CellMate: A Responsive and Accurate Vision-based
Appliance Identification System

Kaifei Chen
Takeshi Mochida
Jonathan Furst
John Kolb

David E. Culler
Randy H. Katz

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-154
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-154.html

September 14, 2016

Copyright © 2016, by the author(s).
Al rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Acknowledgement

This work is supported in part by the National Science Foundation under
grant CPS-1239552 (SDB).

CellMate: A Responsive and Accurate Vision-based
Appliance Identification System

Kaifei Chent, Takeshi Mochida®, Jonathan First!, John Kolb',
David E. Cullerf, Randy H. Katz!
TUniversity of California Berkeley, IT University of Copenhagen,
{kaifei, tmochida}@berkeley.edu, jonf@itu.dk, {jkolb, culler, randykatz}@berkeley.edu

ABSTRACT

Identifying and interacting with smart appliances has been
challenging in the burgeoning smart building era. Exist-
ing identification methods require either cumbersome query
statements or the deployment of additional infrastructure.
There is no platform that abstracts sophisticated computer
vision technologies to provide an easy visual identification
interface, which is the most intuitive way for a human. We
introduce CellMate, an responsive and accurate vision-
based appliance identification system using smartphone cam-
eras. We innovate on optimizing and combining the advan-
tages of several of the latest computer vision technologies
based on our unique constraints of accuracy, latency, and
scalability. To evaluate CellMate, we collected 4008 im-
ages from 39 room-size areas across five campus buildings,
making the size one order of magnitude greater than prior
work. We also collected 1526 human-labeled images and
tested them on different groups of areas. With existing in-
door localization technologies, we can easily narrow down
the location to ten areas and achieve a success rate of more
than 96% within less than 60 ms server processing time. We
optimized average local network latency to 84 ms and there-
fore expect around 144 ms total identification time on the
smartphone end.

1. INTRODUCTION

Cameras are on most smartphones today but are not well
utilized to provide better interactions between humans and
their environment. Advances in computer vision over the
past several years enable many potential applications using
smartphone cameras to allow users to understand and in-
teract with the environment. However, there is no system
that leverages them to provide a simple interface to users
or a simple utility service for building applications. Imagine
you walk into a meeting room and need to use a projector
but cannot find the remote control to turn it on and connect
to it. Wouldn’t it be useful if you could point your smart-
phone camera at the projector and the control interface just

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

BuildSys 16 Nov 16-17, 2016, Stanford, CA, USA
© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123_4

appears on the phone’s screen?

There are many ways to identify and interact with smart
appliances. Existing approaches are not intuitive or con-
venient for two major reasons. First, some approaches re-
quire users to describe the appliance in cumbersome ways.
For example, users may have to query appliances following
a strict syntax [3]. Although there are natural language
based solutions (e.g., Amazon Echo), it is generally difficult
to have a unique human-friendly description of a device, es-
pecially when multiple identical instances are close to each
other. Moreover, speaking vocal commands is not courteous
in quiet environments like offices. Second, many approaches
involve additional infrastructure. Some require setting up
laser [15] or infrared [22] signal receivers on appliances, and
a user carries a signal transmitter for interaction. Some
merely depend on indoor localization [9], which suffers from
several meters in error when restricted to existing infras-
tructure [11] and a lack of orientation information. This
approach also does not work for interactions at a distance.
Fiducial marker (e.g., QR code) based identification [21, 5]
requires attaching markers to appliances, and these markers
cannot be recognized at distance, from a large angle, or with
poor illumination. Therefore, we propose a vision-based ap-
proach that identifies appliances in an image by localizing it
in 3D space. Compared to existing approaches, it needs no
additional infrastructure, requiring only labeled videos, and
yields higher accuracy.

Augmented Reality (AR) overlays objects or information
in a continuous camera view by understanding all visible
objects locally. We differ from AR in two aspects. First,
we cannot have an always-on smartphone camera for vari-
ous reasons (e.g., energy, privacy). Instead of localizing a
stream of images along a continuous trajectory, we localize
a single image in a much larger 3D space, which will have a
radius of at most 10 meters if we use other indoor localiza-
tion technologies [11]. Second, AR focuses on the semantics
and shapes of objects in a user’s view, whereas our applica-
tion seeks to use localization in order to identify the specific
appliance a user is looking at.

In this paper, we introduce CellMate, a new kind of vi-
sual appliance identification system that leverages advan-
tages of different computer vision technologies and organizes
them to optimize single image queries for fast response, high
accuracy, and scalability. To use CellMate, a user needs to
capture a video of appliances she is concerned about using a
depth camera, convert it to a 3D model using RTAB-Map [8],
label one image of every appliance using the CellMate label-
ing tool, and send the resulting database file to the CellMate

server. CellMate collects these database files, extracts the
data, and runs a RESTful server over HT'TP for appliance
identification using selected computer vision technologies. A
client application can simply post a query image (without
depth information) to the server. The server then extracts
its distinct visual features, localizes the query image in the
3D model, and projects all labeled points onto the image to
identify any appliances it contains. The client will receive
a response containing the identified appliance at the center
of the image. We also built an Android app as an example
client, which is shown in Figure 1.

CellMate tackles two important problems. First, the vi-
sual contexts of appliances change over time. Because we
crowdsource videos, users can update an area with a new
video when things change and identification becomes inac-
curate. Second, there are no automatic appliance labeling
technologies. The CellMate labeling tool allows users to la-
bel an appliance only once among all images in a database
by projecting its 2D label onto its 3D model, allowing the
same label to be applied to all images of the same appliance.

To evaluate CellMate, we collected 4008 images from 39
videos, each of which covers an area from one of five differ-
ent campus buildings. To our knowledge, this dataset size is
one order of magnitude larger than those used in prior work
[6]. After collecting these videos, we also collected 1526 test
images of appliances from different angles and distances and
manually labeled them. In the evaluation, CellMate achieves
more than 96% accuracy when identifying appliances among
10 areas. We also achieve an average of 60 ms server compu-
tation time, with an average of 84 ms local network latency.
The total identification latency 144 ms is much lower than
the 400 ms identification response time limit [13].

