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Efficient Distributed Training of Vehicle Vision

Systems
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Abstract

Self-driving vehicle vision systems must deal with an extremely broad
and challenging set of scenes. We propose a distributed training regimen
for a CNN vision system whereby vehicles in the field continually collect
images of objects that are incorrectly or weakly classified. These images
are then used to retrain the vehicle’s object detection system offline, so
that accuracy on difficult images continues to improve over time. In this
report we show the feasibility of this approach in several steps. First, we
note that an optimal subset (relative to all the objects encountered) of
images can be obtained by importance sampling using gradients of the
recognition network. Next we show that these gradients can be approx-
imated with very low error using just the last layer gradient, which is
already available when the CNN is running inference. Then, we gener-
alize these results to objects in a larger scene using an object detection
system. Finally, we describe a self-labelling scheme using object tracking.
Objects are tracked back in time (near-to-far) and labels of near objects
are used to check accuracy of those objects in the far field. Finally we
present some experiments and show the data reductions that are possible.

1 Introduction

Autonomous driving has recently become a popular topic with various enormous
challenges [22]. One of the most important features of autonomous driving vehi-
cles is the ability to interpret the surroundings and perform complex perception
task such as the detection and recognition of lanes, roads, pedestrians, vehi-
cles, and traffic signs [17]. Laser, radar and cameras are common sensors on
autonomous driving cars to sense the driving environment. Due to the low cost
and portability, camera has now become an indispensable equipment for the
system, and is critical to provide a reliable solution to the facing challenges.
Recently, with the appearance of Convolutional Neural Networks (CNNs), sig-
nificant progress has been made in the field of object detection and recognition
[10, 11, 16]. It is now possible to detect objects with high accuracy [16].

A useful and reliable visual system on an autonomous driving vehicle is used
to mimic the human visual system so as to accurately recognize objects while
driving. Recording and storing of driving videos and images is inevitable in
order to train the autonomous driving visual system with rich scene information.
Due to the intrinsic temporal continuity, videos are more powerful data than
independent images in terms of training and labeling [14]. Such kind of data
can be of several hours long [19, 9] and and a tremendous amount of space [4] is
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often required to store these data for subsequent training purposes. It is also an
unrealistic amount of work to label these video data frame-by-frame manually
[25].

However, considering the characteristic of driving video data, on one hand,
most part of the image and video data such as the background objects are
usually static and are not relevant to the decision making of vehicle actions.
Thus ignoring these image content causes little information loss but saves the
amount of space and time from storing and processing the entire image. On
the other hand, the detection and tracking of critical objects in these video and
image data is sometimes not accurate enough, especially when these objects are
in the far field or blurred by other objects. In this case, fine-tuning the visual
system’s parameters is required. Therefore, it is beneficial to sample a subset
from the entire recorded data pool and emphasize training on those error-prone
video frames or object regions. Selected training data set is also useful for
improving the accuracy of a deep neural network and saving training time as
we have less data to work on. In addition, considering the temporal continuity
of driving video, one thing being specific to driving video is that objects near
the camera are usually larger, clearer and easier to be correctly classified, while
objects in the far field are usually smaller, and the classification is often prone
to be contaminated by other objects. Therefore, while creating the training
data, it is reasonable to trust the detection results of nearby objects and it can
be used to check the identity of the same objects in the far field.

Traditional uniform sampling approach samples a subset of training data
with equal weight of individual data sample. While it does help to reduce the
total data volume, it provides little help of an efficient use of other information
provided by data itself and does not represent the data very well. Importance
sampling has been well known for solving this problem by providing a data-
driven sampling scheme [5]. Recently, importance sampling has been success-
fully applied in the field of machine learning and optimization [28, 5]. In [2], it is
shown that the learning efficiency and accuracy of a neural network is improved
by selecting useful message with importance sampling, we follow the idea and
apply the idea to the visual system in order to find out the most important and
informative video frames and regions from the driving video data. We define
the heuristic of the importance of images as following: a image with higher
magnitude of gradients is the more important images. The reason is that the
larger gradient magnitude corresponds to larger decreasing of loss function in
stochastic gradient descent and thus improves the model more than images with
lower magnitude of gradient.

