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1 Introduction

The maximum gain of amplifiers at high operating frequencies (millimeter-wave and terahertz)

is severely limited by the cut-off frequency of the transistors. Given the two port parameters at

the desired frequency, the maximum stable gain achievable by the device is fixed. However, by

adding an external lossless passive network, the composite two port parameters of the circuit can

be modified. Under these conditions, it is possible to achieve a much higher gain for the device if

the two port parameters are chosen wisely. This report derives the maximum achievable gain of

a two port network and discusses an embedding technique to achieve this desired gain. The rest

of the report is organized as follows. Section 2 provides the expression for the maximum gain of

a two port device and discusses the conditions required to satisfy the above. Section 3 gives the

embedding procedure to achieve this maximum gain. A design example is discussed in Section 4

and concluding remarks are provided in Section 5.

2 Expression for Maximum Gain

In this section, we will derive the expression for the maximum achievable gain of a two port

network. The gain of a two port network G is given by (1) [1] and the unilateral gain U is given by

(2) [2],

G =

∣∣∣∣y21y12
∣∣∣∣ (Kf −

√
Kf

2 − 1) (1)

U =
|y21 − y12|2

4[<(y11)<(y22)−<(y12)<(y21)]
(2)

where Kf is the stability factor. Following the convention in [3], we define the complex mea-

sure of reciprocity A as

A =
y21
y12

(3)



We now derive the relationship between G, U and A as discussed in [3]. Even though the final

expression has been discussed in this paper, the proof for this hasn’t been derived in literature.

From (2),

U =
|y21 − y12|2

4<(y11)<(y22)− 2<(y12y21 + y12y21∗)
(4)

U =
|y21 − y12|2

2[2<(y11)<(y22)−<(y12y21)]− 2<(y12y21∗)
(5)

The stability factor Kf is given as [1]

Kf =
2<(y11)<(y22)−<(y12y21)

|y12y21|
(6)

Using (6) in (5), we get

U =
|y21 − y12|2

2|y12y21|Kf − 2<(y12y21∗)
(7)

U =
|y21 − y12|2

|y12y21|(Kf −
√
Kf

2 − 1) + |y12y21|(Kf +
√
Kf

2 − 1)− 2<(y12y21∗)
(8)

Using (1) in (8), we obtain

U =
|y21 − y12|2

|y12|2G+ |y21|2
G
− 2<(y12y21∗)

(9)

U =
G|y21 − y12|2

|y12|2G2 + |y21|2 − 2G<(y12y21∗)
(10)

U =
G|y21 − y12|2

|y21|2 + |y12|2G2 −G(y12y21∗)−G(y∗12y21)
(11)

U =
G|y21 − y12|2

|y21 − y12G|2
(12)



From the definition of A as in (3), we get

U =
|A− 1|2

|A−G|2
G (13)

which is the expression listed in [3]. We will now derive the maximum achievable gain from

this network. Equation (13) can be rewritten as

G

U
=
|A|2 +G2 −G(A+ A∗)

|A|2 + 1− (A+ A∗)
(14)

Let A = r exp (jθ). When the device is unconditionally stable, the maximum gain occurs at

the point where Kf = 1 [1]. Under this condition, from (1) and (3), G = r. Using this in (14), we

have

r

U
=
r2 + r2 − 2r2 cos(θ)

r2 + 1− 2r cos(θ)
(15)

r2 − 2r[cos(θ)− U cos(θ) + U ] + 1 = 0 (16)

r = f(θ)±
√
f(θ)2 − 1 (17)

where f(θ) = U− (U−1) cos(θ). As θ increases from 0 to π, the function f(θ) increases. The

solution with the negative square root sign starts from unity and decays to zero as f(θ) increases.

This would mean that |y21/y12| ≤ 1. However, we know that the device has gain higher than

0 dB at these frequencies and this condition isn’t true. Using the positive square root, the gain is

maximized when f(θ) is maximum and that occurs at θ = π. Then, f(θ) = 2U − 1. Using this in

(17), we obtain

GMAX = rθ=π = 2U − 1 + 2
√
U(U − 1) ≈ 4U (18)



Therefore,

y21
y12

= −GMAX (19)

This completes the second part of the proof for the result listed in [3]. Once must note that

the maximum gain occurs when Kf = 1 or when the device is at the edge of stability. Also, the

above optimization assumes that U is unchanged which is true under a lossless passive embedding.

Using (6) and Kf = 1,

2<(y11)<(y22)−<(y12y21) = |y12y21| (20)

2<(y11)<(y22) = GMAX [|y122| − <(y122)] (21)

2<(y11)<(y22) = 2GMAX [=(y12)]2 (22)

Hence, we can now rewrite the required conditions for maximum gain as follows

y21
y12

= −GMAX

<(y11)<(y22) = GMAX [=(y12)]2
(23)

where GMAX is as calculated in (18).

