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Abstract

Surgical Automation for Multilateral Multi-Throw Suturing
by
Siddarth Sen
Master of Science in Electrical Engineering and Computer Science
University of California, Berkeley
Professor Ken Goldberg, Chair

For supervised automation of multi-throw suturing in Robot-Assisted Minimally Invasive
Surgery, we present a novel mechanical needle guide and a framework for optimizing needle
size, trajectory, and control parameters using sequential convex programming. The Suture
Needle Angular Positioner (SNAP) results in a 3x error reduction in the needle pose estimate
in comparison with the standard actuator. We evaluate the algorithm and SNAP on a
da Vinci Research Kit using tissue phantoms and compare completion time with that of
humans from the JIGSAWS dataset [6]. Initial results suggest that the dVRK can perform
suturing at 30% of human speed while completing 86% suture throws attempted.
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Chapter 1

Introduction

Robotic Surgical Assistants (RSA), such as Intuitive Surgical’s da Vinci System have fa-
cilitated over 570,000 procedures worldwide in 2014 [9]. RSAs are currently controlled by
surgeons using pure tele-operation, requiring uninterrupted attention and control. Automa-
tion of surgical sub-tasks such as suturing has the potential to reduce surgeon tedium and
fatigue, operating time, and enable supervised tele-surgery.

We have explored a variety of different modes of surgical automation including palpation,
tumor resection, and autonomous suturing. The results of the first two works are summarized
below, with autonomous suturing being the main focus of this work.

One of the disadvantages of robotic surgery today is the lack of haptic feedback in robotic
tele-operation. In traditional surgery, surgeons can palpate tissue in order to localize sub-
cutaneous inclusions. In prior work [22] we developed a low-cost, single use, disposable
haptic probe which mounts onto the tip of a standard da Vinci needle driver that allows
the measurement of tissue stiffness through sliding motions across the tissue surface. The
haptic probe contains a displacement-based contact sensing tip which allows for quasi-static
motion similar to surgeon fingertip motion. Our results show that the probe is capable of
measuring inclusions inside a silicone tissue phantom at depths of up to bmm. We extend
this work in [7] and explore efficient methods for continuous tissue palpation using the haptic
probe. We developed a Gaussian Adaptive Sampling algorithm, Implicit Level Set Upper
Confidence Bound, that prioritizes sampling tissue stiffness near a level set of an inclusion
boundary estimate. Physical experiments on flat silicon phantoms with hidden inclusions
suggest that our method outperforms raster scanning techniques while using at least 10x
fewer measurements.

We have also explored how a series of interchangeable tool tip mounted instruments can
complement the palpation probe in tasks requiring long term autonomy such as tumor resec-
tion [23]. Tumor resection is a multi-step multilateral surgical procedure to localize, expose,
and debride a subcutaneous tumor. We demonstrated the task on a silicon phantom using
the da Vinci Research Kit and a series of tool-tip mounted instruments. The palpation probe
described in the previous paragraph is used to localize vein shaped inclusions underneath
the phantom surface. A tool-tip mounted scalpel is used to make an incision in the tissue.
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Finally a standard needle driver is used to debride the vein-shaped inclusion embedded in
the silicone phantom. Our autonomous system successfully completed the entire procedure
in five of ten trials. The most common failure mode was the final debridement phase, and
we showed that this phase can be made more robust using visual feedback.

Now we will introduce the main surgical subtask of interest in this work: multi-throw
suturing. The Fundamental Skills of Robotic Surgery (FSRS) defines a representative set of
procedures for surgical training and evaluation [38]. FSRS includes Multi-Throw Suturing
(MTS) where each MTS throw includes five steps as illustrated in Figure 1.1. A curved
needle with suture thread is repeatedly pushed through a pair of tissue boundaries with
one actuator, then pulled through with a second actuator until the thread is taut, then is
transferred back to the first actuator to begin the next throw/suture [8, 3]. In Robot-Assisted
Minimally Invasive Surgery (RMIS), MTS is a tedious subtask and it can be difficult for the
surgeon to maintain proper needle pose during insertion and transfer as haptic feedback is
not available.

We present initial results toward automating MTS with new hardware and a novel op-
timization algorithm. Our approach includes (1) a mechanical device, the Suture Needle
Angular Positioner (SNAP), designed to align and hold the needle in a known orientation,
(2) computer vision software to track needle pose, and (3) a sequential convex optimization
formulation of needle motion planning. Initial results suggest that SNAP can reduce error
in needle orientation by 3x and that the combined system can successfully complete 86% of
attempted suture throws at 30% the speed of human operators [6].
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S1) Orient

subcutaneous fat

Figure 1.1: Each throw in Multi-throw Suturing (MTS) includes five steps: (S1) Needle placement
in desired position and orientation by first actuator, (S2) Needle insertion through tissue by first
actuator, (S3) Needle grasp by second actuator, (S4) Needle and thread pull until thread is taut,
and (S5) Needle transfer back to first actuator. (note: S5 is not illustrated in this time-lapse image).
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Related Work

2.1 Automated Suturing

Automation of suturing has been studied in the context of hierarchical models for multi-step
task planning [13], multilateral manipulation of needle and suture [37], and interaction with
deformable tissue [10, 11].

While each of these studies made significant contributions as outlined below, challenges in
combining these steps to achieve autonomy in longer tasks has not been sufficiently addressed.
Kang et al. devised a specialized stitching device for RMIS which is capable of tying a
knot [13]. Mayer et al. used a recurrent neural net as part of a controller to learn knot tying
with three industrial arms using motion primitives from human demonstrations [21]. van den
Berg et al. used iterative learning for performing knot tying at super-human speeds [2]. More
recently, Schulman et al. used a learning by demonstration approach to warp recorded expert
demonstrations and perform suturing in simulation [33]. Padoy et al. showed execution of
collaborative human-robot suturing, but the key sections requiring interactions such as needle
insertion and hand-off were performed manually [29]. Similarly, Staub et al. automated
needle insertion into tissue for single-throw suturing [37].

