
On the Representation of Distributed Behavior

Christopher Shaver

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-206
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-206.html

December 16, 2016

Copyright © 2016, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

On the Representation of Distributed Behavior

by

Christopher Daniel Shaver

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Edward A. Lee, Chair
Professor Marjan Sirjani

Adjunct Professor Stavros Tripakis
Professor John Steel

Fall 2016

On the Representation of Distributed Behavior

Copyright 2016
by

Christopher Daniel Shaver

1

Abstract

On the Representation of Distributed Behavior

by

Christopher Daniel Shaver

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Edward A. Lee, Chair

Technologies pervasive today have enabled a plethora of diverse networked devices to prolif-
erate in the market. Among these devices are sensors, wearables, mobile devices, and many
other embedded systems, in addition to conventional computers. This diverse tapestry of
networked devices, often termed the Internet of Things (IoT) and the Swarm, has the po-
tential to serve as a platform for a new breed of sophisticated distributed applications that
leverage the ubiquity, concurrency, and flexibility of these devices, often to integrate the sim-
ilarly diverse information to which these devices have access. These kinds of applications,
which we are calling Highly Dynamic Distributed Applications (HDDAs), are particularly
important in the domain of automated environments such as smart homes, buildings, and
even cities.

In contrast with the kind of concurrent computation that can be represented with petri
nets, synchronous systems, and other rigid models of concurrent computation, applications
running on networks of devices such as the IoT demand models that are more dynamic,
semantically heterogeneous, and composable. Because these devices are more than just
peripherals to central servers, themselves capable of significant amounts of computation,
HDDAs can involve the establishment of direct connections between these devices to share
and process information. From the perspective of the platform this will look like an ever-
evolving network of dynamic configuration and communication that may have no clear sense
of a center, or even a central point of observation. Computation in this fashion begins to
look less like a sequence of coherent states and more like a physical interaction in space.

Designing and reasoning about these kinds of applications in a rigorous and scalable
fashion will require the development of new programming language semantics, specification
logics, verification methods, and synthesis algorithms. At the core of all of these components
of a robust programming model will be a need for an appropriate mathematical represen-
tation of behavior, specifying precisely what happens in these spaces of devices during the
execution of a HDDA. This behavioral representation must characterize an application in
as much detail as is necessary, without having to introduce details regarding the realization
of the execution on a particular platform, bound to a specific architecture of concrete pro-

2

cess and communication relationships. This representation must also be itself as scalable,
modular, and composable as the distributed computations it describes.

The aim of this thesis is to identify the mathematical representation of behavior best fit
to meet the challenges HDDAs pose to formal semantics and formal verification. To this end,
this thesis proposes a new mathematical representation of concurrent computational behavior
called an Ontological Event Graph (OEG), which generalizes, subsumes, or improves upon
other representations of concurrent behavior such as Mazurkiewicz Traces , Event Structures ,
and Actor Event Diagrams . In contrast with many other representations of concurrent
behavior, which are either graphs or partial orders, OEGs are, in essence, acyclic ported block
diagrams. In these diagrams, each ported block represents an event and each connection
between ports represents a direct dependency between events, while each port around a block
represents the specific kind of information or influence consumed or produced in the event .
OEGs have the advantage over other representations of concurrent behavior of being both
modular and composable, as well as possessing a clear concept of hierarchy and abstraction.

The motivations and reasoning behind this choice of representation will be developed
from two directions. The first will be an exploration of the context, consisting of networks
of devices such as the IoT. The potential of these networks to serve as a distributed compu-
tational platform for HDDAs will be understood through the construction of a conceptual
application model that will be called a Process Field . The demands of this application model
and some concrete examples will be used to construct an intuitive picture of how the corre-
sponding behavioral representation must look, and what it would need to serve the purposes
of constructing semantics and performing verification in the context of HDDAs.

The second direction will reflect on the mathematical details of two classes of sequential
representations of behavior, sequences and free monoids, and look at the ways these two
classes generalize from the sequential case to the concurrent one. This will suggest, as po-
tential generalizations of the two classes, generalized sequences and free monoidal categories .
The former of these classes already has many instances prevalent in the literature. These
existing representations based on generalized sequences, along with some other similar es-
tablished means to represent concurrent behavior, will be reviewed in detail, and reasons will
be given for why they do not meet the demands for modularity and composability needed
for reasoning about HDDAs.

It will be concluded that the latter, far less investigated class of free monoidal categories
offers a richer mathematical structure that is more appropriate for the demands of construct-
ing formal models of HDDAs. In particular, free monoidal categories offer a very general
form of composition involving both a parallel and a sequential product. These products,
along with a collection of distinguished constants, form an algebra that can be used to con-
struct semantics or to formulate specifications and prove properties of behaviors. Time will
be taken to first review the concepts from category theory needed to define these structures,
particularly focusing on monoidal categories and the concept of free structures and universal
properties. The construction of free monoidal categories, and the particular variant of free
symmetric monoidal categories , will then be detailed, and several important properties of
these structures will be shown and discussed.

3

It will ultimately be established that spaces of OEGs defined in this thesis, along with
their compositions, form free symmetric monoidal categories. Consequently, the study of
OEGs can leverage all of the mathematical tools of monoidal category theory to study and
better understand distributed behavior. A chapter will be devoted to showing specifically
how the π-calculus can be given a particularly elegant and powerful behavioral semantics
using OEGs.

i

To my Kitty.

ii

Contents

Contents ii

List of Figures iv

1 Introduction 1
1.1 Behavioral Representations . 2
1.2 Outline of This Thesis . 5
1.3 Structures and Notations . 8

2 Highly Dynamic Distributed Applications 12
2.1 The Process Field Platform . 13
2.2 The Actor Model . 15
2.3 A MoC for the Process Field . 17
2.4 Examples of HDDAs . 19
2.5 Process Field Theory . 28

3 Generalizing Representations of Sequential Behavior 34
3.1 Representing Sequential Systems . 37
3.2 Generalizing . 54

4 Existing Representations of Distributed Behavior 62
4.1 Which Kinds of Systems? . 63
4.2 Traces . 64
4.3 True Concurrency . 69
4.4 Other Representations . 78

5 Key Concepts from Category Theory 84
5.1 Monoidal Categories . 85
5.2 Free Objects and Derived Structures . 97

6 Free Monoidal Categories 110
6.1 Monoidal Schemes . 111
6.2 Free Monoidal Categories . 115

iii

6.3 Properties of Monoidal Schemes and Free Monoidal Categories 126

7 Ontological Event Graphs 135
7.1 An Event Ontology . 136
7.2 Ontological Event Schemes . 141
7.3 The Formalism of Ontological Event Graphs 155

8 OEG Semantics for Process Calculi 190
8.1 The π-calculus . 192
8.2 OEG Semantics . 199

9 Conclusions and Further Work 216
9.1 More Semantics . 218
9.2 Mathematical Developments . 220
9.3 Logic and Formal Verification . 222

Bibliography 224

iv

List of Figures

1.1 The relationship between programs, formulae, and behaviors. 3
1.2 Flow of the thesis. 6

2.1 The Process Field . 14
2.2 Climate control HDDA. 19
2.3 Initial configuration in the Process Field. 21
2.4 A home automation swarmlet. 23
2.5 Final configuration in the Process Field. 24
2.6 Initial configuration in the Process Field. 25
2.7 Simple system with one managing actor P . 26
2.8 A more complex system with two independent processes managing the doors. . . 28
2.9 A possible set of connections between the two processes. 28
2.10 Execution in a Process Field. 30
2.11 Feynman diagram of electron scattering (polarized). 31
2.12 The same interaction from three frames of reference. 32
2.13 Events as collisions of computational data such as messages or states. 33

3.1 Sequential behavioral representation. 38
3.2 Free monoidal behavioral representation. 40
3.3 Generalized sequence. 54
3.4 Diagram in a monoidal category. 55
3.5 Composition in a monoidal category. 56
3.6 Ambiguity in composing generalized sequences. 56

4.1 Two different processes that look the same to a sequential observer. 69
4.2 Graphs of events indistinguishable under transitive closure. 73
4.3 A potential composite of parts of two different graphs. 74
4.4 Compositions of pomsets . 76
4.5 Event diagrams with boundaries. 80

5.1 A graphical representation of a morphism in a monoidal category. 87
5.2 Graphical depiction of composition and identities. 88
5.3 More graphical elements of monoidal categories. 89

v

5.4 (f ⊗ g) ◦ (h ⊗ k) = (f ◦ h) ⊗ (g ◦ k) . 89
5.5 A more complex composition. 90
5.6 Graphical proof of associativity. 92
5.7 More graphical properties. 92
5.8 Braidings in symmetric monoidal categories. 93
5.9 β(a ⊗ b, c) = (β(a, c) ⊗ id(b)) ◦ (id(a) ⊗ β(b, c)) 94
5.10 β(a, b ⊗ c) = (id(b) ⊗ β(a, c)) ◦ (β(a, b) ⊗ id(c)) 95
5.11 β(b, d) ◦ (f ⊗ g) = (g ⊗ f) ◦ β(a, b) . 95
5.12 G ◦ (id ⊗ β) ◦ (β ⊗ id) ◦ (id ⊗ β) ◦ F . 96

7.1 A message reception event. 137
7.2 An event type and an event interface. 138
7.3 Three examples of event types. 139
7.4 An example of an functional event type. 140
7.5 An example of an OEG. 141
7.6 An OES for sequential processes with message passing. 145
7.7 OEG for a three-way handshake protocol. 147
7.8 Hierarchical abstraction of a three-way handshake. 148
7.9 An alternate rendering of the OEG for a three-way handshake protocol. 150
7.10 Another alternate rendering of the OEG for a three-way handshake protocol. . . 151
7.11 An extended version of the OES for processes with message passing. 154
7.12 The parallel composition of G and H. 169
7.13 The sequential composition of G and H. 174
7.14 Constant OEGs. 181
7.15 An atomic OEG . 186
7.16 A permutation OEG. 186

8.1 The three primary reduction events of π-calculus 200
8.2 The three families of event types forming the OES for π-calculus 202
8.3 An example of an OEG representing the reduction of a term. 209
8.4 A composition (a) between two OEGs and the resulting OEG (b). 211
8.5 An OEG interpretation of the parallel rule. 213

vi

Acknowledgments

I would like to extend my sincerest gratitude to everyone who supported me along the
complex course that culminated in this thesis. I would first like to thank my two advisors,
Professors Edward A. Lee and Stavros Tripakis. Upon my arrival at Berkeley, Professor
Lee offered me a position in his research group, and since then, I have had the incredible
opportunity to work with him researching the semantics of Models of Computation. Edward
has always been supportive of my work and has taken the time to give me tremendously
valuable feedback and to point me in the right direction. As a student of Edward’s, I have
been impressed by his curiosity, intensity, creativity, and prolific productivity as a researcher
and a teacher.

I first met Stavros upon my entrance into Edward’s research group. Stavros was a
researcher at the time, and became the first person I worked closely with as a graduate
research assistant. Stavros, in many ways, was the person who introduced me to the study
of the semantics of Models of Computation. Over the subsequent years Stavros generously
offered me many incredible opportunities to participate in research projects. For much of my
time at Berkeley he has been the first person with whom I can discuss my ideas, particularly
those that have been more difficult to communicate. I was honored to become Stavros’s first
official graduate student when he became a professor.

I am perhaps most greatly in debt to Professor Marjan Sirjani who inspired this work and
believed in me while I pursued it through so many bouts of uncertainty and self-doubt. This
work emerged from a tremendously powerful collaboration between Marjan and I, begin-
ning during the summer of 2015, to better understand how to approach some challengingly
complex systems of networked devices from a perspective of formal verification. Marjan en-
couraged me to pursue this work as the focus of my thesis, and has supported me throughout
the process of writing it. I could not have done this without her.

I would like to thank my outside committee member Professor John Steel for teaching
me computability theory. I took a class with him on the subject that influenced me greatly
and made me feel comfortable enough with formal mathematics to pursue some of the more
challenging work in this thesis. This was the first class I completed that required me to
formally prove theorems in detail. This was not only an essential skill that I learned, but a
powerfully deep and profound craft with which I have managed to gain some acquaintance.

I would like to thank all of the other faculty members who gave me opportunities to do
compelling research. Among them, I would like to give a special thanks to Professor Alain
Girault who offered me the opportunity to speak about my work on synchronous systems
at Dagstuhl, and to do research with him at INRIA in Grenoble. I would also like to give a
special recognition to Professor Reinhard von Hanxleden, who gave me the opportunity to
do research at Kiel University.

I would also like to thank all of the other students, researchers, and faculty who have
worked with me. I would like to thank Marten Lohstroh for working with me on several
projects that set the stage for this work and pointing me in the direction of Hewitt’s ideas
on concurrency, which influenced me greatly. I would like to thank Christian Motika, Chris-

vii

tos Stergiou, Michael Zimmer, David Broman, Matthew Weber, Armin Wasicek, and Ilge
Akkaya for collaborating with me on projects, as well as fellow students and researchers with
whom I had influential discussions and exchanges, namely Jan Reineke, Patricia Derler, Gil
Lederman, Dai Bui, Ben Zhang, Hokeun Kim, Tomi Räty, Fabio Cremona, Marcell Vazquez-
Chanlatte, Ben Caulfield, Alexandre Donze, Antonio Iannopollo, Pierluigi Nuzzo, Tommaso
Dreossi, John Finn, and many others I have had the privilege to encountered at Berkeley
and other institutions. A particular recognition is owed to Hugo Andrade, who always said
good things about my presentations, despite others’ convictions that they were difficult to
follow.

Finally, I would like to thank all of my friends and loved ones for their support during
my time as a graduate student. I would especially like to thank my partner Jules, who has
shown me great love, and has given me strength and confidence in my work and in myself.

1

Chapter 1

Introduction

As they have become more pervasive and developed, computer networks have shifted from
being centered around proper computers themselves, such as servers and desktops, to en-
compassing a plethora of diverse, heterogeneous computational and informational devices.
Amongst these devices are sensors, actuators, smart phones, appliances, wearables, and many
other kinds of embedded systems, particularly those endowing everyday objects with the
sufficient faculties of intelligence and communication to be called and marketed as smart.
Furthermore, the set of scales of more conventional computers, running typical operating
systems and computing with traditional computer architectures, has become more diverse.
Small form-factors of inexpensive, easily networked computers have made it possible for a
rapid increase in the number of individual computing devices that could be found in a home
or workplace, networked together, often through wireless networks.

The purposes of these ubiquitous devices are as diverse as they themselves are, but a
prevalent example of such a purpose is to interact with the conditions of an environment,
sensing or actuating things like light levels, temperature, the presence of people in various
states of affairs, the state of doors and windows, the condition of utilities such as power and
water, the state of appliances such as refrigerators and stoves. Wearable sensors can incor-
porate information about human bodies, monitoring health, movement, and even emotional
affects. Indeed, these things can all affect each other, and often this is both the key aim and
challenge of constructing an automated (smart) environment.

Some of these devices, prior to being direct participants in networks, were previously only
peripherals to traditional computers or servers, and controlled or accessed through central
processes on their hosts. This is particularly true of sensors and actuators, which may have
only been available to a network via high-level processes running on a host computer. A
typical application might involve the use of all of these elements, but the application itself
would only be a traditional program running on a central host, communicating with these
peripherals, and thereby mediating their interaction with each other. Interfacing with these
devices, in this case, becomes a matter of constructing the system, having the right drivers,
connecting cables, or picking up the right dedicated signals. The topology of communica-
tion that comes from such a system is a static one, and applications might assume in their

CHAPTER 1. INTRODUCTION 2

semantics that, aside from errors, the connections remain consistent over the course of exe-
cution. Consequently, the kinds of applications written for such systems could be conceived
of easily in familiar computational paradigms, languages, and semantics that were designed
largely for sequential computation, perhaps with additions to accommodate simple forms of
concurrency.

However, today many of these same kinds of devices are autonomous and have more
significant computational resources of their own, and can often communicate via high-level
protocols such as HTTP or UDP, or more specifically through RESTful interfaces and open
APIs. Having these devices directly connected to networks, and broadly capable of forming
connections with each other, opens the door to the possibility of highly distributed and
dynamic applications that do not have a proper center to them. This new network of diverse,
often autonomous, heterogeneous devices constitutes a new platform for computing which is
being termed the IoT or the Swarm[35].

Utilizing the IoT or the Swarm (not to mention the “cloud” as well) as a platform for
concurrent applications, developers can construct applications that are deployed into the
Swarm, linking together a number of devices and coordinating their execution to perform
some task that leverages the relationship that the involved devices have with the physical
world. Many such distributed applications form Cyber-Physical Systems (CPSs) that process
inputs from sensors and produce effects through a variety of actuators in a manner sensitive
to space and time, involving feedback loops through the physical world. The challenge to
application writers and computer scientists working on this frontier is to handle this broad
decentralization of control, developing systems that do not rely on a central point of reference
or synchrony to achieve complex aims, all while (and perhaps this is the most challenging
dimension) having the components of these applications and their relationships dynamically
changing over the course of execution. We will use the term Highly Dynamic Distributed
Application (HDDA) to describe the kind of application we are envisioning running on such
a platform.

1.1 Behavioral Representations

Distributed applications can readily be developed today for the IoT and the Swarm through
ad-hoc methods, tailored to specific cases, and their behavior can reasoned out exhaustively
or approximately. But, the increasing pervasiveness, scale, and complexity of applications
that we are calling HDDAs demand a sophisticated system design model with appropriate
languages, design tools, well-defined semantics, formal specifications, mathematical repre-
sentations of behavior, analysis methods, verifications, and even synthesis algorithms. In
other words, it will inevitably be necessary to write these applications in a manner that
lends itself to establishing certain assurances about what ends up happening when they are
run on such a complex and dynamic platform.

It is inevitable that many languages and tools will be created for this task, along with
many formal methods. However, one might argue that the glue that ties all of these di-

CHAPTER 1. INTRODUCTION 3

Figure 1.1: The relationship between programs, formulae, and behaviors.

mensions of a system design model together is the mathematical representation of behavior.
This representation is what describes, in essence, what happens during an execution of a
system. The importance of this particular piece in the greater puzzle of how to deal with
computation on platforms like the IoT and the Swarm is highlighted by Abramsky in [3],
while addressing the fundamental question What do we compute?. Abramsky points out
that while traditional models of computation establish the meaning of a computing system
as a function (for instance, N → N), “in much of contemporary computing ... the purpose
of the computing system is to exhibit certain behavior.” To emphasize this, Abramsky asks
provocatively “what does the internet compute?”

In interactive, let alone distributed platforms, behavior is central in understanding both
the semantics of languages and the meaning of specifications. The relationship between
programs in programming languages or models, formulae in specification logics, and behaviors
in a behavioral representation can be summarized in the diagram shown in Figure 1.1,
which depicts the relationship between these domains. Between programs and behaviors,
the relationship is captured in a semantics, which determine for any given program P a
behavior or set of behaviors JPK that describe what happens when the program is executed.
Between behaviors and formulae, the relationship is captured in the modeling relation, which
determines for any given behavior B and formula φ whether the specification given by the
formula holds for the behavior B |= φ.

The final relation between programs and formulae characterizes verification methods
and other program analysis tools that confirm or deny that a particular program P has a
property specified by a formula φ. On one hand, this relation can be defined by the other
two, specifically in the form JPK |= φ, and assuredly this must declaratively hold granted that
the other two already exist. On the other hand, in a practical setting, an analysis algorithm
can rarely proceed by first computing all behaviors, which might indeed be infinite, then
using them to interpret the formula directly. Instead, many clever tricks and abstractions
are involved in traversing this relation more directly. Nevertheless, the behavior remains key
in giving a clear formal meaning to everything.

CHAPTER 1. INTRODUCTION 4

Moreover, it could be said that the behavioral representation constitutes a common
currency amidst the plethora of different programming languages and models that may be
created, as well as the variety of different logics that might be used. It is therefore the
primary aim of this thesis, reflecting on the two questions of what languages and which
logics are appropriate for dealing with HDDAs running on platforms such as the IoT and
the Swarm, to first ask the question of what is the most fitting behavioral representation.
How can we represent meaning in these platforms?

For a sequential system, it seems obvious that any representation of behavior has the
general structure of a sequence of observations, usually either of states or events. What
happens can simply be listed.

event1, event2, event3, event4, . . . (1.1)

This notion of steps in time is very intrinsic to a process being sequential.
However, for a concurrent system, such as the platforms we are considering here, how

to represent behavior is far less obvious. Abramsky addresses this issue in [2], descriptively
entitled What are the fundamental structures of concurrency? We still don’t know!, which
argues that, while there are a wide variety of proposals for such a system to represent concur-
rent computation, there is no clear definitive answer to this question. If the reader suspects
this line of inquiry has been closed in the decade since this paper, Abramsky’s discussion in
the more recent [3] reflects the continuation of this inquiry asking “Is there a widely accepted
universal model of interactive or concurrent computation?” and subsequently answering that
“there is no such clear-cut notion of universality”.

This thesis will not attempt to answer such a fundamental question. But it suffices to say
that it is not obvious what an appropriate representation of concurrent behavior would be for
HDDAs running on platforms such as the IoT. This thesis will propose a candidate for such a
behavioral representation, and therefore endeavor to provide a ground for the development of
programming languages, specification logics, verification tools, program analyses, and other
components of a comprehensive system design model tailored to the development of these
kinds of applications.

The behavioral representation that will be proposed will be called an Ontological Event
Graph (OEG). This formal entity can most succinctly and intuitively be described as an
acyclic ported block diagram. In this diagram, each block has a set of input and output
ports and edges running from the input port of one block to the output port of another.
These diagrams are reminiscent of dataflow diagrams and other kinds of diagrams used in
component-oriented modeling languages where the blocks represent components and the
edges represent channels of communication between them. These diagrams are ubiquitous in
computer science and engineering and should be familiar to most readers. However the way
they will be used here will be different. In an OEG each block will represent a behavioral
event during the execution of a system. The incoming ports will represent the dependencies of
the event, the pieces of information or influence necessary for it to happen, and the outgoing
ports will represent dependencies that can be supplied to subsequent events; the results of

CHAPTER 1. INTRODUCTION 5

the event. The edges connecting ports will then represent the passage of information or
influence as a direct dependency between events.

There already exist a plethora of ways to represent concurrent processes, amongst them
interleaved traces, partially ordered multisets, and varieties of event and task graphs. In
all of these representations, events are merely vertices, and while they have incoming and
outgoing dependency relations (direct or transitive) they do not possess a surrounding inter-
face determining the order and the purpose of these incoming and outgoing dependencies.
While adding this information might seem like a subtle enrichment of these existing models,
it has a dramatic impact on modularity and composability. In particular, as we will see, it
changes the mathematical theory around these entities radically. It changes behaviors from
topological/relational entities to algebraic ones. Specifically, we will see that OEGs form
free symmetric monoidal categories, algebraic structures that can be studied very directly
using the tools of category theory. In more concrete terms, we will be able to construct
OEGs with an algebraic language, and write formulae using this language. This provides a
means to construct compositional OEG-valued semantics, and to reason about OEGs using
the algebraic laws of free symmetric monoidal categories.

1.2 Outline of This Thesis

The structure of this thesis is depicted in Figure 1.2 as a dependency graph. Being that
reading has been so far a sequential process, rather than a truly concurrent one, the reader
will inevitably have to realize this structure as an interleaved trace. Nevertheless, the graph
suggests several possibilities aside from the normative one suggested by the chapter enumer-
ation. We will briefly summarize the chapters, then provide a couple paths the reader can
take through the text.

Chapter 2
We begin looking in more detail at the motivating context for this work, centered
around distributed platforms such as the IoT. In order to establish the scope of what
is possible on these kinds of platforms, we imagine an application-level model built upon
such a platform of devices and networks that will make it possible to write HDDAs. We
will call this application model a Process Field and discuss how it can support a variety
of Models of Computation (MoCs), allowing applications to make use of heterogeneous
semantics. We will focus in particular on the Hewitt Actor Model as a superlative
representative of the most flexible kind of semantics that one might expect on this
platform and use it to identify important features that a behavioral representation
must be able to handle. We will also give concrete examples of scenarios that will
occur in HDDAs that illustrate these important features. The chapter will conclude
attempting to sketch out a picture of behavior that emerges from these considerations,
which we will term Process Field Theories through an analogy with physics.

CHAPTER 1. INTRODUCTION 6

Figure 1.2: Flow of the thesis.

CHAPTER 1. INTRODUCTION 7

Chapter 3
Taking a different approach to the problem of determining the right kind of behavioral
representation for distributed behavior, this chapter will start by considering two dif-
ferent ways of mathematically representing sequential behavior: proper order-theoretic
sequences, and free monoids. These two methods will be shown to be conceptually dif-
ferent, but effectively equivalent, and thus easily conflated with one another in practice.
However, we will argue that in generalizing each of these two sequential representa-
tions to their concurrent counterparts, generalized sequences and monoidal categories,
respectively, this effective equivalence is lost and two radically different mathematical
models of concurrent behavior emerge as candidates for fulfilling the demands of our
context. We will conclude by giving preliminary conceptual arguments suggesting that
the latter representation, rooted in monoidal category theory, captures computation in
a more fundamental way.

Chapter 4
Reflecting on the other choice of generalized sequences, introduced in the previous chap-
ter, we will address some of the more common instances of this kind of representation
in the literature. Among these existing models are interleaved traces, Mazurkiewicz
Trace, Event Structure, pomsets, and Actor Event Diagram, as well as other variants of
these kinds of models. We will address the shortcomings of these models in addressing
our demands for a behavioral representation.

Chapter 5
In order to build the mathematical tools needed to propose a new behavioral represen-
tation rooted in monoidal categories, we will first review and develop two important
concepts from category theory: free constructions and monoidal categories themselves.
The discussion of the former of these topics will involve an overview of the connection
between universal morphism, free constructions, adjunctions, and monads. We will
give the particular variant of the definitions for each of these concepts that we will use
later and exemplify their use in the method of defining free constructions on monoids.

Chapter 6
Putting together the category theoretical concepts from the previous chapter, a defini-
tion for free monoidal categories will be given in detail, with a particular focus on the
free symmetric monoidal categories variant of this construction. We will begin, first,
defining monoidal schemes , which will be used to generate free monoidal categories.
After giving the construction, we will go on to prove that the category of monoidal
schemes is small co-complete and thus transfers its colimits via Adjoint Functor The-
orem over to the corresponding category of free monoidal categories.

Chapter 7
This chapter will introduce our proposal for a new behavioral representation, which
will be called an OEG. We will first present OEGs and their components conceptually,

CHAPTER 1. INTRODUCTION 8

creating an event ontology for distributed behavior. We will then give formal defini-
tions to Ontological Event Schemes (OESs), the languages of basic elements used to
build OEGs, and then to OEGs themselves. Definitions will be given for parallel and
sequential compositions on OEGs, as well as for special kinds of OEGs. It will then be
shown that spaces of OEGs defined by a particular OES are free symmetric monoidal
categories, and thus acquire the mathematical tools and theories around them de-
veloped in the previous chapter. The ramifications of this identity will be discussed
and examples will be given of how the concepts from category theory manifest in the
concrete use of these representations.

Chapter 8
As an example of how OEGs can be used in a sophisticated way to define the semantics
of a concurrent language, an OEG semantics will be given for the π-calculus. We will
discuss why this kind of semantics provides a particularly elegant basis for reasoning
about π-calculus and carries intrinsically many of its important properties.

Chapter 9
Finally, conclusions will be drawn and an outline will be given of several directions of
further work that can be done with OEGs.

In spite of the dependencies shown in the graph, a reader familiar with the basic con-
cepts of category theory may jump to Chapter 5 to get a review of universal properties, free
constructions, and monoidal categories, then proceed to Chapter 6 to read about the con-
struction of free monoidal categories and about some of the properties that make them useful
for our purposes here, but could just as well be useful elsewhere. As the graph suggests, a
reader uninterested in the other representations of concurrent behavior, interested only in
understanding OEGs, may skip Chapter 4, or at least defer it. A reader less concerned with
the application space of OEGs, the IoT and the Swarm, could omit Chapter 2. Because
Chapter 3 is primarily about motivations and intuitions, and perhaps a bit philosophical,
this could also be skipped at the expense of not getting some intuitive ground leveraged
later. Finally, for a reader that wishes to avoid category theory at all costs, but would still
like to understand what OEGs are at a practical level, one could read Chapter 2 and jump
straight to Chapter 7 and focus on the direct, set-theoretic construction of OEGs and their
compositions.

1.3 Structures and Notations

There are a number of notations, structures, and conventions that will be used throughout
the thesis. When possible, we will try and give the mathematical type of objects. In doing
so, we will use the convention of dependent typing to indicate parametric families of objects.
It is the contention of the author that this can clarify things, particularly when many of

CHAPTER 1. INTRODUCTION 9

these objects might be constructed as programs. Specifically, the type

f :
∏

a : A · T (a)

indicates that f is a family of objects fa, each of type T (a), where a ranges over the type A.
The type

x :
∑

a : A · T (a)

indicates that x is a pair of objects (a, y) where a ∈ A and y ∈ T (a), noting that the type of
the second element depends on the value of the first. The author is confident that the way
these conventions are used will not introduce any significant foundational concerns.

Other various conventions and notations are listed as follows.

1. For declarative definitions the
def
= symbol will be used, while = will be reserved for

propositional equality.

2. The symbol 2 will be used to represent the boolean set {true, false}, and functions
given the type A→ 2, where A is some set, will be taken as predicates over A.

3. The symbol F will be used to represent the set containing a single element, which we
will name ?. For any function h : A→ B, that does not already have ? in its domain,
the notation h? will be used to represent the canonical lifting of h into a function of
the type A ∪F→ B ∪F defined

h?(x)
def
=

{
? x = ?

h(x) otherwise

4. For any set X, the symbol ∅X will be used to represent the unique function from ∅ into
X (consisting of the empty mapping).

5. The operator q will be used to represent binary coproducts over sets, defined

AqB def
= {(a, 0) | a ∈ A} ∪ {(b, 1) | b ∈ B}

This is a standard method to form disjoint unions by tagging elements from each set
with a tuple marked with 0 or 1. To identify these tagged elements more clearly, the
notations ιL and ιR will be used to represent the left and right injections, defined

ιL(a) = (a, 0)

ιR(b) = (b, 1)

CHAPTER 1. INTRODUCTION 10

For any given coproduct, these two notations will be overloaded to represent the par-
ticular injections corresponding to the operands of the coproduct. Given two functions

f : A→ C

g : B → C

the notation f O g represents the canonical coproduct of functions

f O g : AqB → C

defined

(f O g)(x)
def
=

{
f(a) x = ιL(a)

g(b) x = ιR(b)

6. For any set X, and any equivalence relation ∼= over that set, X/ ∼= will notate the
quotient set, consisting of the equivalence classes of X under ∼=. For any x ∈ X, 〈x〉
will be the equivalence class of the element x (the set of elements equivalent to x).
Moreover, for any function or operator f over X, 〈f〉 will be the canonical lifting of f
to a function or operator over elements of X/ ∼= into elements of X/ ∼=.

7. The operators ◦ and • will both be used to represent categorical or functional com-
position, where ◦ corresponds to standard function composition and • is defined

g • f def
= f ◦ g

8. The operator • will also be used to represent monoid composition, along with the
operator ⊗ . The monoidal unit will be notated 1.

9. For any categorical object or set X, the notation id(X) will be used represent the
identity morphism or function from X to itself. When the parameter X can be inferred
from the context, we will shorten the notation to just id.

10. For any algebra A, the notation ‖A‖ will be used to represent the underlying set or
structure of A.

11. For any structure a with a well-defined notion of ordinal length, the notation ‖a‖ will
be used to represent that length. Ords will represent the collection of all ordinals.

12. For any category C representing algebras with homomorphisms, the notation C(X) will
be used to represent the free algebra over underlying structure X (assuming that free
algebras are defined for C).

13. Throughout the text the symbol A will be used to represent alphabet-like sets and
structures.

CHAPTER 1. INTRODUCTION 11

14. Set will be the category of sets and functions, andMon will be the category of monoids
and monoid homomorphisms. This convention will be maintained when possible.

15. ⊥S will notate the bottom element of a partial order S (when such an element exists).

16. To simplify matters, operators and functions will sometimes be silently lifted to tuples
of elements to which they apply. For instance, for some function f : X → Y it will be
assumed that

f(x1, . . . , xN)
def
= (f(x1), . . . , f(xN))

12

Chapter 2

Highly Dynamic Distributed
Applications

Knowing what kinds of behaviors are possible in the applications we will be considering
depends on the kinds of platforms on which these applications will be running. As we
have stated, the kinds of platforms that this thesis will consider are those such as the IoT
and the Swarm. But it can be seen from our description of these platforms, given in the
introduction, that what characterizes them primarily are their constituting components,
rather than an application or computational model that they give rise to. As the term
suggests, the IoT, for instances, consists of things, a diverse collection of informatic devices
with varying connections to the physical world, and the internet, a ubiquitous network
providing the means for these devices to communicate. Likewise, the Swarm consists of a
very large number of coordinated elements analogous to insects.

This leaves open the question of what kind of computational platform or system emerges
from these components. What Models of Computation can be realized on these platforms?
Assuredly many such models could be implemented by these platforms. However, consider-
ing that these platforms describe large open-ended networks, like the internet, rather than
small highly controlled ones, like that of a distributed control system or even a network of
communicating cores on a CPU, it may be the case that multiple models are operating on
this platform at once, either independently or interacting with one another. These platforms
will inevitably be heterogeneous, and thus what occurs on them will be a conjunction of
different kinds of processes, each having been crafted in different semantics with a different
set of design constraints in mind.

The question of how to handle semantic heterogeneity in modeling has been approached
in the research efforts around Ptolemy II [15]. This component-oriented modeling platform
facilitates the construction of systems in many different Models of Computation, such as
Kahn Process Network (KPN), Dataflow (DF), Synchronous Reactive (SR), and Discrete
Event (DE) models [57], as well as heterogeneous models that can combine these Models
of Computation. While the individual Models of Computation implemented in Ptolemy II
have been thoroughly researched individually, and all have precise semantics, the subject of

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 13

combining these semantics in heterogeneous models has been an area of ongoing research.
A theory of combining some of these models denotationally was constructed in [66], but
this theory abstracted away from the behavioral dimension, leaving the question of how to
combine the behaviors of models an open one. Instead, to reference Abramsky’s comments
recounted in the Introduction, the theory given in [66] provided a means to determine what
function a heterogeneous model computed, without approaching the question of how this
computation was performed.

In general, the temptation arising from semantic heterogeneity is to attempt to posit a
overarching MoC for these platforms that is capable of subsuming all of the others, giving
them a common compositional ground. However, without even determining whether this
aim is a realistic one, a more fundamental question must first be answered, connected to the
central theme of this thesis. Even if we were to posit such an overarching model formally, how
would we express its behavioral semantics? If we knew it would all run on a single sequential
machine, we might posit that it would be expressed as sequences of instructions on the
machine, albeit at a loss of some abstract insight. But in our case, these applications will be
running across a plethora of different machines. What underlying behavioral representation
could serve as a common currency between the diverse models that may be running and
interacting on these platforms, while abstracting away from the particularities of the devices
and networks as much as possible? This is the question this thesis intends to answer in the
form of a behavioral representation capable of codifying the semantics of various Models of
Computation on platforms such as the IoT.

Nevertheless, determining the appropriateness of a behavioral representation requires at
least an informal, intuitive concept of the application model that will be supporting HDDAs.
Moreover, to even give a motivating example of an HDDA there will need to be a sense of
how these may be structured. What kinds of events occur in an HDDA? What has to be
accounted for in the behavioral representation? What features should it support?

This chapter will give such an intuitive but detailed characterization of the application
platform made possible by the constitution of the IoT or the Swarm. A conceptualization
of HDDAs will then be developed on this platform drawing on Hewitt’s Actor Model[18].
Examples of these kinds of applications, illustrating their semantic complications, will be
given in detail. We will conclude this chapter with a picture of the kinds of behaviors we
would like our representation to represent.

2.1 The Process Field Platform

A significant amount of research has already been devoted to the nascent IoT and how to
use modeling tools to develop distributed applications aimed at integrating its many diverse
devices. The focus of these tools has been more oriented towards software engineering,
encapsulation, reuse, composition, typing, and other forms of static analysis than formal
semantics. The Node-RED [65] epitomizes this effort, providing a block diagram language
for assembling components into flows, which bear resemblance to dataflow networks. The

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 14

Figure 2.1: The Process Field

semantics for interaction and communication derive from the underlying semantics of the
ECMAScript platform NodeJS [24] on which these networks run. Efforts have been made
to give these flows other kinds of semantics as well, such as distributed dataflow[8].

Another line of research aimed at abstracting away the particularities of the devices
and services that exist in these platforms, is developed by Latronico et al. in A Vision
of Swarmlets [33]. This paper offers a picture of how applications can be constructed from
Acccessors, which encapsulate devices and services in a component-oriented interface. These
Accessors serve as a proxy layer that can facilitate the composition of devices and services in
component-oriented modeling platforms like Ptolemy II. A Swarmlet , an application aimed
at the Swarm, can be constituted of several such models communicating with each other
through a variety of network protocols on the other side of the Accessor abstractions.

Drawing from these research efforts, it is clear that many techniques have been proposed
or investigated for the purpose of abstracting away details of device interfaces and protocols,
as well as details of the networks involved. This abstraction provides the application model
with a much simpler picture of the IoT. Perhaps the most fundamental of these abstractions
is the provision of a universal address space. This technique has been developed in the work
of Kubiatowicz et al. in developing the Global Data Plane (GDP) [49], a space of datasets
accessible from the application layer via universal addresses. What can be abstracted away
in the GDP are the actual locations of this data, the routing necessary to access them,
and details specific to the platforms that participate in this network. From the perspective
of applications, access to the information logs that constitute this GDP is transparent,
facilitated by a simple API.

In a series of presentations, [63][36], Shaver and Lohstroh elaborated on this idea of a
GDP, suggesting a universally addressed space of processes – a Global Process Plane, drawing
from Hewitt’s Actor Model[18] for a sense of its semantics. This space, which we will call
here a Process Field, consist of universally addressed concurrent processes. As is depicted in

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 15

Figure 2.1, the diverse entities that make up the “things” of the network are on the periphery
of this space. Amongst these things are physical devices, such as sensors, actuators, and
other components of CPSs; computational resources, such as databases, processors, and
other kinds of specialized computation; or even other software systems, models, and user
interfaces. These entities appear within this Process Field in the form of proxy processes
that represent different means of interfacing with them. In addition, the Process Field
consists of other transient and persistent computational processes. These processes all exist
at particular addresses in the universal address space.

Beneath the application layer of the Process Field, and its universal address space, are
all of the mechanisms responsible for realizing this abstraction. Amongst them are network
devices and interconnects, physical computers, operating systems, middleware, data storage,
etc... These mechanisms may be spread out across several physical devices, existing at
different physical locations. They should make it possible for the processes at the application
level to send messages to each other, create new processes, and migrate processes to new
locations. As is the case in the GDP, the addresses may not correspond to particular devices
or particular locations. The underlying location of a process running on a particular physical
machine in a particular location may change without affecting the address visible from the
application layer.

Considering the structure of this platform, we can imagine, with great generality, that
the fundamental application level events we expect to see in HDDAs would appear on this
kind of a platform. More specifically, the semantics of the Hewitt Actor Model provides a
set of event types that one would expect to happen in a Process Field. We can imagine that
processes can: (from [18])

• send a finite number of messages to other [processes]

• create a finite number of new [processes]

• designate the behavior to be used for the next message it receives.

And thus an informal application model we envisage for our Process Field can be conceived
of as a variant of the Actor Model. Although we do not aim to pin down this model in
complete generality and exclusivity, it can be seen that this is a reasonable starting point
for identifying the kinds of behaviors that will be interesting on such a platform. We will
proceed by diving into details about the Actor Model, assessing its fit to our circumstance.

2.2 The Actor Model

Hewitt’s Actor Model[19] is, at its core, characterized foremost intuitively rather than for-
mally. Though, several formal semantic accounts have been given of this model, such as that
of Hewitt and Baker[6], Clinger[12], and Agha[4].

In this MoC, the atomic elements of computation are Actors. Each Actor exists at a
particular address, in a space of addresses, and at any given moment in execution knows

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 16

some of the addresses of other Actors. The most lucid and concise description of what an
Actor can do may be that of Agha in [4]. To paraphrase: each Actor can respond to each
message it receives by doing any combination of the following.

• Sending a finite set of messages.

• Creating a finite number of new Actors.

• Specifying a new behavior to handle subsequently received messages.

While the first two of these actions are clear, the third might require some further clarifica-
tion, which we will come back to. We will refer to the specification of an Actor that maps
received message to a collection of these actions as a reaction rule.

The execution of a particular Actor can be thought of as sequential, determined by
the order in which received messages are handled. Messages are sent to it asynchronously
from other Actors, and thus when an Actor receives them they are not necessarily inherently
ordered. However, when messages are received, they are given an order, nondeterministically
interleaving causally independent messages from different senders. These messages are then
processed in this order creating a correspondingly ordered sequence of computational steps
determined by reaction rules. This ordering is known as the arrival ordering of a Actor – we
can state this order irrespective of whether we are talking about the order of actual message
arrival or of the consequent reaction, since there is one message for every reaction.

The way that each message in the arrival ordering is handled might be different and
depend on previous steps in the Actor’s execution. Rather than supposing that each message
is handled in the same fashion, by the same reaction rule, as in a stateless dataflow process,
one of the consequence of handling each message is determining how the next message will be
handled – the third possible action identified above. This could be framed precisely in many
ways. The most familiar would be to simply say that the Actor has state, and each action
can modify it, effecting the logic of the reaction rule. Another way of framing this would be
to construct in the action the continuation for the Actor, consisting of a new reaction rule
determining how the Actor will respond to the next message.

The details of the language in which reaction rules are specified can vary widely, and
many such languages exist for programming Actors. The content of messages can vary
widely, consisting of any kind of data. However, an essential piece of information a message
must be able to convey is an address of an Actor. Alongside the fact that an Actor can only
send messages to addresses it knows, which comprise part of its state, the communication
of addresses between Actors is what facilitates the evolution of the network of possible
communications between Actors. That is, through receiving messages containing addresses,
an Actor learns which other Actors it can send messages to.

As a matter of fact, in its most abstract formulations, messages consist exclusively of ad-
dresses, and the relevant state of an Actor consists of addresses as well. This simplified Actor
model serves a similar purpose as the λ-calculus , capturing the most significant primitive
semantics mechanisms involved, out of which more complex computations can be built up

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 17

– albeit in tedious fashion similar to Church arithmetic in λ-calculus. Any practical variant
on the Actor model endows Actors with the capacity to pass data in a variety of forms in
messages, and to react to them in a way that performs any effective computation on their
constituents. In other words, each reaction rule can involve an effective computation with
the message as an input and the collection of messages to be sent, the collection of Actors
to be created, and the continuation all computable functions of this input.

Nevertheless, an important observation of Hewitt regarding the abstract Actor model is
that the messages could themselves be conceived of as Actors, since they contain addresses.
Extending this to the more general case, this idea that messages are Actors suggests the
notion of mobile code, if we suppose that the messages may contain both proper data as
well as continuations containing reaction rules. If a Process Field is the abstract platform
of universal addresses at which processes can concurrently operate, this model certainly
captures much of what one could imagine happening on this platform.

2.3 A MoC for the Process Field

Although we must reiterate that the Actor model is not being put forward here as an ultimate
proposal for a MoC running on a Process Field, there are many reasons why this model
is arguably a realistic candidate for understanding semantics on this platform. Without
fleshing out the exact details of this model, which differ over its many variations, enough
can be extracted from it to point us in the right direction in our search for a behavioral
representation. At the least, it is clear that such a representation should handle the Actor
model, along with the other possible semantics defined on this platform, since this is a
realistic model in which one would expect to define HDDAs.

At the least, it can be said that the Actor model is a particularly useful MoC amongst
a heterogeneous spectrum of different models that may all simultaneously be at play in a
Process Field. But Hewitt makes no hesitation in confidently arguing that this model is read-
ily capable of subsuming a great many of other computing paradigms [19]. Many of these
paradigms are the alternatives one could imagine occupying this space. Amongst them are
simple sequential models, λ-calculus, functional languages, DF processes, control structures,
and various mechanisms used in more traditional methodologies of concurrent programming
such as semaphors and monitors. This makes a convincing case for supposing that a behav-
ioral picture of the Actor Model could handle several other Models of Computation, even if
these other models are not transliterated into the language of Hewitt Actors. In other words,
if a behavioral representation can effectively codify Actor behavior, many other mechanisms
one might find in HDDAs should also be covered.

Adding to this point, consider that the above definition for a single Actor, when given
the state interpretation, amounts to that of a Mealy Machine. For an incoming message in
the set M , and a state in space S that determines the reaction rule for the Actor, the action

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 18

over the history of the Actor can be generally described denotationally by a function F

F : M × S → H ×W × S (2.1)

where the outputs of the function are a collection H of messages to send, a collection W of
new Actors to create, and a new state determining the behavior of the Actor upon receiving
the next message. If we consider M to be inputs, and H ×W the outputs, it is easy to see
that this fits the model of a Mealy Machine, both denotationally and operationally.

However, in general, how Actors are composed together into a model certainly goes
beyond what is typically done with Mealy Machines in circuits and other similar kinds of
models. In the Actor model the topology of connections between Actors is dynamic, let
alone the fact that Actors are being created. These outputs and inputs, therefore, cannot
always simply be connected with each other. Nevertheless, it is clear that Actors can be used
to simulate many other models that have static networks. Reaction rules can be written to
only send messages to a fixed collection of addresses, and to never create new Actors. More,
since Actors only receive one stream of interleaved messages, the destination port of each
message would have to be encoded in the messages, and the Actor would have to internally
sort them out appropriately, potentially maintaining separate queues of data for each input
as part of its state. The details of such an encoding go beyond the scope of this discussion,
but they are merely suggested to add to the argument that something like the Actor model
is high on the list of what must be considered for HDDAs running on a Process Field.

Another essential feature of platforms such as the IoT present in the Actor model is that
of code mobility. Part of the execution of a HDDA might involve downloading fragments of
code “on-the-fly”, as web browsers do with ECMAScript in web applications. Distributing
tasks may also involve sending their code, rather than simply sending a rigid set of parameters
or a fixed pattern of data. An HDDA might perform a coordinated task, particularly in the
context of the Swarm, by distributing fragments of its code to different entities that then
proceed to interact with each other.

In spite of these reasons to suppose that the Actor Model might provide a specific appli-
cation model for Process Fields, there are some features of Models of Computation that are
not captured by the usual Actor Model. One of these, in particular, is simultaneity. Because
the semantics of Actors demand that the arrival of messages be totally ordered, and thus
potentially interleaved, nondeterministically, there can be no notion of two messages arriving
at the same time as is the case in some DE models. One might argue that this is simply
because there is no notion of time, itself, in the Actor Model, but even in DE models the no-
tion of simultaneity is an artificial, rather than a physical one. Many simultaneous messages
can arrive at a component from many different senders, in these kinds of models, during the
same synchronous iteration. This is, in part, facilitated by the feature of components having
multiple input channels, which Actors do not.

In the absence of multiple input channels, this problem with simultaneity can be gen-
eralized to the problem that incoming messages cannot be incomparable in their arrival.
That is, the incoming messages cannot be given a less constrained partial ordering. In a DF

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 19

Figure 2.2: Climate control HDDA.

model, input channels to a dataflow component order incoming messages within the chan-
nel totally. But, between input channels, there is no ordering imposed by the semantics of
the component itself. This is reflected in the operational details of the Kahn Principle[38].
Input events in these models commute if they are on different channels. The imposition of
an Arrival Ordering prevents an Actor from directly representing components in these other
models. This is not to say that a sufficiently complex Actor Model could not simulate DF or
DE models, but rather that the semantics normally given to the Actor Model is not generally
flexible enough to subsume these models directly.

Nevertheless, we can have in mind what could be described as a less constrained version
of the Actor Model as an intuitive picture of the application model for HDDAs running
on Process Fields, and proceed using this intuition to explore some examples of what can
happen in HDDAs.

2.4 Examples of HDDAs

In order to give a concrete sense of what is possible in a HDDA, and to see what challenges
it poses to the representation of behavior, we will look at two examples illustrating some
important details about behaviors in Process Fields. These examples will be returned to
once we propose our representation of behavior, showing how they would be modeled in this
formalism. We will also refer to these examples in our consideration of existing models for
representing behaviors.

Configuration

The first example will be taken from the domain of home automation, a prevalent theme in
the IoT and the purpose of many of its marketed devices. The application we will consider,
specifically, will be a simple climate control system, depicted in Figure 2.2 in the fashion of
an Actor network. This system consists of two sensors: a temperature sensor TEMP and
an ambient lighting sensor LIGHT. These sensors provide raw data to a persistent monitor

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 20

process MON that will aggregate the data to form judgments about changes that should
be made to climate conditions. These high-level judgments extrapolated from the low level
sensor data are then forwarded as imperatives to a persistent controller process CONT.
An example of such an imperative might be to raise the temperature by a certain amount
gradually over a certain duration. This controller will respond to the high-level imperatives
produce appropriate changes in climate through its communication with two actuators: a
heater HEAT and a ventilation fan VENT. We assume that this system has been deployed
into a Process Field that represents the application platform consisting of many concurrently
running systems and containing other sensors, actuators, and devices.

Giving a semantics to this system would be straightforward if we consider the appro-
priate MoC for its functioning to be SR, Process Network (PN), or a DF variant. In all
of these models, the set of Actors involved, and their topology of connections, are both
static. Because this system is static and involves a fixed set of Actors, any of these might be
reasonable. However, there is a more interesting challenge, for our purposes, in considering
the configuration of this system. By configuration, we mean the process by which the two
persistent processes MON and CONT are created and liked together with the necessary
sensors and actuators. Representing the semantics of this better exhibits the complexities
of HDDAs since it involves a dynamically changing network of components. This cannot
be adequately modeled in any of the aforementioned Models of Computation, even if one of
them suffices to determine the behavior once the system is configured.

We will take it to be the case that the semantics of configuration will generally be an
important part of what happens in a Process Field. It is more common to relegate configu-
ration to an ad hoc procedure that attempts to get everything in place before commencing
the semantics. In a system that is constantly evolving, such as the IoT, imposing semantics
only to stable circumstances that have been established would give us a disjoint, incom-
plete picture of behavior. Being able to reason about configuration, or reconfiguration of an
HDDA, will allow these transitional interstices to be analysed, verified, or synthesize. While
it might be easy to work out the configuration steps involved in setting up the application
in this example by hand, when the scale of these applications increases vastly, the aide of
formal methods will become greatly beneficial.

It may be presumed that in the Process Field we are imagining as the platform of this
example some of the components that constitute this system already exist and have some
connections. The network is in initial some state (or fragment of a state) and the process of
configuration can evolve from this state through a collection of steps, creating Actors and
sending messages, to the state depicted in Figure 2.2. For the purposes of this example, we
will suppose that the initial state the system is as depicted in Figure 2.3. Therein we assume
the existence of several Actors and preexisting relationships.

• The sensors, LIGHT and TEMP, as well as the actuators, HEAT and VENT, are
all already presumed to be installed as devices and have these Actors as an interface
in the Process Field for the physical devices to which they are attached.

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 21

Figure 2.3: Initial configuration in the Process Field.

• There is a special Actor called a Query Manager,QM, which has persistent connections
to all of the sensors and actuators. The job of this Actor is to facilitate connections to
these devices so they can be directly utilized in applications.

• We assume that users of this system, themselves interfacing with the system through
proxy Actors, have connections to the QM, and can send it a variety of requests
involving the home automation system.

• For this example, we suppose that one of these users has sent the Query Manager a
request message, containing the code for this climate control application. The request
is to construct and deploy this application out into the Process Field.

Proceeding from this initial state, the configuration process can be imagined any number
of ways, and we will not imagine the most simple of these, but rather one that more demon-
strative. Given the QM must manage a potentially large volume of requests coming from
different users to do different tasks, it will not perform the whole configuration itself, but
instead create a new process to handle the configuration, freeing itself up quickly to process
the next request. This style of spawning small asynchronous process to handle requests is
reminiscent of the way modern web server systems such as NodeJS function, breaking the
responding process up into “asynchronous” continuations that can be scheduled by an event
handler.

The illustrated steps are as follows:

• The new process created by QM to configure the application will be called AC (Ap-
plication Configurer). This step is shown in Figure 2.4a. The QM supplies the AC
with the addresses of the sensors and actuators needed to build the application along
with the application code. The result is shown in Figure 2.4b.

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 22

• The AC then proceeds to create the two persistent processes Mon and Cont, supply-
ing the latter with the address of the two actuators. In contrast, Mon is not supplied
with the addresses of the sensors because it does not send messages to them. It, rather,
receives messages from them. This step is shown in Figure 2.4c (we hide QM in the
next couple steps for simplicity) and the result is shown in Figure 2.4d.

• Confirmations from both Mon and Cont are then sent back to the AC, as is shown
in Figure 2.4e. Consequently, the AC knows that both of these processes are ready to
receive upstream information, and that the senders of this information can be given
the addresses of these two processes. Because they are confirmed as ready, from a
causal perspective, no additional handshaking (on the application level) is needed for
the sensors to start sending data to Mon and for Cont to receive its commands.

• In its final step, AC forwards to the two sensors the address of Mon, as well as the
instructions to start sending Mon data. It forwards the address of Cont to Mon so
that the latter can start sending its course grain imperatives to the former. This is
depicted in Figure 2.4f, resulting in the network shown in Figure 2.4f.

• Having properly configured the application, the AC process terminates, as is shown in
Figure 2.4h. What is left behind is the intended network in Figure 2.3, along with the
connections that remain between QM and the sensors and actuators.

What can be seen from detailing this configuration process is that it produces the in-
tended network Figure 2.2, which could be taken as a kind of contract for this configuration
process. At the least, the final network in Figure 2.5 contains the intended one Figure 2.3
as a subnetwork – this forms a kind of implication. It is likely that this is often what is
desired when configuring a distributed application, that the final network of connections
is guaranteed to be sufficient, modulo potential errors that can be handled. But more, in
excess of the intended network is only the remaining connections of the QM, which were all
assumed in the chosen initial network. There are no excess connections between the Actors
involved in the application. By construction, Cont cannot send messages to Mon, HEAT
and VENT cannot send messages to either Mon or Cont, and neither of the newly created
processes can send messages to TEMP or LIGHT.

This configuration satisfies a much tighter constraint than simply containing the intended
network, and there are many reasons why this kind of a constraint might be important. The
absence of certain connections might be important for security. Whereas a home automation
system may not be as concerned with this, one can easily imagine many cases where it is
important that communication channels are only one way, and that entities that may tran-
sitively share information cannot do so directly. Another reason for this might be reliability.
In the final configuration of this application, it is notable that there are no cycles. In more
complicated cases where exact verification cannot be done, eliminating cycles might be useful
in avoiding emergent properties unexpectedly taking hold of a system.

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 23

(a)
(b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.4: A home automation swarmlet.

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 24

Figure 2.5: Final configuration in the Process Field.

