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Problem Statement 
 The current trend in the computing industry is to offer more performance by 

leveraging more processing cores. Because we have run into some physical limits on how 

fast we can make a single processor run, the industry is now finding ways to utilize more 

cores running in parallel to increase computing speeds. Looking beyond the four and 

eight core systems we see in commercially available computers today, the natural 

progression is to scale this up to hundreds or thousands of processing units (Clark, 2011). 

All of those processing units working together cohesively at this scale requires a great 

deal of communication. Furthermore, these processors need to talk not only to each other, 

but also to any number of other resources like external memories or graphics processors. 

Being able to move bits around the chip efficiently and quickly therefore becomes one of 

the limiting factors in the performance of such a system. 

To enable this communication, most of today’s multi-core systems use 

interconnection networks. While there are many different ways to design these networks, 

network latency, the time it takes to communicate between network endpoints, becomes 

directly dependent on the number of router hops (Daly, 2004). The number of router hops 

depends upon the total number of endpoint devices as well as the number of ports 

available on each router—the router’s radix. With higher radix routers, we can connect 

more endpoint devices with fewer total hops. Our project is thus to explore the design 

space for a high radix router, which will reduce the latency of the interconnect networks 

and thus enable more efficient communication. Given an initial design based on the work 

of Stanford graduate student Daniel Becker, we will be exploring how changing different 

parameters affects the performance of the overall router design in terms of chip area, 

power consumed, data transmission rates, and transmission delays. We hope to use this 



	
   Mistry	
  6	
  

data to draw conclusions about the optimal configurations for a high-radix router, and to 

justify our conclusions with data. The researchers at Berkeley Wireless Research Center 

(BWRC) will consider the results of our analysis as they try to construct future high 

performance systems. 
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Industry and Market Trends 
INTRODUCTION 

With current trends in cloud computing, big data analytics, and the Internet of 

Things, the need for distributed computation is growing rapidly. One promising solution 

that modern computers employ is the use of large routers or switches to move data 

between multiple cores and memories. The goal of our Petabit Switch Fabric capstone 

project is to explore the design tradeoffs of such network switch architectures in order to 

scale this mode of communication to much larger magnitudes. We aim to examine the 

viability of using these designs for a petabit interconnect between large clusters of 

separate microprocessors and memories. High bandwidth switches will allow distributed 

multicore computing to scale in the future. Given a prototype, we will be studying power, 

area, and bandwidth tradeoffs. By analyzing the performances of these parameters, we 

will eventually map a Pareto optimal curve of the design space. The results of the project 

will provide valuable data for future research related to developing network switch 

designs. As we consider how to commercialize this project, it becomes useful to 

understand the market that we will be entering. In this paper, we will use Porter’s Five 

Forces as a framework to determine our market strategy (Porter, 1979). 

TRENDS 
        First, we will explore some of the trends in the semiconductor and computing 

industries that motivate our project. One of the most important trends in technology is the 

shift toward cloud computing in both the consumer and enterprise markets. On the 

enterprise side, we are observing an increasing number of companies opting to rent 

computing and storage resources from companies such as Amazon AWS or Google 

Compute Engine, instead of purchasing and managing their own servers (Economist, 
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2009). The benefits of this are multi-fold. Customers gain increased flexibility because 

they can easily scale the amount of computing resources they require based on varying 

workloads. These companies also benefit from decreased costs because they can leverage 

Amazon’s or Google’s expertise in maintaining a high degree of reliability. We are 

seeing that these benefits make outsourcing computing needs not only standard practice 

for startups, but also an attractive option for large, established companies because the 

benefits often outweigh the switching costs. 

        As warehouse scale computing consolidates into a few major players, the 

economic incentive for these companies to build their own specialized servers increases. 

Rather than purchasing from traditional server manufactures such as IBM or Hewlett-

Packard, companies like Google or Facebook are now operating at a scale where it is 

advantageous for them to design their own servers (Economist, 2013). Custom built 

hardware and servers allow them to optimize systems for their particular workloads. In 

conjunction with the outsourcing and consolidation of computing resources, these 

internet giants could potentially become the primary producers of server hardware, and 

thus become one of our most important target customers as we bring our switch to 

market. 

        On the consumer side, we have seen a rapid rise in internet data traffic in recent 

years. Smartphones and increasing data speeds allow people to consume more data than 

ever. Based on market research in the UK, fifty percent of mobile device users access 

cloud services on a weekly basis (Hulkower, 2012). The number of mobile internet 

connections is also growing at an annual rate of 36.8% (Kahn, 2014:7). Data usage is 

growing exponentially as an increasing number of users consumes increasing amounts of 
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data. Moreover, the Internet of Things (IoT) is expected to produce massive new amounts 

of traffic as data is collected from sensors embedded in everyday objects. This growth in 

both data production and consumption will drive a strong demand for more robust 

networking infrastructure to deliver this data quickly and reliably. This will present a 

rapidly growing market opportunity in the next decade (Hoover’s, 2015). Overall, the 

general trends in the market suggest a great opportunity for commercializing our product. 

        As the IoT, mobile internet, and cloud computing trends progress, they will all 

drive greater demand for more efficient data centers and the networking infrastructure to 

support further growth. Concurrently, the pace of advances in semiconductor fabrication 

technology has historically driven rapid performance and cost improvements every year. 

However, these gains have already slowed down significantly in recent years, and are 

expected to further stagnate over the next decade. We are rapidly approaching the 

physical limits of current semiconductor technology. As a result, we observe a large shift 

from single core computing to parallel systems with many distributed processing units. 

With no new semiconductor technology on the immediate horizon, these trends should 

continue for the foreseeable future. 

