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Abstract 
 
Semiconductor diodes suffer from non-idealities in performance, particularly non-zero 
forward voltage and reverse leakage current, which limit the energy efficiency of power 
conversion circuits. In this work, a micro-electro-mechanical (MEM) relay configured as 
a diode is investigated for power conversion application. Specifically, the utility of a 
MEM diode is demonstrated in a half-wave rectifier circuit. Due to high native pull-in 
voltage and high ON-state resistance, MEM relay technology requires further refinement 
to be promising for low-loss power conversion application. 
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Chapter 1. Introduction 
 
Rectifiers are commonly used for power conversion circuits, for example to convert an 
alternating current (ac) power supply to a direct current (dc) power supply. An ideal 
rectifier should have (nearly) zero forward voltage (VF) and zero reverse current (IR) to 
minimize loss from the peak input voltage to the peak output voltage. In practice, 
however, silicon-based diodes are used as rectifiers and have a significant built-in voltage 
(so that VF is approximately 0.7 V for p-n junction diodes and 0.3 V for Schottky diodes) 
as well as non-zero IR.  
 
1.1 Conventional Semiconductor Diode Characteristics 
 

  
Fig. 1. Energy band diagrams corresponding to (a) p-n junction and (b) metal-semiconductor junction [1]. 

 
Conventional semiconductor diodes can be classified into two categories: p-n junction 
diodes and metal-semiconductor Schottky diodes. The current flow mechanisms for p-n 
diodes are carrier diffusion due to concentration gradient and carrier drift due to the 
electric field within the depletion region [1]. Under forward bias (VA > 0), the potential 
barrier is decreased linearly with increasing applied voltage, thereby increasing the 
diffusion current exponentially in accordance with Fermi-Dirac statistics. Under reverse 
bias (VA < 0), the potential barrier is increased with increasing applied voltage, so that 
negligible diffusion current flows; only a small drift current flows, limited by the rate of 
minority carrier diffusion into the depletion region. Thus, the diode exhibits rectifying 
behavior (allowing current to flow more easily in one direction than the other). Similarly, 
in a Schottky diode, forward biasing reduces the potential barrier to carrier diffusion from 
the semiconductor into the metal, causing current to increase exponentially with 
increasing applied voltage; reverse biasing increases the potential barrier and only a small 
current flows due to thermionic emission of carriers over the Schottky barrier into the 
semiconductor.  
 
 
 
 
 



 

The ideal current expressions for p-n and Schottky diodes are given in equations (1) and 
(2), respectively [1]. 
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whereas q is the fundamental charge, !∗ is Richardson’s constant, A is the junction area, 
DN and DP are the respective electron and hole diffusion constants, LN and LP are the 
respective electron and hole minority carrier diffusion lengths, NA and ND are the net 
dopant concentrations on the respective p-side and n-side, ni is the intrinsic carrier 
concentration, k is the Boltzmann constant, T is the absolute temperature, ΦB is the 
Schottky barrier height and VA is the applied voltage. 
 
The forward voltage VF required to turn ON a semiconductor diode is somewhat smaller 
than the built-in potential barrier (which in turn is determined by the n-side and p-side 
dopant concentrations) in a p-n diode or the Schottky barrier height in a Schottky diode. 
The current-vs.-voltage (I-V) characteristics of semiconductor diodes are qualitatively 
compared against the characteristics of an ideal diode in Figure 2. 
 

 
Fig. 2. Qualitative illustration of rectifying characteristics for ideal, Schottky, and p-n diodes. 

 
There is a fundamental trade-off between small VF and small IR for semiconductor diodes, 
as |IR| is exponentially larger for a diode with linearly smaller VF; this non-ideal behavior 
results in rectifying circuit operating power loss. In this work, a micro-electro-mechanical 



 

(MEM) diode is demonstrated to be able to achieve a nearly ideal I-V characteristic. The 
advantages and trade-offs of utilizing a MEM diode for power conversion are 
investigated in this work using a half-wave rectifier circuit. 
 
Chapter 2. MEM Relay Overview 
 
2.1. MEM Relay Design and Operation 
 
The MEM relay technology developed in [2] has been demonstrated to be well-suited for 
low-power digital integrated circuit (IC) applications [3] at switching frequencies up to 
~100 kHz [7] and is used in this work. Figure 3 illustrates the MEM relay structure.  

 

  

Fig. 3. MEM relay design for IC applications: (a) plan-view scanning electron micrograph, (b) schematic AA’ 
cross-section [4][5]. 

