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Abstract

Safety, Risk Awareness and Exploration in Reinforcement Learning

by

Teodor Mihai Moldovan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Pieter Abbeel, Chair

Replicating the human ability to solve complex planning problems based on minimal prior
knowledge has been extensively studied in the field of reinforcement learning. Algorithms for
discrete or approximate models are supported by theoretical guarantees but the necessary
assumptions are often constraining. We aim to extend these results in the direction of prac-
tical applicability to more realistic settings. Our contributions are restricted to three specific
aspects of practical problems that we believe to be important when applying reinforcement
learning techniques: risk awareness, safe exploration and data efficient exploration.

Risk awareness is important in planning situations where restarts are not available and
performance depends on one-off returns rather than average returns. The expected return
is no longer an appropriate objective because the law of large numbers does not apply. In
Chapter 2 we propose a new optimization objective for risk-aware planning and show that
it has desirable theoretical properties, relating it to previously proposed risk-aware objec-
tives: minmax, exponential utility, percentile and mean minus variance. In environments
with uncertain dynamics, exploration is often necessary to improve performance. Existing
reinforcement learning algorithms provide theoretical exploration guarantees, but they tend
to rely on the assumption that any state is eventually reachable from any other state by
following a suitable policy. For most physical systems this assumption is impractical as the
systems would break before any reasonable exploration has taken place. In Chapter 3 we
address the need for a safe exploration method. In Chapter 4 we address the specific chal-
lenges presented by extending model-based reinforcement learning methods from discrete
to continuous dynamical systems. System representations based on explicitly enumerated
states are not longer applicable. To address this challenge we use a Dirichlet process mixture
of linear models to represent dynamics. The proposed model strikes a good balance between
compact representation and flexibility. To address the challenge of efficient exploration-
exploitation trade-off we apply the principle of Optimism in the Face of Uncertainty that
underlies numerous other provably efficient algorithms in simpler settings. Our algorithm re-
duces the exploration problem to a sequence of classical optimal control problems. Synthetic
experiments illustrate the effectiveness of our methods.
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Chapter 1

Introduction

Humans display an impressive level of competence when learning to control dynamical
systems; we naturally account for stochastic disturbances, we make sure to never stray too
far from “safety”, we learn to make approximate predictions from experience and we choose
informative exploratory actions. As an example consider a novice pilot learning to fly a
remote controlled helicopter. In the early stages of learning we might see the main rotor
spinning up until the helicopter is almost ready to take off, then spinning back down; the
pilot has already learned that the most relevant control is the collective and is exploring
its effects. Keeping the helicopter close to the ground is a “safety” feature meant to pre-
vent large deviations from the horizontal orientation and, thus, ensure that future trials are
possible without crashing. Additionally the novice pilot might also manually reposition the
helicopter so that all trials start roughly from the same state usually situated in the cen-
ter of the room. Doing so ensures that past observations are relevant to the new trial and
minimizes the risk that random disturbances will bring the helicopter dangerously close to
walls. When learning more complex maneuvers pilots usually chose an appropriate “home
state”, typically corresponding to hover in the center of the room. From this home state they
execute exploratory trajectories aiming to get successively closer to a ”goal state“ such as in-
verted hover, while making sure that they can recover from unexpected outcomes and return
to the home state relying only on currently developed skills. Most impressively, pilots have
the ability to (re)discover aerobatic maneuvers without the need of expert demonstrations,
relying solely on trial and error.

In an effort to bring reinforcement learning closer to this type of real-world learning
ability we single out and investigate three features that we consider important: risk-aware
planning, safety when exploring and efficient exploration for continuous dynamical systems.

Although sensing is critically important to the learning process in practice, we do not
address it here and we assume that (noisy) observations of state are directly available. Sim-
ilarly, we acknowledge that experiments on physical hardware present numerous significant
challenges and we restrict our investigation to simulated domains. We propose general prin-
ciples for safety when exploring and risk-awareness but only show algorithms for discrete
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space planning problems. Our main focus is formulating planning problems that correspond
to the desired behavior; the methods used to solve these planning problems are outside the
scope of this work and we use off-the-shelf planners whenever possible.

Risk aware planning is the problem of choosing a sequences of actions to obtain reasonably
good rewards while safeguarding against improbable large loses. Chapter 2 is devoted to this
topic and follows the previously published article by Moldovan and Abbeel [52] with minor
extensions. Risk aware planning is preferable in situations where the environment does not
provide the option of consequence-free restarts, so the law of large numbers does not apply.
By contrast, in situations where the law of large numbers does apply (when independent and
identically distributed versions of the planning scenario are accessible) optimizing expected
rewards is the norm since the distribution of the average reward converges to the expectation.
Risk-aware planning is relevant in most practical situations because restarts are usually
costly or not available. The main difficulty is the absence of a generality accepted formal
definition of the intuitive notion of “risk-awareness”. We propose a new risk-aware objective
based on optimal Chernoff bounds and theoretically show its generality; specifically we show
that it subsumes a number of other previously proposed risk-aware objectives: minimax,
exponential utility, percentile minimax and, in the limit, expected return. Additionally we
show a provably efficient algorithm for planning with the newly proposed objective based on
sequential exponential utility optimization. We demonstrate our approach on a number of
synthetic grid worlds that are easy to analyse and on a problem based on real-world data:
planning air travel considering the risk of delayed flights.

Safety in the context of exploration refers to the trade-off between taking actions that are
more informative (flying the helicopter fast) and ensuring the prospect of more exploration
in the future. Chapter 3 is devoted to this topic and follows the previously published article
by Moldovan and Abbeel [53] with minor extensions. Safety differs from risk-awareness in
that no specific rewards are involved. Safety is important in situations where overly aggres-
sive control without the ability to make accurate predictions would lead to crashes requiring
costly repairs before exploration may resume. Unfortunately the theoretical guarantees of
most previously proposed exploration algorithms are restricted to domains where safe return
to a start state is guaranteed for all actions (ergodic domains). The ergodic assumption
allows for exploration algorithms that operate by simply favoring states that have rarely
been visited before. For most physical systems this assumption is impractical as the systems
would break before any reasonable exploration has taken place, i.e., most physical systems
don’t satisfy the ergodicity assumption. We propose a novel and general formulation of safety
through ergodicity. According to our definition, safe policies are those that guarantee return
to the start state with high probability even when the outcome of actions taken is uncertain.
We show that imposing safety by restricting attention to the resulting set of guaranteed safe
policies is NP-hard and subsequently proceed to presenting an efficient algorithm for guaran-
teed safe, but potentially suboptimal, exploration. At its core is an optimization formulation
in which the constraints restrict attention to a subset of the guaranteed safe policies and
the objective favors exploration policies. Our framework is compatible with the majority of
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previously proposed exploration methods, which rely on an exploration bonus. Our experi-
ments, which include a Martian terrain exploration problem, show that our method is able
to explore better than classical exploration methods in non-ergodic environments.

Exploration for continuous dynamical systems is the problem of choosing exploratory
actions when system dynamics are uncertain. Chapter 4 is devoted to this topic and sub-
stantially extends the results presented by Moldovan, Jordan and Abbeel at the Reinforce-
ment Learning and Decision Making Meetings (RLDM) 2013. The goal when exploring is to
reduce uncertainty in the dynamics as much as necessary to reach a pre-defined target state.
Exploration is important when system dynamics change in the course of operation (for ex-
ample because of wear or damage), when each individual system is unique due to variations
in manufacturing or when the environment changes (for example traversing different types
of terrains). Although numerous theoretically justified methods address the problem of effi-
cient exploration for discrete state spaces, most of these methods do not naturally extend to
continuous dynamical systems. We address this challenge with a newly proposed exploration
algorithm based on the principle of Optimism in the Face of Uncertainty, the same princi-
ple that motivates a large number of successful exploration algorithms in simpler settings.
To represent the uncertain system dynamics in a Bayesian framework we use the Dirichlet
process mixture of linear models; its advantages are discussed. Experiments show that our
method can solve swing-up and balance tasks for cartpole, under-actuated pendulum and
double pendulum as well as helicopter inverted hover, all starting with no knowledge of
the dynamics. The approach is highly automated requiring minimal task-specific parameter
tuning.
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Chapter 2

Chernoff Bounds for Markov Decision
Processes

2.1 Introduction

The expected return is often the objective function of choice in planning problems where
outcomes not only depend on the actor’s decisions but also on random events. Often ex-
pectations are the natural choice, as the law of large numbers guarantees that the average
return over many independent runs will converge to the expectation. Moreover, the linearity
of expectations can often be leveraged to obtain efficient algorithms.

Some games, however, can only be played once, either because they take a very long
time (investing for retirement), because we are not given a chance to try again if we lose
(skydiving, crossing the road), or because i.i.d.versions of the game are not available (stock
market). In this setting, we can no longer take advantage of the law of large numbers to
ensure that the return is close to its expectation with high probability, so the expected
return might not be the best objective to optimize. If we were pessimistic, we might assume
that everything that can go wrong will go wrong and try to minimize the losses under this
assumption. This is called minmax optimization and is sometimes useful, but, most often,
the resulting policies are overly cautious. A more balanced and general approach would
include minmax optimization and expectation optimization, corresponding respectively to
absolute risk aversion and risk ignorance, but would also allow a spectrum of policies between
these extremes.

As a motivating example, consider buying tickets to fly to a very important meeting.
Shorter travel time is preferable, but even more importantly, it would be disastrous if you
arrived late. Some flights arrive on time more often than others, and the delays might be
amplified if you miss connecting flights. With these risks in mind, would you rather take a
route with an expected travel time of 12:21 and no further guarantees, or would you prefer a
route that takes less than 16:19 with 99% probability? Our method produces these options
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when traveling from Shreveport Regional Airport (SHV) to Rafael Hernández Airport (BQN).
According to historical flight data, if you chose the former alternative you could end up
travelling for 22 hours with 8% probability. Another example comes from software quality
assurance. Amazon.com requires its sub-services to report and optimize performance at the
99.9th percentile, rather than in expectation, to make sure that all of its customers have
a good experience, not just the majority [26]. In the economics literature, this percentile
criterion is known as value at risk and has become a widely used measure of risk after
the market crash of 1987 [40]. At the same time, the classical method for managing risk in
investment is Markovitz portfolio optimization where the objective is to optimize expectation
minus weighted variance. These examples suggest that proper risk-aware planning should
allow a trade-off between expectation and variance, and, at the same time, should provide
some guarantees about the probability of failure.

Risk-aware planning for Markov decision processes (MDPs) is difficult for two main rea-
sons. First, optimizing many of the intuitive risk-aware objectives seems to be intractable
computationally. Both mean minus variance optimization and percentile optimization for
MDPs have been shown to be NP-hard in general [50, 31]. Consequently, we can only opti-
mize relaxations of these objectives in practice. Second, it seems to be difficult to find an
optimization objective which correctly models our intuition of risk awareness. Even though
expectation, variance and percentile levels relate to risk awareness, optimizing them directly
can lead to counterintuitive policies as illustrated recently in [50], for the case of mean minus
variance optimization, and in the appendix of this thesis, for percentile optimization.

Planning under uncertainty in MDPs is an old topic that has been addressed by many
authors. The minmax objective has been proposed by [59, 38], who propose a dynamic
programming algorithm for optimizing it efficiently. Unfortunately, minmax policies tend
to be overly cautious. A number of methods have been proposed for relaxations of mean
minus variance optimization [50, 46]. Percentile optimization has been shown to be tractable
when dealing with ambiguity in MDP parameters [32, 55], and it has also been discussed
in the context of risk [20, 65]. Our approach is closest to the line of work on exponential
utility optimization [51, 19]. This problem can be solved efficiently and the resulting policies
conform to our intuition of risk awareness. However, previous methods give no guarantees
about probability of failure or variance. For an overview of previously used objectives for
risk-aware planning in MDPs, see [27, 45].

Our method arises from approaching the problem in the context of probability theory.
We observe connections between exponential utility maximization, Chernoff bounds, and
cumulant generating functions, which enables formulating a new optimization objective for
risk-aware planning. This new objective is essentially a re-parametrization of exponential
utility, and inherits both the efficient optimization algorithms and the concordance to in-
tuition about risk awareness. We show that optimizing the proposed objective includes, as
limiting cases, both minmax and expectation optimization and allows interpolation between
them. Additionally, we provide guarantees at a certain percentile level, and show connections
to mean minus variance optimization.
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Two experiments, one synthetic and one based on real-world data, support our theoretical
guarantees and showcase the proposed optimization algorithms. Our largest MDP has 124791
state-action pairs—significantly larger than experiments in most past work on risk-aware
planning. Our experiments illustrate the ability of our approach to—out of the exponentially
many policies available—produce a family of policies that agrees with the human intuition
of varying risk.

This Chapter follows the previously published article by Moldovan and Abbeel [52] with
minor extensions.

2.2 Background and Notation

2.2.1 The Markov Decision Process

An MDP consists of a state space S, an action space A, state transition dynamics, and
a cost function G. Assume that, at time t, the system is in state st ∈ S. Once the
player chooses an action at ∈ A, the system transitions stochastically to state st+1 ∈ S,
with probability p(st+1|st, at), and the player incurs a stochastic cost of Gt(st, at, st+1). The
process continues for a number of time steps, h, called the horizon. We eventually care
about the total cost obtained. We represent the player’s strategy as a time dependent
policy, which is a measure on the space of state-actions. Finally, we set the starting state to
some fixed s0 ∈ S. Then, the objective is to “optimize” the random variable Jh, defined by
Jh :=

∑h−1
t=0 G

t(St, At, St+1).
Traditionally, “optimizing” J means minimizing its expected value (solving minπ Es,π [J ]).

The classical solution to this problem is to run value iteration, summarized below:

qt+1(s, a) :=
∑
s′

ps′|s,a
(
Gt
s,a,s′ + jt(s′)

)
jt(s) := min

a
qt (s, a) = min

π
Es,π[J t], πt(s, a) := 1{qt(s, a) = jt(s)}

We will refer to policies obtained by standard value iteration as expectimin policies. We use
upper case letters for random variables. We assume that the state-action space is finite and
that sums with zero terms, for example J0, are equal to zero. The notation Es,π signifies
taking the expectation starting from S0 = s, and following policy π.