INDUSTRY AND COMPETITIVE LANDSCAPE 
        Next, we will examine our industry and competitive landscape. The 

semiconductor industry is comprised of companies that manufacture integrated circuits 

for electronic devices such as computers and mobile phones. This is a very large industry, 

consisting of technology giants such as Intel and Samsung, with an annual revenue of 

eighty billion dollars in the United States alone (Ulama, 2014:19). Globally, the industry 

revenue growth was a relatively modest 4.8% in 2013 (Forbes, 2014). However, as cloud 

computing becomes more prevalent, we expect that the need for better hardware for data 
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centers will continue to rise, and the growth of this sector will likely outpace the overall 

growth of the semiconductor industry. 

         Although the sector is growing rapidly and the demand for networking 

infrastructure is high, competition is fierce in both telecommunications and warehouse 

scale computing. There are many well established networking device companies such as 

Juniper Networks, Cisco, and Hewlett-Packard. Large semiconductor companies such as 

Broadcom and Mellanox, along with smaller startups such as Arteris and Sonics, are also 

designing integrated switches and network on chips (NoC). 

        Specifically, one of our most direct competitors is Broadcom. In September of 

2014, Broadcom announced the StrataXGS Tomahawk™ Series (Broadcom, 2014). This 

product line is targeted towards Ethernet switches for cloud-scale networks. It promises 

to deliver 3.2 terabit-per-second bandwidth. This new chip will allow data centers to 

vastly improve data transfer rates while maintaining the same chip footprint (Broadcom, 

2014). It is designed to be a direct replacement for current top-of-rack as well as end-of-

row network switches. This means that the switching costs are extremely low, and it will 

be very easy for customers to upgrade their existing hardware. Another key feature that 

Broadcom is offering is a packaged software that will give operators the ability to control 

their networks for varying workloads (Broadcom, 2014). The Software Defined Network 

(SDN) is proprietary software customized for the Tomahawk family of devices. This 

software might be a key feature that differentiates Broadcom’s product from other 

competitors. 

We distinguish ourselves from these companies by targeting a very focused niche 

market. For example, Sonics has found its niche in developing a network on chip targeted 
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towards the mobile market. Their product specializes in connecting different components 

such as cameras, touch screens, and other sensors to the processor. We find our niche in 

fulfilling a need for a high speed high radix switch in the warehouse scale computing 

market. Data centers of the future will be more power hungry and will operate at much 

faster rates (Hulkower, 2012). Therefore, our product aims to build more robust systems 

by minimizing power consumption while maximizing performance. 

The semiconductor industry already competes heavily on the basis of price, and as 

performance gains level off, we expect this competition to increase (Ulama, 2015, p. 27). 

As a new entrant, we want to avoid competing on price with a distinguished product. As 

previously mentioned, our switch product is meant to enable efficient communication 

between collections of processors in data centers. However, it also has potential 

applications in networking infrastructure. Given the strong price competition within the 

industry, we would want to focus on one or the other in order to bring a differentiated 

product to market. 

        Another force to consider is the threat of substitutes, and we will now examine 

two distinct potential substitutes: Apache Hadoop and quantum computing. Apache 

Hadoop is an open source software framework developed by the Apache Software 

Foundation. This framework is a tool used to process big data. Hadoop works by 

breaking a larger problem down into smaller blocks and distributing the computation 

amongst a large number of nodes. This allows very large computations to be completed 

more quickly by splitting the work amongst many processors. The product’s success is 

evidenced by its widespread adoption in the current market. Almost every major 
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company that deals with big data, including Google, Amazon, and Facebook, uses the 

Hadoop framework. 

Hadoop, however, comes with a number of problems. Hadoop is a software 

solution that shifts the complexity of doing parallel computations from hardware to 

software. In order to use this framework, users must develop custom code and write their 

programs in such a way that Hadoop understands how to interpret them. A high 

throughput and low latency switch will eliminate this extra overhead because it is purely 

a hardware solution. The complexity of having multiple processors and distributed 

computing will be hidden and abstracted away from the end user. 

        The other substitute we will look at is quantum computing. Quantum computing 

is a potential competing technology because it provides a different solution for obtaining 

better computing performance. In theory, quantum computers are fundamentally different 

in the way that they compute and store information, so they will not need to rely as 

heavily on communication compared to conventional processors. However, it is unclear 

whether practical implementations of quantum computers will ever be able to reach this 

ideal. Currently, only one company, D-Wave, has shown promising results in multiple 

trials; however, their claims are disputed by many scientists (Deangelis, 2014). 

Additionally, we expect our solution to be much more compatible with existing software 

and programming paradigms compared to quantum computers, which are hypothesized to 

be very good for running only certain classes of applications. Therefore, switching costs 

are expected to be much higher with quantum computers. Because quantum computing is 

such a potentially disruptive technology, it is important to consider and be aware of 

advancements in this field. 
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MARKET 
        Next, we will examine two different methods of commercializing our product: 

selling our design as intellectual property (IP), or selling a standalone chip. Many 

hardware designs are written in a hardware description language such as Verilog. This 

code describes circuits as logical functions. Using VLSI (Very Large Scale Integration) 

and EDA (Electronic Design Automation) tools, a Verilog design can be converted into 

standard cells and manufactured into a silicon chip by foundries. If we were to license our 

IP, a customer would be able to purchase our switch and integrate it into the Verilog code 

of their own design. 

        Some key customers for licensing our IP are microprocessor producers. The big 

players in this space are Intel, AMD, NVIDIA, and ARM. Intel owns the largest share of 

microprocessor manufacturing, and it possesses a total market share of 18% in 

semiconductor manufacturing (Ulama, 2014:30). Microprocessors represent 76% of 

Intel’s total revenue, making it the largest potential customer in the microprocessor space 

(Ulama, 2014:30). AMD owns 1.4% of the total market share, making it a weaker buyer 

(Ulama, 2014:31). While Intel represents a very strong force as a buyer because of its 

power and size, they are still an attractive customer. If our IP is integrated into their 

design, we will have a significant share in the market. 

