Bond: A Spy-based Testing and Mocking Library

Erik Krogen

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-116
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-116.html

May 24, 2016

Copyright © 2016, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

| would like to acknowledge Professor George Necula, whose ideas
created the initial incarnation of Bond and whose advising over the past two
years has been invaluable in guiding me. | would also like to thank a
number of the employees at Conviva, as well as the students of CS169 at
UC Berkeley in the Fall of 2015, for trying Bond and providing valuable
feedback. My thanks also go out to the Thomas and Stacey Siebel
Foundation for their fellowship during my graduate tenure which allowed
me to continue to stay focused on my academic work. Finally, | would like
to thank my parents, whose ambition, intelligence and support have
motivated me throughout my life to set high goals and to do everything in
my power to achieve them. Nothing | have become today would be
possible without you both.

Bond: A Spy-based Testing and Mocking Library

by

Erik Tao Krogen

A thesis submitted in partial satisfaction of the
requirements for the degree of
Master of Science
in
Electrical Engineering and Computer Sciences
in the
Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor George Necula, Chair
Professor Koushik Sen

Spring 2016

Bond: A Spy-based Testing and Mocking Library

Copyright 2016
by
Erik Tao Krogen

Abstract

Bond: A Spy-based Testing and Mocking Library
by
Erik Tao Krogen
Master of Science in Electrical Engineering and Computer Sciences
University of California, Berkeley

Professor George Necula, Chair

In today’s world of software projects that are constantly increasing in complexity and
number of contributors, proper testing is essential. Yet, developing tests is a tedious process
that is often undervalued and overlooked; most existing research into this problem has been
devoted to automated test generation, but manually written tests remain a crucial part of any
complete test suite. In this work we introduce spy-based testing, a novel style of unit testing
in which developers specify only the variables or objects they are interested in verifying,
rather than the specific values they expect. The testing framework aids the developer by
collecting values from live execution and verifying them through user interaction, then saving
these values to detect future regressions. We have developed Bond, an implementation of spy-
based testing in Python, Ruby, and Java, in an effort to provide an easier way for developers
to quickly write and maintain unit tests. In addition to the core facets of spy-based testing,
Bond contains an integrated mocking library, including record-replay mocking functionality
that allows a mock to be created by recording live interactions and replaying stored values
back at a later time. We present Bond and discuss its usage, and finally provide case studies
demonstrating the potential for Bond to save a significant amount of programming effort
when developing tests.

Contents
1 Introduction 1
2 Spy-Based Testing 2
2.1 OVerview o 3
2.2 Simple Usage Example 4
2.3 Inline Spying D
3 Bond Implementation 7
3.1 Spy Agents 7
3.2 APT 8
3.3 Usage Example 9
3.4 Implementation Details 11
4 Mocking 13
4.1 Inline Mocking 13
4.2 Spy Point Annotationso L Lo 14
4.3 Implementation Details 15
5 Record-Replay 17
5.1 Usage 17
5.2 Example. 18
5.3 Implementation Details 20
6 CaseStudies. 21
6.1 Spy-Based Testing 22
6.2 General Record-Replay 25
6.3 HTTP Record-Replay 25
7 Related Work 0 o 27
7.1 Regression Testing 27
7.2 Test Maintenance 28
7.3 Record-Replay Mocking 28
8 Future Work 29
9 Conclusions 30

Bibliography 31

ii

Acknowledgments

I would like to specifically acknowledge Professor George Necula, whose ideas created the
initial incarnation of spy-based testing and whose advising throughout the past two years
has been invaluable in guiding me towards this achievement. I would also like to thank a
number of the employees at Conviva, as well as the students of CS169 at UC Berkeley in
the Fall 2015 semester, for trying an initial implementation of Bond and providing valuable
feedback. My deepest thanks also go out to the Thomas and Stacey Siebel Foundation for
their generous fellowship during my graduate tenure which allowed me to continue to stay
focused on my academic work. Finally, I would like to thank my parents, whose incredible
drive, ambition, intelligence and support have motivated me throughout my life to set high
goals and to do everything in my power to achieve them. Nothing I have become today
would be possible without the two of you.

1 Introduction

Testing is an essential part of any software development cycle; especially as software systems
continue to grow in complexity and the teams writing them continue to grow in size, well-
maintained tests are crucial to the success of any project. However, testing can be highly
cumbersome and time-consuming; we refer here to the oft quoted figure that more than 50%
of all development efforts are devoted to writing tests [8] and to research from Microsoft
claiming that the code for unit tests is often larger than the code of the system under
test [13]. Writing tests can also lack some of the appeal of developing functionality, looked
down upon as uninteresting by many developers. This is clear in the reluctance of some
developers to write any tests at all; one study [3] has shown that a full 12% of software
developers write no tests whatsoever, a staggeringly large number implying that a great deal
of application logic currently goes untested.

The software engineering community has long been aware of these issues with testing, and
a great deal of research has been conducted on how to make testing software a more seamless
process. A majority of this research has been devoted to automatic test generation, but much
of this work focuses only on detecting fatal failures (crashes, deadlock, infinite loops, etc.)
within an application rather than asserting correctness (e.g. [2, 11, 7]). A test generation
tool generally cannot produce appropriate test oracles without knowledge of the expected
behavior of the program, typically supplied by the user via a model or specification of the
program [12, 14|. Creating such specifications can be difficult, so although it is commonplace
in some industries (e.g. security critical applications), in the general case automated tests
comprise only a small subset of the overall testing, meaning that the technique must still be
augmented by a great deal of manual testing |9, 10, 3|.

In addition to the effort needed to write tests initially, tests require maintenance as the
expected behavior of a software system changes over time. This effort can be very substantial;
Berner et al. have claimed that maintenance of test code, data, and tooling tends to have
a bigger impact on cost than the initial implementation of tests [1]. Systems exist to help
automate the process of updating tests as program behavior changes (e.g. [4]), but a study
by Daka & Fraser has found that in general, it is common for failing tests to be “fixed” via
deletion rather than an updating of the test’s logic and/or assertions [3]. This degrades the
ability of a test suite to grow over time and detect possible regressions from future changes in
behavior, one of the key features of unit testing. Additionally, as the strength of assertions in
a test increases, the cost of maintaining the test increases—a higher number of assertions will
require more values to be updated as the expected output changes, and assertions which are
more restrictive will be more likely to change as program behavior changes. This suggests a
fundamental tradeoff between the strength of assertions and the maintainability of the test,
a tension which has not been adequately addressed by existing testing systems.

For this reason it is imperative to make it as easy as possible for developers to both
write and maintain tests. The open source community has generated an enormous wealth of
testing libraries, many of them focused on unit testing and many of these in turn based off
of xUnit-style frameworks, but nearly all of them rely on the traditional method of manually
programmed test oracles, typically via an assertion-style mechanism. We present here a new
style of unit testing framework which we refer to as spy-based testing, and its implementation
in the Bond testing framework. Though many of its driving principles are drawn from

1

conventional unit testing, we replace traditional assertions with “spy” calls which can help
developers to rapidly write code to verify expected values, and to more easily maintain tests
as expected behavior evolves.

Spy-based testing aims to ease the process of initially writing unit tests, as well as to
reduce the tension between assertion strength and test maintainability. The key insight is
to separate the code used in the test from the data used in the test. Rather than specifying
the variable or object upon which an assertion is to be made as well as the expected value,
a developer simply states that he is interested in the value of a given object or variable,
drawing upon the insight that the variables which are being verified change less frequently
than their expected values. We allow the test framework to manage the expected value
rather than leaving it to live within the test code, collecting it during live execution and
storing it separately. This saves the developer from ever needing to explicitly specify the
value, and allows the framework to aid the developer in easily updating expected values
when they change. Since the expected value lives in a separate framework-managed area as
opposed to living alongside its corresponding variable in the testing code, it is also possible
to make assertions on intermediate values at arbitrarily deep locations within the call stack.

Bond is an implementation of this style of testing, combined with a mocking library de-
signed to operate hand-in-hand with spy-based testing. Of particular note is Bond’s record-
replay mocking functionality, which allows the collection of live values to be replayed back
as a mock during subsequent test execution. This essentially does for mocking what basic
spy-based testing does for assertions: it removes the test data from the test code and enables
it to be both easily generated from live values, and updated as expected behavior changes.
Bond currently exists as a working open source test library in the Python!, Ruby?, and
Java? programming languages; source code and documentation are available for download
at https://github.com/neculall/bond.

The rest of this paper is formatted as follows. Section 2 provides an overview of spy-
based testing in general and how it can be used to ease the burden placed on the developer
of tests. Section 3 describes Bond, our implementation of spy-based testing, and some of its
specific details. Sections 4 and 5 discuss how to perform mocking using Bond, including a
specific type of mocking functionality known as record-replay mocking which allows for the
capturing of live values to be used as mock values in subsequent test executions. Section 6
presents three case studies examining the usefulness of Bond in real-world software projects.
Finally, we examine related work in Section 7, present avenues for future work in Section 8§,
and discuss our conclusions in Section 9.

