
Petabit Switch Fabric Design

Jay Mistry
Yale Chen
Bhavana Chaurasia
Ian Juch
Surabhi Kumar

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-91
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-91.html

May 14, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Acknowledgement

Special thanks to our advisors Elad Alon and Vladimir Stojanovic. Also
many thanks to the graduate students at BWRC who helped us
tremendously with the tools setup for our project: Brian Zimmer, Steven
Bailey, Nathan Narevsky, and Krishna Settaluri.

University of California, Berkeley College of Engineering

MASTER OF ENGINEERING - SPRING 2015

Electrical Engineering and Computer Science

Integrated Circuits

Petabit Switch Fabric Design

Jay Mistry

This Masters Project Paper fulfills the Master of Engineering degree
requirement.

Approved by:

1. Capstone Project Advisor #1:

Signature: __________________________ Date ____________

Print Name/Department: Elad Alon/EECS

2. Capstone Project Advisor #2:

Signature: __________________________ Date ____________

Print Name/Department: Vladimir Stojanovic/EECS

	

	

	

	

	

	

	
 Mistry	
 2	

Acknowledgements

Special	
 thanks	
 to	
 our	
 advisors	
 Elad	
 Alon	
 and	
 Vladimir	
 Stojanovic.	
 Also	
 many	
 thanks	

to	
 the	
 graduate	
 students	
 at	
 BWRC	
 who	
 helped	
 us	
 tremendously	
 with	
 the	
 tools	
 setup	

for	
 our	
 project:	
 Brian	
 Zimmer,	
 Steven	
 Bailey,	
 Nathan	
 Narevsky,	
 and	
 Krishna	

Settaluri.

	
 Mistry	
 3	

Table	
 of	
 Contents	

Acknowledgements	
 ..	
 2	

Problem Statement	
 ..	
 5	

Industry and Market Trends	
 ..	
 7	

INTRODUCTION	
 ...	
 7	

TRENDS	
 ..	
 7	

INDUSTRY AND COMPETITIVE LANDSCAPE	
 ...	
 9	

MARKET	
 ...	
 13	

CONCLUSION	
 ...	
 16	

IP Strategy	
 ..	
 17	

Technical Contributions	
 ..	
 20	

OVERVIEW	
 ..	
 20	

LITERATURE REVIEW	
 ...	
 22	

METHODS AND MATERIALS	
 ...	
 27	

RESULTS AND DISCUSSION	
 ...	
 34	

Conclusion	
 ..	
 40	

Bibliography	
 ..	
 42	

	

	
 Mistry	
 4	

List	
 of	
 Figures	

Figure	
 1	
 Virtual	
 channel	
 type	
 router	
 ...	
 22	

Figure	
 2	
 Simple	
 crossbar	
 ...	
 24	

Figure	
 3	
 Crossbar	
 with	
 input	
 and	
 output	
 buffers	
 ..	
 24	

Figure	
 4	
 Request	
 matrix,	
 grant	
 matrix,	
 and	
 efficient	
 grant	
 matrix	
 	
 26	

Figure	
 5	
 Input	
 data	
 at	
 clock	
 edge	
 ..	
 29	

Figure	
 6	
 Input	
 data	
 after	
 clock	
 edge	
 ..	
 29	

Figure	
 7	
 Conventional	
 flow	
 and	
 modified	
 flow	
 ..	
 30	

Figure	
 8	
 Original	
 crossbar	
 architecture	
 ...	
 33	

Figure	
 9	
 New	
 crossbar	
 architecture	
 ...	
 33	

Figure	
 10	
 Area	
 versus	
 delay	
 ...	
 39	

Figure	
 11	
 Power	
 versus	
 delay	
 ..	
 39	

List	
 of	
 Tables	

Table	
 1	
 Functional	
 verification	
 results	
 ...	
 35	

Table	
 2	
 Area,	
 power,	
 and	
 timing	
 for	
 routers	
 ...	
 36	

Table	
 3	
 Extrapolated	
 area,	
 power,	
 and	
 timing	
 ...	
 36	

Table	
 4	
 Area,	
 critical	
 path,	
 and	
 power	
 with	
 new	
 crossbar	
 	
 37	

	
 Mistry	
 5	

Problem Statement
 The current trend in the computing industry is to offer more performance by