Prior work in surgical automation has modeled the basis set of surgical motions as the
“Language of Surgery” composed of surgemes (Hager et al.) [32]. Recent works have also
explored the use of learning techniques to infer surgeme transitions from demonstration
data [28, 19]. Many of the FSRS procedures, including MTS, are decomposable into short
sequences of simpler sub-tasks. This decomposition allows the parametrization and build-
ing of Finite State Machines (FSM) for complex procedures using a learning by observation
approach, for tasks such as tissue debridement [15], pattern cutting [24], and tumor local-
ization & resection [23]. Our work on segmentation of multi-step task demonstrations [17]
suggests that unsupervised learning of semantic transitions is feasible and can be analyzed
to construct FSMs for these multi-step tasks.
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2.2 Suture Needle Path Planning

Some preceding studies use a needle path of fixed curvature. Jackson et al. used a reference
trajectory to create an analytical solution allowing for needle insertion without considering
uncertainty or robot pose constraints [11]. However, needles do not always follow their natu-
ral curvature. Interaction with tissue may deflect the needle, and end point pose constraints
necessitate non-orthogonal exit. The use of optimization-based planning has potential to
address these limitations. Recent results in motion planning have shown that Sequential
Convex Programming (SCP) based planning, such as [35] can be both faster and more suc-
cessful in finding solutions than sampling based planners. This paper formulates suture
needle path planning as a curvature constrained SCP-based optimization problem solved
with a custom implementation.

This paper builds on prior work in optimization-based planning [5, 30], sub-task level
segmentation of demonstrations [17, 19], gripper mounted interchangeable tools [23], and
building robust finite state machines [24]. To the best of our knowledge, this is the first
system to perform autonomous multi-throw suturing.
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Problem: Formulation and Definitions

The success of suturing is highly sensitive to needle pose uncertainty at entry point. Uncer-
tainty in needle pose during insertion can result in tissue injury due to skin penetration at
undesirable angles or the lack of sufficiently deep needle insertion to hold the suture securely.
As illustrated by the several error cases in Figure 3.1, it is essential to maintain proper nee-
dle pose during insertion and handover to avoid dropping the needle or damaging tissue.
Since the needle is thin and highly reflective, it is difficult to accurately detect its position
and orientation with computer vision as noted in [11, 27, 36, 12]. Several medical device
manufacturers offer needle-alignment devices for manual laparoscopic applications [20, 31]
but, to the best of our knowledge, these are not available for RSAs.

Surgeons follow suturing task guidelines such as entering the tissue orthogonally, mini-
mizing tissue-needle wrench, choosing the correct needle size for adequate suture depth, and
inserting the needle to a sufficient depth to ensure needle protrusion for needle re-grasp.
While a needle would follow a constant curvature path through rigid objects, tissue is de-
formable. Thus we model the needle path to allow bounded rotations about the needle tip
while the needle is inserted. However, needle paths that do not follow the natural curvature
of the needle can result in tissue damage, hence we define a bounded deviation () from nee-
dle curvature (k) that can be visualized as a cone at each point as illustrated in Figure 4.1.
We monotonically reduce v as the needle progresses to minimize tissue damage.

3.1 Assumptions

We assume that tissue is homogeneous and deformable. Real-time tracking and planning is
used to account for departures from needle pose estimates during needle insertion. We assume
that the needle is rigidly held in the gripper and can only move forward in the tangential
direction of the tip. However, bounded reorientation of the needle tip is permitted as it is
inserted through tissue. We assume that our system has access to a continuous range of
needle sizes. In practice, needles vary in length in increments of 1 mm and vary in three
different fractions of a circle.
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X
desired desired
exit point | entry point
B planned
needle
B trajectory

Figure 3.1: The needle trajectory labeled (3) shows the desired trajectory along with poses at the
entry and exit points of the tissue. The success of suturing depends on correct orientation of the
needle with respect to the tissue. For example, uncertainty in needle pose at the entry point may
result in the needle not connecting opposite tissue sides (1), not making sufficiently deep insertion
to hold the suture securely (2), not having enough length of needle at the other end to enable
re-grasping (4), or passing completely under the wound and not exiting the tissue at all (5).

3.2 Input

The wound shape is provided as input, with the points M = [M;, My, ..., Mp] € R? rep-
resenting the wound surface as a spline. The system is also provided with suture depth
d, suture width [, and a pair of entry/exit poses (P;, Py € SE(3)) for the first throw as
illustrated in Figure 3.1. Further, we are also given suture pitch w — the distance between
consecutive suture throws.

3.3 Output

The system needs to find a set of suture throws S, where V S; € S, we need to calculate
an optimized sequence of needle tip poses X; € SE(3) satisfying the the suture depth and
suture width constraints or report that no such path plan exists. The system also needs to
choose a needle curvature and length. The entry and exit positions at each suture throw S
are obtained by linearly interpolating P;, P, along the spline while keeping the orientation
constant.
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3.4 Curvature Constrained Kinematic Model

The needle trajectory is discretized into time intervals 7 = {0,1,...,T}, where the nee-
dle moves a fixed length (A) at each time step. At each time step the needle’s pose is
parametrized as X, € SE(3).