2 Spy-Based Testing

The primary goal of spy-based testing is to make unit tests as easy to write and maintain
as possible, focusing specifically on achieving this by separating testing data from testing
code in such a way that the data can be managed by a testing framework rather than by
the developer. In a traditional assertion-based unit test, the expected values are intertwined

"https://pypi.python.org/pypi/bond/
’https://rubygems.org/gems/bond-spy
3org.necula.bond in the Maven Central Repository (maven.org)

2

directly into the code which exercises the system under test. This means that the developer
must manually specify the expected value of a variable X each time it is involved as the
output of code under test. Additionally, when the system is changed in such a way that
the expected value of X changes, a code change will be necessary at every assertion which
involves X. By separating the data from the code, these updates can all be performed
outside of the code in a managed fashion by a testing framework.

Throughout this section code examples will be presented using the Ruby language and the
popular RSpec? testing framework. Note that RSpec uses an assertion syntax which looks
like “expect (actual_value) .to eq expected_value” as opposed to the more traditional
“assert_equals(expected_value, actual_value)” style syntax.

2.1 Overview

To achieve this, we replace traditional assertions with calls to spy. Each call to spy records
its arguments, which are key-value pairs of named values, as an “observation”. The sequence
of all observations in a test comprises the test data for that test. A sequence of observations
is saved on disk for each test; this is known as the sequence of reference observations. When
a test finishes executing, the current sequence of observations (that is, the observations from
the current test execution) is compared against the reference observations; if no differences
are found, the test succeeds. This implicitly creates an assertion against each value which
was passed into a call to spy, succeeding only if they are the same across subsequent test
runs. To allow us to discuss this more formally, let us define the syntax of spy to be a
function call containing key-value pairs (k1 => vy, ks => vo, ..., k, => v,,) in which keys are
strings and values can take on any type. An observation O is the set of key-value pairs
contained within one call to spy. During the execution of a test, any number of calls to spy
may be made, which are combined into a sequence S = (O1,0s,...,0,). At the time the test
is first executed, some ST = (O, O5¥", ..., 0%) is generated and potentially saved as
the reference observation sequence, setting ST/ := Se“r. Upon subsequent executions, Sc"
is compared against the most recent version of S7¢f; if Sv¢f == Sew the test succeeds.

If the values differ (S™¢f # Sevr), the framework can be configured to have a number
of different strategies to reconcile this differences, referred to as “reconciliation behaviors™
(a) ABORT: The test can be immediately failed; this is useful when running tests in an
automated fashion, e.g. in continuous integration testing; (b) ACCEPT: The current obser-
vations can be accepted as the new reference observations (Sm¢/ := Sv) allowing the test to
succeed and approving the current values as correct; this is dangerous and should be used
with caution, but can be useful if the developer is confident that the changes in test data are
expected; (¢) INTERACTIVE: User input can be requested to determine what to do; this is
the common scenario and allows the user to view the old and new values and decide which
of the two is expected, or to accept some subset of the changes as expected. When no ref-
erence observations are available, the situation is the same as if reference observations were
available but were blank; i.e. the same options listed above apply, and the current sequence
of observations will be compared against an empty sequence (S™/ = ()).

‘http://rspec.info/

2.2 Simple Usage Example

For example, a simple unit test checking the output of a function returning a scalar value
might look like:

Traditional Assertions ‘ Spy-Based
out_var = function_under_test () out_var = function_under_test ()
expect (out_var) .to eq 5 bond.spy(out_var: out_var)

Traditionally a developer explicitly specifies the expected return value; in spy-based
testing she simply specifies which variable she is interested in. In the situation above little
is gained; however let us consider a more complex situation in which the test involves two
different functions, one of which returns an object with numerous fields (using dot-notation
to represent object containment):

Traditional Assertions Spy-Based
out_object = func_under_testl ()
t = f d test2
v Lt e obgect + func under tesei 0
P -02J ’) d out_var = func_under_test2()

expeft(out_object.f1eld2).to eq 2 spy (complex object: out_object,

: t iable: t
expect (out_object.fieldn).to eq "n" out variable: out_var)

expect (out_var) .to eq "var"

In the case of spy-based testing, the entire object, as well as the secondary output variable,
becomes an observation. This entire observation will be compared against the returned value
in subsequent test executions, implicitly creating all of the manually-specified assertions seen
in traditional unit testing. When the expected return value of func_under_test1 changes,
the developer must manually update up to n assertions in the traditional case; in spy-based
testing, he will be presented with a simple choice (e.g. through a dialog window or command
line prompt) as to whether or not the set of changes were expected and can complete the
process in a single action. Note that in the traditional case it may also be possible to perform
the object equality assertion in a single line such as assert_equals(expected_object, v
< out_object), but this still requires the developer to explicitly specify all of the fields of
expected_object when it is created, still including expected values in the test code which
must be updated as the code evolves.

The objects which comprise the set of observations are serialized into a separate file
to be used for comparison in subsequent test executions; this reference observation file is
distributed alongside test code, e.g. through a version control system. For example, a sample
observation file serialized using JSON® for the test code above might look like:

Shttp://www.json.org/

{

"complex object": {
"fieldl": 1,
"field2": 2,
"fieldn": "n"

},

"out variable": "var"

}

]

Note that the entire observation is contained within a JSON array; multiple observations
appear as multiple sequential entries within the array.

2.3 Inline Spying

We have seen how spy can be used to replace traditional assertions, but calls to spy can be
placed within production code, and are configured in such a way that they have no effect
when not running inside of a test framework. This allows spy-based testing to enable easy
viewing of intermediate values and of the flow of execution in production code.

2.3.1 Intermediate Values

A call to spy placed within production code, when a test framework is active, will behave
identically to a call to spy within test code (recording its arguments into the list of observa-
tions). This enables the inspection of values deep within the call stack without any outside
effort or refactoring.

Consider the situation where a function is being tested which accepts some input object,
inserts an entry into a database based off of that object, and returns a status code:

def insert_into_database (object)

query = # processing logic here
return submit_database_query (query)
end

A developer wishes to check that the query used to insert the entry is correct, but this
is not returned to the caller of the function. We can use spy here to view this value:
def insert_into_database (object)

query = # processing logic here

bond.spy("insert into database", query: query)

return submit_database_query (query)
end

Notice that we have used an extra parameter at the start of spy, which is a name for
this observation. Naming observations, while acceptable in test code, is especially useful for
inline calls to spy, since it is much easier to see where the observation originates from when
it has an associated name.

Now, if we write a test as such:

object = "test string"
status_code = insert_into_database(object)
bond.spy(status_code: status_code)

The following JSON-serialized list of observations might be generated:

L
{
" __spy_point_name__": "insert into database",
"query": "INSERT INTO table VALUES(\"test string\");"
3,
{
"status code": 1
3
]

Thus, the test is able to verify that the query made to the database is correct, even
without explicit test code. In this situation, we could also have refactored the method
to have it return the query string and then have a separate method that calls out to the
database. In general, however, this inline spy technique can be useful to avoid passing
intermediate values up the call stack to be observed, especially if, for example, a method
under test were to make multiple sequential calls to insert_into_database. Note that, if
a developer does not wish to have calls to spy present in their production code, they could
achieve the same results by injecting them through standard techniques such as dependency
injection.

2.3.2 Execution Flow

Using the same mechanism as above, it can be useful to track the flow of execution through
a program to ensure that it is as expected. Consider the scenario where a program makes a
sequence of calls to an external web service, and that these calls must be made in a specific
order. We start by placing a call to spy within the function which makes HTTP requests
that observes, for example, the URL which is being requested:
def make_http_request(url, data)

bond.spy("http request", url: url)

make the request
end

When test code exercises a portion of production code which makes HT'TP requests, we
might have the following JSON-serialized list of observations:

{
" __spy_point_name__": "http request",
"url": "http://server.com/first_endpoint"
},
{
" __spy_point_name__": "http request",
"url": "http://server.com/second_endpoint"
3,
{
" __spy_point_name__": "http request",
"url": "http://server.com/third_endpoint"
}

By viewing the observation file, a developer can easily verify that requests are submitted
in the proper order with the proper query parameters, and that no extraneous requests are
made. The test will then verify this on each subsequent execution by ensuring the new list
of observations is the same as the approved reference.

3 Bond Implementation

The Bond testing library is an implementation of the principles of spy-based testing discussed
above, as well as a number of related features enabled through this style of testing. It is
available in the Python, Ruby, and Java programming languages; see Table 1 for details on
the number of lines of code used for each implementation. Only 2769 lines of code total were
used for all three implementations; this is indicative of the generally simple nature of Bond,
a property that we attempted to hold true to ensure that it would be easy to port Bond to
as many languages as possible to increase its availability.