Following these configuration steps, the HDDA commences with the behavior intended
for its static network. This behavior could be defined in a DF MoC, where tokens are sent
along connections between Actors. However, this MoC most certainly cannot accommodate
the above process of configuration. Something along the lines of the Actor model can, as
witnessed in the above informal characterization, but immersing the simple DF semantics for
the application into the Actor model forgoes the advantages of designing the application in
a constrained MoC that might provide a degree of analyzability and formal constraints that
cannot be sustained through this immersion into a much broader paradigm. Therein lies the
benefit of semantic heterogeneity in HDDA. We might wish to express the configuration of
the application and its running behavior in different models, then compose them sequentially,
such that the ultimate outgoing consequences of the configuration process feed properly into
the incoming dependencies of the running process.

The challenge this example poses to semantics is a need for a behavioral representation
capable of handling applications such as this one along with their configuration, which in-
volves the dynamic creation and configuration of processes. The history expressed in this
representation must be able to run through both of these stages. This is a particular chal-
lenge if these stages are semantically heterogeneous. This behavioral representation must
be composable in a way that facilitates the joining of the configuration behavior with the
running behavior of the application. The behavior should also allow certain questions to be
meaningfully asked about the application. As we discussed, it may be important to establish
that the result of the configuration behavior is the intended network or something implied
by it. These questions are not questions of events but questions regarding the state of the
process between events – here, specifically, it is the state at the end of the above events.
However, we must recognize that while a sequence of informal steps were given for the above
configuration process, the Process Field on which it runs is not synchronous, and we are not
necessarily justified in regarding the above steps as formal ones. This raises the important

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 25

Figure 2.6: Initial configuration in the Process Field.

question: what is state in the behavioral representation?

Perspective

The second example will be one that could, in some form, easily appear in many contexts.
We will use the framing of smart buildings to make the example as intuitive and illustrative
as possible, although we will mention other framings as well. In this example, we will imagine
a secure space in a building such as an office in which there are two entry doors. These doors
will be called D1 and D2. Each door Dk has an actuator Ak that can open it, and a sensor
Sk that can report whether the door is opened or closed. If the actuator Ak is sent the
message open, the door Dk will subsequently open. The opening of the door will trigger the
sensor Sk to report to whom it is connected that the door has been opened. Once the door
returns to being closed, Sk will report closed.

This example will focus on a basic property φ that we are interested in maintaining for
this system:

φ = Only one door may be open at any time. (2.2)

One might suppose that this is for security reasons. The two doors could be an outer door
and an inner door, and in the interest of maintaining secrecy, the outer door might need
to be shut before the inner door opens and discussions behind the inner door are heard. It
could also be for environmental reasons, to not let out heat or to keep out contaminants. It
could also be to prevent a person from sneaking into a space while the door is closing. If we
move back from the particulars a bit, this problem can be generalized to two of many cyber-
physical objects that are actuated to be “opened” or “closed”, and for which this property
might be important.

If we suppose that these 4 elements, A1, S1, A2, and S2, are all present in a Process Field
as Actors different scenarios can be imagined in which other Actors interact with them, as

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 26

Figure 2.7: Simple system with one managing actor P .

is shown in Figure 2.6. In these scenarios we can ask questions about whether or not the
above property φ can be maintained in the scenario. More specifically, if we assume a static
network of connections between the 4 elements and a number of additional Actors, that can
potentially open the doors, can we construct a protocol in the reaction rules that guarantees
the property φ.

In this discussion of the example, we are defining φ informally, and can draw some
intuitive conclusions about whether or not a certain network with a certain distributed
protocol amongst the Actors successfully maintains this guarantee. To do all of this formally,
a formal semantics must be given to the model yielding a representation of its behavior or
behaviors, and further φ will have to be given in a formal logic that can be modeled by the
behavioral representation.

To make this concrete, consider the simplest case in which there is only one additional
Actor P interacting with both doors, their sensors and actuators. The topology of this
network is depicted in Figure 2.7. As can be seen, we assume that P must be able to receive
messages from the sensors and send commands (open) to the actuators. We assume behaviors
of this configuration begin when P is sent a high-level message from some outside entity to
open either door. Given this configuration, it should be fairly obvious at an intuitive level
that maintaining φ can be done easily, since P can maintain the state of the doors and defer
or deny any request that cannot maintain φ.

But how do we formally show this? What additional information or assumptions do we
need? How do we represent the behaviors in a way that accurately portrays the situation,
without making potentially fragile assumptions? We are assuming that this system is asyn-
chronous, and thus we do not assume that the system has a single, well-defined sequence of
global states. We assume that it can take time for the message sent to the actuator, telling
it to open the door, to travel from P to Ak. Therefore, it cannot be concluded from the
perspective of P that the door has been opened subsequent to sending this message. P must
wait for the confirmation from the corresponding sensor Sk. Can we then be sure that it is

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 27

open? One can safely conclude, assuming that the hardware, drivers, middleware, etc... all
worked, that it had been opened. Perhaps, it could be closed again, or closed and reopened
several times.

More assumptions clearly need to be added. Given the network in Figure 2.7, and
assuming the door only opens when the corresponding actuator receives an open message,
from the perspective of P , it might be safe to conclude that after sending the message to
open the door, and receiving the message that it had been opened, that it might be either
still open, or closed, and the sensor update has simply not yet reached P . On the other
hand, if P receives a message, reporting the door as having closed, it can safely assume that
it will remain closed until it sends another message to the actuator, telling it to open. Given
P can known that a door is closed, it can safely decide to open the other without violating
the property φ. It would take little effort to sketch out this protocol, and if we can give it a
behavioral representation, we can ask precise questions about the runs of this protocol.

We can see already how this example begins to deviate from the conventional Actor
model, which was devised originally to deal with closed systems. The sensors and actuators
in the example fire as a consequence of influence outside of the Process Field (the collection
of known Actors). This outside influence could not be adequately modeled by making the
Actors nondeterministic, because this influence is highly organized. There is, indeed, a
cyber-physical dimension to this model that involves the cyber details of the Actor model in
conjunction with the physical details of how the door responds to the actuator, and what
effects it can consequently have on the sensor. This physical behavior must be incorporated
with the cyber in some fashion when constructing the behaviors of the runs of this system.

One might contend that the Actor model could be preserved if we assume that the sensors
and actuators are themselves sending and receiving messages, to and from the outside. But
there still must be a way to model the possible “runs” of these external messages as a
behavior, and connect the representation of this behavior with that of the model. We are
faced again with a kind of semantic heterogeneity in reasoning about our model, but in this
case heterogeneity between the cyber and the physical. We can term this cyber-physical
heterogeneity.

All of these considerations do not even get to the more challenging cases, though setting
the ground for them. Consider the case of two independent processes P1 and P2 being in
control of D1 and D2, respectively, having a topology of connections shown in Figure 2.8.
If both processes can receive a request message to open their respective doors, it is fairly
clear that the property φ cannot be guaranteed. Some additional communication channels
must be available between these two otherwise isolated submodels to ensure φ. Consider
the configuration in Figure 2.9, where each process Pk can also get sensor updates from the
opposite sensor S3−k. Is this sufficient?

Again, using intuition, one can reason out convincingly that this is not the case. From
the perspective of P1, knowing D2 has been closed from the sensor S2 cannot guarantee that
P2 has not since sent it another open message. Hence, P1 cannot be sure it can open D1

and preserve φ. If this is not adequate, then what is? Do P1 and P2 need to communicate
with each other directly, or through a third entity that represents a mutex?

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 28

Figure 2.8: A more complex system with two independent processes managing the doors.

Figure 2.9: A possible set of connections between the two processes.

Answering these questions in a definite way is less important here than knowing how to
ask them, given our aim is not to craft particular analyses and solve particular problems,
but instead to construct a behavioral semantics that places all of these things into a common
coherent representational model. The challenges presented by this example to a behavioral
representation are a need to model properties, a need to define a notion of perspective, and
again heterogeneity, this time cyber-physical heterogeneity.

2.5 Process Field Theory

The Actor Model and our examples provide us with enough of a provisional sense of a MoC
to imagine what kinds of behaviors we will see, and hence we will need to represent, in the
platforms we are calling Process Fields. The above examples use these semantics to help

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 29

build this picture, identifying particular properties we would like a behavioral representation
to have in order to capture the executions of HDDAs. The properties we are looking for
include true concurrency, the ability to represent the creation and configuration of entities,
composability, modularity, and the ability to serve as a common language between different
Models of Computation in heterogeneous models.

We can begin to approach a sense of what kind of behavioral model we are looking for by
elaborating more on the semantics we have given for the Actor model, getting to something
more fundamental about behavior on this platform. In doing this we can unpack what we
are suggestively implying, calling our platforms Process Field. Why a “field” of processes?

A couple of condensations can first be made to the Actor model that are important in
this context. One is an observation stated by Agha in his presentation of the model [4]
(though it was probably known much earlier). Given an Actor consists most generally of a
reaction rule, containing a knowledge of Actor addresses, replacing the reaction rule with the
continuation, specifying its new behavior, can be framed as simply replacing the Actor with
a new Actor. We can elaborate on this in a manner that seems to the author to go beyond
what Agha is stating. From this perspective, the meaning of an Actor can be reduced to a
single state in the process in which it is involved, and what is thought of as an Actor, acting
on a series of received messages by performing actions, can be reframed as a series of Actors
at a single address, each reacting to a single message. Moreover, since the continuation is
another Actor, as is a message, the replacement with the continuation can be interpreted as
the Actor sending a message to its own address, containing the continuation.

Another condensation can be made, in light of the above. The act of creating a new
Actor can be framed as sending an Actor to an empty address, instantiating the Actor as
the first state to exist at that address. The consequence of these two condensations is that
the list of three possible actions that could arise from a reaction can be compressed to the
first: sending a finite set of messages. After these condensations, executions in the Process
Field look more like messages being sent around a space of persistent reaction sites along
addresses, splitting and intersecting at them. This is illustrated in Figure 2.10, which shows
such an execution. This particular picture of the Actor model, as we will argue, is one that
serves well the purpose of giving a general MoC to a Process Field, constituting the basis
for HDDAs.

We can now unpack the intuitive meaning of a Process Field, drawing from an analogy
to physics. Hewitt cites physics as an important influence behind the Actor model. In this
analogy, Actors are like particles, while messages carry influence between them that must
travel through space in a causal fashion. Indeed, as in particle physics, this very influence
is itself mediated by particles. For instance, two electrons collide when one sends the other
a message in the form of a photon, mediating electrical repulsion. We can depict this as the
Feynman Diagram shown in Figure 2.11. A quantum mechanical view of this would be that
an Actor, such as an electron, goes through a series of states (positions, momenta, spins)
changing under the influence of forces, mediated by messages. The persistent ontological
entities in this system are therefore the Actors, and the dynamics consist of these Actors
going asynchronously through a series of state changes – the world-line of each Actor in this

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 30

Figure 2.10: Execution in a Process Field.

analogy is its linear arrival order.
This analogy can be taken through a radical shift, incorporating the vast condensation

constructed above, from quantum mechanics to quantum field theory. In quantum field
theory, there is an ontological shift from viewing the particles as fundamental entities to
viewing the particles as themselves states of fields, which themselves become the fundamental
ontological entities of the system. As can be seen, we have made a similar ontological shift
in our above considerations. Actors with addresses can be shifted from the fundamental
entities of the model, which persist through changes of state over the course of reactions to
messages, to simply being states themselves of the persistent field of addresses. One can
think of the Process Field as a field of generic containers at particular addresses, as in the
Figure 2.10. In this field, an Actor becomes the state of a container which changes each time
the Actor reacts to a message. Even more radically, we can state that the message and the
Actor, which are in essence two actors, simply collide at the address, ultimately producing a
collection of outgoing Actors (particles), going in different directions, one of which may be
stationary, remaining at the same address.

Along these lines, the Actor model can be transformed into what might be called a
Process Field Theory. As in quantum field theory, in this model, every event is a collision

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 31

Figure 2.11: Feynman diagram of electron scattering (polarized).

consisting of a collection of incoming and outgoing particles. Here the particles are Actors,
consisting of both data and continuations specifying reactions to data. What determines the
consequence of the collision is the field itself. In our computational counterpart, this is the
general computational platform, which at any address can perform a generic evaluation.

A final radical step is suggested in this interpretation, which we can argue is deeply
important in reasoning about computations in the platforms we are considering. One of
the most important advancements of quantum field theory beyond its predecessor theory of
quantum mechanics, is that quantum field theory consistently integrates special relativity
– as a matter of fact, this is one of the most important impetuses of its development [67].
Given that both an Actor A stationary at an address and a message M it receives are both
Actors, putting aside any notion of active and passive that might throw the interaction into
asymmetry, one might suppose, taking special relativity through our analogy into a discrete
form, that the addresses constitute a frame of reference for this interaction. In this frame
of reference, A is remaining stationary at a single address α while M is traveling between
addresses – A is still at α and M is moving to this address. This is depicted in Figure 2.12a.
It would follow, by this analogy, that we could just as well construct a different frame of
reference in which M is still at address β and A is moving, as shown in Figure 2.12b. If we
are operating under the interpretation that each reaction produces a new Actor, which in
Figure 2.12 is called A′, there is no longer a fixed notion of which of the interacting Actors is
“continued” by the resulting continuation, here A′. In general, the continuation carries parts
of both interacting entities. This is particularly true when M contains mobile code that is
then run to produce A′. The situation could even be framed as depicted in Figure 2.12c so
that the new actor A′ is being sent as a message away from the address γ of M , and thus it
would appear from this frame that M receives a message A, sends one A′ immediately, then
terminates. Of course, in this notion of a frame of reference there is no obvious correlate to
inertial.

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 32

(a) (b) (c)

Figure 2.12: The same interaction from three frames of reference.

One could get anthropomorphic with this whole analogy, if it seems too peculiar, and
imagine on one hand a letterM being mailed to a person at home A, who must actively open
it up, read it, and psychologically incorporate its contents yielding in the person a new state
of being A′. This is the archetypical analogy for the Actor model and other asynchronous
protocols. But suppose instead that what is being sent is a TV repairman A, carrying a
mobile phone, to a house. Prior to leaving the repairman answers the phone and receives
a message telling him to go and perform the repair. After traveling to the house, while on
site, the repairman acts on the TV M , changing its state. Perhaps while he is there, he gets
a call from the owner, or speaks to someone in the home A′.

This latter scenario metaphorically illustrates the idea that the active component could
just as well be the mobile one, and the passive data (the TV) could be stationary. Moreover,
one could relativistically look at this same scenario in the repairman’s frame of reference.
He is stationary relative to himself, and in his current state he has his address at which
he is waiting to receive the house, or perhaps a phone call. In some respect, that is no
less counterintuitive than relativity (Galilean or Einsteinian) is to physics of Aristotle, in
the repairman’s frame of reference, the house does indeed come to him through space and
time. Likewise, from the letter’s frame of reference its addressee’s mailbox arrives at the
letter, having traveled through space and time. In fact, both of these examples can be
restructured to concretely illustrate this principle by simply changing surrounding details.
Suppose the repairman stays in his repair shop and the TV is brought to him. Similarly, the
addressee of the letter travels to the post office to acquire it. Some semantics might regard
these alternatives as equivalent, as they involve the same set of objects in the same causal
relationships.

Like relativity, we can ask here what the invariant is in the behavior. What does not
depend on the frame of reference? If we consider the addresses and the platform to constitute
this frame of reference, what we are left with are the interactions between these Actors as
the important ontological events that identify the behavior of the entire system. These
interactions involve a set of incoming Actors upon which the event depends, and a set of

CHAPTER 2. HIGHLY DYNAMIC DISTRIBUTED APPLICATIONS 33

Figure 2.13: Events as collisions of computational data such as messages or states.

outgoing Actors produced as a consequence of this event. As can be seen in Figure 2.13, we
now have a model of an event that looks like a collision, or more specifically a scattering.

This train of reasoning has provided us with a potential ontology out of which we can
build representations of behaviors. Our events are these collisions between one collection
of entities producing another as a result. The dependencies that connect these events are
not just binary relations but are the entities themselves, containing particular information
constituting a kind of state, message, continuation, or other kind of influence. We will see
in Chapter 7 how this ontology is assembled into a formal model of behavior. However, we
will first approach the task of developing a behavioral representation from a different angle,
suggesting an underlying mathematical structure that will be expanded on in great detail.
In Chapter 7, these two angles will converge on the OEG.

34

Chapter 3

Generalizing Representations of
Sequential Behavior

A computing system could be conceived of so broadly as to pull into its category almost
any physical system, which can be said to, in some respect, compute its trajectory from its
initial conditions – its ‘input’. A trajectory through a series of quantifiable or qualifiable
observation is indeed the ostensible behavior of the physical system. It is an account of what
happened in its evolution. In a computational system we can very generally define a behavior
to be an account of what will have happened in this system while it is computing.

In contrast with this notion of behavior as semantics, the mathematical legacy of se-
mantics in computing systems has often reduced computations to the partial function they
compute from inputs to terminating outputs. For systems that aim to compute specific func-
tions or perform delimited tasks, it might suffice to ask what function a program computes
to understand what it does, and relegate behavioral concerns to qualities of the program
related to the practicalities of running the program on a machine that will take time and
use resources in a particular fashion that can be altered without fundamentally changing the
meaning of the program.

But in the face of reactive and distributed systems pervasive today, which do not simply
compute an output or diverge, but instead interact, the notion of behavior has become more
central to the notion of semantics. As Abramsky argues in [3], regarding the notion of a
partial function as semantics:

This idea also served computer science well for many years: it is perfectly natural
in many situations to view a computational process in terms of computing an out-
put from an input. This computation may be deterministic, non-deterministic,
random, or even quantum, but essentially the same general paradigm applies.

However, as computation has evolved to embrace diverse forms and purposes:
distributed, global, mobile, interactive, multi-media, embedded, autonomous,
virtual, pervasive, . . . the adequacy of this view has become increasingly
doubtful.

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 35

Traditionally, the dynamics of computing systems their unfolding behaviour in
space and time has been a mere means to the end of computing the function
which specifies the algorithmic problem which the system is solving. In much of
contemporary computing, the situation is reversed: the purpose of the computing
system is to exhibit certain behaviour. ([3])

Therefore in today’s reactive and distributed systems, particularly running on platforms such
as the IoT and the Swarm, the essential semantic details of an application must be captured
in an appropriate, precise mathematical picture of behavior – a behavioral representation.
And this raises the primary question of this thesis: what kind of behavioral representation is
appropriate for HDDAs running on the distributed platforms we have termed Process Fields?

Insofar as we know, every computing system we study as a candidate for realization
into the physical world is realized as a physical system, and thus the horizon of realizable
computing systems lies in the inherent properties of physical systems. It would therefore be
reasonable to attempt to describe what happens in computing, computational behavior, as
an abstraction of what happens in a physical system. After all, every useful abstract model
of a physical system is one ultimately validated through a kind of computation, an unfolding
of a model of physics, that must correspond to a collection of empirical observations. This
would suggest that we look to physics for an idea of how to model computational behavior,
as we did towards the end of Chapter 2.

The gap, however, between the diversity of physical processes and the most primitive
computational ones is that the kinds of computation developed in the first models of compu-
tation such as Turing Machines, Universal Register Machines, Lambda Calculus, and Post
Systems, do not involve any notion of space. Instead, these fundamental archetypes of com-
puting systems all involve a notion of behavior rooted in single progression of events in time.
More specifically, these events are discrete, countable events rather than continuously evolv-
ing ones, and finally, have a clear beginning, a first event. Cutting behavior down from the
possibilities of physics by all of these constraints leaves only a discrete well-ordered notion
of time and no notion of space. A behavior in these systems, and in all of the elaborations
on them, can therefore be abstracted into a sequence, either of what events happened in the
system, or of what states the system occupied.

As one moves away from these traditional models of computation into reactive and con-
current models this gap begins to close. Correspondingly, some of the assumptions that
would lead one to represent the behavior of such a system as a sequence become lifted, and
a broader representation of behavior becomes necessary. When concurrency amounts to a
constrained static collection of systems, all of which are themselves sequential, the sequen-
tial form of a behavior can be retained through considering interleavings of the sequential
behaviors of each component. The cost of this retention, though, is a conflation between
concurrency and nondeterminism, which we will expand on in Chapter 4. Rather than ab-
stracting fewer details away from physical systems, leaving details associated with space
intact in the behavioral description, this approach to concurrency instead adds more details
to sequential systems.

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 36

Nevertheless, the introduction of the IoT, the Swarm, and other platforms for distributed
applications that we would regard as Process Fields, make it possible to write applications
and design systems that do not factor as easily into a concurrent collections of sequential
components. The dynamic creation and reconfiguration of processes, as well as code mobil-
ity, deviate more significantly from the assumptions that lie beneath sequential models of
computation. There is an inevitable need for something like logical space to complement the
logical time at the basis of sequential computation.

While this reasoning motivates a departure from sequential models of behavior in order
to fulfill the demands of highly dynamic platforms for distributed computation, there are,
nevertheless, properties of and analyses around sequential representations of computation
(even of concurrent computation) that would be advantageous to preserve in a non-sequential
representation. Amongst these properties are notions of concatenation and subsequency that
do not have immediately obvious analogs when discharging the notion of a sequence, for
which they are both very obvious.

At the level of analysis, it would also be advantageous to preserve some semblance of
sequential specification logics such as Linear Temporal Logic (LTL) and Computational Tree
Logic (CTL) in a similar logic aimed at writing specifications for HDDAs. While one might
respond critically to this characterization of logics like LTL as sequential specifications,
since they are applied to, and arguably even designed for, concurrent systems, these logics
are nevertheless defined in terms of linear sequences (or trees), and extended to concurrency
only insomuch as a set of sequences can be defined to model an LTL formula when each
individual sequence does. That is, the structures that model formulae in these logics have
no sense of logical space. If a different behavioral representation were formulated, departing
from sequential models, this would also open the door for new logics that furnish theories
for these models.

This chapter will approach the pursuit of an appropriate representation of behavior in
Process Fields from a different direction than our discussion in Chapter 2. Here we will first
understand the different ways sequential behaviors can be represented. While this may seem
intuitively obvious, there are many superficially unimportant technical details that become
relevant when we try to generalize from the sequential to the concurrent. We will show
here that there are two (and potentially more) approaches to modeling sequential behavior
that look and behave the same, modulo these technical details, which seem to be little more
than issues of bookkeeping. But when we take these two different framings and generalize
them, we arrive at radically different mathematical structures: generalized sequences and
free monoidal categories.

Approaching our fundamental question this way will give us a sense of what schematic
possibilities we have to draw from in making our choice of a behavioral representation. Two
distinct branches of generalization will emerge from this discussion, one of which, as we will
discuss in Chapter 4, encompasses many of the existing models of concurrent behavior. And
we will give reasons in that discussion why this branch will not ultimately be our choice. As
we will see, the other branch of generalizations, free monoidal categories, is the one that we
will build into spaces of OEGs. We will expand on this second branch in Chapters 5 and 6.

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 37

3.1 Representing Sequential Systems

There are at least two routes that could be taken to representing sequential behaviors as
mathematical objects (perhaps more even), and amongst these views many variants. The
two views are that of proper sequences (which we will just call sequence) and that of free
monoids. In both cases, the intuitive concept of a behavior that we aim to represent is that
a set of events, representing things that have happened in the system, happen one after
another, recounting the history of the system.

Intuitively, we might render the picture as follows

a→ b→ a→ c→ b→ b→ . . . (3.1)

suggesting a sequential system in which the types of events a, b, c, etc... can occur. For
the purposes of this discussion, we will consider a system in which the possible types of
events form a set A = {a, b, c, . . .}, sometimes called an alphabet or a set of actions. We
will look at the way both approaches take the picture in 3.1 and forge it into a more precise
mathematical description.

Sequences

The first approach to representing a sequential behavior involves the construction an abstract
space of events to index individual instances of event types in A occurring. It is in this space
that the sequential structure can be established underneath the alphabet A. A natural
choice for such a space is a linearly ordered set E = (‖E‖, ≤) of events ‖E‖, which merely
function as points in the space.

e1 ≤ e2 ≤ e3 ≤ e4 ≤ e5 ≤ e6 ≤ . . .

Since we are constructing this space for the purpose of indexing the identity of events is not
important, and any isomorphic ordered set would serve the same purpose.

We then map each event in E to an event type in A with some function

ᾱ : ‖E‖ → A

giving us the pair α = (E, ᾱ) as a representation of behavior.

e1 7→ a ≤ e2 7→ b ≤ e3 7→ a ≤ e4 7→ c ≤ e5 7→ b ≤ e6 7→ b ≤ . . .

If we are dealing with a well-ordered sequence, and by that we mean one with a well-
ordered space of events, we can always represent the space of events canonically as an ordinal
κ, and thus we have a very common definition [25] of a sequence over A

α = (κ, ᾱ : κ→ A)

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 38

Figure 3.1: Sequential behavioral representation.

We can then call the projection of the first component the length1, ‖α‖ = κ, and index the
events αk = ᾱ(k) for k < κ. When dealing with behaviors involving finite numbers of events
our ordinal κ is simply a natural number, but we may also want to include behaviors that
do not terminate as ω-length sequences, or have other reasons to use infinite ordinals.

In the finite case, one would be justified in writing the behavior down as a simple list.

(a, b, a, c, b, b)

We will write the empty list down as (). This notation is consistent with the notion that a
sequence α of length ‖α‖ over A, is defined by a function ‖α‖ → A, which is isomorphic to
A‖α‖, an ‖α‖-tuple.

The ordered set of events, or ordinal, constitutes a model of logical time, and thus our
behavioral representation consists of a logical timeline along with a labeling for each moment.
This is depicted in Figure 3.1 – the reader may find this Figure, by itself, superfluous as a
means of understanding the given mathematical specification, but the graphic will be taken
in comparison to another as an illustration of the contrast that is central to this chapter.
This resembles a typical trajectory in physics which might be a function R→ X except that
it is conventional in physics to either defined trajectories over all of time R, or at least to be
rather informal about the relevant intervals. Here, it is more relevant to consider behaviors
of different lengths, which will be an important feature for the way that we will use them
later.

If an observer were to watch the events occurring during a computation up to any point
before the computation terminates, the behavior the observer sees up to this point in the
logical time of the computation is a prefix of its complete behavior, as well as longer prefixes
that will be may be observed later. This observer, in observing the process, therefore, sees
what could be thought of as a sequence of events or an increasing sequence of prefixes.

1It should be noted that in the transfinite case, the length is not a cardinality, but instead the specific
ordinal defining the space, since a cardinal would conflate many infinite ordinals and thereby the structure
of the behaviors defined over them. If we wish to discuss the cardinality of the sequence this will not be
referred to as length, but instead size

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 39

Giving an ordering to sequences, we can define this notion of a prefix formally. For any two
sequences α and β

α ≤ β
def
= ‖α‖ ≤ ‖β‖ ∧ ᾱ = β̄ �‖α‖

This ordering simply adds to the ordering of the underlying ordinals the additional stipulation
that the two sequences agree on the domain of the shorter sequence. For instance,

() ≤ (a, b, a, c, b, b)

(a, b, a) ≤ (a, b, a, c, b, b)

(a, b, a) ≤ (a, b, a, c, a)

() ≤ (a, b, a)

It should be noted, however, that unlike the ordering in the ordinals, which is total, this
ordering is partial. In the second and third example (a, b, a) is less than two different
sequences, which are incomparable to each other. When α ≤ β, we call α a prefix of β.

The space of our sequences Seq(A) over A can then be defined with a dependent sum as
follows

Seq(A) def
=
∑

κ : Ords · κ→ A

That is, the space of these pairs, where the first element, length, constrains the second,
defining a mapping of this length. A poset category Seq(A) can be formed from this space
along with the above ordering as the set of morphisms. The initial element, or bottom, of
this poset is

⊥Seq(A)
def
= (0, ∅A)

making it a pointed poset. And here we are close to the epitome of sequential behavioral
representations: the domain. What remains is to cap the length of the sequences at some or-
dinal (usually a limit) ρ, giving us an pointed ρ-complete partial order. If this ρ is specifically
ω, the first infinite ordinal, we then have a domain.

The consequence of this construction is that sequential behavior is often studied in se-
mantics from the perspective of domain theory, as first developed by Scott [60]. However,
as it was initially conceived, the elements of the domain were not the behaviors themselves,
but rather the consequences of the behaviors on the value ultimately being computed. The
behavioral prefixes, in this case, corresponded to approximations of the ultimate value that
these behavioral prefixes computed. It is not a stretch of the imagination to see that these
domains of approximation can be constructed as the images of monotonic functions over the
behaviors themselves, assigning to each behavior, each prefix of a computation, the approx-
imation reached at that point. This will be discussed further at the end of the chapter, but
it is important to begin setting the stage here.

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 40

Figure 3.2: Free monoidal behavioral representation.

In summary, the approach of representing sequential behaviors as sequences in Seq(A)
can be thought of as a “topological” or “relational” one, building behaviors out of spaces.
To emphasize the intuition one can roughly characterize the representation as

Logical Time ⇒ Event Types

Free Monoids

In contrast to this view of a sequential behavior as a labeled order of observation instances,
sequential behaviors can also be represented as members of the free monoid Mon(A) gen-
erated by A. Perhaps the most illustrative and direct way of framing Mon(A) is that it
is a monoid (‖Mon(A)‖, •, 1) built upon an underlying set ‖Mon(A)‖ containing every
finite string that can be built from the alphabet A. These strings are often called words, and
are often written as such. For instance, where A are the elements a, b, c, . . ., ‖Mon(A)‖
contains

abaabc, bbbb, c, etc...

including the empty string. In fact, this underlying set is familiar to most computer scientists
in the form of the Kleene star of the set A, typically denoted A∗. What is added to this set,
as in any monoid, are an associative product operation • and a unit element 1. Specifically,
the action of the product in the free monoid is to simply concatenate words together, while
the unit is the empty word. The axioms of monoids, stating that • is associative and that 1
is the identity of • are obvious in this case.

However, a subtlety that normally might be glossed over, particularly in the treatment
of A∗, will actually be an aid to intuition in this case. We will take the time to make it
clear. The proper construction of a free monoid does not necessarily include the elements of
A directly into ‖Mon(A)‖. Instead, more generally, one defines an injection ηA that maps
each generating element a ∈ A into a one-letter word 〈a〉, which is kept distinct from the
generating element itself. That is, ηA(a) = 〈a〉 6= a. To a programmer, this distinction

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 41

should come as no surprise, as a character in a language like C is distinct from a string of
length 1 containing just that character, even though there is a bijection between the two.
This should be no more a surprise to a linguist, who would distinguish the letter ‘a’ with
the English word “a”.

Why then bother with the formality of the injection, when, as with all injections, the
domain is isomorphic to the image? In a sense, this injection wraps the event type in
an interface that allows it to be algebraically concatenated with other words, whereas the
generating set A, as a mathematical structure, possessed no such capability. This is depicted
in Figure 3.2. Each event type is endowed with a rudimentary structure that facilitates the
construction of chains, and therefore, in some sense, a model of time that emerges from the
construction rather than being assumed before it. One can now compare Figure 3.2 with
Figure 3.1 to see an illustration of the key intuitive difference in these approaches.

In these terms, our example behavior looks like the following:

〈a〉 • 〈b〉 • 〈a〉 • 〈c〉 • 〈b〉 • 〈b〉 • . . .

As in the case of a sequence, here we also get a sequential ordering of observations. Each
word in the free monoid is a history of observations that can be constructed through concate-
nations. It is therefore not just an ordered representation, but more a composable one. As
can be seen, the mathematical glue that connects the observations together can connect the
observations directly, without forming a separate set of instances to which they are attached.
While the glue in the context of total orderings is relational, acting only on individual ele-
ments, in free monoids the glue is combinational and closed over all histories; an algebraic
operation.

A technical feature of a free monoid that is will also be relevant is that it possesses what
is known in algebra as a universal property among the set of all monoids. Although we will
go over the details of this in great depth in Chapter 5, here we will give a brief account of
what this means intuitively.

The first important consequence of this property is that any element α of the underlying
set ‖Mon(A)‖ can be expressed as an algebraic term in the language of monoids, using only
the images of the generating elements 〈a〉, 〈b〉, . . . along with the operator • and constant
1. Even more significantly, any two terms expressing the same element can be shown to be
equivalent using only the axioms of monoids. For Mon(A),

〈a〉 • (1 • 〈b〉)
(〈a〉 • 〈b〉) • (1 • 1)
〈a〉 • 〈b〉

all represent the same word, which we could write directly as ab, and can all be proven
equivalent using only the associativity and identity axioms.

In contrast, consider the monoid (Z, +, 0) of integers with the operation of (standard)
addition and the unit 0. One could chose two generators 1 and −1 in the underlying set,

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 42

and for sure any integer can be expressed using only these two elements. But the two terms

1 + (−1) and (−1) + 1

both equal to each other, and to 0, cannot be shown to be equivalent using the axioms of
monoids. There are additional equations in this monoid that go beyond those that can be
proven from the axioms. In this sense, the free monoid is the most general, placing the fewest
equivalence constraints on its terms; only the ones necessary in all monoids.

If we extended the integers to include −∞ and ∞, the first aforementioned consequence
of the universal property would not hold either. No finite term built from the generators
could express either of these. In this respect, the free monoid is the most economical, only
consisting of what can be generated from its generating elements and nothing more.

The second important consequence, which is actually central to defining the univer-
sal property of Mon(A), is that for any other monoid M , if there exists a function h :
A → ‖M‖ (not necessarily an injection), mapping elements of A into the underlying set of
M , this function can be transformed in a canonical fashion into a monoid homomorphism
h] : Mon(A) → M . In other words, h] is generated from, or a lifting of, h. This more
complicated property will be explicated fully in Chapter 5. However, the way it words is
intuitively simple and reminiscent of the map-reduce pattern in functional programming.
Given h and any term representing an element of Mon(A), say

〈a〉 • (1 • 〈b〉)

h] simply applies h to each generating element, then interprets • and 1 in the monoid M ,
as •M and idM . Thus

h](〈a〉 • (1 • 〈b〉)) = 〈h(a)〉 • (1 • 〈h(b)〉)

A concrete, and relevant, example of this property can be seen if we choose our M to be
the monoid (N, +, 0) of natural numbers with addition. Consider the mapping h from A to
‖M‖ that simply maps every element to 1.

f : A → |M |

f(x)
def
= 1

The lifting h] then takes any term and replaces each • with +, each 1 with a 0, and each
generating element with 1

h](〈a〉 • (1 • 〈b〉)) = 1 + (0 + 1) = 2

In essence, h] gives an effective length for any given term, enumerating the number of
generator instances needed to construct it. For any α ∈ Mon(A), we can therefore define
the length

‖α‖ def
= h](α)

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 43

As is the case with sequences, a partial ordering can also be defined over the words of
the free monoid.

α ≤ β
def
= ∃ γ : Mon(A) · β = α • γ

Here, it is worth noting that this relation is expressed very directly as a simple formula in
the theory of the monoid and, if true, has a specific witness in the free monoid itself. This
ordering definition could be extended to all monoids with the consequence that it would in
general form a preorder rather than a partial order (lacking antisymmetry). The monoids
that are partially ordered under this preorder definition are often referred to as pomonoids
(and in some of these pomonoids the witness to an ordering may not be unique).

Similar to sequences, the collection of words less than α can be called its prefixes, and as
in the case of sequences, a chain in this ordering characterizes a sequence of observations of
a computation in progressing. There is a key intuitive difference here though. As opposed
to the model of time that lies underneath a sequence, and is exposed in the ordering of its
prefixes, in the case of a word in a free monoid, the model of logical time defined by the
ordering emerges from the theory of the free monoid.

With this in mind, more broadly, each monoid can itself be represented as a category,
and the collection of monoids with monoid homomorphisms forms a 2-category Mon. The
free monoids are not themselves isomorphic in Mon but unique up to isomorphism for each
set of generators. Therefore each set of generators has a corresponding free monoid in Mon,
and these free monoids form a subcategory of Mon. Following from universality, somewhat
analogous to the case of ordinals, the homomorphisms in this subcategory are all monoidal
embeddings. This category can be constrained further to one of pomonoids with monoid
homomorphisms (which end up being all monotonic in the induced ordering).

We can summarize the contrast between these two approaches to representing sequential
behavior as follows. With sequences, we construct a model of logical time and use it as a
backbone for constructing a sequence of events as a mapping.

Logical Time ⇒ Event Types

With free monoids, we wrap each event type in an algebraic interfaces and assemble sequences
of events. Intuitively,

Constructions on Event Types ⇒ Logical Time

The important point that these two diagrams emphasize is that the model of time is presup-
posed in the former case, but in the latter case emerges from the algebraic construction.

Operations on Behaviors

These two pictures of sequential behaviors have an apparent difference that is subtle, buried
in the mathematical details, and both ultimately result in representations of behaviors that

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 44

we could think of as lists of one sort or another. However, as has already been eluded to,
the difference becomes far more substantial once one tries to generalize away from sequential
systems. Before approaching this generalization, there are still more differences that can be
illustrated in these subtleties, and in discussing them we can explain why these two pictures
are so often treated as interchangeable in the sequential case.

Specifically, we will look at the operations that should be possible on behaviors. What
should we be able to do with them that is essential to constructing semantics or logics
on them. First, consider the operations of appending to or concatenating behaviors, and
how these two operations are codified differently in the two approaches of representation.
During a computation, if we observe it progressing, insomuch as a behavior is a history, we
are looking at the extension of a behavior. Unless one is dealing in the most controversial
corners of quantum mechanics, we would be safe for practical purposes with the physical
assumption that what has happened already will not change in the future. In other words,
computation is at least causal.

Suppose a behavior were to have a new event c ∈ A appended, the simplest case. We
can define this operation Append(c, α) for a behavior α. For the free monoid approach
the definition is simple because the structure is already equipped with concatenation as its
fundamental algebraic composition.

Append : A →Mon(A)→Mon(A)

Append(a, α)
def
= α • ηA(a)

The new event is simply lifted into the monoid and concatenated on the end.
The corresponding definition for well-ordered sequences makes use of the fact that we

have a successor function S : Ords → Ords that is total. We can use this to extend the
timeline by one step, then assign the new event to the new step.

Append : A → Seq(A)→ Seq(A)

Append(a, (κ, ᾱ))
def
= (S(κ), ᾱ + {κ 7→ a})

Rather than append in a direct algebraic fashion, here the technique is to perform a special-
ized extension with respect to the underlying model of time, notwithstanding the fact that
the result is quite similar.

Appending can be broadened to concatenation in which two behaviors are composed,
one after another. Similarly, we can define the operation Concat(α, β) which will represent
the events in α followed by those in β. In the case of free monoids, this operation is again
natural, being simply the monoid product.

Concat : Mon(A)→Mon(A)→Mon(A)

Concat(α, β)
def
= α • β

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 45

In the case of sequences, we can again take advantage of the successor operation already
defined on the underlying ordinals to extend the space. However, here we will do it define it
recursively in terms of appending.

Concat : Seq(A)→ Seq(A)→ Seq(A)

Concat(α, (ρ, β̄))
def
=

α ‖β‖ = 0

Append(β̄(ρ), Concat(α, (ρ, β̄|ρ)) ‖β‖ = S(ρ)∨
m<‖β‖Concat(α, (m, β̄|m)) ‖β‖ is a limit

In the above, the limit case takes the least upper bound of the chain of concatenations of
prefixes. Note that the particular definition of the successor case appends from the outside
in, since doing the opposite would involve shortening the remainder from the front, which
cannot be done in any meaningful way if the successor is past any limits. This construction
draws from the standard definition of addition on ordinals that can be found in [25].

In this comparison, appending and concatenation, although intrinsic to the monoidal
construction, can be defined for the well-ordered sequences as well. But the latter is possible
because of the existence of a total successor function on the ordinals. Given addition can
be defined over the ordinals, and is associative, the ordinals already have a monoidal struc-
ture. As we will discuss later, generalizations of well-ordered sequences lose this notion of a
successor, and thus lose a direct analog to this kind of appending and concatenation.

Consider then the operation of indexing the behavior, which is more intrinsic to the
well-ordered sequences. We can define this operation Index(α, n) where n < ‖α‖ (we have
defined ordinal valued length for both of our cases). The definition for well-ordered sequences
is immediate.

Index :
∑

α : Seq(A) · ‖α‖ → A

Index(α, n)
def
= α(n)

In contrast, indexing the elements of the free monoid requires a construction that makes
use of its universal property and the lifting we discussed earlier. We will first define the
function

sample : A → (Ords×Ords+A)→ (Ords×Ords+A)

sample(a, x)
def
=

(S(n), m) x = (n, m) ∧ n < m

a x = (m, m)

x otherwise

which takes in a “counter” (n, m) and increments its first value, unless its has reached its
limit m. In this case it outputs the value a. If a single value is sent into the function it
simply passes it through. If this function, applied to a sequence of values a1, a2, a3, . . .,
the partially applied functions can be composed together into a chain. Consequently, the

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 46

composition can be passed a counter that moves along the chain, grabbing a value an when
the counter reaches its limit, then passing this value through the rest of the chain. That is,

sample(a3) ◦ sample(a2) ◦ sample(a1) ◦ sample(a0)

applied to (0, 2) would return a2, (1, 1) would return a0, and (2, 14) would return (6, 14).
To make use of this in this fashion, we take note that sample is a morphism in Set from
A to the underlying set of the Endoop(Ords×Ords+A) monoid of endomorphisms with
reverse composition (to preserve the direction of our ordering in the free monoid). Using
the universal property of the free monoid, we can then lift sample into a homomorphism
sample].

Before defining the indexing function using this construction, we will prove a simple
lemma about it, that will be used later.

Lemma 1. For α ∈Mon(A), and some ordinal n such that ‖α‖ ≤ n

sample](α)(0, n) = (‖α‖, n)

Proof. This can be proven by induction over the words of the free monoid, which can be
well-ordered by their length. Given some α ∈Mon(A)

Case α = 1

In this case ‖α‖ = 0. sample](1) = idFun and idFun(0, n) = (0, n) = (0, ‖α‖).

Case α = α′ • ηA(a)
In this case

‖α‖ = ‖α′ • ηA(a)‖ = ‖α′‖+ 1

Using the definition of the universal lifting

sample](α)

= sample](α′ • ηA(a))
= sample](ηA(a)) ◦ sample](α′)

= sample(a) ◦ sample](α′)

Using the inductive assumption, assuming that ‖α]‖ ≤ n,

sample](α′)(0, n) = (‖α]‖, n)

hence, assuming that ‖α‖ < ‖α‖ ≤ m

sample](α)(0, m)

= sample(a) ◦ sample](α′)(0, m)

= sample(a)(‖α′‖, m) = (‖α‖, m)

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 47

This establishes, as would be expected, that sending the counter through the chain of
sampling functions yields a counter incremented to the length of the word if the limit is
higher than or equal to this length.

We can then define the indexing function.

Index :
∑

α : Mon(A) · ‖α‖ → A (3.2)

Index(α, n)
def
= sample](α)(0, n) (3.3)

We can be sure that the codomain is in fact A because the dependent type of the domain
constrains the index n to be within the length of the monoid. This will be proven.

Proposition 1. The above defined Index indeed has A as its codomain.

Proof. This can be proven by induction over the length of α.

Case α = 1

In this case, since ‖α‖ = ∅, Index(1) is simply the empty function ∅A by definition.

Case α = α′ • ηA(a) In this case ‖α‖ = ‖α′‖+1. Letm ∈ ‖α‖, that is,m < ‖α‖. Expanding
the definition

sample](α)(0, m) = sample](α′ • ηA(a))(0, m)

= [sample](α′) • sample(a)](0, m)

Either m < ‖α′‖ or m = ‖α′‖. In the former case, using the induction hypothesis

sample](α′)(0, m) ∈ A

hence

[sample](α′) • sample(a)](0, m) ∈ A

In the latter case, using Lemma 1

[sample](α′) • sample(a)](0, ‖α′‖) = sample(a)(‖α′‖, ‖α′‖) = a ∈ A

In summary, we have defined length, Append, Concat, and Index for both kinds
representations. Having Index defined for words in free monoids, we are justified in using
the same notation αn to notate Index(α, n), although during this chapter the more explicit
notation will be maintained for continuity.

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 48

Interchangeability of Representation

Given that we can capture the same details in both of these kinds of representation, and
can define the same basic operations on both of them, it is unsurprising that they are often
conflated. One may apply the Kleene Star to a setA∗ and proceed to append, concatenate, or
index its members. The justification for this conflation can be made explicit by constructing
transformations between the two spaces Seq(A) and Mon(A).

In the direction of free monoids to sequences, the transformation follows directly from
the indexing function 3.2.

toSeq : Mon(A)→ Seq(A)

toSeq(α)
def
= (‖α‖, Index(α))

The corresponding transformation from sequences to free monoids can be constructed
inductively, however with a notable caveat.

toMon : Seq(A)→Mon(A)

toMon(α)
def
=

1 ‖α‖ = 0

toMon(α �κ) ◦ ηA(α(κ)) ‖α‖ = S(κ)∨
m<κ toMon(α �m) ‖α‖ is a limit

The caveat to this definition is that although prefix ordering is defined over words in the free
monoid, in the standard construction we did not include transfinite-length words, and thus
the least-upper bound of transfinite chains do not exist. If we restrict our sequences to finite
ones, we can ignore the final transfinite case and have a legitimate definition. But, if we add
transfinite words into the free monoid, this definition could be used to map into them from
the corresponding transfinite preimages. However, we will defer this consideration to a later
time.

Notwithstanding the transfinite case, it can be shown that these two transformations are
inverses. To prove this, first we will prove a couple Lemmas. The first shows that the last
element of the word can be extracted using the predecessor to the length.

Lemma 2. For α ∈Mon(A) and a ∈ A,
Index(α • ηA(a)) = a

Proof. Firstly,

‖α • ηA(a)‖ = ‖α‖+ 1 > ‖α‖
Expanding the definition

Index(α • ηA(a))(‖α‖)
= sample](α • ηA(a))(0, ‖α‖)
= sample](ηA(a)) ◦ sample](α)(0, ‖α‖)
= sample(a) ◦ sample](α)(0, ‖α‖)

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 49

Using Lemma 1

sample(a) ◦ sample](α)(0, ‖α‖) = sample(a)(‖α‖, ‖α‖) = a

The next two show what happens when the indexing domain of the Index function is
restricted.

Lemma 3. Let α ∈MonA.

sample](α) �A= ◦A

Proof. This can be proven by induction over words α ∈ A.

Case α = 1

sample](1) = ◦A

Case α = α′ • ηA(a)
Expanding the definition

sample](α′ • ηA) = sample(a) ◦ sample](α′)

Using the induction hypothesis, for x ∈ A

sample(a) ◦ sample](α′)(x) = sample(a)(x) = x

Lemma 4. For α, β ∈Mon(A),

Index(α • β) �‖α‖= Index(α)

Proof. Let κ < ‖α‖. Expanding the definition

Index(α • β)(κ)
= sample](β) ◦ sample](α)(0, κ)

= sample](β) ◦ Index(α)(κ)

From the Proposition 1 it is assured that Index(α)(κ) is in A. Then Lemma 3 can be
applied, completing the proof.

From these lemmas, two additional important facts can be derived in the following propo-
sition.

Proposition 2.

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 50

• Index(id) = ∅A

• For α ∈ A

Index(α′ • ηA(a)) = Index(α) + {‖α‖ 7→ a}

Proof.

• This follows from the dependent type of the Index function.

• Given that the domain of Index(α′ • ηA(a)) is ‖α′ • ηA(a)‖ = ‖α‖+1 the function can
be decomposed

Index(α′ • ηA(a))
= Index(α′ • ηA(a)) �‖α‖ +{‖α‖ 7→ Index(α′ • ηA(a))(‖α‖)}

Applying Lemma 4 to the first term and Lemma 2 to the second completes the proof.

Using all of the lemmas, and the above proposition, it can be shown that toMon and
toSeq are inverse functions (restricting to finite sequences).

Theorem 1. The functions toMon and toSeq are inverses.

Proof. This will be shown in each direction.

Case toMon ◦ toSeq
Expanding the definition, on an arbitrary element α ∈MonA

toMon ◦ toSeq(α) = toMon(‖α‖, Index(α))

Proceeding by induction over words

Case α = 1

Since ‖α‖ = 0 toMon(0, . . .) = 1

Case α = α′ • ηA(a)
Since ‖α‖ = ‖α′‖+ 1

toMon(‖α‖, Index(α′ • ηA(a))
= toMon(‖α′‖, Index(α′ • ηA(a) �α′) • ηA(Index(α′ • ηA(a)(‖α′‖)))
= toMon(‖α′‖, Index(α′)) • ηA(a)
= α′ • ηA(a)

where the penultimate equivalence uses Lemmas 4 and 2, and the last equivalence
uses the induction hypothesis.

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 51

Case toSeq ◦ toMon
This case will be shown by induction over the underlying ordinal of an arbitrary se-
quence α.

Case ‖α‖ = 0
In this case

toSeq ◦ toMon(α)

= toSeq(1) = (0, ∅A)

Case ‖α‖ = κ+ 1
In this case

toSeq ◦ toMon(α)

= toSeq(toMon(α �κ) • ηA(α(κ)))
= (‖toMon(α �κ)‖+ 1, Index(toMon(α �κ) • ηA(α(κ))))

Using the induction hypothesis on α �κ, since

‖α �κ‖ < ‖α‖

it follows that

‖toMon(α �κ)‖ = κ

Since the domain of

Index(toMon(α �κ) • ηA(α(κ)))

is κ + 1 we can consider evaluating this function on κ and on m < κ. In the
former case, using Lemma 2

Index(toMon(α �κ) • ηA(α(κ)))(κ) = α(κ)

In the latter case, we can restrict the function to κ and use the Lemma 4

Index(toMon(α �κ) • ηA(α(κ)))(m)

= Index(toMon(α �κ) • ηA(α(κ))) �κ (m)

= Index(toMon(α �κ))(m)

Then using the induction hypothesis

Index(toMon(α �κ))(m) = α(m)

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 52

This establishes that our two transformations constitute a bijection between finite se-
quences and words in the corresponding free monoid, but this only establishes by itself that
there are equal numbers of both representations. What more must be established to show
that these are isomorphic for the purposes for which they are used as behavioral representa-
tions, we must show that this bijection commutes with all of our basic operations. We will
prove this.

Theorem 2. Sequences and Free Monoids are Isomorphic
The bijection toSeq between Mon(A) and Seq(A) (along with its inverse toMon) commute
with or preserve Append, Concat, and Index.

Proof. In order to distinguish between the two versions of each function, we will use super-
scripts M for monoid and S for sequence.

We will start with the simplest case, showing

IndexM = IndexS ◦ toSeq

For any word α ∈Mon(A)

IndexS(toSeq(α)) = IndexS(‖(‖α), IndexM(α)) = IndexM(α)

Next we will show that

AppendS(a, toSeq(α)) = toSeq(AppendM(a, α))

Expanding the LHS

AppendS(a, toSeq(α)) = AppendS(a, (‖α‖, IndexMα))

= (‖α‖+ 1, IndexM(α) + {‖α‖ 7→ a})

Expanding the RHS

toSeq(AppendM(a, α)) = toSeq(α′ • ηA(a))
= (‖α′ • ηA(a)‖, IndexM(α′ • ηA(a)))
= (‖α‖+ 1, IndexM(α) + {‖α‖ 7→ a})

where the last equivalence uses Proposition 2.
Finally we will show that

ConcatS(toSeq(α), toSeq(β)) = toSeq(ConcatM(α, β))

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 53

Expanding the RHS

toSeq(ConcatM(α, β)) = toSeq(α • β)
= (‖α • β‖, IndexM(α • β))
= (‖α‖+ ‖β‖, IndexM(α • β))

Expanding the LHS

ConcatS(toSeq(α), toSeq(β)) = ConcatS((‖α‖, IndexM(α)), (‖β‖, IndexM(β)))

Therefore we must show that

ConcatS((‖α‖, IndexM(α)), (‖β‖, IndexM(β))) = (‖α‖+ ‖β‖, IndexM(α • β))

which will be proven by induction over words for β ∈Mon(A).

Case β = 1

Since ‖β‖ = 0

ConcatS((‖α‖, IndexM(α)), (0, . . .)) = (‖α‖, IndexM(α))

Case β = β′ • ηA(b)
Since ‖β‖ = ‖β′‖+ 1

ConcatS((‖α‖, IndexM(α)), (‖β‖, IndexM(β)))

= AppendS(IndexM(β′ • ηA(b))(‖β′‖),
ConcatS((‖α‖, IndexM(α)), (‖β′‖, IndexM(β′ • ηA(b)) �‖β′‖)))

= AppendS(b, ConcatS((‖α‖, IndexM(α)), (‖β′‖, IndexM(β′)))

Continuing with the induction hypothesis

= AppendS(b, (‖α‖+ ‖β′‖, IndexM(α • β′)))

= (‖α‖+ ‖β′‖+ 1, IndexM(α • β′) + {‖α‖+ ‖β′‖ 7→ b})
= (‖α‖+ ‖β‖, IndexM(α • β′ • ηA(b)))
= (‖α‖+ ‖β‖, IndexM(α • β))

What follows from this is that sequences under this concatenation operator, and with
the empty sequence as an identity, forms a monoid isomorphic to the free monoid.

Corollary 1. Mon(A) ∼= (Seq(A), Concat, (0, ∅A))

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 54

Figure 3.3: Generalized sequence.

Proof. Using Proposition 2, the unit is preserved by toSeq, and by the above theorem the
product is as well, thus toSeq is a monoid homomorphism. Since toSeq is a bijection, it is
more a monoid isomorphism.

In other words, these two systems, free monoids and spaces of sequences, can indeed be
used interchangeably in representing the behavior of sequential systems. And perhaps this is
a clear reason why a greater distinction was not drawn between the two. Only when we move
to a more general kind of computation do these two approaches diverge into generalizations
that are most certainly not isomorphic in this same fashion.

3.2 Generalizing

Moving away from these sequential systems and their correspondingly sequential behaviors,
our aim is to represent the behaviors of HDDAs, which are concurrent. In this chapter, our
aim is first to get a sense of what kind of mathematical object could serve this purpose,
generalizing from those representing sequential behaviors. What are the generalizations of
sequences and of free monoids?

The answer to the former case is the one that appears most frequently in the literature.
Generalizing the sequence means replacing the underlying model of sequential time with a
less constrained one. The most obvious choice is to go from a well-order, or ordinal space of
events to a partially ordered one. That is, a representation of behavior as pairs

α = (S, α̂ : ‖S‖ → A)

where S is a poset. This is depicted in Figure 3.3. Other similar candidates for S include
acyclic graphs, and pointed variations of the like such as domains (pointed ω-CPOs) if a

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 55

Figure 3.4: Diagram in a monoidal category.

foundation is needed. Time is these models can be thought of as relativistic or asynchronous,
not embedded into a global linear timeline. Although such an embedding could be done as
a matter of realizing the execution in a Newtonian notion of global time, it certainly cannot
be done uniquely. We will call this class of representations generalized sequences.

The answer in the latter case is a generalization of a free monoid that offers a notion of
concurrency. Such a generalization can be found in category theory in the form of monoidal
categories. It is this generalization, rather than the former, that we will develop into our
proposed behavioral representation. In order to develop this approach to modeling con-
current behavior we will go into great detail defining and characterizing the specific kind
of monoidal categories we would like to use, namely a free symmetric monoidal categories,
which will be done in Chapter 6. This will involve giving clear general definitions first for
monoidal categories and there variants, and for the free construction in Chapter 5.

