeoffs between accuracy and other practical
metrics.

1.2 Ingredients for success in deep learning

In both research and industrial settings, many engineers are gearing up to apply deep learning
to their respective problem domains. What tools, resources, and objectives should these teams
obtain as they dive into this process? We have identified four key ingredients for success with deep
learning. We enumerate these ingredients in Figure 1.4, and we discuss them in more detail in the
following subsections.

2A more nuanced accuracy measure is “mean average precision,” which we will discuss in Section 2.3.1.

4

Key$ingredients$for$success$with$
Deep$Learning$

Train$rapidly$using$
mul9processor$

scaling$

Collect/annotate$
adequate$training$

data$

Findthe"right"DNN
architectures$

Create$efficient$
implementa9onfor
embedded$hardware$

SqueezeNet(
and(FireNet:(
Development(of(the(
"right"(DNNs(for(
ADAS(applica=ons((

Boda:((
So?ware(for(portable(and((
rapid(inference(of(DNNs(

(

Figure 1.4. Ingredients for success with deep neural networks. We have advanced the state-
of-the art in several of these ingredients, with contributions including the FireCaffe [17]
rapid DNN training framework, SqueezeNet [18] and other new CNN/DNN architectures,
and the Boda [19] framework for portable and efficient DNN inference.

1.2.1 Training Data

Training data is the fuel that enables deep neural networks to learn. With enormous amounts of
training data, DNNs are able to achieve unprecedented accuracy on a variety of problems. However,
now that DNNs are in real products, the product developers receive a steady stream of feedback
about what the DNN-based solution is failing to do correctly. For example, picture yourself as a
developer of autonomous vehicle technology. End-users report that the vehicle acts “confused” in
specific situations, such as night driving, snow, or horizontal stop lights. How do you go about
addressing these issues? One of the techniques at your disposal is to collect more training data in
dark lighting conditions, inclement weather, and unusual types of stop lights. We anticipate that
developers of DNN-based products will constantly be iterating through (1) identifying edge-cases
/ failure cases, (2) collecting and annotating data to cover these cases, (3) retraining models, and
(4) deploying the updated models.

5

0 200 400 600 800 1000 1200
1umber of examples per class (linear)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
T
o
p

-1
 a

cc
u

ra
cy

0

Figure S1: Top-1 validation accuracy for networks trained on datasets containing reduced numbers
of examples. The largest dataset contains the entire ILSVRC2012 (Deng et al., 2009) release with
a maximum of 1300 examples per class, and the smallest dataset contains only 1 example per class
(1000 data points in total). Top: linear axes. The slope of the rightmost line segment between 1000
and 1300 is nearly zero, indicating that the amount of overfit is slight. In this region the validation
accuracy rises by 0.010820 from 0.54094 to 0.55176. Bottom: logarithmic axes. It is interesting to
note that even the networks trained on a single example per class or two examples per class manage
to attain 3.8% or 4.4% accuracy, respectively. Networks trained on {5,10,25,50,100} examples per
class exhibit poor convergence and attain only chance level performance.

same 1000 classes as ImageNet, but where each class contained a maximum of n examples, for
each n 2 {1300, 1000, 750, 500, 250, 100, 50, 25, 10, 5, 2, 1}. The case of n = 1300 is the complete
ImageNet dataset.

Because occupying a whole GPU for this long was infeasible given our available computing re-
sources, we also devised a set of hyperparameters to allow faster learning by boosting the learning
rate by 25% to 0.0125, annealing by a factor of 10 after only 64,000 iterations, and stopping after
200,000 iterations. These selections were made after looking at the learning curves for the base case
and estimating at which points learning had plateaued and thus annealing could take place. This
faster training schedule was only used for the experiments in this section. Each run took just over 4
days on a K20 GPU.

The results of this experiment are shown in Figure S1 and Table S1. The rightmost few points in the
top subplot of Figure S1 appear to converge, or nearly converge, to an asymptote, suggesting that
validation accuracy would not improve significantly when using an AlexNet model with much more
data, and thus, that the degree of overfit is not severe.

2

Figure 1.5. Impact of training set size on a DNN’s accuracy. This figure was taken directly
from the supplementary material of [20]. See Section 1.2.1 of this dissertation for details
on this figure.

Let us now engage in a more quantitative discussion of how the training set size affects a
DNN’s accuracy for a target application. ImageNet-1k [21] is a widely-used dataset that provides a
training set of 1.2 million labeled images, where each image has been hand-labeled as belonging to
one category (e.g. “cougar,” “safety pin,” or “seat belt”). In total, ImageNet-1k has 1000 categories
of images, and the dataset provides roughly 1200 training images per category.3 It is labor-intensive
to label 1.2 million images. A logical question is, when training DNN models, how does the quantity
of labeled training images affect the model’s accuracy? In the supplementary material of their NIPS
2014 paper [20], Yosinski et al. evaluated precisely this question. In Figure 1.5, we show the key
result from the experiment of Yosinski et al. . Each point on Figure 1.5 is a separate training run
of the AlexNet [22] DNN architecture, trained with a specific number of training examples per
category. For example, the point corresponding to “500” on the x-axis was trained on a subset of
ImageNet-1k consisting of 1000 categories with 500 images per category. The y-axis is accuracy,
defined as the percentage of images in the validation set that the DNN model classified correctly.
Observe that more training data leads to higher accuracy. Even on the right-hand side of the graph,
training on 1200 images per category shows an improvement of roughly 1 percentage-point over
training on 1000 images per category. More broadly, the general consensus is that — unless we are
already achieving 100% accuracy — increasing the size and diversity of the training set typically
leads to higher accuracy.

In this dissertation, we primarily use publicly-available datasets of training data. That said,
most industrial applications of DNNs will require substantial quantities of labeled data that is
representative of the task at hand. The biggest challenge in building custom training datasets is the
cost and management overhead of getting workers to apply appropriate annotations to the data. In
Kurt Keutzer’s research group at Berkeley, we have developed our own tool — BEAVERDAM — for

3For evaluating accuracy the dataset also provides a held-out validation set of 50 images per category (for a total
of 50,000 validation images).

6

enabling human annotators to efficiently label large quantities of training data. More information
about BEAVERDAM is available in [23, 24].

1.2.2 Rapid training

The ability to rapidly train DNN models is important for two reasons. First, rapid training
enables developers to more quickly search for the “right” DNN models. Second, rapid training
enables the workflow to keep up with ever-expanding training datasets. Enabling rapid training may
require some mix of: appropriate computational hardware, efficient implementations, appropriate
DNN architectures, and (in many cases) efficient distributed computation over a cluster of servers.
We will discuss our approaches for rapid DNN training in Chapter 3.

1.2.3 The right DNN models

The right models must give the “right” tradeoffs of efficiency metrics such as energy, compute
footprint, memory footprint, all while achieving the accuracy level that is required by the end-
application. We will discuss our approaches exploring DNN models and identifying the “right”
DNN models in Chapter 5.

1.2.4 Efficient inference

Once we have the right models, we need to deploy them. There are opportunities for efficient
implementations on CPUs, GPUs, FPGAs, and ASICs / custom silicon. In all of these cases, we
need the right portable and efficient software implementation.

In this dissertation, we primarily rely on existing computational kernels such as those in the
NVIDIA cuDNN library [25] for efficient DNN inference. The cuDNN kernels were developed by a
large team of engineers at NVIDIA, and they are highly efficient on NVIDIA hardware. However,
the cuDNN kernels exclusively support NVIDIA processing hardware. Achieving high efficiency
for DNN inference on other hardware (e.g. Intel, Texas Instruments, Qualcomm, AMD, and so
on) remains a challenge for much of the research and industrial community. In joint work with
Matthew Moskewicz, Ali Jannesari, and Kurt Keutzer of UC Berkeley, we developed the Boda
software framework. Boda provides DNN computational kernels that are competitive with cuDNN
on NVIDIA hardware, and Boda’s kernels are also efficient on other hardware platforms such as
Qualcomm GPUs. More information about Boda is available in [19, 26].

1.3 The MESCAL Methodology for Design Space Exploration

So far, we have motivated the search for the “right” DNN architectures, and we have proposed
a set of ingredients that are vital for carrying out this search. Now, what is the recipe book to
leverage these raw ingredients to cook up new, world-beating deep neural network architectures?
In this section, we begin to describe such a recipe book.

7

Deep Neural Networks comprise an enormous design space. An overarching theme and objec-
tive of this dissertation is to design new DNN architectures and DNN-based systems that meet
particular design goals. While DNNs have only recently become widely studied, there are other
areas where broad design spaces have been fruitfully explored. One such area is computational hard-
ware architecture, which comprises an enormous design space that has been continuously explored
by numerous semiconductor companies for more than 40 years. In this section, we summarize a
number of insights from hardware architectural design practices, and adapt them for DNNs.

In the broad design space of computational hardware, at one end of the spectrum lies the fixed-
function circuit, and at the other end of the spectrum lies the general-purpose (GP) processor.
Fixed-function circuits are routinely developed with the goal of providing cheap-to-manufacture4

energy-efficient and low-latency solutions for specific problems such as Bluetooth wireless commu-
nication [27], network packet routing [28], and bitcoin mining [29].

One challenge is that, when a fixed-function circuit is designed to execute a particular algorithm,
any future changes to the algorithm will likely require an entirely new circuit to be produced. On the
other hand, general-purpose processors are relatively easy to program, with the ability to execute
a broad range of computations. But, a downside to GP processors is that they typically draw more
energy (per computation performed) than a well-designed fixed-function circuit, and GP processors
can be more expensive to manufacture. So, what options lie between the two extremes of fixed-
function circuits (highly efficient, cheap to manufacture, non-programmable) and general-purpose
processors (less efficient, more expensive to manufacture, flexible to program)? Computational
hardware solutions in the middleground between fixed-function circuits and GP processors are
commonly called Application-Specific Processors (ASIPs).

Application-Specific Processors (ASIPs) have been developed for a variety of applications in-
cluding speech recognition [30], computer vision [31], graphics [32], and software-defined wire-
less [33]. Even for one given problem (e.g. creating a programmable chip for ethernet network
processing), there is a broad design space of ASIPs that can address this problem. This design
space include ASIPs that have already been produced/fabricated; designs that have been con-
sidered but not fabricated; and designs that have not been considered at all. Each point in the
ASIP design space is a processor with unique characteristics such as the number of pipeline stages
(depth), the number of processing elements, and the number of vector lanes. Each design point
also has specific tradeoffs of energy-efficiency, throughput, latency, manufacturing cost, and other
such metrics.

The MESCAL Methodology [34] codifies the best practices in navigating this design space to pro-
duce high-quality ASIP hardware. The MESCAL methodology recommends beginning by choosing
benchmarks and target results on these benchmarks. Then, to achieve the desired results, a corner-
stone of MESCAL is Design Space Exploration (DSE), which consists of identifying and evaluating
a broad range of points in the design space. In a series of case studies on ASIP hardware for
ethernet network processing, the MESCAL book [34] explores dimensions of the design space such
as the number of processing elements, the pipeline depth, and the width of vector lanes.

Broadly speaking, the characteristics of the ASIP design space have some commonalities with
the characteristics of the DNN design space. ASIPs and DNNs both comprise enormous design
spaces. In practical deployments, the design spaces of both ASIPs and DNNs present tradeoffs in
terms of speed, energy, and other quality metrics (e.g. chip area in the case of ASIPs, and accuracy

4when produced in large quantities

8

in the case of DNNs). In the next section, we explain our MESCAL-inspired methodology for
understanding and exploring the design space of DNN architectures.

1.4 Organization of this dissertation

In the MESCAL methodology [34] for exploring the design space of computational hardware,
four of the central themes are:

• Judiciously using benchmarking

• Efficiently evaluate points the hardware design space

• Inclusively identify the architectural space

• Comprehensively explore the design space

After spending a number of years exploring the design space of DNNs, we have found that
there are four MESCAL-like themes for DNN design space exploration (DSE). In the following
table, we enumerate the DNN DSE themes, and for reference we include the analogous theme from
the MESCAL methodology. In this dissertation, we devote one chapter to each of our DNN DSE
themes.

Table 1.1. Organization of this dissertation.

Dissertation

chapter

Topic in this dissertation Analogue in MESCAL

Methodology

Chapter 2 Comprehensively defining benchmarks and metrics to

evaluate DNNs

Judiciously using benchmarking

Chapter 3 Rapidly training DNNs (i.e. efficiently evaluating

points in the DNN design space)

Efficiently evaluate points the

hardware design space

Chapter 4 Defining and describing the DNN design space Inclusively identify the

architectural space

Chapter 5 Exploring the design space of DNN architectures Comprehensively explore the

design space

In Table 1.1 notice that, while the MESCAL methodology has the theme of “Efficiently evaluate
points in the hardware design space,” this dissertation has “Rapidly training DNNs.” The reader
may ask — wouldn’t the term “evaluating” refer to the inference rather than the training phase
of DNNs? Here’s the problem: to test a DNN on a dataset to evaluate its accuracy, it must be
trained first! On the ImageNet-1k [21] dataset, it is typical to train a DNN by making 50 or
more passes over a corpus of 1 million images. In contrast, to evaluate the DNN, a single pass
over 50,000 images is all that is required. Thus, training is the by far the most computationally
expensive stage required to evaluate the accuracy of a new DNN architecture. Fortunately, to
evaluate other metrics besides accuracy, the computational requirements are much lower. On other

9

metrics such as training speed, inference speed, throughput (FLOPS/sec), and energy efficiency,
DNNs can be evaluated using microbenchmarks that take a few seconds at the most. So, for a
new DNN architecture, accuracy is the most computationally-intensive metric to evaluate, because
we must train a neural net before we can evaluate its accuracy. In other words, when exploring a
broad range of DNN architectures, training the model is the most acute computational bottleneck
in evaluating each model.

1.5 How this dissertation relates to my prior work

To place this dissertation into context, it may be useful to briefly discuss the intellectual history
of this work.

I began my research career in the mid-2000s working on computational physics topics such as
the simulation of particle colliders [35]. I gradually moved into working on computational efficiency
aspects of physics simulations, working on physics-oriented distributed computing frameworks [36]
as well as single-node acceleration [37]. Aside from computational physics, I also worked directly on
core parallel/efficient computing problems, such as the scheduling of tasks in single-GPU [38] and
multi-node or distributed [39, 40] environments, as well as the problem of estimating or predicting
the latency of sparse-matrix computations [41]. My early work on distributed scheduling was mo-
tivated by maximizing computational efficiency, as well as guaranteeing hard real-time constraints
in safety-critical applications such as aircraft electronics. I later co-authored a paper directly on
the topic of aircraft electronics [42]. At the same time, I conducted research on computer vision
applications such as image stitching [43] and facial analysis [44].

My work at Berkeley has focused at the intersection of computer vision, machine learning,
and computational efficiency. On the computational efficiency side, my work (with several key
co-authors) has spanned analyzing the energy-efficiency of computer vision algorithms [45], effi-
cient feature extraction [46], amortizing the cost of DNN computation in object detection [47], and
unifying efficiently-computed DNN features with other object detection approaches [48]. Convolu-
tion is one of the most ubiquitous computational patterns in computer vision [49]. In 2013, our
“communication-minimizing” GPU convolution kernels [50, 51] delivered a speedup of up to 8x
over NVIDIA’s own NVIDIA Performance Primitives (NPP) library [52]. Since that time, NVIDIA
has developed more efficient convolution kernels in the cuDNN library [25], and key individu-
als at NVIDIA tell us that the closed-source cuDNN implementation drew inspiration from our
communication-minimizing convolution approach. In 2016, in joint work with Matthew Moskewicz
and Kurt Keutzer, we released a report on our Boda framework [19, 53], which provides efficient con-
volution kernels and other software for efficient neural network computation. On NVIDIA GPUs,
we found that Boda’s convolution efficiency is competitive with NVIDIA’s cuDNN software, and
Boda also executes efficiently on GPUs from other vendors such as Qualcomm.

In addition, several of my contributions have focused developing more accurate approaches to
problems such as fine-grained visual classification [54], logo recognition [55], audio-based concept
recognition [12], visual object detection [56], and image captioning [57].

In my final two years at Berkeley, I have focused on the problems of (a) accelerating the training
of deep neural networks for computer vision [17, 58], and (b) understanding and exploring the design
space of deep neural networks [18]. Taken together, these contributions form the basis for a holistic
strategy for efficiently exploring the design space of deep neural network (DNN) architectures,

10

which is the focal point for this dissertation. In this dissertation, Chapter 3 is a refinement of our
FireCaffe [17] paper on accelerating DNN training, and Chapter 5 is a refinement of our SqueezeNet
paper [18], which not only introduced our novel SqueezeNet DNN architecture, but it also explored
a variety of DNN architectures of our own design. Chapters 1, 2, 4, and 6 are new discussions that
we have not published in our previous work.

11

Chapter 2

Comprehensively defining benchmarks

and metrics to evaluate DNNs

For years, many computer architects evaluated their technology using a narrow set of bench-
marks and metrics such as cycle count. While cycle count is a useful metric, the MESCAL book [34]
contends that computer architectures must be evaluated on a representative set of benchmarks and
metrics. Ideally, these benchmarks and metrics should be representative of end-applications that
the new computer architecture aims to enable. Like the old days of computer architecture when
“cycle count” was erroneously considered to be a sufficient metric, machine learning and computer
vision research has predominantly focused on a single type of metric: accuracy. In the context
of computer vision, “accuracy” typically refers to the ability of a machine learning method to
correctly classify, detect, segment, or otherwise understand visual imagery. However, now that
computer vision methods are becoming quite accurate, there a number of other metrics that must
be considered when developing computer vision technology that will be deployed in real systems.
Computer vision methods can be quite computationally intensive, and every application has explicit
or implicit limits on factors such as: the speed that must be achieved, the quantity of energy that
is available, and the cost and quantity of hardware than can be used. In this chapter, we propose
a more holistic set of metrics that enable a benchmarking methodology, which covers accuracy as
well as computational efficiency.

This chapter is organized as follows. First, in Section 2.1, we search for the most
computationally-intensive applications of DNNs. We discover that, when applying neural net-
works to high-dimensional data such as images and video, the computational requirements can be
extremely high. Next, in Section 2.2, we visit DNNs’ requirements for large quantities of expensive
labeled training data, and we describe how to alleviate some aspects of this problem with transfer
learning. Then, in Section 2.3, we address the question: besides accuracy, what metrics are useful
for evaluating DNNs that will be applied to practical applications? In Section 2.4, we describe
how to use these benchmarks and metrics to evaluate an engineering team’s progress — as well as
individual engineers’ progress — toward the end-goal of achieving a specific tradeoff of accuracy

12

and efficiency. Finally, in Section 2.5, we describe how our metrics and benchmarking approaches
compare to the MESCAL methodology [34].

2.1 Finding the most computationally-intensive

DNN benchmarks

When choosing representative benchmarks, it is not enough to identify the average case, middle-
of-the-road benchmarks. Instead, our goal in choosing benchmarks is to identify the worst-case and
most challenging cases, and then to focus on optimizing for these cases. Applying this ideology to
the present topic, our goal is to take situations where DNN training and/or inference is currently
intractably slow, and to use our computational efficiency skills to accelerate these DNN-based
applications to run on a much faster time scale. With this in mind, we sought out the most
computationally time-consuming applications of DNNs. Specifically, we are looking for applications
with the following two properties:

• Requirement 1. The total time to train a model is quite high.

• Requirement 2. The processing time per data sample during training or inference is quite high.

Table 2.1. Training times and quantities of data in large-scale DNN application domains,
as reported in the literature. For details on how these were calculated, see Sections 2.1.1—
2.1.4.

type of

data

problem area quantity of training

data

supervi-

sion

DNN archi-

tecture

Hardware

architecture

Training

time

text word prediction

(word2vec [10])

100 billion words unsu-

pervised

2-layer

skip-gram

1 Titan X

GPU

6.2

hours

[59]

audio speech recognition 2000 hours

(Fisher Corpus [60])

super-

vised

11-layer

RNN

1 NVIDIA

K1200 GPU

3.5

days [11]

images image classification 1 million images

(ImageNet [21])

super-

vised

AlexNet

[22]

1 NVIDIA K20

GPU

1 week

[61]

video activity recognition 1 million videos

(Sports-1M [62])

super-

vised

AlexNet

[22]

10 NVIDIA

GPUs

1 month

[62]

In Table 2.1, we have identified computationally-intensive DNN applications that make use of
large publicly-available datasets in four key domains: text, audio, images, and video. We summarize
the key results from Table 2.1 in Figure 2.1. Our main observation in this table is that applications
in which each data sample is of higher dimensionality, training takes longer. For example, training

13

text audio images video
Data Type

100

101

102

103

S
in

g
le

-G
P
U

 T
ra

in
in

g
 T

im
e
 (

lo
g
 s

ca
le

)

Figure 2.1. The difference in single-GPU training times across different DNN applications.
(See Table 2.1 for more details.)

a DNN on text takes 6.2 hours, and training a DNN on video takes 1 month — in other words,
the video application took 117x more time to train than the text application. One factor here
is that higher-dimensional input data can necessitate higher-dimensional models that have more
computational complexity. In the text application [10] in Table 2.1, the authors didn’t report the
number of computational operations per data sample, but it appears that the text DNN has far fewer
computational operations than the video DNN. This difference in computational complexity among
these applications is so dramatic that, even though the text dataset has 10,000x more data samples
than the video dataset, training the video DNN is still more than 100x slower than training the text
DNN. Finally, notice that the video DNN is trained on 10 GPUs, while the text DNN is trained
on 1 GPU. In the best case, training on 10 GPUs would be 10x faster than training on 1 GPU.1

Therefore, in an apples-to-apples comparison on 1 GPU, the video DNN training may be as much
as 1000x more time-consuming than the text DNN training, despite the fact that the text training
dataset has 10,000x more training samples than the video training dataset. Especially compared
to the text application, the image and video applications in Table 2.1 are highly computationally
intensive and meet Requirement 1 (total training time is high) and Requirement 2 (time per training
sample is high).

From the outset, one of our goals was to find the most computationally-intensive DNN appli-
cations/benchmarks, and then to go to work accelerating these applications. As you can see from
the examples in Table 2.1, computer vision applications on large-scale image and video datasets
tend to demand extremely high computational cost. With this in mind, we focus the rest of this
dissertation on the application of neural networks to computer vision. Today, almost all neural
networks in computer vision are not only deep, but also make extensive use of convolution layers.

1To be clear, 10x would be a best-case speedup when scaling up from 1 to 10 GPUs. However, factors such as
GPU-to-GPU communication overhead can make it difficult to achieve a truly linear speedup when scaling to multiple
GPUs.

14

In computer vision, deep convolutional neural networks are often referred to as DCNNs or simply
CNNs. From this point forward in the dissertation, we will primarily use the term CNN to describe
neural networks applied to computer vision.

We now turn our attention back to Table 2.1. As you can probably imagine, summarizing four
domains of DNN applications in one table requires many simplifications and omissions. In the
following subsections, we provide all the details of how the numbers in Table 2.1 were calculated. If
you feel satisfied with your understanding of Table 2.1, we recommend skipping ahead to Section 2.2.

2.1.1 Text (Least computationally intensive)

In the past, text analysis algorithms often relied on hand-engineered features such as n-grams.
However, since the publication of the word2vec paper [10], Deep Neural Networks have gone into
widespread use for creating feature representations of text data. The word2vec approach has been
used to improve the accuracy of a number of text-based applications such as document search and
internet click prediction.

We now provide more background on the word2vec approach. Word2vec requires a large corpus
of text data — for example many sentences collected from Wikipedia or other internet text. Unlike
the audio, imaging, and video topics discussed in this chapter, training word2vec on text data
does not require human-annotated labels. Instead, the word2vec training problem is phrased in a
self-supervised way. Then, for each sentence, we remove a word and ask the model to predict what
word best fits that sentence. The correct response from the model would be to predict the word
that was in the original sentence. Any other response is considered wrong, and the correct response
is backpropagated through the model. Ultimately, this produces a model that can predict missing
words in sentences. This is self-supervised, because — rather than requiring a human annotator —
the labels are derived from the corpus of training data. The research community has discovered
that the representation learned in this training procedure is broadly applicable as a high-quality
feature representation for a variety of problems.

How long does it take to train a word2vec model? The original word2vec paper trained its
model on a dataset that contained a total of 100 billion words [10]. The word2vec authors reported
training a word2vec model on 100 billion words in one day on a single server, but no information
is provided about the type of hardware used in this server. However, Zhao et al. [59] did report
the amount of time required to train a word2vec model, as observed in their own experiments.
Admittedly, it isn’t entirely clear whether the model by Zhou et al. has the same dimensions and
configuration as the model presented in the original word2vec paper. Nevertheless, Zhao et al. [59]
reported training a word2vec model on a single NVIDIA Titan X GPU at a rate of 4.5M words
per second, which equates to roughly 6.2 hours to complete one epoch of training.2 We used the
numbers by Zhao et al. for the word2vec entry in Table 2.1.

2.1.2 Audio (Somewhat computationally intensive)

DNNs are now widely used in research and commercial speech recognition systems. In most
approaches, training a DNN to perform speech recognition requires a large quantity of appropriate

2This is assuming one epoch (pass through the training set) is necessary to train a word2vec model.

15

training data. This training data is typically a corpus of spoken-word audio, which has been labeled
(by human annotators) with words.3

To our knowledge, the largest publicly available corpus of word-labeled audio data is the Fisher
Corpus, which has 2000 hours of data [60]. So, how long does it take to train a high-accuracy DNN
on this dataset? In the literature, we have not found any articles that report training times on
the Fisher Corpus. However, researchers at Baidu reported the time required to train on an even
larger dataset. The Baidu researchers used a 12,000-hour dataset, which includes all 2000 hours
of the Fisher Corpus, plus 8600 hours of proprietary data collected and labeled by Baidu, plus a
number of smaller datasets such as WSJ [63], Switchboard [64], and LibriSpeech [65]. To train on
this 12,000-hour dataset using a single NVIDIA K1200 GPU, the authors reported that it takes
approximately 3 weeks to train a high-accuracy DNN model.4 Given that takes 3 weeks to train
on the full 12,000-hour Baidu dataset, and knowing that the Fisher Corpus contains 1

6 as much
training data, we estimate that it would take half a week (3.5 days) to train a high accuracy DNN
using the Fisher Corpus, which to our knowledge is the largest publicly-available dataset.5

2.1.3 Images (Very computationally intensive)

Image classification is a core problem in computer vision. The goal here is to automatically
assign one or more labels to an image. If the image is zoomed-in on one primary object such as
a dog, a valid classification label could be “dog” or even the specific breed of dog. If the image is
zoomed-out on a scene, a reasonable label might be “park” or “office,” depending on the contents
of the image.

Researchers have developed large datasets of labeled data for training and evaluating image
classification methods. One of the largest image classification datasets is ImageNet-1k, which has
1000 categories of images, and an average of 1200 labeled training images per category, for a total of
1.2 million labeled training images [21]. A CNN architecture called AlexNet [22] won the ImageNet
image classification competition in 2012. ImageNet is a large dataset, and CNNs are often quite
computationally intensive.

So, how long does it take to train the AlexNet model on ImageNet-1k? Krizhevsky et al. [22]
reported that this training took approximately 1 week. This result was achieved by training on
a single NVIDIA K20 GPU using well-tuned computational kernels. The full ImageNet [21] data
corpus (of which ImageNet-1k is a modest subset) has at least 7 million images, where each image
is labeled as one of 22,000 categories [66]. On a fixed number of epochs6, training on the full
ImageNet corpus should take 6x times longer, for a total of 6 weeks of execution between the time
the researcher begins training the model, and the time when the training is complete.7

Now, even larger image classification datasets have been developed. For example, the Places2
scene classification dataset has over 8 million labeled images in the training set [67]. As datasets

3Alternatively, the corpus can be labeled with individual syllables called phonemes. However, word-labels have
been used to train the current state-of-art speech recognition approaches.

4The Deep Speech 2 authors go on to present multi-GPU distributed training strategies to accelerate training.
We will discuss distributed training in depth in Chapter 3.

5Given a fixed number of epochs (passes through the training set), DNN training time grows linear with the
training set size.

6an “epoch” is one pass through the training set
7This “6x” number comes from the fact that the full ImageNet dataset has 7M images rather than 1.2M images.

16

continue to grow, the training of DNNs is on track to become more and more computationally
expensive.

2.1.4 Video (Extremely computationally intensive)

ImageNet-1k has slightly more than 1 million labeled images in its training set. However, the
Sports-1M dataset has nearly 1 million labeled videos in its training set [62]. Each video may be
comprised of hundreds of frames per minute, and the average video in the dataset is 5.5 minutes
long. The labels for Sports-1M are rather coarse. Rather than labeling individual objects or
individual frames, the creators of Sports-1M opted to have just one label per video. Specifically,
each video is labeled with a particular activity that is being performed in the video. The dataset is
called Sports-1M, so the “activities” are types of sports — a total of 487 different types of sports, to
be exact. When training models on the Sports-1M dataset, the typical end-goal is to automatically
predict one label (e.g. the type of sport being played) for each video in the test set.

How long does it take to train a model to recognize types of sports that are being played in
videos? Karpathy et al. trained an AlexNet-based CNN model on the Sports-1M dataset [62].
The authors trained the model using custom settings for the downsampling factor in the input
images and the number of images or clips to use per training video. Rather than attempting to
calculate the training time based on the AlexNet-ImageNet experiments in the previous subsection,
we simply report the training times from Karpathy et al. as follows. Karpathy et al. were able to
train a high-accuracy DNN model on Sports-1M in 1 month using a cluster of 10 GPUs.

2.2 Transfer learning: amortizing a few large labeled datasets over

many applications

In the previous section, we found that CNN/DNN training tends to be more time-consuming
and computationally expensive in large-scale computer vision recognition problems on images and
video, compared to text and audio which typically have less computational overhead. We have
dedicated the remainder of this dissertation to accelerating, rethinking, and improving the efficiency
and accuracy of CNNs applied to computer vision. A key element in many of today’s computer
vision CNN workflows is transfer learning, which we will discuss in the following paragraphs.

To achieve the highest possible accuracy, CNN/DNNs typically need a large supply of training
data.8 In computer vision, the state-of-art CNNs are often trained with supervised learning meth-
ods. Supervised learning methods typically require the training data to be annotated by humans.
A practical question is, how do we avoid the need to pay human annotators to annotate enormous
datasets for each new application for which we would like to develop high-accuracy CNN models?

Image classification is an application where training data is relatively inexpensive to gather.
This is because, to train a CNN for image classification, we only need one label (e.g. “dog” or
“office building”) for each image. In contrast, the problem of object detection is the problem of
automatically localizing and classifying each object in an image. Typically, to train a CNN to

8We provided some quantitative numbers on how dataset size impacts accuracy in Section 1.2.1.

17

perform object detection, each image must be hand-annotated with a rectangle and a class label
for each object in the image. This is substantially more work than simply annotating a class label for
each image. Given how much work goes into annotating each image, the popular publicly-available
object detection training datasets such as KITTI [68] and PASCAL [16] each have fewer than 10,000
annotated images. This is frustrating, because CNNs typically require a large quantity of training
data to achieve the highest possible accuracy. However, recall that it is much less labor-intensive to
annotate data for image classification. With this in mind, a popular approach to ingest “enough”
data into an object detection CNN is as follows. First, we train the CNN for image classification on
an enormous volume of data, such as the 1.2 million images in ImageNet-1k. Partway through the
training procedure, we switch from training for image classification (e.g. using ImageNet data) to
training for object detection (e.g. using Pascal [16], KITTI [68], COCO [69], or VIRAT [70] data).
During this switch from classification to detection, it may be necessary to change the choice of loss
function, but the knowledge of natural images that was learned on classification is transferred to
training an object detector. Training protocols that involve this switch (e.g. from classification to
detection) are called transfer learning. Broadly, any training approach that involves transferring a
model learned in one domain (e.g. classification) and adapting that model to a new domain (e.g.
detection) can be described as a transfer learning approach.