We assume that costs are upper bounded, that is there exists jM such that J ≤ jM almost
surely for any start state and any policy, and that the expected costs are finite. Finally, in
this Chapter we will not consider discounting explicitly. If necessary, discounting can be
introduced in one of two ways: either by adding a transition from every state, for all actions,
to an absorbing “end game” state, with probability γ, or by setting a time dependent cost
as Gt

new = γtGt
old. Note that these two ways of introducing discounting are equivalent when

optimizing the expected cost, but they can differ in the risk-aware setting we are considering.
We refer the reader to [62] and [15] for further background on MDPs.
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2.2.2 Exponential Utility Optimization

An alternative way to “minimize” the random cost J is exponential utility optimization,
that is solving minπ Es,π

[
ezJ
]

for a fixed value of the parameter z > 0. The resulting
policies are known to be more or less risk aware depending on the value of the parameter
[51, 19]. Fortunately, exponential utility optimization for MDPs can be solved as efficiently
as expected cost minimization by an iterative algorithm similar to value iteration, which we
call cumulant generating function iteration (CGF iteration):

ut+1(s, a) := log
∑
s′

ps′|s,a exp
(

logE
[
e
zGt

s,a,s′
]

+ wt(s′)
)

wt(s) := min
a
ut (s, a) = min

π
logEs,π[ezJ

t

], πt(s, a) := 1{ut(s, a) = wt(s)},

where we assume that the random step-wise costs, Gt
s,a,s′ , have cumulant generating func-

tions, which is the case for bounded costs, normally distributed costs, and many others.
The algorithm we propose in this thesis repeatedly uses CGF iteration as a subroutine to
compute the optimal exponential utility, and the corresponding optimal policy, for different
values of the parameter.

2.3 The Chernoff Functional as Risk-Aware Objective

2.3.1 Introducing the Chernoff Functional

We propose optimizing the following functional of the cost, which we call the Chernoff
functional since if often appears in proving Chernoff bounds:

Cδ
s,π[J ] = inf

θ>0

(
θ logEs,π

[
eJ/θ

]
− θ log(δ)

)
. (2.1)

First, note the total cost appears in the expression of the Chernoff functional as an expo-
nential utility (Es,π[eJ/θ]). This shows that there is a strong connection between our method
and exponential utility optimization. Specifically, all polices proposed by our algorithm, in-
cluding the final solution, are optimal policies with respect to the exponential utility for some
parameter. These policies are known to show risk-awareness in practice [51, 19], and our
method inherits this property. In some sense, our proposed objective is re-parametrization
of exponential utility, which was obtained through its connections to Chernoff bounds and
cumulant generating functions.

The theorem below, which is one of the main contributions of this Chapter, provides
more reasons for optimizing the Chernoff functional in the risk-aware setting. We will state
and discuss the theorem here, but leave the proof for the appendix.
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2.3.2 Properties

Theorem 1. Let δ ∈ [0, 1], and let J be a random variable that is upper bounded. Then,
the Chernoff functional of this random variable, Cδ[J ], is well defined, and has the following
properties:

(i) P (J ≥ Cδ[J ]) ≤ δ

(ii) C1[J ] = limθ→∞ θ logE[eJ/θ] = E[J ]

(iii) C0[J ] := limδ→0C
δ[J ] = limθ→0 θ logE[eJ/θ] = sup{j : P{J ≥ j} > 0} <∞.

(iv) Cδ[J ] = E[J ] +
√

2 log(1/δ)Var[J ] if J is Gaussian.

(v) As δ → 1, Cδ[J ] ≈ E[J ] +
√

2 log(1/δ)Var[J ]

(vi) Cδ[J ] is a smooth, decreasing function of δ.

Proof sketch. Property (i) is simply a Chernoff bound and follows by applying Markov’s
inequality to the random variable eJ/θ. Property (iv) follows from the fact that all but the
first two cumulants of Gaussian random variables are zero [42]. Properties (ii), (iii), (v) and
(vi) follow from the following properties of cumulant generating function, logEezJ , [42]:

(a) logEezJ =
∑∞

i=1 z
iki/i! where ki are the cumulants [42]. The coefficients ki in general

don’t have simple expressions, but for i = 1, 2 we have k1 = E[J ], k2 = Var[J ].

(b) logEezJ as a function of z ∈ R is strictly convex, analytic and infinitely differentiable
in a neighborhood of zero, if it is finite in that neighborhood.

Properties (ii) and (iii) show that we can use the δ parameter to interpolate between the
nominal policy, which ignores risk, at δ = 1, and the minmax policy, which corresponds to
extreme risk aversion, at δ = 1. Property (i) shows that the value of the Chernoff functional
is with probability at least 1 − δ an upper bound on the cost obtained by following the
corresponding Chernoff policy. These two observations suggests that by tuning δ from 0
to 1 we can find a family of risk-aware policies, in order of risk aversion. Our experiments
support this hypothesis (Section 2.5).

Property (i) shows a connection between our approach and percentile optimization. Al-
though we are not optimizing the δ-percentile directly, our method provides guarantees about
it. Properties (v) and (iv) show a connection between optimizing the Chernoff functional
and mean minus variance optimization, which has been proposed before for risk-aware plan-
ning, but was found to be intractable in general [50]. Via property (v), we can optimize
mean minus variance with a low weight on variance if we set δ close to 1. In the limit,
this allows us to optimize the expectation, while breaking ties in favor of lower variance.
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Property (iv) show that we can optimize mean minus scaled standard deviation exactly if
the total cost is Gaussian. Typically, this will not be the case, but, if the MDP is ergodic
and the time horizon is large enough, the total cost will be close to Gaussian, by the central
limit theorem. The see why this is true, note that, by the Markov property, costs between
successive returns to the same state are i.i.d.random variables [33]. Our formulation ties into
mean minus standard deviation optimization, which is of consistent dimensionality, unlike
the classical mean minus variance objective.

2.4 Optimizing the Proposed Objective

2.4.1 Problem Statement

Finding the policy that optimizes our proposed objective at a given risk level δ amounts to
a double optimization problem:

min
π
Cδ
s,π[J ] = inf

θ>0

(
θ ·min

π
logEs,π

[
eJ/θ

]
− θ log(δ)

)
= inf

θ>0
(f(θ)− θ log(δ))

where f(θ) := θ ·min
π

logEs,π
[
eJ/θ

]
(2.2)

The inner optimization problem, the optimization over policies π, is simply exponential
utility optimization, a classical problem that can be solved efficiently as we discussed in
Section 2.2.2. Figure 2.1 shows a qualitative plot of the function defined above. The main
difficulty is solving the outer optimization problem, over the scale variable θ. Unfortunately,
this problem is not convex and may have a large number of local minima. Our main algo-
rithmic contribution consists of an approach for solving the outer (non-convex) optimization
problem efficiently to some specified precision ε.

Note that the Bellman optimality principle does not hold for our objective. In general,
the policy that optimizes the Chernoff functional for some starting state is not the same
as the policy that optimizes the Chernoff functional starting from the subsequent state.
Formally, it is not the case that argmaxπ C

δ
s,π[Jh] = argmaxπ C

δ
S′,π[Jh−1], where S ′ is the

successor state of s. For the principle to hold, one would have to allocate part of the risk
to what happens before time t and part of the risk to what happens after time t. This
requires either pre-allocation of risk, or incorporation of all possible risk scenarios into the
state (which leads to an impractical increase in state-space size for most problems). Our
approach automatically allocates risk over the entire duration of the MDP.

2.4.2 Algorithm

Based on Theorems 1 and 2 (below), we propose a method for finding the policy that mini-
mizes the Chernoff functional, to precision ε, with worst case time complexity O(h|S|2|A|/ε).
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Expectimin cost
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exact (f)
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Figure 2.1: Qualitative example of the function f defined in Equation (2.2) and the approx-
imation f̂ computed by Algorithm 1.

It is summarized in Algorithm 1. Our approach is solving the optimization problem in (2.2)
with an approximation of the function f . The algorithm maintains such an approximation
and improves it as needed up to a precision of ε. Importantly, the same approximate function
is shared between subsequent optimization problems (for different values of δ), explaining
the somewhat surprising result that the worst case time complexity (expressed in terms of
number evaluations of f) does not have a strong dependence on the number of δ values.

Properties (ii) and (iii) of Theorem 1 imply that f(0) can be computed by minimaxop-
timization and f(∞) can be computed by value iteration (expectimin optimization), which
both have the same time complexity as exponential utility optimization: O(h|S|2|A|). Once
we have computed these limits, the next step in the algorithm is finding some appropriate
bounding interval, [θ1, θ2], such that f(0) − f(θ1) < ε and f(θ2) − f(∞) < ε. We do this
by first searching over θ = 1, .1, 10−2, · · · , and, then, over θ = 1, 10, 102, · · · . For a given
machine architecture, the number of θ values is bounded by the number format used in the
implementation. For example, working with double precision floating-point numbers limits
the number of θ evaluations to 2 · 1023, implied by the fact that exponents are only assigned
11 bits. In our experiments, this step takes 10-15 function evaluations.

Now, for any given risk level, δ, we will find θ∗ that minimizes the objective, f(θ)−θ log(δ),
among those θ where we have already evaluated f . We will, then, evaluate f at a new point:
the geometric mean of θ∗ and its closest neighbor to the right. We stop iterating when the
function value at the new point is less than ε away from the function value at θ∗, and return
the corresponding optimal exponential utility policy. Consequently, our algorithm evaluates
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Algorithm 1 Near optimal Chernoff bound algorithm

Require: Markov Decision Process, MDP .
Require: error level, ε > 0, safety level δ.
fm ←M.expectimin value(), fM ←M.minmax value()
f̂ ← new empty hash map
f̂ [1]←M.optimal exponential utility(1)
repeat
θ1 ← min f̂ .keys()/10 (f̂ .keys() is the set of keys stored in the hash map f̂)
f̂ [θ1]← θ1 ·M.optimal exponential utility(1/θ1)

until fM − f̂ [θ1] < ε
repeat
θ2 ← max f̂ .keys() · 10
f̂ [θ2]← θ2 ·M.optimal exponential utility(1/θ2)

until f̂ [θ2]− fm < ε
repeat
θ∗ ← argminθ<θ2,θ∈f̂ .keys()(f̂ [θ]− θ log(δ)),

θn ← min{θ > θ∗, θ ∈ f̂ .keys()}
θc ←

√
θ∗ · θn

f̂ [θc]← θc ·M.optimal exponential utility(1/θc)
until f̂ [θ∗]− f̂ [θc] < ε
π ←M.optimal exponential utility policy(1/θ∗)
return π

f at a subset of the points {θ1(θ2/θ1)i/n : i = 0, · · · , n} where n is a power of 2. Theorem 2
guarantees that to get an ε guarantee for the accuracy of the optimization it suffices to
perform n(ε) = O(1/ε) evaluations of f , where we are now treating log(δ2) − log(δ1) as
a constant. Therefore, the number of functions evaluations is O(1/ε), and, since the time
complexity of every evaluation is O(h|S|2|A|), the total time complexity of the algorithm is
O(h|S|2|A|/ε).

2.4.3 Complexity Analysis

Theorem 2. Consider the interval 0 < θ1 < θ2 split up into n sub-intervals by θni =
θ1(θ2/θ1)i/n, and let f̂n(θ) := f(maxi∈0···n{θni < θ}) be our piecewise constant approximation
to the function f(θ) defined in Equation (2.2). Then, for a given approximation error ε there
exists n(ε) = O((log(δ2)− log(δ1))/ε) such that |f̂n(ε)(θ)− f(θ)| ≤ ε for all θ ∈ [θ1, θ2].

Proof sketch. The key insight when proving this theorem is bounding rate of change of f .
We can immediately see that fπ(θ) := θ logEs,π

[
eJ/θ

]
is a convex function since it is the

perspective transformation of a convex function, namely, the cumulant generating function
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of the total cost J . Additionally, Theorem 1 shows that fπ is lower bounded by Es,π[J ],
assumed to be finite, which implies that fπ is non-increasing. On the other hand, by directly
differentiating the definition of fπ, we get that θf ′π(θ) = fπ(θ)− Es,π[JeJ/θ]/Es,π[eJ/θ].

Since we assumed that the costs, J , are upper bounded, there exist a maximum cost jM
such that J ≤ jM almost surely for any starting state s, and any policy π. We have also
shown that fπ(θ) ≥ Es,π[J ] ≥ jm := minπ′ Es,π′ [J ], so we conclude that, for any policy, π,
the following holds:

−(jM − jm)/θ ≤ f ′π(θ) ≤ 0. (2.3)

Now that we have bounded the derivative of fπ we can see that the value of f can
not change too much over an interval [θni+1, θ

n
i ]. Let πi := argminπ fπ(θni ) and πi+1 :=

argminπ fπ(θni+1). Then:

0 ≤ f(θni )− f(θni+1) = fπi(θ
n
i )− fπi+1

(θni+1) ≤ fπi+1
(θni )− fπi+1

(θni+1) ≤
≤ max

θni ≤θ≤θni+1

|f ′πi+1
(θ)| · (θni+1 − θni ) = −f ′πi+1

(θni ) · (θni+1 − θni ) ≤

≤ (jM − jm) ·
θni+1 − θni

θni
= (jM − jm)

((
θ2

θ1

)1/n

− 1

)
, (2.4)

where we first used the fact that fπi(θ
n
i ) = minπ fπ(θni ) ≤ fπi+1

(θni ), then the convexity of
fπi+1

which implies that f ′πi+1
is increasing, and, finally, our previous result in Equation (2.3).

Our final goal is to find a value of n(ε) such that the last expression in Equation (2.4) is less
than ε. One can easily verify that the following n(ε) satisfies this requirement (the detailed
derivation appears in the Appendix):

n(ε) =

⌈
(jM − jm)

ε
log

(
θ2

θ1

)
+ log

(
θ2

θ1

)⌉
.

2.5 Experiments

We ran a number of experiments to test that our proposed objective indeed captures the
intuitive meaning of risk-aware planning. The first experiment models a situation where
it is immediately obvious what the family of risk-aware policies should be. We show that
optimizing the Chernoff functional with increasing values of δ produces the intuitively correct
family of policies. The second experiment shows that our method can be applied successfully
to a large scale, real world problem, where it is difficult to immediately “see” the risk-aware
family of policies.

Our experiments empirically confirm some of the properties of the Chernoff functional
proven in Theorem 1: the probability that the return is lower than the value of the Chernoff
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← δ ∈ {10−10, 10−8}

← δ ∈ {10−3, 10−4, 10−5, 10−6, 10−7}

← δ ∈ {0.1, 0.3}
← δ = .6

← δ ∈ {0.75, 0.9, 0.99, 1.0 (expectimin)}

Figure 2.2: Chernoff policies for the Grid World MDP. See text for complete description.
The colored arrows indicate the most likely paths under Chernoff policies for different values
of δ. The minimaxpolicy (δ = 0) acts randomly since it always assumes the worst outcome,
namely that any action will lead to a trap.

policy at level δ is always less than δ, setting δ = 1 corresponds to optimizing the expected
return with the added benefit of breaking ties in favor of lower variance, and setting δ = 0
leads to the minmax policy whenever it is defined. Additionally, we observed that policies at
lower risk levels, δ, tend to have lower expectation but also lower variance, if the structure
of the problem allows it. Generally, the probability of extremely bad outcomes decreases as
we lower δ.