Here we will give just enough of a preview of monoidal category to make an argument
about why these two generalizations are no longer as interchangeable as their sequential
counterparts. In a monoidal category, the structures that we will be dealing with will be
more like acyclic ported block diagrams. Reflecting on the picture of a ordinary monoid
as a chain, shown in Figure 3.2, the elements of a monoidal category have both the ability
to be linked sequentially, a role now played by the composition operator ◦ , and joined in
parallel with an additional product ⊗ . This is illustrated in Figure 3.4. Although the term
monoidal emphasizes the additional parallel composition operation ◦ the in our analogy
here the monoidal product is replaced by categorical composition ◦ .

Although these generalizations are both graph-like, insomuch as their sequential counter-
parts are both linear, it must be emphasized how manifestly different these representations
are. Whereas the general topological models have events as points and simple relations
connecting them, the elements of monoidal categories, which we will call diagrams, place
a specific interface around each event determining how many incoming and outgoing edges
connect to them, and moreover in which order. Even more specifically, the interface can be
typed and thus constraints can be embedded in each event determining which other events

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 56

Figure 3.5: Composition in a monoidal category.

Figure 3.6: Ambiguity in composing generalized sequences.

can be connected to it. An entire diagram also may have unconnected incoming and outgoing
ports determining how it may be connected to other diagrams in a larger context. Standard
partial orders and graphs do not have these features, and thus cannot make distinctions
articulated by them. In contrast with the sequential case, the generalized representations
contain manifestly different information.

Furthermore, the interfaces of events in diagrams in monoidal categories is what makes it
possible to compose them. The existence of a clearly defined composition, made possible by
the categorical composition operator ◦ , means that the operations of appending and con-
catenation can be defined in monoidal category just as directly as they can in free monoids.
This is illustrated in Figure 3.5. In contrast, there is no obvious way to define concatenation
over relational structures without additional information beyond points and relations being
added to the structure, or without parameterizing the operation by explicit instructions on
how exactly to compose two graphs or posets. This difference is illustrated in Figure 3.6,
showing that it is not generally clear which events from each graph to connect with a relation
or ordering.

Which Generalization?

Granted that these two concurrent generalizations are most certainly different, and have
different features, the question then can be raised as to which of them is more appropriate
for representing the behaviors of HDDAs running in Process Fields. In Chapter 4 we will
discuss particular kinds of generalized sequences found in the literature, and will argue

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 57

that these approaches do not provide the kind of representation we need, pushing us in
the direction of the other approach, free monoidal categories. But we can begin here to
distinguish between these approaches through more general considerations regarding what
is essential to the representation of computational behavior.

As opposed to the sequential case, in which we define appending and concatenation, as
well as indexing, on both sequences and words in free monoids, in the generalizations this
is no longer true. Even in the sequential case we can see that the notion of appending and
concatenation are, in a sense, more direct in the monoidal representation. These operations
are algebraic ones, determining compositions. Concatenation is carried through the general-
ization into free monoidal categories, and provides the same means of composition. Likewise,
indexing is more direct in the sequence representation, since indexing is spatial, a mapping
from one space, in this case an ordinal, to another, a set of event types. In generalized
sequences the idea of indexing is still retained in the form of a more general space. Given
that having both of these features becomes complicated in the generalization we are com-
pelled to ask an important question. Which of these operations, appending/concatenating
or indexing, is more crucial to meaning when we are concerned with establishing it upon a
computational system?

Reflecting on the fundamental intuitions behind computation, one cannot help but see
a bias towards appending and concatenating as more essential to formulating a behavioral
semantics. Arguing why this is the case will require some elaboration. Causality immediately
comes to mind as one of these fundamental intuitions, and causality alone would not be
enough to side on this debate. Although, there is a case to be made that causality depends
on a notion of an underlying space in which one can state for any event, which other events
upon which it can depend. With an ordered space, a familiar condition of causality can be
stated; one which might look like the following.

ᾱ(e) = F ({ᾱ(e′) ∈ ‖S‖ | e′ < e})

Here, the behavior at e depends, via some function F , on the strict principal downset of e in
poset S. That is, what happens can only depend on what happened before it. This is usually
what we understand causality to mean, and it is nearly always formulated in a manner that
uses indexing rather than concatenation.

However, this kind of causality would only seem to be enough in the sequential finite
case, where we have a clear notion of a predecessor or strict prefix (apart from the empty
behavior). As can be seen in work such as that of Matsikoudis [41], strict causality may
be too broad a notion when generalizing to non-sequential or infinite domains (his point
leans more towards the latter). That a behavior, at some moment in a model of time,
depends on past behavior is inadequate to establish that the behavior can be constructed
iteratively; or, in short, computed. What is more specifically necessary in defining the
semantics of computational behaviors is constructiveness, the property that the behavioral
representation can be reached through induction, albeit potentially transfinitely, from some
initial behavioral fragment. This is a somewhat elaborate way of stating that a computation

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 58

moves forward, pushing into the future, rather than pulling from the past2. Rather than
simply exist as a function of its history, a computation builds on it, progressing, and adding
to it. This suggests the importance of concatenation over indexing.

The most familiar instance of this constructiveness appears in the least fixed-point se-
mantics given to iterative constructs to define their denotations [61]. While this kind of
semantics was initially devised by Scott, Strachey, and others to denotationally construct
the functions computed by programs, it also became used for the construction of computa-
tional histories. The prototypical example of this is the semantics given to KPNs by Kahn
and MacQueen[30], in which the semantics defined for a network of processes, subject to
certain important constraints, is given as the history of tokens passed through all of the
channels connecting these processes. In particular, this history is defined to be the least
fixed point of a function representing the network operating on these histories.

Generally, in this fixed-point schema, computation is modeled as a monotone endomor-
phism on an ordered structure, such as a domain D

F : D → D

∀ a, b : D · a ≤ b ⇒ F (a) ≤ F (b)

This function computes a history in D from another history in D and thus the conventional
denotation associated with the computation modeled by F is the least history x satisfying
the fixed-point equation

x = F (x)

For a general function of this sort, without further stipulations, such a least fixed points may
or may not exist. Moreover, fixed points other than the least fixed points may exist for the
function. There are several additional criteria that can secure the existence of a least fixed
point. If the domain has a finite height, it must exist. If the domain is ω-complete (or directed
complete) and F is Scott-Continuous, it must exist. While this is the most frequently used
case, as Park points out in [52], when the domain is complete up to a sufficient limit ordinal
κ and F commutes with limits at κ, this is also sufficient.

What is the connection between fixed-points, monotonicity, and constructiveness then?
Kleene’s fixed-point theorem uses monotonicity to construct the least fixed-point iteratively
from the bottom element ⊥ of the domain D, through the repeated application of F . This
particular fixed-point is important precisely because it is reachable via iteration, hence con-
structive. The proof that this constructive fixed-point exists uses the following two conse-
quences of monotonicity

⊥ ≤ F (⊥)
α ≤ F (α) ⇒ F (α) ≤ F (F (α))

2I credit this analogy to Gil Lederman

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 59

to construct an increasing orbit starting at ⊥

⊥ ≤ F (⊥) ≤ F 2(⊥) ≤ F 3(⊥) ≤ . . .

which models, in some respect, the computation itself inductively extending its semantic
value. That is, over this orbit

α ≤ F (α)

This could be interpreted straightforwardly as the notion that a computation produces be-
havior as a consequence of state. Given the state of a system can be concretely represented
as a function of (or relation on) its past events, this amounts to stating that a computation
extends behavior. To this end, it is more essential that F is increasing on its ⊥ orbit, and
converging to some limit, than it is that F is monotonic. The latter is simply used as a
sufficient condition for the former.

Constructiveness is therefore a more essential intuition than causality, because it empha-
sizes the representation of the semantics as being inductively reachable through iteration,
and if we think of a computation as extending its behavior, the notion of appending or con-
catenating to it certainly captures this idea. This would suggest a monoidal representation
of behavior, rather than one that is only a generalized sequence.

From this perspective, when concatenation is possible, a behavioral semantics can al-
ternatively be defined by a function next that determines for any behavior, any history of
computation so far, what to appended to it.

ακ+1 = ακ • next(ακ)

We can then derive an endofunction

F (α) = α • next(α)

which is increasing on its entire domain by definition (though not necessarily monotonic).
Hence, if we have a free monoidal representation of behavior, we should always, in principle,
be able to define such a next function. This is a kind of “forward” or “progressive” causality.

Indeed, in cases where a domain is already monoidal, and has a well-defined notion of
concatenation that is consistent with its ordering, given an endomorphism F

∀x ≤ F (x) · ∃ γ · F (x) = x • γ

as follows from the ordering definition. Consequently, we can Skolemize the above in order
to define next over the domain of postfixed points.

∃next · ∀ x ≤ F (x) · F (x) = x • next(x)

This is the case in models such as KPN or DF, since the domains in the fixed-point semantics
of these models are indeed monoids (up to their infinite members) and their prefix order over
histories is consistent with concatenation.

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 60

But in this kind of formalism, how does one deal with limits and convergence? For a
complete behavior x, beyond which there is no progress, next(x) = 1. Clearly, when this is
the case,

F (F (x)) = F (x • next(x)) = F (x • 1) = F (x)

Therefore, next(x) = 1 implies that x is a fixed point of the derived F .
To address limits, we need to use the ordering on the monoid to define the limit

F ω(x)
def
=
∨
k<ω

F k(x)

The condition that the represented computation goes no further than ω can then be recast
as the condition that

next(F ω(x)) = 1

Then, of course, F ω(x) is a fixed point.
Let us formalize this.

Definition 1. Let M be an ℵ0-complete pomonoid (ℵ0-CPOM) if M is defined as the tuple

M = (‖M‖, •, 1, ≤)

where (‖M‖, •, 1) is a monoid and (‖M‖, ≤) is an ℵ0-CPO, under the condition that for
all a, b ∈ ‖M‖

a ≤ b ⇔ ∃ c · b = a • c

Again, the condition cannot be generally be taken as a definition for the ordering since
it only generally defines a preorder; that is, antisymmetry must be established. We are
choosing closure here under all countable limits so as to accommodate an extended free
monoid that can have ordinal length words. Less may be necessary. We can then define
a condition under which a function next gives rise to an iteration function with a least
fixed-point. This condition is defined as follows.

Definition 2. Given a ℵ0-CPOM M , a function next : ‖M‖ → ‖M‖ is finitely supported
iff for all x ∈ ‖M‖ such that x is not finite (in the order-theoretic sense) next(x) = 1.

Here, by x being finite, we are using the order-theoretic definition, that x is way-below
itself, x << x. That next is finitely supported simply means that it drops off to 1 at all of
the non-finite points.

It can be proven, then, that this is a sufficient criteria for the iterator defined by next
function having a constructive fixed-point.

CHAPTER 3. GENERALIZING SEQUENTIAL BEHAVIOR 61

Theorem 3. If next is finitely supported, then for all m ∈ ‖M‖ the function defined

F (x)
def
= x • next(x)

has a fixed point m̂ such that

m̂ = F ω(m)

Proof. Suppose that y = F ωm is finite. Since the chain

m ≤ F (m) ≤ F 2(m) ≤ F 3(m) ≤ . . .

has y as its limit

y =
∨
k<ω

F k(m)

it follows from y << y that there must be a n < ω such that y ≤ F n(m). But it is also the
case that y ≥ F k(m) for all k < ω. Therefore, y = F n(m). Since, F is increasing, y ≤ F (y).
But since

F (y) = F (F n(m)) = F n+1(m)

and n+ 1 < ω, it also follows that

y ≥ F n+1(m) = F (y)

Therefore, F (y) = y. If, otherwise, y is not finite, then

F (y) = y • next(y) = y

by the finitely supported property.

The consequence of this theorem is that we can replace a semantics based on continuous
endomorphisms over domains with a semantics based on finitely supported endomorphisms
over pomonoids (such as free monoids).

Given that when concerned with most all practical computations there is an interest in
defining the behavioral consequences of a finite histories, extending a next function to be
1 on infinite histories should be possible most of the time. Whereas when dealing with a
continuous physical process, behavior can certainly depend on an infinite history. However,
the order-theoretic structure of the continuum precludes even defining a clear notion of a
monoid or of a next. This is true as well for many generalized sequences, for which it can
be said that no clear next function can be defined, just as the ordered space itself possesses
no notion of a successor analogous to that of well-orders. In these cases, one is most likely
confined to dealing with fixed points in the traditional fashion.

All of this would suggest that for computations (as opposed to all physical systems) a
monoidal representation of behavior, even concurrent behavior, captures something more
essential about computation than one based on a generalized sequence. Nevertheless, in the
next chapter we will explore several existing representations of concurrent behavior, none of
which go fully down the path of monoidal categories we will explore, leading to our definition
of OEGs

62

Chapter 4

Existing Representations of
Distributed Behavior

The study of non-sequential computing systems has a long and diverse history that reflects
the similarly diverse series of circumstances that motivated work in this area. While the core
of the theory of computation was built upon the notion of computational steps forming a
sequence of actions or transformations, that ultimately conclude in a final state or diverge,
as Winskel and Nielsen argue in [69]

... in reality, few computational systems are sequential. On all levels, from a small
chip to a world-wide network, computational behaviours are often distributed, in
the sense that they may be seen as spatially separated activities accomplishing
a joint task. Many such systems are not meant to terminate, and hence it makes
little sense to talk about their behaviours in terms of traditional input-output
functions. Rather, we are interested in the behaviour of such systems in terms of
the often complex patterns of stimuli/response relationships varying over time.
([69])

This further emphasizes the role of behaviors as semantics, particularly in the shift from
studying sequential to non-sequential systems.

Given what we argued in the beginning of Chapter 3, developing a model of distributed
behavior may involve both generalizing away from sequential ones as well as abstracting
fewer details away from the physical realities of the systems being studied. And insomuch
as these systems have varied greatly, from small clusters of processing devices with highly
regularized communication mechanisms to the IoT, the appropriate models of the systems
and their behavior have varied as well, providing answers to the key questions associated
with a particular kind of system or platform.

Therefore, while it is the case that a plethora of models for parallel, concurrent, and dis-
tributed computing exist throughout the literature, the demands of the particular platforms
we have in mind, and have explicated in Chapter 2, have lead us to develop a new behavioral
representation rather than use one of the many existing ones, or even a simple variant. Of

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 63

the demands we have placed on a representation of behavior, perhaps the most important,
for the purposes of contrasts, are modularity, composability, and true concurrency.

In Chapter 3, we considered a spectrum of possible behavioral representations, starting
with the equivalent approaches of sequences and free monoids, and expanding outward into
the inequivalent branches of generalized sequences and free monoidal categories. We argued
in the end of the Chapter why our demands suggested favoring the last of these possibilities,
free monoidal categories. In this Chapter, we will review existing representations of concur-
rent behavior and discuss where they fall in this spectrum, and why they lack the properties
we seek for reasoning about HDDAs in Process Fields.

4.1 Which Kinds of Systems?

Before reviewing some existing approaches to modeling concurrent behavior, it is worth first
discussing the particular kinds of systems that influenced their development and identify
ways in which these systems are different from the ones in which we have taken interest,
such as the IoT. In contrast with the representation of behavior itself, which serves to define
the semantics of a parallel, concurrent, or distributed system, there are the models of systems.
This category consists of programming languages, process calculi, transition systems, and
other Models of Computation (MoCs).

As we have argued in Chapter 2, of the existing Models of Computation the Hewitt Actor
Model provides one of the more realistic pictures of what execution looks like in the Process
Fields. In contrast with this very dynamically structured model, many system or platform
models that have influenced the development of concurrent representations of behaviors
simply multiply a sequential computational platform, creating one with several sequential
components. These components are often then given a fixed topology of communication
connections through which they share information or have access to shared resources.

Early process calculi containing a concurrency primitive, such as Communicating Sequen-
tial Processes (CSP), are rooted in the intuition of a system consisting of a fixed network of
sequential components. Hoare makes this clear in an early paper on CSP [21], citing that

The programs expressed in the proposed language [CSP] are intended to be im-
plementable, both by a conventional machine with a single main store, and by
a fixed network of processors connected by input/output channels... It is conse-
quently a rather static language... ([21])

This is reflected in Calculus of Communicating Systems (CCS) as well, which could not yet
send the names of channels. Process network models such as that of Kahn and MacQueen
[30], and dataflow models such as that of Dennis [13], are also based in the systemic model of a
statically networked collection of otherwise sequential processes. On the side of logic, Pnueli
introduces Linear Temporal Logic (LTL) in [55] as a logic for reasoning about both sequential
and concurrent systems, with the model of concurrent systems again a fixed collection of
sequential processors modeling “n programs being concurrently run by n processors”[55].

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 64

In contrast with these early models of concurrency, the Hewitt Actor Model[19] makes far
more radical assumptions about the system, lacking a fixed network of sequential computing
entities. But Actors are nevertheless still internally sequential entities, albeit dynamically
created and configured. One consequence of this is the interleaving of received messages.
This structural dynamism is reflected in Milner’s π-calculus[48], but this calculus (at least in
its first conception) similarly imposes a sequentiality on message reception, and thus bears
a similar retention of a sequential primitive beneath the concurrency.

4.2 Traces

While we identified two potential types of generalizations of sequential behavioral represen-
tations in Chapter 3, a third measure to accommodate non-sequentiality is to simply flatten
it down into sequences, retaining the same essential forms of sequential behavioral represen-
tations. This approach goes generally under the name of trace theory. The intuition behind
this approach is that although operations may be happening concurrently, if observed, they
will ultimately fall into a particular sequential order for the observer. Hoare summarizes this
view in [22]

Imagine there is an observer with a notebook who watches the process and writes
down the name of each event as it occurs. We can validly ignore the possibility
that two events occur simultaneously; for if they did, the observer would still
have to record one of them first and then the other, and the order in which he
records them would not matter. ([22])

This model of concurrent behavior consists for a particular system, therefore, of all in-
terleaved traces of its events. Winskel refers to this model, particularly if it is closed under
prefixes, as Hoare Traces or Hoare Languages. The advantage of this system is that it main-
tains the simplicity of dealing with either sequences or words in free monoids, and therefore
is a composable representation at the least. However, the key problem with this model is
that without additional mechanisms a single run or execution of a concurrent system could
generate many such traces and there is no distinction in these traces between interleaving
and non-deterministic choices.

Moreover, composition becomes problematic with this representation. While on one
hand, composing two individual traces α and β is a clearly defined mathematical operation
α • β, in the context of the interleaving of concurrent events composing two collections of
traces A and B by composing their members may exclude possible interleaving that would
occur if the operations modeled by A and B could overlap with each other concurrently.

For instance, suppose one has a simple system that could perform actions in the al-
phabet {a, b, c}, where actions b and c both depend on a having happened, but can occur
concurrently with each other; additionally, suppose a can only happen again after b. If
set A = {abc, acb} constitutes the possible traces of the system with one invocation, two

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 65

invocations in succession could be composed A • A resulting in the set

A • A = {abcabc, acbacb, abcacb, acbabc}

of compositions of traces. But, unless each iteration of A is synchronous, this composition
misses traces abacbc and ababcc, which interleave events from the two iterations. Therefore,
in general, there is not enough information in interleaved traces themselves to determine
how to compose them.

Finally, interleaved traces do not scale well as a representation. To completely character-
ize the executions of a system with a number of concurrent components, the permutations
of interleaved orderings may increase exponentially with this number. This problem is dis-
cussed in the context of verifying programs in a threaded MoC in [34]. This is a particularly
significant problem when addressing platforms such as the IoT, which may consist of very
large numbers of devices. The idea of representing their behavior by permuting every order-
ing of every one of them is at the least cumbersome and awkward, not to mention the two
other issues.

These problems have all been well-known for a long time, but they are important to
restate, as they prototype the challenges associated with a representation of concurrent
behavior. Nevertheless, because LTL, or one of its close cousins, have remained the sine
qua non of concurrent system verification, and interleaved traces serve as the model for LTL
[55], traces have not been easy to dispense of. Two approaches to dealing with some of these
problems are either to include with traces more information about the system that produced
them, or to abandon sequential representations and move to one of the two generalized forms
we discussed in Chapter 3.

We will first look at the former of these approaches, which attempt to abate the problems
with traces while maintaining their basic form.

Mazurkiewicz Traces

In many concurrent systems, particularly ones with fixed structures, there are certain causal-
ity relationships that can be established between types of events. Observing this, one can
take any individual interleaved trace of behavior and construct rules determining which
subsequent events could be reordered, specifically on account of the fact that they occur
concurrently, and thus independently. For instance, if events a and b always occur indepen-
dently, the two traces acbadca and acabdca can be identified as two different interleavings
of the same essential process.

A formal theory around this observation was formulated by Mazurkiewicz in [43], which
represented traces specifically as words in a partially commutative monoid. These monoids,
as opposed to free ones generated from an alphabet A, Mon(A), have in addition to the
axioms a set of commutativity rules for select pairs of elements. To continue the above
example, if a and b commute, that is a • b ∼= b • a, then

a • c • b • a • d • c • a ∼= a • c • a • b • d • c • a

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 66

In general, every commuting pair a and b will generate an equivalence class

α • b • a • β ∼= α • a • b • β

for all words α and β. Any set of commuting pairs from the alphabet, thereby partitions the
free monoid into clusters of possible traces reachable from each other by exchanges.

Using this partially commutative monoid, a run of a system can be represented by any
representative trace t from one of its equivalence classes 〈t〉. This representation is known
as a Mazurkiewicz Trace and is defined in [43], and further elaborated in [44], [45], and
[1]. In [1], which gives the most comprehensive treatment of Mazurkiewicz Trace amongst
these references, a Reliance Alphabet characterizes the behavioral possibilities of a particular
system, defining for this system, and its behavioral traces, its partially commutative monoid.

Definition 3. Reliance Alphabet
A Reliance Alphabet H is defined

H
def
= (A, I)

where the alphabet A is a set of event types and the independence relation I is a symmetric
irreflexive binary relation over A.

Aalbersberg and Rozenberg, in [1], also include the complement of I, the dependence
relation, in the Reliance Alphabet, but this is simply a derivative of I. The purpose of the
independence relation is simply to define which pairs of event types in A commute in the
words of Mon(A). To be specific, for each (a, b) ∈ I, a ⊗ b = b ⊗ a, and thereby any two
traces that can be related by this exchange are equivalent in H.

From I a set of commutativity axioms along with substitution generate a relation RH

over words inMon(A), and the partially commutative monoidMH constructed can be given
the underlying set Mon(A)/RH . The product over this set can be defined as the equivalence
class of the free product over any two representative words.

〈t1〉 ⊗ 〈t2〉
def
= 〈t1 ⊗ t2〉

This product is clearly well-defined as the canonical lifting of the free product through the
equivalence class projection. The identity is then the equivalence class 〈1〉 of the empty word
1, which contains only itself {1}. Consequently, with respect to the equivalence classes H, it
suffices to identify any element 〈t〉 by choosing a word t, and it suffices to simply concatenate
these representatives to identify the composition of the runs they represent.

It is in this manner that Mazurkiewicz Traces attempt to solve problems that we iden-
tified with interleaved traces. The most obvious of these is that the partially commutative
monoid enables a much greater economy of representation, because only one concrete trace
is necessary to identify the entire set of traces that arise from the possible behaviors of a
system. The more technically significant problem this formalism solves is that it is able to

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 67

provide an unambiguous means to compose behavioral representations asynchronously. The
structure of the equivalence class takes care of the permutations left out of a simple set of
trace concatenations.

To see this consider an example similar to the one given previously involving a system
with an alphabet A = {a, b, c}. Suppose we include in the independence relation a single
symmetric pair (b, c). Take then the trace 〈bc〉 = {bc, cb}. If we take the pointwise product
this set by itself, we get

{bc, cb} ⊗ {bc, cb} = {bcbc, bccb, cbbc, cbcb}

However, the trace product 〈bc〉 ⊗ 〈bc〉 = 〈bcbc〉 contains the two additional elements bbcc
and ccbb left out of the pointwise product, which, in a sense, places a synchronization barrier
between the two behaviors, only permitting a second b or c to occur after one of each has
happened.

More powerfully even, a further lifting of the partially commutative monoid can be
achieved with the underlying set PMH \ ∅, sets of Mazurkiewicz Traces. Here the pointwise
product over sets makes more sense. We can define the product

A ⊗ B
def
= {a ⊗ b | a ∈ A, b ∈ B}

between two sets of traces, and define the unit as the set {〈1〉}. We can then consider
two distinct traces {〈abc〉, 〈bac〉} which cannot be transformed into one another through
commutativity (owing to the fact that an equivalence class partitions a set). If we multiply
this by itself in the naive setwise fashion we would be taking the product

{abc, acb, bac} ⊗ {abc, acb, bac}
= {abcabc, abcacb, abcbac, acbabc, acbacb, acbbac, bacabc, bacacb, bacbac}

and missing abbcac and babcac. Instead, using trace composition,

{〈abc〉, 〈bac〉} = {〈abcabc〉, 〈bacabc〉, 〈abcbac〉, 〈bacbac〉}

and thus the missing two permutations are covered in the third and fourth classes, respec-
tively.

This would seem to solve the issue of composition, as well as achieve a distinction be-
tween concurrency and nondeterminism. However, this solution comes at a cost, paid in
the limitations of what can be faithfully modeled by an independence relation. As can be
seen in [43], and much of the literature on the subject, Mazurkiewicz had in mind, again,
fairly rigid, static concurrent systems. In particular, Mazurkiewicz uses Petri Nets as his
prototype of a system that can be modeled in this fashion. Event types are either always
concurrent or always dependent.

If we go back to our original example illustrating the issue with composing traces, we
give a fairly simple, intuitive scheme for the dependencies between the events a, b, and c.

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 68

Yet this scheme cannot be encoded as an independence relation. This can be easily checked
via exhaustion. Since the independence relation is symmetric, and we know we would like b
and c to be independent. If we stopped there, our example set {abc, acb} would be the single
trace 〈abc〉, and the product with itself would be the single trace 〈abcabc〉 consisting of only
the four variants we deemed initially to be incomplete. If we make a and c independent then
the trace 〈abc〉 picks up the variant cab, which is already too broad, because we want c to
follow a. Specifically, we would like the c to commute with subsequent as but not antecedent
ones.

This limitation places a clear bound on the complexity of the systems that can be rep-
resented behaviorally by traces, or otherwise forces more complex ones to be abstracted.
Sassone, Nielsen, and Winskel observe this same limitation in [58], comparing them to other
true concurrent representations of behavior such as Event Structures:

Mazurkiewicz trace languages are too abstract to describe faithfully labelled event
structures. Clearly, any trace language with alphabet {a, b} able to describe such
a labelled event structure must be such that ab ∼= ba. However, it cannot be such
that aba ∼= aab. Thus, we are forced to move from the well-known model of trace
languages. ([58])

As a response to this limitation, Sassone et al. propose generalized Mazurkiewicz Traces
[58] which extend simple commutativity rules with general substitution to a more complex
set of context sensitive commutativity rules. The single independence relation I is replaced
by a function

I : Mon(A)→ 2A×A

mapping each word t to a symmetric irreflexive relation I(t) satisfying several unsurprising
consistency and coherence axioms. Ultimately, the equivalences generated by I are those for
each word α ∈Mon(A) and (a, b) ∈ I(α) such that

αabβ ∼= αbaβ

where β is any word in Mon(A). Constructing this relation, one can derive a quotient
monoid in the same fashion as before.

This formalism clearly generates a richer variety of monoids than those defined by a
single independence relation. However, what has been lost again in this very general lifting
is the economy of the representation. Indeed, we could encode our example in this language,
constructing an appropriate monoid. But in doing so, we would need to specify that, based
on our rules, the context α such that αac ∼= αca are specifically those α in which there are
fewer cs than as, so that the particular c in the ac fragment is the instance of c following an
earlier a, such as was the case for abacbc ∼= abcabc in our original example.

Characterizing the commutativity rules is no longer simple and places a more formidable
weight onto this model of the underlying system. It would be more direct in a representation

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 69

(a)

(b)

Figure 4.1: Two different processes that look the same to a sequential observer.

to simply identify which a and which c are connected. And this all still leaves unresolved
the issue of concurrency amongst the same event type. Two a events, for instance, in these
systems are always sequential. Two clear reasons exist for this. One epistemological reason
is that so sequential observer will ever know if two instances of a ever commute between
two runs. The other reason is ontological. The systems imagined in the development of
these representations, again, are often topologically static networks of sequential elements
operating concurrently. The archetype of an event type is an abstract sequential step taken
on one of these components that may or may not be concurrent with steps taken by other
components.

Our notion of representing behavior in a Process Field contrasts strongly with this picture,
both in the ontology of a HDDA executing, as well as in our aim to devise a representation
that is ontological in nature, rather than one that approximates ontology through a collection
of projected perspectives. Without additional information we cannot distinguish between
the two fragments of execution depicted in Figure 4.1, both of which would look like aaa to
any sequential observer. Trace languages, even the most general, cannot easily distinguish
between these without adding more contextual information.

4.3 True Concurrency

Throwing fully aside the constraints and complications of anchoring behavioral represen-
tation to a linear structure, albeit perhaps with commutativity rules or other means to
aggregate ontologically equivalent interleavings of concurrent behavior, we arrive at a set
of non-linear mathematical structures that inherently represent two concurrent events as
non-sequential, and thus unordered. As opposed to interleaving representations, these non-
sequential structures that represent concurrency inherently are aggregated under the ap-

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 70

proach of true concurrency.
Of these true concurrent representations, the subcategory of these mathematical models

that has dominated the literature falls under the branch of representations we referred to
in Chapter 3 as generalized sequences. These representations consist of an abstract space of
events along with a relational structure such as a graph or partial order, labeled by event
types. The relation between two events represents a causal relation, either direct or transitive,
defining a concurrent model of logical time. In contrast with Mazurkiewicz Traces, which
factor out the distinction between possible observers through commutativity rules, these
representations identify the behavior itself in abstract terms that can be projected back into
sequences.

The distinction is a little like the two different interpretations of vector spaces, one being
that vectors and linear transformations are represented in particular coordinate systems, but
have invariant properties and relationships that are conserved through coordinate transfor-
mations (which have a certain constrained form and structure). The other is that vectors
are geometric objects in abstract vector spaces that can be coordinated various ways. Of
course, the former is analogous to trace languages like Mazurkiewicz Traces, that provide
a collection of coordinate transformations along with their vector as a tuple. The latter
finds its analog in the more geometric forms of generalized sequences, which can likewise be
coordinated by various topological orderings.

Lamport Clocks

An early notion of events as being inherently partially ordered in distributed systems, rather
than totally ordered, is reflected in Lamport[32], who in contrast with Mazurkiewicz has
in mind a system that is indeed spatially distributed, like the IoT. In fact, in this paper,
Lamport identifies distributed systems specifically as

[consisting] of a collection of distinct processes which are spatially separated,
and which communicate with one another by exchanging messages. A network of
interconnected computers, such as the ARPA net, is a distributed system. ([32])

One might recognize ARPA net as the nascent internet. For sure, Lamport’s model was
a rudimentary kind of IoT, where the “things” were nevertheless conventional computing
systems.

Indeed, Lamport proceeds to construct a model of behavior under the same aforemen-
tioned assumption of a concurrent composition of sequential processes:

We begin by defining our system more precisely. We assume that the system
is composed of a collection of processes. Each process consists of a sequence of
events... In other words, a single process is defined to be a set of events with an
a priori total ordering. ([32])

In this model, a fixed collection of sequential processes send asynchronous messages to one
another. And given each sequential process is behaviorally sequential, modulo the messages

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 71

that are interacting with it from outside of this sequence, the totally events of each individual
process can be modeled as well-ordered sequences, like those at the beginning of Chapter 3.
The events of each process can therefore be represented as labeled ordinals α = (κ, ᾱ). The
underlying model of well-ordered time for each process constitutes for Lamport a logical
clock, such that each event happening on any process happens at some logical time in that
process.

Lamport defines an irreflexive partial ordering on the collection of events across all pro-
cesses. Two events a and b are ordered a < b when a happens before b in the same process,
or when a represents the sending of a message from one process that is received as an event b
in another process. This ordering of events by itself constitutes a partially-ordered model of
behavior in the systems Lamport is considering. However, Lamport constrains these models
to those in which the events are always also linearly ordered along one of a fixed collection
of sequential processes. What follows from this model, which superimposes a partial order
with a collection of total orderings are particular analyses relevant to the kind of system
Lamport has in mind. The specific question asked in the paper that introduces this model
is the question of whether, given first the collection of sequential orderings and the ordered
pairs of message sending and receiving events, a strict partial ordering of events can be con-
structed; indicating that the collection of sequences and message pairs are consistent with
each other.

For Lamport, the answer to this question comes in the form of an assignment of a single
global index to each event which places them in a linear order that respects the underlying
partial order, and gives a possible ordering for a sequential observer. These indexes are
considered logical timestamps and constitute a Lamport clock, giving the whole collection of
events a sequential model of logical time. The idea of a vector clock, often mis-attributed to
this work by Lamport appears nearly a decade later in the work of Fridge[16] and Mattern[42],
who elaborate on the work in [32].

A vector clock precisely recovers Lamport’s original idea of an underlying partial ordering
from the collection of event sequences and message pairing, indexing each event with a N -
tuple of natural numbers, where N is the number of sequential processes. Getting into the
details of both of these systems, while interesting, would be a departure from the aim of our
discussion, but it suffices to say that both Lamport clocks and vector clocks are methods of
taking a fixed collection of communicating sequential processes modeled as a combination
of sequences and messaging pairs, and establishing the very existence of a true concurrent,
partially-ordered model, the latter differing in that it explicitly constructs this model. In
other words, the aim is less to study and reason about the behaviors then to simply show
that they exist for the systems in question – that the behavioral semantics are, in a sense,
definable. Consequently, there is little discussion in this work about how to work with these
partial orders, particularly in the earlier case where Lamport does not even presume to have
them directly.

Nonetheless, modeling this particular kind of concurrency with appropriate behavioral
representations is still a relevant are of interest as can be seen in [7]. Any decent behavioral
representation aimed at systems like the IoT should also be able to cover this ground, albeit

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 72

a narrowly constrained subspace of what is possible in the systems we have in mind. We
shall see in Chapter 7 an example of how OEGs can indeed subsume this kind of behavior
into its more broadly applicable potentials.

Partial-Ordered Models of Behavior

The epitome of a generalized sequence, and perhaps the beginning of what is considered
true concurrency research, is found in Event Structures , first presented in [50], then further
expanded on in Winskel’s thesis[68]. In the latter, Winskel builds upon the work of Lamport,
Hewitt, and Petri, constructing a sophisticated theory around partially-ordered representa-
tions of behaviors. In contrast with Lamport, the kind of systems Event Structures were
devised to model were Petri Nets, much as in the work of Mazurkiewicz.

An elementary Event Structure is simply a poset S = (E, ≤), consisting of a set of events
E and a partial ordering. These events can be labeled by a function into some alphabet of
event types A amounting to a labeled Event Structure, and in this we find our generalized
sequence α = (S, α̂) as a representation of behavior. In contrast to the work of Lamport, for
which the partial ordering of events exists to witness the causal consistency of the relationship
between sequential processes, Event Structure give the semantics of processes like Petri Nets
that are more concurrent at their foundation.

Consequently, Winskel et al. develop the mathematical foundations of these posets more
than Lamport, intending to use them as a full denotational semantics, rather than a simply
using them as a verification method. The focus of these developments in both [50] and [68]
is showing how spaces of Event Structure can form Scott domains, in the same manner as
the spaces of partial computable functions in the denotational semantics of sequential sys-
tems. A highly concurrent system with a complex causal network of events can be thereby
be described as a directed set of approximations that characterize how computation in these
systems progresses. In the earlier paper, this is described succinctly, identifying Event Struc-
tures as the “intermediate between nets and domains.”[50]

While this work provides a compelling basis for using partial orderings as representations
of behaviors, and certainly accomplishes the goal of bridging the gap between a broad range
of concurrent systems, typically rooted in operational semantics, and the mathematics of
denotational semantics, what is lost in the generality is a clear means to compose behaviors.
This lack indeed reflected in the domain theoretic framing. As was discussed in Chapter 3, the
domain theoretic means of expressing progress is extension by means of a monotonic function
(or functional) operating over an increasing orbit, rather than an algebraic concatenation
onto the history since no such concatenations exist for Event Structures. A fragment of
execution represented as an Event Structures is therefore only meaningful as, and insomuch
as it is a prefix of a longer execution. There is no coherence to the idea of cutting a piece
of an execution out of context and treating it as a modular element that could be inserted
somewhere else.

To see the complications that arise with both composition and modularity, consider an
example shown in Figure 4.2. In this example, there are a pair of events A1 and A2, the former

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 73

(a) An event graph.
(b) A different event graph with the
same transitive closure.

Figure 4.2: Graphs of events indistinguishable under transitive closure.

of which sends a message to a third event R, and the latter of which receives a response from
R. In the version shown in Figure 4.2a, A2 depends on both the reception of the message
from R, and on control flow following from A1. A1 and A2 might be, for instance, a send
command followed by a blocking read command constrained to the same sequential process.
In the second version shown in Figure 4.2b, there is no control dependency between A1 and
A2. Although these two graphs have the same transitive closure, and thus the events have
the same causality ordering in both cases, nonetheless the graphs give different ontological
information about the connections between the events.

If this additional information did not serve a purpose in answering important questions
about the behaviors being represented, it could indeed be left out. And, in the contexts at
which Event Structure is aimed the representation succeeds to provide enough information
to determine questions regarding the causal ordering of events. However, in contrast with
models of computation such as Petri Nets, in which the structure of the system is static, HD-
DAs consist of structures that can (and often will) change during execution. Consequently,
it is important in the context of HDDAs to represent behaviors as free standing, modular
fragments of behavior that can be composed.

We must consider the example in Figure 4.2 from a perspective of composition and
modularity. Dividing the two graphs along the dotted line to form execution fragments gives
two different dependency interfaces, characterizing the flow of effects from the upper part of
the graph to the lower part. In Figure 4.2a, there are two dependencies crossing the dotted
line, and thus when divided into two fragments Y1 and Y2, the lower fragment Y2 depends on
both the reception of a message and the passing of control happening prior to the fragment.
While Y1 provides these dependencies, X1, the upper fragment shown in Figure 4.2b, does
not. Therefore, one could compose Y1 with Y2 and get precisely the execution in Figure 4.2a,
whereas composing X1 with Y2 would not fulfill the dependencies of Y2. Instead, the result

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 74

Figure 4.3: A potential composite of parts of two different graphs.

of a composition between X1 and Y2 might look more like what is shown in Figure 4.3, in
which the additional dependency in Y2, unfulfilled by X1, becomes an incoming dependency
of the composition.

One might argue, to the contrary, that direct dependency could be lost in the interior of
the execution fragment, since the kind of composition shown above happens at the bound-
aries, but this would limit reasoning about these fragments to only additively composing
them. Maintaining the direct dependencies makes the operation of composition simpler, but
more importantly, opens the possibility to define propositions about interior fragments. For
instance, one could state that there exists a suffix common to the fragments in Figure 4.2a
and Figure 4.3, namely Y2, but Y2 is not a suffix of the fragment in Figure 4.2b.

Ironically, some of the information missing in a partially ordered representation of be-
havior, as illustrated in the above example, that would be necessary to give a meaning to
algebraic composition over them is the kind of information that was lost from causal Petri
Nets in their transformation to Event Structure. Specifically, the cites at which behaviors
could be joined together in a meaningful way, in the manner we have illustrated above and
suggested in the notion of monoidal categories, are represented to some degree by the places
or conditions in Petri Nets, projected out in their transformation to Event Structures. In
[50], it is made clear that Event Structures lose information in Petri Nets when projecting
out conditions, which is why the relation between the two spaces is an adjunction, but not
an isomorphism. It is argued that this conflation of Petri Nets in their representation as
Event Structures is an acceptable one for the purposes of reasoning about domain theory,
which may very well be true. But it is clear how the existence of peripheral places lost in
the transformation have have abundantly clear implications on a notion of composition.

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 75

Partially-Ordered Multisets

Although works introducing Event Structures do not attempt to form an algebra of out of
these representations, it is not impossible to form a kind of algebra out of posets. Pratt, in
[56], introduces an algebra of pomsets, partially-ordered multisets, which are simply labeled
poset. Of course, as we have seen, there are many precedents for using labeled posets as
representations of behavior, however Pratt contributes to these precedents by introducing
an algebra. In doing so, an attempt is made to retain some of the algebraic advantages of
sequential representations of behavior while moving to a true concurrent representation like
that of Winskel et al.

Specifically, an important advantage of sequential models of behavior, and their extension
to concurrency through the mechanism of interleaving, that Pratt identifies as contributing
to their prominence against true concurrent models (at the time of writing, but perhaps
enduring for much longer after) is that they can be used to form Kleene Algebras. These
algebras build off of a notion of concatenation in the representation of individual behaviors,
lifting this notion into operations on sets of behaviors. If individual runs are individual
sequences, or traces, processes can be described as the set of all possible behaviors that
could arise, the multiplicity arising specifically out of the nondeterministic choices in the
system (including the abstraction away of the possibility of a multiplicity of inputs from the
environment). If one starts with concatenation, or similar kinds of algebraic compositions in
the individual behaviors, one can then build a Kleene Algebra on the level of processes and
thereby algebraically reason about processes.

To this end, Pratt defines an algebra for pomsets. For comparative simplicity, we will
transliterate Pratt’s definitions into the language of generalized sequences that we have
already introduced in Chapter 3. A pomset, in this language, is defined as follows.

Definition 4. Given an alphabet of actions A, a pomset p over A is defined

p
def
= (S, p̄)

where S is a poset and p̄ is a function

p̄ : ‖S‖ → A

To be more specific, Pratt defines these structures only up to order isomorphism so that
any two structures can be given posets with disjoint underlying sets. Using this definition,
two compositions, concurrence and concatenation can be defined as follows.

Definition 5. Given an alphabet of actions A, and two pomsets

p = ((Sp, ≤p), p̄)

q = ((Sq, ≤q), q̄)

over A, with disjoint Sp and Sq

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 76

(a) (a1 ; a2) || (b1 ; b2) (b) (a1 || b1) ; (a2 || b2) (c) (a1 || b1) • (a2 || b2)

Figure 4.4: Compositions of pomsets, the dotted rectangle indicates the first grouping.

1. the concurrence p || q of p and q is defined

p || q def
= ((Sp ∪ Sq, ≤p ∪ ≤q), p̄ ∪ q̄)

2. the concatenation p ; q of p and q is defined

p ; q
def
= ((Sp ∪ Sq, ≤p ∪ ≤q ∪Sp × Sq), p̄ ∪ q̄)

where p̄ ∪ q̄ is the coproduct of the two functions.

Descriptively, concurrence combines the events of two pomsets, making the events from
one incomparable with the other. This operation corresponds to combining two independent
concurrent behaviors. Concatenation, on the other hand, combines p and q such that for
every event ep ∈ p and eq ∈ q, ep ≤ eq in the composition. In short, every event in q is
dependent on every event in p.

Without going into details about the Kleene algebra over these operations, it can be
seen that these two operations form a kind of algebra over pomsets that does indeed have a
notion of concatenation, which seems to provide the possibility of what we are looking for
in a behavioral representation. However, this concatenation is too restrictive, suffering from
the very same issue introduced initially in the case of interleaved sets. There is no way in
this algebra of concatenating two pomsets while only introducing selective dependencies.

Take the extreme instance of two independent sequential components A and B, each
which produces sequences of event types a and b respectively (we will give the event types
subscripts to clarify which individual events they label). If we take a single event behavior
from each component and combine them concurrently, we get a || b (abusing the notation a
bit to conflate single events with single-event pomsets). If we take each component and se-
quentially repeat each behavior we get a1 ; a2 and b1 ; b2, which combined concurrently forms

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 77

(a1 ; a2) || (b1 ; b2). If we, instead, concatenate two copies of a || b, the result (a1 || b1) ; (a2 || b2)
has more dependencies than (a1 ; a2) || (b1 ; b2). This is illustrated in Figure 4.4, in which
the latter ordering of compositions in 4.4a can be compared to the former in 4.4b. In short,

(a1 ; a2) || (b1 ; b2) 6= (a1 || b1) ; (a2 || b2)

in spite of our sense that there should be some form of composition • where we can have

(a1 • a2) || (b1 • b2) 6= (a1 || b1) • (a2 || b2)

as is shown in Figure 4.4c, we would need some kind of additional information to determine
that a2 depends only on a1 and b2 depends only on b1, let alone any number of alternatives,
such as b2 depending on a1, but b1 remaining independent of a2.

One way to allow more flexibility, while maintaining the general algebraic form of con-
catenation is to parameterize the operator. In [23], Hudak uses pomsets to represent the
behavior of evaluation in functional programming languages. In his treatment of the pomset
algebra, in addition to concurrence and concatenation, he defines a restricted concatenation
as follows.

Definition 6. Given an alphabet of actions A, two pomsets

p = ((Sp, ≤p), p̄)

q = ((Sq, ≤q), q̄)

over A, with disjoint Sp and Sq, and a predicate P ⊆ Sq, the restricted concatenation p •P q
of p and q is defined

p •P q
def
= ((Sp ∪ Sq, ≤p ∪ ≤q ∪ ≤P), p̄ ∪ q̄)

≤P= {(ep, eq) ∈ Sp × Sq | P (eq)}

While this provides a family of compositions that interpolate between concurrence and
concatenation, this still does not completely cover the interstitial territory. Nevertheless, if
the unary predicate that parameterizes Hudak’s restricted concatenation were widened to a
binary one, explicitly stating which event in q depends on which event in p, only then would
we have a completely expressive notion of concurrent behavioral concatenation. But this
kind of a composition would no longer form a straightforward algebra with a concrete set of
operators that observe a clear set of axioms.

We find ourselves with the same problem of needing somewhere to put the extra infor-
mation necessary for complete composition. Mazurkiewicz Traces, and their generalization,
place this additional information in the partially commutative monoid, generated by the
independence relation. If we did take the approach of parameterizing pomset algebras as
aggressively as we have suggested, the information is then put into the operators in the form
of parameters. A third alternative would be to put this information in the representations
themselves, which is precisely what we intend to do, and to this end, posets are insufficient.
A richer representation is needed to meet our aims.

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 78

4.4 Other Representations

Thus far we have focused on two families of behavioral representation that are pervasive
in the literature, trace languages such as Mazurkiewicz Traces and labeled posets such as
pomsets and Event Structures. Other kinds of representations of concurrent behavior can be
found, but they mostly bear similarity to what has already been addressed, offering no clear
solutions to our demands for composition and modularity. We will discuss some of these
more briefly.

Canonical Dependency Graphs

It is emphasized in [1] that Mazurkiewicz Traces can be alternatively represented in the form
of directed acyclic graphs (DAGs). In contrast with the trace languages, these graphs have
the advantage of internalizing the details of the partially commutative monoid. Rather than
representing behavior as the conjunction of a representative (in the sense of an equivalence
class) sequence and the systemic details of the independence relation, this conjunction can be
transformed into a unique DAG, called a canonical dependency graph. This transformation
is performed by weakening the linear relation of sequentiality in the representative sequence
wherever two neighboring events are independent in the independence relation. In [1], a
simple and intuitive algorithm is given for this.

While this would seem to place additional information in the representation, and given
that DAGs are more general than posets, since they do not have to be transitively closed,
one might suppose that canonical dependency graphs are more expressive than labeled poset
representations, this turns out not to be the case. It is shown in [1] that canonical dependency
graphs are indeed isomorphic to their transitive closures. The reason that this is possible
is that the set of canonical dependency graphs, like posets, is a proper subset of the entire
space of labeled DAGs that could be formed from the same alphabet of event types. This is
due specifically to the fact that any two labeled events in the canonical dependency graph
can only be concurrent if they share an edge in the independence graph, and more must
be concurrent if they are in the independence graph and do not have an interposing event
between them. In other words, the partially commutative monoid is still present in the
restriction of possible DAGs that could be canonically dependency graphs.

Furthermore, because canonical dependency graphs contain the same essential informa-
tion as Mazurkiewicz Traces, the possibility of defining an algebraic concatenation of canon-
ical dependency graphs still relies on the independence relation to determine how to connect
the events between two graphs being composed. Hence, the internalization of the inde-
pendence relation does not provide enough means to determine composition, as it cannot
generally be inferred from any given graph nor could it be guaranteed a posteriori that two
canonical dependency graphs are compatible with each other. For a single representation,
the independence relation can be abstracted away, but for the algebra to make sense, it
cannot be dispensed with.

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 79

Another way of looking at this would be to ask what the relationship is between Maz-
urkiewicz Traces, and thus canonical dependency graphs, with labeled Event Structures or
pomsets. Sassone et al. answer this question in [59], proving that pomsets (or in their words
deterministic semilanguages), deterministic Event Structure, and generalized traces are all
isomorphic. Given that generalized traces are a strict superset of Mazurkiewicz Traces, it
can be concluded that this representation, and its true concurrent counterpart, canonical
dependency graphs, are both more constrained than the labeled poset representations we
have discussed.

Actor Event Diagrams

Given that in investigating existing representations of concurrent behavior, we have stressed
the kind of models each representation had been developed to characterize, and that the
models that influenced their development were significantly different from those we have in
mind, it would make sense to look at how the behaviors of systems most closely related to
those we are interested in are represented. As we discussed in Chapter 2, HDDAs bear a
much closer resemblance in behavior to the Hewitt actor model, than a Petri Nets or static
networks of communicating sequential processes. For this reason, it would be important to
consider efforts to behaviorally represent the Hewitt actor model.

In [6], Hewitt and Baker suggest that the appropriate model for representing the behavior
of actor models is that of an DAG. In this graph, each event is the arrival of a message at an
actor, and the edges arise out of two relationships between arrivals: the arrival ordering and
the activation ordering. The former of these corresponds to the causal relationship between
two successive message arrivals being witnessed by the same actor. The latter corresponds
to the relationship between the arrival of one message at one actor, and as a consequence
of a message being sent in response to this message, the arrival of this sent message at its
destination. In this manner, a DAG of arrivals could be derived from the execution of a
particular model.

This representation is expanded on significantly in the thesis of Clinger [12], who calls
these graphs of arrival events Actor Event Diagrams. Clinger formally works out some of
the suggestions in [6] and ultimately reaches an end similar to Winskel et al. in giving
actor models a Scott-like semantics through the construction of a domain of Actor Event
Diagrams. Insomuch as the semantics of the actor model can be codified in the form of a
continuous function over this domain, the behavior of the model can be identified as the
least fixed-point of this function. Much like the domain-oriented semantics of Petri Nets,
given as Event Structures in [50] and [68], the approach taken to computational progression
is again extension rather than concatenation. Therefore, like Event Structures, Actor Event
Diagrams also lack a clear general notion of composition.

On the other hand, the technique Clinger uses suggests something more than just a
graph. The way that extensions are determined in Actor Event Diagrams is that included
with the graph itself are the pending messages that are produced in the execution, but have
not yet arrived at the actors to which they are being sent. The result is a construction that

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 80

(a) An Actor Event Diagram with pend-
ing messages forming a boundary.

(b) An open event diagram with both
pending and incoming messages.

Figure 4.5: Event diagrams with boundaries.

combines an DAG with a notion of a boundary of open ended forward dependencies. This
is illustrated in Figure 4.5a in which the dotted line depicts a boundary along which there
are three pending messages. These pending messages provide an interface that determines
how the graph can be extended, since there are clear cites to which further events can be
attached.

If a step further were taken, and not only pending messages, but initial messages were
incorporated into the graph, as is illustrated in Figure 4.5b, there would then be in two
such graphs a pair of boundaries determining the possibility of concatenation. In fact,
something along these lines is proposed by Talcott in [64], who builds on Clinger’s Actor
Event Diagrams. Recognizing the importance of representing modular fragments of behavior
in a composable fashion, Talcott introduces Open Event Diagrams as a modular behavioral
representation for Actor Models. She indeed argues, as we have here, that the semantics
originally posited by Hewitt and Baker in [6] does not have a clear concept of composition
because it only considers complete executions of models in isolation. And further, although
Clinger’s model includes incomplete behaviors, these behaviors are still isolated, unable to
represent incoming dependencies from the surrounding environment, or other behaviors for
that matter.

Although Talcott’s representation is very likely the closest to being a monoidal cate-
gorical one, it nevertheless still lacks a simple binary operator for sequential composition.
This is a consequence of its dependence on names rather than order to govern composition.
Instead of employing a combinational algebra, Open Event Diagrams are connected via a
contraction over particular names. In essence, this is a feedback operation rather than a
sequential composition. Consequently, it is more general operation that does not generally
preserve the acyclic property of the diagrams. In order to preserve this essential property the

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 81

operation must be made a partial one contingent on the transitive dependency relations of
pending messages on initial messages for each diagram. Talcott’s system is therefore close to
being a traced symmetric monoidal category [29], though missing a number of critical details.
Nevertheless, Open Event Diagrams do provide for a means of establishing composition and
modularity and are structurally the closest representation discussed so far to what we will
define later as OEGs.

Kahn Histories

A final representation worth considering, although it is not often though of as a representation
of behavior, is that of channel histories in the denotational semantics of Kahn processes
[30] - what we might call Kahn histories. In order to describe these adequately, one must
first set the scene of KPNs, and thereby also identify the kind of system that influenced
the formulation of this particular behavioral representation. A KPNs is a constituted of a
collection of deterministic sequential processes that communicate tokens of information with
each other through queued channels. Each queue connects an output port of one process to
an input port of another. The processes then function within this structure concurrently.
Each individual process sequentially performs blocking reads from the queues connected to
its input ports, and performs non-blocking writes to the queues connected to its output
ports.

Although this system can be described in the operational manner we have given above,
it is not obvious from this description that such a system will always produce the same
sequence of tokens on all of its queues. In other words, remarkably, this concurrent system is
deterministic in the tokens it produces. Kahn establishes this fact in [30], making use of an
ingenious representation of the network. Each channel in the system is given the denotational
value of a history of tokens that pass through it. Supposing these tokens are all part of a
set V , these histories are either words finite words in the alphabet of V , that is members of
Mon(V), or infinite words that complete extending sequences of words in Mon(V).

To be more precise about this, as we mentioned in Chapter 3, the free monoid can be
given a natural prefix ordering.

a ≤ b
def
= ∃ c · a • c = b

We referred to this before as a pomonoid (partially-ordered monoid), since this definition
indeed satisfies the axioms for being a partial order for a free monoid (although for a general
monoid it does not). Given this ordering, and therefore the existence of ordinal-indexed
chains of words, the underlying set can be augmented with the limits of ω-indexed chains
(longer chains could in principle be included as well, but they are often left out because they
are not considered useful in most cases). The result, often notated V ∗∗ is an ω-complete
partial order (ω-CPO), and given that the unit word 1, representing an empty history, is the
bottom ⊥ of this ordering, V ∗∗ is a domain (in the Scott sense).