3.1 Spy Agents

On top of the basic principles of spy-based testing, Bond also provides the concept of an
“agent”. An agent can be “deployed” (i.e., registered as a handler) to a specific spy point
name; whenever a call to spy is performed with this name, the agent is consulted to determine
appropriate actions to perform. An agent may perform some side effect (e.g. modify some
global test state when a spy point is called), throw an exception (e.g. to prevent some
dangerous code path from being called during test execution, or to mock an error), or return
some value (which can be used for mocking). Additionally, filters can be specified on an
agent so that it only applies to some subset of the calls to spy with a matching spy point
name; for example, a filter can be specified which restricts the agent to only apply to those
calls which have the key “foo” whose value contains the substring “bar”. If multiple agents
are deployed which match the name of a spy point and satisfy all filtering criteria, the most
recently deployed agent is used; this is referred to as the “active” agent.

Agents are useful primarily for inline calls to spy, especially when mocking functionality
is desired. This will be discussed in further detail in Section 4.

Lines of Code

Core Bond | Reconciliation | Spy Point Annotation | Total || Record-Replay
Python 340 437 70 847 N/A
Ruby 416 * 151 567* 136
Java 743 341 135 1219 N/A

Table 1: Non-whitespace, non-comment lines of code used in the implementation of each portion of
Bond in each language. Core Bond represents the core functionality of spy-based testing. Reconcili-
ation represents the functionality used for taking two observations, comparing them, and requesting
and processing user input if necessary, as described in Section 2.1. Spy Point Annotation represents
the functionality to be able to place a spy point directly on a function (see Section 4.2). Total rep-
resents the total lines of code, not including record-replay functionality. Record-Replay represents
the functionality for record-replay mocking, which is only available in Ruby (see Section 5).

* The reconciliation system written in Python can be run as an executable; Ruby utilizes this, so
there is no reconciliation system written in Ruby. The total figure presented here for Ruby does
not include a reconciliation system.

3.2 API

The core functionality of Bond is exposed through the spy function, as discussed in the
previous section. Bond’s other main entry points, shown here in the Ruby syntax:

e active?: Returns true if Bond is currently in testing mode (i.e., the code is currently
executing within a testing environment), otherwise false.

e deploy_agent: Used to deploy agents as discussed in Section 3.1.

e spy_point: Used to annotate a function in such a way that there is essentially an
automatic call to spy whenever the annotated function is called; this is explained in
further detail in Section 4.2.

The signatures for these functions are shown in full in Figure 1. The Python APT is
extremely similar, with only small differences to meet language convention (for example,
active instead of active?). The Java API has significantly larger differences due to its
statically typed nature; see below. Though Bond does export additional functions used, for
example, to denote the start of a test and determine settings such as the directory where
reference observation files should be saved, they are not relevant to this discussion; we direct
the interested reader to the full Bond APIS.

Ruby and Python both allow for easy specification of key-value pair arguments, making
the syntax for spy very simple. For Java, however, this is not possible. Instead, we use a
builder pattern [6] to assemble observations, for example:

SpyResult<String> result = Bond.obs("keyl", "valuel")y
— .obs("key2", someObject).spy("point name", String.class)

Calls to obs are chained together to build up an Observation object, which is then spied
on using the final call to spy. Calls to spy can optionally specify an expected return type
(String, in this case); the default is Object since this is the most general.

Shttp://neculall.github.io/bond/api.html

1. bond.active?

2. bond.spy(spy_point_name = nil, #**observation)
3. bond.deploy_agent (spy_point_name, **options)
4

. bond.spy_point(spy_point_name: nil, mock_only: false, V
— require_agent_result: false, spy_result: false)

Figure 1: The Ruby Bond API. The = and : in the parameter lists denote default values; the *x*
denotes that the function accepts a list of key-value pairs. Note that these calls do not require a
developer-supplied object instance; the references to bond refer to a system-wide singleton instance.
Further, note that this is not the full API, as discussed in Section 3.2.

Original Test Code Updated Test Code
describe BST do describe BST do
Automatically initializes Bond # Automatically initializes Bond
include_context :bond include_context :bond
it 'should insert correctly' do it 'should insert correctly' do
tree = BST.new tree = BST.new
tree.insert (8) tree.insert (8)
tree.insert (12) tree.insert (12)
tree.insert (3) tree.insert (3)
tree.insert (4) tree.insert (7)
tree.insert (6) tree.insert (6)
bond.spy(tree: tree) bond.spy(tree: tree)
end end
end end

Figure 2: An example of test code and the corresponding observation file for a binary search tree
test.

The same style of providing key-value pairs is used for specifying options to agents (as
described in Section 3.1) in Python and Ruby; in Java we again use a builder pattern:

Bond.deployAgent ("point name", ~
—new SpyAgent().withFilter(...).withResult(resultObject))

We first create a SpyAgent, then (optionally) specify various options via chained calls to
withOption. The resulting SpyAgent is then passed to deployAgent. See Section 3.4.3 for
more details and motivation behind the Java API.

3.3 Usage Example

We present here a full usage example of how Bond would be used to write, and later update,
a test for a binary search tree data structure. We again use Ruby with RSpec.

In Figure 2, we present sample testing code. The first time this code is run, the user
would be presented with a dialog box ensuring that the observations generated are correct;

9

[~ Bond Reconciliation - + x|
Differences in observations are shown for bst spec.BST should insert correctly:

[|

--- reference
+++ current
@a-0,0+1,19 @@
+[
+1{
"tree": {
"left": {
"right": {
"right": {
"data": 6
I3
"data": 4
L
"data": 3
L
"right": {
"data": 12
L
"data": 8

+ 4+ttt
— e

id
Save new set of observations with these differences for bst spec.BST should insert correctly?

kdiff3 observations | yes | no |

(a) Original observation reconciliation dialog.

Differences in observations are shown for bst spec.BST _should_insert _correctly:

|

--- reference
+-++ current

@@ -3,10 +3,10 @@

Save new set of observations with these differences for bst_spec.BST should_insert correctly?

kdiff3 | observations | yes | no |

(b) Observation reconciliation dialog after updating.

Figure 3: Reconciliation dialogs displayed to the user when writing a test for a binary search tree.

10

see Figure 3a. This assumes the user is currently in INTERACTIVE mode, which is suggested
during development. Since there were no previous observations stored as a reference, the
new observations are shown as a diff against an empty string, so every line is considered
as added (+). The name of the test is shown, and the user is given the choice whether or
not to save these observations as the new reference, view the full list of observations (rather
than the diff), or to start kdif£37, a popular graphical utility for comparing and choosing
between two sets of text. Let us assume that the user accepts these observations as the new
reference.

Later, some change occurs. In Figure 2 we show updated test code in which we insert a
7 instead of 4 to emulate a change in behavior for the purposes of demonstration; in a real
environment a change in behavior would normally come from within the production code
itself. Upon rerunning the test, the observation from the call to spy would no longer match
the reference observations, so the user would be shown the prompt in Figure 3b with all
of the same options as before, but now only the specific differences displayed. Note that
the beginning and end of the JSON serialization, which were shown in Figure 3a, are not
displayed here because they have not changed. Upon choosing the “yes” option, Bond would
automatically correct the reference observations so that in future executions the test would
succeed.

3.4 Implementation Details
3.4.1 Singleton Design

All versions of Bond are designed with a single object to contain the current state; in Ruby
and Python this is a singleton object, and in Java this is through the use of static members
of the Bond class. This enables the developer to easily access Bond from arbitrary locations
within a program, enabling the use of inline calls to spy. However, this has the unfortunate
consequence that only one test may be running within a process at any given time, as
multiple tests running concurrently would place their observations into the same sequence.
We have decided that this is an acceptable tradeoff, especially since it is still possible to
run multiple tests concurrently if they execute in separate processes (such that all of their
program state is fully isolated).

3.4.2 JSON Serialization & String Comparison

All versions of Bond JSON-serialize the objects passed as values in observations before com-
paring or saving them. Upon completion of a test, the full text of the current JSON-serialized
list of observations is compared against the full text of the JSON-serialized reference list of
observations, which is saved on disk from previous test executions. If any difference is found
between the two strings, a unified diff® showing lines which were added and removed in
comparison to the reference observations is displayed to the user (assuming that they have
not specified to automatically accept or reject changes as discussed in Section 2.1). De-
velopers can specify custom serialization logic for custom objects (to, for example, exclude

"http://kdiff3.sourceforge.net
8https://www.gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html

11

unnecessary fields) and specify serialization options such as the precision of floating point
values.

Converting all objects to a JSON string before saving or comparing simplifies the com-
parison process greatly as opposed to attempting to perform a diff between live objects,
which would eventually need to be serialized to be saved on disk in any case, and enables us
to leverage existing text diff tooling to perform the comparison. JSON is a well-known and
very easily human readable format, which is important when the serialized observations are
displayed to the user for them to decide whether or not the values are as expected. Another
serialization format fitting for this purpose is YAML?; we have chosen to use JSON because
it is considerably more popular than YAML, but there is no reason why YAML could not
be used as well.