2.5.1 Grid world

We first tested our algorithm on the Grid-World MDP (Figure 2.2). It models an obstacle
avoidance problem with stochastic dynamics. Each state corresponds to a square in the
grid, and the actions, {N, NE, E, SE, S, SW, W, NW}, typically cause a move in the
respective direction. In unmarked squares, the actor’s intention is executed with probability
.93. Each of the seven remaining actions might be executed instead, each with probability
0.01. Squares marked with $ and # are absorbing states. The former gives a reward of 35
when entered, and the latter gives a penalty of 35. Any other state transitions cost 1. The
horizon is 35. To make the problem finite, we simply set the probability of all transitions
outside the grid boundary to zero, and re-normalize. We set the precision to ε = 1. With this
setting, our algorithm performed exponential utility optimization for 97 different parameters
when planning for 14 values of the risk level δ. For low values of δ, the algorithm behaves
cautiously, preferring longer, but safer routes. For higher values of δ, the algorithm is willing
to take shorter routes, but also accepts increasing amounts of risk.
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(a) Cumulative distribution functions of rewards under Chernoff
policies at different risk levels. The asterisk (*) indicates the value
of the policy. The big O shows the expected reward and the
small o’s correspond to expectation plus-minus standard deviation.
10000 samples.

δ ∈ {.99, .999, 1.0 (expectimin)}:
15:45 SHV - DFW 16:45

18:25 DFW - MCO 21:50

23:15 MCO - BQN 02:46

δ ∈ {.3, .4, .5, .6, .7, .8, .9}:
10:46 SHV - ATL 13:31

14:10 ATL - EWR 16:30

18:00 EWR - BQN 23:00

δ = 0.2:
12:35 SHV - DFW 13:30

18:25 DFW - MCO 21:50

23:15 MCO - BQN 02:46

δ ∈ {0 (minimax) , .001, .01, .1}:
12:35 SHV - DFW 13:30

14:25 DFW - MSY 15:50

17:50 MSY - JFK 21:46

23:40 JFK - BQN 04:20

(b) Paths under Chernoff policies at
different risk levels assuming all flight
arrive on time.

SHVDFW

MCO

BQN

ATL

EWR

MSY

JFK

(c) Map showing the different paths

Figure 2.3: Chernoff policies to travel from Shreveport Regional Airport (SHV) to Rafael
Hernández Airport (BQN) at different risk levels. We are using International Air Transport
Association (IATA) airport codes.
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2.5.2 Air travel planning

The aerial travel planning MDP (Figure 2.3) illustrates that our method applies to real-
world problems at a large scale. It models the problem of buying airplane tickets to travel
between two cities, when you care only about reaching the destination in a reliable amount
of time. We assume that, if you miss a connecting flight due to delays, the airline will re-
issue a ticket for the route of your choice leading to the original destination. In this case, a
cautious traveler will consider a number of aspects: choosing flights that usually arrive on
time, choosing longer connection times and making sure that, in case of a missed connection,
there are good alternative routes.

In our implementation, the state space consists of pairs of all airports and times when
flights depart from those airports. At every state there are two actions: either take the flight
that departs at that time, or wait. The total number of state-action pairs is 124791. To
keep the horizon low, we introduce enough wait transitions so that it takes no more than 10
transitions to wait a whole day in the busiest airport (about 1000 flights per day) and we set
the horizon at 100. Costs are deterministic and correspond to the time difference between
the scheduled departure time of the first flight and the arrival time. We compute transition
probabilities based on historical data, available from the Office of Airline Information, Bureau
of Transportation Statistics, at http://www.transtats.bts.gov/. Particularly, we have
used on-time statistics for February 2011. Airlines often try to conceal statistics for flights
with low on-time performance by slightly changing departure times and flight numbers.
Sometimes, they do this every week. Consequently, we first clustered together all flights with
the same origin and destination that were scheduled to depart within 15 minutes of each
other, under the assumption they would have the same on-time statistics. We, then, remove
all clusters with less than 7 recorded flights, since these usually correspond to incidental
flights.

To test our algorithm on this problem, we randomly chose 500 origin - destination airport
pairs and computed the Chernoff policies for risk levels: δ ∈ {1.0, .999, .99, .9, .8, .7, .6, .5, .4,
.3, .2, .1, 0.01, 0.001, 0.0}, and precision ε = 10 minutes. Figure 2.3 shows the resulting poli-
cies and corresponding cost (travel time) histograms for one such randomly chosen route. To
address the question of computational efficiency, Figure 2.4a shows a histogram of the total
number of different parameters for which our algorithm ran exponential utility optimization.
To address the question of relevance, Figure 2.4b shows the number of distinct Chernoff poli-
cies found among the risk levels. Two policies, π and π′, are considered distinct if the total
variation distance of the induced state - action occupation measures is more than 10−6; that
is, if there exists t, s, and a such that |Pπ{St = s, At = a} − Pπ′{St = s, At = a}| ≥ 10−6.
For most origin - destination pairs we found a rich spectrum of distinct policies, but there
are also cases where all the Chernoff policies are identical or only the expectimax and mini-
maxpolicies differ.

In general, we observed that lowering δ will produce policies with higher expected travel
time, but lower standard deviation. However, in a few rare cases, we observed that lowering
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Figure 2.4: Histograms demonstrating the efficiency and relevance of our algorithm on 500
randomly chosen origin - destination airport pairs, at 15 risk levels.

δ produces both higher expected travel time and higher standard deviations. This seems sur-
prising if we only judge policies by mean and variance, however looking at histograms showed
that the lower δ policies avoided extremely bad outcomes, at the cost of higher variance. In
this case, our algorithm automatically traded performance in the mean minus variance sense
for performance in the percentile sense. Intuitively, such trade-offs are necessary whenever
the set of allowed policies is small, which is the case in this MDP.

2.6 Discussion

We proposed a new optimization objective for risk-aware planning called the Chernoff func-
tional. Our objective has a free parameter δ that can be used to interpolate between the
nominal policy, which ignores risk, at δ = 1, and the minmax policy, which corresponds to
extreme risk aversion, at δ = 0. The value of the Chernoff functional is with probability
at least 1 − δ an upper bound on the cost incurred by following the corresponding Cher-
noff policy. We established a close connection between optimizing the Chernoff functional
and mean minus variance optimization, which has been proposed before for risk-aware plan-
ning, but was found to be intractable in general. We also establish a close connection with
optimization of mean minus scaled standard deviation.

We proposed an efficient algorithm that optimizes the Chernoff functional to any desired
accuracy ε requiring O(1/ε) runs of exponential utility optimization. Our experiments il-
lustrate the capability of our approach to recover a spread of policies in the spectrum from
risk neutral to minmax requiring a running time that was on average about ten times the
running of value iteration.
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Chapter 3

Safe Exploration for Markov Decision
Processes

3.1 Introduction

When humans learn to control a system, they naturally account for what we think of as
safety. For example, when a novice pilot learns how to fly an RC helicopter, they will slowly
spin up the blades until the helicopter barely lifts off, then quickly put it back down. They
will repeat this a few times, slowly starting to bring the helicopter a little bit off the ground.
When doing so they would try out the cyclic (roll and pitch) and rudder (yaw) control,
while—until they have become more skilled—at all times staying low enough that simply
shutting it down would still have it land safely. When a driver wants to become skilled at
driving on snow, they might first slowly drive the car to a wide open space where they could
start pushing their limits. When we are skiing downhill, we are careful about not going down
a slope into a valley where there is no lift to take us back up.

One would hope that exploration algorithms for physical systems would be able to ac-
count for safety and have similar behavior naturally emerge. Unfortunately most existing
exploration algorithms completely ignore safety issues. More precisely phrased, most existing
algorithms have strong exploration guarantees, but to achieve these guarantees they assume
ergodicity of the Markov decision process (MDP) in which the exploration takes place. An
MDP is ergodic if any state is reachable from any other state by following a suitable policy.
This assumption does not hold true in the exploration examples presented above as each of
these systems could break during (non-safe) exploration.

The first contribution of this Chapter is a definition of safety, which, at its core, requires
restricting attention to policies that preserve ergodicity with some well controlled probabil-
ity. Imposing safety is, unfortunately, NP-hard in general. The second contribution of the
Chapter is an approximation scheme leading to guaranteed safe, but potentially sub-optimal,
exploration. Note that existing (unsafe) exploration algorithms are also sub-optimal, in that
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they are not guaranteed to complete exploration in the minimal number of time steps. A
third contribution is the consideration of uncertainty in the dynamics model that is corre-
lated over states. While usually the assumption is that uncertainty in different parameters
is independent—as this makes problem more tractable computationally—being able to learn
about state-action pairs before visiting them is critical for safety.

Our experiments illustrate that our method indeed achieves safe exploration, in contrast
to exploration methods that depend on the ergodicity assumption. They also show that our
algorithm is almost as computationally efficient as planning in a known MDP—but then,
as every step leads to an update in knowledge about the MDP, this computation is to be
repeated after every step. Our approach is able to safely explore grid worlds of size up to
50 × 100. Our method can make safe any type of exploration that relies on exploration
bonuses, which is the case for most existing exploration algorithms, including, for example,
the methods proposed in [22, 43]. In this Chapter we do not focus on the exploration
objective and use existing ones.

Safe exploration has been the focus of a large number of articles. [36, 9] propose safe
exploration methods for linear systems with bounded disturbances based on model predictive
control and reachability analysis. They define safety in terms of safe regions of the state
space, which, we will show, is not always appropriate in the context of MDPs. The safe
exploration for MDP methods proposed by [35, 37] gauge safety based on the best estimate
of the transition measure but they ignore the level of uncertainty in this estimate. As we
will show, this is not sufficient to provably guarantee safety.

Provably efficient exploration is a recurring theme in reinforcement learning [60, 47, 22,
41, 43]. Most methods, however, tend to rely on the assumption of ergodicity which rarely
holds in interesting practical examples; consequently, these methods are rarely applicable
for physical systems. The issue of provably guaranteed safety, or risk aversion, under un-
certainty in the MDP parameters has also been studied in the reinforcement literature. In
[55] they propose a robust MDP control method assuming the transition frequencies are
drawn from an orthogonal convex set by an adversary. Unfortunately, it seems impossible to
use their method to constrain some safety objective while optimizing a different exploration
objective. In [31] they present a safe exploration algorithm for the special case of Gaussian
distributed ambiguity in the reward and state-action-state transition probabilities, but their
safety guarantees are only accurate if the ambiguity in the transition model is small.

This Chapter follows the previously published article by Moldovan and Abbeel [53] with
minor extensions.

3.2 Notation and Assumptions

For an introduction to Markov Decision Processes (MDPs) we refer the readers to [62, 15].
In this chapter, we use capital letters to denote random variables; for example, the total
reward is: V :=

∑∞
t=0 RSt,At . We represent the policies and the initial state distributions by
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probability measures. Usually the measure π will correspond to a policy and the measure
s := δ(s), which puts measure only in state s, will correspond to starting in state s. With
this notation, the usual value recursion, assuming a known transition measure, p, reads:

Ep
s,π[V ] =

∑
a,s′

πs,a
(
E[R]s,a + ps,a,s′E

p
s′,π[V ]

)
.

We specify the transition measure as a superscript of the expectation operator rather than
a subscript for typographical convenience; in this case, and in general, the positioning of
indexes as subscripts or superscripts adds no extra significance. We will let the transition
measure p sometimes sum to less than one, that is

∑
s′ ps,a,s′ ≤ 1. The missing mass is

implicitly assigned to transitioning to an absorbing “end” state, which, for example, allows
us to model γ discounting by simply using γp as a transition measure.

We model ambiguous dynamics in a Bayesian way, allowing the transition measure to
also be a random variable. When this is the case, we will use P to denote the, now random,
transition measure. The belief, which we will denote by β, is our Bayesian probability
measure over possible dynamics, governing P and R. Therefore, the expected return under
the belief and policy π, starting from state s, is EβE

P
s,π[V ]. We allow beliefs under which

transition measures and rewards are arbitrarily correlated. In fact, such correlations are
usually necessary to allow for safe exploration. For compactness we will often use lower case
letters to denote the expectation of their upper case counterparts. Specifically, we will use
the notations p := Eβ[P ] and r := Eβ[R] throughout.

3.3 Problem formulation

3.3.1 Exploration Objective

Exploration methods, as those proposed in [22, 43], operate by finding optimal policies in
constructed MDPs with exploration bonuses. The R-max algorithm, for example, constructs
an MDP based on the discounted expected transition measure and rewards under the belief,
and adds a deterministic exploration bonus equal to the maximum possible reward in the
MDP, ξβs,a = rmax, to any transitions that are not sufficiently well known. Our method allows
adding safety constraints to any such exploration methods. Henceforth, we will restrict
attention to such exploration methods, which can be formalized as optimization problems of
the form:

maximize πo E
γp
s0,πo

∞∑
t=0

(
rSt,At + ξβSt,At

)
. (3.1)
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3.3.2 Safety Constraint

The issue of safety is closely related to ergodicity. Almost all proposed exploration techniques
presume ergodicity; authors present it as a harmless technical assumption but it rarely
holds in interesting practical problems. Whenever this happens, their efficient exploration
guarantees cease to hold, often leading to very inefficient policies. Informally, an environment
is ergodic if any mistake can be forgiven eventually. More specifically, a belief over MDPs
is ergodic if and only if any state is reachable from any other state via some policy or,
equivalently, if and only if:

∀s, s′,∃ πr such that EβE
P
s,πr [Bs′ ] = 1, (3.2)

where Bs′ is an indicator random variable of the event that the system reaches state s′ at
least once: Bs′ = 1{∃t <∞ such that St = s′} = min (1,

∑
t 1St=s′).

Unfortunately, many environments are not ergodic. For example, our robot helicopter
learning to fly cannot recover on its own after crashing. Ensuring almost sure ergodicity is
too restrictive for most environments as, typically, there always is a very small, but non-zero,
chance of encountering that particularly unlucky sequence of events that breaks the system.
Our idea is to restrict the space of eligible policies to those that preserve ergodicity with
some user-specified probability, δ, called the safety level. We name these policies δ-safe.
Safe exploration now amounts to choosing the best exploration policy from this set of safe
policies.