In this report, we propose a practical approach to use importance sampling
for visual training data reduction, and use the temporal continuity of driving
video to generate labels of video frames in semi-supervised fashion. First of all,
we show that an optimal subset of images can be collected by using importance
sampling with the probability distribution defined by the Frobenius norm of
gradients with respect to model parameters given input video frames. The
model we are going to use is the Faster-RCNN [16] object detection network.
In addition, we show that it is possible to use the Frobenius norm of last layer
gradients of the object detection network to approximate the gradients of all
model parameters with low error. In this way, we can save time by avoiding
a large amount of computation doing back-propagation. Finally, we use object
tracking framework to label video frames to automatically generate final training
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Figure 1: Overview of our method. Given a sequence of video frame inputs, the object detection
network first detects objects in a frame, the forward pass step. Then the last layer gradient is
computed, doing one step backward pass. Both detection results and gradient will be sent to object
tracker which keeps a list of active trackers. The importance sampler determines whether to save
the detection or not based on the gradients. Furthermore, the near-to-far labeling step check the
accuracy of objects that are in the far field using the classification result of near field objects, where
we believe near field objects are larger and the classification is accurate.

data. The same object in different frames are associated via visual tracking.
Then we tracked back in time from near to far. Identities of far field objects are
checked according to their near field object counterpart labels.

The contributions of this report are:

• We proposed to use importance sampling for data reduction for large vol-
ume autonomous driving visual data.

• We proposed to use near-to-far labeling scheme to perform semi-supervised
labeling of unlabeled data, which improves the labeling efficiency.

• We performed both near-to-far labeling and importance sampling to select
data that the pre-trained object detection network tends to make mistake
on.

• We evaluated our method using relative variance ratio and labeling accu-
racy.

2 Related Work

Importance Sampling: Importance sampling is a well-known technique used
to estimate properties of a particular distribution while only having samples
generated from another distribution [15, 18]. The work of [28] studied the prob-
lem of improving traditional stochastic optimization with importance sampling,
where they improved the convergence rate of prox-SMD [6, 7] and prox-SDCA
[20] by reducing the stochastic variance using importance sampling. The work
of [2] improves over [28] by incorporating stochastic gradient descent and deep
neural networks. Also there are some work in using importance sampling for
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minibatch SGD [5], where they proposed to use importance sampling to do data
sampling in minibatch SGD and this can accelerate the converge of SGD.

As for self driving vehicles’ vision system training, we typically do not know
the ground truth distribution of the data, which is the images or video data
captured by cameras. Thus, importance sampling will be very useful in esti-
mating the properties of the data from an data-driven sampling scheme. Some
exciting work of importance sampling for self-driving vehicle are already there:
[29, 24, 27, 8]. The work of [24] and [8] proposed to use importance sampling for
visual tracking, but their focus was not on reducing the training data amount
and creating labeled data using visual tracking.

Object Tracking and Labeling. Object tracking is a fundamental prob-
lem in computer vision, and there has been much progress for past recent years
[23, 12, 13]. In the scenario of autonomous driving, we are interested in tracking
critical objects and identifying their categories. For example, when the vehicle
is driving on a highway, it is useful to detect and track other vehicles to keep
an appropriate distance with them, and when the vehicle is driving through a
busy road, it is important to track pedestrians to avoid traffic accidents.

Typically, it is relatively hard to detect and identify an object when it is
very far away and easier otherwise. Intuitively, when a object detection neural
network such as Faster-RCNN [16] takes an image that is hard to perform object
detection, the output loss will be larger comparing to an image that is much
easier to detect objects. Therefore, the gradients of the loss function with respect
to the harder-to-detect image will be larger than the easier-to-detect one. Given
the large volume of video data captured by cameras on vehicles, it is useful to
track an object when it is not very clear what it is and save the corresponding
image and discard the image frames that we are already able to tell what’s in the
scene. That is to say, we should focus more training on those difficult images.

3 Methods

The pipeline of our entire algorithm includes two parts. First of all, a object
detector module is use to find out object targets in a scene as well as to com-
pute the gradients from the object detector network for each object of interest.
The gradients will be regarded as sampling weights according to the impor-
tance sampling mentioned in [2].The second part is a self-labeling module. An
object tracker matches and creates a relation of a same object in video frames
coming from the real driving recordings on-line by incorporating Kalman-filter
algorithm. Then, the same object in the same stream will be labeled from near
to far according to the label of the closer object.