 
When the magnitude of the applied gate-to-body voltage (VGB) is larger than that of the 
pull-in voltage (VPI), the electrostatic force is sufficient to actuate the body downward 
such that the channels (narrow metal strips attached to the underside of the body via an 
insulating dielectric layer) come into physical contact with their respective source and 
drain (S/D) electrodes, thus allowing current (IDS) to flow instantaneously. When VGB is 
lowered back down below the release voltage (VRL), the spring restoring force of the 
folded-flexure suspension beams actuates the body upward, such that contact between the 
channels and their respective S/D electrodes is broken; as a result, IDS abruptly drops to 
zero.  
 
2.2. Ambipolar Switching Characteristics 
 
Because electrostatic force is attractive no matter the polarity of the applied actuation 
voltage, a relay can operate with either positive or negative applied gate voltage, i.e. its 
IDS - VG characteristic is symmetric about 0 V [6].  However, if a non-zero body bias 



 

voltage (VB) is applied to pre-actuate the body downward, the IDS - VG characteristic 
becomes asymmetric; smaller gate voltage (VG) of the opposite polarity is needed, as 
shown in Figure 4(a) − whereas larger VG of the same polarity is needed − to switch ON 
the relay.   
 
2.3. Body-Biasing Effect 
 
By applying VB = −VRL, the magnitude of the positive gate switching voltage is reduced 
to the hysteresis voltage VH ≡ VPI−VRL, whereas the magnitude of the negative gate 
switching voltage is increased to VPI +VRL. Therefore, by connecting the gate electrode 
to the drain electrode, a body-biased relay can operate as a diode with VF as low as 
VH and IR = 0, with a reverse breakdown voltage VBR = −(VPI + VRL). To minimize VH, 
the relay should be designed for non-pull-in (NPI) mode operation, i.e. the as-fabricated 
actuation air-gap thickness (g0) should be at least 3× the as-fabricated contact air-gap 
thickness (gd). It should be noted that VH is always > 0, due to contact adhesive force.   
 

  
Fig. 4. Measured relay I-V characteristics demonstrating that (a) a body bias voltage (VB) can be used to reduce 
the gate voltage (VG) of the opposite polarity required to switch ON the relay, and (b) very small hysteresis 
voltage (VH) can be achieved.  The ON-state current is purposely limited to 10 µA to avoid contact welding 
under dc current stress during measurement.  In practice, the ON-state resistance can be < 1 kΩ per contact [7]. 

 
The measured I-V characteristic in Figure 4(b) demonstrates that small VH (< 250 mV) is 
possible. It should be noted that the circuit designer can easily adjust VPI by changing the 
structural dimensions, e.g. the length L of the suspension beam, to tune |VBR| over a wide 
range.  (VPI is proportional to the square root of the effective spring constant keff, and     
keff ∝ L-3.)  It also should be noted that a metal-oxide-semiconductor field-effect transistor 
(MOSFET) can be similarly operated as a diode by electrically connecting its gate and 
drain electrodes.  However, the MOSFET diode forward current increases more 



 

gradually, as a function of (VG−VT)2 where VT is the threshold voltage; also, it has 
relatively small |VBR| (~0.5 V) since the drain junction is forward-biased when the 
“diode” is reverse biased. 
 
Chapter 3. MEM-Diode Rectifier Circuit Configuration and Operation 
 
3.1. Half-Wave Rectifier Circuit 

 
(a) 

 
(b) 

Fig. 5. Half-wave rectifier circuit with (a) p-n diode and (b) MEM relay configured as a rectifier. 
 

The utility of a body-biased MEM relay for rectification is demonstrated using the half-
wave rectifier circuit illustrated in Figure 5(b). The particular MEM relay used for this 
initial demonstration operates in non-pull-in mode, with VH = 300 mV. The measured 
waveforms for various input ac power supply parameters are shown in Figure 6.   
 

  

 

Fig. 6. Measured waveforms corresponding to 
(a) 1 Hz (b) 60 Hz and (c) 1 kHz input voltage 
waveforms for the half-wave rectifier circuit of 
Fig. 5(b) utilizing a MEM diode with              
VPI = 14.0 V, VRL = 13.7 V (VH = 300 mV) and 
an applied body bias VB ≈ -13.0 V as the 
rectifying device. VIN = 8 V peak-to-peak;        
R = 660 kΩ; C = 0.33 µF. At higher 
frequencies, ON-state resistance limits the 
amount of charging of the capacitor, thereby 
limiting the peak output voltage of the circuit. 