        Another potential market is EDA companies themselves. We can license our 

product to EDA companies who can include our IP as a part of their libraries. This can 

potentially create a very strong distribution channel because all chip producers use these 

EDA tools to design and manufacture their products. Currently, EDA is a $2.1 billion 

industry, with Synopsys (34.7%) and Cadence (18.3%) representing 53% of the total 
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market share (Boyland, 2014:20). Having our switch in one of these EDA libraries would 

result in immediate recognition of our product by a large percentage of the market. 

        Another option for going to market would be selling a standalone product. This 

means that we will design a chip, send our design to foundries to manufacture it, and 

finally sell it to companies who will then integrate the chip into their products. This 

contrasts with licensing our design to other semiconductor companies. Licensing our 

design would allow our customers to directly embed our IP into their own chips. One 

downside of manufacturing our own chip is the high cost. Barriers to entry in this 

industry are high and increasing, due to the high cost of production facilities and low 

negotiation powers of smaller companies (Ulama, 2014:28). Selling a standalone chip 

versus licensing an IP also targets two very different customers—companies who buy 

parts and integrate them, or companies who manufacturer and sell integrated circuits. 

        The main application of our product is in warehouse scale computing. The growth 

in cloud computing and media delivered over the internet means that demand for servers 

will see considerable growth (Ulama, 2014:8). High-speed high-radix switches will be 

essential in the future for distributed computing to scale (Binkert, 2012:100). In a data 

center, thousands of servers work together to perform computations and move data. Our 

product can be integrated in network routers connecting these servers together. 

Companies such as Cisco and Juniper, who supply networking routers, are our potential 

buyers. They purchase chips and use them to build systems that are sold to data centers. 

Our product can also be integrated directly inside the servers themselves. Major 

companies producing these servers include Oracle, Dell, and Hewlett-Packard. These 

companies design and sell custom servers to meet the needs of data centers. As the 
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number of processing units and memories increase in each of these servers, a high-radix 

switch is needed to allow efficient communication between all of these subsystems. 

        In order to enter the market strategically, we need to consider our positioning. The 

market share of the four largest players in the networking equipment industry—our target 

customers—has fallen by 5.2% over the past five years (Kahn, 2014:20). The competition 

is steadily increasing, and the barriers to entry are currently high but decreasing (Kahn, 

2014:22). With the influx of specialist companies offering integrated circuits, new 

companies can take advantage of this breakdown in vertical integration (Kahn, 2014:22). 

This means that the industry may expect to see a rise in new competitors in the near 

future. With the increase in competition among the buyers, their power is expected to 

decrease. Thus, if we have a desirable technology, we may be in a strong position to 

make sales. Competition in server manufacturing is also high and increasing with low 

barriers of entry (Ulama, 2014:22). This competitive field in both networking equipment 

and data center servers is advantageous for us because these companies are all looking for 

any competitive edge to outperform each other. A technology that will give one of these 

companies an advantage would be very valuable. 

        In order to create a chip, we will need to pay a foundry to manufacture our 

product. Unfortunately, although there is healthy competition among the top companies 

in the semiconductor manufacturing industry, prices have remained relatively stable 

because of high manufacturing costs and low margins (Ulama, 2014:24). Because custom 

and unique tools are required for producing every chip, there are very high fixed costs 

associated with manufacturing a design. Unless we need to produce very large volumes 

of our product, the power of the foundries, our suppliers, is very strong. The barriers of 
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entry for this industry are extremely high, and we don’t expect to see much new 

competition soon. EDA tools developed by companies such as Synopsys and Cadence are 

also required to create and develop our product. As discussed in previous sections, these 

two companies represent more than half of the market share. As a result, small startups 

have weak negotiation power. Both our suppliers, foundries who manufacture chips and 

EDA companies that provide tools to design chips, possess very strong power largely in 

the form of fixed costs. 

CONCLUSION 
 In this paper, we have thoroughly examined a set of relevant trends in the market 

and, using Porter’s Five Forces as a framework, conducted an analysis of the 

semiconductor industry and our target market. We have concluded that our project will 

provide a solution for a very important problem, and is well positioned to capitalize on 

projected industry trends in the near future. We have proposed and analyzed two different 

market approaches - IP licensing and selling discrete chips - and weighed the pros and 

cons of each. We have surveyed the competitive landscape by looking at industry 

behaviors and researching a few key competitors, as well as thinking about potential 

substitutes. With all of this in mind, we can carefully tailor our market approach in a way 

that leverages our understanding of the bigger picture surrounding our technology. 
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IP Strategy 
Distributed computing is rapidly growing due to demand for high performance 

computation. Today, computers have multiple cores to divide and solve complex 

computational problems. In the near future, they will have many more cores which will 

need to work in unison. In this project, we are designing a high-radix router which will 

serve as an interconnect between processor cores and memory arrays in data centers. Our 

project addresses the problem of transferring large amounts of data between processors 

and memories to achieve high speed computation. It is a part of ongoing research in 

Berkeley Wireless Research Center (BWRC) for building hardware for next generation 

data centers.  

The router we are designing is unique among other routers available today in 

several ways. First, it is a high-radix router which means it can be used to direct traffic to 

and from a large number of endpoints. Second, the router can support very high 

bandwidth. We have designed such a high-performing router by proposing a novel 

system architecture based on a few key design decisions from the results of our design 

space exploration. These design decisions differentiate our router from existing designs in 

the commercial and research domains, and would form the core of our patent application. 

If we are successful in implementing our proposed design changes, then the router 

design can qualify for a patent. We would apply for a utility patent since the router will 

produce a useful tangible result like increased bandwidth. One of our marketing strategies 

is to sell the router as a standalone chip, which means we will be mass producing the 

router from a chip foundry. This makes it an article of manufacture, another quality of a 

utility patent. In addition to qualifying for one of the patent categories, our router can be 
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considered novel invention since it is a high radix router with up to 256 ports. This is 

much higher than any others that we have come across during our literature review.  