3.4.3 Java Implementation Difficulties

Due to the statically typed nature of Java, a number of difficulties were encountered while
developing the Java version that did not arise in the dynamically typed languages, primarily
related to providing a clean API with as much type safety as possible.

As discussed above, in Java it is not possible to easily pass arbitrary key-value arguments
(without, for example, requiring the user to create and populate a Map data structure). We
considered multiple solutions, including a version lacking in any type safety in which the
method accepted a variable number of arguments of type Object which were meant to be
keys at even indices and the corresponding values at odd indices. Ultimately we decided to
use obs in a builder pattern, which provided a clean interface relatively low in verbosity and
with reasonable type safety.

In Ruby and Python it is not necessary to specify the return type of a function, so we
are free to return a few special constants for use by Bond (e.g. to indicate that no agent
result was provided) from spy, as well as arbitrary results from agents. Unfortunately this
is not the case in Java, so we instead create a SpyResult class which is aware of a few
special return types, and can otherwise contain an arbitrary return value through the use
of generics. The most generic form of spy returns simply an Object, but it is desirable to
be more certain of the specific return type, so we also provide versions of spy which specify
the expected return type. Bond will internally confirm that the return type of the result
provided by the active agent, if any, matches the expected return type; if it does not an
exception will be thrown. This is especially useful when mocking; see Section 4.

A similar issue arises when an agent attempts to throw checked exceptions. Though
unchecked (i.e. runtime) exceptions can be thrown without special handling, Java enforces
that a checked exception cannot be thrown inside of a method that does not declare it may
throw that exception (unless a try-catch block is used to explicitly handle the exception).
Thus, to provide a way for agents to throw checked exceptions, we also provide a form of spy
that declares it will throw an exception, spyWithException. Similar to the regular version
of spy, by default it declares that it throws a generic Exception, but an expected exception
type can be specified to narrow the scope of what may be thrown, and Bond will perform
type checking as with the regular version of spy.

http://yaml.org/

12

All of the different forms of spy require a great deal of method overloading, the standard
way in Java to provide methods with different parameter lists and default arguments. Un-
fortunately these methods must be duplicated on the Observation object that is returned
as a result of a call to obs and on the static Bond class for spy points with no key-value
pairs; luckily all of this happens transparently to the end user.

The statically compiled nature of Java also creates difficulty when providing mocking
functionality; this will be discussed further in Section 4.

4 Mocking

Though numerous mocking libraries exist for all three of the languages for which Bond is
implemented, we believe Bond’s style of spy-based testing places it in a unique position
to provide interesting features such as inline mocking (discussed below) and record-replay
mocking (discussed in Section 5).

4.1 Inline Mocking

As discussed in Section 3.1, Bond’s agents can be used to provide mocking functionality by
using a deployed agent to return values or throw exceptions from a call to spy. If no active
agent is present, or the active agent does not specify a return value, a special value (varying
based on language) is returned to indicate that no mocking is active. This can be used to
inject mock values at arbitrary locations within production code during testing, and to make
control flow decisions based on whether or not the code is currently being tested.

We present here an example of this type of mocking using the Ruby API and the RSpec
testing framework. Consider the scenario where a test calls some piece of code that uses
a randomly generated number; during testing it may be desirable for this number to be
constant to ensure deterministic behavior across test runs. One way to achieve this would
be to check if the code is currently under test by calling bond.active?:

def func_under_test (arg)
if bond.active?

random = 42
else

random = Random.new.rand (10000)
end
processing logtc

end

bond.active? will only return true during testing, thus at all other times the randomly
generated number will be used as expected. During testing, however, a deterministic result
will be returned.

Consider a second scenario in which a test exercises some piece of code that calls out
to an external web service, for example to retrieve the temperature. During testing, the
developer does not want to contact an external service; rather, she wishes to supply a mock
value. Figure 4 provides an example of how to achieve this.

The default return value from spy (in Ruby) is :agent_result_none; this will be returned
anytime the system is not under test or an agent has not been deployed for the given spy

13

Production Code Test Code

1 def temperature_processor it 'should process the temp' do 1
2 request_url = make_temp_url bond.deploy_agent ('spy_temp', 2
3 temp = bond.spy('spy_temp', ¥ result: 72) 3

< request_url: request_url) res = temperature_processor 4
4 if temp == :agent_result_none bond.spy(result: res) 5
5 if bond.active? end 6
6 raise RuntimeError
7 end
8 temp = get_temp(request_url)
9 end
10 # processing logic
11 end

Figure 4: An example of production and test code for simple inline mocking.

point. So, to perform mocking, we check for this value (line 4) and if it was returned, we
continue on to call the live service (line 8). Note the additional call to bond.active? (line
5); this bit of logic enforces that request_url will never be contacted during a test (perhaps
the developer must pay for each request and wants to ensure that she is never billed during
testing). If any other result is returned by an agent, as in the test code above (deployed in
lines 2-3), then it is used instead.

4.2 Spy Point Annotations

While the method of mocking presented above is useful, it can be rather cumbersome, as it
requires the developer to check the return value of spy, see if it is :agent_result_none, and
then take action appropriately. To ease this process, we also provide function annotations
(see point 4 of Figure 1 for an example in Ruby) which denote a function itself as a spy
point.

Annotating a function with a spy_point annotation essentially injects a call to spy before
any call to the function, using the full function name as the spy point name (which can be
optionally overridden using the spy_point_name parameter). An implicit call to spy can also
be injected after the function call containing the return value by specifying the spy_result
parameter to be true. This has some utility even beyond mocking; for example, a developer
might place a spy_point annotation on a function which is the entry point for database calls,
enabling her to view all database queries in the test observations and to verify that they are
as expected. However, the feature is primarily focused on mocking. If mocking is desired
without viewing the mock call as part of the observation list, for example when mocking a
random number generator that is called frequently, the mock_only parameter can be supplied
to prevent these calls from being considered as part of the observation list.

The return value of the implicit call to spy is used to determine the next action; if an
agent returned a value, that value is returned from the function call and the original function
is never entered. If, however, no return value is supplied, the original function is called as
normal (unless the require_agent_result parameter is specified and equal to true, in which

14

Production Code (Under Test) Production Code (Dependency)
1 def temperature_processor bond. spy_point (¥ 1
2 request_url = make_temp_url — spy_point_name: 'spy_temp',6 V
3 temp = get_temp(request_url) < require_agent_result: true)
4 # processing logic ... def get_temp(request_url) 2
5 end # unmodified code 3
end 4

Figure 5: An example of production and test code for simple inline mocking.

case an exception will be thrown). This enables conditional mocking at arbitrary depth
within the call stack, in a more convenient manner than inline spy points.

We revisit the example from Figure 4, but with new production code as specified in
Figure 5. temperature_processor becomes considerably simpler; it is no longer necessary for
it to be aware of any mocking that is occurring. Instead, we annotate get_temp, marking it
as a target for mocking by Bond. Notice that we have set require_agent_result to true; this
achieves the same behavior as lines 5-7 in Figure 4, ensuring that the live service is never
called during testing. Now, any call to get_temp from within the application will refuse to
be called during testing, and can easily be mocked by deploying an agent as in Figure 4.

This is very useful when dealing with potentially dangerous live services. In a normal
mocking scenario, it is up to the developer of a new test to realize that their test will call
some live service and create a mock for it. With spy points, the developer who wrote the
dangerous code can explicitly denote it as dangerous, ensuring that no careless developer
will ever allow it to be run during a test.

4.3 Implementation Details

Due to the somewhat tricky nature of intercepting and augmenting function calls, each
language required somewhat different implementation approaches. We present here only an
outline of the techniques employed and direct the interested user to the source code!®. The
relevant portions are the spy_point function in Python, the BondTargetable module in
Ruby, and the BondMockPolicy and SpyPoint classes in Java.

The basic idea is to create a “dummy” function which replaces the original function. This
dummy function makes the first call to spy and collects the return value, then either returns
that value or calls out to the original function if no result was found; essentially the dummy
function “wraps” around the original function with some extra processing logic before and
after; see Figure 6 for an overview of what this wrapper function looks like. Creating the
dummy function is easy in Ruby and Python, as parameters can easily be passed through
to the original function. Java is slightly more complex and requires reflection to pass on all
of the original parameters, but the process is still straightforward.