We summarize our main contributions as follows:

e We build a holistic system' involving sophisticated
computer vision technologies and provide an easy-to-
use vision-based appliance identification service.

e We explore the placement of computations and combi-
nation of algorithms to optimize both responsiveness
and accuracy.

e We build a labeling tool that requires only one label
per appliance among all images of that appliance.

e We conduct evaluations from different real world sce-
narios with a dataset that is significantly larger than
those featured in prior work to demonstrate scalability,
while also achieving lower latency and better accuracy.

The rest of this paper is organized as follows: Section 2
gives two use cases and talks about our system requirements.
Section 3 describes an overview of the system architecture
and algorithms. Section 4 evaluates CellMate by its success
rate, latency, and several other aspects. Section 5 gives some
discussions and our future work. Section 6 describes related
work in the area of object identification. Section 7 concludes
the paper.

2. SYSTEM DESIGN

This Section discusses our system design requirements.
To motivate them, we provide two use cases and three mea-
surements on computation time and network latency under
different circumstances.

2.1 Use Cases

"https://github.com/SoftwareDefinedBuildings/CellMate

® %)-100% 0 21:39
Y

coffee machine

Figure 1: CellMate Android App

2.1.1 Identification and Activation

A user enters a room and wants to change the brightness
of the light on the south side of the room. Using state-of-the-
art Building Management System (BMS) apps, this involves
typing “light”, the room number, and “south” into a search
bar, which is tedious and error-prone. Using the CellMate
app, she simply points her phone camera at the light and
the light’s control interface appears instantaneously. She
changes the brightness as desired and closes the app.

2.1.2 Data Crowdsourcing

A user wants to add controllable appliances around her
workspace into CellMate. She first captures a short video
that contains all appliances she wants to control. Using the
CellMate app, she can browse the video frames, long press
on any appliance and type its label. Finally, she uploads the
video to a CellMate server. After this, she is able to take a
picture to identify any appliance she captured in the video.
Over time, her workspace will change, such as new posters
on the wall, moving a space heater, etc. She notices this
when the CellMate identifications begin to fail. To resolve
this, she can re-capture and upload another video, which
replaces the old one on the CellMate server.

2.2 Location of Computation

It is important to know where to run some essential com-
putations considering both computation power and network
latency. If it’s beneficial to run some logic on the client, for
example, we need to design our system with this considera-
tion in mind.

2.2.1 Speeded Up Robust Features (SURF)

We first look at Speeded Up Robust Features (SURF),
which are visual features of an image that are both fast
to compute and robust to scaling, rotation, viewing angle,
and varying illumination [1]. These features are needed to
localize an image. We can extract SURFs on the phone to
potentially reduce the amount of data transmitted to server.

In our first experiment, we compare the computation time
of SURFs on different platforms, which include a Qualcomm
Snapdragon Quad-core 1.2 GHz Cortex-A7 CPU on a LG G2
Mini Android phone, an Intel i7-4790 CPU on an Ubuntu
machine, and a NVIDIA GeForce GTX 970 GPU on a Ubuntu
machine. In the experiment, we randomly select 1000 im-
ages from our test image set, down-sample them to 640 x 480
resolution (or 480 x 640 depending on the image orientation),
and perform both SURF detection and descriptor computa-

tion on these platforms using OpenCV.

10
0.8} L h
h
w 06} — GPU .
8 -- CPU !
0.4 Phone [if: It
0.2} ,"
)
0.0 L o S
10° 10? 10° 10° 10*

SURF Computation Time (ms)

Figure 2: CDF of SURF Computation Time on Dif-
ferent Platforms

Figure 2 shows the CDF of SURF computation time on
different platforms. The z axis is in log scale. We can see
that there is an order of magnitude difference between the
phone CPU and the server CPU as well as between the server
CPU and the server GPU. Because SURF itself will take
several seconds on the phone, we run it on the server GPU.
This means we need to transmit every query image to the
server.

2.2.2 Image Upload Time

Because we must use a server, we measure how much time
it takes to upload a query image. We randomly select 1000
640 x 480 (or 480 x 640) images and send them from a LG
G2 Mini Android phone over the UC Berkeley campus net-
work to four servers at different locations: a campus server in
the local network, an Amazon Web Services (AWS) instance
in San Jose (43 miles away), an AWS instance in Virginia
(2350 miles away), and an AWS instance in Ireland (5050
miles away). We obtain raw pixels from the camera in YUV
format from Android, take only the Y component, and trans-
mit the raw pixels over HT'TP, which is 640 x 480 = 307200
bytes.

1.0 . - —
ogl| — Local Server o it
“[] == AWS San Jose ':'
w 0.6 --- AWS Virginia !
8 0all AWS Ireland | ‘1
1
0.2 i
1
0.0 ! it
10* 10? 103 10*

Upload Time (ms)

Figure 3: CDF of Upload Time of Raw Pixels of a
640 x 480 Image to Different Servers

Figure 3 shows the time it takes to upload the raw pixels
of an image to servers running in different locations listed
above. The local network generally has a delay of less than
100 ms, while a nearby cloud service can typically induce
less than 110 ms in latency. This suggests that we may need
to use nearby servers for best performance.

2.2.3 Using JPEG Compression

JPEG has been very efficient in terms of both computation
time and compression ratio [20]. We explore the benefits of
trading time to compress the image for a reduced amount
of data to upload. After we get raw Y component pixels,
we use cross-compiled OpenCV for Android to encode the
raw pixels to JPEG format with a quality factor of 95 (on
a 0 to 100 scale) and measure the total time of the JPEG

compression and JPEG data transmission. We ignore the
server side JPEG decompression because it easily takes less
than 1 millisecond for a 640 x 480 image [16].