It follows from basic results in order theory that if a finite product of V ∗∗, (V ∗∗)N for
some finite N , given the pointwise product ordering, also forms a domain. For a system with

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 82

N channels, the domain (V ∗∗)N can denotationally represent the states of all of the channels
at an arbitrary point in the computation of the network.1 Thus, the progress of computation
in an N -channel KPN can be represented as a chain in (V ∗∗)N . Supposing that this chain
is at most of length ω (since it is conventionally assumed that all computations are), the
computation of the KPN can be represented denotationally with the limits of these chains,
which are already included in (V ∗∗)N by construction. Therefore, (V ∗∗)N serves as a kind
of behavioral representation for these models. One might argue, of course, that there is an
abstraction away from many behavioral details, and thus the use of the term behavior is a
bit debatable since these histories are those of tokens produced and not operational events.
Nonetheless, being a history, this representation is capable of expressing something about
the trajectory of the process, and not just its ultimate results; that is to say, histories, at
least, are accumulative.

However, what is needlessly squandered in the semantics that builds off of this representa-
tion is the notion of concatenation. We started off with a free monoid Mon(V), which has a
clearly defined concept of concatenation, and even used this to construct the prefix ordering.
This notion of concatenation can easily be extended pointwise to the product Mon(V)N .
In taking the ω-completion of the underlying set of the monoid, the notion of concatenation
is left aside as a mere interstitial mechanism used to bootstrap the ordering. But through
the same transfinite methods of defining ordinal addition, as we showed in Chapter 3, the
concatenation operation can be extended to ordinal length sequences, and by extension to
tuples of them. There are other possibilities for dealing with the technical details of this
situation that go beyond the scope of this discussion.

It suffices to say that in this behavioral representation for the collective channel history
of a KPNs, there is still a well-defined notion of concatenation. Moreover, given the history
α at any point in the execution of the model, any further progress can be expressed as both
an extension of α to a history β such that α ≤ β, and as the concatenation of some history
γ to form α • γ, an extension of α. Following from our definition of the order, we should
always be able to find such a γ to represent the progress made from α to β.

The suggestion being made here is that Mon(V)N (and perhaps its limit-completed
counterpart), is a monoidal representation of behavior that has some intrinsic sense of con-
currency, albeit a somewhat limited one. From the perspective of the channels, tokens being
added constitute events, and adding tokens to separate channels are independent events.
In fact, as we will discuss later in Chapter 7, these representations can be turned into the
morphisms of a free symmetric monoidal category.

On the other hand, it is well-known that this elegant representation is indeed not behav-
ioral enough to deal with non-deterministic process networks that extend those of Kahn with
the possibility of non-blocking reads from input channels, and non-deterministic outputs.
The Brock-Ackermann anomaly [10] demonstrated that some operational details beyond the
histories of channels were necessary to reason about the semantics of non-deterministic pro-

1This could be generalized straightforwardly to channels with heterogeneous types of tokens, but this
would not add much more than notational complications to this particular discussion.

CHAPTER 4. EXISTING REPRESENTATIONS OF DISTRIBUTED BEHAVIOR 83

cess networks in a fully-abstract fashion. Such an operationally augmented representation
was given as a resolution to this anomaly by both Kok and Jonsson, in [31] and [26], respec-
tively. Both of these solutions were proved to be fully abstract, and later to be equivalent.
For a more complete history of this, the reader may refer to [20], which also suggests an
interpretation of behavior in these systems as Profunctors.

For the reader familiar with the mathematics of KPNs, it might come as a surprise that
continuous functions and fixed-points have yet to be mentioned, but it is important for the
sake of what is being discussed here to give an account such as we have without needing
to bring these up. In part this is to emphasize that monotonicity and fixed-points, while
being important technical concepts in denotational semantics, are not central to the notion
of behavior. This point was argued at the end of Chapter 3, and it is reflected in the
above and following discussions. Nevertheless, as a matter of completeness or for the sake
of interest, these concepts will be addressed briefly. For the reader who wishes to move on,
understanding the rest of this chapter is not essential.

The key to showing determinacy for KPNs using channel histories is that each individual
process can be represented as a Scott-Continuous function from the histories of its input
channels to the histories of its output channels. Monotonicity, a weakend form of Scott-
Continuity, arises naturally from these processes, because extending the histories of input
channels can only extend those of the output channels; an output channel cannot have its
history reversed or the past parts of it changed as a consequence of more input. Scott-
Continuity extends monotonicity to limits over ω-indexed chains, asserting that the limits
are preserved by the function representing the process. If each process can be represented in
this fashion, the whole network can be represented as a product of these functions, which is
also Scott-Continuous. It follows from Kleene’s fixed-point theorem that this function has
a least fixed-point, and that this fixed-point can be reached via the ω orbit of the function
from ⊥. That is, for such a function F , F ω(⊥) is the least fixed-point of F .

84

Chapter 5

Key Concepts from Category Theory

In Chapter 3, we identified the concurrent generalization of free monoidal representations of
sequential behavior as free monoidal categories, and gave reasons why such a representation
would be preferable to a generalized sequence. Having considered in Chapter 4 the alterna-
tive of generalized sequences in detail, addressing critically many such representations that
are pervasive in the literature, we will proceed instead towards the development of a repre-
sentation of concurrent behavior based on free monoidal categories. Before defining exactly
what a free monoidal category is, and showing how they are constructed, in this chapter, we
will first review the key concepts from category theory that will be used in the construction.
Amongst these concepts are the two that appear manifestly in the term itself: that of a free
object in a category of algebras, and that of a monoidal category.

While monoidal category will be introduced without much complication, providing suf-
ficient intuitions, interpretations, and examples to get the basic idea, the subject of free
objects will be elaborated on more significantly. A free object is constructed in category
theory from a universal property, witnessed by a universal morphism. It is a widely held
view that category theory is, in fact, the study of universal properties. By taking time to
introduce this concept, and to disambiguate any idiosyncrasies in our construction of it,
we will be getting to the heart of category theory in the process. It will be important to
emphasize this key concept and to show how we will be using it.

Furthermore, well-known to the cognoscenti of category theory is the connection between
universal properties and adjunctions, which have two equivalent but usefully distinct for-
mulations. We will go over this connection and explain why the defining mechanisms of
adjunctions will be interesting for our purposes. We will then state and explain the signifi-
cance of Adjoint Functor Theorem, which will later confer an important and useful property
on our system of behavior representations.

It will be assumed that the basics of category theory are known to the reader. Amongst
these basics, are the definitions of categories, functors, and natural transformations. For
the reader interested in familiarizing themselves with the basics of this subject, one might
refer to MacLane’s canonical text on the subject, although this reference is aimed mostly
at algebraists. A less technical introduction might be found in Awodey [5] or Pierce [53].

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 85

However, it should be mentioned that the definition we will use for a category here will the
form in which the homsets themselves are part of the categorical structure rather than a
single set of morphisms. This is a stylistic choice, but one that makes some of the reasoning
more straightforward as the categorical composition can be defined as a dependently-typed
function over pairs of homsets rather than a partial function over all morphisms.

Someone with a strong familiarity in category theory might skip this chapter entirely,
but it might be valuable, on the other hand, to look at the particular manner in which these
concepts are being defined in this thesis. The style preferred for the definitions and proofs
in this thesis is a Skolemized one in which some of the witnesses to properties of objects are
included in the definition of those objects explicitly. Moreover, the proofs will attempt to be
as constructive as possible, using derivation and induction on constructed witnesses when
possible. The advantage of this approach, in the opinion of the author, is that it makes it
easier to realize the structures computationally, or at least see how they would function as
programs.

5.1 Monoidal Categories

A monoidal category extends the notion of a category, adding to it a monoidal product over
both the objects and the morphisms, along with identities for both. This kind of category,
sometimes referred to as a tensor category, was initially developed as a generalization of
spaces with tensor products and other kinds of products that are more general than internal
Cartesian products (products that may lack projections, for instance, but still retain other
multiplicative properties). Many of the basic properties of these categories are developed in
[40] and are detailed in [39].

Generally, in monoidal categories the monoidal axioms of associativity and identity do
not hold up to equality on the objects and morphism, but instead up to natural isomorphism.
In the simple case of the Cartesian product over sets and functions, for instance, it is not
the case that ((a, b), c) = (a, (b, c)), but instead there is simply a canonical, parameterized
procedure for moving between them; which, of course, is captured by a natural isomorphism.
In the case where the monoidal axioms do hold up to equality, the monoidal category is
regarded as a strict one. In this work, the focus will be on strict monoidal categories, so
it will be assumed from here on (unless explicitly mentioned) that the monoidal categories
will indeed be strict. This does not limit generality much because every monoidal category
is indeed isomorphic to a strict one[39].

The typical definition given of a monoidal category follows the description fairly directly,
adding to a category C a bifunctor ⊗ : C × C → C and a monoidal unit object, along with
natural associativity and identity transformations in the non-strict case. However, because of
how we will be generating monoidal categories from underlying structures, it will make more
sense for our purposes to define a (strict) monoidal categories with an underlying monoid.
The bifunctor will therefore be broken up into its components, ⊗ on objects and ⊗hom on
morphisms.

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 86

The formal definition of a monoidal category can be given as follows

Definition 7. Monoidal Category
A (strict) monoidal category C is defined

C def
= (O, hom, ◦ , id, ⊗ , 1, ⊗hom , 1hom)

with the typing

O : Mon

hom : O ×O → U

◦ :
∏

a, b, c :O

hom(b, c)× hom(a, b)→ hom(a, c)

id :
∏
a :O

hom(a, a)

⊗ : O ×O → O
1 : O

⊗hom :
∏

a, b, c, d :O

hom(a, c)× hom(b, d)→ hom(a ⊗ b, c ⊗ d)

1hom : hom(1, 1)

where the following axioms, named AxiomsMonCat, hold

f ◦ (g ◦ h) = (f ◦ g) ◦ h (5.1)

id ◦ f = f ◦ id = f (5.2)

a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c (5.3)

1 ⊗ a = a ⊗ 1 = a (5.4)

f ⊗hom (g ⊗hom h) = (f ⊗hom g) ⊗hom h (5.5)

1hom ⊗hom f = f ⊗hom 1hom = f (5.6)

(f ⊗ g) ◦ (h ⊗ k) = (f ◦ h) ⊗ (g ◦ k) (5.7)

id(a ⊗ b) = id(a) ⊗hom id(b) (5.8)

1hom = id(1) (5.9)

with the free variables in the above quantified universally to everything conforming with the
above typing, and with the id element over the object implied in context.

In this definition, (O, hom, ◦ , id) forms a category under the first two axioms, (O, ⊗ , 1)
forms a monoid under the third and forth, and (hom, ⊗hom , 1hom) forms a multisorted
monoid-like structure that conforms with the monoid over objects. The two products ⊗
and ⊗hom will both be refered to as ⊗ , unless it is necessary to make the distinction explicit,

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 87

f

i1 i2 . . . iN

o1 o2 . . . oM

Figure 5.1: A graphical representation of a morphism in a monoidal category.

and likewise for 1 and 1hom . The final three axioms connect the categorical product ◦ and
identity id with the monoids ⊗ . The axioms 5.7 and 5.8 are, in particular, the condition
under which ⊗ and ⊗hom together form a bifunctor.

These categories were originally conceived as a means to represent vector spaces with
linear transformations, or other algebras with tensor products, where the monoidal prod-
uct is the tensor product and the composition of morphisms is the composition of linear
transformations. However, these categories can also be used to interpret the structure of
block diagrams such as those found in circuits, control systems, and graphical programming
languages [17]. This correspondence with diagrams began with diagrammatic methods used
to perform calculations in linear algebra, initiated by Penrose [ref] and others. This corre-
spondence was then rigorously established by Joyal, Street, et al. in [27, 28, 29], connecting
various variants of monoidal categories correspond to topological graphs with various fea-
tures. This correspondence is summarized in an encyclopaedic form in [62], and is what has
motivated the approach in this thesis to move from graph or order oriented representations
of behavior to ones based in monoidal categories.

In this graphical correspondence, each morphism can be thought of as an oriented ported
block, with input ports on one side and output ports on the other. This is depicted in
Figure 5.1 as a morphism f . Each input port is marked with an object ik ∈ O and each
output port with an object ok ∈ O, resulting in a block

f : hom(i1 ⊗ i2 ⊗ . . . ⊗ iN , o1 ⊗ o2 ⊗ . . . ⊗ oM)

Each object in the monoidal category is then represented in this interpretation as a
directed channel connecting to an output port of a block on one end and an input port on
the other. Categorical composition ◦ in the diagram is then connecting blocks together by
their channels. Specifically, for two blocks

f ∈ hom(x, y1 ⊗ . . . ⊗ yN), g ∈ hom(y1 ⊗ . . . ⊗ yN , z)

the composition g ◦ f ∈ hom(x, z) is depicted in Figure 5.2a. When an identity element
id(x) ∈ hom(x, x) is used, which by this interpretation has the same type of input and output
ports, rather than representing it as a block, it is absorbed into the channel as in Figure 5.2b.
Consequently, composition with the identity is made diagrammatically transparent, simply

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 88

f

g

= g ◦ f

x

y1 . . . yN

z

x

z

(a) Categorical composition of morphisms.

id(x) =

x

x

x

x

(b) Identity elements.

Figure 5.2: Graphical depiction of composition and identities.

replacing the identity with the channel. For this reason, channels may appear with either or
both ends left disconnected and be themselves interpreted as identity morphisms.

The monoidal product ⊗ in the monoidal category is depicted by the juxtaposition of
either channels, as in Figure 5.3b, or of blocks, as in Figure 5.3a. The monoidal identity
object 1 is, in a sense, a nonexistent channel, while the monoidal identity morphism 1hom

can similarly be omitted from the diagram. From a diagrammatic perspective, the monoidal
identity morphism has little significance, while the identity object can be considered the
input or output type of a block with no inputs or no outputs, respectively. For instance, a
morphism h ∈ hom(1, x) can be represented as a “source” block.

Given that these diagrams do not involve the clustering of blocks, it is clear that the
associativity of composition and the two monoidal products corresponds to the diagrammatic
absence of these groupings. The identity axioms correspond in the diagram to the ability
to replace an identity morphism with a channel and to the ability to leave out monoidal
identities altogether. The axiom 5.7 corresponds to an absence of any groupings between the
two compositions in the diagrams. This is depicted in Figure 5.4 in which the dotted boxes

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 89

f g = f ⊗ g

w

y

x

z

w x

y z

(a) The monoidal composition of morphisms.

u v = u ⊗ v

(b) The monoidal product of objects.

h

x

(c) A ‘source’ morphism.

Figure 5.3: More graphical elements of monoidal categories.

f g

h k

=

f g

h k

Figure 5.4: (f ⊗ g) ◦ (h ⊗ k) = (f ◦ h) ⊗ (g ◦ k)

indicate the order of construction of the two terms. On the left, f ⊗ g and h ⊗ k are taken
first, then composed to form (h ⊗ k) ◦ (f ⊗ g), whereas on the right, h ◦ f and k ◦ g are
formed first, then ⊗ -composed into (h ◦ f) ⊗ (k ◦ g).

While these two basic composition operations seem superficially constrained to build
diagrams in a fairly rigid fashion, since all outputs from one block must be inputs to the
block composed with it, combined with identities, these compositions can be used to represent

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 90

f

g

v y

w z

x

(a)

f

g

id(y)

id(w)

v y

w z

x

(b)

Figure 5.5: A more complex composition.

block diagrams composed in more intricate ways. Suppose one wanted to compose two blocks

f ∈ hom(v, w ⊗ x)

g ∈ hom(x ⊗ y, z)

only connecting the x output of f with the x input of g in the manner shown in Figure 5.5a,
letting the other input and output bypass the two blocks. Inserting identities and grouping
⊗ -products, as shown in Figure 5.5b, one can construct the diagram with the term

(id(w) ⊗ g) ◦ (f ⊗ id(y)) ∈ hom(v ⊗ y, w ⊗ z)

This is a common enough construction that one can define it with the diagonal operator
3x , along with its mirror image 2x , and several other operators.

Definition 8. Let the following derived operators be defined for a monoidal categoryM:

•

3 :
∏

v,w,x,y,z :M

hom(v, w ⊗ x)× hom(x ⊗ y, z)→ hom(v ⊗ y, w ⊗ z)

f 3x g
def
= (id(w) ⊗ g) ◦ (f ⊗ id(y))

•

2 :
∏

v,w,x,y,z :M

hom(v, x ⊗ w)× hom(y ⊗ x, z)→ hom(y ⊗ v, z ⊗ w)

f 2x g
def
= (g ⊗ id(w)) ◦ (id(y) ⊗ f)

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 91

These operators are, of course, like categorical composition, not total over all homsets.
Note also that only the x must be explicitly noted in the operator since the rest of its
parameters can be inferred.

To summarize the above features of the graphical correspondence between monoidal cat-
egories and ported block diagrams, the corresponding diagrammatic language established in
[27] is specifically that of acyclic block diagrams confined to a two dimensional surface. The
axioms of monoidal categories are the isometries of these diagrams. Blocks can therefore
be moved around, so long as they do not cross over channels, and the diagram will remain
the same morphism in the category. Crossing will be incorporated into the diagrammatic
language through the definition of symmetric monoidal category , which add additional alge-
braic structure to the standard monoidal category. Moving around blocks to syntactically
group elements into algebraic terms can be utilized as a calculation technique.

In order to demonstrate this kind of diagrammatic reasoning, and to establish some
additional algebraic structure, some properties of the diagonal operators can be asserted
and proved using the above graphical reasoning, justified in [27].

Proposition 3. The following identities hold for all compatible morphisms:

f 2x (g 2y h) = (f 2x g) 2y h (5.10)

f 3x (g 3y h) = (f 3x g) 3y h (5.11)

f 3x (g 2y h) = (f 3x g) 2y h (5.12)

f 2x (g 3y h) = (f 2x g) 3y h (5.13)

f 21 g = f 31 g = f ⊗ g (5.14)

For any morphisms,

f : hom(y, x), g : hom(x, z)

the following identity holds:

f 3x g = g 2x f = g ◦ f

Proof. All of the identities can be verified diagrammatically. We will show one of the less
obvious of these in Figure 5.6 corresponding to identity 5.13. In the last identity, involving
the monoidal identity in the operator, i.e. 31 , there connection between the two operands
is 1 and can thus be removed leaving f ⊗ g, as shown in Figure 5.7a. Likewise, in the
final identity, the connection x is the entire domain of g and codomain of f , consituting a
composition g ◦ f , as shown in Figure 5.7b.

By compatible here, it is meant that both sides of the equation exist. This may not
always be the case.

Given these identities, we are justified in removing parenthesis from expressions involving
⊗ , 3 , and 2 operators (with their parameters named). Hence, expressions like

f 3x g 2y h ⊗ k 2z m 2w n

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 92

f

g

h

s t u

v w z

y

x

(a) f 2x (g 3y h)

f

g

h

s t u

v w z

y

x

(b) (f 2x g) 3y h

Figure 5.6: Graphical proof of associativity.

f

g

u v

y z

1

(a) f 31 g = f ⊗ g

f

g

u 1

1 z

x

(b) f 3x g = g ◦ f

Figure 5.7: More graphical properties.

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 93

a b

b a

(a) β(a, b)

a b

a b

a b

a b

=

(b) β(b, a) ◦ β(a, b) = id(a ⊗ b)

Figure 5.8: Braidings in symmetric monoidal categories.

are unambiguous. Though, one cannot arbitrarily insert parenthesis, since the composition
formed might not involve compatible operands. It should be noted that the final identity
does not mean that categorical composition ◦ will, by itself, associate with any of these
operators. This is because categorical composition does not name its parameter, whereas
the diagonal operators do. Therefore, one can readily translate any composition into a
diagonal operator, but only special cases of diagonals to compositions.

Symmetric Monoidal Categories

In [27] the monoidal category variant that corresponds to acyclic block diagrams, free from
the constraint of a two dimensional surface, is a symmetric monoidal category. This is
the familiar language of abstract acyclic block diagrams we are looking for in a behavioral
representation such as OEGs. This variant adds to monoidal categories a collection of
constant morphisms called braidings for each pair of objects, which commutate the monoidal
product over this pair via composition. That is, for any two objects a, b ∈ O, there is a
corresponding braiding

β(a, b) ∈ hom(a ⊗ b, b ⊗ a)

that represents a crossing of channels in the diagrammatic language. This is depicted in
Figure 5.8a.

In the more general structure of braided monoidal category, this crossing is oriented
and can lead to channels non-trivially twisting around each other. However, in the case
of symmetric monoidal categories, two consecutive crossings of channels by two braidings
reduces to the identity, as shown in Figure 5.8b. In formal terms,

β(b, a) ◦ β(a, b) = id(a ⊗ b)

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 94

b ca

bc a

=

a b c

c a b

Figure 5.9: β(a ⊗ b, c) = (β(a, c) ⊗ id(b)) ◦ (id(a) ⊗ β(b, c))

hence the qualifier symmetric.
This kind of monoidal category can be defined formally as follows:

Definition 9. Symmetric Monoidal Category
A (strict) symmetric monoidal category C is defined

C def
= (O, hom, ◦ , id, ⊗ , 1, ⊗hom , 1hom , β)

where the first 8 components form a monoidal category, the last component has the type

β :
∏

a, b :O

hom(a ⊗ b, b ⊗ a)

and the following additional axioms hold

β(b, a) ◦ β(a, b) = id(a ⊗ b) (5.15)

β(a ⊗ b, c) = (β(a, c) ⊗ id(b)) ◦ (id(a) ⊗ β(b, c)) (5.16)

β(a, b ⊗ c) = (id(b) ⊗ β(a, c)) ◦ (β(a, b) ⊗ id(c)) (5.17)

∀ f : hom(a, b); g : hom(c, d) · β(b, d) ◦ (f ⊗ g) = (g ⊗ f) ◦ β(a, b) (5.18)

Collectively, the axioms are named AxiomsSymMonCat.

We have already addressed the first axiom, which was depicted in Figure 5.8a. The second
and third axioms allow braidings to be composed with each other and are usually consolidated
under the name of the hexagon axioms (a name that reflects the commutativity diagrams
they form with the associator in the non-strict case). These are depicted in Figures 5.9
and 5.10 The fourth axiom 5.18, depicted in Figure 5.11, allows blocks to slide through a
braiding, commuting them.

Using the braiding operators, the order of block inputs and outputs can be permuted.
This is shown in Figure 5.12. This is the last syntactic mechanisms necessary to facilitate the

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 95

a b c

b c a

=

a b c

b c a

Figure 5.10: β(a, b ⊗ c) = (id(b) ⊗ β(a, c)) ◦ (β(a, b) ⊗ id(c))

f g

a b

d c

=
g f

a b

d c

Figure 5.11: β(b, d) ◦ (f ⊗ g) = (g ⊗ f) ◦ β(a, b)

construction of the complete language of acyclic block diagrams. While it is the case that the
completeness of this language for these diagrams is shown in [27], where the diagrammatic
space itself is defined in topological terms, in Chapter 7, this completeness will also be shown
for OEGs specifically.

Armed with only braidings and identity elements, any permutation of channels (objects)
may be constructed. That is to say, more precisely, given any product of objects x1 ⊗ . . .⊗ xn
and any permutation σ of n elements, one can use only braidings and identities to construct
a morphism

Permσ : hom(x1 ⊗ . . . ⊗ xn, xσ(1) ⊗ . . . ⊗ xσ(n))

If we think of braidings as simply crossing pairs of channels in our visual representation, these
permutation morphisms cross them iteratively to the effect of achieving their permutation.

This can be shown inductively through the use of braidings to exchange individual for
an arbitrary product of objects, which are known to generate all permutations. This is
depicted in Figure 5.12, which shows the simple, but nontrivial, permutation σ = (3 2 1) of
channels between two blocks. Being able to construct these permutations allows blocks to

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 96

F

G

Figure 5.12: G ◦ (id ⊗ β) ◦ (β ⊗ id) ◦ (id ⊗ β) ◦ F

be connected sequentially in arbitrary order. Recalling our earlier discussion in Chapter 4
on the inability to define general algebraic sequential compositions on generalized sequences,
this is how this aim is accomplished in the context of symmetric monoidal categories. It
should be intuitively convincing that with identity elements and permutations, arbitrary
acyclic block diagrams can be constructed. Rather than parametrizing compositions, we
instead have in the braidings and identities a sufficient sublanguage to factor the mapping
between outgoing edges of one graph and incoming edges of another out of the operators.
This consequently makes the algebraic laws fairly simple and succinct.

Nevertheless, an important fact about permutations will be needed to complete this pic-
ture, which was proven by MacLane in [40]. Although it is simple to see that any permutation
can be built from only braidings and identity elements, and that there are generally many
ways to do this that are syntactically distinct, what is far more complicated is to show that
all of these different ways of building the same permutation are equivalent in the category.
That this is indeed the case was proven by MacLane, and is called coherence. In other
words, for any two terms expressing the same permutation, there exist a proof, using the
above axioms, that can show that they are equivalent. This will be of use later in reasoning
about OEGs.

In general, that several terms constructed from algebra of the category can be proven
equivalent, if constructed from a collection of constant morphisms (or morphism variables),
implies that one can consider the corresponding diagram, in a sense, to be the geometric
ground truth of behind all of the different constructions. In a free symmetric monoidal
category, as we shall see later, more specifically, each morphism can be identified with a
particular graph combining the primitive morphisms that are used to generate the category
modulo permutations to the incoming and outgoing channels of the whole graph. If we pin
down the ordering of these incoming and outgoing channels, however, we get a strict corre-
spondence between the diagrams and the collection of all provably equivalent constructions.
This amounts to what was proven by Joyal and Street in [27]. This property will be precisely
what we need for a representation of behavior that can be called ontological.

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 97

5.2 Free Objects and Derived Structures

We will first review the concept of a free object in a category, defining all the constituting
mechanisms necessary to construct them, then showing how the structures of adjunctions and
monads be derived from them. As we have mentioned, rather than resting on definitions that
are formulated in terms of existence, we will Skolemize the definitions, giving constructions
whenever possible. At the least, these constructions will give a clear sense of which formal
data are necessary to substantiate some of the important properties we will discuss, but in
many cases, the constructions will provide the basis for effective procedures that may be
used in computations involving these constructs.

In many categories where the objects are algebraic structures, and the morphisms are the
corresponding homomorphisms between these structures, there is a notion of a free object
in this category generated by some particular collection of basis elements. This element is
a categorical generalization of algebraic structures such as free monoids, free groups, free
vector spaces, and the like. This object is called free because it is, in a sense, the least
constrained instance of the algebra within the category that include the generating elements.
More specifically, it is constrained only by the axioms all members of the algebra fulfill, and
consisting of only elements algebraically expressible in terms of the generators.

One gets the underlying elements of free structure, typically, by forming every term
possible from the operations and constants of the algebra using the generators, then taking
to be equivalent only the terms that can be proven equivalent under the axioms of the algebra
(commutativity, associativity, etc...). The underlying set of elements is then the equivalence
class over the set of generated terms. Every other algebra (not isomorphic to the free one)
either models additional formulae, or includes elements not equivalent to a generated term.
The free monoid Mon(A) of some set A, for instance, consists of equivalence classes of
monoidal terms. These monoidal terms are built inductively out of elements of A along with
a purely syntactic binary product and a syntactic identity element. An example of this was
carried out in Chapter 3, but here we will show the construction in categorical terms so as
to exemplify our formal mechanisms.

Constructing Free Elements

The general categorical formulation of a free element of a category of algebraic structures
S is expressed as a universal property of the category S. This formulation involves both
the category of algebraic structures S along with a category of the underlying structures G,
consisting of the objects of which are the underlying collections of elements for an algebra
in S. A functor between these categories U : S → G, called a forgetful functor , maps each
algebraic structure in S to its underlying structure in G, forgetting the algebraic details such
as operators and constants. For instance, the forgetful functor on monoids, groups, rings,
and the like maps each of these single-sorted structures into its underlying set of elements. A
multisorted structure, in contrast, might have a tuple of sets as its underlying structure. In

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 98

our case, that of free monoidal category, the underlying structure will be more complicated
than sets or tuples of sets.

Addressing monoids specifically as an example, we take a monoid, as usual, to be a triple
M = (‖M‖, ⊗ , 1), where the underlying structure is the set ‖M‖. These monoids form the
category Mon with monoid homomorphism as its morphisms. The forgetful functor from
Mon into the category Set containing its underlying sets is defined as follows.

Definition 10. Monoid forgetful functor
Given the category of monoids Mon and the category of sets Set, the forgetful functor for
Mon is defined

UMon : Mon→ Set

UMon(‖M‖, ⊗ , 1)
def
= ‖M‖

UMon(F)
def
= ‖F‖

where F is a monoid homomorphism and ‖F‖ is its underlying function.

Over objects, the functor simply maps the monoid to its underlying set, while over
morphisms the functor maps the homomorphism between two monoids into the set-function
between the two underlying sets.

Using this forgetful functor, a universal morphism from an object G to the forgetful
functor U can be defined, characterizing a universal property in S.

Definition 11. Universal Morphism
Given categories S and G, and a functor

U : S → G

a universal morphism Univ of object g ∈ G is defined as a tuple

Univg
def
= (f g, ηg, ζg)

with the typing

f g : S
ηg : homG(g, U(f))

ζg :
∏
s∈S

homG(g, U(s))→ homS(f
g, s)

and the derived function

θg :
∏
s∈S

homS(f
g, s)→ homG(g, U(s))

θg(k)
def
= U(k) ◦ ηg

defined such that ζg is the inverse of θg.

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 99

This definition can be summarized in the commutativity diagram

g U(f g) f g

U(d) d

h= θg(k)

ηg

U(k) k= ζg(h)

in which for any object d ∈ S and morphism h in G, there is a unique morphism ζ(h) in S
such that the diagram on the right commutes. The more typical formulation of a universal
morphism, such as in [39], uses the above uniqueness property for the definition. It can be
seen, however, that this is equivalent to the requirement that ζ be the inverse of θ.

Proposition 4. Given a tuple (f g, ηg, ζg) with the typing of a universal morphism, the two
properties are equivalent:

1. ζg is the inverse of θg.

2. For all d ∈ S and h : hom(g, U(d)) there exist a unique morphism h] : hom(f, d)
such that h = θ(h]).

Proof.

(1) ⇒ (2)
Inverses are unique, therefore, if ζg exists and is the inverse of θg, there is a unique
h] = ζ(h) corresponding to h, and it fulfills h = θg(h]).

(2) ⇒ (1)
Skolemizing the statement that there exists an h] for all h, one constructs a function
h] = ζ(h). One side of the inverse is thereby already established. The remaining side
k = ζg(θg(k)), is established by considering that for h = θ(k) there must be a unique
h] = ζg(θg(k)) satisfying h = θg(h]), but k itself statisfies this, hence ζg(θg(k)) = k.

The constructive definition emphasizes the important fact that ζg and θg witness a (nat-
ural) set isomorphism

homS(f
g, d) ∼= homG(g, U(d)) witnessed as

ζg : homG(g, U(d))→ homS(f
g, d)

θg : homS(f
g, d)→ homG(g, U(d))

for all d ∈ S.

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 100

Although the concept of a universal property in S extends beyond what are considered
to be free structures, in the case where S is a category of algebraic structures and G is a
category of underlying components, well call the first component f g of a universal morphism
from g into U the free S-structure generated by g. The approach we will take to constructing
these free structures will be to define not only the structure f g itself, but also the components
ηg and ζg that witness the free structure as a universal property; specifically by showing that
our definition for ζg is the inverse of the canonical θg.

The Construction of Free Monoids

We will continue the example of a free monoid, and construct its corresponding universal
morphism. Later the construction of free monoidal categories will follow along the same lines
as this construction, involving only a more intricate instance of the steps involved. Moreover,
the later definition of free monoidal categories will depend on that of a free monoid, hence
the details of this construction – the particular way we do it in this thesis – need to be made
explicit.

As we have established, witnessing a universal morphism involves defining the three
elements: f g, ηg, and ζg. The first of these, the free object itself, will be constructed from
the term language of monoids. For any given set S of generating elements, this language can
be constructed inductively to form a set of termsMonTerms(S). The language construction
is a follows.

Definition 12. Monoidal Terms
Given a set S, the set of monoidal terms MonTerms(S) is constructed inductively by the
following inference rules

x ∈ S
x ∈MonTerms(S) 1 ∈MonTerms(S)

a, b ∈MonTerms(S)

a⊗ b ∈MonTerms(S)

We must also define the linear contexts (one-hole contexts) for terms.

Definition 13. Linear Monoidal Contexts
Given a set S, the set of linear monoidal contexts MonContexts(S) is constructed induc-
tively by the following inference rules

© ∈MonContexts(S)

γ ∈MonContexts(S), a ∈MonTerms(S)

γ⊗ a ∈MonContexts(S)

γ ∈MonContexts(S), a ∈MonTerms(S)

a⊗ γ ∈MonContexts(S)

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 101

Each element γ ∈ MonContexts(S) is a function MonTerms(S) → MonTerms(S).
These are defined, recursively, for any a, b ∈MonTerms(S)

© (a)
def
= a

(γ⊗ a)(b) def
= γ(b)⊗ a

(a⊗ γ)(b) def
= a⊗ γ(b)

These linear contexts, in essence, substitute a term into a single position within another
term.

Using these term languages an equivalence relation can be defined over the monoidal
terms using the axioms of monoids.

Definition 14. Monoidal Equivalence
The equivalence relation

Mon⇐==⇒⊆MonTerms(S)×MonTerms(S)

is defined inductively by the following inference rules

a ⊗ (b ⊗ c)
Mon⇐==⇒ (a ⊗ b) ⊗ c

a ⊗ 1
Mon⇐==⇒ a 1 ⊗ a

Mon⇐==⇒ a

a
Mon⇐==⇒ a′

γ(a)
Mon⇐==⇒ γ(a′)

Let the function

〈−〉Mon : MonTerms(S)→MonTerms(S)/
Mon⇐==⇒

be the canonical projection induced by
Mon⇐==⇒, where MonTerms(S)/

Mon⇐==⇒ is the canonical
quotient.

Putting these definitions together, if we suppose a set S = {u, w}, then the following
would be examples of terms in MonTerms(S):

Ju⊗ ((w⊗1)⊗w)K
J(u⊗w)⊗wK
JuK
J1K

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 102

We will enclose the formal terms in double brackets J−K to separate them from their sur-
rounding context. The parenthesis in the concrete representation of the terms (the one
written out) are not part of the abstract syntax, but rather markers of precedence (as is
typical in programming language texts).

Examples of monoidal contexts and their application to terms would be:

Ju⊗ (©⊗w)K(Jw⊗uK) = Ju⊗ ((w⊗u)⊗w)K
J©⊗1K(J(1⊗u)⊗uK) = J((1⊗u)⊗u)⊗1K

Finally, some examples of term equivalences are

Ju⊗ ((w⊗1)⊗w)K Mon⇐==⇒ J(u⊗w)⊗wK

Ju⊗1K Mon⇐==⇒ JuK

which one could write equivalently

〈u⊗ ((w⊗1)⊗w)〉Mon = 〈(u⊗w)⊗w〉Mon

〈u⊗1〉Mon = 〈u〉Mon

in terms of the canonical projection.
The free monoid for a set S can be defined in terms of these above elements.

Definition 15. Free Monoid
Given a set S of elements, the free monoid Mon(S) is defined

Mon(S)
def
= (MonTerms(S)/

Mon⇐==⇒, 〈⊗ 〉, 〈1〉)
In this monoid, the product of equivalence classes of formal terms is simply the equiva-

lence class of the formal product. That is

〈a〉 ⊗ 〈b〉 = 〈a⊗ b〉
In computing such a product, we must choose a representative of each of the equivalence
classes.

And with this, we can define the universal morphism corresponding to our construction
and show that it is indeed a free element.

Theorem 4. Given a set S, the triplet (Mon(S), ηS, ζS) defined

ηS : S → UMon(Mon(S))

ηS(x)
def
= 〈x〉

ζS : (S → UMon(M))→ (Mon(S)→M)

ζS(h)(〈a〉) def
= Wh(a), where

Wh(a⊗ b) = Wh(a) ⊗ Wh(b)

Wh(1) = 1

Wh(x ∈ S) = h(x)

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 103

witnesses a universal morphism.

Proof. First, in the definition for ζS(h), a recursive definition was used forWh. This produces
a well-defined function via structural induction over the syntactic terms it operates on.

We must then show that ζS(h) defines a monoid homomorphism Mon(S) → M . From
the definition, the two criteria of this can be verified.

ζS(h)(〈a〉 ⊗ 〈b〉) = ζS(h)(〈a⊗ b〉)
= Wh(a⊗ b) = Wh(a) ⊗ Wh(b) = ζS(h)(〈a〉) ⊗ ζS(h)(〈b〉)
ζS(h)(1) = ζS(h)(〈1〉) = Wh(1) = 1

It must then be shown that ζS and θS are inverses. Starting with θS ◦ ζS and letting
h : S → UMon(M), we expanding the definition

θS ◦ ζS(h) = UMon(ζ
S(h)) ◦ ηS

Then operating on an arbitrary x ∈ S

θS ◦ ζS(h)(x) = UMon(ζ
S(h)) ◦ ηS(x) = UMon(ζ

S(h))(〈x〉)
= ζS(h)(〈x〉) = Wh(x) = h(x)

thus θS ◦ ζS = idFun.
For ζS ◦ θS, operating on an element k : Mon(S)→ M , and this itself operating on an

arbitrary element 〈a〉 ∈M , the definition is expanded

(ζS ◦ θS(k))(〈a〉) = WθS(k)(a)

What needs to be shown here is that

WθS(k)(a) = k(〈a〉)

This can be proven by structural induction over the syntax of a. The base cases are

WθS(k)(1) = 1 = k(1) = k(〈1〉)
WθS(k)(x) = (θS(k))(x) = (UMonS(k) ◦ ηS)(x) = (UMonS(k))(〈x〉) = k(〈x〉)

where x ∈ S. The inductive case is

WθS(k)(a⊗ b) = WθS(k)(a) ⊗ WθS(k)(b) = k(〈a〉) ⊗ k(〈b〉)
= k(〈a〉 ⊗ 〈b〉) = k(〈a⊗ b〉)

which uses in the second step the inductive assumption. This establishes the ζS ◦θS = idFun

side of the inverse, completing its verification.

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 104

It is therefore the case that Mon(S) is the free monoid generated by S, witnessed by this
definition of a universal morphism. Furthermore, the two witnessing functions that come
along with this free element are more than of just technical significance in establishing that
Mon(S) is a free monoid. These both have a practical and intuitive purpose.

The function ηS embeds elements of S into the underlying set of elements of Mon(S). In
some definitions, this embedding is taken to be an outright injection. Since there is a clear
bijection between x ∈ S and 〈x〉 ∈ UMon(Mon(S)), one can clearly replace each of the latter
with the former creating a set that is isomorphic to UMon(Mon(S)). Indeed, some treatments
do just this. However, here we have an important reason to not to conflate the explicit
element x with those of 〈x〉. Distinguishing these two allows an explict notion of hierarchy
to be added to the construction. Consider a two-level free monoid Mon(UMon(Mon(S))).
This builds terms out of equivalence class of terms from the one-level Mon(S). For example,

〈〈u⊗w〉⊗ 〈u〉〉
〈1⊗〈1⊗u〉〉
〈〈u〉〉

The key is reflected in the third of these, that 〈〈u〉〉 6= 〈u〉, and thus we can distinguish
clearly between both of these levels (and thus any number of them).

Nevertheless, there is a similarly explicit mechanism available to flatten this hierarchy,
following along the lines of the aforementioned bijection by which

. . . −→ 〈〈〈a〉〉〉 −→ 〈〈a〉〉 −→ 〈a〉 −→ a

We will encounter this mechanism in the next section. Later we will also see this hierarchy
put to use explicitly in the context of OEGs, and its importance will become clear. In short,
we can say that ηS is the explicit mediator of this hierarchy.

The function ζS is similarly important in a way that bears some familiarity to all pro-
grammers that have worked in the style of functional programming. If we consider another
monoidM , with a different product and identity from those of the free one, the lifting defined
by ζS takes, as its domain, a function h from S into the underlying set of M , interpreting
each element of S inM . The image of ζS over k is a monoid homomorphism h that interprets
any element α of Mon(S) in M . This interpretation takes any term representation of α and
crawls along its syntax, replacing each formal ⊗ operator with ⊗M , each formal 1 with
1M , and each base element x ∈ S with its interpretation h(x). The result is an expression
that can be evaluated in M .

This is, indeed, the map-reduce pattern familiar in functional programming; the map
part being the application of h to each base element of a term, and the reduce part being the
interpretation of the monoid M that provides a means to reduce all of the interpretations
of the base elements into a single element of M . In particular, we get the familiar map
function by itself when we consider a function f : S → S ′ which is then composed with the
embedding ηS

′
associated with the free monoid Mon(S ′). This composite ηS

′ ◦ f is lifted

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 105

by ζS into a homomorphism between two free monoids. Hence, one could state that map is
defined

map(f)
def
= ζS(ηS

′ ◦ f)

which we will generalize in the next section.
Likewise, the reduce component by itself can be distilled. Here one must consider a free

monoid where the base elements are already the underlying elements of another monoid
M . In this case, the set in question is UMon(M), and the function to be lifted through
ηUMon is simply the identity idFun(UMon(M)). This results in a homomorphism between
Mon(UMon(M)) and M itself. Hence, one could define reduce

reduceM
def
= ζUMon(M)(idFun(UMon(M)))

This, as well, will give rise to a generalization described in the next section.

Derived Structures

Having defined a free element fX in a category of structures S for each underlying structure
X in a category G, and therefore having ηX and ζX for each of these as well, further structures
significant to category theory can be derived. Namely, an adjoint pair of functors between
G and S can be derived from the parameterized set of universal morphisms. It will be seen
that these two derived structures build on free elements in a useful way, generalizing some
of the structures defined for free monoids in the previous section. Casting free elements into
the formulation of adjoints also provides an additional advantage in allowing us to invoke
the well-known Adjoint Functor Theorem, a central theorem in category theory which we
will state at the end of this section.

Given two categories G and S, and a forgetful functor US : S → G, if we have a universal
morphism (fX , ηX , ζX) for every X ∈ G we can extend the particular mapping X 7→ fX

between objects in the respective categories to a functor f between them; that is G → S. We
will call this functor the free functor . We can then show that this functor is a left adjoint
to US . We give this construction, including both forms of the adjunction, in a theorem that
is derived from Theorem IV.2 in [39].

Theorem 5.
Given a universal morphism (fX , ηX , ζX) from X into US for each X ∈ G, the following
can be defined:

• a functor f : G → S defined

f(X)
def
= fX

f(w : hom(X, Y))
def
= ηY ◦ w

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 106

forming an adjunction with US

(θ, ζ) : F a U

where θ and ζ are natural transformations with θX and ζX as their respective compo-
nents for each X, forming a natural isomorphism witnessing the adjunction.

• an adjoint unit/counit pair (η, ε) where the unit η is the natural transformation with
ηX as its components, and counit is defined as a natural transformation with the com-
ponents

εd
def
= ζUS(d)(idUS(d))

also witnessing F a U .

Proof.
First, f must be shown to be a functor. For this the uniqueness property of the image of ζ
will be used. For the identity,

f(id(X)) = ζ(ηX ◦ id(X)) = ζ(ηX)

and

θX(id(f(X))) = US(id(f(X))) ◦ ηX = id(US(f(X))) ◦ ηX = ηX

hence

id(US(f(X))) = ζX(θX(idf(X))) = ζX(ηX) = f(id(X))

For composition, consider two morphisms u : hom(X, Y) and v : hom(Y, Z)

f(v) ◦ f(u) = ζX(θX(f(v) ◦ f(u)))
= ζX(US(f(v) ◦ f(u)) ◦ ηY) = ζX(US(f(v)) ◦ US(f(u)) ◦ ηY)

and

US(f(v)) ◦ US(f(u)) ◦ ηY = US(f(v)) ◦ θX(f(u))
= US(f(v)) ◦ θX(ζX(ηZ ◦ u)) = US(f(v)) ◦ ηY ◦ u
= θY (f(v)) ◦ u = θY (ζY (ηZ ◦ v)) ◦ u
= θY (ζY (ηZ ◦ v)) ◦ u = ηZ ◦ v ◦ u

thus

f(v) ◦ f(u) = ζX(ηZ ◦ v ◦ u) = f(v ◦ u)

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 107

The naturality of θ in both indices is confirmed by verifying the naturality squares for
each. For the first parameter d, the contravariant square for p : hom(Y, Z) yields

θY ◦ homS(F(p), d) = homG(p, U(d)) ◦ θZ

Which can be confirmed by taking an element φ : homS(F(Z), d) through the left side of
the equation:

θY ◦ homS(F(p), d)(φ) = θY (φ ◦ F(p))
= U(φ ◦ F(p)) ◦ ηY = U(φ) ◦ U(F(p)) ◦ ηY

= U(φ) ◦ U(F(p)) ◦ ηY = U(φ) ◦ θY (F(p))
= U(φ) ◦ θY (ζY (ηZ ◦ p)) = U(φ) ◦ ηZ ◦ p
= θZ(φ) ◦ p = homG(p, U(d)) ◦ θZ(φ)

Fixing the second parameter Y , the covariant square for p : hom(Y, Z) yields

θZ ◦ homS(F(Y), p) = homY(Y, U(p))θY

Which can be confirmed by taking an element φ : homS(F(Y), d) through the left side of
the equation:

θZ ◦ homS(F(Y), p)(φ) = θZ(p ◦ φ)
= U(p ◦ φ) ◦ ηY = U(p) ◦ U(φ) ◦ ηY

= U(p) ◦ θY (φ) = homS(Y, U(p)) ◦ θY (φ)

The derivation of the unit and counit proceed as in Theorem IV.2 [39].

The importance of being able to derive the free functor from the universal morphism
that defines the free structure in a category is that we are given a canonical means to
lift morphisms between generators of free structures into homomorphisms between their
respectively generated free structures. In other words, when an underlying alphabet of basic
elements is chosen for generating a free structure, and there is a morphismm in G abstracting
these elements or immersing them in a larger set of elements, there will be a corresponding
morphism f(m) in S that correspondingly abstracts or immerses the generated structures.

This is precisely what was done with the example of free monoids in defining the map
function. It can be seen from the above constructions that our definition for map was really
the morphism component of the free functor. We can thus take advantage of the convention
we have already established, to a degree, and use the name Mon of the category to also
name the derived free functor. Using this convention, we can state that map(f) = Mon(f).
Generalizing the free functor from our example of the case for monoids, in other cases the
free functor acts like a map function over morphism, crawling along the structures of the
free element and applying the morphism to the base elements.

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 108

Furthermore, the unit/counit pair, witnessing the adjunction F a U , are important
derivatives of the universal morphism, because of their role in defining hierarchical compo-
sitions in the free structures of S. This generalizes our discussion of hierarchy in the case of
free monoids. We can define the two composition of the free functor and forgetful functor
as

TS : G → G

TS
def
= US ◦ F

RS : S → S

RS
def
= F ◦ US

which are both endofunctors. Starting with X ∈ G, one can construct the nth-level hierar-
chical free element through n applications of TS followed by F .

F(X), F(TS(X)), F(F(TS(X))), . . . , F(T n
S (X)), . . .

For the nth level, as in the case of the hierarchical free monoids, the basic elements of the
terms of the free element form the underlying structure of the n−1th level. The components
of the unit η can be given the type

η : X → TS(X)

and the interpretation of taking a set of elements one step up in this hierarchy. In the case
of the free monoids, this step up was explicit, wrapping each element so as to maintain the
distinguishability between the levels.

If we begin the series of hierarchical levels from the other side S, starting with an arbitrary
structure M ∈ S, we can express the sequence of levels as follows.

M, RS(M), RS(RS(M)), . . . , Rn
S(M), . . .

The components of the counit ε, can be given the type

ε : RS(M)→M

and analogously be interpreted as stepping down levels of this hierarchy. In the case of the
free monoid, this was the role of the reduce function. Indeed we can state that

εM = reduceM

as can be seen comparing the two definitions. Like the reduce function for free monoids,
the counit is often a means of taking equivalence classes of terms in RS(M), built up out of
elements of M , and evaluating one of (any of) the term representations in M .

Finally, we will state Adjoint Functor Theorem in the form that we will use it, as a
corollary of the more general form of the theorem, expressed in terms of limits rather than
colimits, in [39].

CHAPTER 5. KEY CONCEPTS FROM CATEGORY THEORY 109

Corollary 2. Co-Adjoint Functor Theorem
Given a small co-complete category G, and a functor F : G → S, for some category S, if F
has a right adjoint, then it preserves all small colimits.

Proof. This follows from Theorem V.6.2 in [39], using duality.

This theorem is relevant to free functors, since they have forgetful functors as their right
adjoints. Provided it is shown that the category of underlying structures G has small colimits,
it follows that these limits can be carried over to S. In more intuitive terms, if one takes
a collection of generating structures X1, X2, X3, ..., and combining them into a generating
structure X∗ (using a colimit), F(X∗) is isomorphic to the structure produced by performing
the same kind of combination to the collection F(X1), F(X2), F(X3), ...

This is certainly true for monoids, since the underlying structures are sets, and sets are
most certainly small co-complete. This will be relevant for us later, when dealing with OEGs
in the form of free symmetric monoidal categories. Combining a collection of spaces of OEGs
can be achieved through performing the same combination of the more simple spaces of their
generators, then carrying the result back through the free functor.

110

Chapter 6

Free Monoidal Categories

Combining the concepts presented in Chapter 5, free elements and monoidal categories,
we will construct free monoidal categories, the freely generated elements of the category of
monoidal categories, along with all of the associated and derived structures. We will give
this construction with details specifically regarding the symmetric variant. This variant, the
free symmetric monoidal category, will serve as the mathematical backbone of our concur-
rent behavioral representation, OEGs. Rather than directly define OEGs as free symmetric
monoidal categories, they will be defined more directly as a kind of enriched graph in Chap-
ter 7. The result of Joyal and Street in [27] will connect this definition in Chapter 7 to the
constructions we will give in this chapter.

Before generating free monoidal categories from underlying structures as we have demon-
strated with monoids in Chapter 5, making use of a forgetful functor, it must first be estab-
lished what these underlying structures are for monoidal categories. What basic information
can a monoidal category be generated from? In the case of monoids, as we have seen, this
basic information consists of a single set of generating elements. Whereas the underlying
structures of monoids, and many other algebras, are indeed simply sets, monoidal categories
instead should have both an underlying sets of basic objects as well as a set of basic mor-
phisms. Moreover, to utilize the definition we wish to use for free structures, we must be able
to define a forgetful functor that forgets the structure of monoidal categories, leaving behind
the underlying objects and morphisms in the same form as the generators. To accomplish
this, the idea of a monoidal schemes is taken from the work of Joyal and Street, who define
free monoidal categories in [27]. Their monoidal schemes are precisely pairs containing a set
of basic objects and basic morphisms.

Building on this concept, we define monoidal schemes here in a manner that fits our
formal definition of a category and proceed to show how these structures form a category,
MS. The treatment in [27] of these structures does not do much with them beyond using
them to generate free monoidal categories, but in the context of this thesis monoidal schemes
will serve a more important, ontologically significant, role. They will be used to represent the
so called “alphabets” of event types, called OESs, out of which the “words” of OEGs, which
we will call diagrams, are constructed. In order to abstract and/or embed these “alphabets”,

CHAPTER 6. FREE MONOIDAL CATEGORIES 111

as a means of reasoning about different kinds of behavioral representation, it will be useful
for us to formally define transformations between them, called monoidal scheme functors ,
that serve as the morphisms of their category.

Our construction of free monoidal categories from monoidal schemes will then proceed
in a manner that bears similarity to that in [27], but more closely follows our account of
the construction of free monoids in Chapter 5. The construction in [27] uses a different, but
equivalent, definition of a universal morphism as the initial element of a category of functions
from their tensor schemes into monoidal categories. The consequence of this approach is
that there is not much elaboration on the schemes themselves. We will also take time during
the construction to explicitly construct the algebraic language of terms that will arise from
the operators and constants of monoidal categories and the relevant variant.

Drawing from Theorem 5, in Chapter 6, we will use the construction of free monoidal
categories to further derive the free functors fromMS to the category MonCat of monoidal
categories with strict strong monoidal functors, left adjoint to the forgetful functor, UMonCat.
We will also derive the unit and counit that arise from this adjoint pair, and discuss the
significance of these elements, which can be used as tools for working mathematically with
OEGs.

We will then go on to explore important properties of both monoidal schemes and free
monoidal categories. Specifically, we will show that the categoryMS is small co-complete,
meaning that constrained combinations of monoidal schemes can be formed. Later this will
be seen as a useful property for conjoining different kinds of behavioral representations,
especially in heterogeneous systems. Using the dual of the Adjoint Functor Theorem of
Freyd, it will be shown that small colimits are preserved through the free construction, and
thus combining systems of representations can be reduced to combining their generating
alphabets.

In the latter sections of this chapter, when it is important to distinguish between the
specific variants of monoidal categories, either monoidal categories themselves or symmetric
monoidal categories, we will give certain definitions and proofs with in a variant parametric
form, using terms and notations such as X-monoidal category and XMonCat, where “X ”
can be omitted or replaced with “S”. Where differences exist, they will be noted explicitly.

6.1 Monoidal Schemes

The generating elements of free monoidal categories, monoidal schemes, are defined as follows

Definition 16. Monoidal scheme
A monoidal scheme Σ is defined

Σ
def
= (T, A)

CHAPTER 6. FREE MONOIDAL CATEGORIES 112

where

T : U
A : I → U

I def
= Mon(T)×Mon(T)

under the constraint

∀ a, b : I · a 6= b ⇒ A(a) ∩ A(b) = ∅

For a monoidal scheme:

• T will be called the primitive types

• A will be called the primitive blocks

• the elements of Mon(T) will be called the types

• I will be called the interface

The notation a− and a+, for a ∈ I, will be used to refer to the first and second components
of a.

This definition is based on that of [27], and similar to that of a graph (multigraph)
used to generate a category, as in [39]. In the case of a graph, a collection of objects and
primitive morphisms are given, which by themselves constitute a graph, without any notion
of a composition or identity. Here, the monoidal scheme differs from a graph in that the first
component T are themselves primitive objects used to generate the free monoid Mon(T)
that will serve as the ultimate set of objects for the monoidal category. In other words,
Mon(T), and not T, parameterize the homsets. Consequently, the sets of primitive blocks
in A, which generate the homsets of the monoidal category are also indexed by Mon(T) –
rather than T as they would be in a graph. The disjointness condition is a fairly obvious albeit
necessary restriction, stating that each primitive block can only have one interface. This is
a consequence of our choice of formalisms for categories themselves, built on a dependently
typed total composition over homsets rather than a partial composition over a single set of
morphisms.

One might posit a slightly different generator, based on a collection of types which is
already an arbitrary monoid, making the construction more similar to that of a category
from a graph. But the specific use of a free monoid Mon(T) is important because the
elements of an arbitrary monoid cannot necessarily be decomposed into a unique product
of primitive types. This decomposition is possible in Mon(T), because it is a free monoid,
and is a feature we would like for the purposes of our behavioral representation. Specifically,
we would like to be able to uniquely index the primitive components of the interface, and
indexing is something we can do with a free monoid (as we discussed in Chapter 3).