Informally, if we stopped a δ-safe policy πo at any time T , we would be able to return
from that point to the home state s0 with probability δ by deploying a return policy πr.
Executing only δ-safe policies in the case of a robot helicopter learning to fly will guarantee
that the helicopter is able to land safely with probability δ whenever we decide to end the
experiment. In this example, T is the time when the helicopter is recalled (perhaps because
fuel is running low), so we will call T the recall time. Formally, an outbound policy πo is
δ-safe with respect to a home state s0 and a stopping time T if and only if:

∃πr such that EβE
P
s0,πo

[
EP
ST ,πr

[Bs0 ]
]
≥ δ. (3.3)

Note that, based on Equation (3.2), any policy is δ-safe for any δ if the MDP is ergodic with
probability one under the belief. For convenience we will assume that the recall time, T , is
exponentially distributed with parameter 1− γ, but our method also applies when the recall
time equals some deterministic horizon. Unfortunately, expressing the set of δ-safe policies
is NP-hard in general, as implied by the following theorem proven in the appendix.

Theorem 3. In general, it is NP-hard to decide whether there exist δ-safe policies with
respect to a home state, s0, and a stopping time, T , for some belief, β.
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Figure 3.1: Starting from state S, the policy (aababab. . . ) is safe at a safety level of .8.
However, the policy (acccc. . . ) is not safe since it will end up in the sink state E with
probability 1. State-action Sa and state B can neither be considered safe nor unsafe, since
both policies use them.
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Figure 3.2: Under out belief the two MDPs above both have probability .5. It is intuitively
unsafe to go from the start state S to B since we wouldn’t know whether the way back is via
U or L, even though we know for sure that a return policy exists.

3.3.3 Safety Counter-Examples

We conclude this section with counter-examples to three other, perhaps at first sight more
intuitive, definitions of safety. First, we could have tried to define safety in terms of sets of
safe states or state-actions. That is, we might think that making the non-safe states and
actions unavailable to the planner (or simply inaccessible) is enough to guarantee safety.
Figure 3.1 shows an MDP where the same state-action is used both by a safe and by an
unsafe policy. The idea behind this counter-example is that safety depends not only on the
states visited, but also on the number of visits, thus, on the policy. This shows that safety
should be defined in terms of safe policies, not in terms of safe states or state-actions.

Second, we might think that it is perhaps enough to ensure that there exists a return
policy for each potential sample MDP from the belief, but not impose that it be the same
for all samples. That is, we might think that condition (3.3) is too strong and, instead, it
would be enough to have:

Eβ1{∃πr : EP
s0,πo

EP
ST ,πr

[Bs0 ] = 1} ≥ δ.

Figure 3.2 shows an MDP where this condition holds, yet all policies are naturally unsafe.
Third, we might think that it is sufficient to simply use the expected transition measure

when defining safety, as in the equation below. Figure 3.3 shows that this is not the case;
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Figure 3.3: The two MDPs on the left both have probability .5. Under this belief, starting
from state A, policy (aaa. . . ) is unsafe. However, under the mean transition measure,
represented by the MDP on the right, the policy is safe.

the expected transition measure is not a sufficient statistic for safety.

∃πr such that Ep
s0,πo

[
Ep
ST ,πr

[Bs0 ]
]
≥ δ.

3.4 Guaranteed Safe, Potentially Sub-optimal Explo-

ration

Although imposing the safety constraint in Equation (3.3) is NP-hard, as shown in The-
orem 3, we can efficiently constrain a lower bound on the safety objective, so the safety
condition is still provably satisfied. Doing so could lead to sub-optimal exploration since the
set of policies we are optimizing over has shrunk. However, we should keep in mind that
the exploration objectives represent approximate solutions to other NP-hard problems, so
optimality has already been forfeited in existing (non-safe) approaches to start out with.
Algorithm 2 summarizes the procedure and the experiments presented in the next section
show that, in practice, when the ergodicity assumptions are violated, safe exploration is
much more efficient than plain exploration.

Putting together the exploration objective defined in Equation (3.1) and the safety ob-
jective defined in Equation (3.3) allows us to formulate safe exploration at level δ as a
constrained optimization problem:

maximize πo,πr Eγp
s0,πo

∑
t

(
rSt,At + ξβSt,At

)
such that: EβE

P
s0,πo

[
EP
ST ,πr

[Bs0 ]
]
≥ δ.

The exploration objective is already conveniently formulated as the expected reward in an
MDP with transition measure γp, so we will not modify it. On the other hand, the safety
constraint is difficult to deal with as is. Ideally, we would like the safety constraint to also
equal some expected reward in an MDP. We will see that, in fact, it takes two MDPs to
express the safety constraint.

First, we express the inner term, EP
ST ,πr

[Bs0 ], as the expected reward in an MDP. We
can replicate the behaviour of Bs0 , that is counting only the first time state s0 is reached,
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Algorithm 2 Safe exploration algorithm

Require: prior belief β, discount γ, safety level δ.
Require: function ξ : belief → exploration bonus
M,N ← new MDP objects
repeat
s0, ϕ← current state and observations
update belief β with information ϕ
ξβs,a ← ξ(β) (exploration bonus based on β)
σβs,a ←

∑
s′ Eβ[min(0, Ps,a,s′ − Eβ[Ps,a,s′ ])]

M.transition measure← Eβ[P ](1− 1s=s0)
M.reward function← 1s=s0 + (1− 1s=s0)σ

β
s,a

πr, v ←M.solve()
N.transition measure← γEβ[P ]
N.reward function← Eβ[Rs,a] + ξβs,a
N.constraint reward func.← (1− γ)vs + γσβs,a
N.constraint lower bound← δ
πo, vξ, vσ ← N.solve under constraint()
qσs,a ← (1− γ)vs + γσβs,a +

∑
s′ ps,a,s′v

σ
s′

a← argmax{πos0,a>0} q
σ
s0,a

(de-randomize policy)

take action a in environment
until ξβ = 0, so there is nothing left to explore

by using a new transition measure, P · (1 − 1s=s0) under which, once s0 is reached, any
further actions lead immediately to the implicit “end” state. Formally, we express this by
the identity:

EP
ST ,πr

[Bs0 ] = E
P ·(1−1s=s0 )

ST ,πr

∞∑
t=0

1St=s0 .

We now focus on the outer term, EP
s0,πo

[
EP
ST ,πr

[Bs0 ]
]
. Since the recall time, T , is exponen-

tially distributed with parameter 1− γ, we can view ST as the final state in a γ-discounted
MDP starting at state s0, following policy πo. In this MDP, the inner term plays the role of
a terminal reward. To put the problem in a standard form, we convert this terminal reward
to a step-wise reward by multiplying it by 1− γ.

EβE
P
s0,πo

[
EP
ST ,πr

[Bs0 ]
]

= EβE
γP
s0,πo

∞∑
t=0

(1− γ)
[
EP
St,πr [Bs0 ]

]
.

At this point, we have expressed the safety constraint in the MDP formalism, but the
transition measures of these MDPs, P (1 − 1s=s0) and γP , are still random. If we could
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replace these random transition measures with their expectations under the belief β that
would significantly simplify the safety constraint. It turns out we can do this, at the expense
of making the constraint more stringent. Our tool for doing so is Theorem 4 presented below,
but proven in the appendix. It shows that we can replace a belief over MDPs by a single
MDP with the expected transition measure, featuring an appropriate reward correction such
that, under any policy, the value of this MDP is a lower bound on the expected value under
the belief.

Theorem 4. Let β be a belief such that for any policy, π, and any starting state, s, the total
expected reward in any MDP drawn from the belief is between 0 and 1; i.e. 0 ≤ EP

s,π[V ] ≤ 1,
β-almost surely. Then the following bound holds for any policy, π, and any starting state, s:

EβE
P
s,π

∞∑
t=0

RSt,At ≥ Ep
s,π

∞∑
t=0

(
Eβ[RSt,At ] + σβSt,At

)
where σβs,a :=

∑
s′

Eβ [min(0, Ps,a,s′ − Eβ[Ps,a,s′ ])] .

We first apply Theorem 4 to the outer term, yielding the following bound:

EβE
P
s0,πo

[
EP
ST ,πr

[Bs0 ]
]

= EβE
γP
s0,πo

∞∑
t=0

(1− γ)EP
St,πr [Bs0 ]

≥ Eγp
s0,πo

∞∑
t=0

(
(1− γ)EβE

P
St,πr [Bs0 ] + γσβSt,At

)
.

We, then, apply it again to the inner term:

EβE
P
s,πr [Bs0 ] = E

P ·(1−1s=s0 )
s,πr

∞∑
t=0

1St=s0 ≥ (3.4)

≥ E
p·(1−1s=s0 )
s,πr

∞∑
t=0

(
1St=s0 + (1− 1St=s0)σ

β
St,At

)
.

Combining the last two results allows us to replace the NP-hard safety constraint with a
stricter, but now tractable, constraint. The resulting optimization problem corresponds to
the guaranteed safe, but potentially sub-optimal exploration problem:

maximize πo,πr Eγp
s0,πo

∑
t

(
rSt,At + ξβSt,At

)
(3.5)

s.t.: Eγp
s0,πo

∞∑
t=0

(
(1− γ)vSt + γσβSt,At

)
≥ δ and

vs = E
p·(1−1s=s0 )
s,πr

∞∑
t=0

(
1St=s0 + (1− 1St=s0)σ

β
St,At

)
.
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The term vs represents our lower bound for the inner term per Equation (3.4), and is simply
the value function of the MDP corresponding to the inner term; i.e. the MDP with transition
measure p(1− 1s=s0) and reward function 1s=s0 + (1− 1s=s0)σ

β
s,a, under policy πr. Since the

return policy, πr, does not appear anywhere else, we can split the safe exploration problem
we obtained in Equation (3.5) into two steps:

Step one: find the optimal return policy π∗r , and corresponding value function v∗s , by
solving the standard MDP problem below:

E
p·(1−1s=s0 )
s,πr

∞∑
t=0

(
1St=s0 + (1− 1St=s0)σ

β
St,At

)
. (3.6)

Step two: find the optimal exploration policy π∗o under the strict safety constraint, by
solving the constrained MDP problem below:

maximize πo Eγp
s0,πo

∑
t

(
rSt,At + ξβSt,At

)
(3.7)

s.t.: Eγp
s0,πo

∞∑
t=0

(
(1− γ)v∗St + γσβSt,At

)
≥ δ. (3.8)

The first step amounts to solving a standard MDP problem while the second step amounts
to solving a constrained MDP problem. As shown by [6], both can be solved efficiently
either by linear programming, or by value-iteration. In our experiments we used the LP
formulation with the state-action occupation measure as optimization variable. Solutions to
the constrained MDP problem will usually be stochastic policies, and, in our experiments,
we found that following them sometimes leads to random walks which explore inefficiently.
We addressed the issue by de-randomizing the exploration policies in favor of safety. That is,
whenever the stochastic policy proposes multiple actions with non-zero measure, we choose
the one among them that optimizes the safety objective.

3.5 Experiments

3.5.1 Grid World

Our first experiment models a terrain exploration problem where the agent has limited sens-
ing capabilities. We consider a simple rectangular grid world, where every state has a height
Hs. From our Bayesian standpoint these heights are independent, uniformly distributed
categorical random variables on the set {1, 2, 3, 4, 5}. At any time the agent can attempt
to move to any immediately neighboring state. Such move will succeed with probability
one if the height of the destination state is no more than one level above the current state;
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(a) Based on the available infor-
mation after the first step, mov-
ing South-West is unsafe.

(b) The safe explorer successfully
uncovers all of the map by avoid-
ing irreversible actions.

(c) The adapted R-max explorer
gets stuck before observing the
entire map.

(d) Moving South-East is cur-
rently considered unsafe since,
based on the available informa-
tion, there is no return path.

(e) After seeing more of the map,
our safe explorer decides that the
transition initially deemed unsafe
is, in fact, safe.

(f) The adapted R-max explorer
acts greedily. Even though its
second action, is, in fact safe,
its third action is not, so it gets
stuck.

(g) Moving East is safe with
probability .8 since the return
path is blocked for only one out
of five possible heights of the un-
known square South of the start
position.

(h) Safe exploration with δ = 1.0
does not risk moving East event
though the exploration bonuses
are much higher there.

(i) Safe exploration with δ ≤ .6
does move East. Note that, in
this case, our method overesti-
mates the probability of failure
by a factor of two and, thus, acts
conservatively.

Figure 3.4: Exploration experiments in simple grid worlds. See text for full details. Square
sizes are proportional to corresponding state heights between 1 and 5. The large, violet
squares have a height of 5, while the small, blue squares have a height of 1. Gray spaces
represent states that have not yet been observed. Each row corresponds to the same grid
world. The first column shows the belief after the first exploration step, while the second
and third columns show the entire trajectory followed by different explorers.
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otherwise, the agent remains in the current state with probability one. In other words, the
agent can always go down cliffs, but is unable to climb up if they are too steep. Whenever
the agent enters a new state it can see the exact heights of all immediately surrounding
states. We present this grid world experiment to build intuition and to provide an easily
reproducible result. Figure 3.4 shows a number of examples where our exploration method
results in intuitively safe behavior, while plain exploration methods lead to clearly unsafe,
suboptimal behavior.

Our exploration scheme, which we call adapted R-max, is a modified version of R-max
exploration [22], where the exploration bonus of moving between two states is now propor-
tional to the number of neighboring unknown states that would be uncovered as a result of
the move, to account for the remote observation model. The safety costs for this exploration
setup, as prescribed by Theorem 4 are:

σβs,a = −2Eβ[Ps,a](1− Eβ[Ps,a]) = −2Varβ[Ps,a]

where Ps,a := 1Hs+a≤Hs+1 is the probability that attempted move a succeeds in state s and
the belief β describes the distribution of the heights of unseen states. In practice we found
that this correction is a factor of two larger than would be sufficient to give a tight safety
bound.

A somewhat counter intuitive result is that adding safety constraints to the exploration
objective will, in fact, improve the fraction of squares explored in randomly generated grid
worlds. The reason why plain exploration performs so poorly is that the ergodicity as-
sumptions are violated, so efficiency guarantees no longer hold. Figure 3.5 summarizes our
exploration performance results.