0.8}
5 0-6 — Local Server
O 04 -=- AWS San Jose
02 AWS Virginia
’ AWS Ireland
0.0 il i
10? 10° 10° 10*

Compression Time + Upload Time (ms)

Figure 4: CDF of JPEG Compression Time + Up-
load Time of a 640 x 480 Image to Different Servers

Figure 4 shows the CDF of the combined JPEG compres-
sion time and upload time. On average, JPEG produces
83267 bytes from 307200 bytes (compression ratio is 3.69).
Compared to transmitting all the raw pixels, it takes about
20 ms less to compress and upload an image to a local server,
so we chose to perform JPEG compression for every query
image.

In summary, based on these three measurements, we rec-
ommend that other clients also compress and upload query
images in JPEG format, and we perform all the remaining
computations in the cloud with a GPU.

2.3 Design Choices

Motivated by the use cases and the computation place-
ment measurements, we make the following design choices.

Thin Client: As we conclued from our experiments,
clients are not required to perform any computation and
only need to send the query image over HTTP POST to a
CellMate server and wait for the result.

Crowdsourced Data: For our use case, crowdsourcing
is the ideal method for gathering new data and updating
stale data. As shown in Section 4, we only require a short
video to cover an area like a meeting room or office cubicle.
The video can contain as few as 25 images to achieve an av-
erage identification success rate of 90%. For now, we require
videos with depth information, which can be obtained from
a depth camera. Our final goal is to support RGB videos as
well.

Manual Data Labeling: Because state-of-the-art object
detection and recognition is not effective enough (up to 63%
accuracy [19]), and we differentiate identical appliances at
different locations, we decide to manually label appliances on
crowdsourced videos. To make this easy, we need a labeling
tool where the user can browse images and click to label
any appliance. Labeling one appliance should be as easy as
clicking on one pixel and typing in the appliance name, as
opposed to labeling all occurrences in all images.

Scalable and Responsive Server: Because all compu-
tations are on the server, it needs to be scalable and respon-
sive. We aim to scale to a space that can be determined using
existing indoor localization systems that do not require any
dedicated infrastructure, which can already provide sub-10
meter accuracy [11]. As proposed in [13], an identification
system should have a response time of less than 400 ms. As
our measurements show in Section 2.2, the average network
latency to upload an image to a nearby cloud server is about
100ms, so CellMate’s server-side processing should incur less
than 300 ms of latency.

Identified Appliances

Features &
Descriptors

18UJ31u]

Search Word
‘Words
(k-d tree)

CellMate Database Files

Bag

Pose
(Location +
Orientation)!

Reference
Image

Identification

Search Image Relative Pose

I 1

Depth]

[Images

Crowdsourced Images and Videos u w u 5 5 5

(] Runtime Computation

Figure 5: CellMate System Architecture.

() In-Memory Data

@B Offline Computation

The offline components capture, label, and prepare data for

runtime, and the runtime components localize the query image on a 3D model to identify the appliances it

contains using a five-stage pipeline.

3. SYSTEM OVERVIEW

Figure 5 shows the architecture of the end-to-end Cell-
Mate system. In the offline phase, users collect videos with
a depth camera using RTAB-Map [8], label appliances us-
ing the CellMate labeling tool, and send the database files to
the CellMate server. At runtime, the CellMate server passes
every incoming query image to a five-stage pipeline for appli-
ance identification. The pipeline extracts SURFs from the
image and converts the SURFs to a bag-of-words (BOW)
using their nearest words in a kd-tree. Next, the pipeline
finds the most similar image as a reference using the BOW,
and uses the reference image to localize the query image in
3D space. Finally, we can identify the appliance that ap-
pears in query image based on its location. We discuss the
details below.

3.1 Android Mobile Application

An example screenshot of the CellMate Android app is
shown in Figure 1. It has a full screen see-through camera
view with control widgets overlaid on top. A capture button
is at the bottom right. The bottom left shows the currently
identified appliance. Appliance control buttons are shown at
the bottom center. Without loss of generality, we currently
only support “ON” and “OFF” buttons.

Using the mobile app involves two steps: identification
and interaction. When the capture button is clicked, an im-
age of the current camera view (query image) is immediately
sent to a CellMate server over a RESTful API for identifica-
tion. The server returns the label of the identified appliance
that is closest to the image center. For privacy reasons, the
client only uploads the image that a user intends to capture.

After receiving the appliance label, the client retrieves its
control interface and metadata from the BMS and updates
the Ul accordingly. The control buttons are initially disabled
and translucent, and will be enabled after parsing the control

interface and metadata. The control logic is defined by the
appliance metadata and integrated with the BMS. In this
paper, we focus on identification.

In the Android app implementation, there are two main
tasks. First, all raw camera frames are directly streamed to
a full screen image viewer. Second, when the capture but-
ton is clicked, the app sends the most recent camera frame
to the server after down-sampling and compressing it. To
minimize the identification latency, we disabled auto focus,
auto exposure, and auto white balance, which can take up
to 1 second. We believe there is no need to worry about
blurring images, because a user usually points the camera
at the appliance steadily when she wants to control it.

3.2 Offline Processing

We process crowdsourced videos and labels offline to build
a database for runtime appliance identification. There are
two main steps in the offline processing: 3D reconstruction
and labeling.