The difficult part of this process is in replacing the original function with the dummy
function. Python has an easy built-in way to do this using function decorators; the decorator
need simply be placed immediately above the function definition and the process is taken

https://github.com/neculadl/bond/
15

Developer-supplied code
class MyClass
extend BondTargetable # enable mocking for this class

bond.spy_point
def method_to_mock(argl); end
end

Dynamically generated dummy function
def method_to_mock_wrapped(argl_value)
ret = bond.spy("MyClass#method_to_mock", argl: argl_value)
if ret == :agent_result_none
if require_agent_result
raise "No result found" # required but not found; raise error
else
ret = method_to_mock(argl_value)
end
end
if spy_result
bond.spy("MyClass#method_to_mock.result", result: ret)
end
return ret
end

Figure 6: A sketch of the wrapper function that is created when mocking, shown here in Ruby.
This is not the actual full implementation, but gives a sense of the necessary logic. Note that this
is generated by Bond, not the test developer.

care of internally. Ruby is slightly more complex, as it does not have a built-in way to
achieve this functionality. We first include a class, BondTargetable, into whichever class
or module defines the method we wish to spy on. Then, we hook into method addition for
the class (through well-defined Ruby APIs). The call to bond.spy_point is actually only
a method call which sets internal state within the class; this state is then consumed when
the next method—the one immediately following the bond.spy_point call within the source
code—is added. Within the method addition hook, Ruby’s monkey patching functionality
allows us to replace the new method with our own dummy method.

Java is by far the most difficult language to implement spy points within, as it is not
a dynamically interpreted language and thus it is not natively possible to programatically
modify classes. A language extension to Java, AspectJ!!, enables such features through what
is referred to as “aspect-oriented programming”, but we did not wish to restrict users of Bond
to use such a system (which requires significant specialized functionality). Instead, we make
use of the popular PowerMock mocking library!?, which integrates into standard Java and
uses bytecode manipulation to modify classes only when in a testing environment—perfect for
our needs. We place an annotation on the method to be spied, which in Java does nothing
except to mark the method for other systems to be able to differentiate it, for example

Uhttp://www.eclipse.org/aspectj/
2https://github.com/jayway/powermock

16

through reflection. PowerMock operates by intercepting requests to the Java classloader,
so we instruct the PowerMock classloader to intercept any requests to retrieve classes for
which there are annotated methods. We then specify that as those classes are loaded, the
annotated methods should be replaced with our own dummy method. This approach is
somewhat fragile, and likely would fail in the context of some other complex frameworks
that make use of reflection; however, it has worked well so far in the authors’ experience.
Unfortunately the setup code required in each test class is somewhat cumbersome; we are
continuing to investigate ways to increase the robustness of our approach and the ease of
use.

5 Record-Replay

Bond offers a specialized form of mocking referred to as “record-replay” mocking. In record-
replay mocking, instead of directly specifying return values for mock calls, the developer
runs the system in RECORD mode and calls live code, saving the outputs that are generated.
Then, in REPLAY mode, the saved outputs are used as mock values. While this idea is not
novel, we believe we have made improvements over the state of the art because Bond’s spy
mechanism places it in a unique position to apply record-replay to arbitrary mocking; see
Section 7.3 for further discussions.

In general, record-replay mocking is useful because it reduces the need for developers to
directly specify mock results. If mocking is utilized heavily, the necessary code to set up
the mocks can often comprise the bulk of the code for a test; record-replay alleviates this
by automating the mock setup process and moving mock data out of the testing code. This
is especially useful for functions which have complicated input parameters or return values.
For example, when mocking HT'TP requests with a standard mocking library it is necessary
to place a large block of text (the HTTP response text) into the testing code itself, but this
is highly undesirable.

5.1 Usage

Record-replay functionality adds only one additional function to Bond’s public API (shown
here in Ruby):

bond.deploy_record_replay_agent (spy_point_name,/
— order_dependent: false, record_mode: false, **xfilters)

Similar to deploy_agent, this accepts the name of a spy point to which the agent should
apply, as well as optional filters (as described in Section 3.1) and a toggle to enable or
disable order dependence (discussed below). Switching between RECORD and REPLAY mode
can be done on a test-wide level, but also can be overridden on a per-agent basis using the
record_mode parameter. Note that deploy_record_replay_agent can only be applied to spy
points corresponding to function annotations.

When a record-replay spy agent is encountered during test execution, the behavior taken
depends on the mode of the test/agent and the reconciliation behavior (as discussed in
Section 2.1). The cases are as follows:

17

e RECORD mode: Record the values generated by the live code
e REPLAY mode with a saved value: Play back the saved value
e REPLAY mode with no saved value: Varies based on reconciliation behavior

— ACCEPT: Record values generated (emulate RECORD mode)
— ABORT: Throw an exception
— INTERACTIVE: Ask the user which of the two above options to perform

This allows the developer to never have to explicitly turn on RECORD mode, assuming
they are in the INTERACTIVE reconciliation mode (which should generally be true during test
development). The first time the test is run, by default the state will be REPLAY mode with
no saved value, so in INTERACTIVE mode the developer can specify to continue with recording
generated values. Subsequent executions will play back the saved value automatically, so
the developer need only enable RECORD mode if she needs to re-record the values.

When in RECORD mode, after the live code has been called and the values have been
recorded, they are displayed to the user for verification. At this point the user is free to
edit the mock response before it is saved, or to reject it as incorrect. The ability to edit
the response can be useful to, for example, simulate extraordinary conditions such as error
states.

To determine which saved value applies to which spy point call, the arguments to the
annotated function are saved along with the return value. On subsequent test executions,
the current arguments are compared against the arguments for all saved values. When
order_dependent is false, a saved value with matching arguments will be used multiple times
if a function is called multiple times with the same arguments. When order_dependent is
true, values will be saved alongside their call order, and will be played back in the same
order. This can be useful to, for example, simulate interacting with a stateful web service
in which multiple calls to the same endpoint will result in different return values.

5.2 Example

We consider a situation in which some application makes a call out to an external sensor to
check its temperature, and if it is above some threshold, sends an alert message. Code for
this application is shown in Figure 7a. We wish to mock out the HT'TP requests so that the
test will run entirely locally without any reliance on external services, so we mock out the
make_request method using record-replay mocking.

In a traditional mocking framework, we would have to explicitly specify exactly what
HTTP response we expect, which may include headers or large responses. However, by
using record-replay agents, we can simply allow the test to run once and contact a real
sensor, record the interaction, and save this for the future.

We first run the test code for the “should not send an alert” test as shown in Figure 7b
when no values have yet been recorded. We are in INTERACTIVE mode, so although we
have not explicitly specified record_mode = true, we will be shown the dialog in Figure 8a
asking if we want to continue recording; we accept. Then, a request is made, and we are

18

class HeatWatcher
extend BondTargetable

def send_alert_if_high_temp
temp = get_temperature
if temp > 100
send_alert ("Warning! High Temperature: #{temp} C")
end
end

Read the temperature from a sensor
def get_temperature
resp_code, temp_data =
make_request ('http://system.server.com/temperature')
raise 'Error while retrieving temperature!' unless resp_code == 200
match = /<temperature>([0-9.]+)<\/temperature>/.match(temp_data)
raise "Error while parsing temperature from: #{temp_datal}l" if match.nil?
match[1].to_f
end

Send an alert
def send_alert (message)

make_request ('http://backend.server.com/messages', {message: messagel})
end

bond.spy_point

HTTP request (GET, or POST +f the data is provided)

def make_request(url, data = nil)
full_url = "#{url}?#{URI.encode_www_form(data)}"
resp = Net::HTTP.get_response (URI(full_url))
[resp.code.to_i, resp.bodyl

end

end

(a) Sample code for a heat watching alert system.

describe HeatWatcher do
include_context :bond

let (:heat_watcher) { HeatWatcher.new 7}

it 'should sent an alert if temperature is high' do
bond.deploy_record_replay_agent ('HeatWatcher#make_request')
heat_watcher.send_alert_if_high_temp

end

it 'should not send an alert if temperature is low' do
bond.deploy_record_replay_agent ('HeatWatcher#make_request')
heat_watcher.send_alert_if_high_temp

end

end

(b) Test code using record-replay mocking with Bond

Figure 7: A demonstration of using record-replay mocking in Bond.

19

Bond Reconciliation

For test heat watcher spec.HeatWatcher should not send_an_alert if temperature_is low:
Attempting to make a request through HeatWatcher#make request for which no replay value is currently available. These are the arguments it was called with:

{:url=>"http://system.server.com/temperature"} J
7|

accept deny

Do you wish to allow this request to proceed?

(a) Checking whether the user wants to allow recording.

r Bl
Bond Reconciliation

For test heat_watcher spec.HeatWatcher should not send_an_alert if temperature is_low:
Below is the current result (JSON-serialized) returned by HeatWatcher#make request when called with arguments as follows:

"url": "http://system.server.com/temperature"

}

[
200,
"n<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<accuracy>0.1</accuracy>\n<unit>C</unit>\n<temperature>76.5</temperature>in"

1

Do you wish to save this result for future replay? You can also edit it before accepting.
Accept Reject

(b) Confirming the recorded response as correct.

Figure 8: Dialog windows displayed to the user when recording an interaction for the low temper-
ature test.

shown the value to accept or reject, as shown in Figure 8b. We accept, and the value is
saved to be replayed in future test runs.