As a convenience, the following function will be defined for an monoidal scheme to give
the interface of a particular primitive block.

CHAPTER 6. FREE MONOIDAL CATEGORIES 113

Definition 17. For an monoidal scheme Σ, let the following be defined:

• the set of all blocks

A∪
def
=
⋃
x∈I

A(x)

• the declarative notation

A : a→ b
def
= A ∈ A(a, b)

as a means to indicate the interface of a block.

• the function τ , giving the interface of a block

τΣ :
∏
x : IΣ

AΣ(x)→ IΣ

τΣ(A : AΣ(x))
def
= x

• the function ‖−‖, giving a pair of ordinals called a valence for each interface

‖−‖Σ : IΣ → Ords×Ords

‖x‖Σ+/−
def
= ‖x+/−‖

We will also further overload ‖−‖Σ to mean ‖−‖Σ ◦ τ when over blocks rather than
interfaces.

As a convention, the superscript will be left out of the above functions, since the monoidal
scheme can be inferred from the context. The notations τ− and τ+, and the like, will also be
used to identify the left and right components, respectively, of the pair following the above
convention for naming components of interfaces.

In light of the function τ , serving the purpose associating an interface with a block,
another way of framing the definition of A in a monoidal scheme is that the entire collection
of primitive blocks form a bundle over the space of interfaces I. For each x ∈ I, A(x) is the
fiber over x. A is then the preimage of the projection τ , which is always disjoint because τ
is a function.

The valence function ‖−‖ gives a pair of ordinals to each type in the interface, indicating
in the case of what we have defined so far the number of primitive type components in the
type. Reflecting on what was discussed in Chapter 3, it is important that such a function can
only be defined because Mon(T) is specifically a free monoid, and thus has a well-defined
number of components in its canonical representation.

Maps can be defined between these monoidal schemes constituted of functions over each
of their components in a manner consistent with the parameters of A.

CHAPTER 6. FREE MONOIDAL CATEGORIES 114

Definition 18. Monoidal scheme functor
A monoidal scheme functor F is defined

F : (TΣ, AΣ)→ (TΣ′
, AΣ′

)

F
def
= (FT, FA)

with the typing

FT : TΣ → TΣ′

FA :
∏
x : IΣ

AΣ(x)→ AΣ′
(Mon(FT)(x))

We will use F to notate both components when it does not cause ambiguity.

(In the above we overload the notation Mon(FT) to refer to the lifting of FT acting
pointwise over tuples). This definition is similar to that of a functor, except that no operators
or constants are preserved, and that the parameters of FA are in the free monoid of the types.
The transformation over blocks can be thought of as constituted from individual function
for each interface in I. Another way to think of this is that the FT component transform the
interface structure, while FA maps blocks from each interface in Σ into the corresponding
interface in Σ′.

Because an monoidal scheme functor is defined in terms of functions over primitive types
T, rather than functions over all types Mon(T), the valence of each block is preserved. That
is, for any monoidal scheme functor F

‖−‖ ◦ F = ‖−‖

This property is important as it leaves structural (geometric) details about blocks invariant
through monoidal scheme functors. A component primitive type cannot be broken into
pieces, nor can two components be fused together.

Given the definition of these mappings are based entirely on functions, an identity can be
defined for each monoidal scheme and a composition can be defined for any pair of monoidal
scheme functors.

Definition 19.

• For each monoidal scheme Σ,

id(Σ) : Σ→ Σ

id(Σ)
def
= (id(T), id(A))

where id(T) is the identity function over T, and, for each x ∈ I, id(A)(x) is the
identity function over A(x).

CHAPTER 6. FREE MONOIDAL CATEGORIES 115

• For each pair of monoidal scheme functors

F : Σ→ Σ′

G : Σ′ → Σ′′

composition is defined

G ◦ F : Σ→ Σ′′

G ◦ F def
= (GT ◦ FT, (G ◦ F)A)

where

(G ◦ F)A(x)
def
= GA(FT(x)) ◦ FA(x)

Using these two definitions, monoidal schemes form a category with monoidal scheme
functors as its morphisms

Proposition 5. MS
The set of monoidal schemes and monoidal scheme functors with the definitions identity and
composition above form a category. Let this category be calledMS.

Proof. Since each monoidal scheme functor is constituted of a function and a set of functions
parameterized over pairs of monoidal schemes, and composition and identity are defined by
the definition for functions over each of these constituting functions, associative and identity
laws can be derived from those over functions.

This category has several useful properties, the identification and discussion of which we
will defer till after we have completed the construction of free monoidal categories from the
objects of this category.

6.2 Free Monoidal Categories

Having defined the category of monoidal schemes, we can now proceed in the construction
of free monoidal categories. The first step in this process, is to define the forgetful func-
tor mapping monoidal categories into monoidal schemes. By monoidal categories, we will
specifically mean the category XMonCat of strict X-monoidal categories with strict strong
X-monoidal functors .

Definition 20.
Let the forgetful functor for the category XMonCat of (strict) X-monoidal categories with
(strict strong) X-monoidal functors be defined

UXMonCat : XMonCat→MS
UXMonCat(O, hom, . . .) = (O, hom)

UXMonCat(F) = F

where F is a X-monoidal functors.

CHAPTER 6. FREE MONOIDAL CATEGORIES 116

This definition simply maps the objects of the category into a set of primitive types
and the morphism into blocks, forming a monoidal scheme and forgetting the algebraic
mechanisms.

Following the same procedure defined in Chapter 5 for constructing a free object, we
must then define a universal morphism from each Σ ∈MS into UXMonCat. As was the case
for free monoids, the first component of this universal morphism, fΣ, the free element itself,
will be defined as equivalence classes of terms in the term language of monoidal categories,
and the associated variant. We will first construct this term language along the same lines
as we did for the free monoid, then use this term language to complete the construction and
derive the associated structures.

Monoidal Term Structures

The formal terms of X-monoidal categories, like those of monoids, are simply those formed
from the operators and constants of X-monoidal categories. The construction will follow the
same pattern as that of free monoids discussed in Chapter 5. We will refer to these collections
of terms, constructed from particular monoidal scheme, as X-monoidal term structures . The
terms will then be placed into equivalence classes over the axioms of the given monoidal
category to form its morphism.

Although a similar inductive mechanism can be employed to construct the terms of X-
monoidal categories from a monoidal scheme, as was used in constructing free monoids from
a set, there is an important difference in this construction. The collection of terms for a
particular monoidal scheme is no longer a single set. Instead, the collection XMCTermsΣ

is parameterized over pairs of elements of Mon(TΣ). The induction process then mutually
builds up these sets, while also constraining the construction of terms to fulfill what one might
call the “typing constraints” of the language, specifically because the categorical composition
is a dependent function of the interfaces of its operands.

Definition 21. X-monoidal category Terms
Given a monoidal scheme Σ, for each x, y ∈Mon(TΣ) there is set of X-monoidal category
terms XMCTermsΣ(x, y). These sets are mutually constructed inductively by the following
inference rules.

A ∈ AΣ(x, y)

A ∈ XMCTermsΣ(x, y)

idx ∈ XMCTermsΣ(x, x)

βx,y ∈ XMCTermsΣ(x ⊗ y, y ⊗ x)

f ∈ XMCTermsΣ(x, y) g ∈ XMCTermsΣ(y, z)

g ◦ f ∈ XMCTermsΣ(x, z)

CHAPTER 6. FREE MONOIDAL CATEGORIES 117

f ∈ XMCTermsΣ(w, x) g ∈ XMCTermsΣ(y, z)

f ⊗ g ∈ XMCTermsΣ(w ⊗ y, x ⊗ z)

where the parameters x, y, z, ... of XMCTermsΣ all vary over Mon(TΣ), and there are a
set of distinct constants id(x) for each x ∈Mon(TΣ) and β(x, y) for each x, y ∈Mon(TΣ).

It is worth making the distinction that these rules depend on the elements of Mon(TΣ)
and not monoidal terms in MonTerms(Σ). If the latter were used to parameterized the
collection of X-monoidal category terms there would be an additional complication of intro-
ducing the rewriting of these terms into the induction rules. This would pose a challenge for
proof by structural induction because it would introduce inductive derivations that do not
strictly increase the complexity of the terms. However, one does not encounter problems in
establishing the identity of the words of free monoids in practice because the word problem
on free monoids is decidable – in fact fairly trivial, since words in free monoid have a unique
expansion into a sequence of their generating elements.

Complementing the X-monoidal category terms, we will define the corresponding linear
contexts. As opposed to those of monoidal terms, the holes in these contexts are “typed”
so that they can be filled with terms from a particular XMCTermsΣ(x, y). We therefore
must denote them as ©x,y with parameters from Mon(TΣ).

Definition 22. Linear X-monoidal category Contexts
Given a monoidal scheme Σ, for each x, y ∈Mon(TΣ) there is set of linear X-monoidal cat-
egory contexts XMCContextsΣu,v(x, y). These are constructed inductively by the following
inference rules

©u,v ∈ XMCContextsΣu,v(u, v)

γ ∈ XMCContextsΣu,v(x, y) f ∈ XMCTermsΣ(y, z)

f ◦ γ ∈ XMCContextsΣu,v(x, z)

f ∈ XMCTermsΣ(x, y) γ ∈ XMCContextsΣu,v(y, z)

γ ◦ f ∈ XMCContextsΣu,v(x, z)

γ ∈ XMCContextsΣu,v(w, x) f ∈ XMCTermsΣ(y, z)

γ⊗ f ∈ XMCContextsΣu,v(w ⊗ x, y ⊗ z)

f ∈ XMCTermsΣ(w, x) γ ∈ XMCContextsΣu,v(y, z)

f ◦ γ ∈ XMCContextsΣu,v(w ⊗ x, y ⊗ z)

CHAPTER 6. FREE MONOIDAL CATEGORIES 118

Each element γ ∈ XMCContextsΣu,v(x, y) is a function

XMCTermsΣ(u, v)→ XMCTermsΣ(x, y)

These are defined, recursively, for any a, b ∈MonTerms(S)

©u,v (a)
def
= a

(γ ◦ a)(b) def
= γ(b) ◦ a

(a ◦ γ)(b) def
= a ◦ γ(b)

(γ⊗ a)(b) def
= γ(b)⊗ a

(a⊗ γ)(b) def
= a⊗ γ(b)

With both the terms and contexts, an equivalence relation can be defined, generated
from the axioms of X-monoidal categories. Rather than explicitly writing out the induc-
tive system completely, we will simply refer to the axioms for the corresponding variant of
monoidal categories we gave in Definitions 7 and 9. The nuance in this definition again will
be the presence of “typing”; in fact, it will be generated from a parameterized collection of
equivalence relations.

Definition 23. X-monoidal category Equivalence
Given a monoidal scheme Σ, for each x, y ∈Mon(TΣ) there is an equivalence relation

XMonCat(x, y)⇐========⇒⊆ XMCTerms(x, y)×XMCTerms(x, y)

defined inductively as follows. For every axiom in AxiomsXMonCat of the form LHS =
RHS, let there be an inference rule

LHS
XMonCat(x, y)⇐========⇒ RHS

where each operator and constant is replaced with its formal counterpart. For each a, b ∈
XMCTerms(u, v) and each γ ∈ XMCContextsΣu,v(x, y), let there be an inference rule

a
XMonCat(u, v)⇐========⇒ b

γ(a)
XMonCat(x, y)⇐========⇒ γ(b)

For each x, y ∈Mon(TΣ), let the function

〈−〉XMonCat(x, y) : XMCTerms(x, y)→ XMCTerms(x, y)/
XMonCat(x, y)⇐========⇒

be the canonical projection induced by XMCTerms(x, y), where

XMCTerms(x, y)/
XMonCat(x, y)⇐========⇒

CHAPTER 6. FREE MONOIDAL CATEGORIES 119

is the canonical quotient. Finally, the combined equivalence relation is defined

XMonCat⇐=====⇒def
=

⋃
x, y∈Mon(TΣ)

XMonCat(x, y)⇐========⇒

Likewise, we define the parametric canonical projection

〈−〉XMonCat : XMCTerms→ XMCTerms/
XMonCat⇐=====⇒

〈−〉XMonCat
def
=

∑
x, y∈Mon(TΣ)

〈−〉XMonCat(x, y)

where

XMCTerms/
XMonCat⇐=====⇒def

=
⋃

x, y∈Mon(TΣ)

XMCTerms(x, y)/
XMonCat(x, y)⇐========⇒

It should be clear from this definition that the equivalence relations are disjoint. In other
words, two X-monoidal category terms can only be equivalent if they, at least, have the same

“type”; the rewritings preserve the “typing”. Consequently, their union in
XMonCat⇐=====⇒ is a

disjoint one, which is tantamount to asserting that the parameters can be left out of any

statement. This also justifies the notation and use of XMCTerms/
XMonCat⇐=====⇒. Either the

parameters can be inferred from the terms, or if not, they are purely formal and apply to all
such terms anyways.

Free Construction

Using the three concepts of a monoidal scheme, a monoidal term structure over a monoidal
scheme, and the equivalence relation we defined over monoidal term structures, we can take
the final step in constructing the free monoidal category generated by a monoidal scheme.
We will then prove that what we construct is indeed free in XMonCat, the category of X-
monoidal categories with (strict) X-monoidal functors. What will follow from Theorem 5 is
that the free construction over an arbitrary OES induces a left adjoint to the forgetful functor,
which maps not only monoidal schemes into X-monoidal categories, but more monoidal
scheme functors into X-monoidal functors.

The construction is as follows.

Definition 24. Free X-monoidal category
Given a monoidal scheme Σ, the free X-monoidal category generated by Σ is defined

XMonCat(Σ)
def
= (O, hom, ◦ , id, ⊗ , 1, ⊗hom , 1hom , β︸︷︷︸

SymMonCat

)

CHAPTER 6. FREE MONOIDAL CATEGORIES 120

where

O = ‖Mon(TΣ)‖

hom(a, b) = XMCTermsΣ(a, b)/
XMonCatΣ(a, b)⇐=========⇒

id(a) = 〈ida〉XMonCat

◦ = 〈 ◦ 〉XMonCat

⊗ = ⊗Mon(TΣ)

1 = 1Mon(TΣ)

⊗hom = 〈⊗ 〉XMonCat

1hom = id(1)

[β(a, b) = 〈βa,b〉XMonCat SymMonCat]

As implied by the notation above, the β elements of the category are only in the symmetric
monoidal category variant. We will describe this construction, recapitulating what we have
indicated earlier. The set of objects for this X-monoidal category is the underlying set of
the free monoid over TΣ, and the monoidal product and unit for the X-monoidal category
are simply those of the free monoid. The homsets for each pair of objects are the quotient
spaces of X-monoidal term structure terms over the corresponding equivalence classes, and
the monoidal and categorical operators, as well as the family of trace operators, are liftings
of the formal ones through the canonical projections. The identity and braiding constant
morphisms are also brought through the projection into their corresponding equivalence
classes. As stipulated by the axioms of monoidal categories the unit of monoidal composition
over morphisms 1hom is set equal to the identity element for the unit object 1.

Although we have called this the free X-monoidal category, we must prove that it is a free
object of the category XMonCat. What must specifically be shown is that the constructed
object XMonCat(Σ) together with a morphism ηΣ form a universal morphism from Σ to
the forgetful functor UXMonCat. This can be summarized by the diagram

Σ UXMonCat(XMonCatΣ) XMonCatΣ

UXMonCat(S) S

h= θΣ(k)

ηΣ

UXMonCat(k) k= ζΣ(h)

in which ζΣ is the witness to the universal, which we will define.

Theorem 6.

CHAPTER 6. FREE MONOIDAL CATEGORIES 121

Given a monoidal scheme Σ, the triplet (XMonCat(Σ), ηΣ, ζΣ) defined

ηΣ : Σ→ UXMonCat(XMonCat(Σ))

[ηΣ]T = ηT
Σ

[ηΣ]A(a, b)(A) = 〈A〉XMonCat(a, b)

ζΣ : homMS(Σ, UXMonCat(Y))→ homXMonCat(XMonCat(Σ), Y)

[ζΣ(h)]O
def
= ζT

Σ

([h]T)

[ζΣ(h)]hom(〈f〉XMonCat) = Wh(f), where

Wh(f ◦ g) = Wh(f) ◦ Wh(g)

Wh(idx) = id(ζΣ(h)(x))

Wh(f ⊗ g) = Wh(f) ⊗ Wh(g)

Wh(βx,y) = β(ζΣ(h)(x), ζΣ(h)(y))

Wh(A) = h(A)

witnesses a universal morphism.

Before proving this theorem, we will first comment on the construction. As in the case of
the free monoid, ηΣ simply injects each basis element into an equivalence class. In this case,
ηΣ is a monoidal scheme functors and has a component for primitive types and primitive
blocks. The former is defined in terms of the universal morphism for free monoids defined in
Chapter 5, while the latter uses the equivalence class 〈−〉XMonCat over X-monoidal category
terms.

The ζΣ component of the witness is a bijective transformation between particular monoidal
scheme functors and X-monoidal functors. Given an monoidal scheme functors, the compo-
nent of the image that maps between objects of X-monoidal categories is defined as well in
terms of the universal morphism for free monoids. This component functions as is described
in Section 5.2, mapping and reducing over the structure. The component that maps between
morphism in X-monoidal categories is defined inductively in a manner similar to the corre-
sponding definition for free monoids. The action on a morphism in XMonCat(Σ) can be
thought of with similar intuitions. ζΣ takes a morphism and chooses a representative term
from XMCTermsΣ, then crawls over this term replacing each formal operator with the cor-
responding operator in codomain X-monoidal categories, and applying the A component of
the monoidal scheme functor to each primitive block at the leaves of the syntactic structure
– in essence, a map-reduce over X-monoidal category diagrams.

We will now proceed with the proof in a manner similar to its counterpart for free
monoids.

Proof. First, it can be seen from the definition of XMCTermsΣ that the function Wh is
well-defined via structural induction.

CHAPTER 6. FREE MONOIDAL CATEGORIES 122

It must be then shown that the image of ζΣ is a X-monoidal functor. The preservation of
the monoidal unit and product over objects holds as a consequence of [ζΣ(h)]O being defined
as a monoid homorophism ζMon(T). For [ζΣ(h)]hom, that the operators and constants over
morphisms are all preserved can be seen from the recursive definition of Wh, along with the
definition of constants as equivalence classes of the corresponding constant terms and the
definition of operators being liftings through the canonical projection.

What remains in proving that the triplet (XMonCat(Σ), ηΣ, ζΣ) is a universal morphism
is that ζΣ is the inverse of the canonical θΣ, which, as we recall, is defined

θΣ(k)
def
= UXMonCat(k) ◦ ηΣ

We first show that θΣ ◦ ζΣ(h) = h for an monoidal scheme functor h. Expanding the
definition

θΣ ◦ ζΣ(h) = UXMonCat(ζ
Σ(h)) ◦ ηΣ

This monoidal scheme functor can be applied to both a primitive type x ∈ TΣ and to a block
〈A〉XMonCat ∈ AΣ(a, b). Looking at the former

[UXMonCat(ζ
Σ(h)) ◦ ηΣ]T(x)

= [UXMonCat(ζ
Σ(h))]T ◦ [ηΣ]T(x)

= [UXMonCat(ζ
Σ(h))]T(η

Mon(TΣ)(x))

= [ζΣ(h)]O(η
Mon(TΣ)(x))

= [ζMon(TΣ)(hT) ◦ ηMon(TΣ)](x)

= hT(x)

where the last equality uses the property of the witnesses for free monoids. For the latter

[UXMonCat(ζ
Σ(h)) ◦ ηΣ]A(A)

= [UXMonCat(ζ
Σ(h))]A(〈A〉XMonCat)

= [ζΣ(h)]hom(〈A〉XMonCat)

= Wh(A) = hA(x)

Hence, the identity is shown in this direction.
In the other direction, it must be shown that ζΣ ◦ θΣ(k) = k for a X-monoidal functor

k. This X-monoidal functor can be applied to both an object a ∈ XMonCat(Σ) and a
morphism m ∈ XMonCat(Σ)(a, b). Considering the former

[θΣ(k)]T

= [UXMonCat(k) ◦ ηΣ]T
= [UXMonCat(k)]T ◦ ηMon(TΣ)

= UMon(kO) ◦ ηMon(TΣ)

= θMon(TΣ)(kO)

CHAPTER 6. FREE MONOIDAL CATEGORIES 123

then

[ζΣ ◦ θΣ(k)]O(a)
= ζMon(TΣ)([θΣ(k)]T)(a)

= ζMon(TΣ)(θMon(TΣ)(kO))(a)

= kO(a)

where the last equality, again, uses the property of the witnesses for free monoids. For the
latter

[ζΣ ◦ θΣ(k)]hom(〈A〉XMonCat) = WθΣ(k)(A)

and we would like to show that

WθΣ(k)(A) = khom(〈A〉XMonCat)

This can be shown by structural induction over the syntax of the representative A. The base
cases are

WθΣ(k)(idx) = id(kO(x))

= khom(id(x)) = khom(〈id(x〉XMonCat))

WθΣ(k)(βx,y) = β(kO(x), kO(y))

= khom(β(x, y)) = khom(〈βx,y〉XMonCat
)

WθΣ(k)(E) = θΣ(k)(E) = [θΣ(k)]hom(E)

= [UXMonCat(k) ◦ ηΣ]hom(E)

= [UXMonCat(k)]T(〈E〉XMonCat)

= khom(〈E〉XMonCat)

where E ∈ AΣ. The inductive cases all follow from expanding the definition of W on
operators and using the preservation of the operators over khom. For the ◦ case,

WθΣ(k)(f ◦ g) = WθΣ(k)(f) ◦ WθΣ(k)(g)

= khom(〈f〉XMonCat) ◦ khom(〈g〉XMonCat)

= khom(〈f〉XMonCat ◦ 〈g〉XMonCat)

= khom(〈f ◦ g〉XMonCat)

which uses the inductive assumption in the second step. The cases for other operators follow
in exactly the same fashion. This establishes the second identity, and thus verifies that the
two functions are indeed inverses.

It follows immediately that XMonCat(Σ) is the free object in XMonCat corresponding
to Σ. Using Theorem 5, XMonCat(−) can be extended to a free functor that is left adjoint
to UXMonCat. With this adjunction, the unit and counits can also be derived. We state these
derivations in a corollary.

CHAPTER 6. FREE MONOIDAL CATEGORIES 124

Corollary 3.
There is a functor XMonCat : MS → XMonCat defined to map each monoidal scheme
Σ to the corresponding free X-monoidal category and for each monoidal scheme functor
h : Σ→ Σ′

XMonCat(h)
def
= ζΣ(ηΣ

′ ◦ h)

such that

(ζ, θ) : XMonCat ` UXMonCat

where ζ and θ have components ζΣ and θΣ, respectively.
The unit and counit for this adjunction are defined

ηΣ
def
= ηΣ

εY
def
= ζUXMonCat(Y)(id(UXMonCat(Y)))

Proof. This all follows from Theorem 5.

This set of derivations yield a number of valuable tools for working with monoidal schemes
and free X-monoidal categories. As was the case for the free functor generated by free
monoids, this free functor XMonCat(−) acts on a monoidal scheme functor h that per-
forms some transformation – something like an abstraction or embedding, on a collection of
generators. It lifts this monoidal scheme functor into a transformationXMonCat(h) over di-
agrams that crawls over structure of a diagram in one free X-monoidal category and replaces
every primitive block at the leaf of the syntax with another from the original transform. The
free functor is, in essence, a variant of the familiar map function, applying a transformation
over a block diagram rather than a list, transforming each primitive block independently (a
block-wise transformation). The structure of the diagram remains unchanged in this trans-
formation, which follows from the fact we established earlier that monoidal scheme functors
preserve the valence of primitive blocks, thereby retaining their connections to other blocks.

As is the case with the image of any functor, the image of XMonCat, XMonCat(MS)
gives us a sub-X-monoidal category consisting of only free X-monoidal categories and X-
monoidal functors generated from monoidal scheme functors. To foreshadow the role of
this in modeling behaviors, the image XMonCat(MS) provides the various languages that
could be used for representing behaviors, each generated by a monoidal scheme carrying
the primitives for the language. The process of abstracting or embedding these behavioral
languages can be derived from abstracting or embedding their respective sets of primitives.

Similar to the case of the unit derived from free monoids in Chapter 5, the unit ηΣ has
the typing

η :
∏

Σ∈MS

Σ→ UXMonCat ◦ XMonCat(Σ)

CHAPTER 6. FREE MONOIDAL CATEGORIES 125

For any monoidal scheme Σ, the unit is simply the injection of each primitive type a and
primitive block A into the corresponding equivalence class 〈a〉 of single-letter words and 〈A〉
of single block diagrams, respectively. However, as was discussed in Chapter 5, because
the functor T = UXMonCat ◦ XMonCat is an endofunctor over MS, iterating it over a
monoidal scheme Σ induces a hierarchy

Σ, T (Σ), T 2(Σ), T 3(Σ), T 4(Σ), . . .

If we think of the first element T (Σ) as the space of all diagrams generated from the primitive
blocks in Σ, then T 2(Σ) is the space of all diagrams generate from these diagrams; that
is, the space of 2-level diagrams. TN(Σ) is thus the space of N -level diagrams, built up
hierarchically.

This hierarchical structure is possible, in part, because each diagram in a monoidal
category has an interface, just as each primitive block does. Consequently, one can abstract
each diagram into a primitive block, which can then be instantiated in the construction of
a 2-level diagram. This process of lifting an N -level diagram into a N + 1-level diagram is
precisely what the unit does over this hierarchy.

Σ
η−−→ T (Σ)

η−−→ T 2(Σ)
η−−→ T 3(Σ)

η−−→ T 4(Σ)
η−−→ . . .

This mechanism allows free X-monoidal category to represent structures that have a non-
trivial sense of hierarchy. As we had shown in the case of free monoids, which have the same
kind of hierarchy, there is a distinction between a N -level diagram A and its image through
the unit as a N + 1-level diagram 〈A〉. That is,

A 6= 〈A〉 6= 〈〈A〉〉 6= 〈〈〈A〉〉〉 6= 〈〈〈〈A〉〉〉〉 6= . . .

which makes it possible to draw hierarchical distinctions.
And yet this hierarchy can nevertheless be collapsed down to a 1-level diagram by way

of the counit, which as we recall has the typing

ε :
∏

Y ∈XMonCat

XMonCat ◦ UXMonCat(Y)→ Y

In contrast with the unit, the counit is parameterized over X-monoidal categories, and has
as its domain the image of the functor R = XMonCat ◦ UXMonCat, which is an endofunctor
over X-monoidal categories. R therefore also induces a hierarchy, but one that starts with
an arbitrary X-monoidal category Y rather than a monoidal scheme.

Y, R(Y), R2(Y), R3(Y), R4(Y), . . .

This Y can be any X-monoidal category, and not just a free X-monoidal category. However,
if it is a free X-monoidal category, and thus Y = XMonCat(Σ), then this hierarchy simply

CHAPTER 6. FREE MONOIDAL CATEGORIES 126

the hierarchy we discussed earlier with an extra layer of free construction applied to each
element in the series.

XMonCat(Σ), XMonCat ◦ T (Σ), XMonCat ◦ T 2(Σ), . . .

The Nth element here is the free X-monoidal category of N + 1-level diagrams, whereas
before each element was the underlying monoidal scheme of these structures (shifted over by
one).

Although this is roughly the same hierarchy as before, with a phase shift to the free
X-monoidal category, in contrast with the unit, the counit provides a means to take each
N + 1-level diagram and collapse it into a N -level diagram.

XMonCat(Σ)
ε←−− XMonCat ◦ T (Σ)

ε←−− XMonCat ◦ T 2(Σ)
ε←−− . . .

As in the case of the free monoid, this counit operation is, in essence, the reduce function,
which simply takes the compositions of N -level diagrams, as N + 1-level diagrams, and
interprets them as constructing N -level diagrams. This fits the intuition that if one wanted
to explicitly abolish the hierarchy of diagrams this could be done, although it is not done
automatically, allowing the hierarchy to be retained when it serves a semantic purpose and
collapsed in a well-defined way when the aim is to do so. The unit and counit therefore
provide an well-defined mathematical means to construct hierarchy as well as a means to
remove it.

6.3 Properties of Monoidal Schemes and Free

Monoidal Categories

We will now look at some important properties of monoidal schemes and free monoidal
categories. Several important category theoretical properties can be identified in the category
of monoidal schemesMS, which can be used to reason about the various sets of primitive
elements that will generate monoidal categories. We will show that some of these properties
will be carried over through the free functor to the image in the category of free monoidal
categories, and characterize the relationships of abstraction or embedding between these.

The first of these significant properties is thatMS has an initial element initMS , which
is simply the empty monoidal scheme.

Proposition 6.
Let the monoidal scheme initMS be defined

initMS def
= (∅, A∅)

where A∅(1, 1) = ∅

CHAPTER 6. FREE MONOIDAL CATEGORIES 127

and an monoidal scheme functor-valued function of monoidal schemes initMS be defined

initMS :
∏

Σ∈MS

initMS → Σ

[initMS
Σ]T = ∅TΣ

[initMS
Σ]A(1,1) = ∅AΣ(1,1)

initMS is the initial element ofMS with initMS as its witness.

Proof. First we will verify that the above functions are well defined. Since Mon(∅) = {1}
the function A∅ is well defined above, as is [initMS

Σ]A. Moreover, all of the A∅ sets are disjoint
(since they are all empty). initMS is therefore a well defined monoidal scheme and initMS

Σ

a well defined monoidal scheme functor for any monoidal scheme Σ. [initMS
Σ]T is clearly the

unique function of the type ∅ → TΣ. For functions of the type∏
x∈IinitMS

AinitMS
(x)→ AΣ([initMS

Σ]T(x))

the unique choice of [initMS
Σ]T reduces the type more specifically to

AinitMS
(1, 1)→ AΣ(1, 1) ∼= ∅ → AΣ(1, 1)

for which the above definition of [initMS
Σ]A is the unique witness. It follows that initMS

Σ is
unique, in addition to existing, for all Σ.

This initial element will not, by itself, serve a very significant purpose in behavioral
representations, since it generates trivial monoidal categories with only id channels and no
blocks, which are all essentially empty. However, the initial element will have a technical
significance in characterizing the properties of the category.

A more inherently significant distinguished element ofMS is its terminal element termMS ,
which has a single type ? and a single block �a

b for every pair of ordinals a and b.

Proposition 7.
Let the monoidal scheme termMS be defined

termMS def
= ({?}, A?)

where A?(a, b) = {�a
b}

where �a
b are a set of unique constants for each a and b, and an monoidal scheme functor-

valued function of monoidal schemes termMS be defined

termMS :
∏

Σ∈MS

Σ→ termMS

[termMS
Σ]T = ConstTΣ(?)

[termMS
Σ]A(a, b) = ConstAΣ(a, b)(�

Ord(a)
Ord(b))

termMS is the terminal element ofMS with termMS as its witness.

CHAPTER 6. FREE MONOIDAL CATEGORIES 128

The proof of this is similar to that of the initial element.

Proof. It must be first stated that Mon({?}) is isomorphic to N, and thus the set Mon(TΣ)
for termMS can be taken to be the ordinals in N (later this will be expanded into all
countable ordinals). Consequently, the lifting of ConstTΣ(?) into the free monoid is indeed
Ord. As in the proof of the initial element, the type TΣ → {?} has the above definition for
[termMS

Σ]T as its unique element. And, the type∏
x∈IΣ

AΣ(x)→ AtermMS
([termMS

Σ]T(x))

with the unique transformation over types reduces to∏
(a, b)∈IΣ

AΣ(a, b)→ AtermMS
(Ord(a), Ord(b))

∼=
∏

(a, b)∈IΣ

AΣ(a, b)→ {�a
b}

for which the above definition of [termMS
Σ]A is the unique witness. It follows that termMS

Σ

is unique, in addition to existing, for all Σ.

This terminal element is a purely structural generator for a monoidal category. In the
graphical language, the channels are all untyped, and there is a single primitive block for ev-
ery number of incoming and outgoing channels. This is the most abstracted representation of
an monoidal scheme that maintains what it encodes topologically. The utility of this terminal
monoidal scheme is that it generates a completely abstracted monoidal category that retains
only topological information. In a sense, the transformations into this monoidal scheme (and
as we will see later, the corresponding transformations between monoidal categories) forgets
all labellings of blocks and types, serving as a kind of erasure.

This terminal element, and the mapping into it, can be generalized to contain only some
structural blocks �a

b corresponding to the particular shapes present in some monoidal scheme
Σ.

Definition 25.
Given a monoidal scheme Σ, the structural abstraction strMS(Σ) is defined

strMS(Σ)
def
= ({?}, A?)

A?(n, m)
def
=

{
�n

m {∃x : IΣ; A : AΣ(x) · Ord(x) = (n, m)}
∅ otherwise

CHAPTER 6. FREE MONOIDAL CATEGORIES 129

and there is a canonical projection into this monoidal scheme

strMS :
∏

Σ∈MS

Σ→ strMS(Σ)

[strMS
Σ]T = ConstTΣ(?)

[strMS
Σ]A(a, b) = ConstAΣ(a, b)(�

Ord(a)
Ord(b))

The definition of strMS
Σ is essentially the same as termMS

Σ , but restricted to strMS(Σ)
The MS category also has mechanisms for combining monoidal schemes. Specifically,

we will show thatMS has all arbitrary coproducts.

Theorem 7.
Given an indexed set of monoidal schemes (Σj | j ∈ J) for an indexing set J , let

T∐ =
∐
j∈J

TΣj

κj : TΣj → T∐
κj = ∆ ◦ Mon(κj)

where we are using the standard coproduct over sets and κj are the corresponding injections
on sets. κj is the lifting of these injections over the free monoid and pairs.

Let the coproduct of monoidal schemes be defined∐
j∈J

Σj
def
= (T∐, A∐)

where A∐(x) =

{
AΣn(y) if y = κn(x) ∧ n ∈ J
∅ otherwise

where the standard set coproduct and injections are used over the sets TΣj . Let the injections
ιj into the coproduct be defined

ιj : Σj →
∐
j∈J

Σj

[ιj]T
def
= ιj

[ιj]A(x)
def
= idFun(AΣj(x))

Given additionally a monoidal scheme Σ and a indexed set of monoidal scheme functors into
Σ

(Fj : Σj → Σ | j ∈ J)

CHAPTER 6. FREE MONOIDAL CATEGORIES 130

let the coproduct over morphisms (the witness) be defined∐
j∈J

Σj :
∐
j∈J

Σj → Σ

[
∐
j∈J

Fj]T
def
=
∐
j∈J

[Fj]T

[
∐
j∈J

Fj]A(x)
def
=

{
[Fn]A(y), if y = κn(x) ∧ n ∈ J
∅AΣ(x) otherwise

The above definition gives a well defined coproduct.

Before proving this proposition, it is worth describing the coproduct construction intu-
itively. Like a standard coproduct over sets, this coproduct combines a collection of monoidal
schemes disjointly to form an monoidal schemes with all of the primitive types and blocks
combined. The combination of primitive types TΣj is just the standard coproduct over sets;
a disjoint union that retains all of the elements distinguishably. The types in the Mon(T)
component of the coproduct, however, may now be constructed from words of primitive types
from any of the TΣj sets. Consequently, the space of types in the coproduct is strictly larger
than the disjoint union of those in the component monoidal schemes, since the coproduct
now has mixed types.

Another way of describing this is as follows. The injections of primitive types from TΣj is
lifted into an injection of types from Mon(T)Σj into the set of types in the coproduct. The
union of images of all of these injections, however, constitutes only the “diagonal” elements
of the coproduct types. For general cases (non-empty)⋃

j∈J

[ιj]T(Mon(T)Σj) ⊂Mon(T)
∐

j∈J Σj

This is a generalization of the more obvious fact that for non-empty sets

Mon(A) ∪Mon(B) ⊂Mon(A ∪B)

In the above definitions, therefore, some cases are predicated on an element a ∈Mon(T)
being in the image of some lifted ιj, i.e. a = ιj(c). This equivalently means that all of
the components of a are from the same TΣj . We can call these homogeneous types for the
moment. A consequence of this larger space of types in the coproduct is that there are A
sets parameterized by pairs of elements in this larger space. In out definition, the A sets
parameterized by homogeneous types, both from the same Mon(T)Σj , are set equal to the
set from AΣj , while the rest of the A sets, parameterized by heterogeneous elements, are all
defined to be empty.

In order to prove that this definition is correct, the witness (the coproduct of morphisms)
must be verified to fulfill the universal property of coproducts, which can be stated as the

CHAPTER 6. FREE MONOIDAL CATEGORIES 131

natural isomorphism ∏
j∈J

hom(Σj, Σ) ∼= hom(
∐
j∈J

Σj, Σ)

The mapping from left to right, given by the witness, can be denoted

ζ∐ (fj | j ∈ J)
def
=
∐
j∈J

fj

to fit the isomorphism. The mapping from right to left in this isomorphism is given by the
function

θ∐(f)
def
= (f ◦ ιj | j ∈ J)

Proving that the coproduct fulfills this universal property amounts to showing that ζ∐ is the
inverse of θ∐.

Proof. We will begin with showing that ζ∐ ◦ θ∐ is the identity. To do this we will look at
its action on an element h ∈ hom(

∐
j∈J Σj, Σ) Expanding the definition

ζ∐ ◦ θ∐(h) = ζ∐((h ◦ ιj | j ∈ J)) =
∐
j∈J

h ◦ ιj

We must consider this monoidal scheme functor over its type and block components. For
types

[
∐
j∈J

h ◦ ιj]T =
∐
j∈J

[h ◦ ιj]T =
∐
j∈J

[h]T ◦ [ιj]T =
∐
j∈J

[h]T ◦ κj = [h]T

For blocks, we first consider an interface x where x = κn(y) for some values n and y.

[
∐
j∈J

h ◦ ιj]A(x) = [h ◦ ιj]A(y)

= [h]A(x) ◦ [ιn]A(y)

= [h]A(x) ◦ idFun(AΣn)

= [h]A(x)

For the case that no such y and n exist,

[
∐
j∈J

h ◦ ιj]A(x) = ∅AΣ(x)

which must be the case for any h since T∐(x) = ∅

CHAPTER 6. FREE MONOIDAL CATEGORIES 132

In order to show the identity of the other direction θ∐ ◦ ζ∐, its action on an element
k :

∐
j∈J(Σj → Σ). Expanding the definition

θ∐ ◦ ζ∐(k) = θ∐(
∐
j∈J

kj) =

(
(
∐
j∈J

kj) ◦ ιn | n ∈ J

)

Expanding the type and block components of each member of this tuple

[(
∐
j∈J

kj) ◦ ιn]T = [
∐
j∈J

kj]T ◦ κn = [
∐
j∈J

[kj]T] ◦ κn = [kn]T

where the last step involved using the properties of coproducts over sets. For any x

[(
∐
j∈J

kj) ◦ ιn]A(x)

= [
∐
j∈J

kj]A(∆ ◦ Mon([ιn]T)(x)) ◦ κn

= [
∐
j∈J

kj]A(∆ ◦ Mon([ιn]T)(x)) ◦ idFun(AΣn)

= [
∐
j∈J

kj]A(κn(x)) ◦ idFun(AΣn)

= [
∐
j∈J

kj]A(κn(x))

= [kn]A(x)

The two functions ζ∐ and θ∐ are therfore inverses, and thusMS has all small coproducts.

We may be able to define products over monoidal schemes as well, but that is not of
primary interest here. A more important construction is that of coequalizers on monoidal
schemes. Coequalizers are the categorical generalization of concepts such as equivalence re-
lations that conflate elements of objects together (when the objects are set-like). In the con-
text of monoidal schemes, defining equivalence relations and coequalizers provides a means
to conflate both types and blocks together in a consistent manner. In other words, two
equivalences, one over primitive types ≈T and one over blocks ≈A can be defined so long as
they fulfill a consistency constraint.

This consistency constraint on these equivalence relations can be understood in terms of
the consequence of conflating only primitive types or only blocks, while leaving the other
collection distinct. There is no barrier to conflating any set of types in a monoidal schemes,
since they constitute a simple set, and thus ≈T could be any equivalence relation. However,
the ramification of doing so is that there is an induced equivalence relation ≈Mon(T) on types,

CHAPTER 6. FREE MONOIDAL CATEGORIES 133

in which two types are equivalent if each primitive component is pointwise equivalent under
the relation. That is, for any two types expressed in canonical form

a1 ⊗ . . . ⊗ aN ≈Mon(T) b1 ⊗ . . . ⊗ bM
def
= N =M ∧ ∀k≤Nak ≈T bk

It follows immediately from this definition that ordinal length of types is always preserved
under conflations, and ultimately, the coarsest possible partitioning is that generated by the
mapping of all types to ?, as is done in the terminal mapping. This partitioning by ordinal
length is, in a sense, the top in the partial order of these generated type conflations. It
follows that members of A will then be conflated if their parameter types are equivalent
under ≈T. Because these sets are all disjoint, conflated sets can simply be united without
conflating any of the blocks within them.

If only blocks are conflated by a relation ≈A, while types remain distinct, it would not
make sense to conflate any blocks unless they have the same interface. Moreover, because
the sets in A are all disjoint, each set in A could be partitioned by an equivalence relation
independently from any other. That is, we would necessarily get a disjoint union of relations
≈A(a, b) for each a, b ∈ Mon(T). We can then see what it means for the two equivalence
relations to be consistent, and that is that we can only conflate blocks if they end up having
the same interface after the types have themselves been conflated.

We can now state a definition for an equivalence relation over monoidal schemes.

Definition 26. Monoidal Scheme Equivalence Relations
Given any monoidal schemes Σ, a monoidal schemes equivalence relation over Σ is defined
as a pair of relations

EΣ
def
= (≈T, ≈A)

where

≈T⊆ EqRel(TΣ)

≈A⊆ EqRel(AΣ
∪)

subject to the constraint

A ≈A B ⇒ τ+/−(A) ≈T τ+/−(B)

The space of these relations is denotes EqRelΣ.

It is clear that this definition gives an equivalence relation over both types and blocks
allowing both to be simultaneously partitioned. Consequently, a quotient monoidal scheme
can be induced along with a partitioning monoidal scheme functor.

Definition 27. Given a monoidal schemes Σ and a monoidal schemes equivalence relation
EΣ over Σ, the quotient monoidal scheme is defined

Σ/EΣ
def
= (TΣ/ ∼=T, AEΣ)

CHAPTER 6. FREE MONOIDAL CATEGORIES 134

where for each p, q ∈ TΣ/ ∼=T

AEΣ(p, q)
def
=

[⋃
x∈p, y∈q

AΣ(x, y)

]
/ ∼=A

The canonical projections 〈−〉T and 〈−〉A map each primitive type and primitive block into
their respective equivalence classes in TΣ/ ∼=T and AEΣ respectively.

In this quotient construction, the set of primitive types of the quotient is just the standard
quotient of the primitive types over the equivalence relation ∼=T, which is just an ordinary
equivalence relation. For the primitive blocks, we must define a set for each pair (p, q) of
words in MonTΣ/ ∼=T. In the definition, the sets in AΣ for every pair (x, y) of words in
Mon(T) are combined together, then repartitioned by ∼=A.

With this definition of quotients over monoidal schemes, it follows that the category of
monoidal schemes has coequalizers, which can be defined in terms of quotients.

Proposition 8. MS has all coequalizers.

Proof. This follows from the fact thatMS has quotients over equivalence relations. Coequal-
izers can be constructed using the above definition of quotients, by the standard method of
constructing an equivalence relation from the images of any two monoidal scheme func-
tors.

Given that both arbitrary coproducts and coequalizers exist over MS, it follows from
Corollary V.2 in [39] that all small colimits exist inMS.

Theorem 8. MS colimits
MS is co-complete.

Proof. It has been proven thatMS has both arbitrary coproducts and coequalizers. Using
the dual of Corollary V.2 [39], it follows thatMS has all small colimits.

Having established that all colimits exists, the co-Adjoint Functor Theorem can then be
applied to the free functor XMonCat(−).

Corollary 4. XMonCat(−) preserves all small colimits.

Proof. This follows immediately from Corollary 2.

The practical relevance of this property is that combinations of monoidal schemes, which
can be structured as colimits, are carried through the free construction. Therefore combin-
ing the free X-monoidal categories can be achieved simply by combining the corresponding
generators in the same fashion. One need only to combine the primitive types and blocks to
get the combinations of languages of diagrams constructed from them.

135

Chapter 7

Ontological Event Graphs

We are now prepared to introduce our proposal for a behavioral representation fitting for the
demands of HDDAs running on a Process Field platforms such as the IoT or the Swarm. This
new representation, called an OEG, will address the particular concerns of composability,
modularity, hierarchy, and comprehensiveness discussed in Chapter 2. It will be argued that
an OEG is capable of denoting, as a mathematically well-constituted object, what happens
when an application is executing on such a platform, consisting of all of the details necessary
to identify the semantics – the precise meaning – of an application. It will also be seen how
OEGs, in contrast with the other kinds of behavioral representations discussed in Chapter 4,
improves upon the shortcomings of these representations for the purposes of this application
domain.

We use the term ontological in the name of this representation to indicate that these
graphs attempt to capture, not a particular perspective of the behavior of a concurrent sys-
tem, such as the account of a sequential observer, discussed in [1] in the context of Mazurkie-
wicz Traces, but instead an underlying, perspectively invariant account of what happened in
the concurrent system. That is, this representation aims at the ontological characterization,
as opposed to the epistemological characterization, of distributed behavior. This is impor-
tant because it can give the semantics of a concurrent process directly, without having to
find it in the intersection of all perspectives. Instead, possible perspectives, epistemological
accounts, may be derived from an OEG, while the OEG itself identifies the ground truth of
the behavior.

Being ontological, in this sense, OEGs constitute a form a of true concurrency, like some
of the other representations we have reviewed, such as Event Structures. However, OEGs are
also modular, composable, and form a simple yet comprehensive algebra that can be used
to reason with them. Having also developed, in Chapters 5 and 6, the tools to work with
monoidal categories and specifically free monoidal categories, we will show that collections of
OEGs form symmetric monoidal categories, and use the result of Joyal and Street in [27] to
show that they are, more specifically, free symmetric monoidal categories. Consequently, the
category theoretical tools for working with free symmetric monoidal categories can be used
to reason about OEGs. In this sense, OEGs are an instance of a monoidal category repre-

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 136

sentation of concurrent behavior in contrast with those instances of generalized sequences, as
we discussed in Chapter 3. Thus, they have the compositional advantages of this approach
absent in generalized sequences such as Event Structures, as we elaborated on in Chapter 4.

In short, as we have described them earlier, an OEG is essentially a kind of ported acyclic
block diagram. Each block in the diagram has a sequence of input ports and a sequence of
output ports, and the connections between blocks run from the output port of one block to
the input port of another – in a manner that does not result in a cycle. What the blocks
represent are behavioral events that occur in the execution of a concurrent process. The
connections then represent an element of information or influence passed between events,
produced as an effect of one and received as a dependency of another. These elements will
be called dependencies .

In order to define a language of OEGs, we will first define the alphabet of this language,
which we will call an OES. It will consist of the primitive event types and dependency
types that will be used to build OEGs. Mathematically, these will turn out to be the
monoidal scheme we defined in Chapter 6. We will discuss these event types and dependency
types both conceptually and formally. In particular, OESs themselves form a category, as
monoidal schemes, and can be related to one another as a means for abstraction, inclusion,
combination, and so forth. We will give some practical examples of such languages that can
be used to build OEGs.

Using the concept of an OES, we will then define OEGs formally, and define algebraic
compositions over them, along with some important families of constant elements. It will be
shown that with these compositions and constants, the OEGs built from a particular OES
form a symmetric monoidal category. Drawing from the work of Joyal and Street in [27],
we will then show that these symmetric monoidal categories of OEGs are more specifically
isomorphic to the free symmetric monoidal categories that we defined in Chapter 6. We
will show that a consequence of this is that any OEG can be constructed as a term in the
language of symmetric monoidal categories constituted only of constants and atomic OEGs,
containing single events.

7.1 An Event Ontology

The ontology for our representation can be built up from two basic concepts: event types
and a dependency types . We will describe these concepts in both intuitive and graphical
terms.

An event type is the atomic element of our representation of behavior. It characterizes
a type of behavioral event in the execution of a concurrent process. An instance of this
type, an event , happens once in the behavior, presumably at some time and in some place
(to some observer, perhaps relativistic), or even some abstract region of both space and
time. An event, in a concurrent system on a platform such as a Process Field, could be, for
instance:

• the reception or sending of a message

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 137

Figure 7.1: A message reception event.

• a change in the state of a component

• an execution of a procedure on a set of data

• a forking or joining of control flow

• an abstraction of a complex collection of events

In an event, there is a transformation that occurs to information and influence involved
in its occurrence. Some data, a state, a message, control, a component, a physical entity,
etc... contribute to a particular event, either as its cause or something it otherwise uses
or depends on. We call these contributing pieces of information generically dependencies ,
and their types dependency types . An event not only depends on these dependencies, but
also produces dependencies as a consequence; as its effect. These dependencies can then
contribute to subsequent events, at later times and potentially in other places.

As an example of an event, let us consider the case of a message being received in a
sequential process. The contributing, or incoming, dependencies are the message itself and
the current state of the system receiving it – in this state it is waiting for the message. The
reception occurs in the event, and as a consequence the single outgoing dependency is the new
state of the system, having received the message. Here we have not specified whether it is a
particular message and specific state of the system, or more abstracted forms of either, and
indeed, both of these are possible. Our events and dependency will be as abstract or concrete
as they need to be for a particular circumstance. We have rendered this event informally in
Figure 7.1, however we will introduce a more refined diagrammatic language for representing
these events that will be later complemented by their mathematical counterparts.

In general, an event type will have an ordered sequence of incoming dependency types
and an ordered sequence of outgoing dependency types. This is depicted in Figure 7.2a
in which an event type A is graphically represented as a block with incoming dependency
types i1, . . . , iN and outgoing dependency types o1, . . . , oM . Order is emphasized here since
we will use the order to identify each of the dependencies of an event type (as opposed to
naming them). The structure of surrounding dependency types of an event type constitutes
its event interface, as is shown in Figure 7.2b with the event interface of A denoted τ(A).

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 138

(a) (b)

Figure 7.2: An event type and an event interface.

To clarify the difference between these two, multiple event types can have the same event
interface. Another way of looking at this is that the event type itself can be thought of as
an event interface further distinguished by additional identifying information.

The event interface can be further broken up into the incoming and outgoing event
interfaces, each of which are sequences of dependency types. The indexed position of each
dependency type around the incoming or outgoing event interface can therefore be referred
to as a dependency port . We will index the dependency ports from left to right. As a matter
of convenience we will sometimes name dependency ports in a pair along with their event
type; (A, k) for the kth incoming or outgoing dependency port of event type A. If we want to
indicate whether it is incoming or outgoing, we will notate the pair with a − or + subscript,
respectively. In this notation, we can say for A in the figure, that dependency port (A, 3)+
has a dependency type o3.

An event instantiates an event type in the context of a behavioral representation, specif-
ically an OEG. For an event, as opposed to its event type, we will overload the same dia-
grammatic notation as that of its event type, since in any given context it should be clear
which of these we are referring to. As a technical matter, the only thing distinguishing two
separate instances of the same event type will be some underlying system of dummy indices
we may use to name them in the mathematical formalism, but it will be never necessary, in
practice to show these diagrammatically. For any given event e, we use the notation C(e)
to refer to its event type.

For a particular event, in an OEG, we will refer to the corresponding dependency ports of
its event type as the dependency sites of the event; they are the cites at which dependencies
will be connected to the event. When constructing OEGs it will be useful to refer to particular
dependency sites, and thus we will extend the notation (e, k)+/− to refer to the k-th incoming
− or outgoing + dependency site for event e.

A couple examples of event types are depicted in Figure 7.3 using this diagrammatic
language. The first example, Figure 7.3a, is the more formal diagrammatic counterpart to
the message reception event types we described earlier. There are two incoming dependency
types to this event type: the current state of the process s, waiting for the message, and the

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 139

(a) (b) (c)

Figure 7.3: Three examples of event types.

message itself m. In other words, the event happening depends on these two things although
they may be thought of very differently. It is also conceivable that the event type depends on
more dependencies, such as blocking constraints, or a timer elapsing, which could be added
to the incoming interface. The event type also has a single outgoing dependency type, which
is the new state s′ of the system subsequent to receiving the message. This state could
be one in which the received message has been put into a particular register in the state
representation, or one in which it has been added to some queue represented in the state.

Both states and the message dependency types for this event type could be either specific
states and a specific message, or more abstract states and messages, depending on how
abstract a representation of behavior is saught given the kind of reasoning one would like
to use with it. In the former case, the event type is a very specific event, which could
be described: “message m is received in state s resulting in a new state s′”. In the more
abstract case, m and s could be symbolic, and the event type representative of a purely
symbolic event, described simply: “a message is received”. One could imagine any number
of intermediate abstractions between the two of these as well. In the figure, we have called
this event type rec(m, s, s′) to most freely cover any of these cases. Note that we might
need to specify s′ to cover nondeterministic cases, where m and s do not totally determine
the event.

The second example, shown in Figure 7.3b, corresponding to the first, represents a mes-
sage being sent. In this case, the event type has only one incoming event type for the current
state s, in which the message m will be subsequently sent. The two outgoing event types
are the new state s′ of the process after the send and the message itself m. This event type
will be called send(m, s, s′).

In the third example, shown in Figure 7.3c, the event represented is the fork of a process
P into two concurrent components PL and PR. The event type has as its only incoming
dependency type the continuation of a process P (perhaps encoded in a process algebra),
and has as its two outgoing dependency types the continuations PL and PR. Like the first
example this kind of an event type could be abstracted in many ways. Here we similarly
denote the event type concretely as fork(P, PL, PR).

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 140

Figure 7.4: An example of an functional event type.

A fourth example, shown in Figure 7.4, the calling of a function f on a set of parameters
that are all evaluated concurrently (as is done sometimes in the execution of functional
programs). The event itself is the application. The leftmost incoming dependency type is the
evaulated function f and the rest xi are its evaluated parameters. The outgoing dependency
type is the result r. We can denote this concretely as app(f, x0, . . . , xN , r). While this
codification of application is stateless, as in the case of λ-calculus, if we wished to encode
the semantics of a language similar to LISP that applies with respect to an environment,
this dependency could be concatenated to the incoming and outgoing dependency type.

It could be said that amongst these examples, with the exception of the completely
symbolic version of the first, none are of a specific event type, but more precisely of parametric
families of event types. rec(m, s, s′) depends on its three parameters, and thus the space
of all such event types might be generated from an even more basic set of primitive values.
However, we presuppose such a process since this construction will generally be different for
different kinds of event types.

In OEGs, events, which are instances of event types, are connected with dependencies,
which, likewise, are instances of dependency types. These individual dependencies will be
depicted as channels that connect to an outgoing dependency site on one end and an incoming
dependency site on the other. In this manner, a block diagram is constructed of events and
dependencies. In Figure 7.5 such a diagram is depicted. More than just characterizing the
ordering of events, the OEG shows very explicitly the flow of information and influence
between events in the behavior. In this flow of dependencies, it is also explicit what role
each dependency plays in an event, because of the way that dependencies are connected to,
not just the event, but specific dependency sites on the event. To be concrete, if one of these
events was the reception of a message, one could tell from only the OEG itself which event
the message came from, rather than having to interrogate the originating application that
may have produced the behavior represented by it.