3.5.2 Martian Terrain

For our second experiment, we model the problem of autonomously exploring the surface of
Mars by a rover such as the Mars Science Laboratory (MSL) [49]. The MSL is designed to
be remote controlled from Earth but communication suffers a latency of 16.6 minutes. At
top speed, it could traverse about 20m before receiving new instructions, so it needs to be
able to navigate autonomously. In the future, when such rovers become faster and cheaper
to deploy, the ability to plan their paths autonomously will become even more important.
The MSL is designed to a static stability of 45 degrees, but would only be able to climb
slopes up to 5 degrees without slipping [1]. Digital terrain models for parts of the surface
of Mars are available from the High Resolution Imaging Science Experiment (HiRISE) at a
scale of 1.00 meter/pixel and accurate to about a quarter of a meter. The MSL would be
able to obtain much more accurate terrain models locally by stereo vision.

The state-action space of our model MDP is the same as in the previous experiment,
with each state corresponding to a square area of 20 by 20 meters on the surface. We allow
only transitions at slopes between -45 and 5 degrees. The heights, Hs, are now assumed to
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Figure 3.5: Exploration efficiency comparison. We are showing the median, the upper
and the lower quartiles of the fraction of the grid world that was uncovered by different
explorers in randomly generated grid worlds. The “amount” of non-ergodicity is controlled
by randomly making a fraction of the squares inaccessible (walls). We ran 1000, 500, 100,20
experiments for grids of sizes 102, 202, 302 and 402 respectively. We are comparing against
our own adapted R-max exploration objective, the original R-max objective [22] and the
Near-Bayesian exploration objective [43]. The last two behave identically in our grid world
environment, since, once a state is visited, all transitions out of that state are precisely
revealed.
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(a) Safe exploration with δ = .98 leads to a model
entropy reduction of 7680.

(b) Safe exploration with δ = .90 leads to a model
entropy reduction of 12660.

(c) Safe exploration with δ = .70 leads to a model
entropy reduction of 35975.

(d) Regular (unsafe, δ = 0) exploration leads to a
model entropy reduction of 3214.

Figure 3.6: Simulated safe exploration on a 2km by 1km area of Mars at -30.6 degree
latitude and 202.2 degrees longitude, for 15000 time steps, at different safety levels. See text
for full details. The color saturation is inversely proportional to the standard deviation of
the height map under the posterior belief. Full coloration represents a standard deviation of
1cm or less. We report the difference between the entropies of the height model under the
prior and the posterior beliefs as a measure of performance. Images: NASA/JPL/University
of Arizona.
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Table 3.1: Per-step planning times for the 50× 100 grid world used in the Mars exploration
experiments, with γ = .999.

Problem setting Planning time (s)

Safe exploration at .98 5.86± 1.47
Safe exploration at .90 10.94± 7.14
Safe exploration at .70 4.57± 3.19
Naive constraint at .98 2.55± 0.42
Regular (unsafe) exploration 1.62± 0.26

be independent Gaussian random variables. Under the prior belief, informed by the HiRISE
data, the expected heights and their variances are:

Eβ[H] = D20[g ◦ h] and Varβ[H] = D20[g ◦ (h− g ◦ h)2] + v0

where h are the HiRISE measurements, g is a Gaussian filter with σ = 5 meters, “◦”
represents image convolution, D20 is the sub-sampling operator and v0 = 2−4m2 is our
estimate of the variance of HiRISE measurements. We model remote sensing by assuming
that the MSL can obtain Gaussian noisy measurements of the height at a distance d away
with variance v(d) = 10−6(d+ 1m)2. To account for this remote sensing model we use a first
order approximation of the entropy of H as an exploration bonus:

ξβs,a =
∑
s′

Varβ[Hs′ ]/v(ds,s′).

Figure 3.6 shows our simulated exploration results for a 2km by 1km area at −30.6
degrees latitude and 202.2 degrees longitude [2]. Safe exploration at level 1.0 is no longer
possible, but, even at a conservative safety level of .98, our method covers more ground than
the regular (unsafe) exploration method which promptly get stuck in a crater. Imposing the
safety constraint naively, with respect to the expected transition measure, as argued against
at the end of Section 3.3.3, performs as poorly as unsafe exploration even if the constraint
is set at .98.

3.5.3 Computation Time

We implemented our algorithm in Python 2.7.2.7, using Numpy 1.5.1 for dense array manip-
ulation, SciPy 0.9.0 for sparse matrix manipulation and Mosek 6.0.0.119 for linear program-
ming. The discount factor was set to .99 for the grid world experiment and to .999 for Mars
exploration. In the latter experiment we also restricted precision to 10−6 to avoid numerical
instabilities in the LP solver. Table 3.1 summarizes planning times for our Mars exploration
experiments.
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3.6 Discussion

We provided a formalization of the problem of safe exploration and showed that, in general,
imposing safety in the least constrictive way is NP-hard. In response to this limitation, we
proposed an efficient algorithm that is guaranteed to be safe, but potentially sub-optimal.
Its running time is on par with existing exploration algorithms, such as R-maxand near-
Bayesian exploration, which ignore safety and which are also sub-optimal. Our method relies
on the assumption that knowledge about already visited state-actions is informative of to
neighboring state-action pairs; this assumption, we argued, is critical for safety. Experiments
illustrate that our approach indeed achieves safe exploration, in contrast to exploration
methods designed for ergodic environments only. Our approach decouples the exploration
objective from the safety constraints. Consequently, our method can make any type of
exploration safe if the incentive to explore is encoded in the reward, as is the case for most
existing exploration algorithms.

In addition to the safety formulation we discussed in Section 3.3.2, out framework also
supports a number of other safety criteria summarized below. Any combination of these
constraints can be imposed simultaneously by appending the corresponding strict approxi-
mation to the objective expressed in Equation (3.7). A stricter ergodicity constraint would
ensure that return is possible within some horizon, h, not just eventually, with probability δ.
In this case Theorem 4 needs to be extended to the finite horizon case and the MDP defined
by Equation (3.6) needs to be replaced as follows:

E
p·(1−1s=s0 )
s,πr

h∑
t=0

(
1St=s0 + (1− 1St=s0)σ

β
St,At

)
.

Alternatively, we could ensure that the probability of leaving some pre-defined safe set of
state-actions G is lower than 1 − δ. In this case, the step specified by Equation (3.6) is
no longer required and the constrained specified by Equation (3.8) needs to be replaced as
follows:

Eγp
s0,πo

∞∑
t=0

(
(1− γ)1(St,At)∈G + γσβSt,At

)
≥ δ.

Finally we could ensure that the expected total reward under the belief is higher than δ
assuming that the reward r is bounded by 0 ≤ r ≤ 1− γ. In this case, the step specified by
Equation (3.6) is no longer required and the constrained specified by Equation (3.8) needs
to be replaced as follows:

Eγp
s0,πo

∞∑
t=0

(
rSt,At + γσβSt,At

)
≥ δ.
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Chapter 4

Exploration for Continuous
Dynamical Systems

4.1 Introduction

Model-based reinforcement learning considers the general problem of learning to control sys-
tems with dynamics and reward functions not known in advance, that need to be learned
by exploratory control. In this Chapter we focus on the problem of unknown dynamics, and
assume the reward function is known. The key challenges in in this setting are: (i) Mod-
eling the unknown dynamics from data, (ii) Performing effective exploration, ideally taking
advantage of the fact that the goal state is known ahead of time, and hence exploration can
be goal-directed rather than needing to explore the entire space, and (iii) Efficiently plan-
ning a sequence of actions for the current dynamics model (which includes uncertainty) and
exploration strategy. To address these challenges we bring to bear recent advances in non-
parametric supervised learning for modeling, advances in model-based reinforcement learning
for exploration, and advances in nonlinear optimization and pseudo-spectral methods for op-
timal control. Our contributions consist of adapting these components as necessary and
combining them into a system that shows state-of-the-art learning performance empirically.
Each component is discussed separately below.

Modeling: From a modeling perspective, the problem is difficult because no single para-
metric model will apply to all situations; it would either over-fit in some cases or not be
rich enough in other cases. Ideally, the complexity of the model should increase as more
information about the system dynamics becomes available. Gaussian process dynamic pro-
gramming [30, 28] works by modeling both the dynamics and the value function as Gaussian
processes, but, in practice, the cubic time complexity of this approach only allows a small
fraction of the training data to be used. On-line versions of Gaussian Processes have also
been proposed but they require further approximations. As an alternative we propose using
the Dirichlet process mixture of Gaussians. Our first contribution of this Chapter is em-
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pirically validating the applicability of this model. The mixture model can be trained in
(expected) time O(n log n) where n is the number of observations allowing us to use larger
amounts of training data. This model has been used in robotics application, but only in
the context of learning from demonstrations [24]. Section 4.2 describes the Bayesian Linear
model that is the basis of our mixture model presented in Section 4.3. An important fea-
ture of our method is that any dynamics model can be used as a black box as long as it
provides consistent prediction regions (or, equivalently, variance information). Although our
experiments are based on mixture models, our approach is not limited to these models.

Optimal Control: From the perspective of control the main difficulty is the “curse of di-
mensionality” which makes finding globally optimal solutions impractical. Naive discretiza-
tion would produce a planning problem of size exponential in the system’s dimensionality
which is intractable except for small systems. Approximate dynamic programming methods
(e.g., [57, 25, 15, 62]) require relevant state features or a distance metric, which tend to
be problem-specific and often non-trivial to elucidate. We resort to finding locally optimal
policies through nonlinear optimization. Such control methods have been used successfully
for some time, e.g., differential dynamic programming [39], iterative LQR [48], and more
straight up nonlinear optimization [16, 64]. In this Chapter we only consider shortest path
optimal control problems. Our formulation minimizes the trajectory length while imposing
that the trajectory reach the goal and that dynamics remain within the prediction region of
the learned model. An important feature of our method is that any optimal control algo-
rithm can be used as a black box. The optimal control strategy we proposed is just one of
the many possible choices.

Exploration: Directing the system to unobserved regions of the state space to collect
new information is challenging even in discrete settings. Goal-agnostic exploration methods
proposed before, such as those based on entropy, tend to progress slowly, especially in high
dimensional systems. Our second contribution is applying the Optimism-Based Exploration
principle (also known as the Optimism in the Face of Uncertainty) to the locally linear
continuous setting. The ensuing algorithm works by allowing the planner to pick favorable
system dynamics from a prediction region based on the learned model. The amount of
optimism allowed is inversely proportional to the amount of data available.

The main advantage of our method is formulating the exploration problem as a simple
optimal control problem with deterministic dynamics (not necessarily equal to the average
dynamics) and additional virtual controls specifying the degree of optimism. Doing so is
analogous to the typical reduction employed for discrete systems where the exact explo-
ration problem, a Partially Observable Markov Decision Process (POMDP) is reduced (in
the Probably Approximately Correct sense) to a MDP problem that can be solved efficiently.

The closest competing approach[28] uses Gaussian Processes for modeling and carefully
shaped reward functions for driving exploration. Compared to this approach our exploration
method has three main advantages. First is simplicity: the competing approach requires solv-
ing stochastic optimal control problems while our approach only needs to solve deterministic
control problems. Second is modularity: our approach can use any off-the-shelf optimal con-
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trol solver and Bayesian dynamics model while the competing approach requires specialized
synergy between the planner and the model. Third is continuity: the competing method
requires periodically resetting the dynamical system to a fixed start state while our methods
works without resets for ergodic systems.

Experiments: We demonstrate our approach on classical reinforcement learning problems:
under-actuated pendulum, cartpole and double pendulum swing-up and balance. Addition-
ally we show that the same method can learn to fly a simulated helicopter upside-down (in-
verted hover) starting from an upright position. Compared to other approaches out method
requires less system interaction (is more data-efficient) while making fewer assumptions and
relying less on hand-tuned parameters. The competing approach [28] relies on carefully cho-
sen state dependent cost functions that simultaneously serve two purposes: to encourage
exploration and to discourage deviation from the target state. Our approach relies on a
different mechanism for exploration, namely relaxing dynamics constraints, so we can for-
mulate the same scenarios as shortest path problems. Both in our work and in the competing
approach [28] performance is judged in terms of the time required to explore and reach the
target state. We optimize this measure of performance directly; the competing approach [28]
used a cost function as proxy.

4.2 Bayesian Linear Model

Bayesian linear regression extends regular linear regression, allowing us to also model uncer-
tainty in the parameters by assuming they were drawn from a prior distribution. Let x(θ, u)
be a vector function of the state and controls and let y(θ̇) be an invertible vector function of
the time derivative of the state. In the simplest case x might simply be a concatenation of
the state and controls and y might simply be equal to the time derivative of the state. This
representation allows us the extra flexibility of using different parametrizations for modeling
and planning.

We model the stacked vector z = [y(θ̇), x(θ, u)] as being drawn from a Gaussian distri-
bution with a Normal-inverse-Wishart prior on the parameters µ,Σ (and we end up with
hyperparameters Ψ, ν):

Σ ∼ W−1(Ψ, ν), µ |Σ ∼ N (m,Σ/n), z |µ,Σ ∼ N (µ,Σ)

The marginal distribution of x(θ, u) describes the level of accuracy of the model while the
conditional distribution of y(θ̇) given x(θ, u) is identical to the one we would have obtained by
Bayesian linear regression and it serves as our dynamics model. Figure 4.1 shows an intuitive
example of how conditioning is used for regression. To formally see the connection, we start
by partitioning the vector parameter m and the matrix parameter Ψ conformably with y and
x. Conditional on x, the predicted y is normally distributed with a Normal-inverse-Wishart
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Figure 4.1: Modeling a scalar response Y of a scalar covariate X jointly as a two-dimensional
Normal-Inverse-Wishart distribution may be used for Bayesian linear regression via the con-
ditional distribution of Y given X. The blue ellipse show a level set of posterior Normal-
Inverse-Wishart distribution. The red line show a “slice” at a given X corresponding to the
conditional distribution of Y given X.
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prior:

Σȳy |x ∼ W−1(Ψȳy, ν) Ψȳy := Ψyy −ΨyxΨ
−1
xxΨxy

µȳ |Σȳy, x ∼ N (my + ΨyxΨ
−1
xx (x−mx),Σȳy/n̄) (4.1)

y |µȳ,Σȳy, x ∼ N (µȳ,Σȳy) n̄ :=
(
1/n+ (x−mx)

TΨ−1
xx (x−mx)

)−1
,

where the “bar” notation denotes random variables and parameters pertaining to conditional
distributions, different from the ones describing the joint distributions.

Expressed in conditional form, the Bayesian Linear Regression Model (4.1) reveals two
sources of uncertainty. The distribution on µȳ |Σȳy,x captures model ambiguity resulting from
incomplete knowledge of the system’s dynamics. This type of uncertainty can be reduced by
further exploration. The distribution on y |mȳ,Σȳy, x reflects sensor noise or non-linearity
effects that will not be eliminated by further exploration. Mathematically this becomes clear
when we notice that Σȳy will not converge to zero but Σȳy/n̄ will converge to zero since n̄
grows to infinity as we observe more data.