We model the needle trajectory as a sequence of 1" — 1 circular arcs with curvature r;
between every consecutive pair of needle poses (X;, X;+1). We model our control of the
needle at each time step as a rotation and insertion where at each time step the pose X; is
propagated a distance A to X;.;. Although a needle naturally follows a path of constant
curvature, the needle tip can be reoriented at each time step to change the local curvature
by 4;. Thus at each time step the path curvature x; can be expressed as k; = k + 7; where
k is the curvature of the needle and #; is the change in curvature applied at each time step.
The transformation between consecutive needle poses can be represented a twist in se(3) ,
w=[A 00 0 Ar 0]"

The Lie group SE(3) and the corresponding algebra se(3) are related by the exponential
and log maps exp : s¢(3) — SE(3) and log : SE(3) — se(3). Closed form expressions exist
to compute these maps efficiently. Given an incremental twist = [p, p, p. 1z 1y 72]7 € RO,
the corresponding Lie algebra element is given by the mapping " : R® — s¢(3) as

0 —ry 1y D2
x/\ — Tz 0 —Tz Dy
_ry Ty 0 Pz

0 0 0 1

The reverse mapping ¥ : se(3) — R can be used to recover the twist, z from an element of
se(3). Poses between consecutive time steps can then be related as:

X1 = exp(u)) - X, (3.1)

Further details about the Lie algebra can be found in the appendix.
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Suture Needle Path Planning

«—planned needle trajectory

step
des1red size

exit point '\J

|
desired
entry point

J ‘x\ /

Figure 4.1: The optimization steps and non-holonomic motion at each time-step. The figure shows
stay-out zones O; , trajectory poses X, step-size A, needle radius r, and y-cone of allowed rotation
at each X;.

The Suture needle Path Planning (SPP) problem can be formulated as a non-convex,
curvature constrained motion planning problem solved with a series of locally convex approx-
imations using sequential convex programming (SCP). We begin by presenting the problem
formulation.

4.1 Optimization Model

The following optimization model is based upon the curvature constrained motion planning
formulation described by Duan et al. [5]. We extend this formulation to include parameters
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to simultaneously optimize needle dimensions.
For notational convenience we concatenate the states from all time steps as X = {X; :
t € T} and control variables as U = {k, A,y : t € T}

SPP : minimize anlCa + a;Cy (4.1)
s.t. log(Xyy1 - (exp(ug) - X;)™H)Y = 0g (4.2)

Vel <y Ve (4.3)

TA 421, — 2 < (4.4)

sd(X,, 0;) > d,, Vi (4.5)

Xo € B(pi,e), Xr € B(py,e) (4.6)

Each term in the above formulation is described below:

Costs (Eqn. 2):

We assume the volume of needle in tissue is proportional to tissue trauma and hence we pe-
nalize longer trajectories such that Ca = T'A, the length of the trajectory. To penalize tissue
damage we optimize for the shortest length needle trajectory that satisfies our constraints.
We approximate the trajectory length as:

Ca =TA (4.7)

Furthermore, surgical guidelines suggest that the needle entry pose should be orthogonal to
the tissue surface. C7 penalizes deviations from an orthogonal start pose. The weights aa
and oy are parameters that are tuned in the optimization.

Kinematic Constraints (Eqns. 3, 4):

The kinematic constraint in Eqn. 1 can be transformed using the exponential log map into
the standard equality constraint in Eqn.3. Eqn.4 bounds the magnitude of 4; to minimize
tissue damage. We select v; to be monotonically decreasing with ¢ because needle rotations
away from its natural curvature cause greater damage the further the needle is inserted into
tissue.

Needle Length Constraints (Eqn. 5):

The length of the insertion trajectory (T'A) is constrained to be less than the length of the
needle (27l,/k) and should allow for grippers to hold the needle on both ends (21,).
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Collision Constraints (Eqn. 6):

We impose constraints to ensure that our trajectory avoids collisions with pre-defined stay
out zones. We ensure that the signed distance between each X;,; and each convex mesh in O
is greater than a safety margin parameter d,. The stay out zones can be non-convex meshes
that can be decomposed into convex sub meshes [4], O = {Oy,...,O;}.This is a mesh that
can be constructed using wound shape (width, depth) provided by a surgeon. Our technique
also allows this mesh to be general and non-convex. This would allow mesh construction
through sensory feedback from endoscopic cameras or ultrasound.Convex decomposition can
then be used to decompose a given point cloud of an incision into a set of convex stay out
zone meshes .

Entry and Exit Point Constraints (Eqn. (7)):

We constrain the start and end poses of the trajectory to be within an e-Ball of the calculated
entry (p;) and exit (p;) poses. This can be expressed as log(p; - X, )" < € 14 for the start
pose of the trajectory. The end pose constraint follows a symmetric formulation.

We note that a constant of A is chosen for all time steps instead of having a different A;
for each time as the latter is experimentally found to disagree numerically with the findings
of Duan et al. [5].

4.2 Trajectory Optimization

Sequential convex programming is a general approach for solving constrained, non-convex
optimization problems. We refer the reader to [34] for the details of SCP-based motion
planning. The optimization problem outlined in Eqn. (2) is, however, described directly
over the set of poses X. Optimizing directly over these poses can lead to poor results due
to the large number of free variables in the rotation matrix of each pose. We generalize
sequential convex optimization to the case where the domain is the differentiable manifold,
the SE(3) Lie group, rather than R™ by considering a local coordinate parametrization of
the manifold. This parametrization is given by the Lie algebra se(3), which is defined as the
tangent vector space at the identity of SE(3) [5]. Each iteration of the SCP algorithm takes
gradient steps in this local tangent space allowing for better solution convergence.

Figure 4.2 shows the SPP output for three different sets of pose constraints. For #1, we
restrict rotation about needle tip (v = 0,Vt). Coupled with the orthogonality constraint
at entry/exit, this results in a constant curvature path along the needle radius. For #2,
orthogonality is enforced only at entry pose, and v; is set to a monotonically decreasing
sequence in t. This results in rotations about the needle tip that achieve an asymmetric
trajectory satisfying pose constraints at entry. We also demonstrate a case with no pose
constraints in #3, resulting in the shortest path trajectory, but with oblique entry angles.