leveraging more processing cores. Because we have run into some physical limits on how

fast we can make a single processor run, the industry is now finding ways to utilize more

cores running in parallel to increase computing speeds. Looking beyond the four and

eight core systems we see in commercially available computers today, the natural

progression is to scale this up to hundreds or thousands of processing units (Clark, 2011).

All of those processing units working together cohesively at this scale requires a great

deal of communication. Furthermore, these processors need to talk not only to each other,

but also to any number of other resources like external memories or graphics processors.

Being able to move bits around the chip efficiently and quickly therefore becomes one of

the limiting factors in the performance of such a system.

To enable this communication, most of today’s multi-core systems use

interconnection networks. While there are many different ways to design these networks,

network latency, the time it takes to communicate between network endpoints, becomes

directly dependent on the number of router hops (Daly, 2004). The number of router hops

depends upon the total number of endpoint devices as well as the number of ports

available on each router—the router’s radix. With higher radix routers, we can connect

more endpoint devices with fewer total hops. Our project is thus to explore the design

space for a high radix router, which will reduce the latency of the interconnect networks

and thus enable more efficient communication. Given an initial design based on the work

of Stanford graduate student Daniel Becker, we will be exploring how changing different

parameters affects the performance of the overall router design in terms of chip area,

power consumed, data transmission rates, and transmission delays. We hope to use this

	
 Mistry	
 6	

data to draw conclusions about the optimal configurations for a high-radix router, and to

justify our conclusions with data. The researchers at Berkeley Wireless Research Center

(BWRC) will consider the results of our analysis as they try to construct future high

performance systems.

	
 Mistry	
 7	

Industry and Market Trends
INTRODUCTION

With current trends in cloud computing, big data analytics, and the Internet of

Things, the need for distributed computation is growing rapidly. One promising solution

that modern computers employ is the use of large routers or switches to move data

between multiple cores and memories. The goal of our Petabit Switch Fabric capstone

project is to explore the design tradeoffs of such network switch architectures in order to

scale this mode of communication to much larger magnitudes. We aim to examine the

viability of using these designs for a petabit interconnect between large clusters of

separate microprocessors and memories. High bandwidth switches will allow distributed

multicore computing to scale in the future. Given a prototype, we will be studying power,

area, and bandwidth tradeoffs. By analyzing the performances of these parameters, we

will eventually map a Pareto optimal curve of the design space. The results of the project

will provide valuable data for future research related to developing network switch

designs. As we consider how to commercialize this project, it becomes useful to

understand the market that we will be entering. In this paper, we will use Porter’s Five

Forces as a framework to determine our market strategy (Porter, 1979).

TRENDS
 First, we will explore some of the trends in the semiconductor and computing

industries that motivate our project. One of the most important trends in technology is the

shift toward cloud computing in both the consumer and enterprise markets. On the

enterprise side, we are observing an increasing number of companies opting to rent

computing and storage resources from companies such as Amazon AWS or Google

Compute Engine, instead of purchasing and managing their own servers (Economist,

	
 Mistry	
 8	

2009). The benefits of this are multi-fold. Customers gain increased flexibility because

they can easily scale the amount of computing resources they require based on varying

workloads. These companies also benefit from decreased costs because they can leverage

Amazon’s or Google’s expertise in maintaining a high degree of reliability. We are

seeing that these benefits make outsourcing computing needs not only standard practice

for startups, but also an attractive option for large, established companies because the

benefits often outweigh the switching costs.