As can be seen in this figure, there are also dependency sites that are not attached to
events, but instead form incoming or outgoing dependency sites of the whole OEG. In our
notation for dependency sites, these are identified by replacing the event identifier with
a ?, i.e. (?, 2)− for the second incoming dependency site from the left. This concept is

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 141

Figure 7.5: An example of an OEG.

illustrated in Figure 7.5 by the two bounding fixtures marked with a ?. Using these ?-
dependency sites, the whole diagram is given a bounding event interface, and it can be made
clear and explicit how preceding or following behaviors can influence or be influenced by the
behavior represented in the diagram. On the right of the example OEG, we even illustrate
the possibility of a dependency that runs from the incoming dependency site to an outgoing
dependency site of the whole graph. This indicates a dependency that runs through the
behavior, without interacting in any of its events. Although this may seem less interesting
for the meaning of a specific OEG, it is included, in part, for formal completeness, and can
even be used to make a non-trivial assertion about an OEG.

7.2 Ontological Event Schemes

A collection of dependency types and event types for a particular language of OEGs can
be aggregated into a structure called an OES. Formally, this structure is captured by the
monoidal scheme we have defined in Chapter 6. Here we provide this mathematical structure
with a concrete interpretation in our event ontology.

Definition 28. Ontological Event Scheme (OES)
An OES Σ is a monoidal scheme (T, A), where T is a set of dependency types, and A is a

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 142

function

A : Mon(T)×Mon(T)→ Set

mapping pairs a, b ∈ Mon(T) of words of dependency types into disjoint sets A(a, b) of
event types.

This OES serves as an underlying language for OEGs defined in a particular context.
What we called primitive blocks suggestively in Chapter 6 are here event types, and primitive
types are dependency types.

An OES give a structure to the constituting events and dependencies of an OEGs that
will govern the way it can be composed, and thus the OES can be seen as a vastly more
powerful analog to an alphabet of actions often used label events in other representations of
concurrent behavior. In comparison to these other representations, such as the ones we have
discussed, the constraints embedded in OESs are fine grained and sophisticated, imposed
by the typing T that will determine the connection between events. Whereas actions, by
themselves, can only classify events, these event types can be used to determine how events
can follow one another.

To make a specific comparison, the Reliance Alphabet[1] of Mazurkiewicz Traces contrasts
with an OESs providing only a fixed set of relational constraints between its primitive events.
This only determines whether events can, and must, follow one another or remain concurrent,
not specifically how they can influence each other. More, the relation of Mazurkiewicz Trace
must be imposed uniformly for every instance of an event with respect to all other events.
This makes Reliance Alphabet far less flexible. It should be noted that while the elements
of an OES impose constraints upon composition, unlike a Reliance Alphabet, they do not
determine it, referring to the problem addressed earlier in Section 4.2 on Mazurkiewicz
Traces. In Figure 4.1, we showed an example of two concurrent processes that, although
different, look the same to sequential observers, and therefore cannot be distinguished using
a Reliance Alphabet. One can see now that both of these diagrams are easily realized using
an OES.

What follows from defining an OES as a monoidal scheme is that all of the mathematical
structure developed around monoidal schemes in Chapter 6 can be carried over to OESs.
Most significantly, OESs form a category MS; therefore, in this context we can say that
MS is, indeed, the category of OESs. A substantial benefit to having OESs in the form of
the categoryMS is that the morphisms of this category provide a space of transformations
between different OESs and a definition of composition under which this space is closed. We
will discuss this further after presenting some examples.

The following additional structures and concepts can be defined for this formalism making
many of the components of the event ontology that we have already defined informally more
explicit.

Definition 29.
For each OES Σ = (T, A), the following are defined.

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 143

• An event interface is a pair (a, b) ∈ I, where the set of event interfaces for Σ is defined

I def
= Mon(T)×Mon(T)

The first and second component will be called the incoming and outgoing components,
and will be indexed for any x ∈ I by the notation x− and x+, respectively.

• The entire set of event types in the OES is defined

A∪
def
=
⋃
x∈I

A(x)

• The function τ is defined

τ : A∪ → I

τ(A ∈ A(x)) def
= x

which is well-defined, since A(x) are all disjoint.

• Incoming and outgoing dependency ports are defined as pairs (A, n) ∈ P+/−, where the
sets of incoming dependency ports P− and outgoing dependency ports P+ are defined

P+/−
def
= {(A, n) ∈ A× N | n ∈

∣∣τ+/−(A)
∣∣}

The combined set of all dependency ports is defined

P
def
= P− qP+

where (1, (A, n)) and (2, (A, n)) are notated (A, n, −) and (A, n, +), respectively.

• The functions κ+/− are defined

κ+/− : P+/− → T

κ+/−(A, n)
def
=
[
τ+/−(A)

]
n

along with

κ : P→ T

κ(A, n, p)
def
= [τp(A)]n

One might notice that the information involved in grouping all of the event types by inter-
face into the A sets could be reconstructed from A∪ and τ , and indeed there is an equivalent
definition of an OES of this form that may be useful in many practical circumstances.

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 144

Proposition 9. An OES (T, A) can be defined uniquely by the triple (T, A∪, τ), where A
is a set and τ has the type

τ : A∪ →Mon(T)×Mon(T)

In this definition, A is defined

A(a, b) def
= {A ∈ A∪ | τ(A) = (a, b)}

Proof. Firstly, the definition of A from τ and A∪ is the set inverse of τ , hence all sets A(a, b)
are disjoint, thus this definition is of a well-defined OES. Using the above definitions for A∪
and τ in terms of A, the two transformations

a : (A∪, τ)→ A
b : A → (A∪, τ)

can be shown to be inverses. First, a ◦ b is

(a ◦ b)(A)(x) = {A ∈
⋃
x∈I

| A ∈ A(x)} = A(x)

since τ(A) = x whenever A ∈ A(x). Then the other direction, b ◦ a is for the A∪ component

[(b ◦ a)(A∪, T)]1 =
⋃
x∈I

{A ∈ A∪ | T(A) = x} = A∪

since I is the entire codomain of τ . For the τ component,

[(b ◦ a)(A∪, T)]2(A) = x if A ∈ {A ∈ A∪ | T(A) = x} = x if T(A) = x = T(A)

Therefore the definitions are isomorphic.

Example: Sequential Processes with Message Passing

As an example, we will define in formal detail an OES for representing the behavior of
sequential processes that communicate through rendezvous message passing (a simple and
pervasive paradigm of concurrency). This example will elaborate on the send and rec event
types defined earlier, completing the set of parametric event types. We will start with a
simple model of the individual sequential systems.

Let the states of any of the processes form a set of states S and the messages passed
form a set M . Let there also be a set P of sequential procedures that modify the state. The
semantics for each kind of operation in the sequential process then can be defined in terms
of transformations over states. We assume the existence of three functions

proc : P → S → S

send : S → S ×M
rec : M → S → S

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 145

Figure 7.6: An OES for sequential processes with message passing.

And thus the model of each process is the collection of these three sets and three functions.
To make this more clear, one might imagine the kind of program that gives rise to the

above semantics, particularly since it is more intuitive sometimes to give the semantics as
a semantics for something. These sequential processes can be though of as a sequence of
instructions executing on a processor, where S is the state of the processor. The two special
instructions that send and receive are distinguished, whereas every subsequence of any other
instructions can be aggregated into procedures in P . The histories of processes are then
sequences of procedures, sends, and receives, which are then transformed into functions over
states via the semantics.

We then use this model to define our dependency types and event types, forming a OES
ΣMP. The dependency types TΣMP is defined

TΣMP
def
= S ∪M

meaning that each specific state and each specific message is its own dependency type,
rather than the sets themselves, which serve, in contrast, to define the types of the semantic
functions. This is a key distinction which might cause confusion if not explicitly emphasized.
The event types can then be generated from model. Three families of event types are defined
parameterized by the three sets S, M , and P . These generate AΣMP

∪ from the following
derivations.

p ∈ P s ∈ S
proc(p, s) ∈ AΣMP

∪

m ∈M s ∈ S
rec(m, s) ∈ AΣMP

∪

m ∈M s ∈ S
send(m, s) ∈ AΣMP

∪

These three families of event types are depicted graphically in Figure 7.6
We then define the function τΣMP as follows

τΣMP(proc(p, s)) = (s, proc(p)(s))

τΣMP(rec(m, s)) = (s, receive(s, m) ⊗ m)

τΣMP(send(m, s)) = (s ⊗ m, send(s, m))

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 146

Here, in all three cases, the outgoing state dependency type does not have to be specified
explicitly in the event type, since it is given deterministically by the corresponding semantic
functions. The tuple (TΣMP , AΣMP

∪ , τΣMP) defines the OES ΣMP.
Using ΣMP, some example graphs can be constructed by instantiating the event types as

events and connecting these together with dependencies. Although we have not yet formally
presented the definition of an OEG, enough has been described to understand the examples
intuitively.

Figure 7.7 depicts the graph of a three-way handshake, like that of the TCP protocol.
This protocol involves two processes, a client and a server. The client, in state s0, ready to
form a connection with a server in state r0, sends message mSYN to the server. The server
receives this message and sends a message mSYNACK, in return, back to the client. After
receiving the mSYNACK message, the client sends an mACK message back to the server. The
server receives this message. Between each message sending or receiving event, there is a
proc event that accounts for the sequential steps performed between these message related
events. This protocol leaves both the client and the server in connected states s6 and r6,
respectively.

This is a simple example, but a lot can be said about it to illustrate how an OES can be
used to form OEGs. An important structural detail is that the OEG represents a behavior
that might be a fragment of a longer behavior. In contrast, some of the other representation
of behavior such as Actor Event Diagrams and Event Structures do not have a clear means of
representing a fragment that fits into a larger behavior. While Mazurkiewicz Traces do have
a notion of composition, and thus a means to incorporate a fragment into a larger behavior,
there is no means to impose a compositional constraint on a Mazurkiewicz Trace.

On the boundary of the example OEG, the compositional constraint is clear. The pre-
condition for this behavior is a pair of state dependencies with the dependency types s0 and
r0, the states of the client and the server. The postcondition dependency types, similarly,
are a pair of states s6 and r5, for a client and server. This gives us a well defined notion
of what kind of concurrent behavior can prepare a system to go through this protocol and
what kinds of behaviors can follow it. This is depicted in Figure 7.8a.

More specifically, what can be seen from this example is that the two sequences of de-
pendency types on the boundary of the OEG constitute, in essence, an event interface. In
fact, the whole OEG could be transformed into an event type, as is shown in Figure 7.8b.
Instances of it could be created and assembled into another OEG. This hierarchical property
will be discussed later in terms of the adjoint functors used in the construction of the spaces
of OEGs.

One simple characteristic worth noting is that the message passing dependencies along
the right side cross the state dependencies. This is because it is important to preserve the
ordering of the dependency ports, since this ordering has meaning. Strictly speaking, if the
dependency ports were swapped, the event type would be different, having a different inter-
faces. While it might superficially seem reasonable to loosen this constraint, this canonical
ordering of the dependency ports will be used to keep the composition operations on OEGs
simple. On the other hand, as a matter of simplicity, various shorthands and mathematical

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 147

Figure 7.7: OEG for a three-way handshake protocol.

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 148

(a) A three-way handshake composed with
other OEGs

(b) A three-way handshake abstracted hier-
archically

Figure 7.8: Hierarchical abstraction of a three-way handshake.

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 149

macros could be explicitly introduced in a straightforward way.
Another notable characteristic one could point out about this example is looks like an

Activation Diagram (AD), and has two clear columns of events that represent the client and
server process. These are suggested by the two gray boxes in Figure 7.7, labeled P1 and P2.
One can see the two chains of state dependencies running along both columns. However,
there is no primitive concept of a process in the event ontology of OEGs; P1 and P2 do not
illustrate a primitive feature of the representation. This is an asset to the representation
because it is flexible enough to represent the same semantic notion of behavior on different
platforms. In dynamic platforms like the IoT, the same behavior might be realized different
ways through the dynamic creation of new concrete process and through code mobility.

Consider in Figures 7.9 and 7.10 two alternative renderings of the same OEGs, with
the exact same topology as that of Figure 7.7. While the original presentation suggested
two processes, the alternative in Figure 7.9 suggests three, shown by the dotted lines. If
we were to define some abstract topological sense of a process in the OEG, in might be a
column of events, but of course, this is not a topologically invariant notion, as is clear from
the differences between the presentations show. Another definition of a process might be
a dependency path through the OEG that goes from an incoming graph dependency site
to an outgoing graph dependency site, which is a topological property. This might seem
like a reasonable definition for ΣMP, where there are no events to create or join processes.
However, in cases where these operations are possible, this definition would exclude child
processes. Moreover, it is an ambiguous notion since different overlapping paths could be
taken between dependency sites.

A definition could be more explicit with regards to dependency type, and the ontology
of the system being modeled, and specify that a process is a path of dependencies that are
“states” in some sense specific to the OEG. On the other hand, in platforms where code
mobility and dynamic creation of processes are pervasive, let alone possible, the distinction
between a “state” continued on one process and a “message” passed between processes can
break down, no longer reflecting a fundamental dimension of the semantics of applications.

Consider the MoC introduced in ECMAScript interpreting runtime environments such
as web browsers and NodeJS [24]. Procedures in these environments are often broken up
into small atomic fragments, referred to colloquially as callbacks. These atomic fragments
are processed in an event queue. When a fragment is dequeued and executed it can pass the
continuation of its control asynchronously to another fragment that is deferred and ultimately
placed in the event queue under a condition that may not be itself synchronous. A blocking
read event, like that represented by rec, might concretely mean in a traditional multithreaded
environment that a thread is suspended until the read occurs, then subsequently continued
with the received message. In contrast, in a ECMAScript environment, a blocking read is
often a function called with the continuation of control passed as a parameter. In this
case, a rec event might concretely mean that when the call is made prior to the read
event the incoming state dependency for the read is not simply the next operation in a
thread, but rather more like a message sent to another process; in this case, the event
queue. Therefore, the notion that paths of states are “processes” and other dependencies

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 150

Figure 7.9: An alternate rendering of the OEG for a three-way handshake protocol.

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 151

Figure 7.10: Another alternate rendering of the OEG for a three-way handshake protocol.

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 152

are “between processes” breaks down.
Allowing this distinction between states (or continuations) and messages to break down,

the interpretation of the two alternative renderings of the OEG, particularly the rendering
in Figure 7.10. In this rendering, the messages originally passed between “processes” are
illustrated as though they are stationary, acting as the state in P1. In contrast, the processing
events subsequent to sends in this rendering appear deferred to a separate process. Again,
this is just to illustrate the lack of this distinction in the OEG itself.

None of this is to say that any these notions we have discussed of a process within an
OEG are not useful in some contexts. When mapping an application to a concrete system,
the events of an OEG can be partitioned into processes in a manner similar to the scheduling
of Acyclic Precedence Graphs (APGs), or other kinds of Task Graphs , found in DF Models of
Concurrent Computation (MoCCs). The three variations of the same OEG in Figure 7.7, 7.9,
and 7.10 can be interpreted as different schedulings of the same concurrent behavior. Some
further comments will be made about this in the final comments in Chapter 9.

One could see easily how to extend ΣMP in various ways to accommodate more kinds of
event types that might occur in this kind of a system. Process initializations, forks, joins,
and the like, could all be added to the OES using the same definitional procedures we have
used. This OES could also be abstracted in many ways from the very concrete form we have
defined it in.

For the purposes of many analyses, such as scheduling, which specific message and states
may be immaterial, and thus a far more abstract OES ΣAMP could be used in which the set
of dependency types is defined

TΣAMP
def
= {M, S}

containing only one abstract message M and one abstract state S. The corresponding set of
event types would then consist of three abstract events

AΣAMP
∪

def
= {proc, send, rec}

The typing function τΣAMP can then be defined

τΣAMP(proc) = (S, S)

τΣAMP(send) = (S, S ⊗ M)

τΣAMP(rec) = (S ⊗ M, S)

The OEG in Figure 7.7 could have just as well been assembled from ΣAMP. One arrives at
this abstracted OEG by simply forgetting certain details about the typing along with the
parameters of the event type. Given ΣAMP is less constrained one could imagine a greater
breadth of compositions arising from it, however it can be seen that this abstraction does
not open the door for any topologies of connections that were not possible in ΣMP.

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 153

If one wanted to fully erase the typing distinctions from ΣMP, and ΣAMP, one could
define a purely structural OES, ΣMP−Str. This OES would have a single type (untyped)

TΣMP−Str
def
= {?}

and have three structural event types, defined

AΣMP−Str
∪

def
= {proc, send, rec}

where the notation for each simply indicates the number of incoming and outgoing depen-
dency ports. The typing function would be

τΣMP−Str(1→ 1) = (?, ?)

τΣMP−Str(1→ 2) = (?, ? ⊗ ?)

τΣMP−Str(2→ 1) = (? ⊗ ?, ?)

Since a free monoid over a unit set {?} is isomorphic to the monoid of N with addition, we
could notate the incoming and outgoing event interfaces with natural numbers, hence the
notation for the event type. In this last case of ΣMP−Str, there are some graph topologies that
can be constructed that cannot occur in ΣMP or ΣAMP. From the perspective of Chapter 6,
this last OES TΣMP−Str is a sub-OES of the terminal element inMS, termMS .

The Category of OESs

The most fundamental consequence of an OES being defined as an monoidal scheme is that
the morphisms of the category MS provide a clear notion of a mapping between OESs.
We will call these morphism Ontological Event Scheme Morphisms (OESMs) in the context
of OESs. As morphisms in MS, OESMs have the compositions and identities defined for
monoidal schemes. In general, we can carry over all of the features ofMS into OESs, giving
them an interpretation in the event ontology.

An OESM F : Σ → Σ′ is a mapping between two OESs, defined by a mapping FT
between the dependency types and a mapping FA for each set of event types in Σ into a
set of event types in Σ′. As is the case with most homomorphisms, both at the level of
the dependency types and the event types, an OESM can either conflate these components,
abstracting them, and/or immerse them in a larger space. Given that each OES represents
the basic event types and dependency types of an application space, a OESM could immerse
one such basic language of these elements into a larger one, extending the possible event
types and dependency types possible. For instance, our ΣMP could be included into a larger
OES that contains additional event types such as process forking, joining, and termination.
This extended version of ΣMP is depicted in Figure 7.11 in which three additional families
of events, fork, join, and term are included. These additional families of events have event
interfaces with dependency types in S.

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 154

Figure 7.11: An extended version of the OES for processes with message passing.

While this kind of OESM is fairly simple and obvious, a perhaps more powerful use of
OESMs is to express abstractions of OESs. Consider the two abstractions of ΣMP we gave
above. An OESM αMP : ΣMP → ΣAMP can define this abstraction as follows.

[αMP]T(s ∈ S)
def
= S

[αMP]T(m ∈M)
def
= M

[αMP]A(proc(p, s))
def
= proc

[αMP]A(rec(m, s))
def
= rec

[αMP]A(send(m, s))
def
= send

Likewise, an OESM can be defined mapping ΣAMP into ΣMP−Str. But this OESM is simply
the structural monoidal scheme functor strMS(ΣAMP) from Chapter 6. These abstracting
OESMs are important for reasoning about applications with OEGs because they provide a
mechanism to develop an abstract interpretation of OEGs. Later we will see how OESMs
are lifted to act on whole OEGs.

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 155

As was pointed out about monoidal scheme functors, an important property of OESM is
that its mapping of event types preserves the valence of the interface. Although the depen-
dency types my change, the number of incoming and outgoing dependency types remains
the same. In principle, the coarsest possible abstraction of an OES is represented by the
terminal element termMS , which contains a collection of purely topological event types, one
for each number of incoming and outgoing dependencies. OEGs built from termMS are only
shapes of executions, which is nearly, but not quite the underlying space of a generalized
sequence, a graph or partial order. What additionally must be forgotten is the ordering of
the incoming and outgoing dependencies along with the incoming and outgoing dependencies
of the whole OEG.

Given that we showed in Chapter 6 thatMS is further a co-complete category, arbitrary
small colimits can be taken of OESs. Although this covers quite a large territory, the most
straightforward of these colimits are simple combinations of OESs. The extended ΣMP,
depicted in Figure 7.11 could have been constructed by taking the coproduct of ΣMP with
an OES consisting of only the three additional elements. In addition to coproducts, which
are disjoint, overlapping products of OESs can be taken by combining coproducts with
equivalence classes.

7.3 The Formalism of Ontological Event Graphs

Having established the formal basis for OESs, and showing intuitively how one can construct
OEGs from them, we can now give a sensible formal definition for an OEG constructed from
the event types and dependency types in an OES. This definition will be given in the form
of a directed acyclic graph in which the incoming and outgoing edges for each vertex will be
ordered. In this graph the events will be represented by the vertices and the dependencies
will be represented by the directed edges. There will also be edges with one or both edges
not connected to a vertex, but rather ordered as incoming or outgoing for the graph as a
whole (as we have discussed earlier). Consequently, this will be significantly more than just a
labeled graph, akin to those underlying or constituting generalized sequences such as Event
Structures, pomsets, or Actor Event Diagram. Having been given all of these enrichments,
this kind of graph can be identified precisely as the anchored progressive polarized oriented
graph discussed in [27], specifically in the section on free symmetric monoidal categories.

In this graph, each events will be labeled with an event types from an OESs. More than
just labeling the events, in the sense that a generalized sequence is labeled, more, each event
will be given an event interface, constraining the kinds of events that can connect with it via
dependency, and even how they can be connected. In essence, this will amount to a formal
graph-theoretic treatment of the acyclic ported block diagrams that informally describe
OEGs. The advantage of this very particular set of features was indeed first established by
Joyal and Street in [27] after being known informally for a while before. The finite form of
this specific kind of graph was shown by Joyal and Street to be isomorphic to free symmetric
monoidal categories.

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 156

A consideration that will play into the formal treatment of compositions over OEGs is that
the set of events that will be used in defining a concrete representation of an OEGs (one that
can be written down, where the events are given names) will only be significant geometrically.
The names or identifiers given to specific events are only “dummy indices.” Any renaming of
the events along with a corresponding renaming in the structure, constituting an isomorphism
between concrete OEGs, should be the same essential OEG. We will therefore define first a
concrete-OEG, then define an isomorphism formally for this structure. Finally, we will take
the quotient over the space of these concrete-OEGs to get our actual, geometrical OEGs.
In most contexts, this whole affair might be elided, but this distinction will turn out to be
important later in establishing the right kind of equivalences over these structures.

Definition 30. concrete-Ontological Event Graph (OEG)
For an OES Σ = (T, A), a concrete-OEG over Σ, G′, is a tuple

G′ def
= (E, C, I, γ)Σ

with the typing

E : FinSet

C : E → A
I : IΣ

γ : c+ × c− → 2

where

• E is a finite set of events.

• C is a function giving the event types for each event.

• I is the event interface of the OEG.

• γ, which we call the network of the OEG, is a total bijective acyclic binary relation
between incoming and outgoing dependency sites, c+/−. The dependency sites are either
the internal dependency ports of a specific event instance, defined

c◦+/−
def
= {(e, n) ∈ E × N | (C(e), n) ∈ P+/−}

or a boundary dependency port referring to the event interface of the whole graph,
defined

c∂+/−
def
= {(?, n) ∈F× N | n ∈

∣∣I−/+

∣∣}
The complete sets of incoming and outgoing dependency sites c+/− are defined

c+/−
def
= c◦+/− ∪ c∂+/−

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 157

and the combined sets of dependency sites c are defined

c◦
def
= c◦+ q c◦−

c∂
def
= c∂+ q c∂−

c
def
= c+ q c−

The definitions of κ+/− and κ are extended to include dependency sites

κ+/−(e, n)
def
= κ+/−(C(e), n)

κ(e, n, p)
def
= κ(C(e), n, p)

under the constraint that

∀ (p, q) : c+ × c− · γ(p, q) ⇒ κ−(p) = κ+(q) (7.1)

In some respects, this definition resembles a labeled graph, which is no doubt abundantly
familiar to many computer scientists. However, it differs in a couple important respects.
The relation γ, rather than just connecting the events in E themselves, instead connects
the dependency sites around each event. As we mentioned earlier in our presentation of
the event ontology, these dependency sites are identified with a pair (e, n) consisting of the
event e with a port index n; whether it is an incoming or outgoing dependency site is often
determined by context, but can be expressed explicitly as (e, n)− or (e, n)+, respectively.
In order to give an exact domain to γ we define the complete set of incoming and outgoing
dependency sites for the OEG to be c◦− and c◦+ respectively.

This structure also has an important feature that accounts for its composability, an
event interface I that determines a sequence of incoming and outgoing dependencies for the
whole OEG. The event interface consists of a collection of boundary dependency sites that
are indexed by pairs of the form (?, n), where n is the index of the incoming or outgoing
dependency port of the event interface. The collection of these incoming and outgoing
boundary dependency sites are defined as c∂− and c∂+, respectively. The collections of all
dependency sites, the internal ones around each event along with the boundary dependency
sites, are defined to be the sets c− and c+.

For example, in the handshake example in Figure 7.7 the event interfaces for the graph
is

Ihandshake = (s0 ⊗ r0, s6 ⊗ r6)

The incoming dependency sites for the graph are therefore (?, 0) and (?, 1), κ−(?, 0) = s0,
and so forth. Translating the illustrated graph into the above concrete formalism completely
is straightforward and would involve choosing arbitrary identifiers to build the corresponding
concrete set of events E.

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 158

With the complete set of incoming dependency sites c− and outgoing dependency sites
c+ of an OEG, the network γ of the OEG can be defined as a bijection from the outgoing
dependency sites to the incoming dependency sites. In other words, each dependency site
must be connected to one and only one other of the opposite polarity, either around another
event or in the event interface of the OEG. More, the single axiom 7.1 further constrains γ
such that each pair of connected incoming and outgoing dependency sites must share the
same dependency type, as determined by the corresponding event interfaces. In essence, γ
must “type check”. This property is clearly witnessed in Figure 7.7.

An equivalence ∼=OEG can now be defined between concrete-OEGs.

Definition 31. For any G′ and H ′, both concrete-OEGs of the same OES Σ, let the equiv-
alence of concrete-OEGs be defined G′ ∼=OEG H ′ iff there exists a bijection

h : EG′ → EH′

for which the following hold

CG′
= CH′ ◦ h

IG′
= IH′

γG
′
((e1, n), (e2, m)) ⇔ γH

′
((h?(e1), n), (h?(e2), m))

where h? = h + {? 7→ ?} and the last two equivalences quantify over elements in the corre-
sponding dependency sites.

This definition corresponds precisely to the intuition of simply changing the names of
events, while changing the other structures correspondingly to accommodate this change.

We can now define some relevant additional structures.

Definition 32. Let the following be defined:

• Let OEGconcrete
Σ be the set of all concrete-OEGs over an OES Σ.

• Let OEGΣ be defined

OEGΣ def
= OEGconcrete

Σ/ ∼=OEG

• Let an OEG over an OES Σ be a member of OEGΣ.

• For any OEG G ∈ OEGΣ, let G′ ∈ G be a concrete representation of G in OEGconcrete
Σ.

• For any OES Σ and an event interface I, let the set of OEGs over OES with I as its
event interface be notated OEGΣ(I) (or OEGΣ(I−, I+)). Let the corresponding sets
be defined for concrete-OEGs as OEGconcrete

Σ(I) (and OEGconcrete
Σ(I−, I+)).

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 159

In the last item, the collections OEGΣ(I) aggregated by their event interface are analo-
gous to the corresponding collections A(I) of event types in an OES. Given that each space
OEGΣ is a quotient over ∼=OEG-isomorphic concrete-OEGs, there is a canonical projection

〈−〉 : OEGconcrete
Σ → OEGΣ

such that 〈G′〉 is the OEG associated with the concrete G′.
Returning to the message passing example again, we formulated the OES ΣMP, which we

used to construct the handshake example. Thus using the above notations we would state
that handshake ∈ OEGconcrete

Σ(s0 ⊗ r0, s6 ⊗ r6), which determines how this OEG can be
composed with behaviors leading into it or following it. Although we have discussed this
earlier, in this section we will see how this constraint on composition manifests formally.

Composition of OEGs

We now have a means to take an OES and build OEGs directly by defining the events and
the network of their connections. However, we would like to also be able to build up OEGs
from other OEGs using composition operations, so that they can be assembled in a modular
fashion. Two of the most important desiderata of our representation are indeed that it is
modular and compositional. In order to define these compositions, and an accompanying
set of important primitive OEGs, we will first define some interstitial operators that will be
used in the definitions, as well as to simplify the process of reasoning about the validity and
properties of these composition operators. Most of these operators will specifically be used
for handling the network γ components of concrete-OEGs.

More than just the presentation of a series of useful constructions, the formidable tech-
nical task that must be initiated in this section is to close the gap between the concrete
and abstract presentations of OEGs, so that the former can be left in the background and
handled transparently when needed. Even more formidable will be demonstrating that these
operators fulfill a set of axioms over OEGs that establish collections of OEGs as forming
symmetric monoidal categories. As a matter of fact, the latter task depends on the former,
because many of the details in the gap between concrete and abstract OEGs would prevent
them from forming a strict symmetric monoidal category representation, forcing us to instead
use a non-strict one, where some equivalences are reduced to natural isomorphisms. If the
latter sounds more expedient, the prices paid would be in these details inevitably emerging
somewhere else in the formalism, particularly in the establishment of naturality conditions
on the isomorphisms.

When presenting each operator or constant, we will briefly discuss its ontological role
in modeling behavior. We will then show that with these operators and constants, sets of
OEGs form symmetric monoidal categories.

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 160

Network Operators and Other Ancillary Structures

The following operators will be defined to work on predicates like that of γ in a concrete
OEG. It will be assumed that, although γ is constrained in its domain to only the dependency
sites in a particular OEG, any γ can be implicitly extended to a larger domain upon which
its value on all other inputs are false. More specifically, we will implicitly immerse these
predicates on dependency sites into a space in which the indices of dependency ports can
vary over integers. In practice this will make the reasoning easier.1 As opposed to the
networks that are specifically part of OEGs, immersing these networks into a larger space
will mean that the members of this space will no longer necessarily be total (they certainly
will not if they are finite), but these networks will nevertheless remain bijective.

Definition 33. Network Operations
Let γ and φ be bijective (partial) relations, networks, of the type

γ, φ, . . . : ((E +F)× Z)× ((E +F)× Z)→ 2

The following operations will be defined over these networks.

• Given any injective function i : E → D for some set D, let the following be defined

L[i](γ)((e1, n), (e2, m))
def
=

∃ f1, f2 · e1 = i?(f1) ∧ e2 = i?(f2) ∧ γ((f1, n), (f2, m))

which lifts γ into a larger space, potentially unconstrained by a set of clear dependency
sites.

• For any number a ∈ Ords, let the following be defined

(x, n) ↑ a def
=

{
x = ? (?, n− a)
(x, n) otherwise

This operator shifts a boundary dependency site back by a and leaves internal depen-
dency sites unchanged.

• For any pair of numbers a, b ∈ Ords, let the following be defined

γ ↑ (a, b)(x, y) def
= γ(x ↑ a, y ↑ a)

which applies a shift from the pair to the incoming and outgoing dependency sites.

1On the other hand, if one wanted to be even more precise about this, and important step would be
ensuring the support of network matches the interface. This detail is one we will generally be left as implicit
here.

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 161

• Let the following be defined

δ−(p, (e, m))
def
= e 6= ? ∇+(p, (e, m))

def
= e = ?

δ+((e, n), q)
def
= e 6= ? ∇−((e, n), q)

def
= e = ?

[γ]+/−
def
= γ ∧ δ+/− LγM+/−

def
= γ ∧ ∇+/−

[γ]◦
def
= γ ∧ δ− ∧ δ+ LγM‖

def
= γ ∧ ∇− ∧ ∇+

• Let the following be defined

(γ _ φ)(p, q)
def
= ∃ k : Z · γ(p, (?, k)) ∧ φ((?, k), q)

which constructs a relation connecting the outgoing dependency sites of γ with the
incoming ones of φ, in order. In general, this operation assumes a common domain,
hence the two relations will often have to be lifted with the L− operator into the
appropriately common domain.

• For any N ∈ N, let the following family of networks be defined

γN((e1, n1), (e2, n2))
def
= n1 = n2 ∧ e1 = e2 = ? ∧ 0 ≤ n1 < N

• For any N, M ∈ N, let the following family of networks be defined

γ(N,M) def
= γN ↑ (0, M) ∨ γM ↑ (N, 0)

These operators have a number of properties that will server greatly to simplify proofs
in which they are involved.

Proposition 10.
The following hold given a set of relations

γ, φ, . . . : ((E +F)× Z)× ((E +F)× Z)→ 2

1.

L[i](γ ∨ φ) = L[i](γ) ∨ L[i](φ)
L[i](γ ∧ φ) = L[i](γ) ∧ L[i](φ)

2.

L[j](L[i](γ)) = L[j ◦ i](γ)

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 162

3.

γ ↑ (a, b) ↑ (c, d) = γ ↑ (a+ c, b+ d)

4.

L[i](γ) ↑ x = L[i](γ ↑ x)

5.

[[γ]+/−]+/−
= [γ]+/−

[γ]◦ = [[γ]+]− = [[γ]−]+
[γ]◦ = [[γ]+/−]◦ = [[γ]◦]+/−

LLγM+/−M
+/−

= LγM+/−

LγM‖ = LLγM+M− = LLγM−M
+

LγM‖ = LLγM+/−M
‖
= LLγM‖M+/−

[LγM+/−]+/−
= L[γ]+/−M

+/−

[LγM−/+]+/−
= L[γ]−/+M

+/−
= false

6.

[γ ∧ φ]+/− = [γ]+/− ∧ [φ]+/−

[γ ∨ φ]+/− = [γ]+/− ∨ [φ]+/−

Lγ ∧ φM+/− = LγM+/− ∧ LφM+/−

Lγ ∨ φM+/− = LγM+/− ∨ LφM+/−

LγM+/− ∨ [γ]−/+ = γ

LγM+/− ∧ [φ]−/+ = false

LγM+/− ∧ [φ]+/− = L[γ ∧ φ]+/−M
+/−

= [Lγ ∧ φM+/−]+/−

7.

[L[i](γ)]+/− = L[i]([γ]+/−)

LL[i](γ)M+/− = L[i](LγM+/−)

8.

(γ _ φ)_ ψ = γ _ (φ _ ψ)

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 163

9.

L[i](γ _ φ) = L[i](γ)_ L[i](φ)

10.

[γ _ φ]+ = [γ]+ _ φ

[γ _ φ]− = γ _ [φ]−
γ _ [φ]+ = false

[γ]− _ φ = false

Lγ _ φM+ = γ _ LφM+
Lγ _ φM− = LγM− _ φ

Lγ _ φM‖ = LγM− _ LφM+
LγM+ _ φ = γ _ φ = γ _ LφM−

11.

(γ ∨ ψ)_ φ = (γ _ φ) ∨ (ψ _ φ)

γ _ (φ ∨ ψ) = (γ _ φ) ∨ (γ _ ψ)

12.

γ(N,M) _ γ(M,N) = γN+M

[γN]+/− = false

[γ(N,M)]+/− = false

Proof.

1. Expanding the definition for the LHS of the first identity the RHS comes directly from
logic identities

L[i](γ ∨ φ)((e1, n), (e2, m))

⇔ ∃ f1, f2 · e1 = i?(f1) ∧ e2 = i?(f2)

∧ (γ((f1, n), (f2, m)) ∨ φ((f1, n), (f2, m)))

⇔ ∃ f1, f2 · (e1 = i?(f1) ∧ e2 = i?(f2) ∧ γ((f1, n), (f2, m)))

∨ (e1 = i?(f1) ∧ e2 = i?(f2) ∧ φ((f1, n), (f2, m)))

⇔ ∃ f1, f2 · (e1 = i?(f1) ∧ e2 = i?(f2) ∧ γ((f1, n), (f2, m)))

∨ ∃ f1, f2 · (e1 = i?(f1) ∧ e2 = i?(f2) ∧ φ((f1, n), (f2, m)))

⇔ L[i](γ)((e1, n), (e2, m)) ∨ L[i](φ)((e1, n), (e2, m))

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 164

For the second identity, the first expansion step of the RHS give

L[i](γ ∧ φ)((e1, n), (e2, m))

⇔ ∃ f1, f2 · e1 = i?(f1) ∧ e2 = i?(f2)

∧ γ((f1, n), (f2, m)) ∧ φ((f1, n), (f2, m))

The existential can be distributed here on account of the fact that i is injective, there-
fore two separate sets of witnesses must be identical. Using this distribution the RHS
can be derived.

⇔ ∃ f1, f2 · (e1 = i?(f1) ∧ e2 = i?(f2) ∧ γ((f1, n), (f2, m)))

∧ ∃ f1, f2 · (e1 = i?(f1) ∧ e2 = i?(f2) ∧ φ((f1, n), (f2, m)))

⇔ L[i](γ)((e1, n), (e2, m)) ∧ L[i](φ)((e1, n), (e2, m))

2. Expanding the LHS, this identity can be derived directly

L[j](L[i](γ))((e1, n), (e2, m))

⇔ ∃ f1, f2 · e1 = j?(f1) ∧ e2 = j?(f2)

∧ ∃h1, h2 · f1 = i?(h1) ∧ f2 = i?(h2) ∧ γ((h1, n), (h2, m))

⇔ ∃h1, h2 · γ((h1, n), (h2, m))

∧ (∃ f1, f2 · e1 = j?(f1) ∧ e2 = j?(f2) ∧ f1 = i?(h1) ∧ f2 = i?(h2))

⇔ ∃h1, h2 · e1 = (j ◦ i)?(h1) ∧ e2 = (j ◦ i)?(h2) ∧ γ((h1, n), (h2, m))

⇔ L[j ◦ i](γ)((e1, n), (e2, m))

3. First, it can be shown that

(e, n) ↑ a ↑ b = (e, n) ↑ a+ b

considering the case first that e 6= ?

(e, n) ↑ a ↑ b = (e, n) ↑ b = (e, n) = (e, n) ↑ a+ b

then e = ?

(?, n) ↑ a ↑ b = (?, n− a) ↑ b = (?, n− a− b) = (?, n) ↑ a+ b

This can then be shown through expanding the definition and simple derivation

(γ ↑ (a, b) ↑ (c, d))(x, y)
= (γ ↑ (c, d))(x ↑ a, y ↑ b)
= γ(x ↑ a ↑ c, y ↑ b ↑ d)
= γ(x ↑ a+ c, y ↑ b+ d)

= (γ ↑ (a+ c, b+ d)(x, y)

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 165

4. Expanding the LHS

(L[i](γ ↑ (a, b)))((e1, n), (e2, m))

⇔ ∃ f1, f2 · e1 = i?(f1) ∧ e2 = i?(f2) ∧ γ ↑ (a, b)((f1, n), (f2, m))

⇔ ∃ f1, f2 · e1 = i?(f1) ∧ e2 = i?(f2) ∧ γ((f1, n) ↑ a, (f2, m) ↑ b)

Expanding the RHS

(L[i](γ) ↑ (a, b))((e1, n), (e2, m))

⇔ L[i](γ)((e1, n) ↑ a, (e2, m) ↑ b)

For each of the dependency sites, (ek, nk) ↑ a = (ek, r), where r depends on whether ek
is ? or not. Nevertheless, the corresponding dependency sites in the expansion is (fk, r).
Since i? preserves ?, and if ek is not ? then r = nk, it follows that the corresponding
dependency sites is (fk, nk) ↑ a. Therefore, the above RHS further expands to

⇔ ∃ f1, f2 · e1 = i?(f1) ∧ e2 = i?(f2) ∧ γ((f1, n) ↑ a, (f2, m) ↑ b)

completing the proof.

5. Verifying these identities can be done directly from the definitions.

6. Expanding the terms by definition, the identities can be derived straightforwardly

[γ ∧ φ]+/−

= γ ∧ φ ∧ δ+/− = γ ∧ δ+/− ∧ φ ∧ δ+/− = [γ]+/− ∧ [φ]+/−

[γ ∨ φ]+/−

= (γ ∨ φ) ∧ δ+/− = (γ ∧ δ+/−) ∨ (φ ∧ δ+/−) = [γ]+/− ∨ [φ]+/−

7. Expanding the definition of the RHS

L[i]([γ]+/−)((e1, n), (e2, m))

⇔ ∃ f1, f2 · e1 = i?(f1) ∧ e2 = i?(f2) ∧ [γ]+/−((e1, n), (e2, m))

⇔ ∃ f1, f2 · e1 = i?(f1) ∧ e2 = i?(f2)

∧ γ((f1, n), (f2, m)) ∧ δ+/−((f1, n), (f2, m))

Since δ+/− only depends on f1 or f2 being ?, and this property is preserved by i?, it
follows that

⇔ ∃ f1, f2 · e1 = i?(f1) ∧ e2 = i?(f2)

∧ γ((f1, n), (f2, m)) ∧ δ+/−((e1, n), (e2, m))

⇔ L[i](γ)((e1, n), (e2, m)) ∧ δ+/−((e1, n), (e2, m))

⇔ [L[i](γ)]+/−((e1, n), (e2, m))

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 166

8. This follows from directly from expanding the definitions, using the associativity of
conjunction, and extending the quantifiers.

9. Expanding the definition of the LHS

L[i](γ _ φ)((e1, n), (e2, m))

⇔ ∃ f1, f2 · e1 = i?(f1) ∧ e2 = i?(f2)

∧ ∃ k · γ((f1, n), (?, k)) ∧ φ((?, k), (f2, m))

⇔ ∧∃ k · (∃ f1 · e1 = i?(f1) ∧ γ((f1, n), (?, k)))

∧ (∃ f2 · e2 = i?(f2) ∧ φ((?, k), (f2, m)))

⇔ ∃ k · (∃ f1, f2 · e1 = i?(f1) ∧ ? = i?(f2) ∧ γ((f1, n), (f2, k)))

(∃ f1, f2 · ? = i?(f1) ∧ e2 = i?(f2) ∧ φ((f1, k), (f2, m)))

⇔ ∃ k ·L[i](γ)((e1, n), (?, k)) ∧ L[i](φ)((?, k), (e2, m))

⇔ (L[i](γ)_ L[i](φ)) ((e1, n), (e2, m))

using the fact that for any function x, [?x]
−1(?) = ?.

10. These properties all follow fairly directly from definitions.

11. These properties follow from expanding the definitions, distributing the disjunctions
over the conjunctions, and distributing the existential quantifications over the disjunc-
tions.

12. The first formula is conceptually easy to prove, but very tedious. The second two
formulae follow immediately from the networks γN and γ(N,M) having no events.

With the aid of these definitions and properties two kinds of composition can be defined
over OEGs. In the case of both compositions, the approach we will take in defining them
will be to combine the sets of their events disjointly, combine their interfaces, and connect
their networks making use of these above mechanisms.

While the former two steps in forming compositions are comparatively simpler than the
last, there is another complication that must be addressed before proceeding to the definitions
of compositions. In many treatments of formalisms in which set-like objects are combined
disjointly, it is conventional to presuppose, or at least assume, that their underlying sets
are already disjoint – that the elements of the structures being composed always already
have disjoint names. In the interest of modularity, however, it is worth showing emphasizing
that we do not need to keep track of a supply of names alongside the compositions to avoid
collision. This is particularly important when building up OEGs out of single-event OEGs.
For any two sets of events, E1 and E2, it suffices to combine them with a proper coproduct,
E1qE2, which prevents name collision by marking the elements of the right and left operands
so that they are distinguished. We will use this in our constructions.

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 167

But there is a small price to pay for this convenience. The coproduct of two sets E1 and
E2 no longer commute, and the product of three sets, the previous two with an additional
E3, is no longer associative. This is well-known but it might be important to remind readers
of this. Consider e1 ∈ E1, e2 ∈ E2, and e3 ∈ E3. In the first case, one gets

ιE1qE2
L (e1), ι

E1qE2
R (e1) ∈ E1 q E2

ιE1qE2
R (e1), ι

E1qE2
L (e1) ∈ E2 q E1

where ιL and ιR are the left and right injections into the coproduct.2 This is subtle, but the
problem with associativity is more obvious.

ι
(E1qE2)qE3

L (ιE1qE2
L (e1)), ι

(E1qE2)qE3

L (ιE1qE2
R (e2)), ι

(E1qE2)qE3

R (e3) ∈ (E1 q E2)q E3

ι
E1q(E2qE3)
L (e1), ι

E1q(E2qE3)
R (ιE2qE2

L (e2)), ι
E1q(E2qE3)
R (ιE2qE2

R (e3)) ∈ (E1 q E2)q E3

However, it is clear that there is are canonical isomorphisms

E1 q E2 → E2 q E1

(E1 q E2)q E3 → E1 q (E2 q E3)

as well as

E1 q ∅ → E1

∅ q E1 → E1

for all sets. Taking the quotient over these isomorphism, gives a commutative monoid over
equivalence classes of sets, and indeed, there is always a way to use compositions of coprod-
ucts of the left and right injection functions to construct these isomorphism. Incidentally,
this is a superlative example of the coherence property we discussed in Chapter 6. In fact, co-
products of sets with coproducts of injections between these sets form a non-strict symmetric
monoidal category.

This is worth mentioning for clarity, although for a computer scientist, this detail could be
relegated to the status of an implementation consideration. If a multiset were implemented
with pairs, associativity and commutativity would not be syntactic equivalence, but rather
something that would have to be checked by traversing each structure or normalizing them.
In any case, we will not hide this dimension entirely, but make liberal use of the fact that
we can always construct and appropriate isomorphisms between these structures. Given our
definition of equivalence over OEGs is witnessed by an isomorphism over the sets of events,
we can state a useful lemma regarding the lifting of these witnesses through coproducts,
which we will later use to show that our operators are well-defined.

2They simply wrap their operand with a marker L or R so that they can be distinguished in the coproduct
set

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 168

Lemma 5. Let there be two pairs of sets (EG, EH) and (EG′
, EH′

), along with two corre-
sponding pairs of functions

CG : EG → X

CH : EH → X

CG′
: EG′ → X

CG′
: EH′ → X

mapping each set into some set X. If two bijections exist

g : EG → EG′

h : EH → EH′

such that

CG = CG′ ◦ g
CH = CH′ ◦ h

then the coproduct of the bijections

gq h : CG qCH → CG′ qCH′

is also a bijection, and

CG OCH = CG′
OCH′ ◦ gq h

Proof. The coproduct EG q EH is a disjoint union of values of the form ιE
GqEH

L (eG) and
ιE

GqEH

R (eH), where eG ∈ EG and eH ∈ EH . By definition, g q h over each of these two
subsets is

gq h(ιE
GqEH

L (eG)) = ιE
G′qEH′

L (g(eG))

gq h(ιE
GqEH

L (eH)) = ιE
G′qEH′

R (h(eH))

Since all of the functions on the RHS are injective over their domains, images of ιE
G′qEH′

L and

ιE
G′qEH′

R are disjoint, g q h is injective. More, because the union of the images of ιE
G′qEH′

L

and ιE
G′qEH′

R equals EG′ q EH′
and both g and h are surjective, g q h is surjective. Thus,

gq h is bijective. The second assertion, follows directly from the definition of O .

Parallel Composition

The first composition simply places any two OEGs together in parallel without connecting
their networks at all.

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 169

Figure 7.12: The parallel composition of G and H.

Definition 34. OEG Parallel Composition
For any two OEGs G and H, such that

G = 〈EG, CG, IG, γG〉
H = 〈EH, CH, IH, γH〉

(any two concrete representatives are chosen) the product G ⊗ H is defined

G ⊗ H
def
=〈EG q EH, CGOCH, IG⊗H, γG⊗H〉

where

IG⊗H = (IG− ⊗ IH− , IG+ ⊗ IH+)

γG⊗H = L[ιGqH
L](γG) ∧ L[ιGqH

R](γH) ↑ ‖IG‖

The above definition relies on the selection of arbitrary members the equivalence classes
of the operands, thus it must be shown that this choice does not effect the outcome of the
composition.

Proposition 11. For any two OEGs G and H, G ⊗ H is a well-defined function.

Proof. Suppose alternate representatives are chosen for G and H

G = 〈EG′
, CG′

, IG′
, φG′〉

H = 〈EH′
, CH′

, IH′
, φH′〉

Since these alternates are equivalent, there exists witnesses

g : EG → EG′

h : EH → EH′

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 170

to the equivalences. What must be shown is that

(EG q EH, CGOCH, IG⊗H, γG⊗H)

∼=OEG (EG′ q EH′
, CG′

OCH′
, IG′ ⊗H′

, γG
′ ⊗H′

)

It follows from Lemma 5 that gq h is a bijection

EG q EH → EG′ q EH′

and that

CGOCH = EG q EH ◦ gq h

By definition, IG = IG′
and IH = IH′

, therefore IG⊗H = IG′ ⊗H′

To show the equivalence over the γ components, with gq h as the witness, first we show

L[ιGqH
L](γG((e1, n), (e2, m)))

⇔ L[ιG′qH′

L](γG
′
(([gq h]?(e1), n), ([gq h]?(e2), m)))

by expanding the RHS

L[ιG′qH′

L](γG
′
(([gq h]?(e1), n), ([gq h]?(e2), m)))

⇔ ∃ f1, f2 · [gq h]?(e1) = [ιG
′qH′

L]?(f1) ∧ [gq h]?(e2) = [ιG
′qH′

L]?(f2)

∧ γG
′
((f1, n), (f2, m))

Since g is a bijection, substitutions can be made fk = g(rk)? for k ∈ {1, 2}.

⇔ ∃ r1, r2 · [gq h]?(e1) = [ιG
′qH′

L ◦ g]?(r1)
∧ [gq h]?(e2) = [ιG

′qH′

L ◦ g]?(r2) ∧ γG
′
((g?(r1), n), (g?(r2), m))

applying the equivalence witnessed by g

⇔ ∃ r1, r2 · [gq h]?(e1) = ιG
′qH′

L ◦ g?(r1)
∧ [gq h]?(e2) = ιG

′qH′

L ◦ g?(r2) ∧ γG((r1, n), (r2, m))

Recalling the identity for coproducts that

gq h ◦ ιGqH
L = ιG

′qH′

L ◦ g

Applying this identity to terms

[gq h]?(ek) = [ιG
′qH′

L ◦ g]?(rk) = [gq h ◦ ιGqH
L]?(rk)

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 171

hence, using the fact that gq h is a bijection

ek = [ιGqH
L]?(rk)

Substituting this in

⇔ ∃ r1, r2 · e1 = [ιGqH
L]?(r1) ∧ e2 = [ιGqH

L]?(r2) ∧ γG((r1, n), (r2, m))

⇔ L[ιGqH
L](γG((e1, n), (e2, m)))

Using the same reasoning with the right injection

L[ιGqH
R](γH((e1, n), (e2, m)))

⇔ L[ιG′qH′

R](γH
′
(([gq h]?(e1), n), ([gq h]?(e2), m)))

Since IG = IG′
, it follows that

L[ιGqH
R](γH((e1, n), (e2, m))) ↑ ‖IG‖
⇔ L[ιG′qH′

R](γH
′
(([gq h]?(e1), n), ([gq h]?(e2), m))) ↑ ‖IG′‖

Putting these together, it follows that

γG⊗H((e1, n), (e2, m)) ⇔ γG
′ ⊗H′

(([gq h]?(e1), n), ([gq h]?(e2), m))

completing the proof.

This operation is depicted in Figure 7.12, in which one can see graphically the simple
nature of the composition, in spite of the complications that go into formulating it. On-
tologically, the meaning of this operation is the non-interacting conjunction of concurrent
behaviors. Although powerful and necessary, it is quite unremarkable, resembling similar
operators that are easily defined over graphs or partial orders. The only distinction is that
here the already ordered event interface of the OEGs are combined in an ordered fashion.

It follows very obviously that this product, in contrast to similar concurrent or parallel
products is not commutative. The order matters in a way that is reflected in the interface.
On the other hand, the intrinsic meaning of G ⊗ H and H ⊗ G differ only in how they
compose with other OEGs in larger composites. As we will see later, using braidings we can
explicitly commute these OEGs, but this explicitness maintains a deliberate ordering of one
sort or another on the incoming and outgoing dependencies.

It should also be intuitively clear that this composition is associative, but this does require
a proof in order to handle the details of concrete presentations.

Proposition 12. Given any three OEGs over a OES Σ, G, H, K ∈ OEG(Σ)

(G ⊗ H) ⊗ K = G ⊗ (H ⊗ K)

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 172

Proof. Consider the constructions of the RHS and LHS

(G ⊗ H) ⊗ K =

〈(EG q EH)q EK , (CGOCH)OCK , I(G⊗H)⊗K , γ(G⊗H)⊗K〉
G ⊗ (H ⊗ K) =

〈EG q (EH q EK), CGO (CH OCK), IG⊗ (H ⊗K), γG⊗ (H ⊗K)〉

Coproducts are associative up to isomorphism, hence the mapping

(EG q EH)q EK → EG q (EH q EK)

has a bijective witness

αR
def
= (ι

Gq(HqK)
L O ιGq(HqK)

R ◦ ιHqK
L)O ιGq(HqK)

R ◦ ιHqK
R

which can be taken as the witness for the equivalence of concrete presentations. Its inverse
is

αL
def
= ι

(GqH)qK
L ◦ ιGqH

L O (ι
(GqH)qK
L ◦ ιGqH

R O ι(GqH)qK
R)

It is clear from cases on injections that

(CGOCH)OCK = CGO (CH OCK) ◦ αR

It is also clear that

I(G⊗H)⊗K = IG⊗ (H ⊗K)

since these are constructed monoidially, and the monoids are associative.
What remains to be shown is that

γ(G⊗H)⊗K((e1, n), (e2, m)) ⇔ γG⊗ (H ⊗K)((αR(e1), n), (αR(e2), m))

Expanding the definition for the LHS and applying properties from Proposition 10

γ(G⊗H)⊗K

= L[ι(GqH)qK
L](γG⊗H) ∧ L[ι(GqH)qK

R](γK) ↑ ‖IG⊗H‖
= L[ι(GqH)qK

L](L[ιGqH
L](γG) ∧ L[ιGqH

R](γH) ↑ ‖IG‖)
∧ L[ι(GqH)qK

R](γK) ↑ ‖IG⊗H‖
= L[ι(GqH)qK

L ◦ ιGqH
L](γG) ∧ L[ι(GqH)qK

L ◦ ιGqH
R](γH) ↑ ‖IG‖

∧ L[ι(GqH)qK
R](γK) ↑ ‖IG⊗H‖

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 173

Expanding the definition for the RHS similarly

γG⊗ (H ⊗K)

= L[ιGq(HqK)
L](γG) ∧ L[ιGq(HqK)

R](γH ⊗K) ↑ ‖IG‖
= L[ιGq(HqK)

L](γG)

∧ L[ιGq(HqK)
R](L[ιHqK

L](γH) ∧ L[ιHqK
R](γK) ↑ ‖IH‖) ↑ ‖IG‖

= L[ιGq(HqK)
L](γG) ∧ L[ιGq(HqK)

R ◦ ιHqK
L](γH) ↑ ‖IG‖

∧ L[ιGq(HqK)
R ◦ ιHqK

R](γK) ↑ ‖IH‖+ ‖IG‖
= L[ιGq(HqK)

L](γG) ∧ L[ιGq(HqK)
R ◦ ιHqK

L](γH) ↑ ‖IG‖
∧ L[ιGq(HqK)

R ◦ ιHqK
R](γK) ↑ ‖IG⊗H‖

The two reductions can be summarized as follows

γ(G⊗H)⊗K = L[xG](γG) ∧ L[xH](γH) ↑ U ∧ L[xK](γK) ↑ V
γG⊗ (H ⊗K) = L[yG](γG) ∧ L[yH](γH) ↑ U ∧ L[yK](γK) ↑ V

where

xG = ι
(GqH)qK
L ◦ ιGqH

L

xH = ι
(GqH)qK
L ◦ ιGqH

R

xK = ι
(GqH)qK
R

yG = ι
Gq(HqK)
L

yH = ι
Gq(HqK)
R ◦ ιHqK

L

yK = ι
Gq(HqK)
R ◦ ιHqK

R

What must be proven is that for each X ∈ {G, H, K} is that

L[xX](γX)((e1, n), (e2, n)) ⇔ L[yX](γX)(([αR]?(e1), n), ([αR]?(e2), n))

Expanding the RHS

L[yX](γX)(([αR]?(e1), n), ([αR]?(e2), n))

⇔ ∃ f1, f2 · [αR]?(e1) = [yX]?(f1) ∧ [αR]?(e2) = [yX]?(f2)

∧ γX((f1, n), (f2, m))

For each formula

[αR]?(ek) = [yX]?(fk)

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 174

Figure 7.13: The sequential composition of G and H.

if the inverse αL is applied to both sides, lifted with the unit, one gets

[αL ◦ αR]?(ek)

= ek = [αL ◦ yX]?(fk)

Expanding the LHS

L[yX](γX)((e1, n), (e2, n))
⇔ ∃ f1, f2 · e1 = [xX]?(f1) ∧ e2 = [xX]?(f2)

∧ γX((f1, n), (f2, m))

Therefore, the equivalences can be proven by showing that

αL ◦ yX = xX

Each of these can be verified. This completes the proof.