3.2.1 Crowdsourcing Videos

Users can take a video of any area in a building to feed
into the CellMate database, such as an office cubicle, a home
kitchen, or a meeting room. The amount of data required
is very small. For example, in our evaluation data, 60 im-
ages can cover a 4-person office room. When an area un-
dergoes large changes, such as when furniture is moved or
wallpaper is changed, a new video covering the same area is
required to update the CellMate database. Currently, Cell-
Mate only supports RGB-D videos collected using RGB-D
cameras (e.g., Microsoft Kinect, ASUS Xtion PRO LIVE?),
which is very easy to do using the RTAB-Map data collec-
tion tool. Crowdsourced data is processed by RTAB-Map
[8] for 3D reconstruction and appliances are labeled manu-

*https:/ /www.asus.com /us/3D-Sensor/Xtion PRO_LIVE/

Database 64-Byte Clustering 64-Byte
Images SURFs (NNDR) Words

Bag of Words (BOWs) of
Database Images

R s
B — e S o
. - S=Smmme=C i
Offline m |:>=,_ __________ SE—— 3D Reconstruction
- ————————— - Y- ==
T v TTT= ~—
o=
o K-D Tree of Words SURFs' Con @ MDBtIrSr?agle WBith
-Byte Nearest o List of BOWSs ost Similar
QueryImage ¢ oo Words Query Image (Reference Image) Remaini
. —_— emaining
rutme [@@ == e m—) [

Figure 6: CellMate Data Flow. The offline part extracts SURFs from captured images, clusters them to
words, and forms bag-of-words (BOW) to describe images. The runtime extracts SURFs from query image,
finds their nearest words in a kd-tree to create its BOW, which is used to look for a reference image.

ally using CellMate labeling tool, which adds a new “Label”
table into the RTAB-Map database. The details are in the
next two sections.

3.2.2 3D Reconstruction

colorprinter

monoprinte

(a) A Point Cloud Example

eo0e X Widget ece

(b) Labels of two printers (c) Same labels of two print-
from a left angle ers from a right angle

Figure 7: CellMate Labeling Tool

We use RTAB-Map to reconstruct 3D models from videos.
The purpose is to significantly simplify the labeling process.
With a 3D model, one label in one image can be shared
with all other images containing the same physical object.
Specifically, by projecting the labeled pixel to its 3D point
in the 3D model, we can project it back to any other image
containing the same point. As shown in Figure 6, to build a
3D model, RTAB-Map first extracts SURFs from all images

in a video. Then it clusters SURF descriptors to 64-byte
words, where SURF descriptors in one cluster are meant to
be from the same 3D point. Following best practices, it uses
the Nearest Neighbor Distance Ratio (NNDR) clustering ap-
proach [10]. RTAB-Map then finds common words between
images using their Bag-of-Words (BOWSs) and uses the com-
mon words and their pixels to compute the relative poses
between images. A pose is the combination of a 3 Degree-
of-Freeedom (DOF) location and 3 DOF orientation. After
all relative poses are calculated, it combines all images into
one uniform coordinate system to form a 3D model. Figure
7a shows a 3D model of an office kitchen generated from its
video. RTAB-Map saves all original data and results in a
SQLite database.

3.2.3 Labeling Tool

Because labeling relies on a human, we have built a tool
to visualize images and add labels to simplify this process.
Figure 7b and Figure 7c give two example screenshots of
our labeling tool from the same area as in Figure 7a. As
we can see, the labeling tool displays the images and the
labels read from a 3D model. The user can click on any
pixel and type a new label to save into the database. As we
mentioned before, each appliance only needs to be labeled
once, because every labeled pixel is projected to a 3D point
so the label can propagate to other images. In this specific
example, the two labels “colorprinter” and “monoprinter” are
visible in both images, even though these labels are added
from only one image. However, this 2D-to-3D projection
will fail if the depth value of the pixel is missing, which is
not uncommon with today’s RGB-D cameras. To address
this problem, we display a message indicating whether the
projection is successful and only enable the save button when
the selected pixel has a valid depth value. Many techniques
can estimate missing depth values, and we plan to adopt
them in our future work.

3.3 Runtime Identification Pipeline

At initialization, the CellMate server reads data from a
list of CellMate databases and organizes the data structures
for optimal runtime performance. It starts an HT'TP server

and five threads for five stages of the pipeline. As shown
in Figure 5, there is no overlap between the data used by
the different stages. Therefore, it will be straightforward
to distribute and parallelize the computation. On arrival of
a query image, the HTTP server starts a worker thread to
decode and pass the image to the first stage of the pipeline,
and then waits for the result before responding. We describe
an overview of each step in the pipeline below.

SURF: In the five-stage pipeline, the server first com-
putes SURF's on the query image using its GPU. This step
involves SURF detection and SURF descriptor computation.
SURF detection finds interesting keypoints (e.g., corners) at
different scales. A SURF descriptor is a 64-byte array that
describes a SURF keypoint in a robust way against various
scales, orientations, and illuminations. Figure 6 shows the
SURFs extracted from the query image. To avoid excessive
computation, we cap the number of SURF features of an
image at 400, an empirically optimal number also used by
RTAB-Map.

Search Word: This step finds the words nearest to the
image’s SURFs in the database to form a Bag-of-Words
(BOW) describing the query image. As shown in Figure
5 and Figure 6, our runtime builds a kd-tree of all words in
the database offline to speed up the look-ups. A node in a
k-d tree is a data point that partitions all data on the branch
based on their values in a particular dimension, which en-
ables average O(logn) nearest neighbor search complexity.
We use the kd-tree implementation in the Fast Library for
Approximate Nearest Neighbors (FLANN) [14] and its de-
fault parameters, which builds 4 randomized kd-trees to re-
duce the possibility of all unbalanced kd-trees.

Search Image: This step finds a reference image to local-
ize the query image. A reference image should have enough
common words with the query image to compute their rel-
ative pose in next stage. In addition, if there are multiple
SURFs whose nearest words are the same, we won’t know
which SURF is corresponding to the same word in the other
image, so we only use the words that appear once in an
image. Therefore, we define our objective function as the
cardinality of the set of common unique words between two
images, which we call similarity:

sim(A, B) = |Unique(BOW4) N Unique(BOW3g)| (1)

where BOW 4 and BOWp are the sets of words in each
image respectively, and Unique(BOW) gives a set of words
that only appear once in BOW. Figure 6 shows how we
find a reference image with the highest similarity for the
remaining processes. However, because similarity is different
from Euclidean distance, we must iterate over all images
instead of using a kd-tree. Due to noise in the data and
errors in SURFs and the clustering algorithm, words and
3D points may not have a perfect one-to-one correspondence,
and can reveal large inconsistencies in the next stage. Thus,
we pass the ten most similar images to next stage for extra
reference image candidates.