The system architecture is shown in figure 1. Here, we first describe the im-
portance sampling framework followed by the discussion of details about object
tracking, self-labeling.

3.1 Sampling An Optimal Subset of Images

The training of a deep neural network for vision system of self-driving car typ-
ically entails a set of forward propagation to calculate the loss function and
backward propagation to evaluate the gradients of the loss function with re-
spect to all parameters of the model. Nowadays, stochastic gradient descent
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(SGD) is a common way in the training procedure.
Inspired by the idea of importance sampling [2], we can select an optimal

subset of the data by sampling the data according to importance sampling
probability distribution so that the variance of the sampled data is minimized
under an expected size of sampled data. Here, the sampling distribution is
proportional to the gradients magnitude of each image.

Consider the calculation of gradients as an estimation problem, the goal is to
estimate the expected gradients f(x) based on a data distribution p(x), where
x is the input data instance. However, usually we do not know the ground
truth distribution of the data p(x), and we can rely on a sampling proposal q(x)
to unbiasedly estimate this expectation, with the requirement that q(x) > 0
whenever p(x) > 0. This is commonly known as importance sampling:∫

p(x)f(x)dx = Ep(x)[f(x)] = Eq(x)[
p(x)

q(x)
f(x)] (1)

It has been proved in [2] that the variance of this estimation can be minimized
when we have,

q∗(x) ∝ p(x)||f(x)||F (2)

Defining q̃∗(xi) as the unnormalized optimal probability weight of image xi, it
is obvious that images with a larger gradient norm value should have a larger
weight. Since we have access to a dataset D = {xn}Nn=1 sampled from p(x),
we can obtain q∗(x) by associating the probability weight q̃∗(xn) = ||f(xn)||F
to every xn ∈ D, and to sample from q∗(x) we just need to normalize these
weights:

q∗(xn) =
q̃∗(xn)∑N
i=1 q̃

∗(x1)
=

||f(xn)||F∑N
i=1 ||f(xi)||F

(3)

where f(xi) is the gradients of the loss function of input xi with respect to all
model parameters, which can be either a scalar or a matrix, and is transformed
into a scalar after taking the Frobenius Norm. To reduce the total number
of data instances used for estimating Ep(x)[f(x)], we draw M samples from
the whole N data instances (M << N) based on a multinomial distribution
where (q∗(x1), ..., q∗(xN )) are the parameters of this multinomial distribution.
According to the discussion above, we obtained an estimation of Ep(x)[f(x)]
which has least variance compared to all cases where we draw M samples from
the entire N data set.

3.2 Object Detection Network Gradient Extraction

As the first step of looking for candidates in the images that we may be interested
in collecting, we have to find out where is the objects of interest. Here we
focus on pedestrians, any kinds of vehicles or signs, which are entities that an
autonomous driving vehicle may have to pay attention to while it is making a
control decision from the scenes. The object detection network used in this study
is Faster RCNN [16], which is a state-of-the-art recognition network bundling the
region proposal and object recognition mechanisms together. The advantage of
this architecture is that it is able to detect the objects in an image and propose
bounding boxes information faster in time. Therefore, it is attractable for on-
line image object detection.
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Furthermore, as mentioned in previous section, we need gradients for each
object to define the sampling weight. We extract gradients from the object
detection network for every given input xi, here it represents an image. We
do forward propagation with an input image xi to obtains object candidates,
and then we do backward propagation to compute gradients. Ideally we are
supposed to propagate backward to the very beginning to see how importance
the image is, since we are interested in how does the image improve the network
to do better. However, computing gradients of the very beginning layer is very
expensive, we instead use the last layer gradients to approximate the value of
the early layers to avoid the cost of computation time.

We propose to use the Frobenius norm of the last layer gradients as an ap-
proximation to represent the corresponding gradient magnitude of the image,
the gradient of loss with respect to all parameters. This simplifies the procedure
of calculating gradients and saves a remarkable time from avoid propagating
backward. The reason for the feasibility of this approach is that the calculation
of gradients follows the chain rule and since operations in chain rule are multi-
plications of a scalar, which are linear operations. As a result, the magnitude of
the last layer gradients is approximately linearly correlated with the magnitude
of previous layers’ gradients.

||gi,last||F ≈ c||gi,j ||F (4)

where gi,last is the gradient of the loss function with respect to the parameters
of the last layer, and gi,j is the gradient of the loss function with respect to
parameters of the jth layer, and i here denotes data ith instance .

