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Parallelepipeds obtaining HBL lower bounds

James Demmel∗ Alex Rusciano†

November 13, 2016

This work studies the application of the discrete Hölder-Brascamp-Lieb (HBL)
inequalities to the design of communication optimal algorithms. In particular,
it describes optimal tiling (blocking) strategies for nested loops that lack data
dependencies and exhibit linear memory access patterns. We attain known
lower bounds for communication costs by unraveling the relationship between
the HBL linear program, its dual, and tile selection. The methods used are
constructive and algorithmic. The case when all arrays have one index is
explored in depth, as a useful example in which a particularly e�cient tiling
can be determined.

1. Background: Hölder-Brascamp-Lieb (HBL) Inequalities

HBL inequalities are very powerful and include many famous inequalities, including
Hölder's inequality and Young's inequality. Stated for abelian groups G = Zd, Gi = Zdi
with linear maps φi : G→ Gi, they take the general form∑

x∈G

∏
i∈J

fi(φi(x)) ≤
∏
j∈J
‖fi‖1/si (1.1)

holding for non-negative integrable fi on Gi. The norms are Lp norms. The si for which
this holds depend on the maps φi only, and G for us will be Zd. We will call such s
feasible for the inequality (1.1). It turns out the set of feasible s form a polyhedron we

∗EECS, Mathematics, University of California, Berkeley, CA (demmel@eecs.berkeley.edu)
†Mathematics, University of California, Berkeley, CA (rusciano@math.berkeley.edu)

1



will denote by P. The case when G or the Gi have a torsion component will not be
discussed, although it is of potential interest.

As examples, the commonly stated version of Hölder's amounts to the inequality holding
for 0 ≤ s1, s2 ≤ 1 with s1 + s2 = 1 and the maps φ being the identity maps. Young's
inequality for convolutions uses maps from Z2 to Z. Also it should be noted that HBL
inequalities were �rst introduced and proved for real or complex vector spaces, not abelian
groups or rational vector spaces.

To connect this to communication avoidance, the group G is the lattice Zd of compu-
tations to perform. To perform the computation corresponding to lattice point x, one
needs to hold the data contained in φi(x) for all i. The goal of HBL inequalities, in this
context, is to bound how many lattice points x we can compute using a memory size
of M . This means the fi are to be the indicator functions of some sets Si. Then HBL
inequalities bound the size of set S := ∩φ−1i (Si) ⊂ G that are computable provided we
store the memory contained in each Si.

For any feasible s, and memory sizes Mi = ci ·M with
∑
ci = 1,

|S| ≤
∏
|Si|si =

∏
i

M si
i = M1T s ·

∏
csii (1.2)

Inequality (1.2) is a guaranteed upper bound given by the HBL inequality. As an ap-
proximation, minimizing the bound amounts to �nding the smallest 1T s over all feasible
s and neglecting the nuances behind the ci. We call this minimal sum sHBL. To formally
state a rationale for ignoring the

∏
csii ,

Proposition 1. Assume M total memory to work with as above and there are n maps.
Then for the optimal choice of ci, the HBL bound 1.2 is Θ(M1T s). Moreover, the generic
choice ci = 1/n attains this bound.

Here and in the remainder of the paper, all big O notation is with respect to the memory
parameter M , not the dimension of the computation lattice or number of maps.

Proof. Recall the bound in inequality (1.2) isM1T s ·
∏
csii . For an upper bound, take the

ci ≤ 1; no c can do better than this. Now consider ci = 1/n; perhaps there are better ci
for the particular si, but we can at least do this well. Consequently, the HBL bound for
any s is always in the range

[
1

n1T s
M1T s,M1T s]

The lower and upper ranges of this interval are Θ(M1T s).

Correspondingly, we will distinguish between two senses of optimality for obtaining the
lower bounds.
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De�nition 2. The family of sets S(M), parametrized by integer M , form asymptotically
optimal tilings if translations of the set S(M) can tile Zd and S(M) satis�es

|S(M)| = Θ(M sHBL) (1.3)

as well as
∀i, |φi(S(M))| = O(M) (1.4)

For exact optimality, while 1T s determines the asymptotic behavior of inequality (1.2),
the inequality di�ers by a constant factor for every c one chooses. Choice of c could
be regarded as strategic use of memory. This leads us to consider the sharpness of the
following inequality when de�ning exact optimality:

|S| ≤M sHBL min
s∈P

1T s=sHBL

max∑
ci=1

∏
i

csii

Simple calculations give the optimal choice of ci. It is equivalent to maximize∑
i

si log(ci)

instead. The method of Lagrange multipliers implies the objective gradient and con-
straint gradients are parallel:

(1, . . . , 1) = λ(
s1
c1
, . . . ,

sn
cn

)

The solution to this is ci = si
1T s

. This leads to a de�nition of exact optimality:

De�nition 3. De�ne scaling parameter

γ :=
1

(sHBL)sHBL
min
s∈P

1T s=sHBL

∏
i

ssii

The family of sets S(M), parametrized by integer M , are exactly optimal tilings if trans-
lations of S(M) can tile Zd and S(M) satis�es

|S(M)| = (1− o(1)) · γM sHBL (1.5)

as well as
∀i,
∑
i

|φi(S(M))| ≤M (1.6)

The o(1) term is required for any reasonable goal because one cannot allocate room for
fractions of entries from arrays. Conceptually, we are requiring the ratio of |S(M)| and
the theoretical optimum to tend to one, i.e. the relative di�erence is going to 0.

As another comment on the de�nition, the minimization problem of computing γ is not
di�cult; elementary calculus shows that log(

∏
ssii ) is convex. Indeed, this is the negative

entropy function. Minimization of this function can even be done e�ciently.