Relative Pose: This step calculates the global pose (lo-
cation and orientation) of the query image using a reference
image and their common words. Because the reference image
has depth data, we can get the 3D points of its words in the
global coordinate system. This is therefore a Perspective-
N-Point (PnP) problem [17], which is to compute the query
image’s global location as a vector ¢3x1 and orientation as
a matrix Rsxs from the homogeneous coordinates of its N

pixels as a matrix PZPy and homogeneous coordinates of
their corresponding 3D points as a matrix Pl :

Piln = Ksxs[Raxsltsx1] Pidn (2)

where K3xs is the intrinsic matrix that characterizes the
camera lens. We iterate through the most similar refer-
ence images to solve Equation 2, until we achieve sufficiently
small error.

Since our data is a list of independent videos, each of
them has its own coordinate system. Our query image’s
global pose will be in the final reference image’s coordinate
system.

Identification: After getting the query image’s pose, we
can identify the appliances it contains. We only look at la-
bels in the databases generated from the video containing
the final reference image. We project all labels that are in
front of the camera (if the Z axis value is positive in the
camera’s coordinate system) onto its 2D plane, and return
them sorted by their pixels’ distances to the center of the im-
age. The first appliance in the list will be the final identified
appliance.

4. EVALUATION

We describe several evaluations of our current CellMate
implementation in this section. We evaluate accuracy and
latency when coverage area and data are scaled up, scal-
ability with concurrent users, robustness to environmental
changes, and energy consumption on the mobile client.

4.1 Experimental Setup

In our current CellMate implementation, the Android app
contains 1549 lines of Java code, the server contains 3202
lines of C++ code, and the labeling tool contains 392 lines
of C++ code. We use RTAB-Map to read RGB-D videos
from an ASUS Xtion PRO LIVE RGB-D camera and per-
form 3D reconstructions from these videos. After recording a
video, we use an LG G2 Mini Android phone to capture test
pictures of appliances from different angles and distances.
To ensure a large enough dataset, we consider both control-
lable objects (e.g., lights) and non-controllable objects (e.g.,
bookshelves) in our evaluation.

Our dataset contains 39 videos of room-size areas across
five buildings in two university campuses. The areas in-
clude conference rooms, office cubicles, lounges, kitchens,
hallways, etc. There are 4008 images for 3D reconstructions,
263 labels for 179 appliances, and 1526 images for testing.
This dataset represents a large enough part of a building
that can be narrowed down using existing indoor localiza-
tion techniques [11]. Compared to prior work [6], we have
more than an order of magnitude more modeling images,
which enables us evaluate our system at scale.

Our setup includes a CellMate server running in a docker
container on an Ubuntu machine, which has an 8-core Intel
i7 CPU, 16 GB of memory, and a NVIDIA GeForce GTX
970 GPU. Given that we already have network studies in
Section 2, we focus here on server side evaluations. We run
a Python script as a client in the same docker container
for testing. It simply uploads test images to the server and
compares the returned results with the ground truth.

4.2 Success Rate

We run several rounds of tests and study the identifica-
tion success rates and latencies. Each round initializes a

CellMate server with a combination of CellMate areas (each
has its own database), and tests using their test images.
Because there are too many possible combinations for 39
databases (i.e., >p_, (}) = 2" — 1, n = 39), we just gen-
erate a random permutation, start with the first area, and
add a new area in each subsequent round.

Total Number of Images
1329

73 499 789 1927 2618 3249 3692 4008

100.0%

95.0%

90.0% -

85.0%

Success Rate

80.0% L1 i i H H H H H
1 5 10 15 20 25 30 35 39
Number of Areas

Figure 8: Success Rate vs. Number of Areas

Success rate is defined as the percentage of images that
are identified correctly. The more databases we query an
image against, the more likely there is a similar image from
the wrong database that is used as the reference image, low-
ering the success rate. Figure 8 shows the success rates with
different numbers of areas. The bottom z axis shows the to-
tal number of area databases included in the test, while the
top shows the total number of images in those databases.
The success rate starts at around 93%, increases to 100%
afterwards, and drops to 81% when identifying among 39
areas (or 4008 images). Fortunately, existing indoor local-
ization can practically yield less than 10 meters in error [11],
so we can easily narrow down our search space to less than
10 rooms and achieve more than a 96% success rate.

4.2.1 Failure Analytics

(a) Labels Too Close (b) Label Occluded

ik =

(d) Not Covered in DB

==

(f) Incorrect Label

(c) Similar Scenes

(e) Lack of Features

Figure 9: Common Failure Cases (left is query im-
age, right is reference image)

To examine the causes of failures in our system, we sum-
marize six categories of common failures when identifying

among all 39 areas. Figure 9 shows these failure cases with
examples. In each example, the left side image is the query
image, and the right side image is the selected reference im-
age to localize the query image. Both (a) and (b) use a
correct reference image. However, (a) contains a water ma-
chine and a coffee machine that are very close to each other
and so are their labels. This situation is very sensitive to
image localization accuracy. (b) shows that the user intends
to identify the fridge, but a printer is occluded by the fridge
and has a label that is closer to the image center. (c) shows
two scenes that look very similar, and our system cannot dif-
ferentiate them using their SURFs. In (d), the flowerpot is
the target appliance, but it’s barely captured by any image
in the training video, so our system fails to find a correct
reference image. (e) shows that the ceiling light does not
have a sufficiently unique visual context, so our system can
only find another ceiling light as the reference image. (f)
shows the query image was identified as the light, but la-
beled incorrectly as the projector. These failures cases can
be very useful to guide our future work on improving the
success rates, and demonstrate that most failures are due to
external factors rather than artifacts of the system itself.