Moerover, since the calculation of probability weight q∗(xi) only depends on
the normalized gradients norm, so this approximation is reasonable. To show
this, we evaluated gradients at several layers of the network and all are then
taken Frobenius norm for comparison.

In figure 2, we show that the magnitude of Frobenius-normed gradients of
the former layers are with high linearity with respect to the last layer. We can
see that the r square value of the linear regression can be even higher than 0.9.

In table 1, we show the sampling efficiency comparing the sample estimator
with magnitude of gradients from former layers to the estimator with magni-
tude of the last layer of the Faster RCNN. Apparently, the ratio is very close
to 1, which means that the magnitude of gradients from former layers are inter-
changeable with the last layer gradients.

FC7 FC6 Conv5 1 Conv4 1 Conv3 1 Conv2 1 Conv1 1
Last Layer 1.01 1.03 1.07 1.10 1.12 1.13 1.14

Table 1: Sampling efficiency of using former layers’ gradients in Faster RCNN with respect to
using the last layer gradients

3.3 Measure the Efficiency of Variance Reduction

Once we get the sampling distribution q∗(xi), we then perform the importance
sampling. Images with a higher gradient norm will get higher likelihood to
be sampled, which is reasonable since a larger gradient norm means that the
loss function has not reached its minimum value. We, further, measure how

6



efficient that we estimate the gradient norm distribution. Since the goal of using
importance sampling approach here is to reduce the variance while estimating
properties of the data (in this case is the total gradient norm given individual
sample video frame input) from a subset of the data.

To show that the gradients estimated from the sampled images have close
variance with gradients variance estimated from all images, we computed a
relative variance value. This value is the ratio of whole data set gradient norm
variance over sampled images’ gradient norm variance.

Suppose the data set is D = {xn}Nn=1, and we extracted last-layer gradient
g(xi) given individual input xi. To calculate the sampling probability, we take
the Frobenius norm of g(xi) and get ||g(xi)||F , and define the sampling prob-
ability of image xi when we expect to sample M out of N images (M < N)
as,

q(xi) = min

[
1,

M ||g(xi)||F∑N
i=1 ||g(xi)||F

]
(5)

taking the minimum compared with 1 is to ensure that the probability of sam-

pling image xi can not be larger than 1, which happens when M ||g(xi)||F∑N
i=1 ||g(xi)||F

is

saturated. Note that, when the sampling probability is 1, we should sample this

image. With the scaled sampling weight M ||g(xi)||F∑N
i=1 ||g(xi)||F

, we change M so that

we can get different numbers of images out of the entire image date. Typically,
choosing a M such that the sample gradient norm variance is close to whole data
gradient norm variance. Since the data are in the discrete space, the relative
variance is defined as,

R =

∑N
i=1 ||g(xi)||2F∑N

i=1 ||g(xi)||2F /q(xi)
(6)

where
∑N

i=1 ||g(xi)||2F /q(xi) can be expressed as,

N∑
i=1

||g(xi)||2F /q(xi)

=

k∑
j=1

∑N
i=1 ||g(xi)||F
M ||g(xj)||F

||g(xj)||2F +

N∑
j=k+1

||g(xj)||2F

=

∑N
i=1 ||g(xi)||F

M
(

k∑
j=1

||g(xj)||F ) +

N∑
j=k+1

||g(xj)||2F

(7)

where q(x1), q(x2), · · · , q(xk) are smaller than 1 and q(xk+1), · · · , q(xN ) are
equal to 1.

3.4 Object Tracking Module-Self Labeling

After we have objects and gradient values for each object candidate, we then
wish to mark the objects in a sequence of images as in the same group if they
are supposed to be the same object across the these sequence of images. In
[3], it shows a simple tracking algorithm incorporating with the Kalman filter
and taking only present image frame and a few previous image frames into
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Figure 2: Plot of gradient Forbenius-norm of last layer in VGG 16 versus the gradient Forbenius-
norm of fully-connected layer 7 (FC7), fully-connected layer 6(FC6), Convolutional Layer 5 (Conv5)
and Convolutional Layer 1 (Conv1)

consideration. This algorithm works as long as we are able to provide bounding
box information of objects in frames. This simple algorithm is specially fit to the
on-line tracking for autonomous driving [1], since we are not able to get future
images in real time. In this paper, we have Faster RCNN as our information
provider.