2.3 Beyond accuracy: metrics for evaluating key properties of

DNNs

The overwhelming majority of research on machine learning, computer vision, and neural net-
works has focused on getting the best possible results on one type of metric: accuracy. However, to
train models in a tractable and productive timeframe, and to deploy models in real-time without
unbounded quantities of hardware, we must apply some discipline in evaluating the computational
characteristics of DNN models and DNN execution environments.

In this section, we present a menu of metrics that enable disciplined evaluation of the computa-
tional properties of DNNs. For completeness, we also present a overview of strategies for evaluating
the accuracy of DNNs. We list the metrics in Table 2.2. We orient these metrics especially toward
computer vision, but many of these metrics can be applied to other CNN/DNN applications as well.
Further, we also show in Table 2.2 how different aspects of the CNN environment (the dataset,
image resolution, CNN architecture itself, computational hardware, and solver approach) interact
with the metrics. Notice that some metrics are influenced by all aspects of the CNN environment,
while other metrics are isolated to only one or two aspects of the CNN environment. Bear in mind
that not all of these metrics will necessarily be useful in all applications — rather, our goal here is
to present our broad playbook for how to evaluate CNNs and CNN-based systems before deploying
them in a real application.

For the interested reader, we offer more detail on each of these metrics in the following sub-
sections. If you feel confident in your understanding of the metrics in Table 2.2, we recommend
skipping ahead to Section 2.4.

18

Table 2.2. Which aspects of a DNN-based system are evaluated by each metric? (Note that
the “Hardware” aspect of the system also includes the computational kernel implementa-
tions.)

Metric Aspects of system evaluated

Dataset Image Resolution
CNN/DNN

Architecture
Hardware Solver

Accuracy X X X X

Qty of computation

(ops/image)
X X

Frame Rate (FPS) X X X

Training Time (hours) X X X X X

Power (TDP) X

Energy (Joules/frame) X X X

Model Size (bytes) X

Memory Footprint (bytes) X X

2.3.1 Accuracy

Machine learning methods such as DNNs are employed to classify and extract meaning from
unstructured data such as text, audio, images, or video. Some methods are better than others
at accurately extracting meaning from data. So, how do we go about measuring the accuracy of
a machine learning method? A general template of how to measure accuracy involves a test set
of data samples, where the experimenter knows the ground truth labels of these samples, but the
learning method does not. To evaluate the method’s accuracy, the trained model is applied to the
test set, and the method’s accuracy level is computed based on how well the method understood
the test set. The exact choice of how to compute accuracy depends on the problem at hand. We
now review a few techniques for measuring accuracy in various problem domains.

A widely-studied problem in computer vision is image classification — that is, to automatically
classify a whole image as “office,” “park,” “restaurant,” etc. DNNs or other classification methods
can be trained to learn a mapping from an image to a category label. How do we evaluate the
accuracy of such a classifier? If each image in the test set belongs to exactly one category, then the
accuracy can be reported simply as a percentage #correct

#incorrect .

An other widely-studied problem in computer vision is localized detection of objects. The goal
here is to automatically draw rectangles around objects in an image, and to automatically assign
the correct labels to each rectangle (e.g. car, bus, pedestrian, etc). Localized detection methods
can exhibit some extreme behavior — for example, they can cover an entire image in rectangles, or
they can choose to draw no rectangles at all. How can such a range of outcomes be summarized in

19

a single metric of accuracy? There are number of approaches, most of which begin by organizing
the method’s detections into false positives (FP), true positives (TP), false negatives (FN), and
true negatives (TN). With this information, metrics such as average precision (AP) [16] or false
positives per image (FPPI) [71] can then be computed. Each of these metrics can summarize an
object detector’s accuracy in a single metric.

There are a number of additional metrics for calculating accuracy in other problem domains.
The accuracy of semantic segmentation — that is, assigning object labels to all pixels in an image —
is often evaluated with an Intersection over Union (IOU) metric [72]. The accuracy of speech recog-
nition methods can be evaluated on a per-frame or per-word basis. Likewise, the accuracy of video
analysis methods can be evaluated on a timescale ranging from per-frame to per-video [62]. The
accuracy of methods for automatically assigning captions or sentences to images is commonly eval-
uated with metrics such as Bilingual Evaluation Understudy (BLEU) [73] or Metric for Evaluation
of Translation with Explicit ORdering (METEOR) [74]. In general terms, BLEU and METEOR are
designed to quantify the correctness of the algorithmically generated caption’s word usage, word
ordering, and number of words, with respect to a database of ground-truth captions. In optical
flow algorithms, the accuracy is often measured with an angular error [75] metric.

2.3.2 Quantity of Computation

Today’s DNN architectures present a wide range of computational requirements. For example,
the LeNet [76] DNN architecture performs 5.74 million floating-point arithmetic operations (5.74
MFLOPS) to classify a 28x28 image. At the other end of the spectrum, the VGG-19 [77] DNN
architecture performs 117,000 MFLOPS to classify a 224x224 image. If applied to a 224x224 image,
LeNet performs 2700 MFLOPS to classify the image.9 Applying VGG-19 to a 224x224 input image
requires 20,000x more computation than applying LeNet to a 28x28 input image. Even with the
same input image size, VGG-19 requires 43x more computation than LeNet. DNNs comprise an
enormous design space, and some points in this design space require orders of magnitude more
computation than others.

So far, we have focused on the quantity of computation required to classify images during the
inference phase. Now, we turn our attention to the quantity of computation needed to train a
DNN. As a rule of thumb, the computation required per image when training a DNN is 3x more
than the computation required for inference [78]. As with inference, one way to think about the
quantity of computation is in terms of OPS/frame.10 However, during training, multiple passes
through the training set (epochs) are often performed. A good way to think about the quantity of
computation is to consider the total number of arithmetic operations required to complete training:
(OPS/frame) ∗ (#frames in training set) ∗ (#epochs). While the number of epochs could be
selected dynamically (e.g. stop training when the model reaches a convergence criterion), we have
observed that most CNN researchers define a static number of epochs offline, prior to the training
experiment.

How does quantity of computation relate to the speed of execution? DNNs/CNNs are com-

9On a 28x28 image, the first fully-connected (FC) layer in LeNet has a operates on an input size of 4x4xChannels,
and each filter is also 4x4xChannels. To adapt LeNet to a 224x224 image, we make this FC layer into a convolution
layer with filters of size 4x4xChannels, and we average pool the output of this layer down to 1x1xChannels.

10Work by He and Sun [78] and Szegedy et al. [79] are examples of papers that report their CNN models’ accuracy
as well as computation required per frame.

20

monly implemented with 32-bit floating-point math (so the OPS are FLOPS), and less commonly
with integer math (IOPS). A high-end GPU such as the NVIDIA P100 can perform up to 10.6
TFLOPS/sec [80].11 If running at 10.6 TFLOPS/sec, LeNet (224x224 images) could classify 3900
frames/sec12, while VGG-19 could classify just 91 frames/sec frames/sec.13 However, there is no
guarantee than an off-the-shelf implementation will achieve the peak efficiency of 10.6 TFLOPS/sec.
Well-tuned CNN libraries such as Boda [19], cuDNN [25], fbfft [81], and Neon [82] been shown to
achieve 30-95% of peak, depending on the choice of hardware and the dimensions of each CNN
layer.

2.3.3 Quantity of Communication

A computational resource (e.g. one mobile phone or a cluster of servers) has a limited quantity
of computation that it can perform each second. However, an often-overlooked factor is that a
computational resource also has a limited quantity of communication that it can perform each
second. We define communication quite broadly. One variety of communication is the movement
of data from one server to an other, for example using a hardware networking platform such as
Ethernet or Infiniband. An other variety of communication is within a server, between different
layers of the storage and memory hierarchy. Thus, we classify all varieties of data movement as
communication. We illustrate an example configuration of hardware pertaining to these levels of
data movement in Figure 2.2.

In the landmark Roofline Model paper [84], Williams et al. showed that, depending on the
method and choice of hardware, the theoretical best-case execution time can be limited by either
computation or communication. We interpret this broadly to mean that any of the following can
be a limiting factor on the speed at which an algorithm/program can execute:

1. peak throughput computational hardware (influenced by factors such as the number of pro-
cessors, width of vector lanes, clock speed, and pipeline depth), OR

2. peak bandwidth and latency of the memory hierarchy (typically within a server), OR

3. peak bandwidth and latency of interconnect between servers.

Note that we define peak to denote the theoretical best-case that can be achieved by a given
hardware unit.

With all of this in mind, we find that it is important to analyze not only the quantity of
computation, but also the quantity of communication required by a CNN architecture. With
specific hardware and implementations, we can also study speed — i.e. “computation per second”
and “communication per second,” and we will discuss this in the next section. But, before we
get to that, let us briefly consider how the quantity of communication differs during training and
inference of CNNs.

Training. During the training phase, CNNs incur the communication overheads:

11A processor’s highest achievable throughput is known as “peak” throughput.
1210,600 peak GFLOPS/s / 2.7 GFLOPS per frame
13where input frames are of size 224x224 for both VGG-19 and LeNet

21

3"

DeepScale Intel&Broadwell&

Reference""
"
www.nextpla0orm.com/2016/05/31/intel:lines:thunderx:arms:xeons/"
"
author="Timothy"PrickeE"Morgan""
journal="The"Next"Pla0orm""
Jtle="Intel"Lines"Up"ThunderX"ARM"Against"Xeons","
year="2016""
"
"

capJon:"Diagram"of"an"Intel"Broadwell"mulJcore"CPU"
server."This"diagram"focuses"on"the"communicaJon"
infrastructure"::"caches,"memory,"and"interconnects.""
Each"``Xeon""is"a"CPU"core."Some"aspects"of"this"diagram"
are"courtesy"of"[REF"The"Next"Pla0orm"arJcle]."

Main""
Memory"

Network"interconnect"
(e.g."ethernet"or"Infiniband)"

To"other"servers"

PCI:e"
interconnect"

To"GPUs"and"other""
accelerators"

Figure 2.2. Multicore CPU server. In this diagram, each “Xeon” is an Intel Broadwell
CPU core. This diagram includes several levels of communication infrastructure: caches,
memory, and interconnects. Some portions of this diagram are borrowed from [83].

• transferring input data (e.g. images) into registers (often from disk)

• transferring activations and gradients in and out of registers

• transferring parameters in and out of registers

• transferring model updates across servers (in the case of multi-server training).

Inference. During the inference phase, CNNs incur the communication overheads:

• transferring input data (e.g. images) into registers (often from disk)

• transferring activations and gradients in and out of registers

• transferring parameters in and out of registers.

22

Unlike training, inference does not requite communication across servers because each data sample
(e.g. image) can be processed independently, and the model is no longer being updated or modified.

2.3.4 Speed

The quantities of computation and communication are properties of a DNN architecture, but
these are orthogonal from the underlying hardware and implementation that executes the DNN.
Speed is a more holistic metric that is impacted by a number of factors including the DNN archi-
tecture, the software implementation, and the choice of computational hardware.

The following example illustrates the difference between measuring quantity of computation
and measuring speed. During inference, the VGG-19 DNN performs 117 GFLOPS per frame —
this is the quantity of computation. The majority (> 95%) of these FLOPS can be attributed to
performing convolution calculations. But, at what rate can we expect a processor to perform these
FLOPS? Every processor has a theoretical peak, or best-case, throughput in FLOPS/s. For example,
an NVIDIA Titan X GPU has a theoretical peak of 6 TFLOPS/s. A study of high-performance
computing applications implemented on supercomputers found that the average application runs
at approximately 5% of the processor’s peak efficiency [85]. At a rate of 5% of 6 TFLOPS/s (i.e.
0.03 TFLOPS/s), the inference phase of VGG would run at 0.25 frames/sec. However, as shown in
our Boda work on accelerating convolutions on GPUs, it is feasible to implement certain problem
sizes convolution at 50% of peak, or more, on NVIDIA and Qualcomm GPUs. At 50% of peak (i.e.
3 TFLOPS/s), the inference phase of VGG would run at 2.5 frames/sec, a 10x speedup over 0.25
frames/sec. What we can learn from this simple example is that every CNN architecture requires
a particular quantity of computation (e.g. 117 GFLOPS per frame), and the specific software
implementation can influence the order-of-magnitude speed at which these FLOPS are executed.

So far we have learned that, in addition to the choice of DNN architecture, the software im-
plementation has a major impact on the computational speed. Can the choice of computational
hardware also have such an impact? NVIDIA’s Maxwell microarchtecture is the underlying com-
putational hardware in several of NVIDIA’s current products. At the low end, NVIDIA produces
the TX1 system, which has a small Maxwell-based GPU with a peak 32-bit computation rate of 0.5
TFLOPS/s [86]. At the high end, NVIDIA produces the Titan X GPU, which has a peak 32-bit
computation rate of 6 TFLOPS/s [87]. Even if we use a provably optimal software implementation
that achieves the hardware’s peak TFLOPS/s, the TX1 would have a 12x slower frame rate than
the Titan X. So, to answer our question: yes, the choice of computational hardware can have an
order-of-magnitude impact on the speed at which we execute a CNN.

To summarize, the CNN architecture, the software implementation, and the choice of computa-
tional hardware all contribute to the speed at which a CNN is executed. In this subsection, we have
focused on the speed of the inference phase, but in Chapter 3 we will present a detailed discussion
of the factors that determine the speed of CNN training.

2.3.5 Power

Experimental autonomous vehicles such as Caltech’s Alice vehicle implement their vi-
sion/perception methods using in-vehicle server racks that draw up to 3500W of power [88], and
it is rumored that Google’s autonomous SUVs also have onboard computers that draw multiple

23

kilowatts of power. We have had a number of conversations with key people inside of automakers
about this issue. To make autonomous driving feasible and economical, automotive OEMs and
their suppliers urgently wish to achieve high-quality perception with much lower computational
power budgets for both prototype and mass-produced autonomous vehicles.

Toyota recently created the Toyota Research Institute (TRI). TRI is a $1 billion research center
that focuses on driver assistance and autonomous driving technologies, and computer vision (and
more generally visual perception) is a core area of focus. In a recent keynote, Gill Pratt of Toyota
Research Institute explained that humans are fairly good at driving cars [89], yet the human body
has a resting power draw on the order of 60W, of which 20% is consumed by the human brain [90].
Contrast this with the prototype autonomous cars that we mentioned earlier in this section, which
may draw multiple kilowatts of power to execute visual perception methods in real-time. Pratt
and the TRI team are working to decrease the power required to perform computer vision while
retaining sufficiently high accuracy for safe semi-autonomous and fully-autonomous driving [89].

Using less power directly translates to dissipating less heat. In automotive, drone, and embed-
ded applications, system designers typically prefer to use passive processor cooling, and therefore
low-power (low heat dissipation) is a key design goal. Power is also a good proxy for a number of
other problem dimensions. Numerous applications require the hardware to be small (e.g. to avoid
using up cabin storage in a car, and to avoid having a large payload on a drone). These applications
also often require the hardware to be cheap. Low-power computational hardware is often small and
cheap — so, by targeting lower power, the hardware is more likely to meet the system-level goals
for cost and size.

Much of today’s computer vision research still focuses on accuracy as the sole metric. However,
it is encouraging that some recent studies have used power as a motivating metric in addition to
accuracy. For example, a Cavigelli and Benini recently proposed the Origami design for a CNN
accelerator, and the authors evaluated their work in terms of accuracy, power, and operations-per-
Watt [91]. Likewise, a number of other CNN hardware papers — e.g. Ovtcharov et al. [92] —
have reported their power footprints.

2.3.6 Energy

In 2015 and 2016, the Design Automation Conference (DAC) hosted the “Low-Power Image
Recognition Challenge,” and the organizers of this challenge published some highlights in ICCAD
2016 [93]. The goal was to classify 50,000 ImageNet test images in 10 minutes with a cap on the
wattage used, while classifying these images as accurately as possible. Why did the organizers
of this competition choose to set limits on both power and time? Without a limit on time, the
competitors could simply slow down their computation to the point where it fits with in a particular
power budget (wattage). As we will see in the following, the combination of a time limit and a
wattage cap has the effect of specifying a limited budget of energy.14

Consider the case where a particular processor can execute a visual recognition method at 4
frames per second (FPS) while drawing 200W of power. To reduce the power envelope, a naive
approach would be to simply slow down the computation (by halving the quantity of computational
hardware, or by halving the clock frequency), which delivers a best-case improvement of 2x less

14With this in mind, perhaps the “Low-Power Image Recognition Challenge” ought to have been called the “Low-
Energy Image Recognition Challenge.”

24

power draw (as low as 100W). However, this also reduces the frame rate to 2 FPS. Clearly, “power”
isn’t a sufficient metric to capture the goals related to computational efficiency, as this metric can
easily be gamed by degrading the frame rate. Fortunately, there is a single metric that can capture
our efficiency goals: energy (joules). The Joule is defined as (watts * seconds). To achieve 15 FPS
on a 30W power budget, we require (30 * 1/15) = 2 joules per frame.

2.3.7 Model size

In a CNN, each convolution filter contains multiple parameters. For example, consider a filter
with filterH = 3, filterW = 3, and ch = 100. When represented with 32-bit floating-point
numbers, this filter has 3*3*100*(4 bytes/float) = 3.6 KB of parameters. Prior to training a CNN,
these parameters are typically initialized to a random distribution. Then, the goal of the training
process is to learn the numerical values of the parameters such that the model can fit the training
set, while being able to generalize beyond the training set. Modern CNN architectures can comprise
tens or hundreds of layers, where each layer can have hundreds of filters. In CNN architectures such
as AlexNet [22] and VGG-19 [77], this can add up to hundreds of megabytes of model parameters.

However, as we will see in Figure 3.3 of Chapter 3, having more parameters in a CNN does
not necessarily lead to higher accuracy. Further, for a specific level of accuracy on a particular
dataset, we can often identify several CNN models (some with many parameters, and some with
fewer parameters) that are able to achieve this level of accuracy. Given equivalent accuracy, a CNN
architecture with fewer parameters has a number of advantages:

• More efficient distributed training. Communication among servers is the limiting factor
to the scalability of distributed CNN training. For distributed data-parallel training, com-
munication overhead is directly proportional to the number of parameters in the model [17].
In short, smaller models train faster due to requiring less communication.

• Less overhead when exporting new models to clients. For autonomous driving, com-
panies such as Tesla periodically copy new models from their servers to customers’ cars. With
AlexNet, this would require 240MB of communication from the server to the car. Smaller
models require less communication, making frequent updates more feasible.

• Feasible FPGA and embedded deployment. FPGAs often have less than 10MB of
on-chip memory and no off-chip memory or storage.15 For inference, a sufficiently small
model could be stored directly on the FPGA instead of being bottlenecked by the memory
bandwidth required to transfer model parameters onto and off of the chip [94].

2.3.8 Additional metrics to consider

Other metrics worth considering include:

• Quantity of activations (in addition to the Quantity of parameters, which is also known as
the “model size”).

15For example, the Xilinx Vertex-7 FPGA has a maximum of 8.5 MBytes (i.e. 68 Mbits) of on-chip memory and
does not provide off-chip memory.

25

• Total memory footprint.

• Chip area (if co-designing an ASIC with a family of CNN architectures).

• Total cost of ownership, which may include the cost of hardware, maintenance, energy, and
other factors.

2.4 Orchestrating engineering teams to target specific DNN

benchmarks and metrics

In the previous sections, we have learned that, beyond accuracy, it is often necessary to optimize
a CNN-based system for several metrics in order to meet system-level design goals. To build the
best possible system, it may be necessary to co-design multiple levels of a CNN-based system,
including the CNN architecture, the software implementation, and the computational hardware.
To explore, design, and implement such systems, it is often necessary to pull a team of experts
who bring deep knowledge in multiple areas (e.g. CNN architecture, efficient software, and efficient
hardware). For such a team, it is ideal to have both of the following ways of evaluating progress
toward the end-goals:

1. A way to evaluate the holistic progress of the entire organization toward the system-level
goals.

2. A way to evaluate the individual progress of the CNN team, the software team, and the
hardware team.

In Section 2.4.1, we describe an approach for aiming a full-stack team at an overall goal, which
may involve achieving a particular level of accuracy on an aggressively low budget of energy or
an aggressively high target for speed/throughput. In Section 2.4.2, we describe an approach that
enables individual team members or sub-teams to evaluate their contribution to the progress toward
these goals.

2.4.1 System-level benchmarking

System-level benchmarking promotes creativity in the codesign of algorithms, software, and
hardware. We will consider an example of system-level benchmarking in the autonomous driving
domain. Autonomous road vehicles present a huge opportunity to save human lives and to reduce
unproductive time during commuting. The ability to automatically perform real-time visual per-
ception of the vehicle’s surroundings is a prerequisite to safe autonomous driving for road vehicles.
In Figure 2.3, we show how a perception system fits into the overall stack for autonomous driving
systems. To drive safely, perception systems must deliver high accuracy. In addition to accuracy,
perception systems are subject to a number of practical constraints. For example, real-time com-
putation is crucial in automotive perception applications. It is not very useful to detect that the
car has drifted out of the lane, if the car has crashed by the time the computer vision system has
identified the lane departure. Likewise, traffic light detection is of limited value if the vehicle has

26

2"

DeepScale Howtoimplement$autonomous$driving$

•  All"levels"of"vehicle"autonomy"(Level"1"–"Level"4)"require"the"
above"flow"to"work"

•  Percep&on"is"o@en"the"weakest"link"(based"on"conversaBons"
with"Tesla,"BMW,"and"others)"

•  Improving"the"accuracy"of"percepBon"will"lead"to"improved"
safety"for"all"levels"of"autonomy"

PercepBon""
(Computer"
Vision)"

Sensors""
(Cameras,"LIDAR,"

RADAR,"…)"

Path"
Planning"

Control"
(adjust"steering"

and"speed)"

Mapping"

Figure 2.3. Overview of how to implement autonomous driving systems, as described to us
by our contacts at a major automaker. Today, the perception module is often the limiting
factor on the overall system’s level of safety.

already violated a red light by the time the vision system has detected the light. In addition to
the need for real-time computation, a vehicle has a limited supply of energy onboard. On an elec-
tric vehicle, the battery stores a limited amount of energy, and if the autonomous driving system
is energy-hungry, this cannibalizes energy needed to move the car over long distances. Even on
an internal-combustion vehicle, there is a finite supply of fuel in the tank, and installing a high-
capacity alternator to generate more power would have the effect of reducing the vehicle’s range
and fuel economy. As we discussed in Section 2.3.5, to run high-accuracy perception algorithms in
real-time, companies like Google have been rumored to run server racks with as much as 3000W
of instantaneous power draw, which equates to 1.8 MJoules/hour. When designing a perception
system for practical automotive deployments, it is worthwhile to specify target outcomes on several
metrics including accuracy, energy (on a per-frame or per-timestep basis), peak power draw, model
size (small CNN models shrink the wireless communication needs for over-the-air updates), and so
on.

Let us consider the problem of designing a perception system for an autonomous road vehicle.16

In the future, we expect safety standards for autonomous vehicles will be set not only by vehicle
manufacturers, but also by automobile safety agencies such as IIHS, NHSTA, and EuroNCAP.
Today, the accuracy achieved by the visual perception module is one of the limiting factors in the
safety of semi-autonomous and autonomous vehicles. So, what should be the design objectives for
a deployable system that meets or exceeds the highest safety rating? First, determine the accuracy
metrics and accuracy levels that are required to meet the desired level of safety. As the safety
standards are still in flux, it’s not entirely clear what levels of accuracy will be required, but the
following steps are applicable to systems at a variety of accuracy operating-points. Next, set a
minimum frame rate needed to perform the perception in real-time. Now, so long as we achieve
the desired frame rate and accuracy level, using less energy is [almost] always better. So, if our
baseline system required 3000W to achieve the desired frame rate of 15 fps (i.e. 200 J/frame) at a
specific accuracy level, a worthy goal would be to preserve the accuracy and frame rate in a 30W
(2 J/frame) envelope (100x improvement). Now, we have the freedom to modify the algorithm

16We focus on the problem of converting real-time data feeds from cameras and other sensors into an understanding
of the environment. Meanwhile, there is much work to be done on improving sensors, mapping, path planning, and
control.

27

(e.g. CNN architecture), software implementation, and choice of hardware, all to target improved
energy-efficiency without compromising accuracy or frame rate. In other words: the metric of
energy (J/frame) transcends the boundaries of algorithm, software, and hardware, so optimizing
for this metric promotes creativity and codesign of multiple layers of the system.

2.4.2 Per-component benchmarking

While the overall goal may be to reduce energy per frame (a system-level metric), let us consider
the dynamics of a team working toward this goal. In a typical case, the team would include at least
one hardware architect, at least one software architect, and at least one CNN architect. For all
three team members, the work may focus on identifying usable off-the-shelf solutions (e.g. existing
CNN architectures, existing software libraries, and existing hardware components), or developing
entirely new solutions (new CNN architectures, new software libraries, and new hardware), or —
most likely — pursuing a mixture of off-the-shelf and custom solutions. Each team member will
want to evaluate his or her own contributions toward the common cause of improving energy-
efficiency. We refer to this exercise as per-component benchmarking. The team can do this as
follows:

• The hardware architect can aim to maximize speed of a representative microbenchmark in
terms of OPS/sec. Further, the hardware architect can aim to minimize the power needed to
run at peak OPS/sec. This power envelope should include not only the processor itself, but
also memory and I/O power requirements.

• The CNN architect has several ways to evaluate their work in isolation. Accuracy is a prop-
erty of the CNN only, and not the software or hardware (assuming no bugs are introduced by
new software or hardware). Further, the quantity of computation (number of OPS per image;
not per second) allows the CNN architect to chart their progress in reducing computational
requirements. Model size is a metric that helps the CNN architect to understand the level of
the memory hierarchy in which the model parameters may reside.

• The software architect has a more difficult time than the other two architects when at-
tempting to isolate his/her contributions with per-component benchmarks. The software
architect can aim to maximize speed (OPS/sec) of relevant CNN problem sizes on represen-
tative hardware. If new hardware is being developed, some of this benchmarking may need
to occur on simulation-based or FGPA-based prototypes of the proposed hardware. Ideally,
the software architect can communicate frequently with the hardware architect and CNN
architect, trading notes on hardware limitations and CNN problem dimensions that can be
implemented efficiently.

As we discussed in Sections 2.3.2 and 2.3.4, a software+hardware system does not always achieve
peak OPS/sec on all problem sizes, so the software and hardware architects should be constantly
exchanging notes with the CNN architect on problem dimensions.

28

2.5 Relationship of our approach to the MESCAL methodology

The MESCAL book [34] points out that many new computer architectures are developed and
evaluated using inadequate benchmarks that are not representative of the end applications. Espe-
cially at the time when the MESCAL book was written, it was common to see new architectures
and chips evaluated based on the number of clock cycles needed to execute a series of instruc-
tions. Ideally, the instruction stream would at least be derived from a motivating application (e.g.
network packet processing), but sometimes these instructions are chosen more arbitrarily. Not
surprisingly, when application-specific processors are developed with such vague benchmarks and
objectives, these new processors don’t necessarily deliver improvements on end-application speed
and efficiency.

As an antidote to this phenomenon, the MESCAL book advocates for system-level benchmark-
ing. This type of benchmarking calls for representative algorithms, implementations, and inputs
when evaluating new hardware. Evaluating the top-to-bottom system on metrics such as speed,
energy-efficiency, and correctness is the only sure-fire way to understand how the new hardware
will perform on the end application.

In our discussion of benchmarks and metrics for evaluating deep learning systems, we have
advocated for system-level benchmarking. This is well aligned with the MESCAL methodology.
For example, the speed (i.e. frame rate during training or inference) of a CNN/DNN system is
influenced by all levels of the stack, including the dimensionality of the input data, the neural
architecture, the software, and the hardware. Likewise, the energy per frame is influenced by all of
these factors. These metrics — and how these can be traded off with accuracy — are system-level
benchmarks that promote co-design of all levels of the stack to develop the best possible system.

While system-level benchmarking is the most vital type of benchmarking, we find that there
are cases where per-component benchmarks are useful, too. For example, the accuracy of the
CNN/DNN model is independent of the software and hardware in which it is implemented17, so
the model’s accuracy can be analyzed independently of the rest of the system. Likewise, the number
of arithmetic operations in a CNN is a property of the CNN alone. Further, the peak power envelope
is purely a property of the hardware. These per-component metrics are useful for individual teams
in an organization (e.g. the CNN team, the software team, and the hardware team) to evaluate
their individual contributions. However, the “north star” or guiding light should always be the
system-level metrics that represent the end-application behavior.

17If the CNN’s accuracy changes when moving to a different software implementation or hardware platform, this
is considered a bug. However, there are opportunities for co-design, such as leveraging hardware that can efficiently
do CNN computations at low precision, and then working to mitigate the possible drop in accuracy.

29

Chapter 3

Rapidly training DNNs on compute

clusters

3.1 The need for efficient and scalable DNN training

Since the publication of AlexNet [22], a variety of new deep neural network (DNN) architectures
such as GoogleNet [79], Network-in-Network [95], and VGG [77] have been developed at a rapid
pace. This is natural, because with the training and testing dataset fixed (e.g. ImageNet-1k [21]), it
is the DNN architecture that is primarily responsible for improvements in accuracy. In other words,
the race for improvements in accuracy in image classification and other contemporary problems of
computer science has become a race in the development of new DNN architectures. So, what is the
bottleneck in the development of new architectures?

In the development of new DNN architectures, as in any human research endeavor, creativity
is a key element. However, the impact of architectural variations in DNNs — such as number of
layers, filter dimensions, and so forth — can be hard to predict, and experimentation is required to
assess their impact. A high-accuracy deep neural network (DNN) model such as GoogLeNet [79]
can take weeks to train on a modern GPU. This is true even when leveraging deep neural network
primitives like cuDNN [25], maxDNN [96], fbfft [81], or Boda [19] — all of which operate near
the theoretical peak computation per second achievable on GPUs. Thus, training time is a key
challenge at the root of the development of new DNN architectures. This sentiment was voiced by
Jeffrey Dean of Google in his recent keynote address [97].

The four key points that Dean makes are:

• We [i.e. DNN researchers and users] want results of experiments quickly

• There is a “patience threshold:” No one wants to wait more than a few days or a week for a
result

• This significantly affects scale of problems that can be tackled

30

• We sometimes optimize for experiment turnaround time, rather than absolute minimal system
resources for performing the experiment

Given the considerable resources available to Google researchers, Dean’s comments indicate
that simply throwing more computational resources at the problem is not sufficient to solve the
DNN training problem. In the following, we will spend a little more time dimensionalizing the
current problems with DNN training and the upside potential if these problems can be solved.

3.1.1 Accelerating DNN Research and Development

As a particular example of where long training times are limiting the pace of DNN research and
productization, consider the following. ImageNet-1k has 1.2 million training images, distributed
across 1000 different category labels. From first-hand conversations with engineers and executives,
we know that several internet companies have internal databases containing billions of images with
hundreds of thousands of different category labels. Due to long training times, these companies
are facing serious delays in bringing DNN-based solutions to market. Accelerated DNN training
solutions would address a major pain point for these companies.

3.1.2 Real-Time DNN Training

So far, we have argued how accelerating DNN training would benefit applications where DNNs
are in use today. Now, we consider ways in which accelerating DNN training would allow DNN-
based techniques to be applied in entirely new ways. There are a number of situations where it
is crucial to incorporate new data into a DNN model in real time. For example, reinforcement
learning (RL) enables robots to learn things themselves with minimal supervision. A recent study
by Levine et al. applied state-of-the-art DNN-based RL techniques to enable a robot to teach itself
how to build lego structures and screw on bottle caps [98]. This technique is effective, and the
robot does indeed learn to screw on bottle caps. However, it takes 3-4 hours for the robot to learn
to screw on bottle caps, and the majority of this time is spent on DNN training. Faster DNN
training would enable this and other reinforcement learning applications to move toward real-time.