Therefore the distribution relevant to modeling systems dynamics is determined by µȳ |x.
Its predictive posterior distribution, obtained by integrating out the prior, is a multivariate
t-distribution:

µȳ |x ∼ τν−dy+1

(
my + ΨyxΨ

−1
xx (x−mx),

Ψȳy

n̄(ν − dy + 1)

)
(4.2)

where dy is the dimension of the y vector.
The modelled system dynamics are determined implicitly by the following equation:(

my −ΨyxΨ
−1
xxmx + ΨyxΨ

−1
xxx(θ, u)− y(θ̇)

)
−
(

Ψȳy

n̄(θ, u)(ν − dy + 1)

) 1
2

ω = 0,

written equivalently as f̂(θ̇, θ, u, ω) = 0, (4.3)

where ω is a vector of dy independent and identically distributed student’s t-distributed ran-
dom variables with unit scale parameter and ν − dy + 1 degrees of freedom. Asymptotically,
after seeing a large number of observations n̄(θ, u) converges to n and ω converges in dis-
tribution to a vector of dy independent and identically distributed standard normal random
variables.

4.3 Dirichlet Process Mixture of Linear Models

A single Gaussian distribution (or, equivalently, a single linear model) is not sufficient to
capture the dynamics of complex nonlinear systems, but a mixture of Gaussians is often
descriptive enough if we assume that, for each sufficiently small region in state space, the
underlying (unknown) dynamical system is locally linear. Unfortunately, it is generally not
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possible to determine the optimal number of clusters a priori and this parameter has a large
impact—too many clusters leads to over-fitting and too few clusters collapses modes that may
be possible to discriminate when we have large amounts of data. Dirichlet process mixture
models (DPMMs) tackle this issue by allowing a countably infinite number of clusters, with
the actual number utilized for a given data set determined via posterior inference. Under the
Dirichlet process prior the expected number of clusters grows logarithmically in the number
of observations [63] and posterior inference sharpens this growth rate so as to control model
complexity as we observe more data.

4.3.1 The Standard Dirichlet Process Mixture Model.

Our model is based on the following standard DPMM [17]:

G |α, λ ∼ DP(α,NW−1(λ)), ηn |G ∼ G, zn | ηn ∼ N (ηn),

whereN is the Gaussian distribution, where α is the concentration parameter of the Dirichlet
process prior and where the base measure is the Normal-inverse-Wishart distribution with
hyperparameter λ. As done previously in Section 4.2, let x(θ, u) be a vector function of the
state and controls, and let y(θ̇) be an invertible vector function of the time derivative of
the state. We are modeling the stacked vector z = [y(θ̇), x(θ, u)]. Given the importance of
α in DPMMs, we treat it not as a fixed hyperparameter but endow it with a gamma prior
distribution, Ga(0, 0), which we integrate over via the posterior inference algorithm.

It is convenient to rewrite this model using an exponential family representation. The
natural parameter vector for the Normal-inverse-Wishart prior is obtained by stacking to-
gether the usual parameters: λ = [nµ,Ψ + nµµT , n, ν + 2 + dz], where dz is the dimension of
z. The vector of sufficient statistics is also obtained by concatenation: T (z) = [z, zzT , 1, 1].
What makes this representation convenient is that posterior updates are now extremely
simple: τ = λ+ T (z).

4.3.2 Variational Inference.

While Dirichlet process mixture models are often fit with one of a number of different Markov
chain Monte Carlo or sequential Monte Carlo algorithms, given our stringent requirements
for computational efficiency we have chosen instead to make use of variational inference
methods. In particular we make use of the mean-field variational inference procedure for
DPMMs developed by Blei and Jordan [17]. This procedure, based on a stick-breaking
representation of the Dirichlet process, requires us to set an upper bound for the number of
clusters that can be represented. This is a parameter of the inference procedure, not of the
model, and it is generally set to be as high as computational resources permit. Many of the
represented clusters will not be populated.

The mean-field variational inference algorithm of Blei and Jordan [17] can be viewed as
an approximate version of Expectation-Maximization that iterates between the following two
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(a) Under-actuated pendulum. The maximum number of clusters was set
to 100 and the prior weight, w, was set to 10−2. We simulated a single
trajectory, 200 seconds long, starting with the pole resting downwards and
changing the control randomly at 2Hz.
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(b) Cartpole. The maximum number of clusters was set to 100 and the prior
weight, w, was set to 1. We simulated 20 trajectories, each 5 seconds long,
starting with the pole resting downwards and changing the control randomly
at 10Hz.

Figure 4.2: Clusters learned by batch variational inference on the trajectories of two dy-
namical systems under random controls. Both systems are described in Section 4.6. Extra
dimensions corresponding to accelerations and control values are not shown. The different
cluster patters reflect the different structures of non-linearities.
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steps:

E step: ϕk,n ∝ exp

(
∇A(τk)

T · T (zn) + ψ(ak)− ψ(bk) +
k∑
i=1

(ψ(bi)− ψ(ai + bi))

)
(4.4)

M step: τk = λ+
∑
n

ϕk,nT (zn), ak = 1 +
∑
n

ϕk,n, bk = α +
∑
n

K∑
j=k+1

ϕj,n (4.5)

where ψ is the digamma function, where A is the partition function of the Normal-inverse-
Wishart prior, and where ϕk,n and τk are variational parameters that are the degrees of
freedom of the algorithm. To initialize the base measure we start with λ0 = [0, 0, 0, 2dz + 1]
and we perform a weighted posterior update imagining that the entire training set belongs
to a single cluster:

λ = λ0 + w ·
∑
n

T (zi)/
∑
n

T (zi)−1

where T (xi)−1 is the last component of the vector of sufficient statistics and w specifies the
relative importance of the prior with respect to a single observation; we set it to .1. With this
choice of prior parameters the clustering method is invariant to affine transformations of the
dataset. Figure 4.2 shows the clusters learned by this method on trajectories of dynamical
systems.

4.3.3 Dynamics Prediction.

Once the model has been trained, we would like to use it to make predictions of of y(θ̇),
conditional on x(θ, u). Figure 4.3 shows a simple example of how these predictions may
be used for regression. A difficulty in the DPMM setting is that it is possible for the
conditional distribution under the model to be multi-modal, which can complicate planning
by introducing local optima. It also creates difficulties in setting prediction regions that are
required for our exploration method (described in Section 4.5). To address these difficulties
we use the approximation methodology discussed below.

Let p(k |x) be the posterior cluster assignments computed from the trained model by
using Bayes’ theorem:

p(k |x) =
p(x | τk)p(k)∑
l p(x | τl)p(l)

, p(k) := log(ak)− log(ak + bk) +
K∑

l=k+1

(log(bl)− log(al + bl))

The correct conditional density is given by p(y |x) =
∑

k p(k |x)p(y |x, τk). Our approxi-
mation is p(y |x, τx) where τx =

∑
k p(k |x)τk, which is justified by its connection to weighted
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Figure 4.3: Modeling a scalar response Y of a scalar covariate X jointly as a mixture model
may be used for Bayesian linear regression via the conditional distribution of Y given X.
The blue ellipses show level sets of the Normal-Inverse-Wishart clusters. The red line show a
“slice” at a given X corresponding to the conditional distribution of Y given X. The dotted
red line shows the closest Normal-Inverse-Wishart approximation in KL divergence.
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least squares. We can now substitute the expression of τk in terms of the sufficient statistics
of the training data:

τx = λ+
∑
k,n

p(k |x)ϕk,nT (zn), (4.6)

where ϕk,n is prescribed by the Equation (4.4). The resulting approximate prediction is
the same as the one we would obtain by weighted Bayesian Linear Regression with factored
weights vn =

∑
k p(k |x)ϕk,n. Average predictions under this model correspond to predictions

made by weighted least squares with these weights. Weighted least squares is generally
considered robust and accurate but computationally expensive[61] because normally the
whole training set needs to be accessed before making each prediction. The key for the
viability of our approach is that the Dirichlet process mixture model can be seen as a form
of data compression that makes weighted least squares computationally tractable.

Since our approximate predictive density is simply a Normal-Inverse-Wishart (NIW) dis-
tribution we use Equation (4.3) to formulate a prediction region. Comparing the weighted
least squares approximation discussed above and the simple linear model discussed in Sec-
tion 4.2, also based on NIW distribution, we see that the key difference is the additional
dependence on x(θ, u) of the distribution parameters Ψ, µ, ν, n summarized by τx through
the predictive cluster responsibilities p(k |x). There is no such dependence in the basic linear
model. The following equations summarize our weighted least squares approximation:

[nµ,Ψ + nµµT , n, ν + 2 + dz] := τx = λ+
∑
k,n

p(k |x)ϕk,nT (zn)

Ψȳy := Ψyy −ΨyxΨ
−1
xxΨxy

n̄ :=
(
1/n+ (x−mx)

TΨ−1
xx (x−mx)

)−1
,

and the prediction region is defined by:(
my −ΨyxΨ

−1
xxmx + ΨyxΨ

−1
xxx(θ, u)− y(θ̇)

)
−
(

Ψȳy

n̄(θ, u)(ν − dy + 1)

) 1
2

ω = 0, (4.7)

written equivalently as f̂(θ̇, θ, u, ω) = 0.

4.4 Optimal Control

In the spirit of past work on nonlinear optimization for finding locally optimal control poli-
cies [16, 64, 23, 54] we find an open-loop sequence of control inputs, and then close the loop
by continuously re-planning during execution instead of explicitly model policies. Many
exploration methods require re-planning anyway [10], so computing entire policies seems
wasteful. This control approach is becoming more and more prevalent as computers have
become fast enough.
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4.4.1 Continuous Time Formulation

Let θt ∈ Rdθ and ut ∈ Rdu be the state of the system and the control applied at time t. The
time derivative of the state is θ̇t ∈ Rdθ . Dynamics are determined implicitly by the set of
equations f(θ̇, θ, u) = 0 ∈ Rdθ where we call f the implicit dynamics function. For example,
in the case of a linear system the implicit dynamics function is f(θ̇, θ, u) = Aθ +Bu− θ̇.

We are only considering shortest path optimal control problems in this Chapter. Solving
these problems is equivalent to directly optimizing the performance metric reported by the
competing approach [28] (their cost function is different from the performance metric). The
objective is finding a sequence of states and controls that takes the system from a specified
start state to a (potentially partially) specified goal state in the shortest amount of time.
Let h be the time horizon. The shortest path problem can be formulated as the constrained
functional optimization problem below:

minimize θ,u,h : h (4.8)

subject to : f
(
θ̇(t), θ(t), u(t)

)
= 0 ∀ t ∈ [0, h]

− 1 ≤ u(t) ≤ 1 ∀ t ∈ [0, h]

θ(0) = θstart, θ(h) = θgoal, h > 0

4.4.2 Non-Linear Program Formulation

Time discretization is the first step towards addressing the optimization problem (4.8) in
practice. Instead of imposing the dynamics constraints at all times, we now only impose
them at a finite number (k) of appropriately chosen collocation times 0 ≤ hτ1 ≤ hτ2 ≤
· · · ≤ hτk ≤ h. For example, in the simplest case of Euler integration we would choose
τi = (i− 1)/(k − 1). To simplify notation, let θ̇i = θ̇(hτi).

We eliminate the states θ(t) from the optimization problem since they can be expressed
as time integrals of the time derivatives of states as follows:

θ(hτi)− θ(0) = h

∫ τi

0

θ̇(hτ)dτ ≈ h
∑
j

Aij(k)θ̇j

θ(h)− θ(0) = h

∫ 1

0

θ̇(hτ)dτ ≈ h
∑
j

wj θ̇j

where the approximate integration operators Aij and wj are chosen appropriately depending
on the type of time discretization scheme used. For example, in the simplest case of Euler
integration we would choose Aij = δi≤j/k and wj = 1/k. The optimal control problem can
now be expressed as a discrete time non-linear optimization problem:
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minimize θ̇i,ui,h
: h (4.9)

subject to : f

(
θ̇i, θstart + h

∑
j

Aij θ̇j, ui

)
= 0 ∀ i ∈ 1, 2, · · · , k

− 1 ≤ ui ≤ 1 ∀ i ∈ 1, 2, · · · , k

θgoal − θstart = h
∑
j

wj θ̇j, h > 0 (4.10)

Pseudospectral methods [58, 14] specify efficient time discretization schemes grounded
on implicit integration theory. Time steps τ1, . . . τk are not equally spaced; they are more
densely clustered around the endpoints. The approximate integration operators Aij and wj
are prescribed accordingly. Advantages of pseudospectral methods include:

• Fewer collocation times can be used without compromising accuracy.

• The duals variables of the time-discretized optimization problem are provably close to
the co-states of the continuous time optimization problem.

• Interpolation of the resulting controls between collocation time steps is well specified.

4.4.3 Solving the Non-Linear Program

The optimization problem (4.9) is non-convex so in general we can only guarantee conver-
gence to a (potentially infeasible) local optimum. In our experiments we used a specialized
Sequential Linear Programming solver [56] discussed below but any other efficient NLP solver
may be used instead.

The change of variables to hθ̇i, ui, 1/h helped alleviate the local optima issue in our
experience since final constraint given by Equation (4.10) becomes linear. For simplicity of
notation let all the decision variables be stacked into a single vector ξ = [1/h, hθ1, u1, hθ2,
u2, . . . , hθk, uk] and define linear operators H,Ti, Ui such that Hξ = 1/h, Tiξ = hθi and
Uiξ = ui. With this notation, the non-linear program (4.9) can be written equivalently as:

minimize ξ : −Hξ
subject to : fi(ξ) = 0, −1 ≤ Uiξ ≤ 1 ∀ i ∈ 1, · · · , k

θgoal − θstart =
∑
j

wj · Tjξ, Hξ > 0

where fi(ξ) := f

(
Hξ · Tiξ, θstart +

∑
j

Aij ·Hjξ, Uiξ

)
We solve the NLP by iterating the following three steps until convergence starting with

an appropriate initialization ξ.
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Step 1: Check feasibility of the optimality first order approximation (OFOA), a linear
program that includes the original objective:

minimize δξ : −H(ξ + δξ) OFOA (4.11)

subject to : fi(ξ) +
∂fi
∂ξ
· δξ = 0, −1 ≤ Ui(ξ + δξ) ≤ 1 ∀ i ∈ 1, · · · , k

θgoal − θstart =
∑
j

wj · Tj(ξ + δξ), Hξ > 0

Step 2: If there is no solution to OFOA above then formulate and solve the feasibility first
order approximation (FFOA) shown below where the objective is to locally reduce the L1
penalty on the constraints. This linear program is always feasible.

minimize δξ :
∑
i

wi

∥∥∥∥fi(ξ) +
∂fi
∂ξ
· δξ
∥∥∥∥

1

FFOA (4.12)

subject to : − 1 ≤ Ui(ξ + δξ) ≤ 1 ∀ i ∈ 1, · · · , k

θgoal − θstart =
∑
j

wj · Tj(ξ + δξ), Hξ > 0

Step 3: Perform a line search along the direction specified by the solution δξ to the OFOA
if feasible or to the FFOA otherwise. The objective is to minimize the feasibility error
measured in L1 norm:

ξ ← argmin
0≤α≤1

∑
i

wi‖fi(ξ + α · δξ)‖1. (4.13)

Return to Step 1 unless the change in ξ is small.