Since minimizing trauma is one of the main factors in suturing, we consider two criteria:
Trajectory Length (TL) and Swept Needle Volume (SNV). We assume that SNV is linearly
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Figure 4.2: The side view of three needle trajectories generated by SPP. Trajectory 1 and 3 are
constant curvature trajectories whereas trajectory 2 is a variable curvature trajectory.

proportional to volume swept by needle due to rotations at the tip. We define TL: C. = TA
in eq(2), and SNV: ), vtA. Comparing the lengths normalized to the longest trajectory
(#1), we find that trajectories #2 and #3 have 0.72 and 0.70 lengths. We also note that
#1 and #3 have an SNV of 0, while #2 has a SNV of 0.242.

We evaluated our Suture Path Planning algorithm with three different sets of constraints.
The generated trajectories are rendered in the figure above. Trajectory 1 was generated using
a start pose constraint and 7, values set to zero. This prevents trajectory deviations from the
natural curve of the needle and forces the trajectory to follow a constant curvature path that
is deeper than Traj. 2 and 3. If we relax the pose constraint to just a position constraint,
the SPP algorithm outputs Traj 3. The trajectory still follows a constant curvature path
but is shorter and less deep than Traj. 1.

Trajectory 2 is generated by keeping the start pose constraint but relaxing the values of
v¢ such that it is monotonically decreasing. Intuitively, this allows the needle’s trajectory
to deviate from its natural curvature as it is first entering the tissue. This added flexibility
allows Trajectory 2 to satisfy the start pose constraint in Traj 1 while achieving a path
length nearly as short as that of Traj 3.

Computing Gradients

For some of the functions in our optimization problem, it is difficult to compute explicit
gradients. One such example, is the needle sweep cost as it passes through tissue. Instead
we use finite differencing to compute an estimate of the gradient in each step of the gradient
descent loop. We approximate the gradient using the centered finite differencing method
where h is a small number:

fle+3)—fle—3)

Vf(r)~ :
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We use the centered difference due to its higher accuracy in comparison to the forward
or backward differences.
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Chapter 5

Reducing Needle Pose Uncertainty

As stated in Section 3 and Figure 3.1, tissue damage is minimized with orthogonal needle
entry and motions that are tangential to the needle tip. These guidelines require accurate
needle pose estimates at the needle entry point and robust needle grasps.

5.1 Suture Needle Angular Positioner (SNAP)

Commercially available RMIS needle drivers allow handling of a variety of needle sizes.
However an analysis of suturing trials in JIGSAWS dataset [6] reveals that multiple pairs of
hand-offs are required for correct needle orientation. This is because the motion of a needle
held within the needle driver jaws is not fully constrained. The flat gripper surface allows
rotation and translation along the length of the needle, which can be hard to control without
haptic or visual feedback.

There have been some commercial efforts to mitigate back-and-forth hand-offs and uncer-
tainty in laparoscopic surgery through passively orienting the needle on gripper closure using
a “self-righting” gripper jaw design [20, 31]. However, these are not designed for automation,
and require a complete tool redesign.

We develop a design for a low-cost Suture Needle Angular Positioner (SNAP) for dVRK
Classic 8 mm Needle Drivers with 6 mm jaws, which works to guide and passively orient a
curved needle into a stable pose upon closure of gripper jaws as illustrated in Figure 5.1(d).
SNAP reduces needle pose uncertainty along two rotational axes as shown in Section 7. This
allows for a higher tolerances in relative positioning during needle hand-off, relaxing the
accuracy requirements of needle tracking.

Mode of Operation: SNAP is mounted axially on one of the needle driver jaws. It is
designed to guide the needle towards a groove running perpendicular to the length of the
gripper jaws Figure 5.1 (b), (c¢). Upon closing the jaws, the needle rolls to a stable pose,
passing through contact points C; and C5 as shown in the section view in Figure 5.1(Db).
The size of the needle gripper is parametrized by the distance between contact points C
and Cy which is dependent on the curvature of the needle, that is a needle with a larger radius
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Catching Area
~ g

a) Side View b) Section A-A d) Needle Posing

Figure 5.1: This figure illustrates the design and function of the 3D-printed Suture Needle Angular
Positioner (SNAP). Figures (a) and (b) show a convex depression in which needle rests upon gripper
closure. Figure (d) shows a time-lapse figure of the gripper closing action on needle orientation.

Segmentation

Cameras

Figure 5.2: This figure shows an overview of the needle tracking pipeline, from stereo images to the
final needle pose estimate overlaid onto the original scene. Each box contains an image from each
step of the pipeline starting from the raw images from each camera and ending with the final pose
estimate overlaid on the camera image. We fuse a Kalman Filter estimate with current camera
estimate to compute the final estimate. The tracking system is robust to outliers and missing data
in the segmentation masks.

needs a wider contact grasp to enable the needle rolling upon jaw closure. As illustrated
in Figure 5.1 (a), SNAP has a rear-wall that allows the gripper to overshoot during the
pre-grasp approach. It also has a needle catching area in the front (Figure 5.1(c)) that
guides the needle into the groove, compensating for undershoot during pre-grasp. Both of
the above features increase the robustness of needle manipulation.

The SNAP is fabricated from ABS plastic using a Stratasys uPrint 3D printer. For an
8 mm classic needle driver, using a % circumference, 39 mm length needle, we designed the
SNAP with C — C5 span of 10mm. Through experimental evaluation, we improved upon
the SNAP design to include a larger rear wall. This enabled a wider jaw opening during
approach allowing for larger tolerance in needle pose uncertainty.