Deep Neural Networks are used for an ever-broadening variety of problems, including classify-
ing [79, 55] and detecting [47, 48] objects in images, writing sentences about images [57], identifying
actions in videos [12], performing speech recognition [99], and gaining semantic understanding of
text [10]. We anticipate that sophisticated reinforcement learning (RL) systems in robotics will
eventually leverage all of these modalities, ideally in real-time.

3.1.3 Accelerating DNN Training with FireCaffe

In our work, we focus directly on the problem of DNN training. Since single-GPU efficiency has
reached the hard limits of the hardware, the next frontier for accelerating DNN training is to scale
it across a compute cluster. In this chapter, we present FireCaffe, which scales DNN training across
a cluster of 128 GPUs with speedups of more than 40x compared to a single GPU. Our strategy for
scaling up DNN training is to focus on reducing communication overhead, and we make a number
of design choices toward this goal. For example, we use fast interconnects such as Infiniband or

31

Cray Gemini to accelerate communication among the GPUs. We also show that reduction trees
are a faster method for communication than using parameter servers. We map our parallelization
strategy to high-accuracy DNN architectures that require less communication.

The rest of this chapter is organized as follows. In Section 3.2, we describe our choice of
hardware for evaluating scalable DNN training, and Section 3.3 introduces key factors that we
will use for analyzing communication among GPU workers. We describe tradeoffs between DNN
parallelism strategies in Section 3.4, and Section 3.5 explains why certain high-accuracy DNN
architectures are particularly amenable to parallelism. In Section 3.6, we describe our approach
to efficiently implementing distributed DNN training. In Section 3.7, we describe good practices
that facilitate the comparison of scalable DNN training techniques and we present our speedups for
training the NiN and GoogLeNet architectures on ImageNet. Section 3.8 describes approaches that
are complimentary to FireCaffe for further accelerating DNN training. We conclude in Section 3.9.

3.2 Hardware for scalable DNN training

It is both useful and feasible to experiment with the scalability of DNN computations using
theoretical or scale models. However, demonstration and verification of the correctness and real-
world scalability of the proposed FireCaffe system requires using concrete hardware platforms.
The speed at which data can be sent between nodes is a key consideration in selecting a hardware
platform for scalable DNN training. This is because, the faster the interconnect between nodes is,
the more scale we can achieve without being dominated by communication overhead. Hardware
manufacturers such as Cray and Mellanox address this by developing high-bandwidth, low-latency
interconnects that are substantially faster than typical Ethernet connections.

For example, the Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF)
has a high bandwidth, low latency Cray Gemini interconnect for communication among servers.
The Titan supercomputer has a total of 18,000 servers, with one NVIDIA Kepler-based K20x GPU
per server [100, 101]. With this in mind, we choose the OLCF Titan supercomputer for tuning and
evaluating FireCaffe.

In this research, we use relatively small slices of the overall capacity of Titan for each training
run. The additional computational capacity (∼27 PetaFLOPS/s in total) enables us to conduct
multiple training runs concurrently, where each training run utilizes 32 to 128 GPUs. When con-
sidering 32-node slices of Titan, we found that the interconnect speed (at least for the applications
of this work) is similar to that provided by having all nodes in the slice connected to a single
Infiniband-class switch.

3.3 Preliminaries and terminology

To minimize confusion, we now define some terminology. The key data structures in a convo-
lution layer are data (also called activations) and parameters (also called weights), and we present
a simple illustration of this in Figure 3.1.1 More explicitly: in our terminology, the each of the
following sets of words are synonyms: (weights = parameters = filters = W); (nodes = workers

1For a much more detailed discussion of how convolution layers work, see Section 4.2.1.

32

W:#Params#
(x##filters)#

D:#Input#data#to#
this#layer#
(x#batch#size)#

Figure 3.1. Anatomy of a convolution layer. This is a high-level overview. We present a
more detailed diagram in Figure 4.2.

= GPU servers). We also sometimes use the terms “activations” and “data” (D) interchange-
ably. Fully-connected layers are a special case of convolution layers where filterH = dataH and
filterW = dataW . We define an “epoch” as one pass through the training data. Finally, the word
“performance” can be ambiguous, so we write in terms of specific metrics such as “accuracy” and
“training time.”

Deep neural network training is comprised of iterating between two phases: forward and back-
ward propagation. In the forward phase, a batch of data items (e.g. images) is taken from the
training set, and the DNN attempts to classify them. Then comes the backward phase, which
consists of computing gradients with respect to the weights (∇W) and gradients with respect to
the data (∇D). The weight gradients are used to update the model’s weights. Then, an other
forward phase is performed, and so on. We train models using batched stochastic gradient descent
(SGD), which is the standard choice for popular DNN models such as GoogLeNet [79].

We now present a few preliminaries that we will use later in this dissertation for reasoning
about data volume to communicate in distributed DNN training. In Equation 3.1, we show how
to calculate the total size (in bytes) of the weights in all convolution and fully-connected layers,
combined.

|W | =
#layers∑
L=1

numFiltL−1 ∗ numFiltL ∗ filterWL ∗ filterHL ∗ 4 (3.1)

where numFiltL is the number of filters in the current layer, numFiltL−1 is the number of input
channels, filterH is the filter height, and filterW is the filter width. Note that each filter produces
its own output channel, so the number of filters in layer L−1 dictates the number of input channels
in layer L. In other words, for layer L, the number of input channels is numFiltL−1, and the number
of output channels is numFiltL. Next, Equation 3.2 expresses the size of activations produced by
all layers, combined.

|D| =
#layers∑
L=1

numFiltL ∗ dataWL ∗ dataHL ∗ batch ∗ 4 (3.2)

where dataH is the activation map height, dataW is the activation map width, and batch is the
batch size. Note the ∗4 in Equations 3.1 and 3.2 — this is because a single-precision floating-point
number is 4 bytes.

33

3.4 Parallelism strategies

There are two commonly-used methods for parallelizing neural network training across multiple
servers: model parallelism (e.g. [102]) and data parallelism (e.g. [103]).

For batched SGD training of DNNs, we define data parallelism as the case where each worker
(e.g. GPU) gets a subset of the batch, and then the workers communicate by exchanging weight
gradient updates ∇W . We define model parallelism as the case where each worker gets a subset
of the model parameters, and the workers communicate by exchanging data gradients ∇D and
exchanging activations D. Note that |W | = |∇W | and |D| = |∇D|; in other words, the weights
and weight gradients are the same size; and the data and data gradients are the same size.

Now, to maximize DNN training scalability, our goal is to select a parallelism strategy that
requires the lowest possible quantity of communication between servers. The choice of whether
it is ideal to use data parallelism, model parallelism, or both depends strongly on the DNN’s
architectural characteristics. Commonly-used DNN architectures for speech recognition (e.g. [104])
consist primarily of fully-connected layers, where the activations and parameters have the same
spatial resolution (typically 1x1). For typical batch sizes, these fully-connected models often have
a similar quantity of weights W and activations D. For example, we observe in Table 3.1 that this
property holds true for the MSFT-Speech DNN architecture [104].

In computer vision, some of the most popular and accurate DNN models (e.g. GoogLeNet [79])
consist primarily of convolution layers, where the spatial resolution of the filters is smaller than
the resolution of the activations.2 For these convolutional models, data parallelism is typically
preferable because it requires less communication — that is, |∇W | is much smaller than |∇D| at
typical batch sizes. Notice that the computer vision DNNs in Table 3.1 all have this property. In
FireCaffe, we enable data parallelism across a cluster of GPUs, and we find that it produces ample
speedups for training popular deep convolutional neural network architectures. We illustrate our
data parallel approach in Figure 3.2. In this configuration, all the GPUs contain the full DNN
model parameters. Each worker (GPU) gets a subset of each batch. The GPUs compute their
share of the weight gradients. Once the gradients are calculated locally, they are added together
using either a parameter server or a reduction tree communication (described in Section 3.6.2).

2For a more detailed discussion of the dimensionality of parameters and activations, skip ahead to Section 4.3.

34

conv1 conv2 conv3 softmax

sum �W
using a

reduction
tree

update
model

weights

�D(0:15)

GPU 0
…

D

W

D

W
 D

W

maxpool
maxpool avgpool

�D(0:15) �D(0:15)

∇Wi
i=0

31

∑

conv1 conv2 conv3 softmax

�D(992:1023)

GPU 31 D
W

D

W
 D

W

maxpool
maxpool avgpool

∇Wi
i=992

1023

∑

∇Wi
i=0

31

∑ ∇Wi
i=0

31

∑

∇Wi
i=992

1023

∑ ∇Wi
i=992

1023

∑

�D(992:1023) �D(992:1023)

Figure 3.2. Data parallel DNN training in FireCaffe: Each worker (GPU) gets a
subset of each batch.

Table 3.1. Volumes of data and computation for widely-used CNN/DNN architectures. The
batch size impacts all numbers in this table except for |W |, and we use a batch size of 1024
in this table. Here, TFLOPS is the quantity of computation to perform. We calculated
these numbers from the model dimensions that were described by each author.

DNN architecture typical use-case data size

|D|

weight size

|W |

data/weight

ratio

Forward+Backward

TFLOPS/batch

NiN [95] computer vision 5800MB 30MB 195 6.7TF

AlexNet [105] computer vision 1680MB 249MB 10.2 7.0TF

GoogLeNet [79] computer vision 19,100MB 54MB 358 9.7TF

VGG-19 [77] computer vision 42,700MB 575MB 71.7 120TF

MSFT-

Speech [104]

speech recognition 74MB 151MB 0.49 0.23TF

35

3.5 Choosing DNN architectures to accelerate

Of the popular deep convolutional neural network architectures for computer vision, some are
more amenable to data parallel training than others. One might näıvely assume that DNN models
with more parameters would produce higher classification accuracy. To evaluate this assumption,
consider Figure 3.3, where we plot the total size of all parameters in bytes versus top-5 ImageNet
accuracy for several popular DNN architectures. Observe that Network-in-Network (NiN) [95] and
AlexNet [22] have similar accuracy, while NiN has 8x fewer parameters than AlexNet. Likewise,
GoogLeNet [79] and VGG [77] have similar accuracy, yet GoogLeNet has 10x fewer parameters. In
data parallel training, |∇W | is the quantity of data sent by each GPU worker, so DNN architectures
with fewer parameters require less communication and are more amenable to training at large scale.

You may wonder, what are the architectural choices that led to NiN and GoogLeNet having
8-10x fewer parameters than AlexNet and VGG? The answer is twofold. First, GoogLeNet and NiN
are more judicious in their use of filters with spatial resolution: many of the filters in GoogLeNet
and NiN have a resolution of 1x1 instead of 3x3 or larger. Second, while VGG and AlexNet each
have more than 150MB of fully-connected layer parameters, GoogLeNet has smaller fully-connected
layers, and NiN does not have fully-connected layers.

In summary, models with fewer parameters are more amenable to scalability in data parallel
training, while still delivering high accuracy. Therefore, for the rest of the chapter, we focus our
efforts on accelerating the training of models with fewer parameters (e.g. NiN and GoogLeNet)
while maintaining high accuracy.

36

AlexNet'

Deep'Neural'Networks'can'achieve'high'
accuracy'with'rela8vely'few'parameters'

more'scalable'training'

GoogLeNet'

NiN'
VGG_11' VGG_19'

Figure 3.3. Deep neural network architectures with more parameters do not necessarily
deliver higher accuracy.

3.6 Implementing efficient data parallel training

Our data-parallel distributed training strategy requires no communication among GPU workers
in the forward pass. In the backward pass, a traditional single-GPU implementation (e.g. single-
GPU Caffe [106]) sums the weight gradients over all images in the batch and then uses the weight
gradient sum to update the model.3 When we distribute the backward pass over a compute cluster,
each GPU worker computes a sum of the weight gradients (

∑∇W) for its subset of the batch.
Then, we sum the weight gradients across GPUs. This gradient aggregation scheme produces
identical numerical results as you would find on a single GPU.

Now, our task is to find an efficient way to sum up ∇W among GPUs in a compute cluster.
We consider two strategies for implementing this gradient aggregation: parameter servers, and
reduction trees.

3However, the data gradients (∇D) are not summed up.

37

3.6.1 Parameter server

One strategy for communicating gradients is to appoint one node as a parameter server. The
remaining worker nodes are each assigned a subset of the batch on which to perform forward and
backward-propagation. After each backward pass, all the workers send their gradient updates to
the parameter server. Then, the parameter server computes the sum of the gradients. Finally, the
parameter server sends the summed gradients to the workers, and the workers apply these gradient
updates to their local copies of the model. We illustrate the parameter server communication
pattern in Figure 3.4(a).

The logical question here is, what is the communication overhead of a parameter server, and

how does that overhead scale as we increase the number of GPU workers? Recall from Section 3.4

that each GPU worker provides |W | = |∇W | bytes of weight gradients (Equation 3.1), which need

to be summed with gradients from all other GPU workers. Now, the bottleneck is is in sending

and receiving all the gradients on one parameter server. If there are p GPU workers, the parameter

server is responsible for sending and receiving |∇W | ∗ p bytes of data. If each node (GPU worker

or parameter server) can send and receive data at a rate of BW bytes/s, then we can calculate the

minimum communication time as follows:

param server communication time =
|∇W | ∗ p

BW
(sec) (3.3)

In other words, the parameter server’s communication time scales linearly as we increase the
number of GPU workers; doubling the number of workers leads to at least 2x more communication
time per gradient update. We confirm this experimentally in Figure 3.5.

For the parameter server experiments in Figure 3.5, we have implemented a fully synchronous
parameter server with the following characteristics. The parameter server is one arbitrarily-selected
server in the cluster, while the other servers are workers; the parameter server and worker servers
have identical hardware. After each batch, the workers send their weight gradients to the parameter
server, the parameter server computes the sum, and then the parameter server sends the sum back
to the workers.

There are a number of ways to augment the parameter server for greater scalability. For
example, when having a single parameter server became a bottleneck, Microsoft Adam [107] and
Google DistBelief [108] each defined a pool of nodes that collectively behave as a parameter server.
The bigger the parameter server hierarchy gets, the more it looks like a reduction tree. This made
us wonder: could we achieve greater scalability if we implement gradient aggregation as a reduction
tree?

3.6.2 Reduction tree

There are various common patterns of communication in parallel programs; among such com-
mon patterns, a frequently occurring one is allreduce. This pattern occurs when each worker
produces one or more data values that must be globally reduced (generally with a commutative
binary element-wise operator) to produce a single result value, and then this single value must

38

be broadcast to all workers before they can continue. In this work, each worker produces a sin-
gle vector of length |∇W | (the gradient updates for that worker), which must be reduced using
element-wise vector addition (to sum the per-worker gradient updates for each parameter). Since
this computation exactly fits the allreduce communication pattern it is convenient to use existing
library support for such operations. While there are many possible implementations of allreduce,
most share the key property that the time taken to perform the operation scales as the log of the
number of workers (at least for large numbers of workers). Intuitively, this is because allreduce
algorithms use binomial reduction tree and/or butterfly communication patterns internally [109].
Out of the possible allreduce implementation strategies, we find that the binomial reduction tree
is particularly easy to reason about on a theoretical level. So, for the rest of this section, we focus
on allreduce communication implemented with a reduction tree.

In Figures 3.4(a) and 3.4(b), we present the intuition on how parameter servers and reduction

trees differ. We might think of a parameter server as a reduction tree with a height of 1 and a

branching factor of p. However, many cluster computers and supercomputers have several dimen-

sions of network fabric among nodes (e.g. an N-D Torus), which enable nodes to talk to each other

via many different paths. With this in mind, we can sum gradients using a taller reduction tree,

where nodes collaboratively sum the gradients. For example, consider a binary communication tree

with a branching factor of 2 and a depth of log2(p). In this case, the serialized communication

is 2log2(p); the outer 2 represents the fact that each node receives data from 2 children, and the

log2(p) is the height of the tree. Therefore, unlike the parameter server model, the reduction tree’s

communication time is:

reduction tree communication time =
|∇W | ∗ 2log2(p)

BW
(sec) (3.4)

In practice, the base of log(p) depends on the branching factor in the reduction tree, but the basic
idea here is straightforward: While the parameter server communication overhead scales linearly
with p, reduction tree communication is much more efficient because it scales logarithmically as
O(log(p)). We confirm experimentally that reduction trees scale more efficiently than parameter
servers in Figure 3.5.

39

height:
log2(p) height: 1

serialized
communication: 2

serialized
communication: p

(a) parameter server

height:
log2(p) height: 1

serialized
communication: 2

serialized
communication: p

(b) reduction tree

Figure 3.4. Illustrating how parameter servers and reduction trees communicate weight
gradients. In this figure, we only show the summing-up of weight gradients. We distribute
the weight gradient sums by going back down the tree.

Measuring communication only
(if computation were free)

Figure 3.5. Comparing communication overhead with a parameter server vs. a reduction
tree. This is for the Network-in-Network DNN architecture, so each GPU worker contributes
30MB of gradient updates.

40

3.7 Evaluation of FireCaffe-accelerated training on ImageNet

In this section, we evaluate how FireCaffe can accelerate DNN training on a cluster of GPUs.
We train GoogLeNet [79] and Network-in-Network [95] on up to 128 GPU servers in the Titan
supercomputer (described in Section 3.2), leveraging FireCaffe’s reduction tree data parallelism
(Section 3.6.2). We begin by describing our evaluation methodology, and then we analyze the
results.

3.7.1 Evaluation Methodology

We now describe a few practices that aid in comparing advancements in accelerating the
training of deep neural networks.

1. Evaluate the speed and accuracy of DNN training on a publicly-available dataset.
In a recent study, Azizpour et al. applied DNNs to more than 10 different visual recognition
challenge datasets, including human attribute prediction, fine-grained flower classification, and
indoor scene recognition [110]. The accuracy obtained by Azizpour et al. ranged from 56% on
scene recognition to 91% on human attribute prediction. As you can see, the accuracy of DNNs
and other machine learning algorithms depends highly on the specifics of the application and
dataset to which they are applied. Thus, when researchers report improvements in training speed
or accuracy on proprietary datasets, there is no clear way to compare the improvements with
the related literature. For example, Baidu [111] and Amazon [112] recently presented results on
accelerating DNN training. Amazon and Baidu4 each reported their training time numbers on
a proprietary dataset, so it’s not clear how to compare these results with the related literature.
In contrast, we conduct our evaluation on a publicly-available dataset, ImageNet-1k [21], which
contains more than 1 million training images, and each image is labeled as containing 1 of 1000
object categories. ImageNet-1k is a widely-studied dataset, so we can easily compare our accuracy,
training speed, and scalability results with other studies that use this data.

2. Report hyperparameter settings such as weight initialization, momentum, batch
size, and learning rate.
Glorot et al. [113], Breuel [114], and Xu et al. [115] have each shown that seemingly-subtle
hyperparameter settings such as weight initialization can have a big impact on the speed and
accuracy produced in DNN training. When training Network-in-Network (NiN) [95], we initialize
the weights with a Gaussian distribution centered at 0, and we set the standard deviation (std) to
0.01 for 1x1 convolution layers, and we use std=0.05 for other layers. For NiN, we initialize the bias
terms to a constant value of 0, we set the weight decay to 0.0005, and we set momentum to 0.9.
These settings are derived from with the Caffe configuration files released by the NiN authors [95].

Frustratingly, in Google’s technical reports on GoogLeNet [79, 116], training details such as
batch size, momentum, and learning rate are not disclosed. Fortunately, Wu et al. [117] and
Guadarrama [61] each reproduced GoogLeNet and released all the details of their training protocols.
As in [61], we train GoogLeNet with momentum=0.9 and weight decay=0.0002, we use xavier [113]

4Baidu evaluated their training times using proprietary dataset [111]. Baidu also did some ImageNet experiments,
but Baidu did not report the training time on ImageNet.

41

weight initialization, and we initialize the bias terms to a constant value of 0.2. We will address
learning rate and batch size settings in the following sections.

Given a DNN architecture, there are a number of strategies that can further increase accuracy,
albeit at a substantial computational cost. One such strategy is to train multiple independent
copies of a DNN architecture (e.g. GoogLeNet), each with a different random number generator
seed for initializing the parameters. At test time, these DNNs can be used as an ensemble —
that is, all DNNs are run on the test data, and for each test data item, the DNN’s classifica-
tion activations are averaged. For example, using an ensemble of 7 GoogLeNet DNNs, Szegedy
et al. achieved a 2 percentage-point accuracy improvement on ImageNet, compared to a single
GoogLeNet baseline [79]. An other such technique is to augment the data by adding deformations
or color variations during training and/or testing [111]. Our focus in this chapter is to show
speedup on training single models and compare with reported baselines. Hence we avoid using
exotic data augmentation or ensembles of multiple DNNs. In our experiments, we resize images
to 256x256; at training time we use a 224x224 crop with a randomized offset, and at test time we
classify the 224x224 crop in the center of the image; these settings are also commonly used in the
AlexNet [22] and Network-in-Network [95] DNN architectures.

3. Measure speedups with respect to a single-server baseline.
In order to meaningfully measure how much we have accelerated DNN training by adding more
GPUs, we must have a representative baseline, e.g. with a single GPU. When reporting results, we
begin by considering time required to train a DNN on single GPU, and we report our multi-GPU
speedups with respect to this single-GPU baseline. A recent study by Microsoft [107] reported
training a custom DNN architecture (e.g. not GoogLeNet or NiN) on a cluster of CPU servers.
This may sound impressive, but Microsoft did not report the time that the model would take to
train on a single server. It could be that Microsoft achieved a 10x speedup by going from 1 server
to 10 servers, or the speedup could be 2x — this isn’t clear from the information provided in
Microsoft’s paper. This illustrates the importance of measuring the speed of scalable DNN training
systems with respect to a single-server baseline.

4. Measure accuracy with respect to a single-server baseline.
In our experience, if hyperparameters such as learning rate and batch size are selected too aggres-
sively, a DNN model may converge quickly, but fall short of the state-of-art accuracy. Therefore,
in our experiments, we train multi-GPU models until they reach to the single-GPU accuracy base-
line; this validates that we can accelerate DNN training without degrading accuracy. However,
in cluster-scale multi-GPU training experiments by Baidu [111] and Flickr [118], the training is
stopped prematurely before the DNNs converge. This leaves us wondering whether the Baidu and
Flickr multi-GPU training experiments would have reproduced the accuracy produced on a single
GPU. To avoid this type of confusion, we evaluate both the speed and accuracy of FireCaffe DNN
training with respect to a single-server/single-GPU baseline.

3.7.2 Results: Midsized deep models

Using the settings described by Krizhevsky [22], we find that AlexNet achieves 58.9% top-1
ImageNet-1k accuracy after 100 epochs of training. After just 47 epochs of training, we find that
NiN also converges to 58.9% top-1 accuracy. Each training iteration of NiN is more time-consuming

42

than AlexNet, and AlexNet and NiN both take approximately 6 days to converge to this level of
accuracy.

At Google, Krizhevsky developed a scheme for accelerating AlexNet training using multiple
GPUs within a single server [105]. Krizhevsky’s strategy uses data parallelism in convolution layers
and model parallelism in fully-connected layers. As we show in Table 3.2, Krizhevsky achieves near-
linear acceleration on up to 8 GPUs, but it has not been shown to scale beyond a single server. For
reasons that we don’t entirely understand, Krizhevsky’s accuracy drops by 1.8 percentage points
when doing multi-GPU training [105].

In FireCaffe, we scale NiN training to 32 GPUs, which is the scale at which we find commu-
nication time and computation are approximately equal5. We begin by using the learning rate
and batch size settings that were reported in the Caffe configuration file released by the NiN au-
thors [95]: For a batch size of 256, we use an initial learning rate of 0.01, and we reduce this by
a factor of 10x twice during our training. Using this configuration, we reproduce the single-GPU
NiN accuracy in 11 hours (13x speedup) when training on 32 GPUs.

For a fixed number of epochs, increasing the batch size reduces the number of times we need to
communicate weight gradients, thus reducing the overall training time. With this in mind, we now
train NiN with a batch size of 1024.6 As in [105] when we increase the batch size, we increase the
learning rate by an equal proportion. For example, when we use a batch size of 1024, we initialize
the learning rate to 0.04. In this configuration, we train NiN in just 6 hours (23x speedup) on 32
GPUs. By increasing the batch size to 1024, we achieved a substantial speedup, but this came at
the price of reducing the final accuracy by 3

10 of a percentage point. We expect that this 3
10% of

accuracy could be regained at a batch size of 1024 — while retaining a substantial speed advantage
— by training for a few more epochs. Finally, on 128 GPUs, we achieve a 39x speedup over
single-GPU training.

So far, we have compared FireCaffe to the cuda-convnet2 framework from Google [105], which
runs on a single-server/multi-GPU platform but not in a multi-server distributed platform. In
addition to cuda-convnet2, Google has developed the TensorFlow framework [119], which also
supports single-server/multi-GPU training but not distributed multi-server training. Thus far,
Google has not released training speed results for multi-GPU TensorFlow. Twitter [120] has also
experimented with scaling DNN training to 8 GPUs, but speed and accuracy results have not
been released. Tencent [103], Theano [121], and Facebook [122] have published AlexNet single-
server/multi-GPU training times that are slower than Google [105]. Other than FireCaffe, we have
not seen literature on training AlexNet/NiN-scale models in a multi-server/multi-GPU setting.
On 32 GPUs, FireCaffe is at least 3x faster to train AlexNet/NiN-scale models than all of the
aforementioned results.

3.7.3 Results: Ultra-deep models

Ultra-deep models such as GoogLeNet can produce higher accuracy, but they present an even
bigger challenge in terms of training time. Internally, Google has trained GoogLeNet on a cluster of
CPU servers, but they have not reported the time required to complete this training [79, 116]. For-
tunately, Guadarrama reproduced GoogLeNet in Caffe, and he released his GoogLeNet Caffe config-

5at a batch size of 1024
6While keeping a fixed number of epochs. In other words, with a batch size of 1024, we perform 4x fewer training

iterations than with a batch size of 256.

43

Table 3.2. Accelerating the training of midsized deep models on ImageNet-1k.

Hardware Net Epochs Batch

size

Initial

Learning

Rate

Train

time

Speedup Top-1

Accu-

racy

Caffe [106] 1 NVIDIA K20 AlexNet

[22]

100 256 0.01 6.0

days

1x 58.9%

Caffe 1 NVIDIA K20 NiN [95] 47 256 0.01 5.8

days

1x 58.9%

Google cuda-

convnet2

[105]

8 NVIDIA K20s

(1 node)

AlexNet 100 varies 0.02 16

hours

7.7x 57.1%

FireCaffe

(ours)

32 NVIDIA

K20s (Titan

supercomputer)

NiN 47 256 0.01 11

hours

13x 58.9%

FireCaffe-

batch1024

(ours)

32 NVIDIA

K20s (Titan

supercomputer)

NiN 47 1024 0.04 6

hours

23x 58.6%

FireCaffe-

batch1024

(ours)

128 NVIDIA

K20s (Titan

supercomputer)

NiN 47 1024 0.04 3.6

hours

39x 58.6%

uration files [61]. Guadarrama trained for 64 epochs using a batch size of 32 and an initial learning
rate of 0.01, and we use these settings in our single-GPU GoogLeNet training experiments. Instead
of occasionally reducing the learning rate by 10x, Guadarrama used a polynomial learning rate —
that is, the learning rate is gradually reduced after every iteration of training. More specifically, at a
given iteration of training, the learning rate is calculated as initialLearningRate(1− iter

max iter)power,
and we set power to 0.5 in all of our GoogLeNet training runs. Running this in Caffe on a single-
GPU, GoogLeNet takes 21 days to train on ImageNet-1k, producing 68.3% top-1 accuracy and
88.7% top-5 accuracy. This is slightly lower than the 89.9% top-5 single-model accuracy reported
by Google [79], and it will be interesting to see whether the open-source Caffe community will even-
tually be able reproduce or surpass Google’s GoogLeNet accuracy. Here, we use the single-GPU
Caffe GoogLeNet accuracy (88.7% top-5 accuracy) as a baseline, and we aim to reproduce this
rapidly on a cluster of GPUs.

Now, we consider how to accelerate GoogLeNet training using FireCaffe. We initially tried
to run GoogLeNet with a batch size of 32 on a GPU cluster, but there just wasn’t enough work
per batch to keep a GPU cluster saturated. As we learned earlier in the chapter, larger batch
sizes lead to less frequent communication and therefore enable more scalability in a distributed
setting. When modifying the batch size, Breuel [114] and Krizhevsky [105] found that the choice
of learning rate is crucial in order to preserve high accuracy. We trained five separate versions

44

0.02 0.04 0.08 0.16
Initial Learning Rate (LR)

0

20

40

60

80

100

T
o
p
-1

 I
m

a
g
e
N

e
t

A
cc

u
ra

cy
 A

ch
ie

v
e
d

Figure 3.6. Impact of learning rate (LR) on accuracy achieved in GoogLeNet training.
Each of these is a separate training run, trained from scratch. Out of these experiments,
LR=0.08 achieved the highest accuracy (68.3% top-1, 88.8% top-5), and LR=0.16 did not
learn beyond a random-guess level of accuracy.

of GoogLeNet, each with a different initial learning rate (LR): {0.02, 0.04, 0.08, 0.16, and 0.32},
and all with a batch size of 1024. With LR=0.16 and LR=0.32, GoogLeNet didn’t ever learn
anything beyond random-chance accuracy on the test set. Using LR=0.02 produced 66.1% top-1
ImageNet-1k accuracy, and LR=0.04 produced 67.2%. Finally, we declare victory with LR=0.08,
where we achieved 68.3% accuracy (again, with a batch size of 1024), which matches the accuracy
of the baseline that used a batch size of 32. We illustrate the outcome of these learning rate (LR)
experiments in Figure 3.6. With a batch size of 1024 and a fixed number of epochs, we find that
FireCaffe on 32 GPUs can train GoogLeNet 23x faster than a single GPU. When we move from a
batch size of 32 with LR=0.01 to a batch size of 1024 with LR=0.08, we find that GoogLeNet takes
a few more epochs to converge (72 epochs instead of 64 epochs), so the absolute training speedup
is 20x; we show these results in Table 3.3. In other words, FireCaffe can train GoogLeNet in 23.4
hours on 32 GPUs, compared to 21 days on a single GPU. Finally, on 128 GPUs, we achieve a 47x
speedup over single-GPU GoogLeNet training, while matching the single-GPU accuracy.

45

Table 3.3. Accelerating the training of ultra-deep, computationally intensive models on
ImageNet-1k.

Hardware Net Epochs Batch

size

Initial

Learn-

ing

Rate

Train

time

Speedup Top-1

Accu-

racy

Top-5

Accu-

racy

Caffe 1 NVIDIA

K20

GoogLeNet

[79]

64 32 0.01 21

days

1x 68.3% 88.7%

FireCaffe

(ours)

32 NVIDIA

K20s (Titan

supercom-

puter)

GoogLeNet 72 1024 0.08 23.4

hours

20x 68.3% 88.7%

FireCaffe

(ours)

128 NVIDIA

K20s (Titan

supercom-

puter)

GoogLeNet 72 1024 0.08 10.5

hours

47x 68.3% 88.7%

3.8 Complementary approaches to accelerate DNN training

We have discussed related work throughout the chapter, but we now provide a brief survey of
additional techniques to accelerate deep neural network training. Several of the following techniques
could be used in concert with FireCaffe to further accelerate DNN training.

3.8.1 Accelerating convolution on GPUs

In the DNN architectures discussed in this chapter, more than 90% of the floating-point op-
erations in forward and backward propagation reside in convolution layers, so accelerating con-
volution is key to getting the most out of each GPU. Recently, a number of techniques have
been developed to accelerate convolution on GPUs. Unlike CPUs, NVIDIA GPUs have an in-
verted memory hierarchy, where the register file is larger than the L1 cache. Volkov and Dem-
mel [123] pioneered a communication-avoiding strategy to accelerate matrix multiplication on
GPUs by staging as much data as possible in registers while maximizing data reuse. Iandola
et al. [50] extended the communication-avoiding techniques to accelerate 2D convolution; and
cuDNN [25] and maxDNN [96] extended the techniques to accelerate 3D convolution. The Boda
framework [19, 26, 53] further extended the techniques to execute efficiently on GPU hardware
produced by companies other than NVIDIA. FireCaffe can be coupled with current and future
GPU hardware and convolution libraries for further speedups.