4.3 Server Processing Time

Number of Areas
5 10 15 20 25 30 35 39

i

[

=]
-

SURF Detection
SURF Descriptor
Identification
Relative Pose
Search Image

0
73 499 789 1329 1927 2618
Total Number of Images

i

o

o
T

= e
N B
S o
T T

-

o

S
T

[
=]

o
=]

o
o

Server Processing Time (ms)

N
o

3249 3692 4008

Figure 10: Server Processing Time vs. Total Num-
ber of Images

Figure 10 breaks up the server processing time with dif-
ferent numbers of images. As we can see, SURF detection,
SURF descriptor, identification, and relative pose all require
a nearly constant and small amount of time because they are
one-time computations regardless of the number of images
in the database. For the image search, we cannot use a kd-
tree with our definition of similarity, as discussed in Section
3. Image search time thus increases linearly because the
system is iterating over all images to compute similarities.
However, even searching among all 4008 images from all 39
areas only takes 120 milliseconds, which still keeps the end-
to-end latency imperceptible. Searching nearest words in
the kd-tree increases slowly as expected and typically takes
less than 40 ms. We notice there are spikes in kd-tree search
time when certain combinations of areas are used. This is
because the distribution of the words makes the the kd-tree
unbalanced, which can induce the worst case O(n) search
time, even when we use four randomized kd-trees to miti-
gate the issue. Overall, when searching among ten areas (or
789 images), the total server processing time is about 60 ms.

4.4 Scalability with Concurrent Users

1600 —

2 1400} SR RS M S

17) 1 ! !]

f3 i R o

Y € 1000} e s S o S

O — T T | | 1

Lo 800 - & T : H .I R R %!%%%._

~ £ 600} g T o kP 0

o E +

Sk 400t I T S _J__-_L-'i’ L ! 4

c + 0 <+ =+ i

@ 200+ R R e i - 1

0 ol E +F T -+ 0T 0G0 i i i i i
1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Concurrent Users

Figure 11: Computation Time vs. Number of Con-
current Users

The last two evaluations have shown CellMate’s ability to
scale with more data. Here we look at scalability with users.
We run a CellMate server with data from one area and start
several test scripts on the same machine that are each con-
stantly sending query images. During this experiment, the
success rates are not influenced by the number of concurrent
users, so we only look at the server processing time.

Figure 11 shows a boxplot of server processing time with
different numbers of concurrent clients. The boxes show the
25" 50" and 75" percentiles of the times, and the lower
whiskers and upper whiskers are the 1°* and 99*® percentiles
respectively. The outliers are not shown for conciseness.
As we can see, the average server processing time increases
linearly as concurrent users increase, and we can support up
to eight concurrent users to keep average server processing
time less than our design goal of 300 ms as discussed in
Section 2.3. In a typical commercial building deployment,
we do not expect to have more than eight concurrent users,
keeping latency reasonable.

Note that because we only run different stages of the
pipeline in threads on one core, we are not yet exploring
the benefits of pipelining or parallelization here. We can
also see the distributions of latencies are concentrated be-
cause the boxes are short, which shows that the CellMate
server is stable.

4.5 Area Image Density

100.0%
90.0% ==
80.0%
70.0%
60.0%
50.0% |
40.0%
30.0% -+
20.0% -

Success Rate

50 100 150 200 250 300
Number of Randomly Sampled Images in One Database

Figure 12: Success Rate vs. Number of Random
Sampled Images in One Database

We explore the possibility of using fewer images to cover
a given area to potentially further reduce image search time
without losing accuracy. Our areas have various but similar
enough physical sizes, and we ignore this factor to simplify
the experiment without loss of generality. We modify the
CellMate server so it initializes with only a subset of the
images randomly sampled from a source video. For every
area, we start with a 5% sub-sample rate, increase by 5%
intervals, and observe the success rates. We perform four
rounds of experiments for every area with all sub-sample
rates.

Figure 12 shows the relationship between the success rate
and the number of images we use for an area. The solid line
shows the mean success rate for each number of images in
the subsamples. The lower and upper edges of the filled area
are the minimum and maximum accuracies we achieve in our
experiment. As we can see, we can cover a typical room-
size area with less than 80 images and get more than 90%
average success rate. This inspires us to explore the trade-
off between number of images (directly related to latency)
and success rate, and we plan to work on mechanisms that
are better than random selection in future work.

4.6 Robustness to Environmental Changes

(a) Original View (b) Fan with 20 (c¢) Fan with 20
of Fan (Center of cans (18 on side, cans and back-

Image) 2 in front) ground blocked

Figure 13: Examples of Changing Environment

As objects move and change all the time, it is very im-
portant that our system performance does not significantly
degrade. To study CellMate’s robustness to changing en-
vironments, we pick a small area from our dataset that is
easier to make change. As shown in Figure 13a, this area
contains three appliances: a lamp on the left, a fan in the
middle, and a heater on the right, each of which has a deco-
rative background image (also used as a unique visual con-
text). We study the success rate identifying the fan while
the environment changes.

We first add 18 beverage cans on the left and right sides
of the fan, then add two cans in front of it such that it’s
partially blocked, and finally use six pieces of white paper
to block all background images and the other appliances.
We add these objects one by one and measure the success
rates among all 4008 images from 39 databases using 10
test images from different angles and distances after every
change. Figure 13 shows three example steps. The first
image shows the original view of the fan, the second shows
the fan with all 20 cans on both sides and in front, and the
third shows all changes we add to the appliance.