Most of this work focuses on asymptotic optimality, but we will discuss exact optimality
in two special cases.
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2. Background: Solving for sHBL through an LP

For the maps φ, there is a natural necessary condition for the s:

Proposition 4. If si are to satisfy inequality (1.1), then it is necessary that for any
subgroup H of G we have the following∑

si · rank(φi(H)) ≥ rank(H)

Proof. To prove this fact, it su�ces to use indicator functions; consequently we show the
necessity in the case of Inequality (1.2).

A uniformly growing cube S(r) in the subgroup H parametrized by side length r grows
like rrank(H) in volume because it is a rank(H) dimensional object. This is the LHS of
Inequality (1.2).

The RHS of Inequality (1.2) needs to match this growth rate. The images φi(S(r)) grow
asymptotically like rrank(φi(H)). The LHS must be less than the RHS as r →∞, implying
the result.

The above is more of a sketch; in any case, the above appears in [CDKSY15] as part of
Theorem 1.4.

The surprising part of Theorem 1.4 is that this is actually su�cient. [CDKSY15], sup-
plemented by work from [BCCT], established

Theorem 5. Given maps φ, a collection si ≥ 0 satis�es inequality (1.1) if and only if
they satisfy for all subgroups H of G,∑

i

si · rank(φi(H)) ≥ rank(H)

Because there are only �nitely many possible values of the rank of H and its images,
there exists a �nite list of subgroups which is su�cient to generate the constraints.
Consequently the problem can be formulated as a linear program (LP), if we can �nd a
su�cient list of subgroups.

De�nition 6 (HBL Primal LP). If E is a �nite su�cient list of subgroups needed to give
the correct HBL constant, we de�ne the HBL primal LP to be

minimize 1T s
subject to ∀H ∈ E,

∑
si · rank(φi(H)) ≥ rank(H)

si ≥ 0

Recent work has started to get a grip on formulating the LP in a computationally feasible
manner. In [CDKSY15] a few things are established. For one thing, only the lattice of
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subgroups generated by ker(φi) under sums and intersections needs to be used to generate
inequality constraints in Theorem 5. However, this lattice is often in�nite in higher
dimensions. Also, [CDKSY15] describes a terminating algorithm which discovers all the
constraints needed to formulate an equivalent LP. However, the algorithm's complexity
is unknown. The results of [GGOW] provide a number of novel insights into algorithmic
computation of P arising from the closely related continuous version of the inequalities,
including a polynomial time membership and weak separation oracles. Much remains to
be understood, and in general formulating and optimizing over P remains intractable.
Here is a summary of tractable special cases, as far as the authors are aware:

• All maps are coordinate projections [CDKSY13].

• Each ker(φi) is rank 1,2, d-1, or d-2, mixes are allowed [V]. Stated for continuous
version of inequalities.

• There are no more than 3 maps; then the kernel subgroup lattice is bound by 28,
a classical result [D].

3. Attaining the lower bound by duality

For applications, it is just as interesting to attain lower bounds as to show they exist. In
this and the subsequent section, we show how the dual of the HBL Primal LP leads to
an asymptotically optimal parallelpiped tiling of the computation lattice.

Notate by E = (E1, . . . , Ek) a �nite list of subgroups used to formulate the HBL Primal
LP. We introduce the notation

rank(E) := (rank(E1), . . . , rank(Ek))
T ,

and similarly
rank(φi(E)) := (rank(φi(E1)), . . . , rank(φi(Ek)))

T

One may write the dual of the HBL Primal LP as

maximize yT rank(E)
subject to ∀φi, yT rank(φi(E)) ≤ 1

yi ≥ 0

It will be useful to be more �exible in how we think of the dual problem. The dual, as
formulated from the primal, comes with a particular subgroup list E indexing the dual
variables. The methods we use add and remove subgroups from consideration, and we
do not wish this to fundamentally change the dual LP. In the future we use the notation
E for the analogous, but more generic, role in the revised dual:

De�nition 7 (Dual LP). Recall the HBL setting consists of maps φi from lattice Zd.
A dual vector y will be considered to be indexed by all subgroups of Zd, but with �nitely
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many non-zero coordinates. The non-zero coordinates are de�ned to be the support of
y. If the list of subgroups E = (E1, . . . , Et) is the support of y, then we introduce a few
notations and de�nitions. Two natural notational shorthands are

yT rank(E) :=
∑

yEjrank(Ej)

and
yT rank(φi(E)) :=

∑
yEjrank(φi(Ej))

Now de�ne the objective value of y to be

val(y) := yT rank(E) (3.1)

and say y is feasible if it satis�es the conditions

∀φi, Ci(y) := yT rank(φi(E)) ≤ 1 (3.2)

yi ≥ 0 (3.3)

As a further notational note on this de�nition, we use a few symbols in place of E when
extra information is present. Typically we will use Y when the supporting subgroups
are independent, and U when they are a �ag. These de�nitions are covered later.

This is readily interpretable when the supporting subgroups Y of the dual vector are in-
dependent. Here independent means that rank(⊕iYi) =

∑
i rank(Yi). Before explaining

exactly how we interpret the dual, we need the following geometrically intuitive lemma.
It demonstrates that asymptotic optimality eases some di�culties stemming from dis-
creteness.

Lemma 8. Take any independent elements e1, . . . , eh contained in rank h subgroup Y ⊂
Zd and linear mapping L. De�ne the set

S := {z ∈ Zd|z =
∑

aiei with 0 ≤ ai ≤ bMkc − 1, ai ∈ Z} (3.4)

In this equation, k is an arbitrary positive number, and M is an integer conceptually
representing memory capacity. In applications later, k ∈ (0, 1].

Then for any linear map L, |S| = Θ(Mkh) and |L(S)| = O(Mkr) where r := rank(L(Y )).
In applications later, L is taken to be one of the φi.