Sequential Composition

The second kind of composition is the more substantial one, key to the expressive power of
OEGs. It takes two OEGs and composes them sequentially under the condition that the
outgoing event interface of one is equal to the incoming event interface of the other.

Definition 35. OEG Sequential Composition
For any two OEGs G and H, such that

G = 〈EG, CG, IG, γG〉
H = 〈EH, CH, IH, γH〉

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 175

and IG+ = IH− the composition H ◦ G is defined

H ◦ G = 〈EG q EH, CGOCH, (IG− , IH+), γH ◦G〉

where

γH ◦G def
= [L[ιGqH

L](γG)]− ∨ [L[ιGqH
R](γH)]+ ∨ L[ιGqH

L](γG)_ L[ιGqH
R](γH)

This operation is depicted in Figure 7.13. Ontologically, this operation continues one
behavioral fragment with another upon which it can entirely depend. The definition utilizes
the linking operator presented earlier γ _ φ to take each outgoing dependency site on the
boundary of G and connect it to each incoming dependency site on the boundary of H.
This is intuitively what is depicted in Figure 7.13, and consequently, the construction of
the γ element reflects this, containing three conjoined terms, respectively representing the
connections of G excluding those to its outgoing boundary, the connections of H excluding
those to its incoming boundary, and the link stitching the two OEGs together.

The remarkable nature of this composition can be seen in comparison to other kinds of
sequential compositions that appear in other behavioral representations, particularly those
presented in Chapter 4. The specific ordering of incoming and outgoing dependencies for
each OEG provides a canonical means to join two OEGs, and thus two successive behaviors
together. Because it is established by the event interfaces of OEGs which dependencies are
joined, no additional constraints on concurrency are imposed on the composition, as they
were in the case of interleaved traces. Unlike Mazurkiewicz Traces, and their more general
counterparts, the rules for maintaining concurrency in the composition are not derived from
a general schema, such as a Reliance Alphabet. Instead, what becomes sequential and what
remains concurrent is determined by the event interfaces of the OEGs themselves.

As was the case with parallel composition, this operator must be proven to be a well-
defined function; in this case, over the operands meeting the condition. Again, the simplicity
of the intuitive geometric description is betrayed in the intricacies of the formalism. On the
other hand, some of the steps have already taken in the previous proof for the parallel
composition.

Proposition 13. For any two OEGs G and H, such that IG+ = IH− , H ◦ G is a well-defined
function.

Proof. As in the previous proof for parallel composition, suppose alternate representatives
are chosen for G and H

G = 〈EG′
, CG′

, IG′
, φG′〉

H = 〈EH′
, CH′

, IH′
, φH′〉

with witnesses

g : EG → EG′

h : EH → EH′

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 176

From the previous proof it follows similarly that gq h serves as a provisional witness for
the equivalence we are trying to show. Moreover, from the previous proof the conditions for
the first two components are met similarly by this witness.

As well, since the I components are equivalent for both representatives, the corresponding
component for the product is also equivalent.

What remains is to show equivalence over the γ components of the products. From the
previous proof we have that

L[ιGqH
L](γG((e1, n), (e2, m)))

⇔ L[ιG′qH′

L](γG
′
(([gq h]?(e1), n), ([gq h]?(e2), m)))

L[ιGqH
R](γH((e1, n), (e2, m)))

⇔ L[ιG′qH′

R](γH
′
(([gq h]?(e1), n), ([gq h]?(e2), m)))

Furthermore, we can show that if for some bijection g

γ((e1, n), (e2, m)) ⇔ γ′((g?(e1), n), (g?(e2), m))

then

[γ((e1, n), (e2, m))]+/− ⇔ [γ′((g?(e1), n), (g?(e2), m)))]+/−

by taking the assumption and conjoining δ+/− to both sides.

γ((e1, n), (e2, m)) ∧ δ+/−((e1, n), (e2, m))

⇔ γ′((g?(e1), n), (g?(e2), m)) ∧ δ+/−((e1, n), (e2, m))

Since g? preserves ? bijectively, and δ+/− only depends on whether or not a dependency site
is ?

⇔ γ′((g?(e1), n), (g?(e2), m)) ∧ δ+/−((g?(e1), n), (g?(e2), m))

proving that [−]+/− preserves the relations between γ terms.
Putting these two facts together covers the equivalence relationship for the first two

disjuncts of the definition for γH ◦G. The condition for the third conjoint can be proven as
follows.

Assume for some bijection g

γ((e1, n), (e2, m)) ⇔ γ′((g?(e1), n), (g?(e2), m))

φ((e1, n), (e2, m)) ⇔ φ′((g?(e1), n), (g?(e2), m))

what needs to be proven is that

(γ _ φ)((e1, n), (e2, m)) ⇔ (γ′ _ φ)((g?(e1), n), (g?(e2), m))

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 177

Expanding the RHS

(γ′ _ φ)((g?(e1), n), (g?(e2), m))

⇔ ∃ k : N · γ′((g?(e1), n), (?, k)) ∧ φ′((?, k), (g?(e1), n))

Using again the fact that g? preserves ?

⇔ ∃ k : N · γ′((g?(e1), n), (g?(?), k)) ∧ φ′((g?(?), k), (g?(e1), n))

Using the assumptions

⇔ ∃ k : N · γ((e1, n), (?, k)) ∧ φ((?, k), (e1, n))

⇔ (γ _ φ)((e1, n), (e2, m))

Combining all of these together, the equivalence on γH ◦G is proven, and the proof is
complete.

Along the same lines, it can be shown that this operation is also associative.

Proposition 14. Given any three OEGs over a OES Σ, G, H, K ∈ OEG(Σ), such that
IG+ = IH− and IH+ = IK− ,

K ◦ (H ◦ G) = (K ◦ H) ◦ G

Proof. Proceeding in the same fashion as the proof of associativity for parallel composition,
consider the constructions of the RHS and LHS

K ◦ (H ◦ G) =
〈(EG q EH)q EK , (CGOCH)OCK , (IG− , IK+), γK ◦ (H ◦G)〉
(K ◦ H) ◦ G =

〈EG q (EH q EK), CGO (CH OCK), (IG− , IK+), γ(K ◦H) ◦G〉

Following the proof for the associativity for parallel composition, the same witness

αR
def
= (ι

Gq(HqK)
L O ιGq(HqK)

R ◦ ιHqK
L)O ιGq(HqK)

R ◦ ιHqK
R

with the inverse

αL
def
= ι

(GqH)qK
L ◦ ιGqH

L O (ι
(GqH)qK
L ◦ ιGqH

R O ι(GqH)qK
R)

can be used to meet the condition for the first two components of the concrete presentation.
The third element is the same in both presentations. This leaves only the γ elements, which
must be shown to be consistent via the αR witness.

γK ◦ (H ◦G)((e1, n), (e2, m))

⇔ γ(K ◦H) ◦G((αR?(e1), n), (αR?(e2), m))

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 178

First, we will expand the operators on both sides and use identities from Proposition 10
to perform simplifications. Starting with the LHS

γK ◦ (H ◦G) def
= [L[ι(GqH)qK

L](γH ◦G)]− ∨ [L[ι(GqH)qK
R](γK)]+

∨ L[ι(GqH)qK
L](γH ◦G)_ L[ι(GqH)qK

R](γK)

To handle the complications of the notation, we will deal with each of the three disjuncts
separately

[L[ι(GqH)qK
L](γH ◦G)]−

= [L[ι(GqH)qK
L]([L[ιGqH

L](γG)]− ∨ [L[ιGqH
R](γH)]+

∨ L[ιGqH
L](γG)_ L[ιGqH

R](γH))]−

= [L[ι(GqH)qK
L]([L[ιGqH

L](γG)]−)]−

∨ [L[ι(GqH)qK
L]([L[ιGqH

R](γH)]+)]−

∨ [L[ι(GqH)qK
L](L[ιGqH

L](γG)_ L[ιGqH
R](γH))]−

= [L[ι(GqH)qK
L ◦ ιGqH

L](γG)]−

∨ [L[ι(GqH)qK
L ◦ ιGqH

R](γH)]◦

∨ L[ι(GqH)qK
L ◦ ιGqH

L](γG)_ [L[ι(GqH)qK
L ◦ ιGqH

R](γH)]−

= [L[xG](γG)]− ∨ [L[xH](γH)]◦ ∨ L[xG](γG)_ [L[xH](γH)]−
In the last step, the names used for the injections in the previous proof of associativity were
substituted in. The second disjunct is already in a simplified form, however we will make
the same substitution.

[L[ι(GqH)qK
R](γK)]+ = [L[xK](γK)]+

Finally, the third disjunct will be expanded.

L[ι(GqH)qK
L](γH ◦G)_ L[ι(GqH)qK

R](γK)

= L[ι(GqH)qK
L]([L[ιGqH

L](γG)]− ∨ [L[ιGqH
R](γH)]+

∨ L[ιGqH
L](γG)_ L[ιGqH

R](γH))_ L[ι(GqH)qK
R](γK)

= ([L[ι(GqH)qK
L ◦ ιGqH

L](γG)]− ∨ [L[ι(GqH)qK
L ◦ ιGqH

R](γH)]+

∨ L[ι(GqH)qK
L ◦ ιGqH

L](γG)_ L[ι(GqH)qK
L ◦ ιGqH

R](γH))

_ L[ι(GqH)qK
R](γK)

= ([L[ι(GqH)qK
L ◦ ιGqH

L](γG)]− _ L[ι(GqH)qK
R](γK))

∨ ([L[ι(GqH)qK
L ◦ ιGqH

R](γH)]+ _ L[ι(GqH)qK
R](γK))

∨ ((L[ι(GqH)qK
L ◦ ιGqH

L](γG)_ L[ι(GqH)qK
L ◦ ιGqH

R](γH))_ L[ι(GqH)qK
R](γK))

= ([L[xH](γH)]+ _ L[xK](γK)) ∨ (L[xG](γG)_ L[xH](γH)_ L[xK](γK))

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 179

Putting these together

γK ◦ (H ◦G) def
=

[L[xG](γG)]− ∨ [L[xH](γH)]◦ ∨ [L[xK](γK)]+
L[xG](γG)_ [L[xH](γH)]− ∨ ([L[xH](γH)]+ _ L[xK](γK))
∨ (L[xG](γG)_ L[xH](γH)_ L[xK](γK))

[A note at this stage: the above should make intuitive sense. The first three terms are the
internal connections of each operand, the subsequent two are the direct links between the
neighboring pairs, and the final term consists of the connections that go directly from G to
K passing through H]

Following the same procedure the RHS

γ(K ◦H) ◦G def
= [L[ιGq(HqK)

L](γG)]− ∨ [L[ιGq(HqK)
R](γK ◦H)]+

∨ L[ι(GqH)qK
L](γG)_ L[ι(GqH)qK

R](γK ◦H)

The first disjunct here is the reduced one

[L[ιGq(HqK)
L](γG)]− = [L[yG](γG)]−

The second requires an expansion

[L[ιGq(HqK)
R](γK ◦H)]+

= [L[ιGq(HqK)
R]([L[ιHqK

L](γH)]− ∨ [L[ιHqK
R](γK)]+

∨ L[ιHqK
L](γH)_ L[ιHqK

R](γK))]+

= [L[ιGq(HqK)
L]([L[ιHqK

L](γH)]−)]+

∨ [L[ιGq(HqK)
L]([L[ιHqK

R](γK)]+)]+

∨ [L[ιGq(HqK)
L](L[ιHqK

L](γH)_ L[ιHqK
R](γK))]+

= [L[ιGq(HqK)
L ◦ ιHqK

L](γH)]◦

∨ [L[ιGq(HqK)
L ◦ ιHqK

R](γK)]+

∨ [L[ιGq(HqK)
L ◦ ιHqK

L](γH)]+ _ L[ι(GqH)qK
L ◦ ιGqH

R](γH)

= [L[yH](γH)]◦ ∨ [L[yK](γK)]+ ∨ [L[yH](γH)]+ _ L[yK](γK)

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 180

The third is as follows

L[ιGq(HqK)
L](γG)_ L[ιGq(HqK)

R](γK ◦H)

= L[ιGq(HqK)
L](γG)_ L[ιGq(HqK)

R]([L[ιHqK
L](γH)]− ∨ [L[ιHqK

R](γK)]+

∨ L[ιHqK
L](γH)_ L[ιHqK

R](γK))

= L[ιGq(HqK)
L](γG)_

([L[ιGq(HqK)
R ◦ ιHqK

L](γH)]− ∨ [L[ιGq(HqK)
R ◦ ιHqK

R](γK)]+

∨ L[ιGq(HqK)
R ◦ ιHqK

L](γH)_ L[ιGq(HqK)
R ◦ ιHqK

R](γK))

= (L[ιGq(HqK)
L](γG)_ [L[ιGq(HqK)

R ◦ ιHqK
L](γH)]−)

∨ (L[ιGq(HqK)
L](γG)_ [L[ιGq(HqK)

R ◦ ιHqK
R](γK)]+)

∨ (L[ιGq(HqK)
L](γG)_ (L[ιGq(HqK)

R ◦ ιHqK
L](γH)_ L[ιGq(HqK)

R ◦ ιHqK
R](γK)))

= (L[yG](γG)_ [L[yH](γH)]−) ∨ (L[yG](γG)_ L[yH](γH)_ L[yK](γK))

Putting these together

γK ◦ (H ◦G) def
=

[L[yG](γG)]− ∨ [L[yH](γH)]◦ ∨ [L[yK](γK)]+
(L[yG](γG)_ [L[yH](γH)]−) ∨ [L[yH](γH)]+ _ L[yK](γK)
∨ ∨ (L[yG](γG)_ L[yH](γH)_ L[yK](γK))

we end up with the same structure but with xX replaced by yX in the liftings. It follows from
the previous proof of associativity that the witness αR can be used to show each disjoint
in γ(K ◦H) ◦G is compatible with the corresponding disjoint in γK ◦ (H ◦G). This suffices to
complete the proof.

Constants

Because sequential composition only allows the composition of two OEGs with an exactly
matching outgoing event interface and incoming event interface, additional primitive struc-
tural elements are necessary to compose OEGs in a more general fashion. Identity OEGs
consists only of dependency edges, and are used to allow edges to bypass OEGs. This is
achieved through composing OEGs in parallel with identities on either side.

Definition 36. OEG Identities
For any OES Σ and any a ∈Mon(TΣ), the corresponding identity OEGs is

idΣ(a)
def
= 〈∅, C∅, (a, a), γ

‖a‖〉

Indeed, these identity OEGs are the identity elements of sequential composition.

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 181

(a) Identity OEGs. (b) Braiding OEGs.

Figure 7.14: Constant OEGs.

Proposition 15. For any OEG G over an OES Σ,

G = idΣ(IG+) ◦ G = G ◦ idΣ(IG−)

Proof. Starting with the first identity, given a concrete presentation

G = 〈EG, CG, IG, γG〉

the construction for the product is

idΣ(IG+) ◦ G = 〈Gq ∅, CGOC∅, (IG− , IG+), γidΣ(IG
+) ◦G〉

There is a canonical bijection

α∅ : G→ Gq ∅

the inverse of which α−1
∅ will serve as our witness to equivalence.

Clearly,

CG = CG OC∅ ◦ α−1
∅

and IG = (IG− , IG+).
Expanding the definition for the γ element

γidΣ(IG
+) ◦G = [L[ιGq∅

L](γG)]− ∨ [L[ιGq∅
R](γidΣ (IG+))]+

∨ L[ιGq∅
L](γG)_ L[ιGq∅

R](γidΣ (IG+))

The term [γidΣ (IG+)]+/− = false from the definition, since every pair in the relation is to a

boundary dependency site, hence the expansion can be reduced to

= [L[ιGq∅
L](γG)]− ∨ L[ιGq∅

L](γG)_ L[ιGq∅
R](γidΣ (IG+))

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 182

Expanding the lifted γidΣ (IG+) term

L[ιGq∅
R](γidΣ (IG+)) ⇔ ∃ f1, f2 ·
e1 = ιGq∅

R ?(f1) ∧ e2 = ιGq∅
R ?(f2) ∧ n = m ∧ f1 = ? ∧ f2 = ?

Because the liftings of the injections preserve units, and units always exist, ek = ? and the
existential can be eliminated, leaving

⇔ n = m ∧ e1 = ? ∧ e2 = ?

Substituting this into the expression for γidΣ (IG+), one gets

γidΣ (IG+)((e1, n), (e2, m)) ⇔ [L[ιGq∅
L](γG)]−((e1, n), (e2, m))

∨ ∃ k : N ·L[ιGq∅
L](γG)((e1, n), (?, k)) ∧ (k = m ∧ ? = ? ∧ e2 = ?)

⇔ [L[ιGq∅
L](γG)]−((e1, n), (e2, m)) ∨ (L[ιGq∅

L](γG)((e1, n), (e2, m)) ∧ e2 = ?)

⇔ (L[ιGq∅
L](γG)((e1, n), (e2, m)) ∧ e2 6= ?) ∨ (L[ιGq∅

L](γG)((e1, n), (e2, m)) ∧ e2 = ?)

⇔ L[ιGq∅
L](γG)((e1, n), (e2, m))

Using the same result from the previous proofs, it follows that

γG((e1, n), (e2, m)) ⇔ L[ιGq∅
L](γG)((α−1

∅ ?
(e1), n), ((α

−1
∅ ?

(e2), m))

The second identity is proven in precisely the same fashion with some of the details
reversed in order.

Braiding elements are also added to explicitly reorder dependency sites, taking a word
of dependency types a and exchanging them with a word b.

Definition 37. OEG Braidings
For any OES Σ and any a, b ∈Mon(TΣ), the braiding OEGs are

βΣ(a, b)
def
= 〈∅, C∅, (a ⊗ b, b ⊗ a), γ(‖a‖, ‖b‖)〉

It should be the case that performing this operation is reversible, that one can exchange
the order of a and b, then return to the original order by exchanging b and a subsequently.

Proposition 16. For any OES Σ and any pair of words a, b ∈Mon(TΣ)

βΣ(b, a) ◦ βΣ(a, b) = idΣ(a ⊗ b)

Proof. Expanding the two terms in the LHS

βΣ(a, b) = 〈∅, C∅, (a ⊗ b, b ⊗ a), γ(‖a‖, ‖b‖)〉
βΣ(b, a) = 〈∅, C∅, (b ⊗ a, a ⊗ b), γ(‖b‖, ‖a‖)〉

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 183

the composition of which is

βΣ(b, a) ◦ βΣ(a, b) = 〈∅ q ∅, C∅OC∅, (a ⊗ b, b ⊗ a), γ′〉

where

γ′ = [γ(‖a‖, ‖b‖)]− ∨ [γ(‖b‖, ‖a‖)]+ ∨ γ(‖a‖, ‖b‖) _ γ(‖b‖, ‖a‖)

Using the properties of 10, this relation can be reduced as follows

= γ(‖a‖, ‖b‖) _ γ(‖b‖, ‖a‖)

= γ‖a‖+‖b‖

Expanding the RHS

idΣ(a, b) = 〈∅, C∅, (a ⊗ b, a ⊗ b), γ‖a‖+‖b‖〉

Since the empty sets of events are isomorphic and the C components are consistent, the
event interfaces of the LHS and RHS are equivalent, and as we have shown the networks are
equivalent, the identity holds.

Finally, as a matter of algebraic completeness, the unit OEG can be defined as the
completely empty one. Since it is empty, the unit has the monoidal unit 1 as its incoming
and outgoing event interface. Since this OEG is essentially the same for all OESs, we can
notate it as 1.

Definition 38. The Unit OEG
The unit OEG 1 is defined

1
def
= 〈∅, C∅, (1, 1), false〉

As one might expect, this unit is specifically the unit of parallel composition.

Proposition 17. For any OEG G (over any OES),

G ⊗ 1 = 1 ⊗ G = G

Proof. Starting with the first identity, given a concrete presentation

G = 〈EG, CG, IG, γG〉

the construction for the product is

1 ⊗ G = 〈Gq ∅, CG OC∅, (1 ⊗ IG− , 1 ⊗ IG+), γG ∨ false ↑ IG〉

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 184

Since

false ↑ IG ⇔ false

it follows that

1 ⊗ G = 〈Gq ∅, CGOC∅, (IG− , IG+), γG〉

From the previous proof, it follows that this presentation is equivalent to G.

It is also the case that this unit is equivalent to the identity for the monoidal unit of
event interfaces.

Proposition 18. For any OES Σ, 1 = idΣ(1Mon(TΣ)).

Proof. This follows immediately from expanding the definition of the RHS.

Furthermore, the identity for a monoidal product of event interface is the parallel product
of the identities of each event interface.

Proposition 19. For any OES Σ, and any pair a, b ∈Mon(TΣ)

idΣ(a ⊗ b) = idΣ(a) ⊗ idΣ(b)

Proof. Expanding the RHS of the identity with the definition of parallel composition

idΣ(a) ⊗ idΣ(b) = 〈∅ q ∅, C∅ qC∅, (a ⊗ b, a ⊗ b), γ‖a‖ ∨ γ‖b‖ ↑ (‖a‖, ‖a‖)〉

Using identities on networks

γ‖a‖ ∨ γ‖b‖ ↑ (‖a‖, ‖a‖) = γ‖a‖+‖b‖ = γ‖a⊗ b‖

Given the expansion of the LHS is

idΣ(a ⊗ b) = 〈∅ q ∅, C∅ qC∅, (a ⊗ b, a ⊗ b), γ‖a‖⊗‖b‖〉

the two presentations are clearly isomorphic.

The conjunction of these last two identities amounts to a lifting of the monoid Mon(TΣ)
into a monoid of identity OEGs, parameterized by Mon(TΣ).

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 185

Category of OEGs

As one might anticipate from what has been discussed in Chapter 5, this language of op-
erators and constants forms the algebraic structure of a symmetric monoidal category for
the set of OEGs built from a particular OES. Indeed, it can be proven that this is the case,
completing the set of axioms we have already established for this algebra with the remaining
necessary to establish that OEGs form a symmetric monoidal category.

Theorem 9. OEG symmetric monoidal category
Given a particular OES Σ the tuple

OEG(Σ) def
=
(
Mon(T), OEGΣ, ◦ , idΣ, ⊗ , 1, βΣ

)
defines a (strict) symmetric monoidal category, where ◦ and ⊗ are the sequential and
parallel compositions of OEGs and 1 = idΣ(1Mon(T)). The identities and braidings are
defined as above. The set OEGΣ is, here, broken up into homsets OEGΣ(a, b) for each
interface (a, b) ∈ IΣ.

Proof. Most of the axioms for symmetric monoidal categories have been proven. The re-
maining axioms can be proven in a similar fashion to those above, choosing concrete rep-
resentations of operands, expanding the definitions of operations, and making use of the
properties of networks.

In this category, OEG(Σ), the objects of the category are sequences of dependency types
and the OEGs themselves are the morphisms. This theorem reflects the similar result from
Joyal and Street [27], with regards to topological graphs embedded into a space.

That OEGs of a particular OES form a symmetric monoidal category implies that OEGs
can be built up with compositions into larger OEGs within this category. Which would mean
that we could begin with a collection of OEGs and take their closure under these operations
to generate a symmetric monoidal categories containing all of their compositions. However,
for the case of finite OEGs, we would also like this construction process to have a clear
foundation of generating elements of the simplest form. Specifically, we would like to show
that the generating OEGs are the ones containing only a single event of an event type in the
OES. This way, any OEG could be constructed from atomic, single event OEGs, identity
and braiding elements, and the two basic compositions. This is what we will derive from the
work of Joyal and Street [27].

But first we will look at a couple relevant special kinds of OEGs that will serve an
important purpose in this construction, and which are important in their own right.

Special OEGs

Relevant to our aim to build up OEGs from primitive elements are two special classes of
OEGs, the first of which are atomic OEGs, which lift each of the event types of a particular
OES into an OEG containing a single event of that event type.

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 186

Figure 7.15: An atomic OEG

Figure 7.16: A permutation OEG.

Definition 39. Atomic OEGs
Given an OES Σ and an event type A ∈ A(a, b) for any a, b ∈ Mon(T), the atomic OEG
is defined

〈〈A〉〉 def
= 〈{A}, {A 7→ A}, (a, b), γe〉

where

γe((x, n), (y, m))
def
= n = m∧

((x = ? ∧ y = e ∧ 0 ≤ n < ‖e‖−) ∨ (x = e ∧ y = ? ∧ 0 ≤ n < ‖e‖−))

In order to distinguish the instance from the type, the event type e is wrapped suggestively
in brackets, 〈〈e〉〉, indicating a lifting similar to that of equivalence class lifting of primitive
blocks by η into the free symmetric monoidal categories. These two liftings from the same
domain, an OES, will ultimately be tied together, though it is important not to prematurely
conflate them.

The other special class of OEGs are those that simply permute a collection of incoming
and outgoing dependencies. For these OEGs the incoming and outgoing event interfaces
are, as words of Mon(T) in the OES, permutations of each others primitive types. We

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 187

will represent permutations as bijective functions σ, ρ, . . . of a particular natural number
‖σ‖, For any given a ∈ Mon(T) and permutation σ such that ‖σ‖ = ‖a‖, we will
denote the permutation of elements in a by σ as aσ. A permutation OEG Perm(a; σ) is
defined using precisely these two pieces of information.

Definition 40. Permutation OEGs Given a OES (T, A), a word a ∈ Mon(T), and a
permutation σ, such that ‖a‖ = ‖σ‖, a permutation OEG is defined

Perm(a; σ)
def
= 〈∅, C∅, (a, aσ), γ

σ〉

where

γσ((e1, n1), (e2, n2))
def
= e1 = e2 = ? ∧ n2 = σ(n1) ∧ 0 ≤ n1 < ‖σ‖

Another way of describing these OEGs is by the fact that they have no events. In fact,
any OEG without events is a permutation.

Proposition 20. An OEG G has no events if and only if it is a permutation OEG. Specif-
ically,

G = Perm(IG− ; σ)

for some σ. We will notate this permutation

σ = ParsePerm(G)

Proof. Given a G without events,

G = 〈∅, C∅, I, γ〉

since γ is bijective, the permutation can be defined

σ(n) = m, where γ((?, n), (?, m))

Because γ must connect each primitive type in I− to I+, I+ = I−σ.

It is a consequence of the result from Joyal and Street that we will discuss in the following
section that these permutation OEGs can always be constructed completely from identities
and braidings. Doing this in practice, however, is tedious, and thus these permutations can
be treated as an alternative basis for reordering incoming and outgoing dependencies so that
they match under sequential composition in the desired way. Another way of looking at the
space of permutations is that they constitute the sub-free symmetric monoidal category of
any free symmetric monoidal category generated entirely from constants. Permutations are
therefore closed under compositions with each other.

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 188

From OEGs to Free Symmetric Monoidal Categories

We can now move on to what is potentially the most important property of OEGs. Thus far,
we have established that the collection of OEGs over an OES Σ form a symmetric monoidal
category, OEG(Σ). Using the aforementioned result from [27], we can go further and say
that any OEG(Σ) is specifically a free symmetric monoidal categories. Their specific result
regards the symmetric monoidal category, FS(Σ), the objects of which are the words in
Mon(TΣ) and the morphisms of which are of isomorphism classes of anchored progressive
polarized diagrams built up from the elements of AΣ

∪. As we have mentioned, aside from
minor details, our construction for OEGs are anchored progressive polarized diagrams.

To be more specific about the differences, given a concrete OEG

(E, C, I, γ)Σ

the topological components (E, γ) form an anchored progressive polarized graph, with E as
its vertices and two vertices e1 and e2 having a directed edge when, for any pair n, m ∈ N,
γ((e1, n), (e2, m)). To clarify the complete qualifier anchored progressive polarized, progres-
sive is synonymous with acyclic (notwithstanding the ? vertex, if one interprets it as such),
which γ is by definition; polarized means that the incoming and outgoing edges to each
vertex in E, which γ does with the additional dependency port indices n and m; and, an-
chored means that the incoming and outgoing edges of the graph are ordered, which is also
accomplished with the pairs in γ involving the ? value.

The remaining two elements of the OEG, (C, I), constitute what is referred to in [27]
as a valuation over an anchored progressive polarized graph, which is a mapping from the
vertices and edges of the graph into the primitive blocks and primitive types of Σ. C very
directly gives the latter mapping, while the former can be constructed from γ, by referring
to the event interfaces attached to the vertices on either side of an edge, or to the elements in
I. The combination of the graph and the valuation is what is called the anchored progressive
polarized diagram.

Furthermore, again with minor differences in details, our definitions for the operators
and constants of OEG(Σ) match those of FS(Σ), although we go into much greater details
in constructing them. In essence, our OEG(Σ) is equivalent to their FS(Σ), and therefore we
are justified in stating their result as follows.

Theorem 10. Joyal and Street [27] For any OES Σ, OEG(Σ) is a free symmetric monoidal
category.

Since free elements are unique up to isomorphism, it follows immediately from this that
for all monoidal schemes Σ

OEG(Σ) ∼= SymMonCat(Σ)

The important ramification of this isomorphism, connecting the two constructions for
OEG(Σ) given in Chapter 7 and SymMonCat(Σ) given in Chapter 6, is that every OEG

CHAPTER 7. ONTOLOGICAL EVENT GRAPHS 189

built from elements of Σ can also be constructed as a term in the language of symmetric
monoidal categories involving only constants and atomic OEG. This is the case because
every morphism in SymMonCat(Σ) was constructed inductively using only constants and
elements in the image of ηΣ. Since ηΣ is isomorphic to the atomic OEG lifting of AΣ, which
we have been notating as 〈〈−〉〉, the image of ηΣ are isomorphic to the atomic OEGs.

Another way of phrasing this important corollary is that the language of symmetric
monoidal categories with a monoidal schemes is complete in its ability to define OEGs. It
was most certainly not a given that in constructing such a language that this entire space
would be covered. If we had originally widened the definition of OEGs to accommodate
infinite numbers of events this certainly would not have been the case.

190

Chapter 8

OEG Semantics for Process Calculi

In order to use any representation of behavior as a basis for working with substantial appli-
cations, it must be possible to construct representations precisely from the specification of
the applications as programs. This is done through giving a set of programs in a particular
language a formal semantics that maps each program in the language to an appropriate rep-
resentation of what happens when the program executes. The most conventional method of
constructing this kind of semantics is to give the language what is often called an operational
semantics. This kind of semantics emphasizes the operational steps involved in the execution
of a program, rather than the denotational value the computation computes. Therefore, this
kind of semantics is more a means to produce a record of behavior than a formulaic reduction
of the program to a function.

The most notable form that operational semantics takes is the structural operational
semantics of Plotkin [54], which conceives of an operational step in the execution of a program
as a change in the form of a program and its accompanying data. In the simplest cases, this
amounts to a syntactic rewriting system for the programming language, constructed via a set
of inductive rules. In this case, the state of the system is represented by the continuation of
the program, which gets further evaluated with each rewriting. The rewritings constitute a
transition system, and the result is that a program operationally forms a family of sequential
traces.

P1 −→ P2 −→ P3 −→ P4 −→ . . .

In essence, the resulting representation of behavior is a sequence of states or programs

P1, P2, P3, P4, . . .

Concurrent programming languages or abstract calculi for concurrent systems are often
defined with such an operational semantics that constructs sequential traces as their be-
havioral representations. An example of an abstract calculi for concurrent systems is the
π-calculus of Milner, Parrow, and Walker [48, 47], which is thought of by many as the
λ-calculus of dynamic concurrent systems. In spite of being the superlative calculus of con-
currency, nevertheless, the formal presentation of this calculus was originally, and is still

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 191

conventionally, given as a structural operational semantics. Each term in the calculus pro-
duces a set of possible reductions or interactions that define the behavior of execution judged
from the perspective of a sequential observer; or for that matter, the possible sequential steps
involved in simulating the concurrent process on a sequential computer.

As is common in concurrent calculi, two programs P and Q can be placed into a concur-
rent composition P 8Q, which is intuitively conceived of as a program in which each of the
two programs can proceed to execute asynchronously alongside one another. If there exists
an operational form of progress that P can make to a new program P ′, that is there exists a
transition P −→ P ′ in the structural operational semantics, as well as a transition Q −→ Q′

indicating progress Q can make concurrently, one would expect the semantics to reflect this
notion of concurrent yet asynchronous progress directly in the behavioral representation of
P 8Q.

However, the idiosyncratic method of expressing the operational semantics of P 8 Q is
characterized in the following two induction rules

P −→ P ′

P 8Q −→ P ′ 8Q
and

Q −→ Q′

P 8Q −→ P 8Q′

These state, in essence, that there is a nondeterministic choice between P −→ P ′ happening
first or Q −→ Q′ happening first. Subsequently, the other of the two programs could take
a step in execution, or just as well, the same program that took the first step could take an
additional one while the other remains unchanged. In this fashion, the concurrent execution
of P and Q is represented as the nondeterministic interleaving of the steps in their respective
sequential execution. Supposing each of P and Q can take several independent steps, many
different interleavings exist.

P0 8Q0 −→ P1 8Q0 −→ P1 8Q1 −→ . . .

P0 8Q0 −→ P0 8Q1 −→ P1 8Q1 −→ . . .

P0 8Q0 −→ P1 8Q0 −→ P2 8Q0 −→ . . .

P0 8Q0 −→ P0 8Q1 −→ P 8Q2 −→ . . .

. . . and so forth

This convention of using interleaving semantics for concurrent process calculi has existed at
least since the predecessor of π-calculus, CCS, was devised much earlier by Milner [46].

In contrast with this convention of giving interleaved semantics to concurrent process
calculi, the aim of this thesis has been to propose a true concurrent behavioral representation
based on monoidal categories, the OEG, and argue its merits for what we called HDDAs
running on platforms that we have termed Process Field. This argument has contrasted
OEGs with both interleaved sequential representations, as well as representations based on
generalized sequences such as Event Structures and pomsets. It would only make sense
to demonstrate how OEGs can be used to give a modular, compositional, true concurrent
semantics to process calculi such as the π-calculus.

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 192

In this chapter, we will give an overview of the π-calculus and an account of its conven-
tional structural operational semantics. With a couple important modifications, we will then
proceed to give π-calculus an OEG semantics.

8.1 The π-calculus

The π-calculus is a process calculus aimed at reasoning about concurrent processes, partic-
ularly in the context of mobility, where the topology of communication channels between
concurrent process can evolve over the course of its execution. This kind of evolution arises
when modeling a system in which the concurrently operating components may be physically
moving, thus changing the topology of their communication. However, this calculus has
been shown to be extremely general in the breadth of what it can model, from data struc-
tures, protocols, and object oriented programming models [47] to business processes [37]. It
is nevertheless basic and elegant enough to serve as a foundational language for studying
concurrent processes.

This calculus was first developed in [48], by Milner, Parrow, and Walker, elaborating
upon the earlier concurrent formalism, CCS, devised by Milner. Many variants have also
been devised, such as the asynchronous π-calculus of Boudol [9]. The relationship between
a number of these variants is given in detail in [51]. Whereas the fundamental atomic action
of λ-calculus is application, in which one subterm is applied to another, the fundamental
operation of π-calculus is message passing, in which one subterm passes a message to another.
In this respect, the π-calculus resembles the Actor model

Just as λ-calculus has been instrumental in developing the semantics of functional pro-
gramming languages and models, likewise π-calculus plays an instrumental role in developing
the semantics of concurrent programming models. Consequently, defining the semantics of
this calculus in terms of OEGs not only exemplifies the use of OEGs, but further, it should
give a sense of how one could give OEG semantics to many other concurrent languages, par-
ticularly those inspired by π-calculus. At the least, one should be able to give several useful
variants of π-calculus OEG semantics following the schema of what will be shown here.

As we have stated, the convention for defining the semantics of π-calculus is to give it a
structural operational semantics. More specifically, two variants of these kinds of semantics
are usually developed for a calculus, both detailed in [47]. One of these semantics is a
reduction semantics, the transitions of which rewrite the terms of the calculus, reducing
them. In this case, the term in the calculus is given a complete semantics as a closed system,
containing all of its concurrent components, and the transition is the reduction of the whole
system. The second semantics is the Labeled Transition System (LTS) semantics, which can
give semantics to an open fragment of a system that may either send or receive a message
as a transition action.

Nevertheless, in both of these semantics, the representations of behavior are interleaved
sequential ones. A reduction trace can therefore happen multiple ways, reflected in the non-
deterministic choices in the induction rules of the reduction relation. Concurrency, therefore,

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 193

is reflected, not in each behavior, but rather in the possibility of different behaviors non-
deterministically produced in the derivations. Alternatively, one can consider the behavior
proper to be the collection of all such sequential behaviors. This kind of semantics brings
up the concerns raised in Chapter 4. Yet, the mathematical conventions for dealing with
observational or behavioral process equivalence via bisimulation rest on the presumption of
this kind of semantics.

We will begin presenting π-calculus with the conventional semantics and subsequently
show how these semantics can be modified to produce OEGs rather than traces.

Syntax

The terms of π-calculus represent systems of concurrent processes in a particular state de-
scribed by the term. The syntax of these terms is given by induction over three syntactic
sets Gπ, representing process guards, Nπ representing choices between processes, and Tπ rep-
resenting the proper process terms. The syntax involves the use of a set of variables Vπ that
have the dual role of representing both variables in the traditional sense, that are bound to
particular values, and the names of channels through which messages are passed between
concurrent components of a process.

Definition 41. π-calculus Syntax
Given a set of variables Vπ, the set of π-calculus guards Gπ, terms Tπ, and normal forms Nπ

are defined inductively as follows

τ ∈ Gπ
v ∈ Vπ x ∈Mon(Vπ)

v̄〈x〉 ∈ Gπ
v ∈ Vπ x ∈Mon(Vπ)

v(x) ∈ Gπ

N ∈ Nπ

N ∈ Tπ
v ∈ Vπ P ∈ Tπ
{v} • P ∈ Tπ

P, Q ∈ Tπ
P 8Q ∈ Tπ

P ∈ Tπ
P ! ∈ Tπ

∅ ∈ Nπ

π ∈ Gπ P ∈ Tπ
π • P ∈ Nπ

P, Q ∈ Nπ

P +Q ∈ Nπ

The two primary connectives that structure these terms are 8 and !. The former combines
two processes in parallel, forming a concurrent combination. In this concurrent combination
P 8 Q, each process can execute independent of the other. That is if P can go through
a transition that does not depend on Q it can occur without changing Q. The processes
can interact with each other. For instance, P could send a message to Q, causing both
processes to synchronously transition. We will call the operands of a product its concurrent
components.

The replication operator !, applied to a process P ! indicates that the process P can be
replicated any number of times in parallel to react concurrently by itself or with other terms.
In a sense, P ! can be thought of as an infinite 8-product of P ’s, although this raises some
important absurdities that will be discussed later.

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 194

Putting aside the syntactic case of {v} • P for a moment, when a process P is not a
product or repetition of some other process, it is a reactant in Nπ, and thus a +-product
(sum) of processes guarded by members of Gπ

π1 • P1 + π2 • P2 + . . .+ πN • PN

These summands represent mutually exclusive choices for a process to reaction corresponding
to the guard πk of each summand Pk. The possible reactions, represented by each kind of
guard, are an internal reaction τ , a send v̄〈x〉 of the sequence of values x along the channel
named v, and a receive v(x) of a sequence of values on channel v, which are then bound to
variables x in the guarded process.

The empty sum, with no summands, captured by the term ∅, represents a terminating
process. In the case where ∅ is guarded π • ∅, we will syntactically notate this as π, leaving
out the ∅.

More specifically, if there is a reactant π • P in a sum of reactants

π • P +N

and the reaction that π represents occurs, the process P replaces the whole sum as its
continuation. In the specific case of reception, the received names are also substituted in P .
For a particular reactant, τ may always happen, whereas a send or receive can only happen
if the corresponding operation is occurring somewhere else, either in another concurrent
component or in the environment (depending on whether the semantics is formulated in a
closed or open fashion). This kind of semantics is often referred to as rendezvous, because
the send and receive operations must rendezvous with each other synchronously. In contrast,
dataflow models of computation often involve channels that can be sent to independent of
whether a receive can synchronously occur with it.

In order to emphasize the intuitive meaning of a reaction (which will later be formalized),
we consider the following examples.

Example 1. Consider the following term.

ā〈b〉 8 b(x) 8 a(y) • ȳ〈c〉+ τ • b̄〈d〉

In this example, there are three concurrent terms, the second of which involves two possible
behavioral choices. There are possible reactions for this term. One involves the second
reactant in the third term guarded by a τ , which can always react. If this reaction is taken
the sum of reactants is reduced to b̄〈d〉, and the remaining term is

ā〈b〉 8 b(x) 8 b̄〈d〉

Now that a send and receive guarded reactants for channel b exist in parallel with each other,
the reaction of sending d along channel b can occur. Both guards are eliminated in this
reaction, leaving terminating processes.

ā〈b〉 8 ∅ 8 ∅

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 195

Since these two latter components are terminated they can be thrown out, leaving

ā〈b〉

The other reaction that could have taken place from the original term would be between
the send and receive guarded reactants for channel a in the first and third components,
respectively. The result of this reaction is that name b is sent on channel a and bound
to variable y in the term guarded by the receive. Specifically,

∅ 8 b(x) 8 ȳ〈c〉{y 7→ b}

which reduces under substitution to

∅ 8 b(x) 8 b̄〈c〉

This creates the condition for the new third term to react with the second, resulting in

∅ 8 ∅ 8 ∅

which, after removing terminating process is simply the empty process.

As one can see from this example, the reactions occurring for a term can be nondetermin-
istic and lead to non-confluent contracta. This example simply demonstrates the semantics
of reactions and illustrates some of the features of the calculus. The next example will be
more interesting for our purposes.

Example 2. Consider the following term.

ā〈b〉 • c(x) 8 a(y) • ȳ〈d〉 8 ē〈f〉 • b(z) 8 e(w)

In this example, one may notice immediately that the first two and second two components
both have a potential reaction on channels a and e, respectively. If the reaction over channel
a is taken, the result is

c(x) 8 b̄〈d〉 8 ē〈f〉 • b(z) 8 e(w)

This leaves the other reaction on channel e to take place.

c(x) 8 b̄〈d〉 8 b(z)

Finally, the reaction on channel b can occur. The final result is

c(x)

If the first reaction that happened was on channel e rather than e, the subsequent state
would have been

ā〈b〉 • c(x) 8 a(y) • ȳ〈d〉 8 b(z)

But after taking the reaction on channel a, the final two states would be the same.

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 196

What is illustrated in this example is a different kind of nondeterminism arising from the
arbitrary order in which two concurrent reactions occurred. Unsurprisingly, in either order
the result was the same; that is, the reactions commutated, forming a confluence. One could
easily imagine loosening the hint of sequentiality in the intuitive notion of reduction and
supposing that the two reductions both happened “concurrently”, in the manner that one
might imagine concurrency, where there is no notion of the orderings of the reductions at
all. Rather, they both simply happen independent of each other.

When one pursues the conventional semantics for π-calculus and represents these reac-
tions as transitions forming traces, the concurrency of reactions appearing in examples like
the above are witnessed in the multiplicity of traces produced by the semantics, taking every
nondeterministic choice. Here we encounter the problem considered in 4 with traces that
we wish to overcome in a OEG semantics. Indeed, we will see later how the above exam-
ple can be given a behavior that is indeed more intuitive. However, before pursuing this
interpretation, we will proceed to complete the account of the more conventional semantics.

A final syntactic feature of π-calculus, the name scoping operator {x} • P , which binds
the name x, used either as a channel, or as a variables, into the scope of P . As in the case of
λ-calculus, there are hence both free and bound names in each term. The scoping operator
and receive both serve as binders. Appropriately, the set of free variables can be defined
inductively for terms.

Definition 42. The function FVπ : Tπ → Vπ is defined inductively as follows

FVπ(P 8Q) def
= FVπ(P) ∪ FVπ(Q)

FVπ(P !)
def
= FVπ(P)

FVπ({x} • P)
def
= FVπ(P) \ {x}

FVπ(N +M)
def
= FVπ(N) ∪ FVπ(M)

FVπ(∅)
def
= ∅

FVπ(τ • P)
def
= FVπ(P)

FVπ(v̄〈x〉 • P)
def
= FVπ(P) ∪ {v,x}

FVπ(v(x) • P)
def
= (FVπ(P) \ {x}) ∪ {v}

As with many languages with bound variables, the standard notion of α-conversion con-
flates terms where a bound name has been changed to any other non-conflicting name.
Equivalence under this conversion is denoted by ∼=α. Syntactic equivalence between terms
can therefore be generally weakened to this equivalence under which Tπ becomes Tπ/ ∼=α.

Expanding on α-equivalence, a further notion of structural congruence is defined over Tπ
equivocating terms for intuitively clear reasons.

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 197

Definition 43. π-calculus Structural Congruence
The equivalence relation of structural congruence ∼= is defined over Tπ as ∼=α along with the
following axioms.

For 8 P 8 (Q 8R) ∼= (P 8Q) 8R
∅ 8 P ∼= P 8 ∅ ∼= P
P 8Q ∼= Q 8 P

For ! P ! ∼= P 8 P !
For + N + (M +K) ∼= (N +M) +K

∅+N ∼= N + ∅ ∼= N
N +M ∼= M +N

For {•} {a} • {b} • P ∼= {b} • {a} • P
{a} • ∅ ∼= ∅

{a} • (P 8Q) ∼= {a} • P 8Q, where a 6∈ FVπ(Q)

with ∼= incorporating the equivalence of α-conversion on bound variables.

The essence of the rules for both 8 and + is that they both form commutative monoids
over their terms with ∅ as the unit. Like many such identities, these express, in some sense,
a superfluousness in the presentation of the syntax itself. Particularly, associativity and
commutativity in theses cases indicate that the operators construct collections rather than
proper sequences, let alone trees.

But in contrast, the rule for ! expresses something arguably more semantic. On one hand,
it suggests that the term P ! is a compact presentation of a countably infinite product of P s,
as mentioned earlier. Yet in texts written about π-calculus, the notion of replication implies
that copies are being produced (perhaps as-needed), indicating a kind of active event. This
latter interpretation is the one we will intuitively lean on in constructing an OEG semantics.

The set of congruences involving the scoping operator are important for establishing the
semantics, but are less of an important focal point for understanding the behavior that arises
out of these. They are, in a much more obscure way, also, perhaps, a matter of syntactic
superfluousness.1

Semantics

The formal semantics of π-calculus is typically given in two forms, as mentioned earlier. The
first form, determining the reduction of closed terms, is called the reduction semantics. This
semantics defines one rewrite relation −→ over Tπ that corresponds to one of the two kinds
of reactions: internal τ reaction on one reactant, or the sending of names along a channel
between two concurrent reactants guarded with ā〈b〉 and a(x).

1What I am implying here is not that scoping is at all unnecessary, but rather that it is necessary because
of how names function in concrete syntax.

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 198

Definition 44. Reduction Semantics
The operational semantics of evaluation for π-calculus is given by the rewrite relation −→ :
Tπ → Tπ defined inductively by the following derivations

(Internal)
τ • P +N −→ P

(Communicate)
(v̄〈x〉 • P +N) 8 (v(y) •Q+M) −→ P 8Q[y 7→ x]

P −→ P ′
(Parallel)

P 8Q −→ P ′ 8Q
P −→ P ′

(Scoping)
{v} • P −→ {v} • P ′

Q ∼= P P −→ P ′ P ′ ∼= Q′
(Structural)

Q −→ Q′

The two axioms of the inductive definition, Internal and Communicate, formalize the two
basic cases of reactions in the calculus, while the other three inductive rules determine how
and where the axioms can be applied. The Parallel rule conveys an important semantic idea
that was illustrated in Example 2, that concurrent components of the term can react inde-
pendently, concurrently. This rule is also an important basis for a revision in the later OEG
semantics. In the form given here, it opens the door for the induction of a nondeterministic
set of possible transitions that do not reflect an actual, essential or ontological, divergence
in executions. Instead, the divergence is between different sequential epistemological records
of the same execution. The Scoping rule is less illustrative and simply allows transitions to
happen within scoped variable contexts.

The final Structural rule inductively closes the rewrite transitions to span over all struc-
turally congruent terms. The congruences in the premise of the rule are suggestive, implying
to some degree the idea that in order for the reaction Q −→ Q′ to take place, the Q process
must be “converted” into P , and subsequent to the reduction step the P ′ must be converted
into Q′. However, for many congruences, as discussed earlier, there is no ontological process
of conversion when the congruence is, for instance, an association over one of the operators.
Instead, the conversion is purely syntactic. On the other hand, the issue of the ontology
of replication may give one pause about the congruence P ! ∼= P 8 P !. This could indeed
be interpreted as a kind of ontological event representing the actual event of replicating the
state of a process.

The reduction semantics, as they have been given, and as is generally the case for struc-
tural operational semantics, specifically defines the relational set −→ of atomic steps. This,
of course, defines a transition system (which is essentially a graph). The behaviors them-
selves, corresponding to the executions of the systems the terms represent, are then the paths
through this transition system – the chains of reductions beginning at some term.

P0 −→ P1 −→ P2 −→ P3 −→ P4 −→ . . .

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 199

Thereby, one can extract a sequential behavioral representation from this semantics, and
for other semantics for other calculi in a similar fashion. In contrast with the sequential
representations of behavior we discussed in Chapter 3, these reduction sequences are de-
fined primarily by the sequence of terms, which here are states, rather than a sequence of
events. The events associated with the reduction of a term in π-calculus can be most easily
approximated to be the −→ transitions themselves.

But unlike the event representations we have discussed throughout this thesis, the re-
ductions themselves are bare, only denoting that a transition has happened. To be proper
labeled events, the transitions would have to be labeled with something. The term before or
after the reaction would not be enough to fully distinguish transitions, since, in general, a
term can have multiple reductions, and certainly could be the result of multiple reductions.
On the other hand, the pair of terms would suffice to pin down the event itself for most
intents and purposes, and certainly contains as much information as the sequence of terms –
we assume for the above rules that any ambiguity in which reduction used must be a trivial
one. With this in mind, our change to the semantics will both be from an interleaved se-
quential representation to one rooted in free symmetric monoidal categories, as well as from
a state-based representation to an event-based one.

8.2 OEG Semantics

In order to use OEGs as a representation of the behaviors of π-calculus executions, the first
step is to identify which dependency types and event types can be used to represent these
behaviors. That is, the OES must be defined for π-calculus. Once an OES is defined, one can
consider the language of relevant OEGs to be those that can be assembled from this OES.
Rules can then be developed for building these OEGs for a given π-calculus terms. There
are multiple ways of approaching this task and many variations could serve as the basis for
the construction of the OES. However, we will focus on constructing an OEG semantics that
is as close to the reduction semantics as possible.

OEG Reduction Semantics

Before pinning down the dependency types of the OES, it is worth enumerating the possible
kinds of events. The key event that appears in the reduction semantics is the reduction itself.
There are two kinds of reductions: one that involves only one reactant, guarded by a τ , and
one that involves two reactants, one guarded by a send and the other by a receive. These two
events are shown in the reduction rules internal and communicate. In addition, following
the interpretation that replication is an active process, replication constitutes a third kind
of event. These three kinds of events are depicted informally in Figure 8.1, with a sketch of
their incoming and outgoing dependencies.

Considering what goes into each of the first two of these events, a candidate for the set
of dependency types would be the subset of Nπ consisting of guarded processes Gπ • P : the

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 200

(a) (b) (c)

Figure 8.1: The three primary reduction events of π-calculus

monomials of Nπ. However, looking at the semantics, it can be seen that adding additional
monomials to the ones reacting in the event would still be consistent with what is happening
in the event. An internal action, for instance, from τ • P to P could eliminate other possible
actions N , and thus be an event with τ • P +N as its incoming dependency. In a nondeter-
ministic case, we could consider the occurrence of the event to represent a choice being made
for a term N1 + . . .+Nn ∈ Nπ about which of the monomials, Nk, participates in the event.
We could therefore consider all of Nπ to be potential incoming dependency types. Looking
at the third fundamental event, replication, we must also consider terms of the form P ! to
be potential incoming dependency types.

While the choice of Nπ along with P ! seem reasonable, the outgoing terms of our pro-
visional events must be much broader than these two constrained classes, encompassing the
whole scope of π-calculus terms. This would raise a problem with our original assumptions,
however, since none of the events would seem to act on P 8 Q as an incoming dependency.
We would have to posit an additional event to split this into its components, yet such an
event would not actually represent a substantial transformation in the constitution of the
term.

Nevertheless, we can use these considerations to restructure our provisional events in a
way that makes them consistent with all of our intuitions, particularly if we also incorporate
the fundamental notion of concurrency in the calculus. If our dependencies were π-calculus
terms, two dependencies P and Q, each involved in independent concurrent events, would be
represented in the language of OEGs as the product P ⊗ Q. We therefore have a good reason
to try and conflate the product of π-calculus 8 with the monoidal ⊗ -product of dependency
types so that monoidal products of dependencies correspond to 8 products of terms.