Patenting our novel design will give us a huge competitive advantage because we 

would be the first to develop a petabit bandwidth router. In general, the semiconductor 

industry is highly litigiousness because of rapid change in the technology each year. 

Many lawsuits are filed every year between rivals like Broadcom, Qualcomm, and 

Samsung. Furthermore, many of these companies have very deep pockets, along the 

motivation and resources to rigorously protect their patent portfolio. Therefore, before 

commercializing our technology, we must to exercise careful scrutiny to ensure we do not 

infringe on anyone else’s patents. In this environment, it also becomes necessary for us to 

hold our own patents, both to keep others from copying our technology and to prevent 

them from coming after us with lawsuits. However, as a small startup, we would have to 

weigh any sort of legal action very carefully, as we would likely not have sufficient 

funding to carry out protracted legal battles.  

The primary risk of choosing not to patent our novel router architecture would be 

forfeiting the legal protections that a patent grants. As a small company starting out, we 

would not provide much value as to our customers beyond our technological advantage. 

Without a patent, we risk allowing a much larger company to copy our technology. 

Combined with their vast resources, this could effectively put us out of business. While 

we might not actually be able to defend our patent, having one would at least deter others 

from blatantly copying us. 

Something else to consider here would be how easy we think it would be for our 

technology to be reverse engineered. Since our project is conducted in a research setting 
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under BWRC, any major breakthroughs would most likely be published and peer 

reviewed, rather than kept as a trade secret. Furthermore, since our technology would be 

based on a novel architecture rather than an implementation detail, others would almost 

certainly be able to engineer their own solutions based on our architecture, depending on 

how much we decide to publish. Thus, without a patent, we would have no way of 

controlling or profiting from our technology. 

 A potential secondary risk of not patenting might be that we would be passing on 

the chance to attract potential investors. In addition to the legal protection described 

above, holding a patent could have the additional effect of demonstrating strength to 

investors in multiple ways. First, the patent would differentiate us from our competitors; 

it gives us a sustainable, legally enforceable competitive advantage. Second, the patent 

would signal a high level of expertise to investors; it can signal that we are truly experts 

in our particular domain. Finally, the patent could provide assurances to investors that 

other companies will not be able to patent something similar and attempt to come after us 

for infringement. 

With all of this in mind, we would most definitely want to obtain a patent for our 

novel technology. Practically, the extent of legal protection we might receive remains 

questionable given our limited financial resources, but a patent still grants us many other 

advantages which could provide a huge boost to a company in its early stages. From this 

preliminary analysis, the benefits far outweigh to costs, and we would thus want to 

pursue a patent as soon as possible. We will conduct a thorough patent search with 

assistance from a patent attorney to make sure our invention has not previously been 

patented and does not infringe on any existing patents. 
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Technical Contributions 
OVERVIEW 

This section constitutes my contribution in exploring the design space and 

optimizing a router (a.k.a. switch network) to enable faster and larger bandwidth of data 

transfer. For the project, we amended the working prototype of the router created by 

Daniel Becker (2012). During the course of the year, we explored different 

implementations of the working prototype and scale it for faster and larger bandwidth 

communication. The final outcome is a scaled version of the original prototype and a 

quantitative analysis of its area, power, and performance. 

 Our team identified a set of tasks that would strategically lead us to 

achieve the project goal within the timespan of nine months. The tasks includes study of 

materials relevant to the network-on-chip (NoC) routers, study the Verilog code of the 

prototype router, set-up of the CAD tools to design and test the router, and perform 

design space exploration on the router to achieve maximum feasible throughput. The 

study of materials and Verilog code prepared us with the background of the state-of-the-

art in the NoC domain, and it also provided us with a convenient launch pad to start with 

the design space exploration. As with many other design methodologies, CAD tools have 

a major impact on how efficiently we can design the router. Therefore, setting-up of the 

necessary tools early on was imperative for initiating the design space exploration. These 

CAD tools are prevalent in the semiconductor industry for digital circuit designing and 

are specifically called as Very Large Scale Integration (VLSI) tools. Following the tools 

set-up, we implemented different design parameters for the router and reported its area, 

power, and timing details to narrow down the scope of optimization focus. 
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Although I was involved each of the above mentioned tasks, my specific focus 

began with studying different types of Allocators that are responsible for assigning “fair” 

amount of available resources to the incoming agents competing for multiple resources 

within the router. Also, I performed the Verilog code study of the separable input first 

allocator implemented in the prototype. The study of allocators filled into the overall 

structure of the router whose other components were studied by other team members.  

As mentioned earlier, setting-up of the VLSI tools was one of the important 

project requirements; therefore I next focused on to integrating the VLSI tools provided 

by Berkeley Wireless Research Center (BWRC). Although all the team members initiated 

with setting up the tools, Ian Juch successfully kept the infrastructure in place. The tools 

setup enabled the evaluation of initial results of the router prototype in terms of its area, 

power, and timing requirements. Also, the tools provided the functional verification of 

the prototype router. In functional verification a set of input vectors is applied at the input 

channel of the router along with the information for the output channel where the input is 

expected to appear. It was an additional learning curve in understanding the functioning 

of the router.  

After the tool set up, my next focus was to perform design space exploration in 

which I increased the size of the router to 32-ports from the 5-ported baseline design. 

This was the first iteration of the design space exploration, the result of which was 

supposed to provide a pointer to areas of further optimization in the router. The result of 

the first iteration underscored the extremely long run time by the VLSI tools to process 

the design, and thus run time optimization became my next focus of the project. The 

results of the run time optimization indicated the bottleneck in router’s crossbar 
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architecture, which became the next focus of the optimization. The details of steps I took 

for run time optimization and redesign of crossbar architecture and their results are 

mentioned in Methods and Materials and Results and Discussion sections of the paper. 