Proof. The elements in set S are O(Mk) from the origin in Euclidean distance, hiding
the dimensional factor d in the big O notation. By linearity, the elements of L(S) are
also O(Mk) from the origin in im(L). Therefore an r dimensional cube residing within
L(Y ) with side lengths O(Mk) can contain L(S). This means that |L(S)| = O(Mkr).

Finally, from independence of the ei it follows that |S| = bMkch
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We now de�ne the parallelepiped-like construction that will be used to create asymptot-
ically optimal tilings. Although not the only possible way to build good tiling shapes, it
is �exible and leads to clean descriptions.

De�nition 9 (Product Parallelepiped). Suppose we are given a dual vector y, whose
non-zero values are attached to a set of independent subgroups Y1, . . . , Yt. Form SYi as
in Eq. 3.4, using k = yYi .

Now de�ne a parallelepiped shaped tile through a Minkowski sum of sets

S := SY1 + · · ·+ SYt (3.5)

The independent elements used to construct SYi are left unspeci�ed; the choice a�ects
constants, but will not a�ect asymptotic optimality.

To make things explicit, Algorithm 1 below produces the translations needed to tile Zd
with set S. It uses an important matrix factorization for linear maps between abelian
groups (or more generally between modules over a principle ideal domain) known as the
Smith Normal Form.

The Smith Normal Form of a matrix A with integer entries is of the form A = UDV −1

where U, V are unimodular and D is diagonal with non-negative integer entries. Its
diagonal entries di := Dii are uniquely de�ned by requiring di|di+1. In our use of the
factorization, the matrix A is injective and consequently full rank, so that all di are
non-zero.

Algorithm 1 Construct tile S and its translations T that tile Zd

1: Input: Memory parameter M
2: Input: For each i = 1, . . . , t: independent elements ei1, . . . , eihi chosen from indepen-

dent rank hi subgroups Yi
3: Input: For each i = 1, . . . , t: memory scaling parameter k = yYi for subgroup Yi
4: Output: translations T of the set S that tile Zd
5: E ← (e11, e12, . . . , etht)
6: S ← {E · (a11, a12, . . . , atht)T | aij ∈ {0, . . . , bMyYi c − 1}
7: m←

∑
hi

8: (U,D, V )← Smith Normal Form(E)
9: U ′ ← last d-m columns of U
10: U ′′ ← �rst m columns of U
11: T1 ← {E · (a11, a12, . . . , atht)T | aij ∈ bMyYi c · Z}
12: T2 ← {U ′ · (a1, . . . , ad−m)T | ai ∈ Z}
13: T3 ← {U ′′ · (b1, . . . , bm)T | bi ∈ {0, . . . , di − 1}}
14: T ← Minkowski sum T1 + T2 + T3

return S, T

7



The set S returned by the algorithm exactly follows Def. 9. The translations T come
from two sources: T1 accounts for the �nite size ofM while tiling the subgroup generated
by e11, e12, . . . , etht under integer linear combinations. In the future we will write this
subgroup as 〈e11, e12, . . . etht〉, and similarly for other generated subgroups. The others
T2, T3 account for the need to tile each coset in Zd/〈e11, e12, . . . etht〉.

Proposition 10. Algorithm 1 correctly outputs a parallelepiped set S which under trans-
lation by T tiles Zd. This holds for any input: that is, for any selection of independent
subgroups Ui, choice of independent elements within these subgroups, memory parameter
setting M , and memory scalings MyYi .

Proof. Let us begin by discussing the translations in T1. Consider x =
∑
aijeij . The set

S only uses scalings of 0 to bMyYi c − 1 of each eij . Consequently, for x to be contained
in a translation of S, the shift component in the eij direction must be in the range

[aij − bMyYi c+ 1, aij ]

The only such member of T1 has eij component baij/bMyYi cc · bMyYi c

T needs to also contain exactly one representative of each coset in

Z/〈e11, e12, . . . etht〉 ' Zd−m ⊕ (
d⊕

i=d−m
Z/DiZ)

T2 accounts for the free component, and T3 for the torsion component.

Indeed, let U ′a+U ′′b, U ′a′+U ′′b′ be two distinct elements of T2 +T3. Saying they are in
the same coset is exactly saying their di�erence lies in im(E). Writing E = UD(V )−1 as
in Algorithm 1 and noting V is unimodular, it is clear that im(E) = im(UD). Conclude
that lying in the same coset is equivalent to

U ′a+ U ′′b− U ′a′ − U ′′b′ ∈ im(UD)

As U is unimodular, This means for some c ∈ Zd

(b, a)T − (b′, a′)T = Dc

Because D is d-by-m, the the last d −m coordinates of Dc are 0. This means a = a′.
Also for b, b′ to be used in T3, they must satisfy 0 ≤ bi, b′i < di. But then

−di < bi − b′i = dici < di

which is only possible if bi = b′i.

To conclude that all cosets are represented, we argue that for any x ∈ Zd, there are
U ′a, U ′′b such that x − U(b, a)T ∈ im(E). Take bi = (U−1x)i mod (Di) and ai =
(U−1x)m+i.
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This paper includes examples at the end in Appendix A. These will help demonstrate
this approach and future aspects of the paper.

Now that the fundamental tiling object and mechanism have been described, we now
begin to analyze the properties of the tile S in relation to the HBL problem.

Proposition 11. Suppose we are given a dual vector y, whose non-zero values are at-
tached to a list of independent subgroups Y = (Y1, . . . , Yt). Form the product paral-
lelepiped S of Def. 9.

Then |S| = Θ(MyT rank(Y)). If in addition y is dual feasible, then |φi(S)| = O(M) holds
for each φj.

Proof. By independence of the subgroups contained in Y, it follows that |S| =
∏
i
|SYi |.