The tracker object of the tracking algorithm will try to give each object in
the frame a tracking box, if the object in the current frame is the same object
in the previous frame, the object in the current frame will be assign to the
same tracking box as in the previous frame. From previous frame, we can infer
the location of the tracking box with the help of Kalman filter. Ideally, the
movement of the same object should not have a large difference in consecutive
image frames. The assumption makes a lot of sense, since the recording rate for
cameras are high enough such as 60fps, even a cheap device on a autonomous
driving can achieve this. Otherwise, if there is no match for existing tracking
box, the object will be assigned a new tracking box and be referred to as a new
object.

Near-to-Far Labeling Scheme. With the help of object entity identifi-
cation from the tracker mentioned above, we then proposed to use near field
image detection results to check the identify of far field detection results. Our
proposed method does not require the data to be labeled in advance. There-
fore, this is a method of automatic labeling the training data with the help of
a pre-trained model. Since our purpose is to select training images for better
performance of visual system, we will label images as we track them for a certain
period. Considering of the case that we are tracking an object from far to near
field. When the image is in a far distance away from our current location, the
object could be very small or blurred in the image, which makes it very difficult
to be correctly classified. In this scenario, if the object is classified incorrectly
according to the near field object information and the gradient norm of this
image is relatively large, then we should have a high probability to sample this
image and save it. As the object approaches the vehicle, the detection network
has a higher confidence to correctly classify this object, and the gradients of
this image will become smaller and thus we have a relatively low probability to
sample this image and save it. We label the objects as we track them, if the
norm of gradients of an input frame exceeds a certain threshold, we need to
save this image for subsequent training. Otherwise, we treat the object detec-
tion network as a good enough model to detect objects in this frame and discard
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Input: dets(detections information of a single frame);
trks (keep a list of active trackers);
min age (delete a tracker if it has not been updated for more than this
time);
grad th (save a detection if the gradient norm is larger than this
threshold)
Result: ret (collections of detections to be saved)
for ∀ trk ∈ trks do

Predict next state of trk using Kalman Filter
end
for ∀ det, trk ∈ dets, trks do

Match det, trk
get matched (det, trk) pairs,
get unmatched det
get unmatched trk

end
retain = {}
for ∀ matched (det, trk) pairs do

Update trk using det;
Using confidence score of det to check the accuracy of history scores
of det in trk;
retain.append(All history of det ∈ trk)

end
for ∀ unmatched det do

Add a new trk based on det
retain.append(All history of det ∈ trk)

end
for ∀ unmatched trk do

if trk has not been updated for more than min age times then
Remove trk from trks

end

end
for ∀ ret ∈ retain do

if ret has history length > h then
mark the first n frames in ret as needed to be saved if they have
different classification form the latest frames.

end

end
return retain

Algorithm 1: Object Tracking and Labeling Algorithm
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the frame. The threshold value is ad-hoc and depends on the detection result
from experiments.

The object tracking and labeling algorithm is described in this algorithm 1.

4 Experiments

Data Set and Pre-trained Model. In the experiment, we use the dataset
from Stanford autonomous driving car video recording. The dataset includes
real scenes the vehicle met while the vehicle is driving on the road. We use this
dataset to simulate the real word situation we may encounter in order to test the
feasibility of our algorithm in the real word task. We use the KITTI benchmark
data set which is a challenging autonomous driving data set [9]. This data set is
fairly rich as it contains high-resolution color and grayscale images and videos
captured in rural areas and on highways. The raw data has several categories
covering many aspects of transportation: city, residential, road, campus, person,
etc.

Since our goal is to perform importance sampling and near-to-far labeling to
select images that are hard to train, we used pre-trained Faster-RCNN model
[26, 21] for object detection on images selected from the KITTI data set. The
pre-trained model we used is the one from [16]. At the same time, since the
object labels from the pre-train model may not fit the object classes we will
actually meet on the road such as ”horse” or ”tvmonitor”, we also fine-tune
the Faster RCNN with CityScapes data set. We used around 2900 images from
CityScapes with fine ground truth annotations to prepare our training data and
fine tune some convolution layers and fully connected layers.