Rest of the paper is organized as Literature Review discussing the materials I studied, 

Methods and Materials explaining the specific methods I performed incrementally, and 

Results and Discussion showing the obtained results. 

LITERATURE REVIEW 
A typical router consists of input and output unit, crossbar switch, virtual channel 

(VC) allocator, and switch allocator as shown in the figure below sourced from Dally: 

 

 

 

 

 

 

 

The input data (a.k.a incoming flit or input flit) comes into the input unit and is 

routed to one of the output units through a crossbar switch. Because any incoming data 

may want to reach to any of the output units, an efficient scheduler is required to ensure 

that maximum possible incoming data is routed to the output units without creating 

congestion along the path. VC allocator and switch allocator performs the task of 

Note:	
  A	
  router	
  may	
  contain	
  additional	
  components	
  or	
  may	
  contain	
  fewer	
  components	
  than	
  what	
  is	
  shown	
  in	
  
the	
  figure.	
  The	
  figure	
  best	
  resembles	
  to	
  the	
  type	
  of	
  router	
  we	
  worked	
  on.	
  

Figure	
  1	
  Virtual	
  Channel	
  type	
  Router 
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efficiently scheduling the incoming flits to the output port. VC allocator allocates a 

virtual channel for the incoming flit before assigning a physical channel that connects 

input to the output. Ian Juch (2015) and Bhavana Chaurasia (2015) have discussed VC 

allocators and switch allocators respectively in detail. In this section, I will first present 

the background of switches and their evolution from telecommunication networks to their 

VLSI adaptation as high-speed switch fabrics. After that I will talk in detail about 

different allocation techniques that are used as scheduler in VC allocators and switch 

allocators. 

Switching networks can be traced from as old as the invention of telephone and its 

network. Ahmadi and Denzel provides a brief history of how the shortcomings of earlier 

telecommunication networks led to the evolution of the concept of packet switching that 

provides flexibility in terms of bit-rate of data transfer and can be accommodated as on-

chip device that reduced its cost with the advancement in semiconductor industry. 

According to them, conventional telecommunication networks were built on the principle 

of circuit switching techniques that were based on either “space division multiplexing 

(SDM), time division multiplexing (TDM), or the combination of the both” (Ahmadi and 

Denzel 1091). In SDM the constant stream of data is dedicated to a single channel that 

carries only the specific data type and so suffers from inefficiency when one channel is 

operated at higher rate than other because the channel with lower data rate may remain 

idle while the channel with higher data rate may get congested. TDM allows different 

data streams to be passed over a single channel by time multiplexing different data 

streams over the channel. However, TDM also suffers from inefficiency when the data 

rates of the data streams are different. 
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Source:	
  Principles	
  and	
  Practices	
  of	
  Interconnection	
  Networks	
  

Packet switching came into existence as a solution for carrying data streams at 

multiple data rate efficiently and it is this principle of packet switching that is used in 

high-speed switch fabrics. Ahmadi and Denzel surveyed various switch fabric 

architectures all of which employs resource (channel path from input to output) sharing 

and some kind of scheduler to achieve fairness in resource allocation. The various 

architectures are classified based on their internal structure and are categorized as: 

“Banyan and buffered banyan-based fabrics, Sort-banyan-based fabrics, disjoint-path 

topology, crossbar fabrics, time division fabrics, and fabrics with shared medium” 

(Ahmadi and Denzel 1092). For the purpose of brevity, I will restrict our discussion to 

crossbar fabrics because the router for our project is based on crossbar structure. 

                                                                                   

 

 

                                                           

  

 

     

Figure 2 shows a simplest possible crossbar network that contains switch matrix 

connecting inputs and outputs. Intuitively, we can see that any one of the inputs want to 

go to any one of the outputs will create a contention at the output in the case when 

multiple inputs want to go to the same output. To minimize the contention various 

upgrades to the conventional crossbar network have been proposed all of which can be 

classified as input queue-, output queue-, cross points queue-, or the combination of all 

Figure	
  2	
  Simple	
  Crossbar 

Figure	
  3	
  Crossbar	
  with	
  input	
  and	
  output	
  buffers 
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depending upon the buffer location in the crossbar. A typical example of input and output 

queue (buffer) crossbar is shown in figure 3. The idea is to buffer the data at either one of 

these queues and schedule the buffered data to the output using various heuristics. The 

scheduler that schedules the data through the crossbar is called arbiter that arbitrates the 

data modestly such that maximum possible stored data reaches at their respective output 

destination, although some of the buffered data may never reach to its output destination 

in which case the agent again sends the data from the source. A detailed discussion about 

the arbiters is covered by Yale Chen (2015). Mhamdi and Hamdi have discussed 

crossbars achieving higher throughput using sophisticated scheduling algorithm and 

improved structure. 

Having talked about the evolution of switching networks and crossbars that is one 

of the core components of the switching network, I’ll now discuss allocators – a 

scheduling mechanism that allocates resources (data path from input to output) to the 

incoming agents. The allocators discussed here will find its applications in building VC 

allocators and switch allocators discussed in Technical Contribution section of Ian Juch 

(2015) and Bhavana Chaurasia (2015) respectively. Selecting a proper allocation 

mechanism is a design tradeoff for the routers in terms of latency and area (Ye Lu 358). It 

means that a simple allocation technique may be cheap in term of the silicon area, but it is 

less efficient in providing fairness to the resource allocation and thus increases the 

latency for the input data to reach to the output destination. On the other hand, a more 

complex allocation scheme can provide high throughput by allocating resources 

efficiently thereby decreasing latency, but the silicon area of such complex allocation 

scheme is larger.  
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Allocators works on the principle of: “i) resources are only granted to agents that 

requested them ii) each agent is granted access to at most one resource and iii) each 

resource is granted to at most one agent” (Becker 28). To demonstrate the operation, 

consider the following case: 