4.5 Optimism-Based Exploration

Optimism-Based Exploration (also known as the Optimism in the Face of Uncertainty) is
a general principle for model-based reinforcement learning underlying numerous efficient
algorithms backed by theoretical guarantees in different settings:

• Multi-Armed bandit problems where Upper Confidence Based (UCB) policies have
proven successful [5, 13, 12, 11, 34].

• Discrete Markov Decision Processes, e.g. the Bayesian Optimistic Local Transitions
algorithm [8] or the Optimistic Linear Programming algorithm [7].

• Linear systems with quadratic costs [3].
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Algorithm 3 Exploration algorithm

Require: dynamical system, goal state θgoal

Require: sampling frequency νs, control frequency νc
π ← zero control policy
θstart ← random initial state for dynamical system
z ← empty list of regression features
repeat
θstart ← final state after executing policy π for 1/νc seconds starting at state θstart

z ← appended to z regression features zt = [y(θ̇t, x(θt, ut))] sampled every 1/νs seconds
φ← randomly initialized cluster responsibilities
repeat
τ ← M step per Equation 4.5 given φ and sufficient statistics T (z)
φ← E step per Equation 4.4 given τ and sufficient statistics T (z)

until φ converges
f̂(θ̇, θ, u, ω)← learned dynamics per Equation 4.7 given φ and sufficient statistics T (z)
ξ ← optimal control decision variables initialized
repeat
δξ ← solve the OFOA per Equation 4.11 given dynamics f̂ with controls u and ω.
if the OFOA is infeasible then
δξ ← solve the FFOA per Equation 4.12 given dynamics f̂ with controls u and ω.

end if
ξ ← line search per Equation 4.13 given dynamics f̂ and δξ.

until ξ converges
π ← open loop control policy with control sequence ui extracted from ξ

until θstart stabilizes at θgoal

Optimism-based exploration relies on allowing the planning agent to be optimistic with
respect to the learned dynamics. In addition to being able to pick actions, the agent is
now also allowed to pick favorable dynamics f from a prediction region F . Deciding which
dynamics are favorable depends on the planning goal so exploration prioritizes learning
features of the dynamics that are relevant to reaching the goal. The prediction region F is
provided by the dynamics model and it shrinks as more data is observed, eventually forcing
the agent to plan according to the average dynamics.

One of our contributions is applying the optimism-based exploration principle to non-
linear dynamical systems. In this section we will show how applying this principle allows us
to formulate the exploration problem as a simple optimal control problem with deterministic
dynamics but additional virtual controls. Doing so allows us to leverage the optimal control
approach discussed in Section 4.4, or any other black-box optimal control solver that might be
available. If the prediction region F is provided explicitly then optimism-based exploration
can be formulated as the following continuous time optimal control problem obtained by
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adding f as a optimization variable to our previous formulation in Equation (4.8):

minimize f,θ,u,h : h (4.14)

subject to : ft

(
θ̇(t), θ(t), u(t)

)
= 0 ∀ t ∈ [0, h]

ft ∈ F , −1 ≤ u(t) ≤ 1 ∀ t ∈ [0, h]

θ(0) = θstart, θ(h) = θgoal, h > 0

Note that the planning agent is allowed to chose different favorable dynamics ft at differ-
ent time steps; this consistent with the formulation of previously proposed algorithms based
on the same principle [5, 13, 12, 11, 34, 8, 7, 3].

The models discussed in Sections 4.2 and 4.3 allow us to parameterize the prediction
region F in terms of the Bayesian model uncertainty ω. We define F = {f(θ̇, θ, u) =
f̂(θ̇, θ, u, ω) for all ω such that: −1 ≤ ω ≤ 1} where f̂ represents the Bayesian dynamics
model as shown by Equation (4.3) in the case of a linear model. The multi-dimensional
prediction region thus defined is centered around the expected dynamics and extends one
standard deviation in each direction. Once the prediction region has been parametrized,
we can re-write the exploration optimal control problem as an instance of a generic optimal
control problem defined by Equation (4.8) which, in addition to the physical controls u, now
has a number of virtual controls ω:

minimize θ,u,ω,h : h (4.15)

subject to : f̂
(
θ̇(t), θ(t), u(t), ω(t)

)
= 0 ∀ t ∈ [0, h]

− 1 ≤ ω(t) ≤ 1, −1 ≤ u(t) ≤ 1 ∀ t ∈ [0, h]

θ(0) = θstart, θ(h) = θgoal, h > 0

Larger or smaller prediction regions F may be used as necessary to increase or reduce
the amount of exploration respectively. Prediction regions of different sizes may be defined
by replacing the constraint −1 ≤ ω ≤ 1 with −p ≤ ω ≤ p for some fixed p > 0 which now
allows p standard deviations from the mean in each direction. We found that resizing the
prediction region was not necessary in our experiments and we set p = 1 accordingly.

Algorithm 3 summarizes our full algorithm including modeling, control and exploration.

4.6 Experiments

The experiments in this section are meant to show the generality of our approach; we have
not optimized the algorithm for any specific task. An important feature of our approach
is that there are only a few scalar parameters to tune. The clustering prior weight w and
the prediction region parameter p which governs exploration were set to values that seemed
reasonable a-priori (w = .1, p = 1.0). Additional parameters, the maximum number of
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Table 4.1: Summary of experimental results showing the total interaction time required to
learn an appropriate model and solve each task. See Section 4.6 for details.

Pendulum Cartpole Double Pendulum Helicopter

Our method 4± 1 s 10± 4 s 18± 8 s 4.5± 1.5 s
Best competing 15− 60 s 17.5 s 50 s 30− 60 min

clusters that may be used by the mixture model and the number of collocation times for
optimal control should be set as high as possible to increase accuracy. In our experiments we
set these parameters to 100 and 25 respectively. We recorded state and control observations
at 100 Hz and we re-planned at 20Hz with exploration. Performance can be further improved
with specific parameter tuning.

Comparing our non-linear program solver presented in Section 4.4.3 to the off-the-shelf
solver Knitro (version 8.1) showed that both typically converge to the same solutions. In
terms of number of iterations needes for convergence, our solver typically out-performs Knitro
but not always. Using Gaussian pseudospectral [14] time discretization lead to the same
solution accuracy as Euler discretization but required between 5 times to 10 times fewer
collocation times, resulting in significant speedups. In our experiments we used 35 collocation
time steps.

The work of Deisenroth et al. [30, 29, 28] based on Gaussian Processes is closest in spirit to
ours. As shown by the experiments discussed below, our method requires less time to learn
appropriate dynamics models and solve tasks also addressed by the competing approach:
under-actuated pendulum, cartpole, and double pendulum swing-up and balance. The most
significant difference in methodology is the exploration technique. They rely on implicit
exploration guided by the reward function while we address the exploration-exploitation
trade-off directly. In other words, they view uncertainty as noise and plan policies that
are robust to it. Our approach considers remaining model uncertainty as opportunity for
exploration. Additionally, their method requires known reward functions, the ability to
reset the dynamical systems, and parametric forms for policies; our method requires neither.
We judge performance as done in the competing approach [28], in terms of the total time
(including exploration) required to reach the target state. In our approach this performance
metric is optimized directly; in the competing approach [28] it is optimized indirectly via
a carefully chosen cost function that used both to encourage exploration and to discourage
deviation from the target state.

4.6.1 Under-Actuated Pendulum Swing-Up and Balance.

We simulated an under-actuated pendulum system where the dynamics and choice of param-
eters matches that of Deisenroth et al. [30]. The goal is to swing the pendulum up from the
initial state hanging down to the upright balanced state. One swing is necessary to provide
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Figure 4.4: Pendulum swing-up and balance experiments. The goal is to swing the pendulum
up from the initial state hanging down to the upright balanced state. One swing is necessary
to provide enough momentum due to torque constraints.

enough momentum due to torque constraints.
The equation of motion for the pendulum is:

θ̈ml2 − ku+ bθ̇ −mgl sin(θ) = 0

with parameters:

l = 1.0, length of pendulum (m)

m = 1.0, mass of pendulum (kg)

b = 0.05, coefficient of friction

g = 9.82, acceleration of gravity (m/s2)

k = 5.0, maximum torque (Nm)

The start state [θ̇, θ] is sampled from a normal distribution with mean [0, π] and diagonal
variance [1, 1].
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Figure 4.5: Cartpole swing-up and balance experiments. The goal is to swing the pendulum
up from the initial state hanging down to the upright balanced state.

We modeled the system using a Dirichlet Process Mixture of Linear Models as described
in Section 4.3. The model is set up to predict the angular acceleration of the pole given the
sine and cosine of the pole angle, the angular velocity and the control applied. Figure 4.4
shows a few runs of our algorithm. Swing-up was successful in every run after 4± 1 seconds
of interaction. The competing Gaussian Process based approach[30] requires between 15 -
60 seconds for the same task.

4.6.2 Cartpole Swing-Up and Balance.

We simulated a classical cart-pole system with the dynamics and parameters used by the
state-of-the art method based on Gaussian Processes [28]. The goal is to swing-up the pole
from its inert state hanging down to the upright balanced state.

The equations of motion for cartpole are:

0 =− θ̈l(4M + 4m− 3m cos(θ)2)− 3mlw2 sin(θ) cos(θ)−
− 6(M +m)g sin(θ)− 6(ku− bẋ) cos(θ)

0 =− ẍ(4M + 4m− 3m cos(θ)2) + 2mlw2 sin(θ) + 3mg sin(θ) cos(θ) + 4ku− 4bẋ
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with parameters:

l = 0.5, length of pendulum (m)

m = 0.5, mass of pendulum (kg)

M = 0.5, mass of cart (kg)

b = 0.1, coefficient of friction between cart and ground

g = 9.82, acceleration of gravity (m/s2)

k = 10.0, maximum control (N)

The start state [θ̇, ẋ, θ, x] is sampled from a normal distribution with mean [0, 0, 0, 0] and
diagonal variance [0, 0, .5, .5].

We modeled the system using a Dirichlet Process Mixture of Linear Models as described
in Section 4.3. The model is set up to predict the acceleration of the cart and the angular
acceleration of the pole given the sine and cosine of the pole angle, its angular velocity and
the control applied. Figure 4.5 shows a diagram of the system and a few different runs of
our algorithm. It successfully learned the required model and solved the task after 10 ± 4
seconds of interaction and succeeded in all runs. The competing Gaussian Process based
approach [28, 29] required a typical exploration time of 17.5 and has a 95% success rate.

4.6.3 Double Pendulum Swing-Up and Balance.

We simulated a double-pendulum system with the dynamics and parameters used by the
state-of-the art method based on Gaussian Processes [28]. The goal is to swing-up both
poles from the inert state hanging down to the upright balanced state.

The equations of motion for the double pendulum are given by:

0 =

[
l21(m1/4 +m2) + I1 m2l1l2 cos(θ1 − θ2))/2
m2l1l2 cos(θ1 − θ2)/2 l22m2/4 + I2

]
·
[
θ̈1

θ̈2

]
−

−
[
gl1 sin(θ1)(m1/2 +m2)−m2l1l2θ̇

2
2 sin(θ1 − θ2)/2 + ku1

m2l2(l1θ
2
1 sin(θ1 − θ2) + g sin(θ2))/2 + ku2

]
with parameters:

m1 = 0.5, mass of 1st link (kg)

m2 = 0.5, mass of 2nd link (kg)

l1 = 0.5, length of 1st pendulum (m)

l2 = 0.5, length of 2nd pendulum (m)

g = 9.82, acceleration of gravity (m/s2)

I1 = m1l
2
1/12, moment of inertia around pendulum midpoint

I2 = m2l
2
2/12, moment of inertia around pendulum midpoint

k = 2.0, maximum control
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(a) Lines show different independent trials that are halted once
the system remains stable about the target state for one second.
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(b) Diagram of the double pendulum
system. Both joints are actuated.

Figure 4.6: Double pendulum swing-up and balance experiments. The goal is to swing both
pendulums up from the initial state hanging down to the upright balanced state. Torque
constraints require building up energy by swinging.

The start state [θ̇1, θ̇2, θ1, θ2] is sampled from a normal distribution with mean [0, 0, π, π] and
diagonal variance [0, 0, .5, .5].

We modeled the system using a Dirichlet Process Mixture of Linear Models as described
in Section 4.3. The model is set up to predict the angular accelerations both pendulums given
sines and cosines of the pendulum angles, their angular velocities and the controls applied.
Figure 4.6 shows a diagram of the system and a few different runs of our algorithm. It
successfully learned the required model and solved the task after 18±8 seconds of interaction.
The competing Gaussian Process based approach [28] required a typical exploration time of
50s to achieve the same performance.

4.6.4 Helicopter Learning Inverted Hover.

We simulated a remotely controlled helicopter weighing about 5kg, capable of producing at
most 2.8g additional lift acceleration. The helicopter is initially in an upright position with
zero velocity. The goal is to bring the system to rest at the same location but in inverted
hover. Successfully completing the task requires learning to control the helicopter in a single
flight, as no resets are available. Previous methods based on learning from demonstration[4]
have solved this task before but, to the best of our knowledge, no other authors have had
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Figure 4.7: Helicopter learning inverted hover. The initial state (left) corresponds to upright
hover but unknown dynamics. The goal state (right) is inverted hover.
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a helicopter learn to perform such an acrobatic task without built-in prior knowledge or
demonstrations.