3 Design of Embedding Network

The two port network block diagram is shown in Fig. 1. The y-parameters of the network is given

as
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Figure 1: Two port network with passive embedding

Y =

y11 y12

y21 y22

 (24)

The embedding network y-parameters are given as

Ye = j


x1 b1 b2 b3

b1 x2 b4 b5

b2 b4 x3 b6

b3 b5 b6 x4

 (25)

This can be rewritten as

Ye = j

 A1 A3

A3
T A2

 (26)

Here A1, A2 and A3 are 2× 2 matrices. The current voltage relationship between the intrinsic

y-parameters is given as −i3
−i4

 = Y

v3
v4

 (27)

In a similar manner, the current voltage relationship between the embedded network y-parameters



is given as

i3
i4

 = jA3
T

v1
v2

+ jA2

v3
v4

 (28)

Using (27) in (28), we obtain

v3
v4

 = −(Y + jA2)
−1jA3

T

v1
v2

 (29)

The current voltage relationship between the embedded network y-parameters is given as

i1
i2

 = jA1

v1
v2

+ jA3

v3
v4

 (30)

Using (29) in (30), we get

i1
i2

 = [jA1 + A3(Y + jA2)
−1A3

T ]

v1
v2

 (31)

We denote the y-parameter relationship as Yf , where Yf is given as

Yf = jA1 + Ym (32)

where

Ym = A3YiA3
T (33)

and

Yi = (Y + jA2)
−1 (34)

Using (32) in (23), we obtain



<(y11f )<(y22f ) = GMAX [=(y12f )]2 (35)

y21f
y12f

= −GMAX (36)

We must note that A1 =

x1 b1

b1 x2

 and A3 =

b2 b3

b4 b5

.

Using (32), (35) can be written as

<(y11m)<(y22m) = GMAX [=(y12m) + b1]
2 (37)

and (36) becomes

y21m + jb1
y12m + jb1

= −GMAX (38)

Therefore, we calculate the value of b1 as

b1 = j
y21m + y12mGMAX

1 +GMAX

(39)

Since b1 is real,

<(y21m + y12mGMAX) = 0 (40)

Hence, using the value of b1, we can rewrite (37) as

<(y11m)<(y22m) = GMAX

[
=(y12m)−

=(y21m) + =(y12m)GMAX

1 +GMAX

]2
(41)

<(y11m)<(y22m) =
GMAX

[1 +GMAX ]
2 [=(y12m − y21m)]

2 (42)



By using (33) and the value for A3, Ym can be written as

Ym =

 b2
2y11i + b2b3(y12i + y21i) + b3

2y22i b2b4y11i + b2b5y12i + b3b4y21i + b3b5y22i

b2b4y11i + b2b5y21i + b3b4y12i + b3b5y22i b4
2y11i + b4b5(y12i + y21i) + b5

2y22i


(43)

Using (43) in (40) and (42), we obtain

<(y11i) +
b5
b4

<(y21i + y12iGMAX)

1 +GMAX

+
b3
b2

<(y12i + y21iGMAX)

1 +GMAX

+
b3b5
b2b4
<(y22i) = 0 (44)

<(y11i +
b3
b2
(y12i + y21i) +

b3
2

b2
2y22i)<(y11i +

b5
b4
(y12i + y21i) +

b5
2

b4
2y22i)

=
GMAX

[1 +GMAX ]
2

[
=[(b5

b4
− b3
b2
)(y12i − y21i)]

]2 (45)

We can now discuss the design procedure to achieve the required embedding network as fol-

lows:

1. Start with the given y-parameter Y.

2. Calculate Mason’s Unilateral Gain (U ) and calculate GMAX from (18).

3. We can add matrix A2 if required.

4. We can make b2 = b4 = 1 and solve b3 and b5 from (44) and (45).

5. Calculate Ym and solve for b1 from (39).

6. If the component values are not reasonable to implement, b2 and b4 can be scaled. It is the

ratio b3/b2 and b5/b4 that is required to satisfy (44) and (45) and not the absolute values of

b2, b3, b4 and b5.

7. x1, x2, x3 and x4 can be any value as long as they satisfy the requirements for a passive

lossless network.



Figure 2: Lossless passive embedding circuit

Figure 3: Simulation results: Gain and Stability factor (Kf )

4 Design example

We now present a design example at 60GHz. The simulated y-parameters for a transistor cell at

60GHz is given as

Y =

1.01× 10−3 + j1.31× 10−2 −2.47× 10−4 − j2.95× 10−3

3.76× 10−2 − j7.58× 10−3 5.36× 10−3 + j1.04× 10−2

 (46)

The unilateral gain is calculated to beU = 13.93 dB and the maximum gainGMAX = 19.86 dB.

Fig. 2 shows the circuit for the embedding network.



The simulated gain and stability factor are shown in Fig. 3. As expected the maximum gain is

19.8 dB and the stability factor is unity at 60GHz.

5 Conclusion

This report presented a theoretical derivation for the maximum achievable gain for a two port

network which is equal to 4U , where U is the unilateral gain of the network. The design procedure

for embedding a lossless passive network was also shown and the procedure was verified using

simulation results. It must be noted that the device is at the edge of being unconditionally stable

and achieves this peak gain in a small operating frequency range. If the embedding network is

lossy, then the unilateral gain is changed and the optimization is no longer valid. Since practical

networks are lossy in nature, this procedure must be iterated to obtain the optimal solution.
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