 

Figure 4 shows a request, grant, and efficient grant matrix. Each row and column 

represents an agent and a resource respectively. Thus, there are three agents and three 

resources; agent 0 requested for resource 0,1, and 2; agent 1 requested resource 0 and 1; 

agent 2 requested resource 0. Figure 4 (grant matrix) shows the resource allocation by an 

inefficient allocator because it was only capable of allocating resource to agent 0 and 1 

represented by dark dot. Agent 2 requested for resource 0 only that got allocated to agent 

0 and thus according to principle (iii) resource 0 cannot be allocated to agent 2. Figure 4 

(efficient grant matrix) shows a fair and efficient allocator that is capable of allocating 

resources to all agents. Here none of the resources and agents is idle, thus demonstrating 

an efficient allocation. 

Different types of allocators are proposed based on the allocation mechanisms. 

Becker and Dally discuss techniques that include separable allocation, wavefront 

allocation, and maximum-size allocation. Separable allocators are of two types: separable 

Figure	
  4	
  Request	
  matrix,	
  grant	
  matrix,	
  and	
  efficient	
  grant	
  matrix 
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input first in which first arbitration is done on incoming agents requesting resources and 

then second round of arbitration is done on the resources to ensure each agent is granted 

at the most only one resource; on the other hand, separable output first straight away 

forward all the incoming requests to the associated resources and arbitration is done at the 

output. Separable allocators are attractive for high-radix router because its delay (latency) 

only increases logarithmically with the increase in port size, however they suffers the 

disadvantage of weak fairness due to independent arbitration in the two rounds (Becker 

31). 

Poor fairness of separable allocation schemes can be overcome by implementing a  

wavefront allocation scheme shown by Tamir and Chi. Wavefront allocator arbitrates 

along the diagonal of the request-resource matrix (figure 3c) based on the priority cell 

selection as opposed to linear arbitration employed by the separable allocators. The 

grants generated along the diagonal of the request matrix are guaranteed to be singular 

and thus maximum allocation is possible by iterating through the diagonals of the matrix. 

Tamir and Chi (22) evaluated the performance of wavefront scheme in comparison with 

other schemes and underscored its best performance with marginal complexity relative to 

other schemes for high-radix routers.  

METHODS AND MATERIALS 
This section will discuss methods employed and materials used during different 

phase of the project. My project focus initiated with setting up of the VLSI tools after 

which I executed a 32-radix (32-ports) router through various stages of the tools to 

validate correct functioning of the tools and the router design. Next, I switched the focus 

on to optimizing the runtime of the tools for large radix (64-radix) router. Lastly, I 

redesigned the crossbar architecture to improve the runtime and area of the router. Tools 
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setup for the router design began in the last week of October’14 and lasted throughout 

December’14. Knowledge gained during the coursework of Introduction to Digital 

Integrated Circuits (EE141) was used to setup the tool-flow. Tool includes CAD 

software from Synopsys (EDA manufacturer) called Design Compiler (DC) and IC 

Compiler (ICC). First step in the tool setup is to create a bashrc (UNIX file system) file 

that contains the path to the tools location on the server. Next step is to create a separate 

build directories for DC and ICC containing relevant scripts that executes necessary 

commands needed to synthesize and place and route the router design (details of DC and 

ICC commands are covered later in this section). Final step is to create a Makefile that is 

a text file that links and executes various source files in order. The scripts containing DC 

and ICC flow and their respective Makefiles were all built by BWRC research team, we 

just used the existing infrastructure for our project. 

After successful tools setup, I executed a 32-radix router design through the tool 

flow. During the execution, DC complier synthesized a gate-level netlist of the Verilog 

code. Gate-level netlist converts the Verilog behavioral code into a circuit netlist 

containing logical gates. IC complier then generates a floorplan of the design and 

performs the placement of the standard cells of the respective gates. It also performs the 

routing of the standard cells with each other and with the synthesized clock tree. After 

each step during the design execution, maintaining the correct functionality of the router 

design is very important. Therefore, functional verification was carried out for Verilog 

design, synthesized design, and placed and routed design using the provided test bench. 

The Verilog design and synthesized design passed the functional check with the test 

bench that was designed to provide “ideal” input stream of data. The input data is 
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provided at the rising edge of the clock and it failed after placement and route (P&R) 

stage because, the P&R design emulates close to real life circuit and thus the data 

appearing at the input should take hold time into account. I diagnosed that since the input 

data arrived right at the clock edge, P&R design encountered setup time violation and 

resulted in functional error. After delaying the input data to account for the hold time, the 

P&R design passes the functional check.  

 

 

 

 

 

 

 

 

 

 

Figure 5 shows the “ideal” behavior of the test bench where the input data was 

applied to the router right at the clock edge violating the setup time, while the violation 

was corrected in figure 6 by providing the delay at the input of the router. 

 

Figure	
  5	
  Input	
  data	
  at	
  clock	
  edge 

Figure	
  6	
  Input	
  data	
  after	
  clock	
  edge 
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After functional verification, my focus shifted towards optimizing the runtime of 

the design execution through the tool flow. From hereon the term design execution in 

context to the runtime optimization is equivalent to performing place and route on the 

design. One of the two possible ways to go about optimization is to perform the 

hierarchical execution of the design in which instead of executing entire design, the 

hierarchical components of the design are executed incrementally to identify the specific 

module of the design that takes maximum runtime (Yale Chen 2015). Another way for 

1st	
  round	
  

2nd	
  round	
  

Figure	
  7	
  Conventional	
  flow	
  (left)	
  and	
  modified	
  flow	
  (right) 
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the optimization, that I followed, is to strategically perform placement and routing such 

that the tools execute simpler placement and routing before performing more arduous 

optimization. In order to explain the runtime optimization, first I will show the default 

placement and routing procedure and then show the modified version. 