Next, we run the “should send an alert” test. Again, we have no saved value, so after
confirming that we want to record we are shown the dialog in Figure 9a. Let us assume
that the sensor is still in a low temperature state, so the returned response still contains
a temperature which would not trigger an alert. This is where it is useful to be able to
edit the response; we simply replace 76.5 with 105 and accept the value, triggering an alert.
The alert is another HT'TP request, so we are shown the dialog in Figure 9b to confirm the
interaction, and we save this for replay as well.

Now, for future test executions, all HI'TP interactions will be mocked out by replaying
these saved values, and at no point did the user have to manually write or copy-paste any
HTTP responses.

5.3 Implementation Details

Currently, record-replay is only available in the Ruby implementation of Bond; porting to
Python and Java is planned for future work. The implementation of record-replay agents
relies heavily on the previously described mechanisms for saving observations. In RECORD
mode, we essentially save the spy point observation as normal, using spy_result = true to
save the return value as well. The only additional modifications are to request input from
the user, and to add a special value to the observation denoting it as a recorded value. At
the start of a test, all of these special values are loaded from the observation file and stored
to be queried whenever a REPLAY mode spy point is encountered.

20

Bond Reconciliation

For test heat watcher spec.HeatWatcher should sent an alert if temperature is_high:
Below is the current result (JSON-serialized) returned by HeatWatcher#make request when called with arguments as follows:

"url": "http://system.server.com/temperature”

}

[il
200,
"\n<?xml version=\"1.0\" e1'1coding=\"UTF-8\"?>\1‘1<accumcy>O,ldaccumcy>\n-cunit>C-cfunit>\n<tempemture:-llDS-c!tempemmre>\n"
]

A

Accept Reject

(a) Confirming that the temperature response is correct after editing it to contain a temperature
value which will trigger an alert.

Do you wish to save this result for future replay? You can also edit it before accepting.

Bond Reconciliation

For test heat watcher spec.HeatWatcher should sent an alert if temperature is high:
Below is the current result (JSON-serialized) returned by HeatWatcher#make request when called with arguments as follows:

{
"message": "Waming! High Temperature: 105.0 C",
"url": "http://backend.server.com/messages"

}

200,

Do you wish to save this result for future replay? You can also edit it before accepting.

Accept ‘ Reject ‘

(b) Confirming the message response as correct.

Figure 9: Dialog windows displayed to the user when recording an interaction for the high tem-
perature test.

This has the benefit of making the implementation quite simple, and also of placing these
mock calls into the observation file so that they can be viewed as part of the developer’s test
verification in the same manner as any other observation.

6 Case Studies

We now present three small case studies into various aspects of Bond, all within the Ruby
language. First, we examine spy-based testing in general by applying it to the tests for
the Ruby library for interacting with the Twitter API'3. Next, we examine record-replay
functionality in a general context by applying it to mocking within the Flapjack monitoring
and notification processing system!4. Finally, we examine record-replay functionality in an

https://github.com/sferik/twitter
Yhttp://flapjack.io/

21

HTTP context by applying it to Flapjack::Diner, a library for consuming the Flapjack API!.
Code for all of these case studies is available at https://github.com/xkrogen/{twitter,
flapjack,flapjack-diner}/tree/bond_case_study, with the last commit on the branch
demonstrating the changes applied as part of the case study.

6.1 Spy-Based Testing

The Ruby library for interacting with the Twitter API is a very active project, with over
150 contributors, more than 2,500 commits on GitHub, and nearly 3 million downloads from
RubyGems!6. We applied spy-based testing to all of the “streaming” tests, located within the
spec/twitter/streaming directory. We converted 24 test cases within 6 test files, although
due to some consolidation between test cases, after conversion only 22 test cases remained
(though no validations were lost; three of the original test cases were simply more natural
to write as a single test case using Bond). We added a total of 45 lines of code to various
objects involved in these tests to implement to_json methods for those objects to allow their
values to be easily serialized during calls to spy; note that these additions would continue
to be useful throughout any tests which involve the use of these objects, not only the tests
studied here. In total 71 lines of assertion code were removed, and not including 2 lines of
setup code per file, only 24 lines of Bond code were added back. Using only approximately
% of the number of lines of code is indicative of lower development effort, as well as less code
to maintain as expected behavior changes, without losing strength of assertion. In fact, as
discussed below, the strength of assertions was increased despite this decrease in the amount
of test code.

Figure 10 shows an example of how much tedious testing code can be saved by using
spy-based testing. Rather than explicitly specifying the type and contents of each individual
element of the returned array, we can simply observe the array as a whole; the JSON
serialization process will automatically inspect each element and display its contents. We
omit many values from the observation file here for brevity, but the type of each object in
the array and all of the contents which are being asserted about, so no verification was lost
as a result, and in fact many new fields are also being asserted on. It is worth pointing
out again that this file is maintained by Bond based on occasional user interaction; it is not
manually created by the developer.

Figure 11 shows a situation in which the amount of code required in the test does not
change significantly, but the strength of the verification is greatly increased. The original
code in Figure 11a only ensures that the tweet which returned has the correct id. What if
the process somehow disturbed the tweet itself, or returned a new tweet object with only
an id field? The test would not catch such behavior. Using Bond, much more information
is captured about the returned object (see Figure 11c), at no extra effort to the developer.
The developer is able to see that the tweet has all of the expected fields without needing to
explicitly state them all in test code, and is able to save these to ensure that a regression
never occurs in the future.

Yhttps://github.com/flapjack/flapjack-diner
6 RubyGems is the standard “gem” distribution system for Ruby, where a “gem” is a package that can be
used in Ruby programs

22

describe '#user' do

it 'returns an arary of Tweets'
initial setup code
expect (objects.size) .to eq(6)
expect (objects [0]) .to be_a Twitter::Streaming::FriendList
expect (objects [0]) .to eq([488_736_931, 311_444_2491])
expect (objects[1]) .to be_a Twitter::Tweet
expect (objects [1].text).to eq("The problem with your code is that it's
— doing exactly what you told it to do.")

do

expect (objects [2]) .to be_a
expect (objects [2] . text) .to
expect (objects [3]) .to be_a
expect (objects [3].name) . to
expect (objects [4]) .to be_a

Twitter::DirectMessage

eq('hello bot')
Twitter::Streaming::Event
eq(:follow)
Twitter::Streaming::DeletedTweet

expect (objects [4].1id) .to eq(272_.691_609_211_117_568)
expect (objects [5]) .to be_a Twitter::Streaming::StallWarning
expect (objects [6].code) .to eq('FALLING_BEHIND')
end
end

(a) Original test code.

describe '#user' do
it 'returns an arary of Tweets'
initial setup code
bond.spy(objects: objects)
end
end

do

(b) Bond testing code.

[
{
"objects": [
[488736931, 311444249 1],
{"_type":"Tweet","id":...,"text":"...","uri":"..." ,"user":{" _type":"User","id" :7505382,
—"uyri":"...","screen_name":"sferik","name":"Erik Michaels-0Ober"1}},
{"_type":"DirectMessage","id":...,"text":"hello bot","recipient":{"_type":"User",/
—"id":...,"uri":"..." ,"screen_name":"onediarybot","name":"One Diary Bot"},"sender":/
—>{"_type":"User","id":...,"uri":"..." ,"screen_name":"adambird","name":"Adam Bird"}},
{"_type":"Event","name":"follow", "source":{"_type":"User","id":...,"uri":"...","/
— screen_name":"adambird","name":"Adam Bird"},"target":{"_type":"User","id":...,/
—"uri":"...","screen_name":"onediarybot","name":"One Diary Bot"}},
{"_type":"DeletedTweet","id":...,"user_id":...},
{"_type":"StallWarning","code":"FALLING_BEHIND","message":"...","percent_full":60}
1
}
]

(c) Observation file. Many fields have been omitted and replaced with ... for the sake of brevity.

Figure 10: Sample of testing code within client_spec.rb before and after converting to Bond
demonstrating that some assertions can be much more compactly expressed.

23

it 'should have the tweet as the target object' do

expect (subject.target_object) .to be_a(Twitter::Tweet)

expect (subject.target_object.id) .to eq(394_454_214_132_256_768)
end

(a) Original test code.

it 'should have the tweet as the target object' do
bond.spy(target_object: subject.target_object)
end

(b) Bond testing code.

"target_object": {
Il_typell : IlTweet n s
"id" :394454214132256768,
"text":"Q@darrenliddell my programmers thought that they had that /
— one covered. I have admonished them.",
"uri":"https://twitter.com/onediarybot/status/ 394454214132256768",
"user":{
"_type":"User",
"id" :1292911088,
"uri":"https://twitter.com/onediarybot",
"screen_name":"onediarybot",
"name":"One Diary Bot"

(c) Bond observation file

Figure 11: Sample of testing code within event_spec.rb before and after converting to Bond
demonstrating that some assertions can be much more powerful with a similar amount of effort.

24

These two examples are particularly notable for exemplifying the qualities discussed, but
the same benefits were seen in smaller amounts all throughout the conversion process. We
believe that this validates spy-based testing as a testing methodology which is very helpful
in reducing the amount of testing code written / development effort expended, as well as
increasing the strength of validations.