5.2 Real Time Needle Tracking

We have developed a real-time needle tracking system to provide closed loop feedback during
the suturing process as summarized in Figure 5.2. Due to tissue and tool specularity, per-
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ception using RGB-D sensing is not feasible. Our system provides 3D needle pose estimates
using a custom built stereo camera pair, composed of two Prosilica Gigkh GC1290C cameras
with 6 mm focal length lenses. The needle tracking algorithm is implemented as a ROS node
that publishes real time estimates of the needle’s pose. The tracking system works with
partial occlusion for instance when the needle is inside the tissue or behind the robot arms.

We use a model-based tracking system leveraging the needle shape and color. The first
step in the process is Needle Segmentation. We use a yellow painted needle to assist in
foreground /background separation. We use HSV (Hue, Saturation, Value) separation to
identify the needle in a cluttered environment with the open-source OpenCV library and
create a set of image plane points P;.

We leverage the circular shape of the surgical needles and their elliptical projection.
We create a small set of parametrically sampled points along the length of needle model
Purr, |Pur| = 12, and then use affine point set registration to fit the Py to Py;. We model the
non-linear registration problem as point set matching. This creates robustness to outliers,
missing data due to occlusions, and noisy data from incorrect segmentation masks. We use
the Matlab library CPD2 for solving the registration problem [26].

Using the ellipse fits on the image pair, we generate a dense set of corresponding points
along the needle. This creates a robust disparity map of 3D points on the needle. A plane is
then fit to the 3D points, providing a normal vector, while an average tangential direction is
calculated using the three points on the end of the needle. Using the end point of the needle
and these two vectors, a pose p, € RS is generated. We use a Kalman filter to smooth needle
tip pose estimates.

The use of industrial Prosilica cameras with a wide baseline necessitated the use of a large
workspace and consequently larger than average needles in order to enable robust needle
tracking. Laparoscopic cameras have a smaller baseline and smaller field of view compared
to our setup. The proposed tracking system should be transferable to a laparoscopic setup
allowing the use of much smaller needles.
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Chapter 6

System Design

6.1 Multi-Throw Suturing: System Design

a) Trace Path (Surgeon Input) b) Generate Enty/Exit Targets ¢) Suture

w-----------------------------

Figure 6.1: The figure outlines the Multi-Throw Suturing Finite State Machine. First the surgeon
specifies a suture path with wound width & depth and suture pitch. The system then computes
the number of suture throws required; and generates entry & exit points and optimized trajectories
along with required needle size for each throw of the MTS. Each of the steps S1-S5 (see Figure 1.1)
are repeated with visual feedback for each suture throw until all suture throws are completed.

We present a closed loop Finite State Machine (FSM) for multi-throw suturing with
needle tracking and multilateral needle hand-off as illustrated in Figure 6.1. Given the reg-
istration of the tissue phantom in the camera frame, a multi-throw suture plan is generated.
The SPP algorithm is used to generate needle trajectories and a suggested needle curvature.
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Each throw in the task consists of the following sequence of sub-tasks which were segmented
on the basis of manual surgeme labels for suturing in the JIGSAWS dataset:

S1. Needle Orientation: The system generates pose estimates for both the front tip of the
needle, Nr, and the tail connected to the suture thread, Ng. Starting with the needle held in
the right gripper at Ng, the system creates an initial pose estimate. Using this estimate, the
robot aligns the needle with the camera’s image plane, allowing for an occlusion-free view of
the needle and an improved pose estimate.

S2. Needle Insertion: The system executes a trajectory for Ny using the planner described
in the previous section. We note that at this point, the suture path can be re-planned after
every user-specified rolling time horizon.

S3. Needle Grasp: After the right arm guides the needle through tissue, the left arm
grasps the needle at Ny and pulls the needle tangentially to the needle tip, rotating around
the center of curvature of the needle in order to minimize tissue trauma.

S4. Needle Pull: Once the needle is completely outside the tissue, it is pulled away
sufficiently to tighten the suture. The system estimates how much slack is available in the
suture thread by modeling the length of thread between consecutive entry points as a helical
loop with radius equal to the radius of the needle and pitch equal to the suture pitch.This
provides a conservative estimate of how much slack is lost in each throw and the system uses
it to decrease the distance the needle is pulled away after each throw.

S5. Needle Hand-Off: Our needle tracking algorithm estimates the pose of the needle end
Ng while it is grasped at Np. Similar to step (S1), the left arm aligns the needle with the
image plane to improve the needle pose estimate. This estimate is used to align the needle
with the right arm in order to grasp the needle at Ng and perform the next suture throw.

Due to inherent pose errors in camera-robot registration and robot kinematics, the hand-
off process is performed by simultaneously engaging the right arm at Ng while disengaging
the left arm at Np. A slight error in coordination will result in failed transfer due to stresses
generated on the needle. The use of SNAP on both gripper ends facilitates this process
because the grooves provide a space resulting in a partial cage instead of force closure during
the hand-off.