This observation would suggest that concurrent components of some sort (each term in a
8-product) should each be dependency type, and if we decompose these 8 products as much
as possible, the atomic concurrent components will be either terms in Nπ or terms of the

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 201

form P ! for some P . In order to formally justify this intuition about decomposing terms we
can appeal to the standard form of a π-calculus term.

{x} • (M1 8 . . . 8Mn 8Q1! 8 . . . 8Qn!) (8.1)

where Mi ∈ Nπ and each Qi is itself a term in this standard form. Milner shows in [47]
that any term P ∈ Tπ is structurally congruent to some term of this form. The proof of this
proposition is quite straightforward, and can be seen by simply considering the syntactic
possibilities. Supposing the top level of the syntax is a 8-product, every scope binding can
be pulled outside of the product using α-conversion. This would leave a product decomposed
entirely into either P ! terms or terms in Nπ. This process could then be carried out recur-
sively down the syntax tree to put the term inside of a repetition, or in front of a guard, all
in this same standard form.

This property ensures that any term in Tπ can be decomposed into irreducible concurrent
components that are precisely from the two classes, Nπ and P !, that we considered earlier
to be candidates for incoming dependency types. We can therefore use this fact to break up
the outgoing dependency types of our three provisional events to get three proper families
of event types. Depicted in Figure 8.2, the outgoing dependency types, rather than being
arbitrary π-calculus terms, are instead broken up into their concurrent components. In
Figure 8.2, we have glossed over the outer scoping around each 8 product of outgoing terms,
however, we will return to this subject later.

The picture we have created of a π-calculus term in standard form represented in the
interfaces of a OEG representing the behavior of reduction makes intuitive sense if we consider
the outermost product layer of a term to be the active concurrent state of the system, while
deeper layers represent latent continuations. Each time a guard is removed from a term
an inner layer can become part of the active concurrent state. To illustrate this intuition,
consider a term

τ • (A 8 τ •B) 8 a(y) • (C +D) 8 ā〈z〉 •E

with three concurrent components at the outermost layer. The leftmost component has two
latent components that become part of the outermost layer when an internal reduction
happens.

−→ A 8 τ •B 8 x(y) • (C +D) 8 ā〈z〉 •E

Before this transition, the inner term τ •B cannot reduce, instead remaining latent.2

τ • (A 8 τ •B) 8 a(y) • (C +D) 8 ā〈z〉 •E
6−→ τ • (A 8B) 8 a(y) • (C +D) 8 ā〈z〉 •E

2We could conceive of an unorthodox semantics in which inner terms can reduce, but this is rarely
considered. At the least, there is surely no tunneling of communication between layers, although this would
be a fascinating departure.

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 202

(a) (b) (c)

Figure 8.2: The three families of event types forming the OES for π-calculus

But after this transition, this term is now part of the outer layer and can reduce, further
exposing B to the outer layer.

−→ A 8B 8 x(y) • (C +D) 8 ā〈z〉 •E

Hence, it is only the outer layer of concurrent components that is actively involved in the
behavior of reduction, and must appear in an OEG representing this reduction. Replication
is the same in principle. Because behavior happens on the outermost layer of the term, there
is no reason to replicate on an inner layer. Replication can thus be treated as a behavioral
event happening exclusively on the outermost layer.

This idea is similar to that of weak-head normal form reduction in λ-calculus. Inner
layers of elements, guarded by λ-abstractions, do not get reduced, but instead stay passive
until they are exposed by the removal of the guard (which is λx • in this case in this case)
following an application. As an event, these reductions remove guards and expose the next
layer of internal components to the outermost layer where they can interact.

We can therefore define the dependency types of an OES Σπ as the set of ever kind of
term that will appear as a concurrent component the outermost layer of a term in standard
form.

Definition 45. Let Tπ
def
= Nπ ∪ {P ! | P ∈ Tπ}.

Consequently, a general element of Tπ, in the standard form 8.1, if we put the name
scoping aside for the moment, becomes a member of the free monoid of Tπ, Mon(Tπ) with
8 as the monoidal product and ∅ as the unit. In this OES, each π-calculus terms will be the
incoming or outgoing event interface of both event types and whole OEGs representing the
reduction of one whole term into another as a concurrent behavior.

This notion can be made more exact, and we can define a monoid over 8 products of
terms in Tπ as follows.

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 203

Definition 46. LetMπ be the monoid defined

Mπ = (‖Mon(Tπ)‖/ ∼=, 8, ∅)

where Mon(Tπ)/ ∼= are equivalence classes of 8 products of terms in Tπ over structural
congruence.

Using the standard form, as we defined it above, any term in Tπ can, via structural
congruence, be put into the form {x} • P , where 〈P 〉 ∈ Mπ and x is some, potentially
empty, set of names. In other words, Mπ covers Tπ, modulo structural congruence, up to
the scoping of names.

The above definition of Mπ as the free monoid that naturally emerges from our choice
for Tπ leaves a gap that we will fill in, but only after a couple outstanding considerations
are addressed. It is important to note that in the proof that 8.1 is the standard form for any
π-calculus term, congruence P ! ∼= P 8 P ! is not used. Given that we are positing replication
as a proper event, and will be representing it as a event type, we can remove it from the
axioms for structural congruence. Given the language of symmetric monoidal categories has
a family of braiding constants, which explicitly commute terms

β(P, Q) : P 8Q→ Q 8 P

the axiom of commutativity could also be taken out of structural congruence. The effect of
removing this axiom on the standard form would only be that the order of terms in the 8
product would be changed, and therefore the replication terms could not always be placed
after the terms in Nπ, but this is of little semantic consequence. Here a trade-off is made
between the explicit need to commute terms, potentially so that they can interact, and
having the ability to sequentially compose two reductions in a well-defined fashion with the
order of concurrent terms made explicit.

Another reason to omit these two axioms from structural congruence is that the concur-
rent composition monoidMπ becomes isomorphic with Mon(Tπ), since the only remaining
axioms over 8 are associativity and identity. Consequently, we can state that two words
a, b ∈Mon(Tπ) are equal if and only if they satisfy out modified form of structural congru-
ence.

The new, shorter set of axioms, outlining a weaker form of structural congruence is as
follows.

Definition 47. Modified π-calculus Structural Congruence
The modified equivalence relation of structural congruence ∼= is defined over Tπ as ∼=α along
with the following axioms.

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 204

For 8 P 8 (Q 8R) ∼= (P 8Q) 8R
∅ 8 P ∼= P 8 ∅ ∼= P

For + N + (M +K) ∼= (N +M) +K
∅+N ∼= N + ∅ ∼= N
N +M ∼= M +N

For {•} {a} • {b} • P ∼= {b} • {a} • P
{a} • ∅ ∼= ∅

{a} • (P 8Q) ∼= {a} • P 8Q, where a 6∈ FVπ(Q)
{a} • (P 8Q) ∼= P 8 {a} •Q, where a 6∈ FVπ(P)

with ∼= incorporating the equivalence of α-conversion on bound variables.

From this point forward ∼= will be of this modified form, while ∼=o will represent the
original congruence. Furthermore, from this point forward, we will make an important
additional simplification to ease subsequent definitions. The sets of terms Tπ, Tπ, Nπ, etc...
will all be projected onto their quotient over α-conversions. That is, we will consider {x} • P
and {y} • P [x 7→ y] to be the same terms in Tπ. This expedites matters greatly, and should
not be very controversial to most who study programming languages. Another small detail
that needed to be changed in the new definition of structural congruence is that the last
law, regarding scope extension, must now be given for both the left and right-hand sides
of a 8-product. Without commutativity, one is no longer derivable from the other, as was
previously the case.

Using this new structural congruence and our (α-invariant) definition of Tπ, we can define
a modified standard form.

Definition 48. A π-calculus term P ∈ Tπ is in standard form, P ∈ T]
π , iff

P = {x} • (P1 8 . . . 8 PN), where Pk ∈ Tπ

We can then prove, using our new structural congruence rules that any term is structurally
congruent to one in this standard form. No less, there is a deterministic procedure to
normalize a term into standard form, and thus normalization to standard form can be defined
as a function.

Proposition 21. There exists a function

i : Tπ → T]
π

defined recursively

i(N ∈ Tπ) = N

i({x} • P) = {x} • i(P)
i(P 8Q) = u(i(P), i(Q))

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 205

where

u : T]
π × T]

π → T]
π

u({x} • P, {y} •Q) = {w,v} • (P [x 7→ w] 8Q[y 7→ v])

with w, v 6∈ FVπ(P) ∪ FVπ(Q)

Proof. Addressing the function u first, it must be shown that the type of the function is
correct. Since every parameter to the function is of the form {x} • P by definition, the P
and Q in the definition are both inMπ. Consequently, P 8 Q ∈ Mπ as well, and thus the
RHS of the definition is in T]

π .
Next, we will show that

{x} • P 8 {y} •Q ∼= u({x} • P, {y} •Q)

By α-conversion, for a set of names w and v

{x} • P 8 {y} •Q ∼= {w} • P [x 7→ w] 8 {v} •Q[y 7→ v]

If these names have been chosen such that they are not in FVπ(P)∪FVπ(Q), then applying
the structural congruence laws for scope extension

{w} • P [x 7→ w] 8 {v} •Q[y 7→ v]

= {w} • (P [x 7→ w] 8 {v} •Q[y 7→ v])

= {w} • {v} • (P [x 7→ w] 8Q[y 7→ v])

= {w,v} • (P [x 7→ w] 8Q[y 7→ v])

verifying the congruence through u.
We must then establish that i is well-defined for the given typing. This is the case

because u is a well-defined function into T]
π and Tπ ⊆ T]

π . The rest follows from structural
induction over the syntax of terms in Tπ. In the base case,

i(N) = N ∈ Tπ ⊆ T]
π

In the second case, if i(P) ∈ T]
π , which is the induction hypothesis, then {x} • P ∈ T]

π as
well. The third case follows from the above proof of the typing for the function u.

Finally, it must be shown that i(P) ∼= P . This also follows from structural induction.
In the base case, this congruence is trivially true. In the second case, this congruence follows
from the induction hypothesis and substitution. In the final case, this congruence follows
from the above property of u along with the induction hypothesis and substitution.

i(P 8Q) = u(B(P), B(Q)) ∼= B(P) 8B(Q) ∼= P 8Q

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 206

Given this modified structural congruence, we are left with the final question of how to
properly address the scoping gap between Mπ and Tπ. Here we must ask an important
semantic question: with respect to the reduction semantics, what is the effect of the out-
ermost scoping operator on the reduction of a term in standard form? We can restrict the
question to the case of the outermost scoping, since this fully accounts for the gap. From the
semantic scoping rule involving it, it can be seen that, behaviorally, a term has all of the
same reductions with or without the outermost scoping. The scoping operator can therefore
be seen (at least in the case of the reduction semantics) as of syntactic importance primarily
to the inner layers of a term.

We can therefore state that when studying reduction of a term in Tπ, we can look at its
projection toMπ achieved by putting the term in standard form and stripping off the outer
layers of scoping.

Definition 49. Let the scoping projection be defined

ג : Tπ →Mπ

P)ג) = Q, where {x} •Q = i(P), Q ∈Mπ

This definition is well-defined as a consequence of the above definition of standard form,
because a deterministic procedure was given for normalizing a term to standard form.

This projection ג operation reduces any whole π-calculus term into a member of Mπ,
and thus a free monoidal product of dependency types in Tπ, the interfaces of our reduction
OEGs. But we must consider how this form is maintained through reduction, which exposes
inner layers of Tπ to the product of Tπ. This exposure of inner layers must be normalized
such that the whole term is again in a member ofMπ, stripped of outer scoping.

It is almost a give that the above description will be difficult to interpret, so we will give
a clarifying example to illustrate the point. Consider the following term inMπ.

P1 8 P2 8 τ • {x} • (Q1 8Q2) 8 P3

We will first exercise some of the descriptive language we have used liberally in couple
preceding paragraphs. This term consists of four concurrent components: P1, P2, P3, and
τ • {x} • (Q1 8Q2). The last of these components is clearly in Tπ, and we presume the other
three to be as well. These four terms constitute the outer layer of the reduction process, and
the three possible reduction events could occur to any of these four, or any pair, under the
conditions imposed by the guards or replication operators. The term that has been written
out explicitly, τ • {x} • (Q1 8Q2), can be reduced using the internal rule. This would expose
the inner layer {x} • (Q1 8Q2). The concurrent components in this inner layer, Q1 and Q2,
cannot react until they are part of the outer layer of concurrent components.

If this internal reaction occurs via the standard reduction semantics, the result would
be the term

P1 8 P2 8 {x} • (Q1 8Q2) 8 P3

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 207

which, of course, is no longer in standard form. The inner layer is exposed, but it is still
bounded by a scoping of the variable x. Nevertheless, because of α conversion, the only
barrier to simply shaking off the scoping is a potential collision of x with the free variables
in other three Pk terms. If a supply of new names existed for the outermost layer, distinct
from the free variables of the whole term, one could simply draw one of these names y and
substitute for x, resulting in the term

P1 8 P2 8 {y} • (Q1[x 7→ y] 8Q2[x 7→ y]) 8 P3

Then, given y is disjoint from the free variables in all the other terms, scope extension can
pull the scope to the outside, returning the term to standard form.

{y} • (P1 8 P2 8Q1[x 7→ y] 8Q2[x 7→ y] 8 P3)

Finally, the outer scoping can be again stripped off, yielding a term inMπ.

P1 8 P2 8Q1[x 7→ y] 8Q2[x 7→ y] 8 P3

The Qk concurrent components are then exposed completely to the outer layer of the term,
and can participate in reductions.

What can be taken from this example is that if we are provided with a supply of unused
names, each kind of reaction can incorporate the above form of substitution to its outgoing
dependencies as part of its action exposing an inner layer of concurrent components. To be
specific, the internal event type does the following, given a set of new names V :

1. takes in a term of the form τ • P as an incoming dependency

2. reduces the term to P

3. normalizes P to standard form {x} • (Q1 8 . . . 8QN)

4. substitutes new names y ∈ V for x resulting in the term

{y} • (Q1[x 7→ y] 8 . . . 8QN [x 7→ y])

5. strips the outer scoping, since it is safe to do so, producing a term

Q1[x 7→ y] 8 . . . 8QN [x 7→ y]

inMπ

6. yields each of Qk[x 7→ y] as an outgoing dependency

These same steps can be adapted to the other two event type cases similarly, thereby dealing
with the issue of scoping. In order to notationally simplify these extra steps, the following
operator will be defined.

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 208

Definition 50. Given a list of variables V and P ∈ Tπ, let the following operation be defined

ΞV
x(P) = P [x 7→ y]

where y are ‖x‖ variables drawn from V.

Although this operation should suffice to convey the basic idea precisely, a further tech-
nicality elided in it is that the given list of variables must be returned having had the used
variables removed. The reader should be able to augment the above definition, and the uses
of it below to account for this without much more than additional notational machinery.

Using this set of dependency types, and this new definition of structural congruence, we
can proceed to formally define the event types of the OES inductively.

Definition 51. π-calculus OES
Let a family of internal event types, Rτ (−; −, −), be defined

N, M, P1, . . . , Pn ∈ Nπ V is a list of new variables

N ∼= τ • {x} • (P1 8 . . . 8 Pn) +M P ∼= ΞV
x(P1) ⊗ . . . ⊗ ΞV

x(Pn)

Rτ (V ; N, P) : N → P

Let a family of communication event types, Ra(−; −, −, −, −), be defined

N, M, P1, . . . , Pn, Q1, . . . , Qm ∈ Nπ V is a list of new variables

N ∼= ā〈b〉 • {x} • (P1 8 . . . 8 Pn) +M L ∼= a(y) • {z} • (Q1 8 . . . 8Qm) +K

P ∼= ΞV
x(P1) ⊗ . . . ⊗ ΞV

x(Pn) Q ∼= ΞV
z (Q1) ⊗ . . . ⊗ ΞV

z (Qn)

Ra(V ; N, P, L, Q) : N ⊗ L→ P ⊗ Q[y 7→ b]

Let a family of replication event types, R!(−; −), be defined

P1, . . . , Pn ∈ Nπ V is a list of new variables

P ∼= {x} • (P1 8 . . . 8 Pn) P ′ ∼= ΞV
x(P1) ⊗ . . . ⊗ ΞV

x(Pn)

R!(V ; P ′) : P !→ P ′ ⊗ P !

Let Aπ consist of all Rτ , Ra, and R! event types, over all parameters (sorted by event
interface).

When using these notations, R, Rτ , and R!, we will sometimes suppress their parameters
for brevity.

Having defined the dependency types and event types, the OES can be defined as follows.

Definition 52. π-calculus OES
Let the OES of π-calculus be defined Σπ

def
= (Tπ, Aπ).

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 209

Figure 8.3: An example of an OEG representing the reduction of a term.

From this OES, the free symmetric monoidal category of OEGs, OEG(Σπ), is determined.
This is ultimately what we intend to use to represent the behavior of π-calculus terms under
reduction. To summarize the structure of this free symmetric monoidal category, each object
is identified with an element ofMπ, which, as we reasoned earlier, are the standard forms of
Tπ without the outer scoping (and with fixed component orderings), while each morphisms
between any two objects represents a reduction from one term in Mπ to another in Mπ.
The category OEG(Σπ) gives the semantics of π-calculus insomuch as for any term t ∈ Tπ
the possible reductions are represented by the morphisms that have (t)ג as their domain.

To see how all of this fits together, we will look in detail at a straightforward example.

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 210

Consider the term

ā〈c〉 • (c(h) • h̄〈b〉 •Q 8 τ • f(w) • S) 8 a(y) • ȳ〈f〉 • P

Figure 8.3 depicts a reduction of this term as an OEG. The term itself is the incoming event
interface of the OEG, while the outgoing event interface is the reduced term

P 8Q 8 S[w 7→ b]

As is shown in the figure, the dependency edges internal to the OEG can all be identified
with terms from Nπ that constitute the concurrent components of the intermediate steps of
the reduction. These terms connect together four events: three communication reductions,
Ra, Rc, Rf , and one internal reduction, Rτ – to simplify syntax, for purposes of discussion,
we will suppress the parameters of each term as they can be inferred from the context. This
OEG can also be presented as term in algebraic language of symmetric monoidal category
as

(id ⊗ Rf) ◦ (Rc ⊗ Rτ) ◦ P(3 1 2) ◦ Ra

where P(3 1 2) is the permutation term constructed of β and id terms. Note that we also
have conflated the notation for events and event types such that 〈〈A〉〉, the atomic OEG
containing an instance of event type A, can just be written as A. Of course, there are many
possible equivalent symmetric monoidal category terms, and the one we chose was simply a
particularly compact one that matches the concrete rendering of the OEG.

To hold this in contrast with the conventional operational semantics, the two possible
confluent reduction sequences that can be carried out are:

ā〈c〉 • (c(h) • h̄〈b〉 •Q 8 τ • f(w) • S) 8 a(y) • ȳ〈f〉 • P
−→ c(h) • h̄〈b〉 •Q 8 τ • f(w) • S 8 c̄〈f〉 • P
−→β c̄〈f〉 • P 8 c(h) • h̄〈b〉 •Q 8 τ • f(w) • S

−→ P 8 f̄〈b〉 •Q 8 τ • f(w) • S

−→ P 8 f̄〈b〉 •Q 8 f(w) • S

−→ P 8Q 8 S[w 7→ b]

and

ā〈c〉 • (c(h) • h̄〈b〉 •Q 8 τ • f(w) • S) 8 a(y) • ȳ〈f〉 • P
−→ c(h) • h̄〈b〉 •Q 8 τ • f(w) • S 8 c̄〈f〉 • P
−→β c̄〈f〉 • P 8 c(h) • h̄〈b〉 •Q 8 τ • f(w) • S

−→ c̄〈f〉 • P 8 c(h) • h̄〈b〉 •Q 8 f(w) • S

−→ P 8 f̄〈b〉 •Q 8 f(w) • S

−→ P 8Q 8 S[w 7→ b]

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 211

(a)

(b)

Figure 8.4: A composition (a) between two OEGs and the resulting OEG (b).

In both of these reductions, the first step corresponds to the Ra event in Figure 8.3. In
the second step of both, we make commutation of concurrent components explicit with a
reduction marked with β. In the figure, this corresponds to the crossing dependencies. The
third and fourth steps in the two reductions, however, are different. These correspond to
the Rc reduction of the first two concurrent components in the third term, and to the Rτ

reduction of the third concurrent component. In the OEG, these two events appear as truly
concurrent. The final step is the same in both reductions and corresponds to the Rf event
in the figure.

Intuitively, this OEG indicates something much closer to what we expect the reduction to
actually represent. The concrete processes represented as the reductions of the pair of terms
c(h) • h̄〈b〉 •Q and c̄〈f〉 • P , and the term τ • f(w) • S, are causally independent processes.
One may start before the other, or they may start at the same time. Moreover, if they occur
concurrently, both taking a duration of time, they do not necessarily begin and end at the
same time; they may overlap only partially. The interleaving interpretation, contrastingly,
presupposes a kind of atomicity and synchrony.

A more important point about the OEG framing of the reduction that goes beyond

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 212

intuition can be seen in the way is that it composes. The term P , emerging from the Rc

reduction, could potentially participate in a subsequent reduction without waiting for the
Rf event to occur. The structure of the OEG makes this potential clear. For instance,
if P ∼= τ •R, a separate reduction from P 8 Q 8 S[w 7→ b] to R 8 Q 8 S[w 7→ b] could be
constructed as a OEG and composed in sequence with the reduction shown in Figure 8.3.
This composition is depicted in Figure 8.4a while the result shown in Figure 8.4b emphasizes
that the lowermost occurrence of the Rτ can occur concurrently with the Rf event.

Connecting the OEG Semantics to Structural Semantics

WithMπ
∼= Mon(Nπ) as our objects, the morphisms of OEG(Σπ) are, indeed, the reduction

OEGs that account for the behavioral semantics of π-calculus. Even if the category of OEGs
provides an interesting semantics, the question remains of how this semantics relates to the
original semantics 44 we recounted above. We have already made two important alterations
to the original reduction semantics (the way they most often appear). Specifically, we have
moved replication from being part of structural congruence to being an explicit reduction
(even though it is an expansion to be exact). We have also made commutation explicit to
ultimately match our language of OEGs.

Applying these changes first, we can formulate a modified reduction semantics as a struc-
tural operational semantics.

Definition 53. Modified Reduction Semantics
The operational semantics of evaluation for π-calculus is given by the rewrite relation −→ :
Tπ → Tπ defined inductively from the following derivations

(Internal)
τ • P +N −→ P

(Communicate)
(v̄〈x〉 • P +N) 8 (v(y) •Q+M) −→ P 8Q[y 7→ x]

(Replicate)
P ! −→ P 8 P !

(Commute)
P 8Q −→ Q 8 P

P −→ P ′
(Parallel)

P 8Q −→ P ′ 8Q
P −→ P ′

(Scoping)
{v} • P −→ {v} • P ′

Q ∼= P P −→ P ′ P ′ ∼= Q′
(Structural)

Q −→ Q′

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 213

Figure 8.5: An OEG interpretation of the parallel rule.

Here we have added the two new rules Replicate and Commute. The first three rules
now correspond very directly to the three families of event types in Σπ. Furthermore, the
fourth, Commute rule corresponds to a braiding OEG. There is a clear connection between
the reduction rules and the events and constants of the OEG-semantics. Reflecting on the
comment made earlier regarding structural operational semantics as being rooted in states
rather than events, it was argued that to move to an event-oriented representation, one
might somehow label or otherwise qualify the transitions. In the case of the above modified
reduction semantics, we can identify with the first four rules with the OEGs R, Rτ , R!, and
β, respectively, connecting the two representations of reduction events.

The remaining three rules, Parallel, Scope, and Structural, all derive reductions from
other reductions. In these cases, assume that we start with a reduction P −→ P ′, and that,
like the other four cases, we have a OEG G that corresponds to the reduction event. The
Scope and Structural rules would yield a reduction that could be identified with the same
OEG. In the first case, the scoping mechanisms have incorporated into the reduction using
the α-conversion technique we discussed earlier. In the second case, structural congruence
identifies terms that would already correspond to the same OEG.

This leaves the Parallel rule, which marks the most significant difference between the
two kinds of semantics. In operational semantics, as we discussed earlier, this rule allows a
single concurrent component (consisting of one or two reactants) of a product reduce by itself
while the rest of the components remain unchanged. Although the reduction rule is written
for the left component in the product, reducing the component on the right can be achieved
similarly via the Commute rule. If we assume that the reduction of one component P in a
product P 8 Q can be reduced to P ′ in a manner captured by the OEG G, then the OEG
representing the entire reduction, where Q remains unchanged, would be the OEG depicted
in Figure 8.5, consisting of a parallel composition of G and an identity element for all of the
dependencies that remain unchanged. We can write this term as G ⊗ id(Q), and therefore
this OEG can be used to represent events that takes place during this reduction.

Using these OEG fragments, attached to each reduction transition, the operational se-
mantics rules can be augmented to produce sequences of OEGs from sequences of transitions.

Definition 54. OEG-labeled Reduction Semantics

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 214

The operational semantics of evaluation for π-calculus is given by the rewrite relation −→ :
Tπ → Tπ defined inductively from the following derivations

(Internal)
τ • P +N

Rτ−→ P

(Communicate)
(v̄〈x〉 • P +N) 8 (v(y) •Q+M)

Rv−→ P 8Q[y 7→ x]

(Replicate)
P !

R!−→ P 8 P !

(Commute)
P 8Q

β(P,Q)−→ Q 8 P

P
G−→ P ′

(Parallel)
P 8Q

G8id(Q)−→ P ′ 8Q
P

G−→ P ′
(Scoping)

{v} • P
G−→ {v} • P ′

Q ∼= P P
G−→ P ′ P ′ ∼= Q′

(Structural)
Q

G−→ Q′

Applying these semantics to a term P , one gets a sequence of reductions,

P
G1−→ P1

G2−→ P2
G3−→ . . .

GN−→ PN

resulting in a term PN . Composing the OEGs in the labels of each reduction then gives an
OEG

G = GN ◦ . . . ◦ G2 ◦ G1

representing the reduction. This composition is always well-defined because the terms (mod-
ulo the outer scoping) represent the event interface of the OEGs. That is, in the above
sequence

Gn−→∈ homOEG(Σπ)(Pn−1, Pn)

Nevertheless, this construction, to be complete, must account for the issue of constructing
instances of event types with the right set of new variables V to correctly parameterize each
event types in this chain of compositions. Because the construction is a chain, there is no
problem in inserting this additional detail along the composition. One could either generate
a corresponding sequence of disjoint lists of variables, perhaps the mathematically easiest
means of achieving this end, or perhaps more modularly, each OEG Gk in the chain of
compositions could be wrapped in a monad, carrying the remaining elements of a single list
along the chain and removing elements as they are needed.3

3This latter technique should bear some familiarity to Haskell programmers.

CHAPTER 8. OEG SEMANTICS FOR PROCESS CALCULI 215

It is worth reminding the reader that while this construction is sequential, the value it
produces, the OEG itself, is nonetheless a true concurrent representation of reduction be-
havior. As a matter of fact, while the constructing sequences of compositions recapitulate
the structure of the existing operational semantics, the result of the composition correctly
conflates every such sequence that represents the same essential behavior when viewed con-
currently.

Take for instance the term we considered earlier in great detail, depicted in Figure 8.3.
If we take the two confluent reduction sequences worked out for the term and use the above
OEG-labeled semantics to convert them into OEG terms, we get the terms

(1 ⊗ Rf) ◦ (1 ⊗ Rτ) ◦ (Rc ⊗ 1) ◦ β ◦ Ra

and

(1 ⊗ Rf) ◦ (Rc ⊗ 1) ◦ (1 ⊗ Rτ) ◦ β ◦ Ra

respectively. Under the axioms of symmetric monoidal categories, these two terms are equiv-
alent, both amounting to the same OEG shown in the figure. Of the many equivalent ways
this OEG could be described by a term, perhaps the one that most intuitively conveys the
notion of concurrency is neither of the above two, but instead the term

(1 ⊗ Rf) ◦ (Rc ⊗ Rτ) ◦ β ◦ Ra

which places the two concurrent events in a parallel composition.
The key to the OEG representation of this reduction is that all of these term presentations,

some representing the sequential interleavings and some involving parallel compositions, have
the same underlying OEG as their value. The OEG therefore captures something more
essential, more ontological, about the reduction as a distributed computational behavior.

216

Chapter 9

Conclusions and Further Work

This thesis provides the potential beginning for a new approach to reasoning about dis-
tributed behavior in computational systems, rooted in a new representation of behavior that
has monoidal category theory at its mathematical foundation. The motivation has been to
identify and develop a representation of behavior capable of meeting the challenges of mod-
eling what we have termed HDDAs, applications that run on burgeoning platforms such as
the IoT and the Swarm. We have characterized the nature of these kinds of platforms, which
we have termed Process Fields, and illustrated how they diverge from more well-established
models of concurrent computation rooted in static networks of sequential components. In-
stead, Process Fields begin to dissolve the distinction between messages passed and process
states. We have argued that this increase in complexity necessitates a behavioral represen-
tation that is modular, composable, true concurrent, and event-based. Such a model would
constitute a basis for reasoning about distributed behavior that would open the door to de-
veloping formal semantics and formal verification and analysis methods for HDDAs running
on Process Fields.

We explored the possibilities of how distributed behavior could be represented from two
directions. First, we started with representations of sequential behavior, looking at them
in all of their mathematical nuances, then showed two distinct paths of generalization that
could be taken from sequential to concurrent computation, generalized sequences and free
monoidal categories, giving theoretical arguments for preferring the latter over the former.
Next, we explored existing representations of concurrent behavior, showing that they have
focused on the generalized sequence branch of concurrent generalization rather than that of
free monoidal categories, and consequently did not provide us with the measure of general
composability and modularity needed for our demands. This all suggested to instead pursue
free monoidal categories as a representation of behavior.

In order to prepare the reader (and ourselves) for the exploration of free monoidal cate-
gories as a mathematical foundation for behavioral representation, we devoted two chapters
to defining the tools we needed from category theory to construct such a representation.
First, we reviewed in detail the two constituting conceptual components of free monoidal
categories: monoidal categories and free constructions. The latter subject involved a review

CHAPTER 9. CONCLUSIONS AND FURTHER WORK 217

of the connection between universal properties in categories and adjoint functors, which
provided us with the needed mathematical machinery for applying the adjoint functor the-
orem. Subsequently, we gave a detailed construction of the monoidal schemes of Joyal and
Street, defined in [27], and elaborated on this construction to show that monoidal schemes
form a co-complete category, possessing both arbitrary coproducts and coequalizers. Using
monoidal schemes as generating structures, we gave a detailed construction for generating
free monoidal categories along with the specific variant of free symmetric monoidal categories,
proving what was needed to both establish this construction and to show, using adjoint func-
tor theorem, that all our construction carried over all small colimits from monoidal schemes
to monoidal categories.

A proposal was then given for a new representation of distributed behavior we called an
OEG. We gave an intuitive informal account of these structures and how they could be used
to represent behavior. OEGs are, in essence, acyclic ported block diagrams in which each
block represents an event and each connection represents a dependency. The collection of
event types, the primitive blocks out of which we can construct languages of these diagrams,
constitute what we called an OES, the alphabet of our representation. Examples were given
of OESs along with OEGs that could be built using them. Throughout this exposition, we
showed how OEGs fulfill our demands for modularity and composability, and contrast with
the other models we described previously.

We then proceeded to give a comprehensive formal definition of OESs and OEGs, defining
parallel and sequential operations over them, as well as families of constant elements and
special classes of OEGs. It was shown that the OEGs generated from a specific OES, along
with the compositions and constants, formed a symmetric monoidal categories, providing an
algebra to these representations. Using the results of Joyal and Street in [27], we showed that
the symmetric monoidal category defined by the OEGs generated from a particular OES is in
fact a free symmetric monoidal category. Consequently, the results regarding free symmetric
monoidal categories that we described in our discussion of free monoidal categories apply
directly to OEGs. Specifically, the co-completeness of the category of OESs provides a means
to abstract, embed, combine, and constrain OESs, while adjoint functor theorem permits us
to carry these operations all over to the corresponding spaces of OEGs.

Finally, we gave a detailed account of how OEGs can be used to defined a behavioral
semantics for the π-calculus. This involved a brief introduction to π-calculus and a recapitu-
lation of the conventional means of defining its reduction behavior via structural operational
semantics. We show how to use this conventional account to reason out a set of basic behav-
ioral event types that form an OES for term reduction. This involves some small modifica-
tions to the original semantics, most notably making replication into an explicit behavioral
event. We then show how an OEG-based semantics arise from this OES that captures the
essence of the original semantics in a true concurrent yet composable and modular fashion.

What we hope to have accomplished at this point is to have given the reader a convincing
and thorough case for using OEGs as the basis for the formal study of distributed behavior.
Nevertheless, what could be accounted for in the scope of this thesis has encompassed only
the beginning of the potential research that can be done around OEGs, or perhaps further

CHAPTER 9. CONCLUSIONS AND FURTHER WORK 218

elaborations on these kinds of behavioral representations. There are many directions for
further work that we will suggest, some of which have already been explored, albeit not to
the completion needed to include them in this thesis. We will give a brief account of some
of these areas of further work.

9.1 More Semantics

In Chapter 8, we gave an OEG-based semantics for reduction in the π-calculus in great
detail as a demonstration of how OEGs could be used to define the semantics of concurrent
programming languages. We also gave a simpler example in Chapter 7 of how to use OEGs
to define the semantics of message passing sequential processes. These examples should
hopefully provide enough conceptual intuition to see how a great many other programming
languages, abstract calculi, and MoC could be given OEG-based semantics. Preliminary
work has already been done exploring how to do this for variants of the π-calculus, as well
as for DF models.

Variants of π-calculus

The most obvious extensions of π-calculus that could be given OEG semantics are the asyn-
chronous variants, such as that of Boudol devised in [9]. In Milner’s original version, which
we have focused on, the primary communication reduction involves the rendezvous between
a sending and receiving term in Nπ. As we recall,

x̄〈a〉 • P 8 x(y) •Q −→ P 8Q[y 7→ a]

where we have elided choices for the moment. This reduction happens synchronously to the
two incoming terms, or in other words, the send and the receive are both blocking operations.
In some cases such as DF, it is more desirable to have only reads blocking in the fundamental
semantics of the calculus. Therefore, in Boudol’s variant, this reduction is broken up into
separate send and receive reductions. The former of these is no longer a reduction proper,
but a dissociation of a message x̄〈a〉 from a term x̄〈a〉 • P freeing P to further reduce before
the message is received (this dissociation is built upon a chemical metaphor in Boudol’s
paper). As a matter of fact, the x̄〈a〉 no longer a guard, but instead a proper term.

The receive reduction for an asynchronous π-calculus then is a simpler reduction

x̄〈a〉 8 x(y) •Q −→ Q[y 7→ a]

It is not hard to see how one would begin to modify the OEG semantics we have given to
codifying this variant. The event type for communication depicted in Figure 8.2b, that has
two incoming dependency types and two corresponding groups of outgoing dependency types
would have to be modified to produce only the concurrent components of the receiver, since
the sending term no longer has any. It would then remain to be determined whether the

CHAPTER 9. CONCLUSIONS AND FURTHER WORK 219

dissociation of messages, in essence sending them, would be an explicit event type in the
OES, or implicit somehow in the structure of dependencies.

Along similar lines, perhaps travelling in the opposite direction, one could also conceive
of a variant of π-calculus in which there is a reception of several simultaneous sends at once.
In this variant, a receive term might look like

[x1, . . . , xN](y1, . . . , yN) •Q

where each of xk is a name at which the term must receive a message and yk are the variables
to which the corresponding message would be bound (a better syntax might of course be
proposed). The corresponding reduction rule for this kind of a receive construct might look
like the following.

x̄1〈a1〉 • P1 8 . . . 8 x̄N〈aN〉 • PN 8 [x1, . . . , xN](y1, . . . , yN) •Q

−→ P1 8 . . . 8 PN 8Q[y1 7→ a1, . . . , yN 7→ aN]

This might appear superficially to be a superfluous enhancement since in some cases it would
be equivalent (for all intents and purposes) to replace this construct with a sequence of a
succession of receive guards in an arbitrary order. But if one considers the effect on the
sender, the above rule only permits any given sender to advance beyond its guard only when
all senders reduce together. This constrains the possible reductions.

Constructing the OEG semantics for this simultaneous variant would make the above
point regarding its semantic difference abundantly clear. The event type in Figure 8.2b
would be modified to potentially take in many sending dependency types along with the
receiving one, and produce as outgoing dependency types the components of all of them.

It might normally warrant some involved mathematical constructions to prove that these
variants are genuinely different, particularly using structural operational semantics, since
the comparison would be over sequences of reduction steps. But with OEG semantics one
can easily see, given the event type variations we have proposed for these two variants,
their the languages of OEGs are manifestly different topologically. The three different OES
generate three different (non-isomorphic) free symmetric monoidal categories. Comparing
and relating these semantics becomes a much more topological endeavor, and perhaps a
far more intuitive one as a consequence. Sketching out these different kinds of OEGs with
different kinds of event types reveals a tremendous amount of insight about the kinds of
concurrency, asynchrony, and synchrony achieved in each case.

Other Models of Computation and Languages

Developing OEG-based semantics for other Models of Computation and for practical pro-
gramming languages can proceed similarly to the way in which we showed it could be done
for the π-calculus. The basic event types can be sketched out, the dependency types in-
volved can be determined, and an OES can be constructed with them. Moreover, many
of the constructs developed as event types will likely be topologically similar in nature to

CHAPTER 9. CONCLUSIONS AND FURTHER WORK 220

those we have already discussed in the context of π-calculus. In the case of DF models, the
event types will likely be similar to those we discussed in the context asynchronous variants
of π-calculus, involving separate send and receive event types. In the case of synchronous
models, such as the SR or DE Models of Computation, defined in [14] and [11] respectively,
event types accomplishing synchronization will likely follow along the same lines as those we
discussed in latter variant of π-calculus, which can receive simultaneously.

In the context of CPS, there is little stopping one from complementing the event types
involved in the computational model with event types modeling physical events, the occur-
rences of which are semantically entangled in causal relationships with the computational
ones. The analogy we pursued in Chapter 2 between particle collisions in Quantum Field
Theory and the dynamics of our Process Fields could be taken as an indication that OEG
semantics can accommodate physical phenomena.

9.2 Mathematical Developments

A good deal of mathematical foundation is laid out in this thesis, particularly that of free
symmetric monoidal categories which serve as the formal underpinning of OEGs. Yet, this
work only scratches the surface of a more comprehensive mathematical study of OEGs.
There are a couple particularly important questions that demand further investigation.

Infinite OEGs

A dimension inevitable to the study of OEGs as a representation of behavior, and alluded to
in several places, is how to deal with infinite behaviors. As anyone who is familiar with this
kind of formal work knows all too well, dealing with the infinite presents many challenges
and complications. It would have been simple enough to permit the set of events in an OEG
to be infinite, a change about which parallel composition would remain indifferent. But then
it would raise a question about what the outgoing event interface would be for a OEG that
goes on infinitely. How would sequential composition work? Would we only sequentially
compose over the outgoing dependencies finitely deep in the OEG? Would it make sense to
compose two infinitely deep OEGs?

Even in these simple questions we gloss over an important distinction that might be made
between an infinitely deep OEG, with infinite chains of events, and an infinitely wide OEG,
with infinite sets of concurrent events. We could partially, if not entirely, avoid the latter.
Using Kőnig’s lemma1, we can be sure that a finitely deep OEG will only be infinitely wide if
we either permit the event interfaces of event types to be infinite or have a parallel product
of infinitely many disconnected components. But even then, at infinite depth there can still
be infinitely many concurrent events and no less uncountably many of them. This many not
be a problem however, and this may even serve as useful in certain situations.

1I had hoped to get to use this ubiquitous lemma at least once.

CHAPTER 9. CONCLUSIONS AND FURTHER WORK 221

It may even be useful to have infinite event interface, which could remedy some of the
issues with infinite depth. An example of this might be an open DF OEG which would
typically have an infinite sequence of incoming and outgoing dependency. Seeing how to
represent, let alone compose, these infinite interfaces cannot but strike one as challenging.
However, some encouraging progress has already been made in this direction.

Even if the problem of infinite OEGs were worked out around the formal treatment given
in Chapter 7, the more daunting task may be to work out the corresponding structures on
the side of monoidal category theory so that spaces of OEGs that include infinite members
remain connected to monoidal categories. If the right modifications could be made to the
operators, spaces of OEGs could remain symmetric monoidal categories, but they would
certainly no longer be free symmetric monoidal categories in the fashion developed in this
thesis. Algebraic structures that include infinite elements often can no longer be free. Take
a free monoid MonA generated from an alphabet A. If we add in the infinite words to
the underlying set, forming a set often notated A∗∗ in computer science, the monoid can no
longer be free, since the infinite elements cannot be generated from finite applications of the
operators and constants to the alphabet.

The way to deal with this issue might follow from some suggestions we made in Chapter 3.
Because free monoids have a natural prefix ordering on them, we can limit-complete (co-limit
in categorical terms) the space in order to include the infinite elements, giving us a kind of
free κ-CPO-monoid. Likewise, for a free monoidal category, we can show that the morphisms
have a similar prefix ordering that could be used to generate limit elements along iterative
applications of sequential composition (categorical composition). The limit elements would
have to have well-defined event interface, meaning that along infinite chains of prefixes, the
outgoing event interface would have to converge to something unique; themselves forming a
chain with a limit.

Working out all of these details would involve considerable work on the purely mathe-
matical side, unless such structures have already been investigated in category theory. To
the best knowledge of the author, no such structures appear to have been defined in the
literature.

Recursive Equations

A very related area that remains to be investigated further is that of recursive equations in the
algebraic language of OEGs, which is of course that of free symmetric monoidal categories. In
defining an OEG-based semantics of programming languages with explicit forms of recursion
it would only make sense to interpret the recursive constructions in, for instance, a functional
programming language, with recursive OEG equations. But of course, these equations would
only be meaningful characterizations of semantics if it could be determined whether solutions
could model them. This would at least depend on an understanding of infinite OEGs since
these would be the natural candidates for solutions to these recursive equations. Analogous
to the study of regular languages of strings in Kleene Algebras, it might be relevant to explore

CHAPTER 9. CONCLUSIONS AND FURTHER WORK 222

the possibility of regular kinds of OEGs, that involve periodic repetitions of sub-diagrams of
events, as the space of solutions to certain kinds of recursive formulae.

9.3 Logic and Formal Verification

One of the original questions that lead to the developments in this thesis is one that remains
unanswered by it. Yet, part of the motivation of pursuing the course of development herein
was to lay a foundation that made it possible to even begin to answer this question. The
question is of what kind of logic should be used in the specification of HDDAs in Process
Fields. In the introduction, we suggested that to answer such a question would be difficult
without having a sense of which structures, in our case behavioral representations, would
serve to model the formulae of such a logic.

The problem might have been approached in the opposite direction, first making informal
statements about HDDAs and formalizing them until the question could be raised of how to
interpret them precisely. But this would still require an intuition of what about we are making
these statements, and without a clear sense of the ontology of the space of computation that
we are describing, it would be hard to determine which kind of informal statements would
be meaningful.

Instead, we argued that having a behavioral representation first foremost would provide
a common currency to both construction of languages with precise semantics and logics with
precise models, serving the mediator between these two domains. We now have proposed
such a common currency as the behavioral representation of OEGs, and thus, insomuch as
one is convince that this is the representation we are looking for, we can address the question
about logics and specification languages by asking more specifically: what formal language
describes relevant properties of OEGs?

We have stated a number of times, in contrast to the logic we may be looking for, that LTL
has been the convention for describing properties of sequential (albeit perhaps interleaved)
traces [55]. If we move from interleaved traces to true concurrency, and more specifically,
to OEGs as a representation of behavior, what is the correspondent to LTL? Although this
question is yet to be answered, work has already been done to approach an answer from the
perspective of OEGs.

Towards a Logic for OEGs

What are relevant features of OEGs that can be made formal? For starters, OEGs provide
a lot of structure about which one might make a statement, in contrast to Event Structures
and other generalized sequences. In excess of Event Structures, OEGs express information
about precisely which role each event plays in the direct influence of another. Statements
can be therefore made regarding both the events as well as the dependencies that constitute
an OEG.

CHAPTER 9. CONCLUSIONS AND FURTHER WORK 223

A simple and obvious logic that might be appropriate for specification, but is likely too
broad for the purposes of verification, would simply be a first-order logic over the theory of
symmetric monoidal categories. This logic has as its atomic propositions symmetric monoidal
category equations, i.e.

β ◦ (G ⊗ F) = H ◦ (K ⊗ β ⊗ id)

This would cover event-oriented questions. To capture questions regarding dependencies,
the logic should be extended to also include statements about the incoming and outgoing
event interfaces of OEGs, which are simply assertions about the inclusion of morphisms in
symmetric monoidal category into their respective homsets, i.e.

G ∈ hom(a, b)

What follows from this, is that we should also be able to state equations in monoid formed
by the objects of the symmetric monoidal category, i.e.

a ⊗ b = c ⊗ b ⊗ b ⊗ e

Putting all of these kinds of formulae together with finite conjunctions, finite disjunctions,
negation, and quantification over both OEG and dependency variables would most certainly
constitute a powerful language for defining properties (collections) of OEGs.

224

Bibliography

[1] I. J. Aalbersberg. Theory of traces. Theor. Comput. Sci., 60(1):1–82, September 1988.

[2] S. Abramsky. What are the fundamental structures of concurrency? we still don’t know!
In Electronic Notes in Theoretical Computer Science, 162, pages 37–41, 2006.

[3] Samson Abramsky. Two puzzles about computation. arXiv preprint arXiv:1403.4880,
2014.

[4] Gul Abdulnabi Agha. Actors: a model of concurrent computation in distributed systems.
PhD thesis, 1985.

[5] Steve Awodey. Category theory. Oxford University Press, 2010.

[6] Henry Baker and Carl Hewitt. Laws for communicating parallel processes. Technical
report, MIT Artificial Intelligence Laboratory, 1977.

[7] Carlos Baquero and Nuno Preguiça. Why logical clocks are easy. Commun. ACM,
59(4):43–47, March 2016.

[8] Michael Blackstock and Rodger Lea. Toward a distributed data flow platform for the
web of things (distributed node-red). In Proceedings of the 5th International Workshop
on Web of Things, pages 34–39. ACM, 2014.

[9] Gérard Boudol. Asynchrony and the Pi-calculus. Research Report RR-1702, INRIA,
1992.

[10] J Dean Brock and William B Ackerman. Scenarios: A model of non-determinate com-
putation. In Formalization of programming concepts, pages 252–259. Springer, 1981.

[11] Adam Cataldo, Edward Lee, Xiaojun Liu, Eleftherios Matsikoudis, and Haiyang Zheng.
A constructive fixed-point theorem and the feedback semantics of timed systems. In
Workshop on Discrete Event Systems, July 10-12 2006.

[12] William Douglas Clinger. Foundations of actor semantics. PhD thesis, 1981.

BIBLIOGRAPHY 225

[13] Jack B. Dennis. First version of a data flow procedure language. In B. Robinet, edi-
tor, Programming Symposium, volume 19 of Lecture Notes in Computer Science, pages
362–376. Springer Berlin Heidelberg, 1974.

[14] Stephen A. Edwards. The Specification and Execution of Heterogeneous Synchronous
Reactive Systems. PhD thesis, EECS Department, University of California, Berkeley,
1997.

[15] J. Eker, J.W. Janneck, E.A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Yuhong Xiong. Taming heterogeneity - the ptolemy approach. Proceedings
of the IEEE, 91(1):127–144, Jan 2003.

[16] Colin J Fridge. Timestamps in message-passing systems. In Proceedings of the 11th
Australian Computer Science Conference, pages 56–66, 1988.

[17] Dan R Ghica. Function interface models for hardware compilation. In Formal Methods
and Models for Codesign (MEMOCODE), 2011 9th IEEE/ACM International Confer-
ence on, pages 131–142. IEEE, 2011.

[18] Carl Hewitt. Actor model of computation: scalable robust information systems. arXiv
preprint arXiv:1008.1459, 2010.

[19] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism
for artificial intelligence. In Proceedings of the 3rd international joint conference on
Artificial intelligence, pages 235–245. Morgan Kaufmann Publishers Inc., 1973.

[20] Thomas Hildebrandt, Prakash Panangaden, and Glynn Winskel. A relational model of
non-deterministic dataflow. In International Conference on Concurrency Theory, pages
613–628. Springer, 1998.

[21] Charles Antony Richard Hoare. Communicating sequential processes. In The origin of
concurrent programming, pages 413–443. Springer, 1978.

[22] Charles Antony Richard Hoare et al. Communicating sequential processes, volume 178.
1985.

[23] Paul Hudak and Steve Anderson. Pomset interpretations of parallel functional programs.
In Gilles Kahn, editor, Functional Programming Languages and Computer Architecture,
volume 274 of Lecture Notes in Computer Science, pages 234–256. Springer Berlin Hei-
delberg, 1987.

[24] Joyent Inc. Nodejs, 2016. [Online; accessed 27-September-2016].

[25] Thomas Jech. Set theory. Springer Science & Business Media, 2013.

BIBLIOGRAPHY 226

[26] Bengt Jonsson. A fully abstract trace model for dataflow networks. In Proceedings of
the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 155–165. ACM, 1989.

[27] André Joyal and Ross Street. The geometry of tensor calculus, i. Advances in Mathe-
matics, 88(1):55–112, 1991.

[28] André Joyal and Ross Street. Braided tensor categories. Advances in Mathematics,
102(1):20–78, 1993.

[29] André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. In Mathe-
matical Proceedings of the Cambridge Philosophical Society, volume 119, pages 447–468.
Cambridge Univ Press, 1996.

[30] Gilles Kahn and David Macqueen. Coroutines and Networks of Parallel Processes.
Research report, 1976.

[31] Joost N Kok. A fully abstract semantics for data flow nets. In International Conference
on Parallel Architectures and Languages Europe, pages 351–368. Springer, 1987.

[32] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, 1978.

[33] Elizabeth Latronico, Edward Lee, Marten Lohstroh, Chris Shaver, Armin Wasicek,
Matthew Weber, et al. A vision of swarmlets. Internet Computing, IEEE, 19(2):20–28,
2015.

[34] Edward A Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[35] Edward A Lee, Jan Rabaey, Björn Hartmann, John Kubiatowicz, Kris Pister, Alberto
Sangiovanni-Vincentelli, Sanjit A Seshia, John Wawrzynek, David Wessel, Tajana Simu-
nic Rosing, et al. The swarm at the edge of the cloud. IEEE Design & Test, 31(3):8–20,
2014.

[36] Marten Lohstroh and Chris Shaver. The universal information identifier, February 2014.

[37] Roberto Lucchi and Manuel Mazzara. A pi-calculus based semantics for ws-bpel. The
Journal of Logic and Algebraic Programming, 70(1):96–118, 2007.

[38] Nancy A Lynch and Eugene W Stark. A proof of the kahn principle for input/output
automata. Information and Computation, 82(1):81–92, 1989.

[39] Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer
Science & Business Media, 1978.

[40] Saunders MacLane. Natural associativity and commutativity. Rice Institute Pamphlet-
Rice University Studies, 49(4), 1963.

BIBLIOGRAPHY 227

[41] Eleftherios Matsikoudis and Edward A. Lee. The fixed-point theory of strictly causal
functions. Theoretical Computer Science, 574:39 – 77, 2015.

[42] Friedemann Mattern. Virtual time and global states of distributed systems. Parallel
and Distributed Algorithms, 1(23):215–226, 1989.

[43] Antoni Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI
Report Series, 6(78), 1977.

[44] Antoni Mazurkiewicz. Traces, histories, graphs: Instances of a process monoid. In
Mathematical Foundations of Computer Science 1984, pages 115–133. Springer, 1984.

[45] Antoni Mazurkiewicz. Trace theory. In Petri nets: applications and relationships to
other models of concurrency, pages 278–324. Springer, 1986.

[46] Robin Milner. A calculus of communicating systems. 1980.

[47] Robin Milner. Communicating and mobile systems: the pi calculus. Cambridge univer-
sity press, 1999.

[48] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, i.
Information and Computation, 100(1):1 – 40, 1992.

[49] N. Mor, B. Zhang, J. Kolb, D. S. Chan, N. Goyal, N. Sun, K. Lutz, E. Allman,
J. Wawrzynek, E. A. Lee, and J. Kubiatowicz. Toward a global data infrastructure.
IEEE Internet Computing, 20(3):54–62, May 2016.

[50] Mogens Neilsen, Gordon Plotkin, and Glynn Winskel. Petri nets, event structures and
domains. University of Edinburgh, 1979.

[51] Catuscia Palamidessi. Comparing the expressive power of the synchronous and asyn-
chronous pi-calculi. Mathematical Structures in Computer Science, 13(05):685–719,
2003.

[52] David Park. On the semantics of fair parallelism. In Abstract Software Specifications,
pages 504–526. Springer, 1980.

[53] Benjamin C Pierce. Basic category theory for computer scientists. MIT press, 1991.

[54] GD Plotkin. A structural approach to operational semantics. 1981.

[55] Amir Pnueli. The temporal logic of programs, Oct 1977.

[56] Vaughan Pratt. Modeling concurrency with partial orders. International Journal of
Parallel Programming, 15(1):33–71, 1986.

[57] Claudius Ptolemaeus, editor. System Design, Modeling, and Simulation using Ptolemy
II. Ptolemy.org, 2014.

BIBLIOGRAPHY 228

[58] Vladimiro Sassone, Mogens Nielsen, and Glynn Winskel. A classification of models for
concurrency. In CONCUR’93, pages 82–96. Springer, 1993.

[59] Vladimiro Sassone, Mogens Nielsen, and Glynn Winskel. Deterministic behavioural
models for concurrency. In International Symposium on Mathematical Foundations of
Computer Science, pages 682–692. Springer, 1993.

[60] Dana Scott. Outline of a mathematical theory of computation. Oxford University Com-
puting Laboratory, Programming Research Group, 1970.

[61] Dana S Scott and Christopher Strachey. Toward a mathematical semantics for computer
languages, volume 1. Oxford University Computing Laboratory, Programming Research
Group, 1971.

[62] P. Selinger. A Survey of Graphical Languages for Monoidal Categories, pages 289–355.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[63] Chris Shaver, Marten Lohstroh, and Matt Weber. Semantics of the swarm, October
2014. Poster presented at the 2014 TerraSwarm Annual Meeting.

[64] Carolyn L Talcott. Composable semantic models for actor theories. Higher-Order and
Symbolic Computation, 11(3):281–343, 1998.

[65] IBM Emerging Technologies. Node-red, 2016. [Online; accessed 27-September-2016].

[66] Stavros Tripakis, Christos Stergiou, Chris Shaver, and Edward A Lee. A modular formal
semantics for ptolemy. Mathematical Structures in Computer Science, 23(04):834–881,
2013.

[67] Steven Weinberg. The quantum theory of fields, volume 1. Cambridge university press,
1996.

[68] Glynn Winskel. Events in Computation. PhD thesis, The University of Edinburgh,
1980.

[69] Glynn Winskel and Mogens Nielsen. Models for concurrency. DAIMI Report Series,
22(463), 1993.