46

3.8.2 Decreasing communication among servers

Reducing the quantity of data communicated per batch is a useful way to increase the speed and
scalability of DNN training. There is an inherent tradeoff here: as gradients are more aggressively
quantized, training speed goes up, but the model’s accuracy may go down compared to a non-
quantized baseline. While FireCaffe uses 32-bit floating-point values for weight gradients, Jeffrey
Dean stated in a recent keynote speech that Google often uses 16-bit floating-point values for
communication between servers in DNN training [124]. Along the same lines, Wawrzynek et al. used
16-bit weights and 8-bit activations in distributed neural network training [102]. Going one step
further, Seide et al. used 1-bit gradients for backpropagation, albeit with a drop in the accuracy
of the trained model [125]. Finally, a related strategy to reduce communication between servers is
to discard (and not communicate) gradients whose numerical values fall below a certain threshold.
Amazon presented such a thresholding strategy in a recent paper on scaling up DNN training for
speech recognition [112]. However, Amazon’s evaluation uses a proprietary dataset, so it is not
clear how this type of thresholding impacts the accuracy compared to a well-understood baseline.

So far in this section, we have discussed strategies for compressing or quantizing data to com-
municate in distributed DNN training. There has also been a series of studies on applying di-
mensionality reduction to DNNs once they have been trained. Jaderberg et al. [126] and Zhang
et al. [127] both use PCA to compress the weights of DNN models by up to 5x, albeit with a
substantial reduction in the model’s classification accuracy. Han et al. [128] use a combination of
pruning, quantization, and Huffman encoding to compress the weights of pretrained models by 35x
with no reduction in accuracy. Thus far, these algorithms have only been able to accelerate DNNs
at test time.

3.9 Conclusions

Long training times impose a severe limitation on progress in deep neural network research and
productization. Accelerating DNN training has several benefits. First, faster DNN training enables
models to be trained on ever-increasing dataset sizes in a tractable amount of time. Accelerating
DNN training also enables product teams to bring DNN-based products to market more rapidly.
Finally, there are a number of compelling use-cases for real-time DNN training, such as robot self-
learning. These and other compelling applications led us to focus on the problem of accelerating
DNN training, and our work has culminated in the FireCaffe distributed DNN training system.

Our approach to accelerating DNN training at scale has three key pillars. First, we select
network hardware that achieves high bandwidth between GPU servers — Infiniband or Cray in-
terconnects are ideal for this. Second, when selecting a communication algorithm, we find that
reduction trees are more efficient and scalable than the traditional parameter server approach.
Third, we optionally increase the batch size to reduce the total quantity of communication during
DNN training, and we identify hyperparameters that allow us to reproduce the small-batch accu-
racy while training with large batch sizes. These three pillars helped us to achieve a near-linear
speedup for a number of leading deep neural network architectures. In particular, we have achieved
39x speedup on NiN training, and a 47x speedup on GoogLeNet training on a 128 GPU cluster.

47

Chapter 4

Defining and describing the design

space of DNN architectures

4.1 Introduction

Convolutional neural network (CNN) architectures comprise an enormous design space. By
CNN architecture, we mean:

• the type(s) of layers to use,

• the number of layers,

• the ordering/organization of layers, and

• the dimensions of each layer.

These are design choices that are specified by a human CNN architect. Each CNN architecture
delivers a specific set of tradeoffs in terms of accuracy, computational complexity, energy-efficiency,
model size, and other metrics.

While it is true that there are only a handful of commonly-used CNN computational primitives
(e.g. convolution, pooling, dropout, etc), there are many ways of arranging these primitives into a
deep neural network architecture. The composition and total number of layers is selected by the
CNN architect, and considering that some recent CNN architectures have 1000 layers or more (e.g.
Highway Networks [129] and Residual Networks [15]), there is an exponentially large number of
permutations in which different types of CNN layers can be composed. Further, within each layer,
there are a number of dimensions to be selected by the CNN architect — e.g. in a convolution
layer, the number of filters and spatial resolution of filters are user-selectable. Thus, the design
space of CNN architectures is enormous.

48

"great
pyrenees

dog"

conv1&
96&

conv2&
96&

conv3&
96&

conv4&
256&

conv5&
256&

conv6&

1000&

so/max&

maxpool/2&

global&avgpool&

96&

conv7&
384&

conv8&
384&

conv9&

maxpool/2&
256&

256&

conv10&
1024&

conv11&
1024&

conv12&

maxpool/2&
384&

384&

Figure 4.1. The Network-in-Network (NiN) [95] CNN architecture

So, why is it so important to understand the design space of CNN architectures? The choice
of CNN architecture determines the following aspects of a CNN-based system:

• accuracy: controlled by the CNN architecture, training protocol, and training data

• quantity of computation per image: controlled entirely by the CNN architecture

• model size — i.e. number of parameters in the model: controlled entirely by the
CNN architecture

• latency and energy used per image: controlled by the CNN architecture, the software
implementation, and the choice of hardware

49

Thus, given specific and aggressive goals (e.g. in terms of accuracy, computation, speed, and/or
energy), achieving these goals requires a comprehensive understanding of the CNN architectural
space.

This chapter is organized as follows. In Section 4.2, we describe the key building blocks (i.e.
layers) of modern CNNs. In Section 4.3, we explain the geometrical properties of individual CNN
layers. Stacking multiple layers to form an end-to-end CNN leads to certain geometrical properties
being passed from one layer to the next. In Section 4.4, we provide an intuitive mental model for
understanding how changing the dimensions of one CNN layer can impact the overall quantity of
computation in a CNN. We explain the ways in which modifying dimensions of one CNN layer
impacts the dimensions of downstream layers in Sections 4.5 and 4.6. Clearly, CNNs comprise a
large design space, but how large is it? We provide some intuition on this in Section 4.7. While
this chapter focuses on CNN architectures, there are a number of additional design choices that
influence the time and accuracy level achieved during training, such as: (a) the choice of how to
initialize model parameters prior to training the model and (b) the solver approach used to train
the model. We summarize some of the present literature on these design choices in Section 4.8. We
conclude in Section 4.9.

4.2 Key building blocks of CNN architectures

4.2.1 Convolution layers

4.2.1.1 The widespread use of convolution in computer vision

For more than forty years, convolution has been used widely in image processing and computer
vision. For example, the process of obtaining an RGB image from a CCD camera involves convo-
lution using a filter called a Bayer mask [130]. Likewise, one of the most straightforward ways to
detect edges — the Sobel Filter — consists entirely of convolving an image with a particular 3x3
filter [131]. Canny edge detection also involves convolving an image with a filter — typically a 5x5
filter where the numerical values in the filter are set based on a Gaussian distribution [132]. With
these examples in mind, it should be no surprise that convolution is a key ingredient in applying
neural networks to computer vision problems. In convolutional neural networks, we apply many
layers of convolution, e.g. classification = conv layer(conv layer(...conv layer(image))).1 While
the previous examples (Bayer mask, Sobel filter, Canny edge detection) use filters in which the
numerical values were hand-selected by engineers, convolutional neural networks learn the filters’
numerical values from their training data.

4.2.1.2 Introduction to the dimensionality of convolution layers in CNNs

Recall that our high-level objectives for this dissertation include decreasing the number of pa-
rameters in CNNs and accelerating CNN training by decreasing the computational requirements.
If we want to decrease the computational requirements of CNNs, we must first understand how

1Typically with nonlinearity functions placed between the convolution layers.

50

filterW

fil
te

rH

da
ta

H

dataW

The number of channels in the current

layer is determined by the number of

filters (numFilt) in the previous layer.

x numFilt

TODO:%%
•  different%color%for%

ac#va#ons(vs%filters(
•  show%stride%somehow?%
•  …%
%
%

x batch size

Figure 4.2. Dimensions of a convolution layer.

to calculate the amount of computation performed in individual layers of CNNs. In CNNs such
as GoogLeNet [79], more than 90% of the arithmetic operations occur in convolution layers, so
understanding the dimensionality and computational overhead of convolution layers is particularly
important.

In CNNs, convolution layers have two main data structures: the parameters2 (W) and the
input data (D). Parameters are contained in convolution filters, and the numerical values of these
parameters are learned automatically during training. Input data (D) is the output from the
previous layer; or, for the first convolution layer in the network, D consists of data samples (e.g.
images) from the training or testing set. We illustrate all of this in Figure 4.2, and we describe it
in more detail below.

Terminology. We now define the terminology that we will use to describe the individual
dimensions of a CNN layer Li.

• filterH is the height of the filters in this layer.

• filterW is the width of the filters in this layer.

2also called “weights”

51

• numFilt is the number of filters in this layer. Each of these filters is of size filterH x filterW
x ch.

• ch the number of channels the input data to this layer. Also, ch is the number of channels in
each filter. This is defined by numFilt in the previous layer.

• dataH is the height of the input data to this layer.

• dataW is the width of the input data to this layer.

• batch size is the number of data samples to which the CNN is applied concurrently. (See
Chapter 3, Section 3.3 for details.)

Some of these dimensions are inherited from the previous layer (Li−1) in the CNN: dataH, dataW ,
and ch. Other dimensions are selected by the CNN architect: filterH, filterW , and numFilt.

Parameters (W). In a convolution layer, W has 4 dimensions: filterH, filterW , ch, and
numFilt. The filters of W have a spatial resolution of filterHxfilterW , e.g. 1x1 or 3x3. Each
filter has multiple channels ch — for example, if there are 3 input channels, then each filter has
ch = 3. Finally, there are usually multiple convolution filters (numFilt), and each filter learns a
different pattern to identify in the D. It can be difficult for humans to reason in 4 dimensions, so
we recommend taking extra care to avoid forgetting that every convolution layer has multiple filters
(numFilt), and each of those filters has multiple channels (ch). The total quantity of parameters
in a layer is filterH ∗ filterW ∗ ch ∗ numFilt, and it is common to represent each parameter as a
4-byte floating-point number.

Input Data (D) for the first convolution layer. When training a CNN with batched
stochastic gradient descent (SGD), D has 4 dimensions: dataH, dataW , ch, and batch. The batch
size (batch) is user-selected, and batch is consistent over all convolution layers in the CNN. For the
first layer in a CNN3 (L1), the input data (D0) is a batch of data samples (e.g. images) to train
on, and dataH, dataW , and ch are the height, width, and number of channels (e.g. 3 channels for
RGB) of the training images.

Input Data (D) for later convolution layers. Now, let us consider a CNN layer Li where
i > 1, and the input data is the output from the previous layer, Li−1. Thus, for Li, the height and
width of D — dataH, dataW — is determined by the output of the previous layer. For Li, the
number of channels in the input data is determined by the number of filters (numFilt) in Li−1.
Finally, as in L1, the batch size in Li is user-selected and is constant over all layers in the CNN.

4.2.2 Downsampling and Pooling

In convolutional neural networks, it is common to take an RGB image (e.g. 256x256x3) as input
and produce a vector (e.g. 1x1xNumberOfCategories) as output. Indeed, by default, CNNs such
as GoogLeNet [79], AlexNet [22], and SqueezeNet [18] take an RGB image as input and produce a
vector of classifications as output. But, how do we convert data with a spatial resolution such as
256x256 into a data structure without spatial resolution (e.g. 1x1)? The answer is quite simple:
we gradually downsample from 256x256 to 1x1. We do not downsample all at once; rather, in a
deep network, we typically downsample once every few layers.

3In our notation, the “first” layer is directly after the input data, and the “last” layer is the one that outputs the
final classifications.

52

Inspired)by)slide)6)of)this:)h3ps://courses.cs.washington.edu/courses/cse590v/14au/cse590v_dec5_DeepVis.pdf))
)
Has)a)useful)animaFon)of)stride=1)conv:)
h3p://www.wildml.com/2015/11/understandingIconvoluFonalIneuralInetworksI)forInlp/))

Input:)200x200)
+)border)of)zero)padding) Output:)200x200)

Pooling)Window)
stride=1)

st
rid

e=
1)

3x3)

Pooling)
stride:)1"
window:)3x3)

Figure 4.3. Pooling with stride=1 preserves the input dimensionality (+/- 1 pixel de-
pending on choice of padding). Here, we are visualizing the height and width of the ac-
tivation plane (dataH and dataW) and the height and width of the filters (filterH and
filterW), but we do not show the batch size or number of channels.

Before we can describe the typical approach to downsampling in CNN layers, we must first
introduce a new term: stride. We discussed several dimensional terms in Section 4.2.1.2, such as
the number of filters, the height and width of the filters, and so on. The stride is the interval
at which the filters are applied to the input data. If we set the stride to 1, this means we place
each convolution filter in every (x,y) location in the input data, producing an “activation map”
Di with height and width that are equivalent4 to the input Di−1. We illustrate the height and
width of activations in the stride=1 case in Figure 4.3. However, if we use stride=2, we place each
convolution filter at every other (x,y) location: (0,0), (2,0), (4,0), ..., (2,0), (2,2), (2,4), and so on.
Thus, a convolution layer with stride=2 produces an activation map of roughly 1

2 the height and
1
2 the width of the input data, so that Di has roughly 4x fewer pixels5 per channel than Di−1. We
illustrate this downsampling effect with stride=2 in Figure 4.4.

Note that a CNN architect could select different strides for the height and width dimensions
(e.g. strideH=2, strideW=3). However, in this dissertation we always have (strideH=strideW), so
we simply use the term stride to denote both the horizontal and vertical stride of a CNN layer.

Pooling. The idea of using strided operations is not limited to convolution. We usually think
of sliding-window operations as being applied to every window (stride=1), but it is valid to compute
any sliding-window computation with a stride of any integer greater than or equal to 1. In con-
volutional neural networks (e.g. GoogLeNet [79], AlexNet [22], SqueezeNet [18], etc.), a common
technique is to apply strided pooling. One commonly-used type of pooling is max-pooling, where

4equivalent size if using partially-padded (“valid”) convolution
5we use the term “pixels” loosely, describing the input images as well as the intermediate data produced by each

CNN layer

53

Inspired)by)slide)6)of)this:)h3ps://courses.cs.washington.edu/courses/cse590v/14au/cse590v_dec5_DeepVis.pdf))
)
Has)a)useful)animaFon)of)stride=1)conv:)
h3p://www.wildml.com/2015/11/understandingIconvoluFonalIneuralInetworksI)forInlp/))

Input:)200x200)
+)border)of)zero)padding)

Output:)100x100)
Pooling)Window)

stride=2)

st
rid

e=
2)

3x3)

Pooling)
stride:)2"
window:)3x3)

Figure 4.4. Pooling with stride=2 downsamples the height and width by a factor of 2.
Here, we are visualizing the height and width of the activation plane (dataH and dataW)
and the height and width of the filters (filterH and filterW), but we do not show the
batch size or number of channels. While we use pooling in this example, the same intuition
applies to convolution and other types of layers.

for each neighborhood, we take the maximum-intensity pixel per channel. An other such strategy
is average-pooling, which simply consists of taking the average pixel value of each channel in each
neighborhood. When architecting pooling layers in CNNs, it is sensible to define neighborhood
size (e.g. 2x2 or 3x3) that is no smaller than the stride (e.g. stride=2 or stride=3), otherwise
some data will be disregarded during downsampling. Beyond average-pooling and max-pooling,
computational photography researchers have devised much more complex mechanisms for down-
sampling, such as content-aware seam-carving [133]. However, not all downsampling algorithms
are easily differentiable. For backpropagation-based training to be applicable, it is necessary that
we use downsampling mechanisms for which a derivative can be computed. Nevertheless, applying
alternative downsampling methods to CNNs is would be an interesting area of future work.

Finally, while we have presented typical strategies that allow CNNs to gradually downsample
from an image to a vector, there are cases where the goal is actually to produce an activation
map instead of a single vector. One such case is semantic segmentation, which is the problem of
assigning a category label (e.g. car, bus, road) to every pixel in the image, and therefore the output
of the CNN ought to be a pixel map. Indeed, researchers have addressed this problem with CNNs
that do not downsample all the way down to 1x1, sometimes called “fully convolutional networks
(FCN)” [14]. Finally, while it is most common to use stride = 1 (no resizing) or stride > 1

54

(downsampling), work such as [14] also uses fractional strides (stride < 1) to upsample/enlarge the
dataH and dataW .

4.2.3 Activation function layer

If a CNN were literally just a series of convolution layers and nothing else, the model would
simply be a linear system. Linear systems are a fairly constrained subset of what can be achieved
with deep networks. To express non-linear functions, it is common to introduce a nonlinearity into
the output of each convolution layer of a CNN. These nonlinearity functions are sometimes called
activation functions. Note that, in diagrams of CNNs, the activation function is often omitted for
brevity. Also, in some CNN implementations and frameworks such as Caffe [106], the activation
function is implemented as its own layer in the CNN.

In historical and recent literature, a number of activation functions have been proposed and
applied to CNNs. We do not attempt to provide an exhaustive survey of activation functions, but
we provide a few examples below:

• Hyperbolic tangent activation [134]: f(x) = tanh(x)

• Sigmoid activation [135]: f(x) = 1
1−exp(−x)

• Rectified linear unit (ReLU) activation [136]: f(x) = max(0, x)

• Variants of ReLU, including: ELU [137], PReLU [138], and Leaky ReLU [139].

For a more exhaustive discussion of activation functions, see the recent survey paper by Gu et
al. [140].

The choice of activation function can have two main effects on how a CNN behaves:

1. Quantity of computation required to converge. Given a CNN, changing the per-layer
activation functions may change the number of epochs of training required to converge to a
particular level of accuracy.

2. Accuracy achieved during training. Given a CNN, changing the per-layer activation
functions may change the accuracy that can be achieved during training. In pathological
cases, certain choices of activation function may lead to the CNN not learning anything at
all and remaining at a very low accuracy level.

The ramifications of the activation function are almost entirely constrained to the training
phase, and it has little impact on the computational requirements during inference. This is because
the quantity of computation required to calculate a typical activation function (e.g. ReLU: f(x) =
max(0, x)) is extremely trivial compared to running a typical convolution layer over the same data.
Therefore, the quantity of computation in most CNNs is dominated by layers such as convolution,
and activation functions typically represent much less than 1% of the total quantity of computation.

55

4.2.4 Loss function layers

During training a loss function — sometimes called an objective function — is typically applied
at the end of the CNN6. The ideal choice of loss function (typically implemented as its own layer
in the CNN) is highly dependent on the problem at hand. Without going into deep mathematical
details, we find that there are two main questions that a CNN architect must ask when beginning
the search for the “right” loss function:

1. Classification or regression? Do we want to train the CNN to solve a classification- or
regression-style problem? In the classification formulation, it is typical to say “there are 100
labels, and every data sample needs to be assigned to one of these labels.” Image classifica-
tion (as in the running ImageNet example in Chapter 3) is one example where classification
objective functions are sensible. On the other hand, in the regression formulation, it is typical
to say “for every every data sample, the sample needs to be analyzed, where the output is a
floating-point number between -50 and 50.” Some loss functions, such as logistic regression,
can be applied to either classification or regression [141]. Other loss functions — e.g. softmax
— are specific to classification. Note that many of the loss functions used in CNNs were not
designed specifically for CNN training — rather, they are loss functions that were developed
in other areas of mathematical optimization and have been appropriated by CNN researchers.
More examples of classification or regression loss functions can be found in [141] and [142].

2. One loss function or multiple loss functions? While it’s typical to optimize a CNN for
one particular loss function, it’s possible to have multiple loss functions. A common example
is to optimize a CNN to classify objects (using classification loss) and simultaneously optimize
the CNN to localize objects in (using regression loss) [13, 143]. Taken together, these two
loss functions train the CNN to perform object detection.

For an in-depth discussion of loss functions, we direct the interested reader to [141, 142].

4.2.5 Regularization function layers

In machine learning, the loss function is often formulated such that achieving zero loss (i.e.
perfect convergence) on the training set can be done by simply memorizing the training set. This
is problematic, because the real world (i.e. the test set and beyond) tends to be more diverse than
the training set. The case where a machine-learned model memorizes the training set but delivers
poor accuracy on the test set is called overfitting.

Regularization refers to a family of techniques that can be used to combat overfitting. Roughly
speaking, a method is a regularizer if it makes it more difficult to for a model to memorize the
training set. In most cases, regularization is applied during training, but not during inference.

These are two of the most widely-used regularization methods in modern CNN/DNN research:

• Dropout [144]: if(rand=1), f(x)=0. else, f(x)=x.

• Batch Normalization [116]7: f(x1:batchsize) = x1:batchsize−mean(x1:batchsize)
variance(x1:batchsize)

6In our nomenclature, the input data is the “beginning” and the loss function is the “end” of the CNN.
7Using the straightforward Batch Normalization formulation that was presented in Chapter 8 of [145].

56

4.3 Understanding the dimensionality of CNN layers

4.3.1 How many parameters are in a convolution layer?

Consider a convolution layer Li that has 100 filters of spatial resolution filterH x filterW =
3x3. How many parameters does this layer have? It might be tempting to answer 100*3*3=900,
but you would be wrong!

In reality, we haven’t given you enough information to answer the question. You need to know
the number of channels in the input data to Li. As we discussed in Section 4.2.1.2, for layer Li>1,
the number of input channels (chi) is determined by the number of filters in the previous layer
(numFilti−1). And, the first layer L1 is a special case: the number of input channels chi=1 is
determined by the number of channels in the input data to the CNN. To keep our math simple, for
the first layer we use numFilti−1 as a shorthand for “the number of channels in the input data to
the CNN.” Now, let us turn our attention back to the present example. If the previous layer Li−1
has 10 filters, then Li has 10 input channels, and Li has chi ∗ numFilti ∗ filterWi ∗ filterHi =
10*100*3*3=9000 parameters. If you thought 900, then you were off by a factor of 10!

Here, we have considered the number of parameters in just one layer. Calculating the total
quantity of parameters in an entire CNN architecture is simply a matter of summing chi∗numFilti∗
filterWi ∗ filterHi over layers i = 1 : n. We expressed this mathematically in terms of bytes in
Chapter 3, Equation 3.1, and we reproduce the equation below.

|W | =
#layers∑
L=1

numFiltL−1 ∗ numFiltL ∗ filterWL ∗ filterHL ∗ 4 (4.1)

Note that the the “∗ 4” assumes that we are representing the parameters in the filters as 4-byte
floating-point values. The “∗ 4” should be adjusted when representing the parameters with a
different number of bytes (e.g. “∗ 2” for 16-bit floating-point values).

4.3.2 How big are the activation maps produced by a convolution layer?

Consider a convolution layer Li with 100 filters of size filterHi x filterWi = 3x3, stridei=2,
and no zero-padding (padHi = padWi = 0). Note that the stride of 2 applies in the height and
width dimensions. Also, the input data to Li is dataHi−1 x dataWi−1 x chi−1 = 50x50x10. Finally,
assume that the batch size is 200. What is the dimensionality of the output data produced by Li?

We know that the number of output channels is 100, because it says above that Li has 100

filters (numFilti). We compute the height of the output activations (dataHi) as

dataHi = ceil(
dataHi−1 + 2 ∗ padHi − filterHi

stridei
) + 1 (4.2)

Plugging in the numbers for the present example, this works out to ceil(50+0−3
2) + 1 = 25. We

were given that dataHi = dataWi = 50, so the output width is also 25. Putting it all together, the
output activation map from Li is batch x numFilti x dataHi x dataWi = 200x100x25x25.

57

4.3.3 How many arithmetic operations are performed in a convolution layer?

So far, we have discussed how to calculate the dimensionality and quantity of parameters and
activations in a convolution layer. Given the dimensionality of the parameters and the dimension-
ality of the activations that a convolution layer produces as output, this is enough information to
calculate the quantity of computation in the layer.

As we have discussed in previous sections, a CNN architect is charged with defining certain
dimensions for each convolution layer L. These dimensions include the height and width of filters
(filterHL and filterWL), the number of filters in the previous layer (numFiltL−1), the number
of filters in the current layer (numFiltL), the height and width of output activations (dataHL and
dataWidthL). Using these dimensions, we can compute the number of arithmetic operations in
convolution layer L as follows:

FLOPSL = numFiltL−1 ∗ numFiltL ∗ filterWL ∗ filterHL ∗ dataWL ∗ dataHL ∗ 2. (4.3)

Note that the factor of 2 is to account for the fact that the calculations use multiply-add calcula-
tions, which count as two arithmetic operations.

Calculating the total quantity of computation in a CNN’s convolution layers is as simple as
summing Equation 4.3 over all layers:

FLOPStotal =

#layers∑
L=1

numFiltL−1 ∗ numFiltL ∗ filterWL ∗ filterHL ∗ dataWL ∗ dataHL ∗ 2. (4.4)

So far, we have concentrated on calculating the quantity of computation required for the infer-
ence. While inference requires computing the forward pass only, training requires computing both
the forward and backward pass. The backward pass requires 2x more computation than the forward
pass, because the backward pass requires computing gradients with respect to the weights (∇W)
and gradients with respect to the data (∇D). The computations of ∇W and ∇D each require the
same quantity of computation as the entire forward pass. Therefore, per image or data sample,
training requires three times the quantity of computation that is required for inference [78]. In other
words, to determine the quantity of computation per data sample during training, the procedure
is simply to calculate Equation 4.4 and multiply the result by 3.

4.4 A mental model for how CNN dimensions impact the quantity

of computation and other metrics

Much research has been conducted on some aspects of CNNs such as (1) solvers [146, 147], (2)
adding residual connections that skip over layers of CNNs [129, 15, 18], and (3) rethinking how
to initialize parameters prior to training CNNs [113, 138]. All of these areas of research have an
impact on the time required to train a CNN, and the end accuracy that is achieved. However, do
these topics affect the inference speed when it comes to deploy the CNN for a real application?
For the most part, no. Solvers and parameter initialization are only relevant during training.

58

The residual connections that have appeared in recent literature [129, 15, 18] have a negligible
effect on the inference speed, because they account for a tiny portion of the overall quantity of
computation. So, what factors do influence the speed or quantity of computation required during
inference time? Simply put, the CNN architecture and the dimensionality of the input data
are wholly responsible for determining the quantity of computation required during inference.8 To
our knowledge, there are few papers or documents that provide practical intuition on how CNN
layer dimensions impact the overall computational footprint. To remedy this, we have codified our
own mental model for understanding how changing the dimensions of a CNN impact the CNN’s
quantity of computation during inference.

Given a CNN, there are a number of ways to modify it in the interest of maximizing accuracy,
minimizing the quantity of computation, or optimizing for other metrics. While there are many
modifications that we can make to a CNN, the modifications that have the most impact on the
quantity of computation tend to deal with the number of channels or filters in layers or the height
and width of activations that are passed from one layer to the next. Some of the key ways of
modifying a CNN include:

• changing the number of channels in the input data, e.g. adding a depth channel or concate-
nating multiple video frames. (Section 4.5.2);

• changing the number of filters in a convolution layer (Section 4.5.3);

• changing the spatial resolution (height and/or width) of convolution filters in a layer (Section
4.5.4);

• changing the number of categories classified by the CNN (Section 4.5.5);

• changing the quantity of downsampling performed in a convolution or pooling layer9 (Section
4.6.1); or

• changing the spatial resolution of the input data (Section 4.6.2).

Initially, it may seem daunting to understand how each of these types of modifications affect
the quantity of computation required to perform inference in a CNN. Fortunately, all of these
modifications can be distilled into a straightforward mental model. All of these CNN architectural
modifications induce either a local change or a global change to the dimensions of the CNN, and we
define these terms as follows.

1. Local change. We define a local change as the case where a modification to CNN layer Li

affects only the dimensionality of layer Li and possibly Li+1. Examples of a local change
include changing the number of channels in the input data (Section 4.5.2), changing the num-
ber of filters in one convolution layer (Section 4.5.3), and changing the number of categories
classified by the CNN (Section 4.5.5).

2. Global change. In contrast to a local change, we define a global change as the case where a
modification to CNN layer Li affects the dimensionality of layer Li and the subsequent layers
(Li+1, ..., LN). Examples of a global change include changing the resolution of the input im-
ages (Section 4.6.2) and changing the strides of a convolution or pooling layer (Section 4.6.1).

8And, as we will see in Chapter 5, model compression can further impact the quantity of computation during
inference.

9e.g. by changing the strides or adding/removing a pooling layer

59

As you can see, all of the CNN modifications that we have considered can be described as either
a local change or a global change. In the following two sections (Section 4.5 and Section 4.6), we
describe in detail how each type of CNN modification impacts the total quantity of computation
in a CNN. But first, we state the key findings up front:

• A local change to a layer in a deep CNN typically has little impact on the CNN’s total quantity
of computation.

• A global change to layer Li affects all layers downstream of Li and can have a multiplicative
effect on the CNN’s total quantity of computation.

We summarize this in Table 4.1. In Sections 4.5 and 4.6, we will go over how we calculated each
line in Table 4.1.

Table 4.1. Summary of local and global changes to CNN architectures

section modification type of

modification

∆ Qty of

output

∆ Qty of

params

∆ Qty of

computation

Section 4.5.1

Table 4.2

Initial CNN (NiN [95]) none 1x 1x 1x

Section 4.5.2

Table 4.3

4x more input channels Local 1x 1x 1.3x

Section 4.5.3

Table 4.4

4x more filters in conv8 Local 1.1x 1.1x 1.1x

Section 4.5.4

Table 4.5

4x larger filter resolution

in conv7

Local 1x 1.3x 1.3x

Section 4.5.5

Table 4.6

4x more categories to

classify

Local 1x 1.4x 1.1x

Section 4.6.1

Table 4.7

remove pool3

downsampling layer

Global 2.6x 1x 3.8x

Section 4.6.2

Table 4.8

4x larger input data

resolution

Global 4.2x 1x 4.3x

4.5 Local changes to CNN architectures

4.5.1 Initial CNN architecture: Network-in-Network (NiN)

Before we begin to present examples of how changing CNN dimensions impacts the computa-
tional footprint, we begin by presenting an initial CNN architecture. We have selected Network-
in-Network (NiN) [95] as an initial CNN architecture. In its default configuration, NiN takes an

60

image as input, and it predicts the image’s category (e.g. “soup bowl” or “cowboy hat”) as output.
In terms of accuracy, NiN is competitive with the highest-accuracy submissions in the ImageNet
2012 and 2013 image classification challenges. The highest accuracy submission for ImageNet 2014
— GoogLeNet [79] — draws inspiration from the NiN architecture.

We present an overview of the NiN architecture in Figure 4.1. We provide more detailed
dimensions of the NiN architecture in Table 4.2. Observe that NiN has 12 convolution layers. Each
of these convolution layers has a multiple filters, where the filters are in the range from 1x1xChannels
to 11x11xChannels. In each layer, all filters are the same size. From beginning to end, NiN gradually
downsamples the height and width of the activations from 227x227 down to 1x1. The downsampling
is accomplished with max- and average-pooling, as well as (in the first convolutional layer) a
convolution stride of 2. In some CNNs such as AlexNet [22], the downsampling to 1x1xChannels
is done partway through the CNN, and the last few convolution layers (sometimes called “fully-
connected layers” due to the special case of 1x1 dimensionality) operate without spatial resolution.
However, every convolution layer in NiN has a spatial resolution greater than 1x1. After the
final convolution layer, NiN does global average pooling, which means it takes the average of each
channel’s (x,y) grid to downsample to 1x1xChannels. This design choice has a nice property:
regardless of the input image height and width, NiN is able to output an output vector of size
1x1xChannels.

For brevity, we have not shown all the details of NiN in Table 4.2. In this table, we have omitted
the following details:

• ReLU [136] is performed after each convolution layer.

• During training, Dropout [144] is performed after the 10th convolution layer.