6.2 General Record-Replay

Flapjack, though not as prolific as the Ruby Twitter library, is still an active project with over
130,000 downloads from RubyGems. For this study, we used Bond’s record-replay mocking
functionality in a generic manner to mock out objects of type Flapjack: :Data::Alert (a
frequently used class which represents an object to be sent as a notification) in the “gateway”
tests residing within spec/lib/flapjack/gateways. To perform this study required adding
11 lines of code to the Flapjack: :Data: :Alert object to enable spy points on its methods.
Across 8 test files and 18 test cases, 256 lines of code to set up mock Flapjack: :Data: :Alert
objects were removed, and only 117 lines of code were added back to deploy record-replay
agents and 1-2 regular agents per test to return results that couldn’t be returned via record-
replay (both calls returned other mock objects produced in the test). This is a reduction by
approximately % in terms of lines of code needed to be produced by the developer. However,
we note that there is some additional effort required to place the Flapjack: :Data: :Alert
object into the correct state to be recorded.

Figure 12 shows the result of converting RSpec-style mocking of the
Flapjack::Data::Alert object into a record-replay style using Bond. We see that
the amount of setup code has been reduced, though unfortunately we still need to indi-
vidually specify each method which we would like to record. This is not a fundamental
limitation to record-replay mocking and in the future we would like to implement the ability
to mark an entire object as record-replay, tracking and recording all method calls to the
object, in which case the Bond mocking code would become even shorter. One other nice
feature of this style of testing is that the setup code is generic beyond specifying which
methods are of interest; this means that all of the Bond record-replay code could easily be
placed in a shared setup block while still allowing the returned values to vary based on the
individual test, something not possible with traditional mocking.

6.3 HTTP Record-Replay

Flapjack::Diner, a subproject of Flapjack, is a wrapper around the API for interacting with
the Flapjack notification and monitoring service. As such, it has numerous HTTP interac-
tions (with Flapjack’s external API), so we use this project as a subject for a case study
of using Bond’s record-replay functionality for HT'TP requests. As discussed in Section 5,
record-replay type functionality often shines when used in HT'TP request contexts due to the
frequently large size of parameter lists and of results for HT'TP requests. Flapjack::Diner
currently makes use of the Pact testing library, discussed further in Section 7.3, to mock
out its HT'TP requests. In this case study we convert the contacts_spec test, located un-
der spec/resources, which tests interactions with a specific “contact” Flapjack resource.
Though Pact is powerful, it has very verbose setup code; in this case study we will demon-

25

expect (alert).to receive(:address).and_return('pdservicekey')
expect (alert).to receive (:check).twice.and_return(check)

expect (alert).to receive(:state).and_return('critical')

expect (alert).to receive(:state_title_case).and_return('Critical')
expect (alert).to receive (:summary).twice.and_return('')

expect (alert).to receive(:type).twice.and_return('problem')

expect (alert).to receive(:type_sentence_case).and_return('Problem')

fpn.send (:handle_alert, alert)

(a) Original RSpec mock code.

bond.deploy_agent ('Flapjack::Data::Alert#check', result: check)
meths_to_record = %w'method_missing state state_title_case summary /
—~ type type_sentence_case'
meths_to_record.each do |methl|

bond.deploy_record_replay_agent ("Flapjack::Data::Alert##{meth}")
end

fpn.send (:handle_alert, Flapjack::Data::Alert.new)

(b) Bond record-replay mocking code. The %w'..."' notation denotes an array of space-separated
strings, each of which corresponds to a method to which record-replay mocking will be applied. The
#{...} syntax is used to interpolate a variable into a string.

Figure 12: Sample of testing code within pager_duty_spec.rb before and after converting to Bond
record-replay mocking, demonstrating that mocking code has the potential to be much shorter when
using record-replay.

strate how concisely Bond’s record-replay functionality can be used to mock out HTTP
interactions. A total of 201 lines of Pact code were removed, and only 37 lines of Bond code
needed to be added back to replace Pact. A total of 421 lines of observation files representing
these interactions were produced, roughly equivalent to the 201 lines of Pact code due to the
more verbose nature of JSON-serialization. Additionally, 12 lines of code had to be modified
and 33 additional lines of code added to the base functions used to send HTTP requests
to enable Bond to hook into this process; these changes would be applicable to any HTTP
record-replay mocking throughout the entire test suite.

Figure 13 shows an example of Pact mocking code as compared to Bond’s record-replay
mocking code. Clearly, a great deal of coding effort is saved by using record-replay mocking,
allowing the developer to simply observe the interaction and verify that it is correct as
opposed to explicitly specifying every portion of the interaction. However, Pact also has
the advantage that it verifies not only the client side of the interaction (Flapjack::Diner),
but also the server side (Flapjack) (see Section 7.3 for more detail). By using Bond this
two-sided verification capability is lost; however, again we do not see this as a fundamental
limitation. In situations such as this, currently record-replay mocking could be employed
simultaneously on both sides of the interaction; however, this would result in two distinct

26

it "has some data" do

contact_data = {:id => 'abc',
:first_name => 'Jim',
:last_name => 'Smith',
:email => 'jims@example.com',
:timezone => 'UTC',
:tags => ['admin', 'night_shift']}

flapjack.given("a contact with id 'abc' exists").
upon_receiving("a GET request for all contacts").
with (:method => :get, :path => '/contacts').
will_respond_with (
:status => 200,

:headers => {'Content-Type' => 'application/vnd.api+json;

— charset=utf-8'},
:body => {:contacts => [contact_datal})

result = Flapjack::Diner.contacts

expect (result) .not_to be_nil

expect (result) .to eq([contact_datal)
end

e

(a) Original Pact mock code.

it "has some data" do
bond.deploy_record_replay_agent ('GET_REQ')
bond.spy(result: Flapjack::Diner.contacts)
end

(b) Bond record-replay mocking code.

Figure 13: Sample of testing code within contacts_spec.rb before and after converting to Bond

record-replay mocking.

observation files which represent the same interaction. It may be interesting to pursue
as future work the possibility of understanding this type of interaction and saving it as a
single unified observation file which can be produced through recording rather than manual

specification as in Pact.

Regardless of this behavior difference between Pact and Bond, it is clear to see that use
of Bond’s record-replay functionality for HT'TP mocking can be very concise and powerful.

7 Related Work

7.1 Regression Testing

Orstra is a tool that automatically performs regression testing on Java programs [15]. It
exercises the system using already existing automatically generated tests, which typically do

27

not have any test oracles, but force the execution of numerous distinct code paths. During
execution, Orstra collects the state of objects used by the test and saves these. Then, after a
code change, Orstra repeats the same process and checks where these states differ, warning
the user of possible regressions.

Diffy, a tool developed and used at Twitter, also performs automatic regression testing,
though in a very different manner [5]. It is tailored specifically to web servers which produce
a response to inbound requests. Diffy starts two copies of known-good code, and as well
as one instance of the new code which is being checked for regressions. Diffy executes the
same series of requests against all three servers, and checks the two copies of known-good
code against each other to deduce where non-determinism is to be expected in the responses.
Then, the responses produced by the known-good code are compared against those produced
by the new code, and differences modulo the expected non-determinism are reported to the
user as possible regressions.

Both of these systems compare an old version of known-good code against the new version
which is to be regression tested, though they approach the problem in very different ways.
These are both similar to Bond’s approach to testing: using known-good results to verify
subsequently generated outputs. However, Bond differs in that the known-good results are
verified by the user rather than trusted from a previous version, enabling them to be used
for initial testing as well as regression testing.

7.2 Test Maintenance

ReAssert is a tool that attempts to aid the user in automatically updating Java tests as
expected program behavior changes [4]. ReAssert analyzes standard Java tests written in
JUnit!'” and examines assertions which are causing tests to fail after a change is made to
the system’s code. It employs a variety of strategies to attempt to fix the failing assertions,
including changing the expected values. The user is then prompted to determine whether
or not the changes are correct; if they are, ReAssert will automatically apply them.

This is very similar to how Bond handles changes in tests; newly generated outputs are
compared against old, trusted outputs and the user is prompted to determine whether or
not the changes are expected, updating the expected values as necessary. Bond takes a
more holistic approach to this problem by moving the potentially changing test outputs into
a separate file and managing them independently of the test code. This provides a much
more simplistic way to update the expected output as behavior changes. However, ReAssert
applies to traditional assertion-style unit tests, which is desirable as it applies to an enormous
number of existing tests.

7.3 Record-Replay Mocking

A number of systems exist for providing record-replay functionality, mostly focused on HT'TP
traffic. Most notable among these are VCR!® for Ruby and Betamax!? for Java (based off
of VCR), which do an excellent job of recording outbound requests and inbound responses

http://junit.org/
Bhttps://github.com/ver/ver
Yhttps://github.com/betamaxteam/betamax

28

and playing these back at a later time. Similarly to Bond, these values are saved in a
separate file to keep test code and data separate; these systems are very useful when the
only record-replay functionality necessary is for HT'TP traffic.