100.0% (72—
’ ’ 7’ 7z

4 7’ ’ 7’ 4 7z

80.0% [{ AR B A
7’ ’ 7’ ’ 7z s 7z

60.0% 7t Ll

40.0% | Z 2 Add Cans on Side of Appliance

Y72 Add Cans in Front of Appliance
°2 2 Add Paper Blocking Background
0.0% L L
0 5 10
Number of Changes

Success Rate

—

20.0%

Figure 14: Success Rate with Number of Items
Added around an Appliance

Figure 14 shows the success rate as changes are made to
the appliance’s environment. The three filled areas show the
three types of change. As we can see, even though cans block
some part of the image and add new SURF's, they don’t have
much influence on the success rate, no matter whether we

put them on the side or in front of the fan. This means vi-
sual context plays an important role in correctly identifying
an appliance. As we add white paper to block more con-
text information, the success rate starts to decrease, which
is expected. This shows our system is robust to moderate
changes of environment, meaning users do not need to fre-
quently update areas with new videos.

4.7 App Energy Usage

| — lIdle -~ Preview o Preview + Continuous Query

Power Usage (Watt)
OO FHFKFEFNNWWLS-N

Test Time (seconds)

Figure 15: Energy Usage over Time

Our design goal is to make the CellMate mobile client
power efficient. Because the LG G2 Mini uses the Qual-
comm MSMS&226 Snapdragon 400 SoC, we use the Qual-
comm Trepn Power Profiler to measure accurate per-app
power usage by leveraging specific Snapdragon features®.
We adjust the screen brightness to 100% and measure three
different power usages for 60 seconds: overall power usage
while showing the home screen (idle), CellMate power us-
age while streaming camera view to screen (preview), and
CellMate power usage while sequentially sending query im-
ages as fast as possible using WiFi. Figure 15 shows the
the power usage trends, where idling consumes on average
0.48 Watts, preview consumes on average 1.64 Watts, and
preview with continuous queries consumes on average 2.78
Watts. With the 3.8V 2440 mAh battery in the phone, the
ideal battery life using CellMate to preview and continuously

identify appliances is 2.84 hours ({244 ‘3'1154_]12“)‘7‘;);5:;? Volt),

5. DISCUSSION AND FUTURE WORK

As we build and deploy CellMate, we see some poten-
tial improvements that also put forward interesting research
challenges.

Database Size Reduction: As we show in Section 4.5,
we don’t need all images from all videos to achieve a good
identification success rate. Also, image search time increases
linearly with the number of images. We plan to study this
trade-off between success rate and image search time, and
work on an algorithm to choose an optimal subset of images
from all crowdsourced videos.

Database Coverage Improvement: Besides shrinking
the dataset, we also find it important to have better cov-
erage of appliances’ appearances from different angles and
distances. However, current systems rely on users to capture
more images for better coverage. It’s not clear how to quan-
tify coverage or how much coverage is sufficient for general
usage. In future work, we plan to come up with a metric for
coverage and provide feedback to users to collect data with
better quality.

Online Dataset Update: For areas that have changed a
lot over time, users need to upload a new video to guarantee

®https://developer.qualcomm.com /software/
trepn-power-profiler

high success rate. Another approach is to use query images
to update the dataset at runtime. However, this involves
multiple challenges. For example, we need to know when
to delete an old image and which labels can or cannot be
transferred to new images.

Labeling Tool Improvement: Besides data collection,
labeling is the aspect of CellMate that requires human in-
tervention. To minimize human effort, we have a labeling
tool that enables one simple click-and-type for every appli-
ance. We plan to push this further with more intuitive and
automatic mechanisms. For example, we can make the user
click on the mobile app to label, and use convolutional neu-
ral network based object recognition to propose an initial
guess for the labels in an image.

Screen and Whiteboard Handling: Screens and white-
boards are objects that change much more frequently than
others. We did not design our system to cope with these ob-
jects. In future work, we may need to recognize them first
and ignore their visual content for further processing.

6. RELATED WORK

Much work has been done to enable easier interaction
between humans and appliances. As we discussed in Sec-
tion 1, many of these solutions require extra infrastruc-
ture, such as laser pointers [7], infrared transceivers [22],
or face-mounted eye-tracking cameras [2]. Other works use
of commodity smartphone sensors but have different limita-
tions. For example, reading fiducial markers [18] and signal
strength based indoor localization [9] both fail to identify
appliances at a distance. Moreover, natural language pro-
cessing based approaches suffer from cumbersome and am-
biguous vocal commands.

In comparison to these, visual information is more intu-
itive, straightforward, and convenient. Heun et al. [5] build
an AR interface for smart devices, but rely on self-defined
markers for image localization. Mayer et al. [12] and Jain
et al. [6] collected a set of images and manually labeled all
the images, whereas we only need 179 labels for the 179 ap-
pliances among 4008 images. When the camera view can
match a labeled image, they display its label as relevant
textual information, which doesn’t require the same local-
ization accuracy as we do. [5] and [12] have no evaluation on
accuracy, latency, or scalability. [6] relies on continuous user
video and sensor streams to narrow down the search space,
and gets less than 90% success rates 30% of the time (aver-
age value not available) among 200 labeled images with 180
ms server computation time using a higher-end GPU (Ti-
tan Black). In comparison, we get average 96% success rate
among 789 images with 60 ms server computation time.

iMoon [4] uses WiFi signal strength based indoor localiza-
tion to reduce the search space and localizes a continuous
stream of camera views for navigation. In the evaluation,
they localize 2220 locations using 2197 images, where each
location contains 12 images take from a 360° panorama view
at 30° intervals. This significantly simplifies the problem
because only one of the 12 images needs to be correctly
localized. With the help of WiFi signal strength based lo-
calization, the system has more than 2 meters in error with
more than 4 seconds of latency using both a higher-end CPU
(Xeon E5-2650) and a higher-end GPU (Tesla K20C). Al-
though we don’t have ground truth 3D positions, our system
must have much lower error to achieve more than 90% suc-
cess rate identifying appliances that are tens of centimeters

in size while using only a single image among a dataset of
around 2200 images.