Figure 7 (left) shows the conventional tool flow. It starts with generating a 

synthesized netlist using DC (compile_ultra command). Next, during the floorplan stage 

IC complier creates a floor plan for the chip design where it indicates the location of 

various standard cells in the design. It also specifies how close each standard cell is 

placed relative to each other and thus provides an initial estimate for the area of the chip. 

Further, floor planning includes deriving power and ground connection for the chip and it 

also specifies the routing specific to each metal layer in the design. The floor plan along 

with the synthesized netlist is fed to the IC complier for placement during which all the 

standard cells are placed into the location specified during the floor plan stage. In 

conventional flow, the placement and its optimization are done as a single step, which is 

a time consuming process. After the placement, clock tree synthesis (CTS) is carried out. 

CTS generates a buffer tree that takes the primary clock and distributes equally to all 

parts of the design such that the fanout (load) is balanced in the entire design. Further 

optimization is done after the placement and CTS to ensure the design meets the 

specification provided in the floor plan. Finally, the clock tree and the standard cells are 

routed and optimized for best possible timing and area requirements. In my opinion, the 

two drawbacks in the conventional flow are independent generation of synthesized netlist 

and the floor plan for the actual chip and the two iterations of the placement optimization 

that is an expensive runtime process. 
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The two drawbacks of the conventional flow are mitigated in the optimized flow 

shown in figure 7 (right). Similar to the conventional flow, first the synthesized netlist is 

generated from the Verilog code and is fed for the floor planning. The floor planning 

information is then again fed to DC to re-synthesize the design conducive to the floor 

planned design. The newly generated synthesized netlist is then fed to IC compiler for 

placement during which first the initial placement is done unlike direct placement and 

optimization in the conventional flow. The advantage of the initial placement is that it 

reports the bottlenecks of the design in terms of congestion, power, timing, etc. Thus, the 

following placement optimization can be targeted towards optimizing the bottleneck of 

the design. Unlike the conventional flow, the clock tree synthesis in the optimized flow is 

performed during the placement optimization stage thereby, eliminating additional 

placement-optimization iteration performed in the conventional flow. Finally, the clock 

routing and chip routing are performed similar to that in the conventional flow. 

PS: The runtime optimization for the tools was referenced from the Design compiler and 

IC compiler user manual from [12] and [13] respectively. 
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The results of hierarchical tool flow setup by Yale Chen highlighted router’s 

crossbar as the bottleneck in terms of runtime, and this was confirmed by visual 

inspection of the router schematic in the DVE GUI. Both hierarchical tool flow results 

and router schematic motivated me to redesign the crossbar architecture. Figure 8 and 9 

shows the initial and optimized design respectively.  

Figure	
  8	
  Original	
  crossbar	
  architecture 

Figure	
  9	
  New	
  crossbar	
  architecture	
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Initial design consisted of number of multiplexers (mux) equal to the number of 

ports, and each mux takes in input from all the input ports. This architecture can be 

efficient for design that has input-output ports less than 32. Our targeted 64-ported design 

blows up in area and runtime as the number of mux scaled with number of input-output 

ports. The modified version uses a single mux that takes in input from all the input ports. 

The select signals comes from a shift register that is clocked #ports times faster than the 

original clock, for example, for 64-ports design the shift register needs to be clocked 65 

times faster than the original clock to produce the select signals corresponding to each 

input ports. The output of the mux is fed to another shift register that gets fed to the 

output channel of the router. The resultant new crossbar architecture has pipelined the 

overall router architecture. On the down side, producing fast clock that is #ports times 

faster than the original clock can be impractical and therefore the practical solution is to 

implement more multiplexers in the design that can reduce the ratio of fast clock and the 

original clock. As an example, increasing the multiplexers from one to four will reduce 

the ratio by factor of four, thus the new fast clock will have to be 16 times faster than the 

original clock. Clearly, selecting number of multiplexers is a design tradeoff with 

extremes at single multiplexer and number of multiplexers equal to the number of ports. 

Results and Discussion section shows this tradeoff in plot of delay versus area. 

RESULTS AND DISCUSSION 
In this section, I will discuss results pertaining to functional verification, design 

space exploration, and runtime optimization. Functional verification provides the output 

of the design for the given input vectors. The output varies with variations of the input 

and thus it is important to perform functional verification with as many inputs 

combination as possible. Provided test bench generates the stream of input packets of 
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fixed length to be injected at each input ports. At the output, the flit sink collects the 

output flits and accounts for number of input flits versus number of output flits. 

Functional verification for various port sizes were measured and for each router 

configuration, flit size was fixed at 64bits and each input channel consisted of 128 bytes 

buffer. The result is tabulated in Table 1. 

Table 1 shows total number of flits sent to the router and number of flits that came 

out of the router for different port sizes. Port sizes 5 and 16 were successfully able to 

produce all the flits at the output while, for port sizes 32 and 64 number of flits going into 

the router were decreased. Moreover, for 32 and 64 ports router not all incoming flits 

comes out of the router successfully. This can be attributed to the fact that as the port size 

increases the efficiency of arbiter for resource allocation decreases and part of the flits are 

lost within the router itself. 