• Batch Normalization [116] is not used at all in NiN.

• The initial layer (“data”) provides a batch of 3-channel (RGB) images.

• Each pooling layer has a stride of 2. When we say “a stride of 2,” we mean that both the x-
and y-dimensions have a stride of 2. Within each convolution and pooling layer of NiN, the
x- and y-dimensions have the same stride.

• As we discussed in Section 4.3, the number of filters (number of output channels) in convo-
lution layer Li defines the number of input channels in convolution layer Li+1. In Table 4.2,
to avoid redundancy we simply list the number of output channels in each layer.

• Pooling does not affect the number of channels (and pooling operates independently on each
channel), so a pooling layer simply has the same number of output channels as the previous
convolution layer.

Observe in Table 4.2 that during inference with a batch size of 1024 images NiN produces
5.90GB of output activations (for all layers combined), it has 30.4MB of filters (which is unaffected
by the batch size), and it requires 2.27TF of computation. In the following sections, we will show
how modifications to NiN impact the quantity of activations, the quantity of filters, and the quantity
of computation required during inference.

61

Table 4.2. (Corresponds with Section 4.5.1.) Dimensions of the Network-in-Network
(NiN) [95] CNN architecture. We use this as a starting point for a number of CNN modifi-
cations in the following subsections.

Hand-selected hyperparameters Derived dimensions and quantities (batch=1024)

layer filter

HxW

stride output

channels

output

HxW

Qty of

output

(MB)

Qty of

params

(MB)

Qty of

Computation

(GFLOPS)

data - - 3 227x227 633MB 0 0

conv1 11x11 4 96 55x55 1190MB 0.140MB 216GF

conv2 1x1 1 96 55x55 1190MB 0.0372MB 57.1GF

conv3 1x1 1 96 55x55 1190MB 0.0372MB 57.1GF

pool3 3x3 2 96 27x27 287MB 0 0.644GF

conv4 5x5 1 256 27x27 764MB 2.46MB 917GF

conv5 1x1 1 256 27x27 764MB 263KB 97.8GF

conv6 1x1 1 256 27x27 764MB 263KB 97.8GF

pool6 3x3 2 256 13x13 177MB 0 0.399GF

conv7 3x3 1 384 13x13 266MB 3.54MB 306GF

conv8 1x1 1 384 13x13 266MB 0.591MB 51.0GF

conv9 1x1 1 384 13x13 266MB 0.591MB 51.0GF

pool9 3x3 2 384 6x6 56.6MB 0 0.127GF

conv10 3x3 1 1024 6x6 151MB 14.2MB 261GF

conv11 1x1 1 1024 6x6 151MB 4.20MB 77.3GF

conv12 1x1 1 1000 6x6 151MB 4.10MB 75.5GF

pool12 6x6 1 1000 1x1 4.0MB 0 0.073GF

total 5.90GB 30.4MB 2.27TF

62

4.5.2 Changing the number of channels in the input data

Computer vision algorithms are often applied to color images. Color images are typically
represented as a grid of pixels, and each pixel has 3 channels: Red, Green, and Blue, or RGB for
short. In CNNs such as AlexNet [22] and NiN [95], each filter of the first convolution layer has a
height and width (e.g. 11x11), plus 3 channels to accept RGB images.

Channels in RGB-D computer vision. Sensors such as LIDAR can provide depth maps
— essentially a grid of pixels, where each pixel represents depth (e.g. meters) from the sensor.
When using depth maps, it is common to operate on 4-channel RGB-D images, where the fourth
channel is depth. To perform visual recognition on RGB-D images, one approach is to configure a
CNN to have 4 channels in the first convolution layer. Some researchers represent RGB-D images
with higher numbers of channels. For example, Gupta et al. featurize a depth map into multiple
channels of information for each pixel: horizontal disparity, height above ground, and the surface
normal [148]. All of these channels are used as input to a CNN.

Channels in video recognition. In videos, each frame can typically be represented as an
RGB image. Video frames have temporal locality; enabling visual recognition algorithms to leverage
this locality can lead to higher recognition accuracy. One such approach is the use of recurrent CNN
models (RNNs) [149] and long-short term memory networks (LSTMs) [150], which keep track of
the temporal relationship between frames. LSTMs have been applied to video recognition problems
such as identifying actions in videos [151], automatically answering questions about images [152],
and assigning captions to images [153]. An alternative approach is simply to concatenate multiple
video frames together in the channel dimension. For example, in a system to identify human
activities/actions that are performed in the TRECVID [154] video dataset, Ji et al. concatenated
groups of 7 video frames to use as input to a CNN [155]. In this case, the CNN’s conv1 layer had
(3 RGB) * (7 frames) = 21 input channels.

In most of the aforementioned applications, an off-the-shelf CNN architecture such as
AlexNet [22], VGG [77], or NiN [95] was modified to target a new application with a different
number of channels in the input data. An important consideration is, how do these changes impact
the quantity of computation performed by a CNN? Let us walk through a straightforward case
of changing the number of input channels: we will take NiN (Table 4.2) and increase the number
of input channels by a factor of 4x. You can think of this as concatenating 4 RGB video frames
together in the channel dimension (to preserve temporal locality across frames), and feeding this
to the CNN as a single input data item.

4.5.2.1 Impact on inference

When we increase the number of channels in the input data by a factor of 4x (from 3 to 12), how
does the quantity of computation during inference change? In Table 4.3, we show the impact
of this modification to the NiN architecture on the quantity of computation. Observe that, in the
conv1 layer, the quantity of computation increases by a factor of 4x (you can calculate this for
yourself using Equation 4.3). In layers after conv1, the quantity of computation is unchanged by
this modification. Looking at the CNN from an end-to-end perspective, this modification leads to
1.3x more computation overall.

63

4.5.2.2 Impact on training

When we increase the number of channels in the input data by a factor of 4x (from 3 to 12),
how does the time required to train a model (for a fixed number of epochs) change? In Table 4.3,
we observe that this change requires 1.3x more computation10, but the quantity of parameters in
the CNN remains essentially unchanged. In the data-parallel training approach that we described
in Chapter 3, the quantity of communication sent and received by each server is determined by
the quantity of parameters in the CNN. Therefore, to answer the question stated above: when
we increase the number of channels in the input data to the CNN, training on a fixed number of
processors is slightly slower. However, the ratio of computation

communication has increased, which means we can
scale the modified CNN’s training problem to more processors and nearly regain the time-to-solution
that is achievable with the original NiN model. Finally, note that the quantity of output (i.e. total
quantity of activations produced by all layers) does not affect the communication requirements in
data-parallel distributed CNN training and therefore does not directly impact the scalability or
speed of training on multiple processors.

10Recall from Section 4.3.3 that CNN training requires 3x more computation per image than CNN inference.

64

Table 4.3. (Corresponds with Section 4.5.2.) NiN architecture with 4x more input channels.
The ∆s represent the change compared to the unmodified version of NiN in Table 4.2.

Hand-selected hyperparameters Derived dimensions and quantities (batch=1024)

layer filter

HxW

stride output

channels

output

HxW

∆ Qty of

output

∆ Qty of

params

∆ Qty of

computation

data - - 12 227x227 4x 0 0

conv1 11x11 4 96 55x55 1x 4x 4x

conv2 1x1 1 96 55x55 1x 1x 1x

conv3 1x1 1 96 55x55 1x 1x 1x

pool3 3x3 2 96 27x27 1x 1x 1x

conv4 5x5 1 256 27x27 1x 1x 1x

conv5 1x1 1 256 27x27 1x 1x 1x

conv6 1x1 1 256 27x27 1x 1x 1x

pool6 3x3 2 256 13x13 1x 1x 1x

conv7 3x3 1 384 13x13 1x 1x 1x

conv8 1x1 1 384 13x13 1x 1x 1x

conv9 1x1 1 384 13x13 1x 1x 1x

pool9 3x3 2 384 6x6 1x 1x 1x

conv10 3x3 1 1024 6x6 1x 1x 1x

conv11 1x1 1 1024 6x6 1x 1x 1x

conv12 1x1 1 1000 6x6 1x 1x 1x

pool12 6x6 1 1000 1x1 1x 1x 1x

total 1x

(5.90TB)

1x

(30.4MB)

1.3x

(2.92TF)

4.5.3 Changing the number of filters in a convolution layer

We now turn our attention to the number of filters in a CNN layer, and the implications of the
number of filters on a CNN’s computational properties. In Sections 3.3, 4.2.1.2, and 4.3.1, we have
discussed the relationship between channels and filters in CNNs. Now, we work an example where
we change the number of filters in a convolution layer within a CNN and observe the impact on
the quantity of computation performed by the CNN as a whole.

In Network-in-Network (NiN) [95], the conv1 layer has 96 filters. Observe in Table 4.2 that
conv1 has 96 output channels. This isn’t a coincidence; the number of filters in a layer dictates the
number of output channels produced by the layer. Next, since conv2 has 96 input channels, each
filter in conv2 has 96 channels. It also happens that the NiN architects chose to have 96 filters in
conv2, and each of these filters has 96 channels. The conv3 layer also has 96 input channels and
96 output channels. In the conv4 layer, there are 96 input channels (from conv3), but the NiN

65

architects decided to have 256 filters in the conv4 layer. The NiN architects also decided to use a
spatial resolution of 3x3 for the filters in conv4. Putting it all together, the conv4 layer has 256
filters that are of size 3x3x96. From what we have learned so far, we can observe three properties
of the number of filters in a CNN layer:

1. The number of filters in layer Li dictates the number of output channels in Li.

2. The number of input channels in Li+1 is equal to the number of output channels in Li.

3. Each filter has multiple channels. The number of filters in layer Li dictates the number of
channels in each filter of layer Li+1.

The choice of the number of filters in CNN layers comprises a huge design space. With this
in mind, it is worthwhile to understand how the number of filters in a CNN layer impacts the
overall computational overhead of a CNN. To explore this, let us begin with the NiN architecture
and increase the number of filters in the conv8 layer, and we will explore how this impacts the
computational characteristics of the CNN.

4.5.3.1 Impact on inference

When we increase the number of filters in conv8 by a factor of 4x (from 384 to 1536), how
does the quantity of computation during inference change? Within conv8, the quantity of
computation increases by a factor of 4x; we can calculate this using Equation 4.3. Also, as we
discussed earlier in the section, the number of filters in layer Li defines the number of input
channels to layer Li+1. Therefore, each filter in conv9 now has 4x more channels, leading to 4x
more computation in conv9.

However, in layers other than conv8 and conv9, the quantity of computation is unchanged. As
we show in Table 4.4, the overall quantity of computation in the CNN increases by just 1.1x as a
result of increasing the number of filters in conv8 by 4x. Since increasing the number of filters in
a layer impacts the quantity of computation in just 2 out of the 12 convolution layers, we describe
this as a local change to a CNN architecture.

4.5.3.2 Impact on training

When we increase the number of filters in conv8 by a factor of 4x (from 384 to 1536), how does
the time required to train a model (for a fixed number of epochs) change? This modification led
to a negligible 1.1x increase in both computation and model size (i.e. communication). Training
the model would be slightly more time-consuming. Since both the communication and computation
increased by the same amount, the problem’s distributed scalability remains unchanged.

66

Table 4.4. (Corresponds with Section 4.5.3.) NiN architecture with 4x more filters in conv8.
The ∆s represent the change compared to the unmodified version of NiN in Table 4.2.

Hand-selected hyperparameters Derived dimensions and quantities (batch=1024)

layer filter

HxW

stride output

channels

output

HxW

∆ Qty of

output

∆ Qty of

params

∆ Qty of

computation

data - - 3 227x227 1x 0 0

conv1 11x11 4 96 55x55 1x 1x 1x

conv2 1x1 1 96 55x55 1x 1x 1x

conv3 1x1 1 96 55x55 1x 1x 1x

pool3 3x3 2 96 27x27 1x 1x 1x

conv4 5x5 1 256 27x27 1x 1x 1x

conv5 1x1 1 256 27x27 1x 1x 1x

conv6 1x1 1 256 27x27 1x 1x 1x

pool6 3x3 2 256 13x13 1x 1x 1x

conv7 3x3 1 384 13x13 1x 1x 1x

conv8 1x1 1 1536 13x13 4x 4x 4x

conv9 1x1 1 384 13x13 1x 4x 4x

pool9 3x3 2 384 6x6 1x 1x 1x

conv10 3x3 1 1024 6x6 1x 1x 1x

conv11 1x1 1 1024 6x6 1x 1x 1x

conv12 1x1 1 1000 6x6 1x 1x 1x

pool12 6x6 1 1000 1x1 1x 1x 1x

total 1.1x

(6.69GB)

1.1x

(33.9MB)

1.1x

(2.57TF)

4.5.4 Changing the spatial resolution of filters in a convolution layer

In CNNs, each filter has a spatial resolution (height x width) that can be any size in the range
from 1x1 up to the height and width of the input data to which the filters will be applied.11 CNN
architects are free to select filters to be any size in this range. Note that, while we could design
a CNN where every filter is a unique size, it’s common for most filters within each layer to have
the same spatial resolution. In Chapter 5, we will discuss how the choice of filter resolution affects
accuracy. For now, though, we will focus on understanding how modifying the filter resolution of
a CNN affects its computational requirements.

In the NiN CNN architecture, filters range from 1x1 to 11x11 in their spatial resolution. In
Chapter 5, we will learn how the choice of filter resolution can impact accuracy. For now, though,
we focus on understanding how changing the resolution of CNN filters affects its computational

11To be specific, the filters are 1x1xChannels, or larger. For simplicity, we omit the “xChannels” in this section.

67

requirements. Keeping with the running example of “increasing a CNN dimension by 4x,” we next
consider how increasing the height and width of the filters of a CNN layer from 3x3 to 6x6 affects
the CNNs computational requirements.

4.5.4.1 Impact on inference

When we increase the filter resolution in conv7 by a factor of 4x (from 3x3 to 6x6), and increase
the amount of zero-padding from a border of 1 pixel to a border of 2 pixels, how does the quantity
of computation during inference change? In Table 4.5, we show how this modification to the
NiN architecture impacts quantity of computation. Observe in Table 4.5 that, in the conv7 layer,
the quantity of computation increases by a factor of 4x. In the the following convolution layer
(conv8), notice that the quantity of computation is nearly unchanged. Looking at the CNN from
an end-to-end perspective, this modification leads to 1.3x more computation overall.

Finally, notice that the quantity of computation in the conv8 and conv9 layers decreased slightly
compared to the original NiN architecture (Table 4.2), and the output activations from conv7,
conv8, and conv9 shrunk slightly from 13x13 to 12x12. We now take a moment to explain this.
The modest change in the quantity of computation and output activation resolution in conv8 and
conv9 is due to the choice of zero-padding in our modified conv7 layer. With 3x3 filters and a stride
of 1, a border of 1 pixel of zero-padding leads to the input data and output activations being the
same height and width. Similarly, with 5x5 filters and a stride of 1, a border of 2 pixels of zero-
padding leads to the input data and output activations being the same height and width. However,
with 6x6 filters (or any even-numbered filter height and width), getting the output resolution to be
equivalent to the input resolution would require a padding technique such as: 3 pixels of padding
on the top and left borders, and 2 pixels of padding on the bottom and right borders. Typically,
CNN frameworks (e.g. Caffe [106], TensorFlow [119]) do not natively support unequal padding on
different sides, so for the example in this section we used a border of 2 pixels of zero-padding on
all sides in the modified conv7 layer. This led to slightly smaller output activations from conv7,
conv8, and conv9, leading to a slight drop on quantity of computation for conv8 and conv9.

4.5.4.2 Impact on training

When we increase the filter resolution in conv7 by a factor of 4x (from 3x3 to 6x6), and increase
the amount of zero-padding from a border of 1 pixel to a border of 2 pixels, how does the time
required to train a model (for a fixed number of epochs) change? This modification led to a 1.3x
increase in both computation and model size (i.e. communication). Training the model would be
slightly more time-consuming. Since both the communication and computation increased by the
same amount, the problem’s distributed scalability remains unchanged.

68

Table 4.5. (Corresponds with Section 4.5.4.) NiN architecture with 4x larger filter resolution
in layer conv7 (3x3 → 6x6). The ∆s represent the change compared to the unmodified
version of NiN in Table 4.2.

Hand-selected hyperparameters Derived dimensions and quantities (batch=1024)

layer filter

HxW

stride output

channels

output

HxW

∆ Qty of

output

∆ Qty of

params

∆ Qty of

computation

data - - 3 227x227 1x 0 0

conv1 11x11 4 96 55x55 1x 1x 1x

conv2 1x1 1 96 55x55 1x 1x 1x

conv3 1x1 1 96 55x55 1x 1x 1x

pool3 3x3 2 96 27x27 1x 1x 1x

conv4 5x5 1 256 27x27 1x 1x 1x

conv5 1x1 1 256 27x27 1x 1x 1x

conv6 1x1 1 256 27x27 1x 1x 1x

pool6 3x3 2 256 13x13 1x 1x 1x

conv7 6x6 1 384 12x12 0.8x 4x 3.4x

conv8 1x1 1 384 12x12 0.8x 1x 0.9x

conv9 1x1 1 384 12x12 0.8x 1x 0.9x

pool9 3x3 2 384 6x6 1x 1x 1x

conv10 3x3 1 1024 6x6 1x 1x 1x

conv11 1x1 1 1024 6x6 1x 1x 1x

conv12 1x1 1 1000 6x6 1x 1x 1x

pool12 6x6 1 1000 1x1 1x 1x 1x

total 1x

(5.82GB)

1.3x

(41.0MB)

1.3x

(2.99TF)

4.5.5 Changing the number of categories classified by a CNN

Applications of CNNs include single-class (i.e. binary) and multi-class classification. The out-
put layer of a CNN has a number filters that is equal to the number of categories to be classified
(i.e. the number of distinct categories in the training set). In the context of this section, we
define “classification” inclusively to span (1) full-image classification (e.g. [18]), (2) localized recog-
nition/detection (e.g. [156]), (3) semantic segmentation (e.g. [14]), and other applications. In all of
these cases, there is a multi-class classification aspect to the problem: localized detection classifies
regions/windows of the images in terms of a list of object categories, and semantic segmentation
classifies pixels in terms of a list of visual categories. In all of these applications, the number of
filters in the final layer is set equal to the number of classes in the training set.

Let us consider the NiN CNN architecture as a starting point. When trained on ImageNet,

69

the authors of NiN allocated 1000 filters in conv12 (the final layer), because ImageNet-1k has 1000
categories of training and test data. Next, we consider the case where we would like to apply NiN
to to a visual category recognition task with more categories — say, 4000 categories of images.

4.5.5.1 Impact on inference

When we increase the number of categories in the dataset by a factor of 4x (from 1000 to
4000), how does the quantity of computation during inference change? In Table 4.6, we show
the impact of this modification to NiN architecture on the quantity of computation. In the final
convolution layer (conv12), there is one filter for each category in the dataset. So, the number
of filters in conv12 has increased from 1000 to 4000, leading to 4x more computation in conv12.
However, the dimensionality and quantity of computation in all other layers remains unchanged.
Looking at the CNN from an end-to-end perspective, this modification leads to just 1.1x more
computation overall.

4.5.5.2 Impact on training

When we increase the number of categories in the dataset by a factor of 4x (from 1000 to 4000),
how does the time required to train a model (for a fixed number of epochs) change? In Table 4.6,
we observe that this change leads to a 1.4x larger model size (i.e. 1.4x more communication) and
1.1x more computation. Therefore, the ratio of computation

communication has decreased, which tells us that
this CNN is less scalable than the original NiN model. In other words, not only does this model
require more computation than the original NiN model, but the runtime will be dominated by
communication at a smaller number of processors than in the case of the original NiN model. For
both of these reasons, when using distributed data-parallel training, this model is slower to train
than the original NiN model.

70

Table 4.6. (Corresponds with Section 4.5.5.) NiN architecture with 4x more categories
to classify. The ∆s represent the change compared to the unmodified version of NiN in
Table 4.2.

Hand-selected hyperparameters Derived dimensions and quantities (batch=1024)

layer filter

HxW

stride output

channels

output

HxW

∆ Qty of

output

∆ Qty of

params

∆ Qty of

computation

data - - 3 227x227 1x 0 0

conv1 11x11 4 96 55x55 1x 1x 1x

conv2 1x1 1 96 55x55 1x 1x 1x

conv3 1x1 1 96 55x55 1x 1x 1x

pool3 3x3 2 96 27x27 1x 1x 1x

conv4 5x5 1 256 27x27 1x 1x 1x

conv5 1x1 1 256 27x27 1x 1x 1x

conv6 1x1 1 256 27x27 1x 1x 1x

pool6 3x3 2 256 13x13 1x 1x 1x

conv7 3x3 1 384 13x13 1x 1x 1x

conv8 1x1 1 384 13x13 1x 1x 1x

conv9 1x1 1 384 13x13 1x 1x 1x

pool9 3x3 2 384 6x6 1x 1x 1x

conv10 3x3 1 1024 6x6 1x 1x 1x

conv11 1x1 1 1024 6x6 1x 1x 1x

conv12 1x1 1 4000 6x6 4x 4x 4x

pool12 6x6 1 4000 1x1 4x 1x 4x

total 1x

(5.90GB)

1.4x

(42.6MB)

1.1x

(2.49TF)

4.5.6 Recap of local changes to CNN architectures

In the previous sections (4.5.2—4.5.5), we have considered a number local changes to CNN
architectures. Under our terminology, a “local” change is one where modifying layer Li only affects
the dimensions of layer Li and, in some cases, layer Li+1. The dimensions of other layers (Li+2, ...,
Ln) are unaffected by a local change to layer Li. There is a common pattern among all of the local
changes that we have considered: the changes all involve modifying the dimensions of one layer’s
filters or channels. There is a reason for this: the number of filters in layer Li defines the number
of input channels in layer Li+1, but the number of filters in Li has no bearing on the number of
input channels to layers Li+2, ..., Ln.

In contrast to the local changes that we have discussed so far, in the next section we will discuss

71

global changes where modifying the dimensions of Li has an effect on the dimensions of all layers
after Li.

4.6 Global changes to CNN architectures

In the previous section, we saw that changing various dimensions of filters in layer Li led to a
change in computational cost only in layer Li and in some cases layer Li+1. However, changing the
dimensions of the activations produced by layer Li has an impact on the computational cost in all
downstream layers. These are what we call global changes to CNN architectures. In the following,
we will discuss two examples of global changes to CNNs.

4.6.1 Adding or removing a downsampling layer early in a CNN

As we discussed in Section 4.2.2, the settings of strides in convolution or pooling layer Li affect
the dimensions of the output activations produced by Li. We now work an example to provide
further intuition on this phenomenon.

Let us begin with the NiN CNN (Figure 4.1). In the original NiN CNN architecture (Table 4.2),
notice that pool3 has its stride set to 2. Consider the case where we modify the CNN architecture
by removing the pool3 max-pooling layer. How does the quantity of computation change due to
this modification?

First, it’s important to note that the computational overhead of a pooling layer is roughly
equivalent to a convolution layer that has only one filter — this is quite a low amount of overhead
compared to our typical convolution layers with tens or hundreds of filters. So, we will be focusing
on how the quantity of computation in the convolutional layers is impacted by the removal of the
pool3 layer.

4.6.1.1 Impact on inference

When we remove the pool3 layer from NiN, how does the quantity of computation during
inference change? In Table 4.7, we show the impact of this modification to NiN architecture on the
quantity of computation. When we remove the pool3 layer, the height and width of the input data
to conv4 decreases by 2x in height and 2x in width compared to the original network described
Table 4.2. This 2x increase in the height and width of activations propagates over subsequent
layers, so conv4, conv5, conv6, and beyond each have 4x more computation, for a total of 3.8x less
computation compared to the original CNN architecture.

4.6.1.2 Impact on training

When we remove the pool3 layer from NiN, how does the time required to train a model (for
a fixed number of epochs) change? In Table 4.7, we observe that this change leads to no change
in model size (therefore no change in communication) and 3.8x more computation. While the

72

computation has increased by 3.8x, the ratio of computation
communication has also increased by 3.8x. Therefore,

we can scale modified CNN’s training problem to ∼3.8x more processors and nearly regain the
time-to-solution that is achievable with the original NiN model.

Table 4.7. (Corresponds with Section 4.6.1.) NiN architecture with the pool3 layer removed.
The ∆s represent the change compared to the unmodified version of NiN in Table 4.2.

Hand-selected hyperparameters Derived dimensions and quantities (batch=1024)

layer filter

HxW

stride output

channels

output

HxW

∆ Qty of

output

∆ Qty of

params

∆ Qty of

computation

data - - 3 227x227 1x 0 0

conv1 11x11 4 96 55x55 1x 1x 1x

conv2 1x1 1 96 55x55 1x 1x 1x

conv3 1x1 1 96 55x55 1x 1x 1x

Removed pool3

conv4 5x5 1 256 55x55 4.1x 1x 4.1x

conv5 1x1 1 256 55x55 4.1x 1x 4.1x

conv6 1x1 1 256 55x55 4.1x 1x 4.1x

pool6 3x3 2 256 27x27 4x 1x 4.3x

conv7 3x3 1 384 27x27 4.3x 1x 4.3x

conv8 1x1 1 384 27x27 4.3x 1x 4.3x

conv9 1x1 1 384 27x27 4.3x 1x 4.3x

pool9 3x3 2 384 13x13 4.7x 1x 4x

conv10 3x3 1 1024 13x13 4.7x 1x 4.7x

conv11 1x1 1 1024 13x13 4.7x 1x 4.7x

conv12 1x1 1 1000 13x13 4.7x 1x 4.7x

pool12 6x6 1 1000 1x1 4x 1x 4x

total 2.6x

(15.3GB)

1x

(30.4MB)

3.8x

(8.65TF)

73

4.6.2 Changing the height and width of the input data

In every computer vision system, a design choice is what resolution of images should be used as
input? This design choice can be implemented in two ways:

• The choice of camera resolution, and/or

• Optionally, the choice of how to downsample or upsample the images.

In CNN-based systems, the conventional wisdom is that higher resolution imagery tends to allow
the CNN to deliver higher accuracy [157]. Further, when applying CNNs to extremely complex
scenes, high resolution imagery can be especially critical to achieving high accuracy.

Now, how does the resolution (height and width) of input images affect the quantity of com-
putation in a CNN. Let us now apply NiN [95] to 4x larger input images. That is, we increase the
height and width each by a factor of 2, so the number of input pixels increases by 4x.

4.6.2.1 Impact on inference

When double the height and width of the images (from 227x227 to 454x454) that are used as
input to NiN, how does the quantity of computation during inference change? In Table 4.8,
we show the impact of this modification to NiN architecture on the quantity of computation.
In all layers, the height and width of the input data doubles, for a total of approximately 4x
more input data to each layer. Or, more precisely, when we follow Equation 4.2 to determine
the output activation dimensions for each layer, rounding leads to some of the activations being
slightly more than 4x larger than the original version. In each convolution layer, this leads to each
convolution filter being applied to roughly 4.2x more (x,y) locations. Overall, this leads to 4.3x
more computation when running NiN with 454x454 input images instead of 227x227 input images.

Finally, similar to the example in Section 4.5.4, it is due to padding effects that some layers
in Table 4.8 have slightly more than 4x more computation than the original NiN architecture in
Table 4.2.

4.6.2.2 Impact on training

When double the height and width of the images (from 227x227 to 454x454) that are used as
input to NiN, how does the time required to train a model (for a fixed number of epochs) change?
In Table 4.7, we observe that this change leads to no change in model size (therefore no change
in communication) and 4.3x more computation. While the computation has increased by 4.3x,
the ratio of computation

communication has also increased by 4.3x. Therefore, we can scale the modified CNN’s
training problem to ∼4.3x more processors and nearly regain the time-to-solution that is achievable
with the original NiN model.

74

Table 4.8. (Corresponds with Section 4.6.2.) NiN architecture with 4x larger input data
resolution (227x227→ 454x454). The ∆s represent the change compared to the unmodified
version of NiN in Table 4.2.

Hand-selected hyperparameters Derived dimensions and quantities (batch=1024)

layer filter

HxW

stride output

channels

output

HxW

∆ Qty of

output

∆ Qty of

params

∆ Qty of

computation

data - - 3 454x454 4x 0 0

conv1 11x11 4 96 111x111 4.1x 1x 4.1x

conv2 1x1 1 96 111x111 4.1x 1x 4.1x

conv3 1x1 1 96 111x111 4.1x 1x 4.1x

pool3 3x3 2 96 55x55 4.1x 1x 4.2x

conv4 5x5 1 256 55x55 4.1x 1x 4.2x

conv5 1x1 1 256 55x55 4.1x 1x 4.2x

conv6 1x1 1 256 55x55 4.1x 1x 4.2x

pool6 3x3 2 256 27x27 4.3x 1x 4.3x

conv7 3x3 1 384 27x27 4.3x 1x 4.3x

conv8 1x1 1 384 27x27 4.3x 1x 4.3x

conv9 1x1 1 384 27x27 4.3x 1x 4.3x

pool9 3x3 2 384 13x13 4.7x 1x 4.7x

conv10 3x3 1 1024 13x13 4.7x 1x 4.7x

conv11 1x1 1 1024 13x13 4.7x 1x 4.7x

conv12 1x1 1 1000 13x13 4.7x 1x 4.7x

pool12 13x13 1 1000 1x1 4.7x 1x 4.7x

total 4.2x

(24.5GB)

1x

(30.4MB)

4.3x

(9.67TF)

4.6.3 Recap of global changes to CNN architectures

In the previous two examples (Sections 4.6.1 and 4.6.2), we modified the height and width of
the input data to the first layer Li=1 or modified the height and width of activations produced by
layer Li≥1. We observed that these modifications result not only in changes to the dimensions and
quantity of computation in layer Li and layer Li+1, but also to changes in all downstream layers
(Li+1, ...Ln). We refer to changes where modifying Li results in changes to the dimensions to all
downstream layers as global changes.

We can concisely restate our findings as:

• Our examples of local changes involved modifying the dimensions of channels or filters in
layer Li. Local changes affect the dimensions of layer Li and, in some cases, Li+1.

75

• Our examples of global changes involve modifying the dimensions of input data or activa-
tions in layer Li. Global changes affect the dimensions of layers Li, ..., Ln.

4.7 Intuition on the size of the design space of CNNs

In Sections 4.5 and 4.6, we described seven different CNN architectures. How many more CNN
architectures are there? We now work out a concrete example on the number of unique CNN
architectures that exist in a particular sub-space of the CNN design space.

In the ImageNet 2012 and 2013 image-classification competitions, the winning approaches con-
sisted of CNNs that had fewer than 10 layers. In ImageNet 2014 competition, the winners were the
VGG-19 [77] 19-layer CNN model and the GoogLeNet [79] CNN model, which has over 20 layers.
In their paper on VGG-19, Simonyan and Zisserman not only presented the VGG-19 architecture,
but they also explored five variants of the VGG-19 architecture (for a total of six different archi-
tectures). For the rest of this section, we use the CNN architectural space defined by Simonyan
and Zisserman as the basis for a discussion on how large just a narrow corner of the overall CNN
architectural space is.

The six CNN architectures presented by Simonyan and Zisserman have up to 19 layers, which
we will enumerate as L1, ..., Ln [77]. In all of these models, layers Ln−2, Ln−1, andLn share the
same dimensions. The remaining convolution layers L1, ..., Ln−3 each have one of the following five
dimensional configurations:

1. 64 filters of size 3x3xnumFilti−1

2. 128 filters of size 3x3xnumFilti−1

3. 256 filters of size 3x3xnumFilti−1

4. 512 filters of size 3x3xnumFilti−1

5. 0 filters (i.e. “NULL layer”). We use this in our notation for VGG models that have fewer
than 19 layers.

So, how many unique CNNs can we create that have up to 16 convolution layers, each with one of
the aforementioned dimensions?12 Mathematically, we have 16 layers (some which may be NULL),
and each layer can be one of five different dimensions. This works out to 516 = 30 billion unique
CNN architectures!