Suture Thread Length Management: At the end of each suture throw, the needle
needs to pull through sufficient suture thread in order to perform all future throws while
maintaining tension in completed sutures in order to facilitate tissue apposition. In absence
of haptic feedback and suture thread tracking, we keep a running track of available suture
length by recording the distance the gripper pulls the needle away from its exit point after
each throw. We conservatively estimate length of the suture thread used in each throw as
the length of a helical loop between consecutive entry points with helical radius equal to
that of needle r and helical pitch equal to suture pitch w. We subtract this amount from
our estimate of thread length after each throw.
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Chapter 7

Experiments

7.1 dVRK: Hardware and Software

We use the Intuitive Surgical da Vinci Research Kit (dVRK) surgical robot assistant as
in [24], along with open-source electronics and software developed by WPI and Johns Hop-
kins University [14]. We use a pair of 8mm Needle Drivers with each gripper having one
Suture Needle Angular Positioner (SNAP). The software system is integrated with ROS and
allows direct robot pose space control, working in Cartesian space instead of commanding
motor torques. We developed a high level controller for the DVRK platform that allows us
to publish goal pose commands for the robot’s tool tip through ROS. This system linearly
interpolates from its current position to the desired goal position. Spherical linear interpo-
lation is used to interpolate the tool tip’s rotation in order to achieve constant rotational
motion. Our controller is designed to allow speed control of the robot allowing us to slow
down the robot during delicate motions, while maintaining a higher speed during coarse
maneuvers. The high level controller can also take as input a robot trajectory, enabling us
to feed motion plans computed by our optimization solver directly into the system.

7.2 Experimental Evaluation of Needle Tracking

The size and shape of needles makes it difficult to obtain ground truth pose estimates using
techniques like fiducial-based motion capture. Instead we designed an experiment to indi-
rectly verify the efficacy of our needle tracking system. The robot holds the needle rigidly
in its gripper and moves the needle to random positions in the workspace. Note that the
relative pose of the needle with respect to the gripper position never changes. At each ran-
dom position the robot pauses and uses the needle tracking system to compute the needle’s
relative pose with respect to the gripper pose (estimated from kinematics). Poses at 20
different random locations were recorded. Table I shows the standard deviation in x,y,z
(in mm) and in roll, pitch, and yaw (in degrees) respectively in the needle’s relative pose.
The low error in every dimension suggests that our estimates of the needle’s relative pose
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are nearly identical at each random location. This matches with the ground truth that the
needle’s relative pose never changes. The errors reported are not due to the needle tracker
alone, but the composite error produced from needle tracking, camera-robot registration,
and robot kinematics. However, the errors provide an upper bound on the needle tracking
error and is representative of error that our system must be robust to.

Table 7.1: Error in Relative Needle Pose (Over 20 Trials)

Position (mm)  Orientation (degrees)
X y 7z ‘ Yaw Pitch  Roll
Std. Dev 2182 1.23 1.54 2495 4.699 4.329

7.3 Evaluation of Suture Needle Angular Positioner
(SNAP)

1. Stationary Needle Pick Up:

In this experiment we evaluate the SNAP’s ability to reduce variation in needle grasp pose.
This variation is the result of small natural perturbations in the needle starting pose and
noise in the robot’s kinematic chain. In each trial, a needle is placed in the same location
and the robot is provided a constant known grasp pose to initiate pick up. Once the needle
is grasped, the robot brings the needle to a known location and the needle’s pose is recorded
using our needle tracker. We repeat this process over ten trials both with and without SNAP.
The standard deviations in each degree of freedom of the needle’s pose is presented in Table
IT. The SNAP reduced needle pose variation in both position and orientation, in some cases
by over one order of magnitude.

2. Perturbed Needle Pick Up:

In the second experiment we intentionally perturb the orientation of the robot’s grasp pose
to evaluate robustness to uncertainty and variation in grasp orientation. Experiment 2 is a
variation of Experiment 1 where the commanded grasp pose is perturbed from —30 degrees
to 30 degrees in yaw, pitch, and roll. The perturbations are applied in increments of 10
degrees independently in each axis resulting in 19 trials total. Our results show that the
use of SNAP results in a 3x reduction in needle pose uncertainty over the standard Needle
Driver.
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Table 7.2: SNAP Evaluation

Stationary Grasp Error (Standard Deviation)

Orientation

Succ. X y zZ yaw  pitch  roll

Grasps  (mm) (mm) (mm) (deg) (deg) (deg)
Without SNAP  100% 2.511 1.434 4.838 20.547 7.584 6.472
With SNAP 100% 0.199 0.158 0.177 0926 1.094 0.664
Pel'"turbe.d Grasp Error (Standard Deviation)
Orientation

Successful X y zZ yaw  pitch  roll

Grasps  (mm) (mm) (mm) (deg) (deg) (deg)
Without SNAP  100% 201 239 595 1554 1274 7.62
With SNAP 91.66% 1.58 1.15 1.19 9.55 3.97 6.34

7.4 Robot Experiments: Four-Throw Suturing Task

We used a suturing phantom made with foam to mimic subcutaneous fat tissue with a
layer of Imm thick skin using (shore hardness 2A) DragonSkin 10 Medium Silicone Rubber
(Smooth-On). The tissue was designed to have the following characteristics. First, the
suturing phantom was designed to be deformable. This mimics the natural deformability of
tissue and introduces uncertainty into the needle insertion process. Second, the dynamics of
the needle changes when it transitions from traveling through free space to traveling through
tissue. By building the phantom around a foam core we ensure that the phantom can be
penetrating by the needle while still providing resistance to torques applied to the needle tip.
We also performed experiments on a second version of our phantom that replaced the silicon
skin with chicken skin in order to improve its clinical accuracy. The mechanical design of the
dVRK robotic arms ensure that the arms do not move at the point where they would enter
a human body ensuring that the kinematic motions of our system remain feasible in-vivo in
a minimally invasive surgical (MIS) setting. Due to the wide baseline of our stereo cameras,
the size of our phantom, needles, and workspace were constrained to be larger than those
found in a nominal MIS setting.

In this experiment, the system tries to complete a closed loop four throw suturing task
similar to the suturing task found in the JIGSAWS data-set [6]. We initialized the system
with entry and exit poses on opposite surfaces of the tissue phantom and with a desired suture
depth. Our system generates insertion trajectories and based on the output optimal needle
curvature, we selected a 39 mm long, 3/8 reverse cutting needle to perform the suturing
throws. For each trial we record time to completion as well as the failure mode if necessary.
The robot moves at a top speed of 3cm/s. The results of each trial are found in Tables 7.3
and 7.4.
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Figure 7.1: The following is an image of our experimental setup. We also see a revision of our
tissue phantom where the silicone skin is replaced with raw chicken skin.