 As warehouse scale computing consolidates into a few major players, the

economic incentive for these companies to build their own specialized servers increases.

Rather than purchasing from traditional server manufactures such as IBM or Hewlett-

Packard, companies like Google or Facebook are now operating at a scale where it is

advantageous for them to design their own servers (Economist, 2013). Custom built

hardware and servers allow them to optimize systems for their particular workloads. In

conjunction with the outsourcing and consolidation of computing resources, these

internet giants could potentially become the primary producers of server hardware, and

thus become one of our most important target customers as we bring our switch to

market.

 On the consumer side, we have seen a rapid rise in internet data traffic in recent

years. Smartphones and increasing data speeds allow people to consume more data than

ever. Based on market research in the UK, fifty percent of mobile device users access

cloud services on a weekly basis (Hulkower, 2012). The number of mobile internet

connections is also growing at an annual rate of 36.8% (Kahn, 2014:7). Data usage is

growing exponentially as an increasing number of users consumes increasing amounts of

	
 Mistry	
 9	

data. Moreover, the Internet of Things (IoT) is expected to produce massive new amounts

of traffic as data is collected from sensors embedded in everyday objects. This growth in

both data production and consumption will drive a strong demand for more robust

networking infrastructure to deliver this data quickly and reliably. This will present a

rapidly growing market opportunity in the next decade (Hoover’s, 2015). Overall, the

general trends in the market suggest a great opportunity for commercializing our product.

 As the IoT, mobile internet, and cloud computing trends progress, they will all

drive greater demand for more efficient data centers and the networking infrastructure to

support further growth. Concurrently, the pace of advances in semiconductor fabrication

technology has historically driven rapid performance and cost improvements every year.

However, these gains have already slowed down significantly in recent years, and are

expected to further stagnate over the next decade. We are rapidly approaching the

physical limits of current semiconductor technology. As a result, we observe a large shift

from single core computing to parallel systems with many distributed processing units.

With no new semiconductor technology on the immediate horizon, these trends should

continue for the foreseeable future.

INDUSTRY AND COMPETITIVE LANDSCAPE
 Next, we will examine our industry and competitive landscape. The

semiconductor industry is comprised of companies that manufacture integrated circuits

for electronic devices such as computers and mobile phones. This is a very large industry,

consisting of technology giants such as Intel and Samsung, with an annual revenue of

eighty billion dollars in the United States alone (Ulama, 2014:19). Globally, the industry

revenue growth was a relatively modest 4.8% in 2013 (Forbes, 2014). However, as cloud

computing becomes more prevalent, we expect that the need for better hardware for data

	
 Mistry	
 10	

centers will continue to rise, and the growth of this sector will likely outpace the overall

growth of the semiconductor industry.

 Although the sector is growing rapidly and the demand for networking

infrastructure is high, competition is fierce in both telecommunications and warehouse

scale computing. There are many well established networking device companies such as

Juniper Networks, Cisco, and Hewlett-Packard. Large semiconductor companies such as

Broadcom and Mellanox, along with smaller startups such as Arteris and Sonics, are also

designing integrated switches and network on chips (NoC).

 Specifically, one of our most direct competitors is Broadcom. In September of

2014, Broadcom announced the StrataXGS Tomahawk™ Series (Broadcom, 2014). This

product line is targeted towards Ethernet switches for cloud-scale networks. It promises

to deliver 3.2 terabit-per-second bandwidth. This new chip will allow data centers to

vastly improve data transfer rates while maintaining the same chip footprint (Broadcom,

2014). It is designed to be a direct replacement for current top-of-rack as well as end-of-

row network switches. This means that the switching costs are extremely low, and it will

be very easy for customers to upgrade their existing hardware. Another key feature that

Broadcom is offering is a packaged software that will give operators the ability to control

their networks for varying workloads (Broadcom, 2014). The Software Defined Network

(SDN) is proprietary software customized for the Tomahawk family of devices. This

software might be a key feature that differentiates Broadcom’s product from other

competitors.