In this section we have shown that, even when given a narrow range of options for the type and
dimensions for CNN layers, there are billions of unique combinations of these layers. However, the
truth is that this section has covered only a narrow corner of the CNN design space. As evidence
that the design space is much larger: to our knowledge, there are no known limits or upper-bounds
on several dimensions of CNNs, such as (a) the size of the input data, (b) the number of layers,
and (c) the number of new types of layers that have yet to be invented. Considering all of these
factors, we believe that, for most practical purposes, the design space of CNNs can be considered

12Or, to be more precise: we are viewing the VGG design space as “up to 16 layers, plus three layers Ln−2, Ln−1, Ln

that each have a fixed size.”

76

to be an infinitely large design space. In Chapter 5, we will present a strategy for choosing specific
regions of the design space that are worthwhile to explore.

4.8 The design space of techniques for training CNNs

Given a particular problem (e.g. in the domain of text, audio, or vision) and the ability
to obtain appropriate labeled data to train models to solve the problem, a CNN architect must
carefully consider and explore a number of design choices (DC’s) including the following:

• DC1. The design of the CNN architecture. (Covered in Sections 4.2—4.7.)

• DC2. The approach for initializing the CNN architecture’s model parameters prior to train-
ing. (Covered in Section 4.8.1.)

• DC3. The optimization methodology or solver approach used to train the model. (Covered
in Section 4.8.2.)

We now present a few observations on the implications of these design choices, as well as how these
design choices have been covered in the literature so far.

CNN architecture (DC1). The dimensions and design principles of CNN architectures are
discussed in relatively little detail in the literature. Out of the thousands of computer vision and
CNN papers that have appeared in the last few years, relatively few papers propose a substantially
new CNN architecture, and it is even more rare to find papers that propose and evaluate many
new CNN architectures. Meanwhile, the choice of CNN architecture directly effects the quantity of
computation and the speed that can be achieved during both training and inference. The specific
ways in which the CNN architecture impacts the computational footprint is not widely discussed
in the literature.

Model parameter initialization (DC2) and Solver approach (DC3). Model parameter
initialization and solver approaches are widely discussed in the literature. Optimization is a field
with a long history and a wide following, and many optimization experts have recently refocused
their careers on optimization methods for neural networks. The choice of how to initialize model
parameters and the choice of solver approach impacts the number of epochs (i.e. passes through
the training set) required to achieve a given level of accuracy.13 Thus, DC2 and DC3 impact the
quantity of computation and the time required to train CNN models. However, DC2 and DC3 do
not impact the quantity of computation or achievable speed during inference. We summarize the
effects of DC1, DC2, and DC3 in Table 4.9.

Given that the CNN architecture (DC1) has limited coverage in the literature, and that DC1
has the broadest impact on the CNN’s computational requirements, we have focused our discussions
in this chapter on DC1. However, for completeness we now summarize the current literature on
model parameter initialization (DC2) and solver approaches (DC3), and we direct the interested
reader to resources for further reading.

13Further, DC2 and DC3 can influence the maximum accuracy that can be achieved when training a specific CNN
architecture.

77

Table 4.9. A CNN architect is responsible for considering and exploring these design choices.

Design choice Coverage in the literature Impact on quantity of computation

DC1: CNN architecture Modest coverage in the

literature

Impacts quantity of computation during training

and inference

DC2: Model parameter

initialization

Heavy coverage in the

literature

Impacts quantity of computation during training

only

DC3: Solver approach Heavy coverage in the

literature

Impacts quantity of computation during training

only

4.8.1 Model parameter initialization

Prior to applying a solver such as Stochastic Gradient Descent to optimize a CNN’s model
parameters, the model parameters must first be initialized. The choice of how to initialize the
parameters (i.e. what the initial floating-point parameter values should be) is left up to the CNN
architect. That said, the research community has developed a number of widely-used approaches
for initializing CNN parameters.

Gaussian parameter initialization. A straightforward and widely-used parameter-
initialization method is: selecting each parameter’s value from a Gaussian distribution. This
approach allows the CNN architect to select a standard deviation for the Gaussian distribution.
Optionally, a different standard deviation can be selected for each layer in a CNN.

Xavier parameter initialization. The “Xavier” parameter initialization method, developed
by Xavier Glorot et al. [113], works as follows. For a given layer, the Xavier method defines the
“fan-in” as the number of input channels to the layer. To initialize the parameters in the layer, the
Xavier method samples values from a uniform distribution, and the values are normalized based on
the fan-in. Xavier normalizes the normal distribution inversely to the fan-in — that is, the more
input channels in the layer, the smaller a typical initial parameter value will be.

MSRA parameter initialization. Kaiming He et al. of Microsoft Research Asia (MSRA)
drew inspiration from Xavier parameter initialization to develop a new parameter initialization
method. While the Xavier parameter initialization only looks at the fan-in, the MSRA method [138]
takes account of fan-in (number of input channels) as well as fan-out (number of filters in the present
layer) to normalize the random distribution from which initial parameter values are sampled. In
addition to the choice of normalization, an other difference between MSRA and Xavier is that
MSRA uses a Gaussian distribution rather than a normal distribution.

Initialization by transfer learning. It is also possible to initialize a CNN’s parameters by
using the parameter values from a previous CNN training exercise. This approach, as we described
in Section 2.2, is called transfer learning. The parameters for a CNN can be transfered from a
supervised (e.g. [22]) or unsupervised (e.g. [158]) learning approach. However, before you can do
transfer learning, somebody has to train a CNN from scratch (i.e. from random parameter values)!

Reminder: Parameters vs. Hyperparameters. We have discussed approaches for initial-
izing parameters in a CNN. The parameters are the values that are automatically learned through
a training proceedure. However hyperparameters (e.g. the number of layers in a CNN) are typically
set by a human who is in charge of architecting the CNN.

78

4.8.2 Solver approaches

Once we have selected a CNN architecture and initialized its parameters, the next step is
to train the CNN’s parameters so it can perform tasks such as identifying objects in images.
Developing optimization approaches, or solvers, to train CNN parameters is an extremely active
area of research. We now present some of the current approaches to training CNNs.

In the present literature, Stochastic Gradient Descent (SGD) is the standard optimization
methodology for training CNNs. SGD, as typically applied to CNNs, operates by taking a subset
(a.k.a. batch) of the training data, attempting to classify it, and computing gradients that sum-
marize the mistakes that were made when attempting to classify the data. Then backprogation is
applied to train each layer to avoid this mistake next time it sees a similar data sample.

With the goal of converging to higher accuracy, or converging to a given accuracy level with
less computation, a number of SGD variants have been developed. We summarize some of these
SGD-based methods as follows.

• SGD with momentum aims to accelerate the learning process when faced with noisy
gradients [146].

• SGD with Nesterov momentum makes some further tweaks to the gradient update func-
tion with the goal of requiring less computation to converge [147].

• Adagrad is an SGD-like optimization method that automatically selects a unique learning
rate for each parameter in the neural network [159].

• RMSProp is an evolution of Adagrad that uses a moving average with exponential weight-
ing [160].

For further reading, Chapter 8 of the Deep Learning textbook by Goodfellow et al. [145] explains
the mathematical details of several popular forms of SGD.

4.9 Conclusions

CNN architects are responsible for several design decisions, including the choice of CNN archi-
tecture, the choice of how to initialize the model parameters, and the choice of the solver approach
to use for training the model. While parameter initialization and solver approaches have been
widely covered in the literature, we have yet to find a useful guide on designing CNN architectures.
To remedy this, we have focused this chapter on providing intuition about the dimensions of CNN
layers and how these dimensions impact the characteristics of an end-to-end CNN during training
and inference. We summarize this intuition in a few key lessons:

• The number of channels in layer Li is dictated by the number of filters in the previous layer
Li−1. For the first layer, L1, the number of channels is dictated by the input data (e.g. 3
channels in RGB images). (Section 4.2)

• The quantity of computation, quantity of parameters, and quantity of activations in a layer
can be calculated easily with closed-form mathematics. (Section 4.3)

79

• Modifications to the number of channels, number of filters, or spatial resolution of filters yield
local changes to a CNN’s dimensions. A local change to layer Li only impacts the dimension
of layer Li and in some cases Li+1. (Section 4.5)

• Modifications to the spatial resolution of input data or activations yield global changes to a
CNN’s dimensions. A global change to layer Li impacts all following layers (Li+1, ..., Ln).
(Section 4.6)

• CNNs comprise an enormous design space. Considering just a narrow corner of the CNN
design space, we discovered that approximately 30 billion CNNs can be constructed. (Section
4.7)

• There are a number of standard mechanisms for initializing the model parameters of a CNN
and training a CNN. (Section 4.8)

80

Chapter 5

Exploring the design space of DNN

architectures

5.1 Introduction and motivation

Much of the recent research on deep convolutional neural networks (CNNs) has focused on
increasing accuracy on computer vision datasets. For a given accuracy level, there typically exist
multiple CNN architectures that achieve that accuracy level. Given equivalent accuracy, a CNN
architecture with fewer parameters has several advantages:

• More efficient distributed training. Communication among servers is the limiting factor
to the scalability of distributed CNN training. For distributed data-parallel training, com-
munication overhead is directly proportional to the number of parameters in the model [17].
In short, small models train faster due to requiring less communication.

• Less overhead when exporting new models to clients. For autonomous driving, com-
panies such as Tesla periodically copy new models from their servers to customers’ cars.
This practice is often referred to as an over-the-air update. Consumer Reports has found
that the safety of Tesla’s Autopilot semi-autonomous driving functionality has incrementally
improved with recent over-the-air updates [161]. However, over-the-air updates of today’s
typical CNN/DNN models can require large data transfers. With AlexNet, this would re-
quire 240MB of communication from the server to the car. Smaller models require less
communication, making frequent updates more feasible.

• Feasible FPGA and embedded deployment. FPGAs often have less than 10MB1 of on-
chip memory and no off-chip memory or storage. For inference, a sufficiently small model could
be stored directly on the FPGA instead of being bottlenecked by memory bandwidth [94],
while video frames stream through the FPGA in real time. Further, when deploying CNNs on

1For example, the Xilinx Vertex-7 FPGA has a maximum of 8.5 MBytes (i.e. 68 Mbits) of on-chip memory and
does not provide off-chip memory.

81

Application-Specific Integrated Circuits (ASICs), a sufficiently small model could be stored
directly on-chip, and smaller models may enable the ASIC to fit on a smaller die.

As you can see, there are several advantages of smaller CNN architectures. With this in mind,
we focus directly on the problem of identifying a CNN architecture with fewer parameters but
equivalent accuracy compared to a well-known model. We have identified such an architecture,
which we call SqueezeNet. In addition, we present our attempt at a more disciplined approach to
searching the design space for novel CNN architectures.

The rest of the chapter is organized as follows. In Section 5.2 we review the related work.
Then, in Sections 5.3 and 5.4 we describe and evaluate the SqueezeNet architecture. After that,
we turn our attention to understanding how CNN architectural design choices impact model size
and accuracy. We gain this understanding by exploring the design space of SqueezeNet-like archi-
tectures. In Section 5.5, we do design space exploration on the CNN microarchitecture, which we
define as the organization and dimensionality of individual layers and modules. In Section 5.6, we
do design space exploration on the CNN macroarchitecture, which we define as high-level organi-
zation of layers in a CNN. Finally, we conclude in Section 5.7. In short, Sections 5.3 and 5.4 are
useful for CNN researchers as well as practitioners who simply want to apply SqueezeNet to a new
application. The remaining sections are aimed at advanced researchers who intend to design their
own CNN architectures.

5.2 Related work

5.2.1 Model Compression

The overarching goal of our work is to identify a model that has very few parameters while
preserving accuracy. To address this problem, a sensible approach is to take an existing CNN
model and compress it in a lossy fashion. In fact, a research community has emerged around the
topic of model compression, and several approaches have been reported. A fairly straightforward
approach by Denton et al. is to apply singular value decomposition (SVD) to a pretrained CNN
model [162]. Han et al. developed Network Pruning, which begins with a pretrained model, then
replaces parameters that are below a certain threshold with zeros to form a sparse matrix, and finally
performs a few iterations of training on the sparse CNN [163]. Recently, Han et al. extended their
work by combining Network Pruning with quantization (to 8 bits or less) and Huffman encoding
to create an approach called Deep Compression [164], and further designed a hardware accelerator
called EIE [165] that operates directly on the compressed model, achieving substantial speedups
and energy savings.

5.2.2 CNN Microarchitecture

Convolutions have been used in artificial neural networks for at least 25 years; LeCun et
al. helped to popularize CNNs for digit recognition applications in the late 1980s [166]. In neural
networks, convolution filters are typically 3D, with height, width, and channels as the key dimen-
sions. When applied to images, CNN filters typically have 3 channels in their first layer (i.e. RGB),

82

and in each subsequent layer Li the filters have the same number of channels as Li−1 has filters. The
early work by LeCun et al. [166] uses 5x5xChannels2 filters, and the recent VGG [77] architectures
extensively use 3x3 filters. Models such as Network-in-Network [95] and the GoogLeNet family of
architectures [79, 116, 167, 168] use 1x1 filters in some layers.

With the trend of designing very deep CNNs, it becomes cumbersome to manually select filter
dimensions for each layer. To address this, various higher level building blocks, or modules, com-
prised of multiple convolution layers with a specific fixed organization have been proposed. For
example, the GoogLeNet papers propose Inception modules, which are comprised of a number of
different dimensionalities of filters, usually including 1x1 and 3x3, plus sometimes 5x5 [79] and
sometimes 1x3 and 3x1 [167]. Many such modules are then combined, perhaps with additional
ad-hoc layers, to form a complete network. We use the term CNN microarchitecture to refer to the
particular organization and dimensions of the individual modules.

5.2.3 CNN Macroarchitecture

While the CNN microarchitecture refers to individual layers and modules, we define the CNN
macroarchitecture as the system-level organization of multiple modules into an end-to-end CNN
architecture.

Perhaps the mostly widely studied CNN macroarchitecture topic in the recent literature is the
impact of depth (i.e. number of layers) in networks. Simoyan and Zisserman proposed the VGG [77]
family of CNNs with 12 to 19 layers and reported that deeper networks produce higher accuracy
on the ImageNet-1k dataset [21]. K. He et al. proposed deeper CNNs with up to 30 layers that
deliver even higher ImageNet accuracy [138].

The choice of connections across multiple layers or modules is an emerging area of CNN macroar-
chitectural research. Residual Networks (ResNet) [15] and Highway Networks [129] each propose
the use of connections that skip over multiple layers, for example additively connecting the ac-
tivations from layer 3 to the activations from layer 6. We refer to these connections as bypass
connections. The authors of ResNet provide an A/B comparison of a 34-layer CNN with and with-
out bypass connections; adding bypass connections delivers a 2 percentage-point improvement on
Top-5 ImageNet accuracy.

5.2.4 Neural Network Design Space Exploration

Neural networks (including deep and convolutional NNs) have a large design space, with nu-
merous options for microarchitectures, macroarchitectures, solvers, and other hyperparameters. It
seems natural that the community would want to gain intuition about how these factors impact a
NN’s accuracy (i.e. the shape of the design space). Much of the work on design space exploration
(DSE) of NNs has focused on developing automated approaches for finding NN architectures that
deliver higher accuracy. These automated DSE approaches include Bayesian optimization [169],
simulated annealing [170], randomized search [171], and genetic algorithms [172]. To their credit,
each of these papers provides a case in which the proposed DSE approach produces a NN architec-
ture that achieves higher accuracy compared to a representative baseline. However, these papers

2From now on, we will simply abbreviate HxWxChannels to HxW.

83

make no attempt to provide intuition about the shape of the NN design space. Later in this chap-
ter, we eschew automated approaches — instead, we refactor CNNs in such a way that we can do
principled A/B comparisons to investigate how CNN architectural decisions influence model size
and accuracy.

In the following sections, we first propose and evaluate the very small SqueezeNet architecture.
Next, we show model compression can be applied to make SqueezeNet even smaller. Then, we
explore the impact of design choices in microarchitecture and macroarchitecture for SqueezeNet-
like CNN architectures.

5.3 SqueezeNet: preserving accuracy with

few parameters

In this section, we begin by outlining our design strategies for CNN architectures with few
parameters. Then, we introduce the Fire module, our new building block out of which to build CNN
architectures. Finally, we use our design strategies to construct SqueezeNet, which is comprised
mainly of Fire modules.

5.3.1 Architectural Design Strategies

Our overarching objective in this chapter is to identify CNN architectures that have few pa-
rameters while maintaining competitive accuracy. To achieve this, we employ three main strategies
when designing CNN architectures:

Strategy 1. Replace 3x3 filters with 1x1 filters. Given a budget of a certain number of
convolution filters, we will choose to make the majority of these filters 1x1, since a 1x1 filter has
9X fewer parameters than a 3x3 filter.

Strategy 2. Decrease the number of input channels to 3x3 filters. Consider a convolution
layer that is comprised entirely of 3x3 filters. As we learned in Section 4.3.1, the total quantity of
parameters in this layer is (number of input channels) * (number of filters) * (3*3). So, to maintain
a small total number of parameters in a CNN, it is important not only to decrease the number of
3x3 filters (see Strategy 1 above), but also to decrease the number of input channels to the 3x3
filters. We decrease the number of input channels to 3x3 filters using squeeze layers, which we
describe in the next section.

Strategy 3. Downsample late in the network so that convolution layers have large ac-
tivation maps. In a convolutional network, each convolution layer produces an output activation
map with a spatial resolution that is at least 1x1 and often much larger than 1x1. The height
and width of these activation maps are controlled by: (1) the size of the input data (e.g. 256x256
images) and (2) the choice of layers in which to downsample in the CNN architecture. Most com-
monly, downsampling is engineered into CNN architectures by setting the (stride > 1) in some
of the convolution or pooling layers (e.g. [79, 77, 22]). If early3 layers in the network have large

3In our terminology, an “early” layer is close to the input data.

84

h"p://www.presenta.on0process.com/lego0blocks0in0powerpoint.html88

squee
ze8

expan
d8

1x18convolu.on8filters8

1x18and83x38convolu.on8filters8

ReLU8

ReLU8

Figure 5.1. Microarchitectural view: Organization of convolution filters in the Fire mod-
ule. In this example, s1x1 = 3, e1x1 = 4, and e3x3 = 4. We illustrate the convolution filters
but not the activations.

strides, then most layers will have small activation maps. Conversely, if most layers in the network
have a stride of 1, and the strides greater than 1 are concentrated toward the end4 of the network,
then many layers in the network will have large activation maps. Our intuition is that large ac-
tivation maps (due to delayed downsampling) can lead to higher classification accuracy, with all
else held equal. Indeed, K. He and H. Sun applied delayed downsampling to four different CNN
architectures, and in each case delayed downsampling led to higher classification accuracy [78].

Strategies 1 and 2 are about judiciously decreasing the quantity of parameters in a CNN while
attempting to preserve accuracy. Strategy 3 is about maximizing accuracy on a limited budget of
parameters. Next, we describe the Fire module, which is our building block for CNN architectures
that enables us to successfully employ Strategies 1, 2, and 3.

5.3.2 The Fire Module

We define the Fire module as follows. A Fire module is comprised of a squeeze convolution layer
(which has only 1x1 filters), feeding into an expand layer that has a mix of 1x1 and 3x3 convolution
filters; we illustrate this in Figure 5.1. The liberal use of 1x1 filters in Fire modules is an application
of Strategy 1 from Section 5.3.1. We expose three tunable dimensions (hyperparameters) in a Fire
module: s1x1, e1x1, and e3x3. In a Fire module, s1x1 is the number of filters in the squeeze layer
(all 1x1), e1x1 is the number of 1x1 filters in the expand layer, and e3x3 is the number of 3x3 filters
in the expand layer. When we use Fire modules we set s1x1 to be less than (e1x1 + e3x3), so the
squeeze layer helps to limit the number of input channels to the 3x3 filters, as per Strategy 2 from
Section 5.3.1.

4In our terminology, the “end” of the network is the classifier.

85

"labrador
retriever

dog"

conv1

96

fire2

128

fire3

128

fire4

256

fire5
256

fire6

384

fire7

384

fire8

512

fire9
512

conv10
1000

softmax

maxpool/2

maxpool/2

maxpool/2

global	avgpool

conv1

96

fire2

128

fire3

128

fire4

256

fire5
256

fire6

384

fire7

384

fire8

512

fire9
512

conv10
1000

softmax

maxpool/2

maxpool/2

maxpool/2

global	avgpool

conv1
96

fire2

128

fire3

128

fire4

256

fire5
256

fire6

384

fire7

384

fire8

512

fire9
512

conv10
1000

softmax

maxpool/2

maxpool/2

maxpool/2

global	avgpool

conv1x1

conv1x1

conv1x1

conv1x1

96

Figure 5.2. Macroarchitectural view of our SqueezeNet architecture. Left: SqueezeNet
(Section 5.3.3); Middle: SqueezeNet with simple bypass (Section 5.6); Right: SqueezeNet
with complex bypass (Section 5.6).

5.3.3 The SqueezeNet architecture

We now describe the SqueezeNet CNN architecture. We illustrate in Figure 5.2 that SqueezeNet
begins with a standalone convolution layer (conv1), followed by 8 Fire modules (fire2-9), ending
with a final conv layer (conv10). We gradually increase the number of filters per fire module from
the beginning to the end of the network. SqueezeNet performs max-pooling with a stride of 2 after
layers conv1, fire4, fire8, and conv10; these relatively late placements of pooling are per Strategy 3
from Section 5.3.1. We present the full SqueezeNet architecture in Table 5.1.

5.3.3.1 Other SqueezeNet details

For brevity, we have omitted a number of details and design choices about SqueezeNet from
Table 5.1 and Figure 5.2. We provide these design choices in the following. The intuition behind
these choices may be found in the papers cited below.

• So that the output activations from 1x1 and 3x3 filters have the same height and width, we
add a 1-pixel border of zero-padding in the input data to 3x3 filters of expand modules.

• ReLU [136] is applied to activations from squeeze and expand layers.

• Dropout [144] with a ratio of 50% is applied after the fire9 module.

86

• In Table 5.1, note the lack of fully-connected layers in SqueezeNet; this design choice was
inspired by the NiN [95] architecture.

• When training SqueezeNet, we begin with a learning rate of 0.04, and we linearly decrease
the learning rate throughout training, as described in [173]. For details on the training
protocol (e.g. batch size, learning rate, parameter initialization), please refer to our Caffe [106]
configuration files located here: https://github.com/DeepScale/SqueezeNet.

• The Caffe framework does not natively support a convolution layer that contains multiple
filter resolutions (e.g. 1x1 and 3x3). To get around this, we implement our expand layer
with two separate convolution layers: a layer with 1x1 filters, and a layer with 3x3 filters.
Then, we concatenate the outputs of these layers together in the channel dimension. This is
numerically equivalent to implementing one layer that contains both 1x1 and 3x3 filters.

We released the SqueezeNet configuration files in the format defined by the Caffe CNN frame-
work. However, in addition to Caffe, several other CNN frameworks have emerged, including
MXNet [174], Chainer [175], Keras [176], and Torch [177]. Each of these has its own native format
for representing a CNN architecture. That said, most of these libraries use the same underlying
computational back-ends such as cuDNN [25] and MKL-DNN [178]. The research community has
ported the SqueezeNet CNN architecture for compatibility with a number of other CNN software
frameworks:

• MXNet [174] port of SqueezeNet: [179]

• Chainer [175] port of SqueezeNet: [180]

• Keras [176] port of SqueezeNet: [181]

• Torch [177] port of SqueezeNet’s Fire Modules: [182].

5.4 Evaluation of SqueezeNet

We now turn our attention to evaluating SqueezeNet. In each of the CNN model compression
papers reviewed in Section 5.2.1, the goal was to compress an AlexNet [22] model that was trained
to classify images using the ImageNet [21] (ILSVRC 2012) dataset. Therefore, we use AlexNet5 and
the associated model compression results as a basis for comparison when evaluating SqueezeNet.

In Table 5.2, we review SqueezeNet in the context of recent model compression results. The
SVD-based approach is able to compress a pretrained AlexNet model by a factor of 5X, while
diminishing top-1 accuracy to 56.0% [162]. Network Pruning achieves a 9X reduction in model size
while maintaining the baseline of 57.2% top-1 and 80.3% top-5 accuracy on ImageNet [163]. Deep
Compression achieves a 35x reduction in model size while still maintaining the baseline accuracy
level [164]. Now, with SqueezeNet, we achieve a 50X reduction in model size compared to AlexNet,
while meeting or exceeding the top-1 and top-5 accuracy of AlexNet. We summarize all
of the aforementioned results in Table 5.2.

It appears that we have surpassed the state-of-the-art results from the model compression com-
munity: even when using uncompressed 32-bit values to represent the model, SqueezeNet has a

5Our baseline is bvlc alexnet from the Caffe codebase [106].

87

Table 5.1. SqueezeNet architectural dimensions. (The formatting of this table was inspired
by the Inception2 paper [116].)

5

layer	
name/type output	size

filter	size	/	
stride	

(if	not	a	fire	
layer)

depth
s1x1
(#1x1	

squeeze)

e1x1
(#1x1	

expand)

e3x3
(#3x3

expand)

s1x1
sparsity	

e1x1
sparsity

e3x3
sparsity

#	bits
#parameter

before
pruning

#parameter
after

pruning

input	image 224x224x3 - -

conv1 111x111x96 7x7/2	(x96) 1 6bit 14,208 14,208

maxpool1 55x55x96 3x3/2 0

fire2 55x55x128 2 16 64 64 100% 100% 33% 6bit 11,920 5,746

fire3 55x55x128 2 16 64 64 100% 100% 33% 6bit 12,432 6,258

fire4 55x55x256 2 32 128 128 100% 100% 33% 6bit 45,344 20,646

maxpool4 27x27x256 3x3/2 0

fire5 27x27x256 2 32 128 128 100% 100% 33% 6bit 49,440 24,742

fire6 27x27x384 2 48 192 192 100% 50% 33% 6bit 104,880 44,700

fire7 27x27x384 2 48 192 192 50% 100% 33% 6bit 111,024 46,236

fire8 27x27x512 2 64 256 256 100% 50% 33% 6bit 188,992 77,581

maxpool8 13x12x512 3x3/2 0

fire9 13x13x512 2 64 256 256 50% 100% 30% 6bit 197,184 77,581

conv10 13x13x1000 1x1/1	(x1000) 1 6bit 513,000 103,400

avgpool10 1x1x1000 13x13/1 0

1,248,424	
(total)

421,098	
(total)

20%	(3x3)

100%	(7x7)

1.4× smaller model size than the best efforts from the model compression community while main-
taining or exceeding the baseline accuracy. Until now, an open question has been: are small models
amenable to compression, or do small models “need” all of the representational power afforded by
dense floating-point values? To find out, we applied Deep Compression [164] to SqueezeNet, using
33% sparsity6 and 8-bit quantization. This yields a 0.66 MB model (363× smaller than 32-bit
AlexNet) with equivalent accuracy to AlexNet. Further, applying Deep Compression with 33%
sparsity and 6-bit quantization on SqueezeNet, we produce a 0.47MB model (510× smaller than
32-bit AlexNet) with equivalent accuracy. Our small model is indeed amenable to compres-
sion.

In addition, these results demonstrate that Deep Compression [164] not only works well on
CNN architectures with many parameters (e.g. AlexNet and VGG), but it is also able to com-
press the already compact, fully convolutional SqueezeNet architecture. Using 6-bit quantization,
Deep Compression compressed SqueezeNet by 10× while preserving the baseline accuracy. In sum-
mary: by combining CNN architectural innovation (SqueezeNet) with state-of-the-art compression
techniques (Deep Compression), we achieved a 510× reduction in model size with no decrease in
accuracy compared to the baseline.

Finally, note that Deep Compression [163] uses a codebook as part of its scheme for quantizing
CNN parameters to 6- or 8-bits of precision. Therefore, on most commodity processors, it is not
trivial to achieve a speedup of 32

8 = 4x with 8-bit quantization or 32
6 = 5.3x with 6-bit quantization

using the scheme developed in Deep Compression. However, Han et al. developed custom hardware

6Note that, due to the storage overhead of storing sparse matrix indices, 33% sparsity leads to somewhat less than
a 3× decrease in model size.

88

Table 5.2. Comparing SqueezeNet to model compression approaches. By model size, we
mean the number of bytes required to store all of the parameters in the trained model.

CNN

architecture

Compression

Approach

Data

Type

Original →

Compressed

Model Size

Reduction in

Model Size

vs. AlexNet

Top-1

ImageNet

Accuracy

Top-5

ImageNet

Accuracy

AlexNet None

(baseline)

32 bit 240MB 1x 57.2% 80.3%

AlexNet SVD [162] 32 bit 240MB → 48MB 5x 56.0% 79.4%

AlexNet Network

Pruning [163]

32 bit 240MB → 27MB 9x 57.2% 80.3%

AlexNet Deep Com-

pression [164]

5-8 bit 240MB → 6.9MB 35x 57.2% 80.3%

SqueezeNet

(ours)

None 32 bit 4.8MB 50x 57.5% 80.3%

SqueezeNet

(ours)

Deep

Compression

8 bit 4.8MB → 0.66MB 363x 57.5% 80.3%

SqueezeNet

(ours)

Deep

Compression

6 bit 4.8MB → 0.47MB 510x 57.5% 80.3%

— the Efficient Inference Engine (EIE) — that can compute codebook-quantized CNNs more
efficiently [165]. In addition, in the months since we released SqueezeNet, P. Gysel developed a
strategy called Ristretto for linearly quantizing SqueezeNet to 8 bits [183]. Specifically, Ristretto
does computation in 8 bits, and it stores parameters and activations in 8-bit data types. Using
the Ristretto strategy for 8-bit computation in SqueezeNet inference, Gysel observed less than a 1
percentage-point drop in accuracy when using 8-bit instead of 32-bit data types.7

5.5 CNN Microarchitecture design space exploration

So far in this chapter, we have proposed architectural design strategies for small models, fol-
lowed these principles to create SqueezeNet, and discovered that SqueezeNet is 50x smaller than
AlexNet with equivalent accuracy. However, SqueezeNet and other models reside in a broad and
largely unexplored design space of CNN architectures. Now, in Sections 5.5 and 5.6, we explore
several aspects of the design space. We divide this architectural exploration into two main topics:
microarchitectural exploration (per-module layer dimensions and configurations) and macroarchi-
tectural exploration (high-level end-to-end organization of modules and other layers).

In this section, we design and execute experiments with the goal of providing intuition about the
shape of the microarchitectural design space with respect to the design strategies that we proposed

7Compared to Ristretto, Deep Compression enables more aggressive compression with no drop in accuracy. But,
we are hopeful that future refinements of the Ristretto approach will incorporate sparsity while matching the dense
floating-point model’s accuracy and enabling direct computation in the sparse quantized domain.

89

in Section 5.3.1. Note that our goal here is not to maximize accuracy in every experiment, but
rather to understand the impact of CNN architectural choices on model size and accuracy.

5.5.1 CNN Microarchitecture metaparameters

In SqueezeNet, each Fire module has three dimensional hyperparameters that we defined in
Section 5.3.2: s1x1, e1x1, and e3x3. SqueezeNet has 8 Fire modules with a total of 24 dimensional
hyperparameters. To do broad sweeps of the design space of SqueezeNet-like architectures, we
define the following set of higher level metaparameters that control the dimensions of all Fire
modules in a CNN. We define basee as the number of expand filters in the first Fire module in a
CNN. After every freq Fire modules, we increase the number of expand filters by incre. In other

words, for Fire module i, the number of expand filters is ei = basee + (incre ∗
⌊

i
freq

⌋
). In the

expand layer of a Fire module, some filters are 1x1 and some are 3x3; we define ei = ei,1x1 + ei,3x3
with pct3x3 (in the range [0, 1], shared over all Fire modules) as the percentage of expand filters
that are 3x3. In other words, ei,3x3 = ei ∗ pct3x3, and ei,1x1 = ei ∗ (1 − pct3x3). Finally, we
define the number of filters in the squeeze layer of a Fire module using a metaparameter called
the squeeze ratio (SR) (again, in the range [0, 1], shared by all Fire modules): si,1x1 = SR ∗ ei
(or equivalently si,1x1 = SR ∗ (ei,1x1 + ei,3x3)). SqueezeNet (Table 5.1) is an example architecture
that we generated with the aforementioned set of metaparameters. Specifically, SqueezeNet has
the following metaparameters: basee = 128, incre = 128, pct3x3 = 0.5, freq = 2, and SR = 0.125.