Pact?® provides functionality similar to HTTP record-replay, though not identical. The
developer must specify the expected requests and responses, but Pact will then verify the
expected behavior on both sides of the interface. It is used for testing communication within
a system rather than to external systems, and has the nice property that by specifying the
communication a single time, both participants in the interaction can be tested. However, it
requires rather verbose setup code within tests, and you must manually specify the expected
interactions as opposed to recording them.

Python’s aspectlib?! does provide full record-replay functionality over arbitrary functions;
however, it requires the developer to copy the recorded sequence of expected value-result
pairs and place them into the test code. This step places extra burden on the developer and
colocates the test data with the test code, which Bond strives to avoid.

8 Future Work

While we are pleased with the functionality that Bond is able to provide in its current state,
we see a number of ways to continue to expand the framework. As discussed previously,
we plan to implement record-replay functionality in Python and Java; though Python will
be a straightforward implementation similar to Ruby, Java will likely be significantly more
complex due to issues with the type system, similar to what is discussed in Sections 3.4.3
and 4.3. Additionally, the complexities and fragility of spy point mocking in Java as discussed
in Section 4.3 is undesirable and we are continuing to investigate ways to improve this,
perhaps through the creation of a custom version of PowerMock or by reimplementing some
of its functionality within Bond.

We would also like to continue to implement Bond in more programming languages; due
to its relative simplicity, it is not an unrealistic task to be able to reimplement it on top
of many languages. One language we are particularly interested in is Scala; it is intriguing
because it is statically typed like Java, but has a type system which is significantly more
advanced and is amenable to complex typing situations not possible in Java, which can
possibly simplify the Bond API.

One more complicated area we are interested in exploring is the notion of observation
diff consolidation. When a component which is depended on by many areas of a system
is changed, it is likely that many tests will need to be updated in a very similar manner.
Though Bond already makes this easier than in a traditional unit testing framework by
prompting the user for changes rather than requiring the user to manually specify them, we
see an opportunity for Bond to understand that all of these test changes originate from the
same root cause, and prompt the user to update all relevant tests simultaneously.

2Onttps://github.com/realestate-com-au/pact
2Inttps://github. com/ionelmc/python-aspectlib

29

9 Conclusions

We have presented spy-based testing, a new testing methodology which aims to make it easier
for developers to write unit tests. Spy-based testing eases the pains of initially writing unit
tests by allowing developers to use calls to spy to replace traditional assertions, which can
easily view entire objects with a single call and does not require the developer to explicitly
hard-code expected value(s). Spy-based testing is particularly useful as a project evolves
over time, since expected test behavior will change, and some of these changes can become
streamlined because the test data lives separately from the test code, enabling expected
results to be updated with low developer effort.

We have also presented Bond, our implementation of spy-based testing in the Ruby,
Python, and Java languages. We demonstrated how Bond can be used both in testing
code and in production code to not only replace assertions, but also to provide an easy
way to verify that the overall flow of execution is as expected, and to verify intermediate
values. We demonstrated how Bond’s spy agents can be used for mocking, and how spy
point annotations can be employed to utilize this functionality in a concise and intuitive
way which can also provide protection against calling dangerous functions during testing.
We presented record-replay mocking, a feature of Bond which, although not entirely novel
in its concept, can be applied more generally than most existing record-replay libraries. We
argued that Bond’s spy-based nature makes it especially suitable for employing record-replay
mocking, particularly since it separates mock data from test code in a similar manner to
the way spy-based testing separates test data from test code. Finally, we presented multiple
small case studies to demonstrate the usefulness of spy-based testing in general and of Bond’s
specific features, and how these can help to enable developers to write tests with less code
and higher productivity.

30

Bibliography

1]

2]

3]

4]

[5]
(6]
7]

18]
19]

Stefan Berner, Roland Weber, and Rudolf K. Keller. “Observations and Lessons
Learned from Automated Testing”. In: Proceedings of the 27th International Con-
ference on Software Engineering. 1CSE ’05. St. Louis, MO, USA: ACM, 2005,
pp. 571-579. 1SBN: 1-58113-963-2. DOI: 10.1145/1062455.1062556. URL: http:
//doi.acm.org/10.1145/1062455.1062556.

Christoph Csallner and Yannis Smaragdakis. “JCrasher: An Automatic Robustness
Tester for Java”. In: Softw. Pract. Ezper. 34.11 (Sept. 2004), pp. 1025-1050. ISSN:
0038-0644. DOI: 10.1002/spe.602. URL: http://dx.doi.org/10.1002/spe.602.

Ermira Daka and Gordon Fraser. “A Survey on Unit Testing Practices and Problems”.
In: Proceedings of the 2014 IEEE 25th International Symposium on Software Reliability
Engineering. 1ISSRE ’'14. Washington, DC, USA: IEEE Computer Society, 2014,
pp- 201-211. 1SBN: 978-1-4799-6033-0. DOI: 10.1109/ISSRE.2014.11. URL: http:
//dx.doi.org/10.1109/ISSRE.2014.11.

Brett Daniel et al. “ReAssert: Suggesting Repairs for Broken Unit Tests”. In:
Proceedings of the 2009 IEEE/ACM International Conference on Automated Soft-
ware Engineering. ASE '09. Washington, DC, USA: IEEE Computer Society,
2009, pp. 433-444. 1SBN: 978-0-7695-3891-4. DOI: 10.1109/ASE.2009.17. URL:
http://dx.doi.org/10.1109/ASE.2009.17.

Diffy: Testing services without writing tests. https://blog.twitter.com/2015/
diffy-testing-services-without-writing-tests. Accessed: 2016-04-08.

Debasish Ghosh. DSLs in Action. 1st. Greenwich, CT, USA: Manning Publications
Co., 2010. 1SBN: 9781935182450.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: Directed Automated
Random Testing”. In: Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI ’05. Chicago, IL, USA: ACM,
2005, pp. 213-223. 1SBN: 1-59593-056-6. DOI: 10.1145/1065010.1065036. URL:
http://doi.acm.org/10.1145/1065010.1065036.

Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley &
Sons, 2004. 1SBN: 0471469122.

R. Ramler, D. Winkler, and M. Schmidt. “Random Test Case Generation and Manual
Unit Testing: Substitute or Complement in Retrofitting Tests for Legacy Code?” In:
Software Engineering and Advanced Applications (SEAA), 2012 38th EUROMICRO
Conference on. 2012, pp. 286-293. DOI: 10.1109/SEAA.2012.42.

31

[10]

[11]

[12]

[13]

[14]

[15]

R. Ramler, K. Wolfmaier, and T. Kopetzky. “A Replicated Study on Random Test
Case Generation and Manual Unit Testing: How Many Bugs Do Professional Develop-
ers Find?” In: Computer Software and Applications Conference (COMPSAC), 2013
[EEE 37th Annual. 2013, pp. 484-491. DOI: 10.1109/COMPSAC.2013.82.

Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A Concolic Unit Testing
Engine for C”. in: Proceedings of the 10th FEuropean Software Engineering Con-
ference Held Jointly with 13th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering. ESEC/FSE-13. Lisbon, Portugal: ACM, 2005,
pp. 263-272. 1SBN: 1-59593-014-0. DOI: 10.1145/1081706.1081750. URL: http:
//doi.acm.org/10.1145/1081706.1081750.

Haruto Tanno et al. “TesMa and CATG: Automated Test Generation Tools for Models
of Enterprise Applications”. In: Proceedings of the 37th International Conference on
Software Engineering - Volume 2. 1ICSE '15. Florence, Italy: IEEE Press, 2015,
pp. 717-720. URL: http://dl.acm.org/citation.cfm?id=2819009.2819147.

Nikolai Tillmann and Wolfram Schulte. “Unit Tests Reloaded: Parameterized Unit
Testing with Symbolic Execution”. In: IEEE Software 23.4 (2006), pp. 38-47. URL:
http://research.microsoft.com/apps/pubs/default.aspx?id=77414.

Chunhui Wang et al. “Automatic Generation of System Test Cases from Use Case
Specifications”. In: Proceedings of the 2015 International Symposium on Software
Testing and Analysis. ISSTA 2015. Baltimore, MD, USA: ACM, 2015, pp. 385-396.
ISBN: 978-1-4503-3620-8. DOI: 10.1145/2771783.2771812. URL: http://doi.acm.
org/10.1145/2771783.2771812.

Tao Xie. “Augmenting Automatically Generated Unit-test Suites with Regression
Oracle Checking”. In: Proceedings of the 20th European Conference on Object-Oriented
Programming. ECOOP’06. Nantes, France: Springer-Verlag, 2006, pp. 380—-403. ISBN:
3-540-35726-2, 978-3-540-35726-1. DOI: 10.1007/11785477_23. URL: http://dx.
doi.org/10.1007/11785477_23.

32