Check the Feasibility of Using Last Layer Gradient. As mentioned
before, we did not do a entire back-propagation to get the gradient value of the
loss function with respect to model parameters given sampling image as input.
Instead, we just use the last layer gradient. As the data is not labeled, we first
do a forward pass to get the label of the input image, namely, get the bounding
box and corresponding scores. Then we do a backward propagation to the last
layer to get the gradient of the last layer. In this step, we assume that the class
the the object decided from the highest value of output score from the network
is correct.

To show that importance sampling can optimize the variance with selecting
images with high gradients more, we calculated gradient Frobenius norm at
every layer for every input frame. For each layer, we compute the variance
of keeping all data and keeping part of the data sampled with the importance
sampling. The ratio of variances is calculated according to equation 6.

Labeling Accuracy. We perform near to far labeling and check the accu-
racy of labeling. The accuracy is calculated as the ratio of number of proposals
that are incorrectly labeled by the original model but are then corrected by our
labeling scheme over the total number of incorrectly labeled proposals.

5 Results

Gradient Extraction Results As mentioned in section 3.2, we use the last
layer gradient norm to approximate the total gradient norm. We calculated
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the last layer gradients’ norm and several previous layers’ gradients’ norm and
we show that these values are highly linear correlated. It can be seen from
the image that the last several fully connected layers’ gradient norm follow a
more linear correlation with the last layer gradient norm while the first several
convolutional layers’ gradient norm has larger variance.

Figure 3: The linear fit of last layer gradient Frobenius norm and total gradient Frobenius norm

Relative Variance Results We use the relative variance mentioned in
section 3.3 to measure how good we estimate the gradient norms. To do this,
we calculated the curve of number of samples we draw (M) versus the relative
variance ratio. The result is shown below. From the plot, we can see that
by scaling the importance sampling weight as mentioned in 5, we are able to
keep high sampling efficiency compare to the use of original gradients norm
magnitude while only retaining half number of the entire dataset.

Figure 4: Relative Variance Evaluation Results

Implicit Labeling Results Implicit labeling means we use near field object
detection results to check the accuracy of objects that are in the far field. To
check the accuracy, we performed sampling and labeling on the KITTI data
set, the accuracy calculation method was mentioned before, and the accuracy is
0.93.The accuracy without relabeling is 0.90. An example sequence of implicit
labeling for correcting annotations is shown in 5.
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6 Conclusion

We proposed the idea of using importance sampling to select the most impor-
tant images for training and online processing purposes and have successfully
extracted gradients from the last fully connected layer of faster R-CNN as the
probability of weight. More work should be done to better demonstrate the
advantage and ability of importance sampling to reduce the storage space for
visual data generated by autonomous vehicles, including comparing the learn-
ing quality from importance sampling selected images with that of the entire
dataset.

We also realized that there is some intrinsic problems in labeling poorly
detectedhave any influence in training the model since it will not saved for later
retraining. We think our method is able to improve the situation where we are
able to detect objects with pre-trained model but not able to correctly classify.

Our proposed implicit labeling scheme helps to unsupervisedly labeling the
data using pre-trained model, and the labeled data can be used to retrain the
model and fine-tune the parameters.
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Labeling results from left to right: motorbike, car, car (ground truth). As the vehicle approaches
the object, it becomes clearer and no longer hidden by the pole.

Labeling results from left to right: bus, car, train (ground truth). The object looks like a bus in
the far field, but is classified as train when it’s in the near field considering it’s on railroad.

Labeling results from left to right: train, car, car (ground truth). The object looks like a train in
the far field, but is classified as car when it’s in the near field.

Labeling results from left to right: bus, car, car (ground truth). At first sight, the car is blurred
and hidden by other objects, then it became more clearer that this is a car.

Figure 5: Examples of implicit labeling. These images are from the KITTI Benchmark data set
[9]. The labeling results are obtained from pre-trained Faster-RCNN model. The bounding box
shows the detected objects being tracked. Near field object detection results are used to check the
accuracy of the detection results of objects in the far field.
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