5.5.2 Squeeze Ratio

In Section 5.3.1, we proposed decreasing the number of parameters by using squeeze layers to
decrease the number of input channels seen by 3x3 filters. We defined the squeeze ratio (SR) as the
ratio between the number of filters in squeeze layers and the number of filters in expand layers. We
now design an experiment to investigate the effect of the squeeze ratio on model size and accuracy.

In these experiments, we use SqueezeNet (Figure 5.2) as a starting point. As in SqueezeNet,
these experiments use the following metaparameters: basee = 128, incre = 128, pct3x3 = 0.5, and
freq = 2. We train multiple models, where each model has a different squeeze ratio (SR)8 in the
range [0.125, 1.0]. In Figure 5.3, we show the results of this experiment, where each point on the
graph is an independent model that was trained from scratch. SqueezeNet is the SR=0.125 point
in this figure. From this figure, we learn that increasing SR beyond 0.125 can further increase
ImageNet top-5 accuracy from 80.3% (i.e. AlexNet-level) with a 4.8MB model to 86.0% with a
19MB model. Accuracy plateaus at 86.0% with SR=0.75 (a 19MB model), and setting SR=1.0
further increases model size without improving accuracy.

5.5.3 Trading off 1x1 and 3x3 filters

In Section 5.3.1, we proposed decreasing the number of parameters in a CNN by replacing some
3x3 filters with 1x1 filters. An open question is, how important is spatial resolution in CNNs?
The VGG [77] architectures have 3x3 spatial resolution in most layers’ filters; GoogLeNet [79] and

8Note that, for a given model, all Fire layers share the same squeeze ratio.

90

13#MB#of#
weights#

85.3%#
accuracy#

86.0%#
accuracy#

19#MB#of#
weights#4.8#MB#of#

weights#

80.3%#
accuracy#

SqueezeNet#

Figure 5.3. Exploring the impact of the squeeze ratio (SR) on model size and ImageNet
accuracy.

Network-in-Network (NiN) [95] have 1x1 filters in some layers. In GoogLeNet and NiN, the authors
simply propose a specific quantity of 1x1 and 3x3 filters without further analysis.9 Here, we attempt
to shed light on how the proportion of 1x1 and 3x3 filters affects model size and accuracy.

We use the following metaparameters in this experiment: basee = incre = 128, freq = 2,
SR = 0.500, and we vary pct3x3 from 1% to 99%. In other words, each Fire module’s expand layer
has a predefined number of filters partitioned between 1x1 and 3x3, and here we turn the knob on
these filters from “mostly 1x1” to “mostly 3x3”. As in the previous experiment, these models have
8 Fire modules, following the same organization of layers as in Figure 5.2. We show the results of
this experiment in Figure 5.4. Note that the 13MB models in Figure 5.3 and Figure 5.4 are the
same architecture: SR = 0.500 and pct3x3 = 50%. We see in Figure 5.4 that the top-5 accuracy
plateaus at 85.6% using 50% 3x3 filters, and further increasing the percentage of 3x3 filters leads
to a larger model size but provides no improvement in accuracy on ImageNet.

9To be clear, each filter is 1x1xChannels or 3x3xChannels, which we abbreviate to 1x1 and 3x3.

91

21#MB#of#
weights#

13#MB#of#
weights#5.7#MB#of#

weights#

85.3%#
accuracy#

85.3%#
accuracy#76.3%#

accuracy#

Figure 5.4. Exploring the impact of the ratio of 3x3 filters in expand layers (pct3x3) on
model size and ImageNet accuracy.

5.6 CNN Macroarchitecture design space exploration

So far we have explored the design space at the microarchitecture level, i.e. the contents of
individual modules of the CNN. Now, we explore design decisions at the macroarchitecture level
concerning the high-level connections among Fire modules. Inspired by ResNet [15], we explored
three different architectures:

• Vanilla SqueezeNet (as per the prior sections).

• SqueezeNet with simple bypass connections between some Fire modules. (Inspired by [129,
15].)

• SqueezeNet with complex bypass connections between the remaining Fire modules.

We illustrate these three variants of SqueezeNet in Figure 5.2.

Our simple bypass architecture adds bypass connections around Fire modules 3, 5, 7, and 9,
requiring these modules to learn a residual function between input and output. As in ResNet, to
implement a bypass connection around Fire3, we set the input to Fire4 equal to (output of Fire2
+ output of Fire3), where the + operator is elementwise addition. This changes the regularization
applied to the parameters of these Fire modules, and, as per ResNet, can improve the final accuracy
and/or ability to train the full model.

92

Table 5.3. SqueezeNet accuracy and model size using different macroarchitecture configu-
rations. Bold face denotes highest accuracy.

Architecture Top-1

Accuracy

Top-5

Accuracy

Model

Size

Vanilla SqueezeNet 57.5% 80.3% 4.8MB

SqueezeNet +

Simple Bypass

60.4% 82.5% 4.8MB

SqueezeNet +

Complex Bypass

58.8% 82.0% 7.7MB

One limitation is that, in the straightforward case, the number of input channels and number
of output channels has to be the same; as a result, only half of the Fire modules can have simple
bypass connections, as shown in the middle diagram of Fig 5.2. When the “same number of
channels” requirement can’t be met, we use a complex bypass connection, as illustrated on the right
of Figure 5.2. While a simple bypass is “just a wire,” we define a complex bypass as a bypass
that includes a 1x1 convolution layer with the number of filters set equal to the number of output
channels that are needed. Note that complex bypass connections add extra parameters to the
model, while simple bypass connections do not.

In addition to changing the regularization, it is intuitive to us that adding bypass connections
would help to alleviate the representational bottleneck introduced by squeeze layers. In SqueezeNet,
the squeeze ratio (SR) is 0.125, meaning that every squeeze layer has 8x fewer output channels than
the accompanying expand layer. Due to this severe dimensionality reduction, a limited amount of
information can pass through squeeze layers. However, by adding bypass connections to SqueezeNet,
we open up avenues for information to flow around the squeeze layers.

We trained SqueezeNet with the three macroarchitectures in Figure 5.2 and compared the
accuracy and model size in Table 5.3. We fixed the microarchitecture to match SqueezeNet as
described in Table 5.1 throughout the macroarchitecture exploration. Complex and simple bypass
connections both yielded an accuracy improvement over the vanilla SqueezeNet architecture. Inter-
estingly, the simple bypass enabled a higher accuracy improvement than complex bypass. Adding
the simple bypass connections yielded an increase of 2.9 percentage-points in top-1 accuracy and
2.2 percentage-points in top-5 accuracy without increasing model size.

5.7 Conclusions

In this chapter, we have proposed steps toward a more disciplined approach to the design-space
exploration of convolutional neural networks. Toward this goal we have presented SqueezeNet,
a CNN architecture that has 50× fewer parameters than AlexNet and maintains AlexNet-level
accuracy on ImageNet. We also compressed SqueezeNet to less than 0.5MB, or 510× smaller than
AlexNet without compression. Since we released this chapter as a technical report in 2016, our
colleague Song Han and his collaborators have experimented further with SqueezeNet and model
compression. Using a new approach called Dense-Sparse-Dense (DSD) [184], Han et al. use model

93

compression during training as a regularizer to further improve accuracy, producing a compressed
set of SqueezeNet parameters that is 1.2 percentage-points more accurate on ImageNet-1k, and
also producing an uncompressed set of SqueezeNet parameters that is 4.3 percentage-points more
accurate, compared to our results in Table 5.2.

In the context of this chapter, we focused on ImageNet as a target dataset. However, it has
become common practice to apply ImageNet-trained CNN representations to a variety of appli-
cations such as fine-grained object recognition [54, 185], logo identification in images [55], and
generating sentences about images [57]. ImageNet-trained CNNs have also been applied to a num-
ber of applications pertaining to autonomous driving, including pedestrian and vehicle detection in
images [47, 48, 56] and videos [186], as well as segmenting the shape of the road [187]. We think
SqueezeNet will be a good candidate CNN architecture for a variety of applications, especially
those in which small model size is of importance. In fact, since the original publication of the
SqueezeNet techncial report [18], we have done follow-on work — SqueezeDet [188] — which builds
upon SqueezeNet to address the problem of localized object detection. As of December 2016, the
SqueezeDet models define the state-of-the-art results for accuracy, model size, and frame rate on
the KITTI [68] object detection dataset.

SqueezeNet is one of several new CNNs that we have discovered while broadly exploring the
design space of CNN architectures. We hope that SqueezeNet will inspire the reader to consider
and explore the broad range of possibilities in the design space of CNN architectures and to perform
that exploration in a more systematic manner.

94

Chapter 6

Conclusions

6.1 Contributions

CNN/DNN models have become the best approach for solving a variety of problems in the text,
audio, and visual domains with unprecedented accuracy. Among these domains, visual (e.g. images
and video) applications are often the most computationally-intensive use-cases of CNN/DNNs. In
the interest of choosing the most challenging and computationally-intensive problems, we focused
this dissertation primarily on the application of CNNs to visual recognition applications.

Even within a specific domain (e.g. images), there does not appear to be a single “best”
CNN architecture that is ideal for all computer vision problems under all possible constraints on
accuracy, energy-efficiency, and other metrics. Further, CNNs comprise an enormous design space.1

Each architecture in the CNN design space presents its own tradeoffs in terms of computational
requirements, communication overhead during distributed training, energy-efficiency, accuracy on
the problem at hand, and so on. The CNN design space is not the first large design space that
computer scientists have explored. The design space of computer processor hardware architectures
is an example of an other large and complex design space.

The MESCAL book [34] codified a number best practices or “themes” for exploring the design
space of computational hardware architectures. We drew inspiration from the MESCAL book in
how we organized this dissertation on exploring the design space of CNN architectures. Quite
similar to the MESCAL themes, our four themes are:

• Comprehensively defining benchmarks and metrics. (Chapter 2)

• Rapidly training CNN/DNNs. (Chapter 3)

• Defining and describing the CNN/DNN design space. (Chapter 4)

• Exploring the design space of CNN/DNN architectures. (Chapter 5)

1As we learned in Section 4.7, just a small region of the CNN design space comprises approximately 30 billion
different CNN architectures.

95

Taken together, these themes comprise a methodology that will enable the reader to explore the
CNN design space in a systematic and directed way.

In the following sections, we review our key findings on each of the four themes.

6.1.1 Comprehensively defining benchmarks and metrics

CNN/DNNs comprise an enormous design space. Therefore, when exploring the CNN/DNN
design space, if you don’t know what you’re looking for, you’re unlikely to find it. With this in mind,
it’s useful to define clear goals in terms of benchmarks and metrics. Benchmarks (e.g. datasets)
should be representative of the target application. For example, if the goal is to recognize vehicles
on the road, then the training and testing data should include annotated road scenes. Important
metrics include not only accuracy, but also quantity of computation, quantity of communication,
latency, energy-efficiency, and so on.

When building a deployable and highly efficient CNN-based system, it is sensible to bring
together a CNN architecture team, a software architecture team, and a hardware architecture team.
To measure individual teams’ contributions, the CNN team can be evaluated on the quantity of
computation and accuracy, and the hardware team can be evaluated on power consumption and
best-case peak throughput. While hardware and CNNs can be evaluated individually, it is difficult
to evaluate the software team’s contributions in isolation. To evaluate the whole organization’s
progress toward an efficient full-stack solution, it is useful to measure metrics such as energy-
efficiency and speed.

6.1.2 Rapidly training CNN/DNNs

Long training times impose a severe limitation on progress in deep neural network research and
productization. Accelerating CNN training has several benefits. First, faster CNN training enables
models to be trained on ever-increasing dataset sizes in a tractable amount of time. Accelerating
CNN training also enables product teams to bring CNN-based products to market more rapidly.
These and other compelling applications led us to focus on the problem of accelerating CNN
training, and our work has culminated in the FireCaffe distributed CNN training system. With
FireCaffe, we achieved a 47x speedup when training the GoogLeNet model. This enabled us to
train GoogLeNet in 10.5 hours on 128 GPUs instead of 3 weeks on 1 GPU. After achieving this
result, we turned our attention to identifying, training, and evaluating new CNN architectures with
specific goals in mind. The use of FireCaffe’s rapid training functionality enabled us to productively
explore the design space of CNNs with minimal turnaround time for each experiment.

6.1.3 Defining and describing the CNN/DNN design space

The CNN/DNN architecture defines the quantity of computation that is required per data
sample during both training and inference. In the context of a CNN-based system, the CNN
architecture impacts most of the key metrics, including accuracy, quantity of computation, quantity
of communication, latency, energy-efficiency, and model size. Therefore, when preparing to explore
the design space of CNN architectures, it is useful to first understand how the design of the CNN

96

architecture impacts some of these metrics. Surprisingly, after conducting a literature survey, we
were not able to find a practical guide on how the design of the CNN architecture impacts the
behavior (e.g. quantity of computation, quantity of communication) of a CNN-based system. To
address this, we developed a guide that explains how we reason about these design choices.

When looking at a CNN architecture, it can be a bit intimidating to reason about how each
potential change to the CNN would affect metrics such as the quantity of computation. However,
we found that most changes to a CNN architecture produces one of the following effects:

• A local change to a layer in a deep CNN typically has little impact on the CNN’s total quantity
of computation.

• A global change to layer Li affects all layers downstream of Li and can have a multiplicative
effect on the CNN’s total quantity of computation.

To date, we have not seen intuition like this written down anywhere, and this motivated us to explain
our intuition and analysis of the topic. Better understanding of CNN architectural dimensions
should enable the reader to reason more clearly about the region of the design space that he or she
would like to explore.

6.1.4 Exploring the design space of CNN/DNN architectures

With of all of the aforementioned information in place, we were able to put our design-space
exploration methodology into practice. We set out the following challenge for ourselves: Produce
small models (i.e. models with few parameters) that achieve competitive accuracy on a computer
vision benchmark. In this challenge problem, the benchmark is the ImageNet-1k image classification
dataset [21], and the metrics are accuracy and model size. As a bonus, small models can be
trained at larger scale using distributed data-parallel training, and this enabled us to conduct our
exploration more quickly. We chose benchmarks (accuracy and model size) that are independent of
the choice of hardware and software for executing the CNN. However, as we will see in Section 6.3,
other teams have since adapted our small models to achieve system-level goals such as developing
FPGA-based CNN systems in which the CNN model fits entirely on-chip.

Early on in this process, we first defined a region of the design space to explore. We did our
best to define a region of the design space that is likely to contain small models — e.g. CNN designs
that use Fire modules, which make abundant use of 1x1 filters, and they alternate between many
and few filters per layer. Within this design space, we identified SqueezeNet, a model that has 50x
fewer parameters than AlexNet but achieves AlexNet-level accuracy on the ImageNet-1k dataset.
Further, by applying model compression to SqueezeNet, we obtained a model that is 510x smaller
than AlexNet but produces AlexNet-level accuracy on ImageNet-1k.

97

6.2 Impact of our FireCaffe work on accelerating CNN/DNN

training

Much of the content in this dissertation (Chapters 1, 2, 4, and 6) is being published for the first
time in these pages. Meanwhile, we published versions of Chapters 3 and 5 within the last twelve
months [17, 18]. Despite the fact that we only recently released these publications, this work has
begun to make an impact on the CNN research literature.

As we learned in Chapter 3, it is common for CNNs to take multiple weeks to train on a
single GPU. The slow turnaround time of CNN training impedes progress in CNN research and
productization. Therefore, over the last couple of years, distributing CNN training over multiple
processors has become an increasingly active area of research. Retrospectively, it appears that the
release of our FireCaffe paper in late 2015 and its subsequent publication in CVPR 2016 may have
been a turning point in how researchers have approached distributed CNN training problems.

6.2.1 Before FireCaffe

In early 2015, prior to embarking on the development of the FireCaffe, we surveyed the literature
on distributed CNN/DNN training. In the course of this literature survey, we observed the following
trends.

• Parallelism strategies. In the papers published prior to 2016, researchers experimented
with a range of parallelism strategies. Model parallelism was a staple of many of these papers,
such as those from Microsoft [107], Google [108], and CMU [189]. Researchers from Stanford
and NVIDIA even designed a CNN architecture that was optimized for model parallel training
on a cluster of GPUs [190].2

• Communication paradigms. Many of the research papers assumed (either explicitly or
implicitly) that that it was manifest destiny that some variant of asynchronous communication
would emerge as the best choice. These papers include HOGwild [191] and its follow-on
works [192, 193], as well as work from Microsoft [107] and Google [108].

• Evaluation metrics. Researchers used a wide range of metrics to evaluate their work. But,
one common metric was number of processors utilized. For example, the DistBelief paper
from Google [108] and the Deep Image paper from Baidu [111] each reported the number of
processors used, but it was difficult to interpret these results because each of these papers
used a proprietary dataset and reported time-to-convergence only on that dataset. As we will
see in the next subsection, recent works have done this type of evaluation on publicly-available
datasets, which makes it easier to make comparisons between the different approaches.

• Hardware communication networks. The early papers tended to place little emphasis
on the choice of networking hardware used to communicate between servers. In some papers,
using slow (e.g. 1 Gbps Ethernet) connections between servers led to severe limitations
on the speed and scalability of the system as a whole [194]. In other papers, the authors

2To be clear, this CNN architecture used the natural data parallelism within each GPU, but it used model
parallelism as the primary mechanism for scaling over multiple GPUs.

98

simply focused on scaling the training CNN/DNN models over multiple GPUs within a single
server [103, 105, 120, 121, 122, 195].

6.2.2 Since FireCaffe

Compared to the approaches mentioned in the previous subsection, our work in the FireCaffe
paper [17] (reproduced in Chapter 3 of this dissertation) advocated for the following: (a) data par-
allelism, (b) synchronous communication, (c) evaluation of time-to-convergence to a predetermined
accuracy level on a publicly-available dataset, and (d) using the fastest communication hardware
available. We were early pioneers of these approaches; in research papers on distributed CNN/DNN
training that have been released in the last few months, we’ve noticed the following trends emerge:

• Parallelism strategy: focus on data parallelism. In our FireCaffe paper [17], we extolled
the benefits of focusing on data parallel communication in distributed CNN training. In
the papers published in 2016, researchers have gravitated toward data-parallel training of
CNNs. Perhaps most interestingly, the Google Brain team — which was an advocate for
model parallelism in its earlier paper [108] — recently used data parallelism (without model
parallelism) in the distributed CNN training results that they released at ICLR 2016 [196].

• Communication paradigm: synchronous. In our FireCaffe paper [17], we demonstrated
that the limiting factor in asynchronous communication is typically the need for a central
parameter server. To mitigate this, we advocated for synchronous communication, which
enables the use of collective communication approaches such as reduction trees. While the
parameter server slows down linearly in the number of workers (e.g. GPU workers), collective
communication slows down logarithmically in the number of workers, enabling it to run effi-
ciently at larger scale. This approach has begun to take hold in the recent research literature.
Intel recently published their latest results on distributed CNN training to 256 servers, and
the communication is fully synchronous [178]. Incidentally, a key individual at Intel told us
that the FireCaffe paper was used “as a bible” by the Intel teams who were in charge of
producing these results [197]. Further, a version of the Theano CNN/DNN framework that
supports synchronous data-parallel communication was released in mid-2016 [198]. Finally,
the recent paper from Google used fully-synchronous communication for distributed CNN
training, and it even provided an approach to more elegantly address fault tolerance in the
synchronous communication paradigm [196].

• Evaluation metric: time to convergence. In our FireCaffe paper [17], we advocated for
the following strategy for evaluating a distributed CNN training approach. Given a specific
dataset and a specific target accuracy level, the goal is to train a CNN to the desired accuracy
level as rapidly as possible. Everything else is up to the system architect: the choice of CNN
architecture, the choice of computational hardware, the choice of communication hardware,
and so on. This benchmarking methodology appears to be catching on. Recent papers from
Intel [178] and Google [196] use this methodology in their benchmarking.

• Hardware communication network: 56 Gbit/s or better. In our FireCaffe paper [17],
we encouraged system architects to use the fastest communication hardware that is available
to them. Universities and large corporations sometimes have datacenters containing a number
of different compute clusters. For employees who are deciding which of their existing compute

99

clusters to use for distributed CNN/DNN training, our approach would encourage them to
use the compute cluster that has the fastest network connections (e.g. 40 Gbit/s ethernet
or 56 Gbit/s Infiniband) bridging the servers in the cluster. If designing or ordering new
compute clusters, our approach would encourage the system infrastructure team to spend
a substantial portion of the budget to purchase fast communication hardware. Our way of
thinking appears to be catching on. In their recent distributed CNN training results, Intel
used 56 Gbit/s FDR Infiniband network hardware when scaling to 256 CPU servers [178].3

6.2.3 Future work: Further improvements to distributed CNN/DNN training

As we discussed in Chapter 3, in order to distribute the training of a CNN/DNN model over
multiple servers, it is necessary to communicate among the servers during the training process. In
the applications described in the general literature on distributed computing, the need for commu-
nication among servers is quite common. In the distributed computing literature, the software opti-
mization of overlapping communication and computation has been studied for more than twenty-five
years [201, 202].

In our FireCaffe results, we did not overlap communication and computation. That is, if training
a particular CNN on a particular hardware platform requires a total of 5 hours of communication
and 5 hours of computation, our FireCaffe results would say “the CNN took 10 hours to train.”
However, the Purine [203] multi-GPU CNN training framework proposed a form of communication-
computation overlapping. The basic idea is as follows. In the backward pass, whenever a layer Li

finishes computing its data gradients (∇Di), Purine would stage these gradients for communication.
However, these gradients will not be needed until it is time to compute the forward pass of Li, and
this allows for ∇Di to be communicated while computation is performed on other layers. Let us
consider the best-case speedup when applying this approach. In the best case, we would have a
CNN where all layers had exactly the same amount of communication (e.g. 1MB of data) and
exactly the same amount of computation (e.g. 10 GFLOPs per batch). In the best case scenario,
the time to communicate (in the form of an allreduce sum) 1MB of data over all servers is identical
to the time required to perform 10 GFLOPs of computation on one server. In this ideal case, the
overlapping approach described in Purine [203] would lead to precisely a 2x speedup over non-
overlapping training. However, in all of the CNNs described in this dissertation (e.g. Tables 4.2—
4.8, Table 5.1), there are substantially more parameters (in bytes) in the final layers than in the early
layers, and layers vary in their computational requirements (in FLOPs). Given that these practical
cases deviate from the “best case scenario” that we described, overlapping communication and
computation would lead to less than a 2x speedup over serialized communication and computation.
That said, there is an opportunity to address this by designing CNN architectures that expose
more overlapping opportunities by making the layers more homogenous in their communication
and computation requirements.

3Note that, while many researchers have struggled to implement CNNs efficiently on CPUs (e.g. [199], [200]), we
have found that it’s possible to achieve on the order of 1 TFLOP/s per CPU when executing CNNs using well-tuned
implementations.

100

6.3 Impact of our work on exploring the design space of CNN

architectures

The last four years have marked a resurgence in the use of neural networks for computer vision,
led chiefly by the unprecedented accuracy that modern deep neural networks provide. In this
frenzy, hardware architects have developed a variety of accelerators and computational platforms
targeted specifically at CNN/DNNs. We have observed a recurring theme in this work: A team
of hardware architects begin by taking off-the-shelf CNN architecture such as AlexNet [22], and
then they engineer an accelerator designed with this off-the-shelf model in mind. In fact, all of the
following work on FPGA- and ASIC-based CNN accelerators reports its speed and efficiency results
solely on the AlexNet CNN architecture: Eyeriss [204], ShiDianNao [205], Motamedi et al. [206],
Ovtcharov et al. [92], and Zhang et al. [207]. There is certainly merit in comparing the efficiency
of different computational hardware approaches on the same CNN architecture. However, in their
2012 paper Krizhevsky et al. were quite clear that the AlexNet model was designed to leverage
problem sizes that are ideal for an NVIDIA GTX580 GPU [22]. When using other computational
hardware — and especially when designing new hardware — it is critical to design CNNs that will
execute efficiently on this hardware. In other words, to achieve the best possible results on various
metrics (e.g. accuracy, throughput, energy-efficiency), it is ideal to co-design the CNN architecture,
the software implementation, and the computational hardware.

Encouragingly, researchers have begun to make progress on holistically designing CNN architec-
tures, software, and hardware. One problem that we mentioned in Chapter 5 is that the parameters
of large CNNs such as AlexNet [22] typically do not fit on-chip in today’s processors or FPGAs,
requiring time- and energy-intensive communication with off-chip DRAM. Building on their pre-
vious work in Deep Compression [164], Han et al. recently developed Efficient Inference Engine
(EIE) [165]. EIE is an accelerator that is able to retain compressed versions of AlexNet [22] or
VGG-19 [77] in on-chip SRAMs, dramatically reducing the need for off-chip memory traffic. While
most CNN accelerators process dense representations of the parameters and data, EIE operates
directly on the sparse representation of the CNN that is produced by Deep Compression. The EIE
authors point out that the use of models such as SqueezeNet (with or without compression) further
reduces the memory requirements.

Our work has begun to directly impact how researchers co-design CNNs and hardware. D.
Gschwend recently released a report and implementation of ZynqNet, which comprises custom CNNs
and a custom hardware implementation for executing CNN inference on Xilinx Zynq FPGAs [208].
In his report, Gschwend says, “[We used] SqueezeNet as the basis for our own CNN topology, due
to its good fit for an FPGA-based implementation. The tiny parameter set could even be fit into
the on-chip SRAM of a medium-sized FPGA, and optimizations are relatively easy to try thanks to
the fast training cycles and the clear network structure.” Rather than simply porting SqueezeNet
to his FPGA accelerator, Gschwend used SqueezeNet as a starting point for developing his own
“ZynqNet” family of CNN architectures. With the goal of efficiently targeting FPGAs, Gschwend
outlined four particular CNN design objectives to be used in the ZynqNet CNN architectures:4

4While Gschwend argues that these design objectives are particularly critical for enabling straightforward and
efficient FPGA implementations, the objectives may also enable more efficient execution on other hardware such as
CPUs and GPUs.

101

1. Constrain the model size so that the CNN’s parameters will fit into an FPGA’s on-chip
memory.

2. Use power-of-two sizes wherever possible in CNN dimensions. Gschwend mentions that, “On
the FPGA, multiplications and divisions by a power of 2 can be calculated with inexpen-
sive shift operations, which enables optimizations in the addressing of image caches in the
accelerator.”

3. For downsampling the activations produced by CNN layers, replace max-pooling with strided
convolution wherever possible (inspired by [209]). Not only does this eliminate the need to
consume chip-area with max-pooling hardware, but Gschwend found situations where this
improves accuracy on ImageNet-1k image classification.

4. Equalize the quantity of activations, or “layer capacity,” produced by each module in the
CNN. This helps to further conserve memory space on the FPGA. In addition, Gschwend
found cases where this change also leads to higher accuracy.

All of this culminates in a CNN architecture that Gschwend was able to implement on an FPGA.
Beyond the opportunities for improving speed and efficiency, it appears that co-designing the
CNN architecture with FPGA hardware implementation actually saved Gschwend a substantial
amount of engineering effort. In an appendix of Gschwend’s report, it mentions that all the work
mentioned above was developed by Gschwend on his own during a 6-month Master’s thesis project.
Contrast that with Eyeriss [204] and ShiDianNao [205], where each group of authors spent multiple
years with a team of five to ten engineers to develop and optimize hardware architectures for
AlexNet. Gschwend’s work demonstrates that designing the “right” CNN architecture can lead to
a substantial savings in hardware-engineering effort. Works such as EIE [165] and ZynqNet [208]
are encouraging, and we anticipate that orders-of-magnitude improvements remain on the table in
several key metrics (e.g. energy-efficiency, throughput) for those who choose to co-design the CNN
architecture, software, and hardware.

102

Bibliography

[1] Jordan Boyd-Graber and Philip Resnik, “Holistic sentiment analysis across languages: Mul-
tilingual supervised latent dirichlet allocation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2010.

[2] W. Naptali, M. Tsuchiya, and S. Nakagawa, “Topic dependent class based language model
evaluation on automatic speech recognition,” in IEEE Spoken Language Technology Workshop
(SLT), 2010.

[3] Jike Chong, Ekaterina Gonina, and Kurt Keutzer, “Efficient automatic speech recognition
on the gpu,” in GPU Computing Gems Emerald Edition, 2011.

[4] Xiaodan Zhuang, Stavros Tsakalidis, Shuang Wu, Pradeep Natarajan, Rohit Prasad, and
Prem Natarajan, “Compact audio representation for event detection in consumer media,” in
INTERSPEECH, 2012.

[5] B. Elizalde, H. Lei, and G. Friedland, “An i-vector representation of acoustic environments
for audio-based video event detection on user generated content,” in IEEE International
Symposium on Multimedia (ISM), 2013.

[6] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan, “Object
detection with discriminatively trained part-based models,” PAMI, 2010.

[7] João Carreira, Rui Caseiro, Jorge Batista, and Cristian Sminchisescu, “Semantic segmen-
tation with second-order pooling,” in European Conference on Computer Vision (ECCV),
2012.

[8] F. Perronnin and J. Sanchez, “Compressed fisher vectors for LSVRC,” in PASCAL VOC /
ImageNet Workshop at ICCV, 2011.

[9] Ozan İrsoy and Claire Cardie, “Deep recursive neural networks for compositionality in lan-
guage,” in NIPS, 2014.

[10] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean, “Distributed
representations of words and phrases and their compositionality,” in NIPS, 2013.

[11] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan C. Catan-
zaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Erich Elsen, Jesse
Engel, Linxi Fan, Christopher Fougner, Tony Han, Awni Y. Hannun, Billy Jun, Patrick
LeGresley, Libby Lin, Sharan Narang, Andrew Y. Ng, Sherjil Ozair, Ryan Prenger, Jonathan

103

Raiman, Sanjeev Satheesh, David Seetapun, Shubho Sengupta, Yi Wang, Zhiqian Wang,
Chong Wang, Bo Xiao, Dani Yogatama, Jun Zhan, and Zhenyao Zhu, “Deep speech 2:
End-to-end speech recognition in english and mandarin,” arXiv:1512.02595, 2015.

[12] Khalid Ashraf, Benjamin Elizalde, Forrest Iandola, Matthew Moskewicz, Julia Bernd, Gerald
Friedland, and Kurt Keutzer, “Audio-based multimedia event detection with dnns and sparse
sampling,” in ICMR, 2015.

[13] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in NIPS, 2015.

[14] Jonathan Long, Evan Shelhamer, and Trevor Darrell, “Fully convolutional networks for
semantic segmentation,” in CVPR, 2015.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep residual learning for image
recognition,” arXiv:1512.03385, 2015.

[16] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew
Zisserman, “The pascal visual object classes (voc) challenge,” International Journal of
Computer Vision (IJCV), 2010.

[17] Forrest N. Iandola, Khalid Ashraf, Matthew W. Moskewicz, and Kurt Keutzer, “FireCaffe:
near-linear acceleration of deep neural network training on compute clusters,” in CVPR,
2016.

[18] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and
Kurt Keutzer, “SqueezeNet: Alexnet-level accuracy with 50x fewer parameters and <0.5mb
model size,” arXiv:1602.07360, 2016.

[19] Matthew W. Moskewicz, Forrest N. Iandola, and Kurt Keutzer, “Boda-RTC: Productive
generation of portable, efficient code for convolutional neural networks on mobile computing
platforms,” arXiv:1606.00094, 2016.