The state of the helicopter is represented by four concatenated three dimensional vectors
[ẋ, w, x, r] where ẋ and x are the velocity and the position in the inertial frame of reference,
w is the helicopter’s angular velocity in the helicopter’s frame of reference and r represents
the helicopter’s orientation as unit rotation axis (Euler axis) times rotation angle. The
corresponding equations of motion are:

0 =−R−1(r)ẍ+

b4 0 0
0 b5 0
0 0 b6

 ·R−1(r)ẋ+

 0
0

k4u4

+R−1(r) ·

0
0
g


0 =− ẇ +

b1 0 0
0 b2 0
0 0 b3

 · w +

k1u1

k2u2

k3u3


0 =− [R(r)w]×R

−1(r) +
∑
i

∂R−1(r)

∂ri
· ṙi

where R(r) is rotation the matrix corresponding to state r. This matrix rotates the heli-
copter’s frame of reference to the inertial frame of reference. The notation [a]× represents
the three dimensional cross product as a linear operator defined such that [a]× · b = a× b for
all a, b ∈ R3. Parameters were chosen consistently with past work [4, 44], specifically:

k1, k2, k3, k4 = 13.20,−9.21, 14.84,−27.5, control weights

b1, b2, b3 = −3.47,−3.06,−2.58, translational friction parameters

b4, b5, b6 = −.048,−.12,−.0005, rotational friction parameters

g = 9.81, acceleration of gravity (m/s2)

In our chosen state space representation the helicopter’s dynamics are approximately
linear. Consequently we used the Bayesian linear model discussed in Section 4.2 to predict
R(r)−1(ẍ− [0, 0, g]T ) and ẇ given w,R−1ẋ and controls u. The planning problem, however,
is still non-linear and challenging since the state representation is not inertial. We assumed
that rotational kinematics and the acceleration of gravity are known and do not need to be
learned. Figure 4.7 shows a few examples of our algorithm successfully solving the task in
4.5±1.5 seconds of interaction. The helicopter lost at most 6 meters of altitude in the learning
process. For comparison, the best algorithm submitted to the 2008 Reinforcement Learning
Competition for the helicopter hovering task [44] required 30 - 60 minutes of interaction.
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4.7 Discussion

We extended Optimism Based Exploration, a tried-and-true reinforcement learning principle,
to the context of continuous dynamical systems assumed to be locally linear. The approach is
modular allowing use of any off-the-shelf optimal control planner for deterministic dynamics
and any Bayesian dynamics model that provides prediction regions. In our experiments we
used a Dirichlet Process Mixture Model whose complexity increases logarithmically in the
size of the training data set.

Empirically we demonstrate data efficient learning on a number of tasks run in simulation:
swing-up and balance for an under-actuated pendulum, cartpole and a double pendulum and
learning inverted hover for a full state helicopter. Our method requires minimal tuning; the
parameters were set to a-priori reasonable values and were not changed across different
dynamical systems. We attribute the success of our method to a couple of factors:

• The exploration strategy employed is based on a principle that has theoretical support
in various simpler reinforcement learning settings.

• The dynamics model we used was able to leverage the large volume of training data
that is typically available in the context of our problem.
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Chapter 5

Summary of Contributions

This dissertation focuses on three aspects of reinforcement learning that we believe to be
important in practical applications: managing irreducible uncertainty by risk aware planning,
ensuring safe exploration by restricting the set of allowable policies to avoid catastrophic
failures, and reducing dynamics uncertainty by efficient exploration for continuous systems.

Risk aware planning is the typical approach in situations where dynamics uncertainty
can not be reduced by further observations (that is when the true systems dynamics are
stochastic). In Chapter 2 we explore this situation for discrete state space planning problems.
The relevant key contributions are listed below:

• We propose a new objective for risk aware planning based on Chernoff bounds. Theo-
rem 1 explains how this new objective relates to and subsumes a number of previously
proposed risk aware planning objectives.

• Our risk-aware objective can be optimized efficiently by Algorithm 1, a newly proposed
and theoretically justified method based on sequential exponential utility optimization.

Most exploration methods assume ergodicity when justifying performance; following any
course of action the environment is assumed to allow return to the start state, so the pos-
sibility of catastrophic failure is “assumed away”. In Chapter 3 we propose a method for
enforcing ergodicity for the purpose of safe exploration in environments are not a priori er-
godic. We do so by restricting the space of allowed policies so that ergodicity is provably
preserved with high probability. An efficient algorithm for the case of discrete state space
problems is presented. The relevant main contributions are listed below:

• We formulate a new definition of safety in relation to ergodicity, summarized by Equa-
tion 3.3. This definition allows enforcing safety for any reward-encoded objective in-
cluding exploration.

• Algorithm 2 justified by Theorem 4 is a new method for enforcing safety per our
definition for any reward based exploration method.
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When dynamics uncertainty can be reduced by further observations it is important to
take efficient exploratory actions. In Chapter 4 we investigate the possibility of efficient ex-
ploration for continuous dynamical systems, leading to a number of important contributions:

• We propose a new exploration algorithm based on the principle of Optimism in the
Face of Uncertainty (Section 4.5) that is known to produce good results in simpler
planning scenarios.

• Our experiments empirically validate the use of a classical Bayesian non-parameteric
model, the Dirichlet Process Mixture of Gaussians (Section 4.3) for continuous dynam-
ical systems in the context of exploration.
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Appendix A

Additional Proofs and Examples

A.1 Example MDP where optimizing cost percentiles

is counter-intuitive

We thank the anonymous reviewer that brought to our attention a simple MDP where
optimizing percentiles leads to some counter intuitive choices. The MDP is represented in
detail in Figure A.1. There only one choice of actions, in state S3, which is transient, and
does not lead to state S1. However, the example shows that the optimal policy, with respect
to F−1

0.1 [V (π)], depends on the parameters of state S1. This is counter-intuitive because, once
we are in state S3, the decision of which action to take should not depend on the parameters
of state S2, which we know we will never reach, since we are now in S3.

A.2 Proof of Theorem 1

We will use the following properties of cumulant generating function, f(z) := logEezJ , [42]:

a) f(z) =
∑∞

i=1 z
iki/i! where ki are the cumulants of J . Particularly, k1 = E[J ], k2 =

Var[J ].

b) f(z) is a strictly convex function, analytic and infinitely differentiable in a neighborhood
of zero, if it is finite in that neighborhood.

Our first goal is to show that the Chernoff functional is well defined. Note that we can
write the definition in the equivalent form:

Cδ[J ] = inf
θ>0

(θf(θ−1)− θ log δ) = inf
z>0

z−1(f(z)− log δ) (A.1)

where f is a strictly convex function by property b. Note that the first term, θf(θ−1), is the
perspective transformation of a strictly convex function, and, thus, is also strictly convex
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(a) The optimal policy is taking action b, for which
F−1
0.1 [V (π)] = 10.
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(b) Now the optimal policy is taking action a, for
which F−1

0.1 [V (π)] = 5

Figure A.1: Example showing that percentile optimization for MDPs is sometimes counter-
intuitive. We are optimizing F−1

0.1 [V (π)]. Changing parameters of state S2 affects the policy
in state S3 even though S2 is unreachable from S3.
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[21], while the second term is linear, so also convex. This implies that the optimization
problem in θ is strictly convex, and, consequently, the optimum is well defined.

We show property i by using Markov’s inequality on the positive random variable eJ/θ:

P (J ≥ j) = P{eJ/θ ≥ ej/θ} ≤ e−j/θEeJ/θ ∀j, θ > 0

Solve for j after setting the right hand side to δ:

j = θ(logEeJ/θ − log δ) and P (J ≥ θ(logEeJ/θ − log δ)) ≤ δ

Since this is true for all θ > 0, it will also be true for θ∗ = argminθ>0 θ(logEeJ/θ − log δ),
which shows that P (J ≥ Cδ[J ]) ≤ δ.

To show property ii, first note that C1[J ] = infθ>0 θf(θ−1). Using the Taylor series
expansion of f , property a:

d

dθ
(θf(θ−1)) = f(θ−1)− f ′(θ−1)

θ
=
∞∑
i=1

(θ−i + iθ−i−2)
ki
i!

⇒ lim
θ→∞

d

dθ
(θf(θ−1)) = 0

Since θf(θ−1) is strictly convex, we conclude that infθ>0 θf(θ−1) must occur at θ∗ = ∞.
Using the Taylor series expansion again, we can see that limθ→∞ θf(θ−1) = k1 = E[J ], and,
consequently, C1[J ] = infθ>0 θf(θ−1) = limθ→∞ θf(θ−1) = E[J ].

To show property iii, let F−1
δ [J ] = sup{j : P{J ≥ j} > δ}. For now assume this is

finite for all δ ∈ [0, 1). Let Y = J − F−1
0 [J ], so P{Y ≤ 0} = 1 and eY/θ ≤ 1 almost surely.

Then Cδ[J ] = Cδ[Y ] + F−1
0 [J ]. The left hand side in the equation below is a restatement of

property i:

F−1
δ [Y ] ≤ Cδ[Y ] = inf

θ>0
θ(logEeY/θ − log δ) ≤ lim

θ→0
θ(logEeY/θ − log δ) =

= lim
θ→0

θ logEeY/θ ≤ 0 since EeY/θ ≤ 1

In this equation, take the limit δ → 0 and we get that 0 = F−1
0 [Y ] ≤ C0[Y ] ≤ 0, so we can

conclude C0[J ] = F−1
0 [J ]. If F−1

0 [J ] = ∞, then, by the fact that F−1
0 [Y ] ≤ C0[Y ] we get

C0[Y ] =∞.
Property v. As we saw in the proof of property ii, as δ → 1, θ∗ → ∞, so we can

approximate the cumulant generating function by its first two Taylor series terms: f(θ−1) =
logEeJ/θ ≈ E[J ]/θ + Var[J ]/(2θ2). Using this form we can solve the optimization problem
exactly, and we get Cδ[J ] ≈ E[J ] +

√
2 log(1/δ)Var[J ]. Property iv follows immediately, as

all the cumulants of the Gaussian distribution, except the first two, are zero [42].
We will show the first part of property vi, smoothness, by using the implicit function

theorem. Let g(δ) = argminz>0 z
−1(f(z) − log δ). As we have seen, this function is well

defined, so it is the only value of z where the derivative of the expression to zero:

d

dz
(z−1f(z)− z−1 log δ) = z−2(zf ′(z)− f(z) + log δ) = z−2h(δ, z).
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In other words, g(δ) is also implicitly defined by the equation h(δ, g(δ)) = 0. The function h
is smooth since the cumulant generating function, f , is smooth, so, by the implicit function
theorem, g(δ) is also smooth. To show monotonicity, let rz(δ) = z−1(f(z) − log δ). This
a class of decreasing functions of δ, indexed by z. The point-wise infimum over a class of
decreasing functions is also decreasing, so Cδ[X] = infz>0 rz(δ) is decreasing in δ.

A.3 Proof of Theorem 2

We start by restating the previous definition of n(ε) from Section 2.4.3:

n(ε) =

⌈
(jM − jm)

ε
log

(
θ2

θ1

)
+ log

(
θ2

θ1

)⌉
.

By definition of the ceiling function and the basic inequality log(1 + x) > x/(x+ 1), we get
that:

n(ε) ≥ ε+ (jM − jm)

ε
log

(
θ2

θ1

)
⇒ log

(
ε

jM − jm
+ 1

)
>

ε/(jM − jm)

ε/(jM − jm) + 1
=

ε

ε+ (jM − jm)
≥ 1

n(ε)
log

(
θ2

θ1

)
.

Exponentiating both sides we get:

ε

jM − jm
+ 1 >

(
θ2

θ1

)1/n

⇔ ε > (jM − jm)

((
θ2

θ1

)1/n

− 1

)
.

This inequality and Equation (2.4) imply that:

0 ≤ f(θ
n(ε)
i )− f(θ

n(ε)
i+1 ) < ε.

A.4 Proof of Theorem 3.

Proof. We will prove the theorem by reducing the satisfiability problem in conjunctive normal
form with three variables (3SAT) to the problem of deciding whether there exists a p-safe
policy for a belief that we will construct. The 3SAT problem amounts to deciding whether
there exists an assignment to boolean variables {Uk} such that the following expression is
true:

(X1 ∨ Y1 ∨ Z1) ∧ · · · ∧ (Xn ∨ Yn ∨ Zn)

where each of the variables Xi, Yi, Zi equals one of the variables in {Uk}, possibly negated.
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Figure A.2: MDP reduction of the 3SAT problem.

We start by constructing an MDP to represent this problem as shown in Figure A.2.
In addition to actions corresponding to the outgoing arrows, the agent also has the option
of remaining in the same state. A transition from some state to another state will succeed
if and only if the boolean variable corresponding to the origin state is true. The boolean
variable associated to states S and D are always true. Our belief is the uniform distribution
over truth values of the boolean variables {Uk}.

Now consider the following simple policy: from D go to S and then stay in S. For any
recall time T > 0, the recall event will find the agent in state S, so the policy is p-safe for
any p > 0 if and only if the belief assigns a non-zero measure to MDPs in which state D is
accessible form state S, so if any only if there exists at least one boolean assignment for the
{Uk} such that state D is accessible from S. It is easy to see that, this is the case if and
only if the 3SAT formula is satisfied, and this observation completes the reduction.

This result should come as no surprise since similar optimization problems have been
shown to be NP-hard in the context of Partially Observable Markov Decision Processes [18].

A.5 Proof of Theorem 4.

Proof. The result is an immediate consequence of the following Lemma.

Lemma 5. Given a belief β and a policy π, there exists a policy dependent reward correction,
σβ,π, defined below, such that the MDP with transition measure p := EβP and rewards
r + σβ,π, where r := EβR, has the same expected total return as the belief for any initial
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distribution. Formally:

∀ρ EβE
P
ρ,π

∞∑
t=0

RSt,At = Ep
ρ,π

∞∑
t=0

(
rs,a + σβ,πs,a

)
σβ,πs,a :=

∑
s′

Eβ [(Ps,a,s′ − Eβ[Ps,a,s′ ])Es′,π,P [V ]] .

Proof. The Markov property under belief β reads:

EβE
P
s,π[V ] =

∑
a

πs,aEβ[Rs,a] +
∑
a

πs,a
∑
s′

Eβ[Ps,a,s′E
P
s′,π[V ]].

The Markov property assuming expected transition frequencies and expected rewards with
safety penalty is:

Ep
s,π[V̄ ] =

∑
a

πs,a(rs,a + σβ,πs,a ) +
∑
a

πs,a
∑
s′

ps,a,s′E
p
s′,π[V̄ ]].

Now let ∆s := EβE
P
s,π[V ]− Ep

s,π[V̄ ]. By subtracting the first two equations we get that:

∆s =
∑
a

πs,a
∑
s′

ps,a,s′∆s′ .

We can see that ∆ satisfies the same equation as the value function in an MDP with transition
measure p and zero rewards. Since the value function in such an MDP is uniquely defined
and identically zero, we conclude ∆s = 0.