CHAPTER 7. EXPERIMENTS

23

Table 7.3: Results for Four-Throw Suturing. 14 trials were performed, with a 50% success rate. For
failed states, “N.I” represents incorrect needle orientation or insertion, “G.P.” represents incorrect
needle re-grasp and pull after insertion, and “H.O” represents failure in needle hand-off respectively.
The test setup was varied with translation of simulated wound along the wound axis.

# of
4- Throws
Trial Throw Com- Failure Trans. Suture T?tal
Suc- pleted Mode in X  Pitch Time(s)
cess (At-
tempted)
1 Failure 1 (2) G.P. -3mm 3mm -
2 Failure 2 (3) G.P. -3mm 3mm -
3 Failure 3 (4) G.P. -2mm 3mm -
4 Success 4 (4) -lmm  3mm 387
5 Success 4 (4) Omm  3mm 380
6 Success 4 (4) Omm  3mm 380
7 Success 4 (4) Omm  3mm 383
8 Failure 2 (3) HO. Imm 3mm -
9 Failure 2 (3) NI  Imm 3mm -
10 Failure 3 (4) G.P. 2mm 3mm -
11 Success 4 (4) 3mm  3mm 393
12 Success 4 (4) 4dmm  3mm 383
13 Success 4 (4) Smm  3mm 382
14 Failure 3 (4) G.P. 6mm 3mm -
Mean 50% 3.14 384
Std Dev 1.027 Single Throw Success Rate: 86.3%

Table 7.4: This table compares the performance of our autonomous suturing system with different
skill levels of surgeons in the JIGSAWS dataset 6]

Average Time

Average time

Operator for for

Mode 4-throw Task
1-Throw (s) (s)

Expert 19.03 87.02

Intermediate 18.57 87.89

Novice 32.14 136.85

Autonomous

(Our  Ap- 112.33 383.00

proach)
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Chapter 8

Conclusion

8.1 Discussion and Future Work

Initial experiments in this paper confirm that the system presented can computationally
plan and execute a multi-throw suturing task with four-throws in closed-loop operation.
The combination of our needle tracking system and SNAP enables our system to minimize
needle pose uncertainty. This allows our system to perform multilateral needle hand-off,
enabling the execution of multi-throw suturing.

The system completes 86.3% of individual suture throws attempted at approx. 30% of
the average speed of manually tele-operated demonstrations as listed in Tables 7.3 and 7.4.
Our results also show that the proposed needle tracking system can provide robust estimates
of needle pose in near real-time with an empirical error of up to 5 degrees. Furthermore the
use of SNAP improves repeatability in needle grasping by 10x and grasping is robust to up
to 30 degrees error in needle estimate.

However, we note that the system completes on average 3.14 of the intended 4 throws,
with a 50% completion rate for the four-throw task. It is worth noting that 5 out of the
7 failures were due to incorrect needle re-grasp and pulling after the insertion step. Some
of these failures were due to incorrect needle estimate after the needle exits the tissue in
unexpected locations. The visual needle tracker could not recognize the needle due to large
occlusions. Additional failures were due to entanglement of the suture thread during needle
pulling.

We see two directions of future work that could improve the speed, robustness, and
reliablity of our autonomous surgical suturing system. The first direction is suture thread
management. In this work we do not track the position or deformation of the suture thread.
This limitation prevents us from tying knots and can lead to failure modes where the grippers
or needle get tangled with the suture thread. Thread tracking combined with trajectory
planning for thread management has the potential to allow our system to avoid entanglement
and tie knots using a general framework.

Another exciting direction of work is real-time re-planning for needle insertion. Currently
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one of our most common failure modes occurs when the needle tip exits the tissue in an
unexpected location, preventing the robot from pulling it out of the tissue. This failure is
common because even small errors in needle tip positioning before insertion become magnified
by the deformation of the tissue phantom. Using visual feedback to re-plan the trajectory
during the insertion would provide the system with better control of the the needle tip’s
exit point. Since tissue deformation is difficult to model, learning based approaches could
be used to train the system to guide the needle through deformable material.

Our work presents initial results toward automating MTS with a combination of new
hardware and a novel optimization algorithm. The paper describes the mechanical device,
the Suture Needle Angular Positioner (SNAP), designed to align and hold the needle in a
known orientation, and an SCP formulation of needle motion planning. Initial results suggest
that SNAP can reduce error in needle orientation by 3x and that the combined system can
successfully complete 86% of attempted throws at 30% the speed of human operators [6].

8.2 Challenges and Open Questions in Surgical
Automation

We conclude by discussing some of the general challenges and open questions in surgical
automation.

Unique Challenges in Surgical Automation

While many of the challenges in the automation of robotic surgery are broadly applicable
to robotics in general, some are either unique to robotic surgery or unique to a small subset
of the field. For example, many elements of a surgical environment are highly deformable.
Surgical systems interact with their environment through bending, cutting, stretching, peel-
ing, and puncturing a variety of tissues and materials. Sensing and modeling such a varied
environment remains a challenge in surgical settings. It is important to note the specific chal-
lenges that exists in a surgical environment. While existing sensors like the Kinect that have
had great success in mapping and reconstruction in the macro world, such sensors perform
poorly in small surgical environments due to focusing limitations and the highly specular
nature of surgical environments. Much of our own work abstracts away the challenges of
environmental sensing and modeling. In our palpation work, we assume a known tissue
shape and configuration. Similarly our autonomous suturing system ignores deformable su-
ture thread and models the suturing incision as a rigid mesh. These limitations need to be
addressed in order to build safe and robust systems.