[20] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson, “How transferable are features
in deep neural networks?,” in NIPS, 2014.

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale
hierarchical image database,” in CVPR, 2009.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” in NIPS, 2012.

[23] Anting Shen, “BeaverDam: Video annotation tool for computer vision training labels,” M.S.
thesis, University of California, Berkeley, 2016.

[24] Anting Shen, “BeaverDam,” https://github.com/antingshen/beaverdam, 2016.

[25] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran,
Bryan Catanzaro, and Evan Shelhamer, “cuDNN: efficient primitives for deep learning,”
arXiv:1410.0759, 2014.

[26] Matthew W. Moskewicz, Ali Jannesari, and Kurt Keutzer, “A metaprogramming and auto-
tuning framework for deploying deep learning applications,” arXiv:1611.06945, 2016.

104

[27] P. van Zeijl, J. W. T. Eikenbroek, P. P. Vervoort, S. Setty, J. Tangenherg, G. Shipton,
E. Kooistra, I. C. Keekstra, D. Belot, K. Visser, E. Bosma, and S. C. Blaakmeer, “A
bluetooth radio in 0.18- mu;m cmos,” IEEE Journal of solid-state circuits, 2002.

[28] Rob Munoz, “Asics vs. net processors: Understanding the true costs,” http://www.eetimes.

com/document.asp?doc_id=1277605, 2002.

[29] “List of bitcoin mining asics,” 2016, https://en.bitcoin.it/wiki/List_of_Bitcoin_

mining_ASICs.

[30] L. Codrescu, W. Anderson, S. Venkumanhanti, M. Zeng, E. Plondke, C. Koob, A. Ingle,
C. Tabony, and R. Maule, “Hexagon dsp: An architecture optimized for mobile multimedia
and communications,” IEEE Micro, 2014.

[31] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “High-throughput
accelerator for ubiquitous machine-learning,” in International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2014.

[32] “Nvidia geforce gtx 980. featuring maxwell, the most advanced gpu ever made,” NVIDIA
Whitepaper, 2014.

[33] M. Hempstead, D. Brooks, and G. Y. Wei, “An accelerator-based wireless sensor network
processor in 130 nm cmos,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, 2011.

[34] Matthias Gries and Kurt Keutzer, Building ASIPs: The Mescal Methodology, Springer, 2005.

[35] Forrest Iandola and Michael Syphers, “Electron beam focusing for the international linear
collider,” in American Association for the Advancement of Science Annual Meeting (AAAS),
2008.

[36] Forrest N. Iandola, Matthew O’Brien, and Richard Procassini, “PyMercury: interactive
python for the mercury monte carlo particle transport code,” in International Conference
on Mathematics and Computational Methods Applied to Nuclear Science and Engineering
(M&C), 2011.

[37] Forrest N. Iandola, Jan Schuemann, Jungwook Shin, Bruce Faddegon, Harald Paganetti, and
Joseph Perl, “Representing range compensators in the TOPAS monte carlo system,” in
European Workshop on Monte Carlo Treatment Planning (MCTP), 2012.

[38] Vivek Kini, Forrest Iandola, and Timothy Murray, “Techniques for assigning priorities to
streams of work,” US Patent Number 20140344822, 2014.

[39] Forrest Iandola, Fatemeh Saremi, Tarek Abdelzaher, Praveen Jayachandran, and Aylin Yener,
“Real-time capacity of networked data fusion,” in International Conference on Information
Fusion, 2011.

[40] Fatemeh Saremi, Praveen Jayachandran, Forrest Iandola, Yusuf Sarwar, and Tarek Abdelza-
her, “On schedulability and time composability of multisensor data aggregation networks,”
in International Conference on Information Fusion, 2012.

105

[41] Steena Monteiro, Forrest Iandola, and Daniel Wong, “STOMP: Statistical techniques for
optimizing and modeling performance of blocked sparse matrix vector multiplication,” in In-
ternational Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD), 2016.

[42] Mehdi Maasoumy, Pierluigi Nuzzo, Forrest Iandola, Maryam Kamgarpour, Alberto
Sangiovanni-Vincentelli, and Claire Tomlin, “Optimal load management system for aircraft
electric power distribution,” in IEEE Conference on Decision and Control (CDC), 2013.

[43] Mahsa Kamali, Ido Omer, Forrest Iandola, Eyal Ofek, and John C. Hart, “Linear clutter
removal from urban panoramas,” in ISVC, 2011.

[44] Mahsa Kamali, Forrest N. Iandola, Hui Fang, and John C. Hart, “Methmorph: Simulating
facial deformation due to methamphetamine usage,” in ISVC, 2011.

[45] Michael Anderson, Forrest Iandola, and Kurt Keutzer, “Quantifying the energy efficiency of
object recognition and optical flow,” UC Berkeley Technical Report, 2014.

[46] Forrest N. Iandola, Matthew W. Moskewicz, and Kurt Keutzer, “libHOG: Energy-efficient
histogram of oriented gradient computation,” in ITSC, 2015.

[47] Forrest N. Iandola, Matthew W. Moskewicz, Sergey Karayev, Ross B. Girshick, Trevor Dar-
rell, and Kurt Keutzer, “Densenet: Implementing efficient convnet descriptor pyramids,”
arXiv:1404.1869, 2014.

[48] Ross B. Girshick, Forrest N. Iandola, Trevor Darrell, and Jitendra Malik, “Deformable part
models are convolutional neural networks,” in CVPR, 2015.

[49] Bor-Yiing Su, Parallel Application Library for Object Recognition, Chapter 3, Ph.D. thesis,
University of California, Berkeley, 2012.

[50] Forrest N. Iandola, David Sheffield, Michael Anderson, Phitchaya Mangpo Phothilimthana,
and Kurt Keutzer, “Communication-minimizing 2d convolution in gpu registers,” in ICIP,
2013.

[51] Forrest N. Iandola, David Sheffield, Michael Anderson, Phitchaya Mangpo Phothilimthana,
and Kurt Keutzer, “Minimizing memory communication for 2d image convolution in gpu
registers,” in GPU Technology Conference (GTC), 2013.

[52] “NVIDIA Performance Primitives (NPP),” developer.nvidia.com/npp.

[53] Matthew W. Moskewicz, “Boda: A c++ framework for efficient experiments in computer
vision,” https://github.com/moskewcz/boda, 2016.

[54] Ning Zhang, Ryan Farrell, Forrest Iandola, and Trevor Darrell, “Deformable part descriptors
for fine-grained recognition and attribute prediction,” in ICCV, 2013.

[55] Forrest N. Iandola, Anting Shen, Peter Gao, and Kurt Keutzer, “DeepLogo: Hitting logo
recognition with the deep neural network hammer,” arXiv:1510.02131, 2015.

[56] Khalid Ashraf, Bichen Wu, Forrest N. Iandola, Matthew W. Moskewicz, and Kurt Keutzer,
“Shallow networks for high-accuracy road object-detection,” arXiv:1606.01561, 2016.

106

[57] Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh Srivastava, Li Deng, Piotr Dollar, Jian-
feng Gao, Xiaodong He, Margaret Mitchell, John C. Platt, C. Lawrence Zitnick, and Geoffrey
Zweig, “From captions to visual concepts and back,” in CVPR, 2015.

[58] Peter Jin, Forrest Iandola, and Kurt Keutzer, “How to scale distributed deep learning?,” in
NIPS MLSys Workshop, 2016.

[59] John Canny, Huasha Zhao, Ye Chen, Bobby Jaros, and Jiangchang Mao, “Machine learning
at the limit,” in IEEE International Conference on Big Data, 2015.

[60] Christopher Cieri, David Miller, and Kevin Walker, “The fisher corpus: a resource for the
next generations of speech-to-text,” in International Conference on Language Resources and
Evaluation (LREC), 2004.

[61] Sergio Guadarrama, “BVLC googlenet,” https://github.com/BVLC/caffe/tree/master/

models/bvlc_googlenet, 2015.

[62] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and
Li Fei-Fei, “Large-scale video classification with convolutional neural networks,” in CVPR,
2014.

[63] Douglas B. Paul and Janet M. Baker, “The design for the wall street journal-based csr
corpus,” in Association for Computational Linguistics Workshop on Speech and Natural
Language, 1992.

[64] John J. Godfrey, Edward C. Hollima, and Jane McDaniel, “Switchboard: Telephone speech
corpus for research and development,” in ICASSP, 1992.

[65] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “LibriSpeech: an ASR corpus based
on public domain audio books,” in International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2015.

[66] Hao Zhang, Zhiting Hu, Jinliang Wei, Pengtao Xie, Gunhee Kim, Qirong Ho, and Eric P.
Xing, “Poseidon: A system architecture for efficient gpu-based deep learning on multiple
machines,” arXiv:1512.06216, 2015.

[67] B. Zhou, A. Khosla, A. Lapedriza, A. Torralba, and A. Oliva, “Places2: A large-scale database
for scene understanding,” http://places2.csail.mit.edu, 2015.

[68] Andreas Geiger, Philip Lenz, and Raquel Urtasun, “Are we ready for autonomous driving?
the kitti vision benchmark suite,” in CVPR, 2012.

[69] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays,
Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollar, “Microsoft COCO:
common objects in context,” in ECCV, 2014.

[70] Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cuntoor, Chia-Chih Chen, Jong Taek
Lee, Saurajit Mukherjee, J. K. Aggarwal, Hyungtae Lee, Larry Davis, Eran Swears, Xioyang
Wang, Qiang Ji, Kishore Reddy, Mubarak Shah, Carl Vondrick, Hamed Pirsiavash, Deva
Ramanan, Jenny Yuen, Antonio Torralba, Bi Song, Anesco Fong, Amit Roy-Chowdhury, and
Mita Desai, “A large-scale benchmark dataset for event recognition in surveillance video,” in
CVPR, 2011.

107

[71] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona, “Pedestrian detection: A
benchmark,” in CVPR, 2009.

[72] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fi-
dler, Raquel Urtasun, and Alan Yuille, “The role of context for object detection and semantic
segmentation in the wild,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

[73] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic evaluation
of machine translation,” in Association for Computational Linguistics Meeting (ACL), 2002.

[74] S. Banerjee and A. Lavie, “An automatic metric for mt evaluation with improved correlation
with human judgments,” in ACL Workshop on Intrinsic and Extrinsic Evaluation Measures
for Machine Translation and/or Summarization, 2005.

[75] Simon Baker, Daniel Scharstein, J.P. Lewis, Stefan Roth, Michael J. Black, and Richard
Szeliski, “A database and evaluation methodology for optical flow,” in ICCV, 2007.

[76] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, 1998.

[77] Karen Simonyan and Andrew Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv:1409.1556, 2014.

[78] Kaiming He and Jian Sun, “Convolutional neural networks at constrained time cost,” in
CVPR, 2015.

[79] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich, “Going deeper with convolu-
tions,” arXiv:1409.4842, 2014.

[80] “Nvidia tesla p100. the most advanced datacenter accelerator ever built,” NVIDIA Whitepa-
per, 2016.

[81] Nicolas Vasilache, Jeff Johnson, Michaël Mathieu, Soumith Chintala, Serkan Piantino,
and Yann LeCun, “Fast convolutional nets with fbfft: A gpu performance evaluation,”
arXiv:1412.7580, 2014.

[82] Nervana Systems, “Neon,” https://github.com/NervanaSystems/neon, 2016.

[83] Timothy Prickett Morgan, “Intel lines up thunderx arm against xeons,” http://www.

nextplatform.com/2016/05/31/intel-lines-thunderx-arms-xeons, 2016.

[84] Samuel Williams, Andrew Waterman, and David Patterson, “Roofline: an insightful visual
performance model for multicore architectures,” Communications of the ACM, 2009.

[85] Kirk W. Cameron, Rong Ge, and Xizhou Feng, “High-performance, power-aware distributed
computing for scientific applications,” IEEE Computer, 2005.

[86] “Nvidia tegra x1. nvidias mobile superchip,” NVIDIA Whitepaper, 2015.

[87] Hwancheol Jeong, Sangbaek Lee, Weonjong Lee, Jeonghwan Pak, Jangho Kim, and Juhyun
Chung, “Performance of gtx titan x gpus and code optimization,” arXiv:1511.00088, 2015.

108

[88] Lars B. Cremean, Tully B. Foote, Jeremy H. Gillula, George H. Hines, Dmitriy Kogan,
Kristopher L. Kriechbaum, Jeffrey C. Lamb, Jeremy Leibs, Laura Lindzey, Christopher E.
Rasmussen, Alexander D. Stewart, Joel W. Burdick, and Richard M. Murray, “Alice: An
information-rich autonomous vehicle for high-speed desert navigation,” Journal of Field
Robotics, 2006.

[89] Gill Pratt, “Keynote presentation on autonomous driving at Toyota Research Institute,” in
GPU Technology Conference (GTC), 2016.

[90] Ferris Jabr, “Does thinking really hard burn more calories?,” https://www.

scientificamerican.com/article/thinking-hard-calories, 2012.

[91] Lukas Cavigelli and Luca Benini, “Origami: A 803 gop/s/w convolutional network accelera-
tor,” arXiv:1512.04295, 2015.

[92] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers, Karin Strauss, and
Eric S. Chung, “Accelerating deep convolutional neural networks using specialized hardware,”
Microsoft Research Whitepaper, 2015.

[93] Yung-Hsiang Lu, Alan M. Kadin, Alexander C. Berg, Thomas M. Conte, Erik P. DeBenedictis,
Rachit Garg, Ganesh Gingade, Bichlien Hoang, Yongzhen Huang, Boxun Li, Jingyu Liu,
Wei Liu, Huizi Mao, Junran Peng, Tianqi Tang, Elie K. Track, Jingqiu Wang, Tao Wang,
Yu Wang, and Jun Yao, “Rebooting computing and low-power image recognition challenge,”
in International Conference on Computer-Aided Design (ICCAD), 2015.

[94] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi
Tang, Ningyi Xu, Sen Song, Yu Wang, and Huazhong Yang, “Going deeper with embedded
fpga platform for convolutional neural network,” in ACM International Symposium on FPGA,
2016.

[95] Min Lin, Qiang Chen, and Shuicheng Yan, “Network in network,” arXiv:1312.4400, 2013.

[96] Andrew Lavin, “maxDNN: an efficient convolution kernel for deep learning with maxwell
gpus,” arXiv:1501.06633, 2015.

[97] Jeff Dean, “Keynote: Large scale deep learning,” in ACM Conference on Information and
Knowledge Management (CIKM), 2014.

[98] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel, “End-to-end training of
deep visuomotor policies,” arXiv:1504.00702, 2015.

[99] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan
Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and Andrew Y. Ng, “Deep
speech: Scaling up end-to-end speech recognition,” arXiv:1412.5567, 2014.

[100] V Anantharaj, F Foertter, W Joubert, and J Wells, “Approaching exascale: application
requirements for olcf leadership computing,” https://www.olcf.ornl.gov/wp-content/

uploads/2013/01/OLCF_Requirements_TM_2013_Final1.pdf, 2013, p43–45.

[101] Oak Ridge Leadership Computing Facility (OLCF), “Introducing titan: Advancing the era
of accelerated computing,” http://www.olcf.ornl.gov/titan, 2015.

109

[102] John Wawrzynek, Krste Asanović, Brian Kingsbury, David Johnson, James Beck, and Nelson
Morgan, “Spert-ii: A vector microprocessor system,” Computer, 1996.

[103] Y. Zou, Xing Jin, Yi Li, Zhimao Guo, Eryu Wang, and Bin Xiao, “Mariana: Tencent deep
learning platform and its applications,” in VLDB, 2014.

[104] Frank Seide, Gang Li, and Dong Yu, “Conversational speech transcription using context-
dependent deep neural networks,” in INTERSPEECH, 2011.

[105] Alex Krizhevsky, “One weird trick for parallelizing convolutional neural networks,”
arXiv:1404.5997, 2014.

[106] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell, “Caffe: Convolutional architecture for fast feature
embedding,” arXiv:1408.5093, 2014.

[107] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman, “Project
Adam: building an efficient and scalable deep learning training system,” in OSDI, 2014.

[108] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, M. Ran-
zato, Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le, and Andrew Y. Ng, “Large scale
distributed deep networks,” in NIPS, 2012.

[109] Rajeev Thakur, Rolf Rabenseifner, and William Gropp, “Optimization of collective com-
munication operations in mpich,” International Journal of High Performance Computing
Applications, 2005.

[110] Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki, and Stefan Carlsson,
“From generic to specific deep representations for visual recognition,” in CVPR Deep Vision
Workshop, 2015.

[111] Ren Wu, Shengen Yan, Yi Shan, Qingqing Dang, and Gang Sun, “Deep image: Scaling up
image recognition,” arXiv:1501.02876, 2015.

[112] Nikko Strom, “Scalable distributed dnn training using commodity gpu cloud computing,” in
INTERSPEECH, 2015.

[113] Xavier Glorot and Yoshua Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” JMLR, 2010.

[114] Thomas M. Breuel, “The effects of hyperparameters on SGD training of neural networks,”
arXiv:1508.02788, 2015.

[115] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li, “Empirical evaluation of rectified activa-
tions in convolutional network,” arXiv:1505.00853, 2015.

[116] Sergey Ioffe and Christian Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” JMLR, 2015.

[117] Z Wu, Y Zhang, F Yu, and J Xiao, “A gpu implementation of googlenet,” http://vision.

princeton.edu/pvt/GoogLeNet, 2014.

[118] Cyprien Noel, Jun Shi, and Andy Feng, “Large scale distributed deep learning on hadoop
clusters,” 2015, http://yahoohadoop.tumblr.com/post/129872361846.

110

[119] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng, “Ten-
sorFlow: Large-scale machine learning on heterogeneous systems,” Google Technical Report,
2015.

[120] Clement Farabet, “Real-time, content-driven representations at twitter,” in GPU Technology
Conference, 2015.

[121] Weiguang Ding, Ruoyan Wang, Fei Mao, and Graham W. Taylor, “Theano-based large-scale
visual recognition with multiple gpus,” arXiv:1412.2302, 2014.

[122] Omry Yadan, Keith Adams, Yaniv Taigman, and MarcAurelio Ranzato, “Multi-gpu training
of convnets,” arXiv:1312.5853, 2013.

[123] Vasily Volkov and James W. Demmel, “Benchmarking GPUs to tune dense linear algebra,”
in Supercomputing, 2008.

[124] Jeff Dean, “Keynote: Large scale deep learning,” in GPU Technology Conference, 2015.

[125] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu, “1-bit stochastic gradient descent
and its application to data-parallel distributed training of speech dnns,” in INTERSPEECH,
2014.

[126] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman, “Speeding up convolutional neural
networks with low rank expansions,” arXiv:1405.3866, 2014.

[127] Xiangyu Zhang, Jianhua Zou, Xiang Ming, Kaiming He, and Jian Sun, “Efficient and accurate
approximations of nonlinear convolutional networks,” arXiv:1411.4229, 2014.

[128] Song Han, Huizi Mao, and William J. Dally, “A deep neural network compression pipeline:
Pruning, quantization, huffman encoding,” arXiv:1510.00149, 2015.

[129] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,” in ICML Deep Learning
Workshop, 2015.

[130] Bryce E. Bayer, “Color imaging array,” US Patent Number 3971065, 1976.

[131] I. Sobel and G. Feldman, “A 3x3 isotropic gradient operator for image processing,” Stanford
Artificial Intelligence Project (SAIL), 1968.

[132] John Canny, “A computational approach to edge detection,” IEEE Transactions on pattern
analysis and machine intelligence (PAMI), 1986.

[133] Shai Avidan and Ariel Shamir, “Seam carving for content-aware image resizing,” ACM
Transactions on graphics (TOG), 2007.

[134] John G. Gale and Theodore P. Williams, “Light adaptation and temperature effects in rat
piii retinal response: analysis with a two-state model,” Proceedings of the National Academy
of Sciences, 1980.

111

[135] Stevan Harnad, S. J. Hanson, and J. Lubin, “Categorical perception and the evolution of
supervised learning in neural nets,” Cognition and Brain Theory, 1982.

[136] Vinod Nair and Geoffrey E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in ICML, 2010.

[137] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network learning
by exponential linear units (ELUs),” arXiv:1511.07289, 2015.

[138] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification,” in ICCV, 2015.

[139] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network
acoustic models,” in ICML, 2013.

[140] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai, Ting
Liu, Xingxing Wang, and Gang Wang, “Recent advances in convolutional neural networks,”
arXiv:1512.07108, 2015.

[141] Chris Aldrich and Lidia Auret, Unsupervised Process Monitoring and Fault Diagnosis with
Machine Learning Methods, Chapter 4, Springer, 2013.

[142] David Rosenberg, “Loss functions for regression and classification,” https://

davidrosenberg.github.io/ml2015/docs/3a.loss-functions.pdf, 2015.

[143] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi, “You only look
once: Unified, real-time object detection,” arXiv:1506.02640, 2015.

[144] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov, “Dropout: a simple way to prevent neural networks from overfitting,” JMLR, 2014.

[145] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, “Deep learning,” Book in preparation
for MIT Press, 2016.

[146] I. Sutskever, J. Martens, G. Dahl, and G.E. Hinton, “On the importance of initialization and
momentum in deep learning,” in ICML, 2013.

[147] Yuri Nesterov, “A method of solving a convex programming problem with convergence rate
o(1/k2),” Soviet Mathematics Doklady, 1983.

[148] Saurabh Gupta, Ross Girshick, Pablo Arbelaez, and Jitendra Malik, “Learning rich features
from rgb-d images for object detection and segmentation,” in ECCV, 2014.

[149] Barak A Pearlmutter, “Learning state space trajectories in recurrent neural networks,” Neural
Computation, 1989.

[150] Sepp Hochreiter and Jurgen Schmidhuber, “Learning state space trajectories in recurrent
neural networks,” Neural Computation, 1997.

[151] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol Vinyals, Rajat
Monga, and George Toderici, “Beyond short snippets: Deep networks for video classification,”
in CVPR, 2015.

112

[152] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein, “Neural module networks,” in CVPR,
2016.

[153] J. Donahue, L.A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and
T. Darrell, “Long-term recurrent convolutional networks for visual recognition and descrip-
tion,” in CVPR, 2015.

[154] Paul Over, George M. Awad, Jon Fiscus, Martial Michel, Alan F. Smeaton, and Wessel Kraaij,
“TRECVID 2009 - goals, tasks, data, evaluation mechanisms and metrics,” in TRECVID
Workshop, 2009.

[155] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu, “3d convolutional neural networks for human
action recognition,” in ICML, 2010.

[156] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in CVPR, 2014.

[157] Marion Chevalier, Nicolas Thome, Matthieu Cord, Jerome Fournier, Gilles Henaff, and Elodie
Dusch, “Lr-cnn for fine-grained classification with varying resolution,” in ICML, 2015.

[158] Philipp Krähenbühl, Carl Doersch, Jeff Donahue, and Trevor Darrell, “Data-dependent ini-
tializations of convolutional neural networks,” in ICLR, 2016.

[159] John Duchi, Elad Hazan, and Yoram Singer, “Adaptive subgradient methods for online
learning and stochastic optimization,” Journal of Machine Learning Research (JMLR), 2011.

[160] Tijmen Tieleman and Geoffrey Hinton, “Rmsprop: Divide the gradient by a running average
of its recent magnitude,” coursera: Neural networks for machine learning, 2012.

[161] Consumer Reports, “Tesla’s new autopilot: Better but still
needs improvement,” http://www.consumerreports.org/tesla/

tesla-new-autopilot-better-but-needs-improvement, 2016.

[162] E.L Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting linear structure
within convolutional networks for efficient evaluation,” in NIPS, 2014.

[163] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for efficient
neural networks,” in NIPS, 2015.

[164] S. Han, H. Mao, and W. Dally, “Deep compression: Compressing DNNs with pruning, trained
quantization and huffman coding,” arxiv:1510.00149v3, 2015.

[165] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and
William J Dally, “Eie: Efficient inference engine on compressed deep neural network,” In-
ternational Symposium on Computer Architecture (ISCA), 2016.

[166] Y. LeCun, B.Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, and L.D. Jackel,
“Backpropagation applied to handwritten zip code recognition,” Neural Computation, 1989.

[167] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna,
“Rethinking the inception architecture for computer vision,” arXiv:1512.00567, 2015.

[168] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke, “Inception-v4, inception-resnet and
the impact of residual connections on learning,” arXiv:1602.07261, 2016.

113

[169] J. Snoek, H. Larochelle, and R.P. Adams, “Practical bayesian optimization of machine learn-
ing algorithms,” in NIPS, 2012.

[170] T.B. Ludermir, A. Yamazaki, and C. Zanchettin, “An optimization methodology for neural
network weights and architectures,” IEEE Trans. Neural Networks, 2006.

[171] J. Bergstra and Y. Bengio, “An optimization methodology for neural network weights and
architectures,” JMLR, 2012.

[172] K.O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting topolo-
gies,” Neurocomputing, 2002.

[173] Dmytro Mishkin, Nikolay Sergievskiy, and Jiri Matas, “Systematic evaluation of cnn advances
on the imagenet,” arXiv:1606.02228, 2016.

[174] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing
Xu, Chiyuan Zhang, and Zheng Zhang, “Mxnet: A flexible and efficient machine learning
library for heterogeneous distributed systems,” arXiv:1512.01274, 2015.

[175] S. Tokui, K. Oono, S. Hido, and J. Clayton, “Chainer: a next-generation open source frame-
work for deep learning,” in NIPS Workshop on Machine Learning Systems (LearningSys),
2015.

[176] “Keras: Deep learning library for theano and tensorflow,” https://keras.io, 2016.

[177] Ronan Collobert, Koray Kavukcuoglu, and Clement Farabet, “Torch7: A matlab-like envi-
ronment for machine learning,” in NIPS BigLearn Workshop, 2011.

[178] Dipankar Das, Sasikanth Avancha, Dheevatsa Mudigere, Karthikeyan Vaidyanathan, Srinivas
Sridharan, Dhiraj D. Kalamkar, Bharat Kaul, and Pradeep Dubey, “Distributed deep learning
using synchronous stochastic gradient descent,” arXiv:1602.06709, 2016.

[179] Guo Haria, “convert squeezenet to mxnet,” https://github.com/haria/SqueezeNet/

commit/0cf57539375fd5429275af36fc94c774503427c3, 2016.

[180] Eddie Bell, “A implementation of squeezenet in chainer,” https://github.com/ejlb/

squeezenet-chainer, 2016.

[181] “Squeezenet keras implementation,” https://github.com/DT42/squeezenet_demo, 2016.

[182] Sagar M Waghmare, “FireModule.lua,” https://github.com/Element-Research/dpnn/

blob/master/FireModule.lua, 2016.

[183] Philipp Gysel, “Ristretto: Hardware-oriented approximation of convolutional neural net-
works,” arXiv:1605.06402, 2016.

[184] Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Shijian Tang, Erich Elsen, Bryan Catanzaro,
John Tran, and William J. Dally, “DSD: Regularizing deep neural networks with dense-sparse-
dense training flow,” arXiv:1607.04381, 2016.

[185] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and
Trevor Darrell, “Decaf: A deep convolutional activation feature for generic visual recogni-
tion,” arXiv:1310.1531, 2013.

114

[186] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew G Berneshawi, Huimin Ma, Sanja Fidler,
and Raquel Urtasun, “3d object proposals for accurate object class detection,” in NIPS, 2015.

[187] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla, “SegNet: A deep convolutional
encoder-decoder architecture for image segmentation,” arxiv:1511.00561, 2015.

[188] Bichen Wu, Forrest Iandola, and Kurt Keutzer, “Squeezedet: Unified, small, low power fully
convolutional neural networks for real-time object detection for autonomous driving,” in In
Review, 2017.

[189] Mu Li, Dave Andersen, Alex Smola, Junwoo Park, Amr Ahmed, Vanja Josifovski, James
Long, Eugene Shekita, and Bor-Yiing Su, “Scaling distributed machine learning with the
parameter server,” in Operating Systems Design and Implementation (OSDI), 2015.

[190] Adam Coates, Brody Huval, Tao Wang, David J. Wu, Andrew Y. Ng, and Bryan Catanzaro,
“Deep learning with cots hpc systems,” in ICML, 2013.

[191] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu, “Hogwild: A lock-free
approach to parallelizing stochastic gradient descent,” in NIPS, 2011.

[192] Cyprien Noel and Simon Osindero, “Dogwild! – distributed hogwild for cpu & gpu,” in NIPS
Workshop on Distributed Machine Learning and Matrix Computations, 2014.

[193] Christopher De Sa, Ce Zhang, Kunle Olukotun, and Christopher Rè, “Taming the wild: A
unified analysis of hogwild!-style algorithms,” in NIPS, 2015.

[194] Philipp Moritz, Robert Nishihara, Ion Stoica, and Michael I. Jordan, “Sparknet: Training
deep networks in spark,” arXiv:1511.06051, 2015.

[195] Sixin Zhang, Anna Choromanska, and Yann LeCun, “Deep learning with elastic averaging
sgd,” in NIPS, 2015.

[196] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz, “Revisiting distributed
synchronous sgd,” in International Conference on Learning Representations (ICLR), 2016.

[197] Joseph Spisak, “Personal communication, 2016-05-24,” 2016.

[198] He Ma, Fei Mao, and Graham W. Taylor, “Theano-mpi: a theano-based distributed training
framework,” arXiv:1605.08325, 2016.

[199] Minjie Wang, Tianjun Xiao, Jianpeng Li, Jiaxing Zhang, Chuntao Hong, and Zheng Zhang,
“Minerva: A scalable and highly efficient training platform for deep learning,” in NIPS
Workshop on Distributed Machine Learning and Matrix Computations, 2014.

[200] Zhongyang Zheng, Wenrui Jiang, Gang Wu, and Edward Y. Chang, “Speedo: Parallelizing
stochastic gradient descent for deep convolutional neural network,” in NIPS Workshop on
Machine Learning Systems (LearningSys), 2015.

[201] Cevdet Aykanat, Fusun Ozguner, Fikret Ercal, and Ponnuswamy Sadayappan, “Iterative
algorithms for solution of large sparse systems of linear equations on hypercubes,” IEEE
Transactions on Computers, 1988.

[202] John L. Gustafson, Gary R. Montry, and Robert E. Benner, “Development of parallel methods
for a 1024-processor hypercube,” SIAM Journal on Scientific and Statistical Computing, 1988.

115

[203] Min Lin, Shuo Li, Xuan Luo, and Shuicheng Yan, “Purine: A bi-graph based deep learning
framework,” in International Conference on Learning Representations (ICLR), 2015.

[204] Y.-H. Chen, T. Krishna, J. Emer, and Vivian Sze, “Eyeriss: An energy-efficient reconfigurable
accelerator for deep convolutional neural networks,” in IEEE International Conference on
Solid-State Circuits (ISSCC), 2016.

[205] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing Feng,
Yunji Chen, and Olivier Temam, “Shidiannao: Shifting vision processing closer to the sensor,”
in ACM/IEEE International Symposium on Computer Architecture (ISCA), 2015.

[206] Mohammad Motamedi, Philipp Gysel, Venkatesh Akella, and Soheil Ghiasi, “Design space
exploration of fpga-based deep convolutional neural networks,” in Design Automation Con-
ference (DAC), 2016.

[207] Chen Zhang, Peng Li, Guangyu Sun, Bingjun Xiao Yijin Guan, and Jason Cong, “Optimiz-
ing fpga-based accelerator design for deep convolutional neural networks,” in International
Symposium on Field-Programmable Gate Arrays (FPGA), 2015.

[208] David Gschwend, “Zynqnet: An fpga-accelerated embedded convolutional neural network,”
M.S. thesis, Swiss Federal Institute of Technology Zurich (ETH-Zurich), 2016.

[209] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Riedmiller,
“Striving for simplicity: The all convolutional net,” in International Conference on Learning
Representations (ICLR), 2015.

116