Number of Ports 

in Router 

Incoming 

Flits 

Outgoing Flits 

5 13260 13260 

16 20234 20234 

32 11995 6226 

64 5210 3790 

Table	
  1	
  Functional	
  verification	
  results	
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 Area (mm2) 
Power Critical Path 

(nS) Total (W) Leakage (W) 

5-radix 0.18 0.022 0.016 3.51 

32-radix 2.25 0.34 0.284 8.85 

64-radix 11.65 1.27 1.15 11.81 

Table	
  2	
  Area,	
  power,	
  and	
  timing	
  for	
  routers 

 

 Area (mm2) 
Power 

Critical Path 
(nS) Total (W) Leakage (W) 

128-radix 40 7.35 6.75 NA 

256-radix 160 36.75 33.75 NA 

Table	
  3	
  Extrapolated	
  area,	
  power,	
  and	
  timing 

 

Table 2 reports the area, power, and timing of 5-, 32-, and 64-radix routers after the place 

and route stage. As the size of the router is doubled its area increases by a factor of ~4. 

Similarly, the power number grows by the factor of ~5, while the critical path length has 

no consistent pattern. Original goal of the project was to design a high radix for example 

128-radix or 256-radix router, so if we extrapolate the preliminary results from above 

table for 128- and 256- radix router then the resultant design will look something like the 

one shown in Table 3. Due to run time limitations, we were unable to scale the router 

beyond 64 ports and all the subsequent results are based on 64-port router. 

 The run time optimization by changing the tool flow resulted in runtime gain of 

~3 hours for 32-port router i.e. runtime reduced from original ~8-10 hours to less than 6 

hours. However, the gain for 64-port router was insignificant in terms of total run time. 
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The new run time with modified tool flow is ~30 hours down from original ~36 hours. 

Despite the gain, the modified tool flow didn’t help much. 

 As expected, the greatest advantage in terms of reducing the total run time of the 

tools and area minimization was achieved by redesigning the crossbar architecture. The 

total run time for 64-port router with number of multiplexers equal to 1, 4, and 8 is less 

than 15 hours, while for number of multiplexers equal to 32 the run time is ~20 hours. 

Each of these configurations has clear run time advantage than the original 64 

multiplexers design with the run time of more than 36 hours. However, this advantage 

came at the cost of adding extra clock (fast clock) to the router crossbar. For the 64-port 

design the magnitude of the fast clock is dependent on the number of multiplexers 

implemented in the crossbar architecture, with the smallest number of multiplexer equal 

to one that required fast clock to be 65 times faster than the original clock. And for 

number of multiplexers equal to the number of input-output ports, fast clock is equal to 

the slow clock. Table 4 shows the area, power, and critical path for 64-port router with 

different number of multiplexers. 

Multiplexer Area 
(mm2) 

Critical 
Path 
(nSec) 

Power 

Leakage 
(Watts) 

Total 
power 
(Watts) 

1 6.03 10.03 0.486 0.597 

4 6.22 10.03 0.506 0.617 

8 6.44 10.02 0.522 0.634 

32 7.96 10.16 0.659 0.778 

64 11.65 11.81 1.15 1.27 

Table	
  4	
  Area,	
  critical	
  path,	
  and	
  power	
  with	
  new	
  crossbar	
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 Figure 10 and 11 shows the plots of area versus delay and total power versus 

delay for a 64-port router with different number of multiplexers at 10% core utilization. 

Based on both the plots, an optimum 64-port router has the delay between 50 to 90nSec 

with area ~6.5mm2 and total power of ~0.65 Watts.  
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Figure	
  10	
  Area	
  versus	
  delay	
  for	
  different	
  number	
  of	
  multiplexers	
  

Figure	
  11	
  Power	
  versus	
  delay	
  for	
  different	
  number	
  of	
  multiplexers	
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Conclusion 
In conclusion we studied and analyzed a network-on-chip router from various 

sources. Following that, we implemented a high-radix router based on Becker’s Verilog 

implementation of the router. The run time of the VLSI tools appeared to be primary 

bottleneck in scaling the router beyond 64-ports and so we carried out various 

optimizations in the tool flow including hierarchical implementation of the tool flow 

(Yale Chen 2015), setting optimization flags (Ian Juch 2015), and modifying the tool 

scripts. Finally, the modified crossbar architecture reduced the run time from originally 

36+ hours down to ~15 hours. It also reduced the area of the router down from ~11 mm2 

to ~6-7 mm2. Current outcomes in the router achieves the bandwidth of ~0.4 terabyte, 

which is 10,000 times less in magnitude than original goal of peta-bit. 

Further improvements in the current router implementation can be achieved by 

moving the pipeline register between the allocator. Allocator functions by arbitrating on 

the input side first followed by output arbitration. Placing pipelined register between 

input and output arbitration will reduce the critical path that is along the feedback path 

from allocators to the input channel and will result in further increase in the speed of the 

router. However, placing a pipeline register along a feedback path in combinational loop 

is challenging in general and requires sophisticated architectural implementation like loop 

unrolling. I have finished implementing the pipeline register along the feed back path and 

currently in the process of debugging bugs associated with the break up of the feed back 

loop. 

Like many industry-based projects, the success of our project is also attributed to 

the efficient project management implemented by all the team members besides other 

factors. Strict adherence to weekly advisor’s and team meeting allowed us to adapt 
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different dynamics during the course of the project. Periodic documentation of the results 

based on weekly task helped us to constantly analyze the scope of the project and helped 

us maneuver from undesirable path. As an example, we realize early on in the spring 

semester that due to limitations in the run time of the tools, we should not scale the router 

beyond 64 ports without diagnosing and troubleshooting the limitations. This prevented 

us from spending resources and time on large ports router and rather kept our focus 

maintained in improving the 64-port router. Lastly, excellent offline communication 

between the team members catalyzed the task actions for each team members. 

Finally, we plan to upload all the project work including tool flow setup (Ian Juch 

2015), SRAM integration (Ian Juch and Surabhi Kumar 2015), hierarchical 

implementation of the tool flow (Yale Chen 2015), critical path analysis and different 

arbiter’s implementation (Bhavana Chaurasia 2015), modified scripts in the tool flow and 

redesigned crossbar architecture (Mistry Jay 2015) onto the GIT repo that can be readily 

utilized by future team.  
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