Another challenge in surgical automation is the difficulty in defining how surgical sub-
tasks should be performed. Much of our work uses finite state machines to complete tasks.
However these require explicit descriptions of how the robot needs to interact with its envi-
ronment. For example, in our work in autonomous suturing, the costs and constraints for a



CHAPTER 8. CONCLUSION 26

good suturing motion plan had to be carefully constructed from a series of surgeon recom-
mendations and guidelines. However for more complicated procedures, such task structure
can be unclear. For example, if the task is to excise a subcutaneous tumor, it can be chal-
lenging for even a human to define a general purpose set of guidelines to complete the task.
While state machines provide autonomous systems with predictability and semantic mean-
ing, they can be limiting in scenarios where it’s difficult to construct concrete guidelines on
how to perform a task. In prior work we explored how surgeon demonstrations can be used
to automate surgical cutting [24]. As more kinematic and visual data from robotic surgery
becomes more readily accessible, figuring out how to learn from this data is an exciting area
of research. In [18], [16],[25], Krishnan and Garg et al explore how surgeon demonstrations
can be used to learn task milestones for the construction of state machines.

Hardware for Automation

Current robotic surgical assistants are designed with human tele-operation as their primary
mode of control. As result, errors in tool tip pose estimation and camera registration are
easily compensated for by a human operator. However such errors can have a huge effect
on system performance on autonomous tasks. For example, constructing accurate surface
stiffness maps with a palpation probe requires the robot to maintain a constant tool tip
orientation as it moves through the workspace. However systematic bias and hysteresis
in tool position and orientation results in a decrease in the tool’s signal to noise to ratio.
Physical experiments showed that while the probe is capable of detecting inclusions 5mm
deep when mounted on a vertical CNC machine, its sensitivity decrease to approximately
1-2mm when mounted on the dVRK due to positional noise inherent in the surgical system.
These results suggest the need to develop surgical systems with autonomy in mind with
complementary hardware and software. In this work the use of both SNAP(a hardware
solution) and needle tracking (a software solution) enables robust transfer of the needle
between robot tool tips. Without such a system, performing multiple suture throws would
be significantly less robust. Further exploration of how hardware and software solutions can
complement each other may enable us to build systems that are greater than the sum of
their parts.

Experimental Setups

The design and development of experimental setups and tissue phantoms is an important
component for the evaluation of autonomous systems. It’s not always feasible to evaluate a
surgical system on live tissue. Nevertheless, it’s important to perform tests on experimental
setups that are clinically relevant. In some instances the limitations of tissue phantoms can
adversely affect system performance. For example, we used silicone based tissue phantoms for
our palpation experiments because they mimic the deformability and stiffness of real tissue.
However the high coefficient of friction of silicone made cutting the surface with a scalpel
challenging. As a result, the autonomous system was designed to perform a sawing motion
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while cutting, rather than the simple straight line motion that one could apply to real tissue.
In some sense the system was designed to solve an artificial problem; one that existed in
our experimental setup but not in real clinical settings. Using tissue phantoms constructed
from real tissue such as chicken skin can mitigate some of the problems introduced by
purely artificial phantoms but can introduce their own challenges. Using animal tissue
can slow down development and iteration speed due to the necessity of maintaining a sterile
environment around the experimental setup. It can also be challenging to maintain consistent
tissue properties over multiple trials. For example, chicken skin tends to dry rapidly, resulting
in a membrane that becomes more challenging to pierce with a needle as time progresses.
Ideally tissue phantoms need to be consistent, durable, and easy to construct while mimicking
key properties of living tissue. It’s an open question how to find the right balance between
these opposing factors.
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Chapter 9

Appendix

Generating constrained curvature trajectories in 3D space is challenging because it requires
planning in the Special Euclidean Group in 3D, i.e. SFE(3) configuration space. SE(3) is
a semidirect product of Special Orthogonal Group (SO(3)) and R3. Using homogeneous
coordinates, we can represent SE(3) as follows:

SE(3) = { [g ﬂ € GL(4)|R € SO(3),t € 33} (9.1)

The action of an element g € SE(3) on a point p € R3 is given by g = [lg 219] ,  g-p= Rp+t.

The Lie algebra of SE(3), as in Agarwal [1], is given by

s5¢(3) = { {‘6’ g] € GL(4)|& € s0(3),u € R3} (9.2)

Here & is the skew symmetric form of the rotation vector w = (w,, wy,w,)” and is an element
of the Lie algebra for SO(3)

0 —w, wy
w=| w, 0 —w, (9.3)
—Wy Wy 0

The logarithm map SE(3) — se(3) is given by:
R t]\ _[log(R) A~'t
(RN o

where .
1o 2sinflw]] — [lwf (1 + cos|lwl]]) ..,

b

2w? sin [|w||

log(R) = (R—R")=w




CHAPTER 9. APPENDIX

29

and ¢ satisfies Tr(R) = 1 + 2cos(¢), |¢| < m. The matrix exponential to map se(3) —

SE(3) is given by

O ul\ _ |exp(w) Au
o[ 5]) = [
where exp(w) can be computed with Rodrigue’s formula:

1 —cos((|wl]) .o sin(flw]]) .

.
SP(@) = I+ =7 W
1= cos(l) . fwll —sin ] _,
A=1+
wl? e

(9.5)

With equations (9.4) and (9.5), we can convert an element in SE(3) to se(3) and vice-

versa.

In each gradient descent iteration, we can update our current solution by taking gradient
steps in se(3). This let’s avoid the problems with other pose representations presented above.
Since we can convert efficiently between SE(3) and se(3), we can still represent our costs and

constraints in SE(3).
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