Apply the count estimates of Lemma 8 to this:

|S| =
∏
i

Θ(M rank(Yi)·yYi ) = Θ(MyT rank(Y))

It remains to consider the images of this set under the φj in the case y is feasible. This
requires a bound on |φi(S)| Invoking the count estimates of Lemma 8 in the second
inequality, and feasibility property (3.2) of y in the third inequality

|φj(S)| ≤
∏
i

|φj(SYi)| ≤
∏
i

M rank(φj(Yi))yYi = MCj(y) ≤M

It will be necessary to strengthen the bounds on the |φi(S)| later, but this already proves
a useful result:

Corollary 12. Suppose there exists a dual optimal solution y with non-zero dual variables
attached to a set of independent subgroups Y. Then we may tile the lattice Zd with an
asymptotically optimal parallelpiped shape.

Proof. From strong duality, yT rank(Y) = sHBL. Then Proposition 11 provides a par-
allelepiped shape that is asymptotically optimal, as it satis�es equations 1.3 and 1.4.
Algorithm 1 shows how to tile using object S.

This construction breaks down when dual variables correspond to non-independent sub-
spaces. The next section generalizes the results of this section through a notion of �ags
of the subgroup lattice.
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4. Attainability in General

In this section, we describe an algorithm for producing an asymptotically optimal tiling.
The recipe is to formulate the primal, solve the corresponding dual, and iteratively modify
the solution of the dual to something geometrically interpretable. Consequently, at least
asymptotically, the HBL lower bounds are attainable by a polyhedral tiling, and to do
so is essentially no harder than describing the set of feasible s for inequality (1.1). This
set is commonly referred to as the Brascamp-Lieb Polyhedron.

4.1. Flags

It might not be possible to �nd a dual vector supported on independent subgroups that
obtains the optimal value. However, it turns out that it is possible to �nd one supported
on what we here de�ne to be a �ag.

De�nition 13. A �ag of the lattice Zd (for us) is a sequence U of strictly nested sub-
groups

∅ ⊂ U1 ⊂ · · · ⊂ Ut = Zd

We want to take the dual solution, and transform it to being supported on a �ag. The
following is a simple but important property in accomplishing this goal. It was also helpful
in =[CDKSY15] and [V], the latter of whom we note found �ags useful in studying the
vertices of the Brascamp-Lieb polyhedron.

Lemma 14 (Substitution Lemma). For any linear map L on Zd and subgroups V,W ,

rank(L(V )) ≥ rank(L(V ∩W )) + rank(L(V +W ))− rank(L(W ))

On the other hand,

rank(V ) = rank(V ∩W ) + rank(V +W )− rank(W )

Proof. The claimed equality in the lemma follows by writing a basis for V ∩ W and
completing it to a basis for W with a second set of independent basis elements. Call the
subgroup spanned by the second set P . Observe P has trivial intersection with V , and
the rank of P is rank(W )−rank(V ∩W ). Applying these observations toW+V = P+V ,

rank(W +V ) = rank(P +V ) = rank(P )+ rank(V ) = rank(W )− rank(W ∩V )+ rank(V )

establishing the result. To prove the inequality, apply the equality to subspaces L(V ),
L(W ), and then observe

L(V ∩W ) ⊆ L(V ) ∩ L(W ), whileL(V +W ) = L(V ) + L(W )

The reason for the possible inequality is that maybe there are di�erent elements v ∈ V
and w ∈W , but L(v) = L(W ).
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We employ this observation repeatedly to shift the support of a dual vector onto a �ag,
through the following procedure. It takes as input a feasible y supported on an arbitrary
list E and outputs a feasible y′ supported on a �ag U with the same objective value Eq.
3.1. Recall by feasible we mean Eq. 3.2, 3.3 are satis�ed.

Algorithm 2 Find dual feasible vector supported on a �ag

1: Input: dual feasible vector y supported on E1, . . . , Em
2: Output: feasible y′ supported on a �ag U1, . . . Ut, with the same objective value as y
3: Initialize y′ as y
4: while y′ is not supported on a �ag do
5: V,W ← any pair in the support of y′ NOT satisfying V ⊂W or W ⊂ V
6: Let V be the member of the pair with y′V ≤ y′W
7: y′W ← y′W − y′V
8: y′V+W ← y′V+W + y′V
9: y′V ∩W ← y′V ∩W + y′V (if V ∩W 6= {0})
10: y′V ← 0

return y′ and its support

Theorem 15 (Non-negative Flag Theorem). Algorithm 2 is correct: given input a dual
feasible vector y supported on E1, . . . , Em, it outputs a dual feasible y′ supported on a �ag
U = (U1, . . . Ut) with the same objective value as y.

Proof. The existence of the pair V,W is equivalent to the support of y′ not being totally
ordered, which is equivalent to the support of y′ not being a �ag. So if the algorithm
does terminate, the support will be a �ag. We must show the algorithm terminates, and
that y′ maintains the objective value and feasibility.

Induction establishes that y′ is always non-negative. Indeed, inside the while loop, the
only danger is y′W − y′V . But y′V is the smaller of the two by construction. So y′ always
satis�es Eq. 3.3.