7. CONCLUSION

In this paper, we presented an accurate and responsive
vision-based appliance identification system called CellMate.
It crowdsources user-captured videos and provides a label-
ing tool to easily label every appliance only once among
all images containing that appliance. To optimize runtime
responsiveness, CellMate decomposes the identification pro-
cess into to a five stage pipeline and incorporates state-of-
the-art computer vision data structures and algorithms. It
is tested using 4008 model images and 1526 test images,
and can achieve a success rate of more than 96% with 144
ms of client side latency if we use existing indoor localiza-
tion techniques to narrow down the search space. CellMate
forms a significant step in enabling users to interact with
their environments using computer vision technologies in a
more intuitive and accurate way. As future work, we plan to
improve the performance and deploy the system at a larger
scale.

Acknowledgements

This work is supported in part by the National Science Foun-
dation under grant CPS-1239552 (SDB).

%1] IB@&EEREI}INte(EIE‘SS, and L. Van Gool. Surf: Speeded up

robust features. In European conference on computer
vision, pages 404-417. Springer, 2006.

[2] A. Bulling, D. Roggen, G. Troster, G. Troster, and
G. Troster. Wearable EOG goggles: Seamless sensing and
contezt-awareness in everyday environments. ETH,
Eidgendssische Technische Hochschule Ziirich, Wearable
Computing Laboratory, 2009.

[3] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and
D. Culler. smap: a simple measurement and actuation
profile for physical information. In Proceedings of the Sth
ACM Conference on Embedded Networked Sensor Systems,
pages 197-210. ACM, 2010.

[4] J. Dong, Y. Xiao, M. Noreikis, Z. Ou, and A. Y1i-Jaaski.
imoon: Using smartphones for image-based indoor
navigation. In Proceedings of the 13th ACM Conference on
Embedded Networked Sensor Systems, pages 85—97. ACM,
2015.

[5] V. Heun, S. Kasahara, and P. Maes. Smarter objects: using
ar technology to program physical objects and their
interactions. In CHI’18 Extended Abstracts on Human
Factors in Computing Systems, pages 961-966. ACM, 2013.

[6] P. Jain, J. Manweiler, and R. Roy Choudhury. Overlay:
Practical mobile augmented reality. In Proceedings of the
13th Annual International Conference on Mobile Systems,
Applications, and Services, pages 331-344. ACM, 2015.

[7] C. C. Kemp, C. D. Anderson, H. Nguyen, A. J. Trevor, and
Z. Xu. A point-and-click interface for the real world: laser
designation of objects for mobile manipulation. In
Human-Robot Interaction (HRI), 2008 3rd ACM/IEEE
International Conference on, pages 241-248. IEEE, 2008.

[8] M. Labbe and F. Michaud. Appearance-based loop closure

detection for online large-scale and long-term operation.

Robotics, IEEE Transactions on, 29(3):734-745, 2013.

J. Lifton, M. Mittal, M. Lapinski, and J. A. Paradiso.

Tricorder: A mobile sensor network browser. In Proceedings

of the ACM CHI 2007 Conference-Mobile Spatial

Interaction Workshop, 2007.

[10] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. International journal of computer vision,
60(2):91-110, 2004.

9

[11] D. Lymberopoulos, J. Liu, X. Yang, R. R. Choudhury,

V. Handziski, and S. Sen. A realistic evaluation and
comparison of indoor location technologies: experiences and
lessons learned. In Proceedings of the 14th International
Conference on Information Processing in Sensor Networks,
pages 178-189. ACM, 2015.

[12] S. Mayer, M. Schalch, M. George, and G. Sérés. Device
recognition for intuitive interaction with the web of things.
In Proceedings of the 2013 ACM conference on Pervasive
and ubiquitous computing adjunct publication, pages
239-242. ACM, 2013.

[13] R. B. Miller. Response time in man-computer
conversational transactions. In Proceedings of the December
9-11, 1968, fall joint computer conference, part I, pages
267-277. ACM, 1968.

[14] M. Muja and D. G. Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. VISAPP
(1), 2(331-340):2, 2009.

[15] S. N. Patel and G. D. Abowd. A 2-way laser-assisted
selection scheme for handhelds in a physical environment.
In UbiComp 2003: Ubiquitous Computing, pages 200—207.
Springer, 2003.

[16] B. Pieters, J. De Cock, C. Hollemeersch, J. Wielandt,

P. Lambert, and R. Van de Walle. Ultra high definition
video decoding with motion jpeg xr using the gpu. In
Image Processing, 2011 18th IEEE International
Conference on, pages 377-380. IEEE, 2011.

[17] L. Quan and Z. Lan. Linear n-point camera pose
determination. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 21(8):774-780, 1999.

[18] J. Rekimoto and Y. Ayatsuka. Cybercode: designing
augmented reality environments with visual tags. In
Proceedings of DARE 2000 on Designing augmented reality
environments, pages 1-10. ACM, 2000.

[19] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211-252,
2015.

[20] D. Santa-Cruz, R. Grosbois, and T. Ebrahimi. Jpeg 2000
performance evaluation and assessment. Signal Processing:
Image Communication, 17(1):113-130, 2002.

[21] J.-t. Wang, C.-N. Shyi, T.-W. Hou, and C. Fong. Design
and implementation of augmented reality system
collaborating with qr code. In Computer Symposium (ICS),
2010 International, pages 414-418. IEEE, 2010.

[22] B. Zhang, Y.-H. Chen, C. Tuna, A. Dave, Y. Li, E. Lee, and
B. Hartmann. Hobs: head orientation-based selection in
physical spaces. In Proceedings of the 2nd ACM symposium
on Spatial user interaction, pages 17-25. ACM, 2014.