 

Because the MEM diode forward voltage is effectively lower for a reverse voltage sweep 
(due to hysteretic switching behavior), the diode continues to charge the load capacitor 
until VOUT falls below VIN – (VRL+VB) in each cycle. Due to significant ON-state 
resistance (RON greater than 5 kΩ), at higher frequencies the output voltage no longer 
tracks the input voltage when the relay is ON, and the output voltage stabilizes at a 
voltage that is dependent on the frequency as well as RON. 
 
3.2 Effect of Relay Body Bias 
 

  
Fig. 7. Measured waveforms for (a) half-wave rectifier circuit with the load capacitor removed, utilizing a 
MEM diode with VH = 200 mV, for various values of body bias voltage VB, and (b) half-wave rectifier circuit of 
Fig. 5(b), for various values of VB. VIN = 6.0 V peak-to-peak;  f  = 1 kHz; R = 600 kΩ; C = 0.33 µF. 

 
As shown in Section 2.3, the relay switching voltage can be adjusted by changing the 
value of VB.  Because VB is applied discretely from the other circuit elements (cf. Figure 
5(b)), it can be used to control the MEM diode VF. This presents a mechanism through 
which the peak output of a power conversion circuit can be tuned and adjusted according 
to the given application. Measured rectifier outputs for a NPI-mode relay, for different 
values of VB, are shown in Figure 7(a). It is evident from the output voltage waveforms 
that the MEM diode turns ON at a lower input voltage as the value of |VB| is increased. 
Although this is desirable, the relay also turns OFF at a lower voltage; therefore, in order 
to attain low output voltage loss for a power conversion circuit, |VB| must be set such that 
VF = VIN,peak. This is reflected in Figure 7(b), which clearly shows that larger |VB| not only 
causes the diode to turn ON at a lower voltage but also results in lower dc output voltage. 
 
3.3 Discussion 
 
As stated in the previous section, there is a fundamental tradeoff between low VF and 
high VOUT for the power conversion application of a MEM diode. Due to VH, a relatively 
large VF is required for very low output voltage loss in a rectifying circuit; thus, the        



 

3-terminal MEM diode configuration is unsuitable for practical power conversion 
applications.  
 
3.3.1. 2-Terminal MEM Relay Configuration 
 
In order to have a MEM relay mimic a conventional diode, it must be configured as a     
2-terminal device. That is, the body and source terminals should be tied together, as 
shown in Figure 8.  
 

 
Fig. 8. MEM Diode 2-Terminal Configuration 

 
The relay would have to be redesigned to have very low VPI while retaining low VH. 
Based on the simple parallel-plate capacitor model, the values of VPI and VRL can be 
calculated using the following equations [9]: 
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whereas g is the as-fabricated actuation gap thickness, gd  is the as-fabricated contact 
dimple gap thickness, A is the actuation area, FA is the contact adhesive force and keff is 
the effective spring constant.  
 
Because !!"  ∝  !!"" and !!"  ∝  (!!""!! − !!), it is difficult to design a relay with 
both low VPI and low VH. Therefore, further design optimization is necessary for a MEM 
relay to operate efficiently as a 2-terminal device. 
 
3.3.2. Effect of Relay ON-State Resistance 
 
Another non-ideality of this MEM relay technology is high ON-state resistance, RON. 
Because the contacting electrodes are made of tungsten, they are susceptible to oxidation, 
which increases RON over the operating life of the relay [8]. At high frequencies, RON 



 

prevents the output voltage from tracking the input voltage, as shown in Figure 9. Contact 
material engineering is required to overcome this performance limitation. 
 

 
Fig. 9. Measured voltage waveforms for different values of input voltage frequency 
(f), for the half-wave rectifier circuit of Fig. 5(b). VB = - 13.8 V. VIN = 6.0 V peak-to-
peak; R = 600 kΩ. The deleterious effect of RON can be seen as f increases. 

 
Chapter 4. Conclusion 
 
A MEM relay is demonstrated to be able to achieve VF < 300 mV and zero IR, so that it 
can potentially be used for more energy efficient power conversion than conventional 
semiconductor diodes. These ideal rectifying characteristics must be achieved without 
body biasing (i.e. the relay must have low native switching voltage), however, for 
efficient power conversion applications. Relay ON-state resistance can limit the output 
voltage and also should be reduced for efficient power conversion.   
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