Let y′′ denote the value of y′ after another pass through the while loop. We examine the
e�ect of the iteration on Eq. 3.2, 3.1. In the case V ∩W 6= {0},

Ci(y
′′) = Ci(y

′)−y′V [rank(φi(W ))− rank(φi(V ∩W ))− rank(φi(V +W )) + rank(φi(V ))]

The bracketed quantity is non-negative by Lemma 14, meaning Eq. 3.2 still holds. If
V ∩W = {0}, then

Ci(y
′′) = Ci(y

′)− y′V [rank(φi(W ))− rank(φi(V +W )) + rank(φi(V ))]

= Ci(y
′)− y′V [rank(φi(W ))− rank(φi(V ∩W ))− rank(φi(V +W )) + rank(φi(V ))]

where we used rank(φi(V ∩W )) = 0. Consequently Lemma 14 applies again. Similarly,
the objective value is preserved: in the case of W ∩ V 6= {0},

val(y′′) = val(y′)− y′V [rank(W )− rank(V ∩W )− rank(V +W ) + rank(V )]
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with the bracketed quantity being 0 by Lemma 14. As before, the same follows in the
case V ∩W = {0} by noting rank(V ∩W ) = 0.

It remains to establish that the algorithm will terminate. At �rst glance, it appears
that the y′ might cycle in the algorithm. However, each iteration is increasing the dual
variables on V +W and V ∩W , so the dual vector seems to be shifting towards the high
and low rank subgroups.

To capture this intuition, we de�ne a simple measure of extremeness on dual vectors.
Recall all groups reside in Zd. To a dual vector y we assign a list w(y) of length d. To
do this, set

w(y)i =
∑

U∈ support(y), rank(U)=i

yU

For example, if y is supported on 〈e1, e2〉, 〈e1〉, 〈e2〉 with values 1, .5, 2, and d = 3, then
w(y) = (2.5, 1, 0). We say y′ is more extreme than y′′ if w(y′) is reverse lexicographically
more than w(y′′). Every iteration of the while loop makes y′ more extreme; indeed, the
value yV+W increases and V +W is of strictly larger rank than V or W .

Now we show that w(y′) can take on only �nitely many values, completing the proof.
Observe that y′T 1 stays the same or decreases each iteration, so coordinates of w(y)
are bound by y′T 1. Also, the values produced by the algorithm come from performing
only addition and subtraction operations on the the coordinates of y, which are rational.
Consequently coordinates of w(y′) lie in the �nite set

spanZ(yE1 , . . . , yEm) ∩ [0, yT 1]

4.2. Parallelepiped Tilings from Flags

The main theorem of the previous section allows us to transform an optimal dual vector
into another optimal dual vector supported on a �ag. Now we convert the �ag subgroups
into independent subgroups in the natural manner in order to produce a tiling shape.

De�nition 16 (Flag Parallelepiped). Suppose y is supported on �ag U. Let Y be a
sequence of independent subgroups such that Y1 + · · · + Yi = Ui. De�ne the dual vector
y′ supported on Y by

y′Yi = yUi + · · ·+ yUt

Form a product parallelepiped S of Def. 9 from y′. We will call S the �ag parallelepiped
of y, and y′ its associated dual vector.

Here let's brie�y summarize the progress so far, and what we still need to accomplish.
Provided we formulated the HBL Primal LP and solved its dual, we found a feasible
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y with objective value sHBL. From Theorem 15, this y can be modi�ed to another y′

supported on some �ag, maintaining the objective value sHBL and feasibility as de�ned
in Eq. 3.1, 3.2, 3.3. Next apply the �ag parallelepiped construction of Def. 16 to y′ to
create a tile S and its associated y′′. Proposition 11 implies that S includes Θ(M sHBL)
lattice points. However, y′′ might no longer satisfy Eq. 3.2, so Proposition 11 does not
show that |φi(S)| = O(M). We need to expand the analysis of Lemma 8 to the case of
parallelepipeds instead of cubes.

Lemma 17 (Growing Parallelepiped Lemma). Consider independent subspaces Y1, . . . , Yt
with corresponding dual values yYi . Construct the product parallelepiped as in Def. 9 from
these independent spaces and dual values. Assume the subgroups are ordered so that yYi
monotonically decreases with i. In keeping with Def. 16 have Ui := Y1 + · · · + Yi for
i = 1, . . . , t, and for convenience U0 := {0}. For any linear map L, set

di := rank(L(Ui))− rank(L(Ui−1))

Then we have the bound

|L(S)| = O
(∏

MyYi ·di
)

In particular, this holds for L chosen to be any of the φj.

Before beginning the proof, we remark on the signi�cance. The weaker bound used in
Proposition 11 was

|L(S)| ≤
∏
|L(SYi)| = O

(∏
MyYi ·ai

)
with ai := rank(L(Yi)). From independence of the subgroups Yj , it is immediate that
di ≤ ai. For example, when L is the identity, di = ai. However, when L(Yi) is not
independent of L(Ui−1), it is always the case that di < ai.

Proof. The goal is to propose a rectangular prism T containing L(S). Of the de�ning
edges, di of them will be length O(MyYi ). This would prove the needed bound.

Intuitively, we just need to make the d1 dimensions coming from L(Y1) have the largest
size O(MyY1 ), and the next d2 dimensions coming from Y2 will need to have length
O(MyY2 ) and so forth. To formally show this by constructing T , it is convenient to
interpret all subgroups instead as subspaces of Qd with the standard Euclidean inner
product and its induced norm. Now apply a Gram-Schmidt orthogonalization procedure
to the sequence L(Y1), L(Y2), . . . , L(Yt). This yields subspaces E1, . . . Et satisfying

E1 = L(Y1), E1 + · · ·+ Ei = L(Y1) + · · ·+ L(Yi), Ei ⊥ Ej for i 6= j

Take T to be the Minkowski sum formed by cubes Ti of side length O(MyYi ) growing
in the spaces Ei. It is readily observed that |T | = O

(∏
MyYi ·di

)
. Denote by PEi the
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orthogonal projection onto Ei. If we can show PEi(L(S)) ⊂ Ti for each i, then L(S) ⊂ T .
The proof would then be complete.

Select an arbitrary x ∈ S. That is,

L(x) = L(xY1) + · · ·+ L(xYt)

where xYj ∈ SYj . Observe that L(xYi) ∈ ker(PEj ) for i < j. Also ‖L(xYj )‖2 = O(M
yYj ).

This implies
PEi(L(x)) = PEi(L(xYi)) + · · ·+ PEi(L(xYt))

and therefore

‖PEi(L(x))‖2 = O(MyYi ) + · · ·+O(MyYt ) = O(MyYi )

As T is permitted to be O(MyYi ) in Ei = im(Pi), we conclude that Pi(S) ⊂ T if the
hidden constant for T large enough.

This readily applies to the construction of Def. 16:

Theorem 18 (Non-negative Parallelepiped Theorem). From an optimal dual feasible
vector y supported on a �ag U, form a �ag parallelepiped S. Then |φj(S)| = O(M) for
each φj in the HBL problem, and |S| = Θ(M sHBL).

Proof. Let y′ be the associated dual vector of S with independent subgroups Y1, . . . , Yt
as described in Def. 16. As y has positive entries, y′Yi are monotonically decreasing.
Consequently, Lemma 17 applies. It implies that

|φj(S)| = O(
∏
i

M
y′Yi
·di) = O(

∏
i

M (yYi+···+yYt )·di)

= O(M
∑

i yYi ·(d1+···+di)) = O(MyT rank(φj(U))) = O(M)

That |S| = Θ(M sHBL) follows from Proposition 11

This is the major theoretical result. Combined with earlier results, it notably establishes
the central claim:

Corollary 19. If one is able to produce a su�cient list of subgroups for the HBL primal,
then one can determine an asymptotically optimal tiling shape.

Proof. Solve the dual LP to get y. Apply Theorem 15 to produce y′ optimal and sup-
ported on a �ag. Then apply the �ag parallelepiped construction to y′ yielding tile S,
which is asymptotically optimal by Theorem 18.
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5. Two Cases of Exactly Optimal Tilings

The preceding sections have focused on attaining asymptotic optimality. We would like
the tiling shape to meet the requirements of exact optimality, as given by equations
1.5 and 1.6. This would matter for communication avoiding applications in practice.
However, we do not have a characterization of when this is possible. Instead, we will
describe two simpler situations in which we can provide exactly optimal tilings.

5.1. Rank One Maps

We begin by discussing the case of rank 1 maps. This could be regarded as a generalized n-
body problem. Detailed work on the communication patterns and bounds for the n-body
problem was examined in [DGKSY] and [KY]. This corresponds to arrays with single
indices. First, we demonstrate what sHBL is for this case and a method for obtaining
asymptotic optimality.

Proposition 20. Assume the maps φi are rank 1 with i ∈ J and |J | = n, and the lattice
is Zd. If ∩i ker(φi) = ∅, then sHBL = d. Then a d dimensional cube with sides O(M) is
asymptotically optimal. Otherwise, the Primal LP of Def. 6 is infeasible.

Proof. First, suppose that ∩i ker(φi) is nonempty. Then take E1 to be a non-zero element
of this intersection; as kernels are subspaces, the 〈E1〉 is also in the kernel. This implies
the corresponding constraint in Def. 6 is

0T s ≥ 1

which can't be satis�ed. So the LP is infeasible, meaning one could get �in�nite� data
re-use. See the appendix for an example.

Now suppose ∩ker(φi) = ∅. One subgroup you could use is Zd itself. By the rank 1
assumption, the inequality constraint in Def. 6 corresponding to this subgroup is

1T s ≥ d

This implies sHBL ≥ d. Now we exhibit a feasible primal vector s for which 1T s =
d to complete the proof. One may select a subset J ′ ⊂ J with |J ′| = d such that
∩i∈J ′ker(φi) = ∅. This follows by induction; start with H0 = Zd. Then recurse by
Hi = Hi−1 ∩ ker(φi). If rank(Hi) = rank(Hi−1) − 1 then include i in J ′. Because
belonging to ker(φi) amounts to satisfying a single linear equation, the rank may only
decrease by 1. Choose the primal variable s to be 1J ′ .

It remains to establish the feasibility of this s. The argument may proceed recursively as
above. This time label the elements of J ′ to be i1, . . . , id, and let T denote any subgroup.
Set Hi0 = T and Hij = Hij−1 ∩ ker(φi) recursively. Again, ranks of the Hij decrease by
1 or stay the same, compared to the rank of Hij−1 . The end result is {0}; this implies T
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is not a strict subset of at least rank(T ) of the kernels associated with J ′. Consequently
s satis�es the constraint of Def. 6 for the subgroup T :

sT rank(φ(T )) ≥ rank(T )

This implies the feasibility of s and establishes sHBL = d. Observe the dual variable
indicating the space Zd achieves the value sHBL as well. By Lemma 8, a cube with sides
O(M) is asymptotically optimal.

This establishes that the running Algorithm 1 on Zd produces an asymptotically optimal
tiling. For exact optimality, we must restrict to the case where there are d rank-one maps
with empty kernel intersection.

Lemma 21 (Basis Lemma). The subgroup ∩j 6=iker(φj) is rank 1; take ei to be a non-
zero element of smallest Euclidean norm from this subgroup. Then each subgroup ker(φi)
contains the independent elements e1, . . . , ei−1, ei+1, . . . , ed.

Proof. We must check the ei are well de�ned, and that they are linearly independent.

Every time we intersect with one of the kernels, the rank reduces by 1. The empty inter-
section property of the d kernels implies this; every intersection adds a linear constraint,
and if one of the linear constraints turned out to be redundant then d intersections would
not result in the empty set.

Lastly, we make sure that the ei are independent. If not, then some ei is in the span of
the other ei′ ; however, the other ei′ are contained in ker(φi). This means ei ∈ ker(φi) is
as well. Then ei lies in the intersection of all the kernels, which by assumption is empty
set.

This basis is critical in the following;

Proposition 22. Let ei be as in Lemma 21. Then the sets S := {
∑
aiei|ai ∈ Z, 0 ≤

ai ≤ bM/dc − 1} are exactly optimal. That is, the output of Algorithm 1 on independent
elements e1, . . . , ed of Zd meets the requirements of Eq. 1.5 and 1.6.

Proof. The �rst part of this section established that the optimal sHBL is d and comes
from each si = 1. This is in fact the unique solution to the primal LP of Def. 6 so
it is by default the minimizer of γ in Eq. 1.5. Alternatively, evenly distributed values
si maximize entropy and consequently would minimize γ. Plugging this in, ci = 1

d and
γ = 1

dd
.

It remains to con�rm that |S| = (M/d)d +O(1) and
∑

i |φi(S)| ≤M . First, by indepen-

dence of the ei, there are bM/dcd lattice points enclosed. Now if M = a · d+ r,

(M/d)d = ad · (1 +
r

M
)d = bM/dcd · (1 +

r

M
)d ≤ bM/dcder/M = bM/dcd(1 + o(1))
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This establishes Eq. 1.5. For the memory bound constraint, consider φi(S). Applied to
any point z ∈ S, it outputs ai · ei. As ai only varies between bM/dc values, the result
follows.

We may summarize the approach to tiling in Proposition 22 in the the following algo-
rithm.

Algorithm 3 Exactly Optimal Tiling, Rank One Maps

1: Input: rank one maps {φi}di=1 with coordinate representations ai ∈ Zd, satisfying
∩ker(φi) = {0}, memory parameter M

2: Output: tile S and translations by T that tile Zd
3: Initialize e1, . . . , ed ∈ Zd
4: for i = 1 to d do
5: A← (a1, . . . , ai−1, ai+1, . . . , ad)

T

6: U, D, V ← Smith Normal Form(A)
7: ei ← column 1 of V

8: S, T ← Algorithm 1 on input subgroup U1 = Zd, its independent elements e1, . . . , ed,
memory parameter M , and scaling yZd = 1

return S and T

The new component of the algorithm is calculating the independent elements ei. With
this in mind, we examine the calculation of the ei. Recall ei ∈ ∩j 6=iker(φj) of smallest
Euclidean norm are used in Proposition 22. The implies ei is in the kernel of matrix Ai :=
(a1, . . . , ai−1, ai+1, . . . , ad)

T . Decompose this matrix by Smith Normal Form, giving the
representation UDV −1. Because the rank of Ai is d− 1, only the �rst diagonal entry of
D is 0. This means the kernel of the matrix is exactly what V −1 maps to (1, 0, . . . , 0)T ,
meaning multiples of the �rst column of V . As V is unimodular, this column is also the
shortest integer valued multiple of itself.

5.2. Rank d-1 Maps

This section follows the rank 1 case very closely, and consequently is kept brief. As an
example, this setting includes the case of matrix multiplication and therefore much of
linear algebra. We again discuss asymptotic optimality, followed by exact optimality.

Proposition 23. In the case where all maps are rank d − 1, the optimal dual vector y
can be taken to have the subspace generated by the kernels of all the maps as its only
nonzero coordinate. Call this subspace H and let k = rank(H). Then yW = 1/(k − 1) is
optimal for the dual LP of Def. 7. In addition, sHBL = k/(k − 1).

Proof. As H is sent to a rank k−1 space by each of the φi, y is indeed dual feasible with
objective value k/(k − 1).

We must show that that this matches the HBL lower bound, as then by strong duality
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y is dual optimal. Propose the primal value s = 1/(k − 1) · 1A, where 1A indicates any
k maps whose (one-dimensional) kernels generate the rank k space. Essentially, this is
saying the kernels of these maps are independent.

Then consider any rank l subgroup T , and its images under the maps in A. By indepen-
dence of kernels in the construction of A, only l of the maps might send this to a rank
l − 1 group, the others send it to a l dimensional space. As there are k non-zero si, the
LHS of the constraint given by subgroup T in the primal LP of Def. 6 is

rank(φ(T ))T s =
∑
φi∈A

si · rank(φi(T ))

=
1

k − 1

∑
φi∈A

rank(φi(T ))

=
1

k − 1
[(l − 1) ·#{φ ∈ A|ker(φ) ∩ T 6= {0}}+ l ·#{φ ∈ A|ker(φ) ∩ T = {0}}]

≥ 1

k − 1
[(l − 1) · l + l · (k − l)]

= (l2 − l + lk − l2)/(k − 1) = l · (k − 1)/(k − 1) = l

Meanwhile, the RHS is l, so the constraint is satis�ed.

Similar to the rank 1 case, for exact optimality, restrict to when the kernels of the φi are
independent. Again let ei denote a non-zero smallest Euclidean norm representative of
ker(φi), and let E be the subgroup they span.

Proposition 24. Suppose the number of maps is equal to k and the kernels are inde-

pendent. Form the set S := {
∑
ai · ei|ai ∈ Z, 0 ≤ ai ≤ bMk c

1
k−1 − 1}. That is, apply

Algorithm 1 to the independent elements ei of subgroup E, with scaling yE = 1/(k − 1)
and memory parameter M/k. Then S meets the criteria of Eq. 1.5 and 1.6 for exact
optimality.

Proof. (Sketch). We established that si = 1/(k− 1) has 1T s = sHBL. Moreover, because
the values are evenly distributed, it minimizes γ. Plugging this in, ci = 1/k, γ =
( 1k )k/(k−1).

The remainder follows analagously the argument of rank one maps: show thatM/d being
rounded induces 1 + o(1) relative di�erence between γ ·M sHBL and |S| for Eq. 1.5 to be
satis�ed, and then quickly con�rm Eq. 1.6 holds.
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Figure A.1
Red: elements of S

Blue: representatives of other cosets
Green: two starting points of copies of S, extending coverage of the red coset

Appendix A Examples

We will use this appendix to concretely demonstrate certain key points and techniques
in the paper. Each example emphasizes di�erent aspects.

A.1 Rank-one maps

Consider Z2 and maps
φ1(x, y) = 3x− y

φ2(x, y) = x− 2y

The kernels are respectively 〈e1 + 3e2〉 and 〈2e1 + e2〉.

Figure A.1 depicts the tile shape S that is produced by Algorithm 3 when M = 6. It
also shows a representative of the other 4 cosets of Z2/〈e1 + 3e2, 2e2 + e3〉. That is, it
depicts T3 of Algorithm 1. T2 is {0} for this example, because 〈e1 +3e2, 2e2 +e3〉 has the
same rank as Z2. The two green dots correspond to two of the smallest elements of T1,
which accounts for the �nite size of M . If we were tiling, copies of S would be translated
to start there.

We also alluded to a situation in which in�nite data re-use is possible, when the HBL
primal LP is infeasible. Consider the computation lattice is Z2 with a single map
φ1(x, y) = x. The entire tile 〈e2〉 is mapped to 0. So with M = 1, we could perform an
in�nite number of calculations.
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A.2 Multiple Tilings and One with non-zero T2

Consider the following loop nest:

Loop over e1,e2,e3,e4
inner loop(A1[e1, e3], A2[e2, e4], A3[e1, e2, e3 + e4], A4[e1 + e2, e3, e4])

This corresponds to the HBL problem in a d = 4 dimensional lattice, and linear maps

φ1 =

(
1 0 0 0
0 0 1 0

)
, φ2 =

(
0 1 0 0
0 0 0 1

)
, φ3 =

 1 0 0 0
0 1 0 0
0 0 1 1

 , φ4 =

 1 1 0 0
0 0 1 0
0 0 0 1


As the lattice is Z4, we can e�ciently calculate the subgroups needed to formulate the
primal. They are:

〈e3 − e4〉, 〈e1 − e2〉, 〈e1 − e2, e3 − e4〉, 〈e2, e4〉,
〈e1, e3〉, 〈e2, e3, e4〉, 〈e1, e2, e4〉, 〈e1, e2, e4〉, 〈e1, e2, e3〉, 〈e1, e2, e3, e4〉

When we solve the primal LP using the computational algebra software Magma, s =
(0, .5, .5, .5) so sHBL = 1.5.

Solving the dual LP with Magma, we get a solution supported on subgroups

〈e1, e2, e3, e4〉, 〈e1 − e2, e3 − e4〉

with dual values of .25 for each. One �ag decomposition (Def. 16) of this �ag uses
subgroups

〈e1 − e2, e3 − e4〉, 〈e1, e3〉

with dual values .5 and .25 respectively. Inputting this to Algorithm 1 in the natural
way, the tiling set would be

{a1·(e1−e2)+a2·(e3−e4)+a3·e1+a4·e3 | ai ∈ Z, 0 ≤ a1, a2 ≤ bM .5c−1, 0 ≤ a3, a4 ≤ bM .25c−1}

This example illustrates that asymptotically optimal tilings can substantially di�er.
Checking the following by hand, another asymptotically optimal tiling for this problem
de�nes the tiling set to be

{a1 · e1 + a2 · e3,+a3 · (e2 − e3) | ai ∈ Z, 0 ≤ ai ≤ bM .5c − 1}

This shape is fundamentally di�erent than the previous. Notably, direction e4 is com-
pletely ignored. Algorithm 1 for this example outputs T2 = 〈e4〉 to account for the fact
that the tile is within a rank 3 subgroup of Z4. Although in this example there is still
an optimal full dimensional tile, the next example uses a rank 7 tile in Z8 and this is the
only optimal tiling we found. Examples exhibiting this behavior are plentiful.
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A.3 Need for Flags

We would like to exhibit a situation in which the dual LP excludes a dual vector which
yields a valid tiling. This motivates our use of �ags to �nd tilings. Consider the compu-
tation lattice Z8 with maps φ1, φ2, φ3 have kernels given respectively by

 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

 ,


0 1 0 0 0 0 0 1
0 0 1 0 1 1 0 1
0 0 0 0 0 1 0 1
1 1 0 0 0 0 1 0

 ,


1 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1


Since there are only 3 maps, this is another case in which primal LP can be formulated ef-
�ciently. The solution that Magma outputs is is s = (1, 1, 0) so that sHBL = 2. Moreover,
the output dual solution it outputs is supported on subgroups

〈e1 + e7 − e8, e2 + e8, e3 + e7 − e8, e5 + e7 − e8, e6 + e8〉, 〈e1, e2, e3, e6, e7 + e8〉

with dual values of .1 and .3 respectively. Applying one iteration Algorithm 2 and forming
a �ag decomposition of Def. 16, the new dual solution is supported on subgroups

Y1 := 〈e1 + 2e6 + e7 + e8, e3 + 2e6 + e7 + e8, e2 − e6〉, Y2 := 〈e1, e2〉, Y3 := 〈e5, e7〉

with dual values .4, .3, .1.

Now for the main point of the example; we calculate C1(y) as in Eq. 3.2. It turns out
C3(y) = 1.2. Indeed,

yY1 · rank(φ3(Y1)) + yY2 · rank(φ3(Y2)) + yY3 · rank(φ3(Y3)) = .4 · 2 + .3 · 2 + .1 · 2 = 1.6

Proposition 18 is critical here, because φ3(Y2 + Y1) = φ3(Y1), meaning the .3 · 2 term is
unnecessary.
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