We distinguish ourselves from these companies by targeting a very focused niche

market. For example, Sonics has found its niche in developing a network on chip targeted

	
 Mistry	
 11	

towards the mobile market. Their product specializes in connecting different components

such as cameras, touch screens, and other sensors to the processor. We find our niche in

fulfilling a need for a high speed high radix switch in the warehouse scale computing

market. Data centers of the future will be more power hungry and will operate at much

faster rates (Hulkower, 2012). Therefore, our product aims to build more robust systems

by minimizing power consumption while maximizing performance.

The semiconductor industry already competes heavily on the basis of price, and as

performance gains level off, we expect this competition to increase (Ulama, 2015, p. 27).

As a new entrant, we want to avoid competing on price with a distinguished product. As

previously mentioned, our switch product is meant to enable efficient communication

between collections of processors in data centers. However, it also has potential

applications in networking infrastructure. Given the strong price competition within the

industry, we would want to focus on one or the other in order to bring a differentiated

product to market.

 Another force to consider is the threat of substitutes, and we will now examine

two distinct potential substitutes: Apache Hadoop and quantum computing. Apache

Hadoop is an open source software framework developed by the Apache Software

Foundation. This framework is a tool used to process big data. Hadoop works by

breaking a larger problem down into smaller blocks and distributing the computation

amongst a large number of nodes. This allows very large computations to be completed

more quickly by splitting the work amongst many processors. The product’s success is

evidenced by its widespread adoption in the current market. Almost every major

	
 Mistry	
 12	

company that deals with big data, including Google, Amazon, and Facebook, uses the

Hadoop framework.

Hadoop, however, comes with a number of problems. Hadoop is a software

solution that shifts the complexity of doing parallel computations from hardware to

software. In order to use this framework, users must develop custom code and write their

programs in such a way that Hadoop understands how to interpret them. A high

throughput and low latency switch will eliminate this extra overhead because it is purely

a hardware solution. The complexity of having multiple processors and distributed

computing will be hidden and abstracted away from the end user.

 The other substitute we will look at is quantum computing. Quantum computing

is a potential competing technology because it provides a different solution for obtaining

better computing performance. In theory, quantum computers are fundamentally different

in the way that they compute and store information, so they will not need to rely as

heavily on communication compared to conventional processors. However, it is unclear

whether practical implementations of quantum computers will ever be able to reach this

ideal. Currently, only one company, D-Wave, has shown promising results in multiple

trials; however, their claims are disputed by many scientists (Deangelis, 2014).

Additionally, we expect our solution to be much more compatible with existing software

and programming paradigms compared to quantum computers, which are hypothesized to

be very good for running only certain classes of applications. Therefore, switching costs

are expected to be much higher with quantum computers. Because quantum computing is

such a potentially disruptive technology, it is important to consider and be aware of

advancements in this field.

	
 Mistry	
 13	

MARKET
 Next, we will examine two different methods of commercializing our product:

selling our design as intellectual property (IP), or selling a standalone chip. Many

hardware designs are written in a hardware description language such as Verilog. This

code describes circuits as logical functions. Using VLSI (Very Large Scale Integration)

and EDA (Electronic Design Automation) tools, a Verilog design can be converted into

standard cells and manufactured into a silicon chip by foundries. If we were to license our

IP, a customer would be able to purchase our switch and integrate it into the Verilog code

of their own design.

 Some key customers for licensing our IP are microprocessor producers. The big

players in this space are Intel, AMD, NVIDIA, and ARM. Intel owns the largest share of

microprocessor manufacturing, and it possesses a total market share of 18% in

semiconductor manufacturing (Ulama, 2014:30). Microprocessors represent 76% of

Intel’s total revenue, making it the largest potential customer in the microprocessor space

(Ulama, 2014:30). AMD owns 1.4% of the total market share, making it a weaker buyer

(Ulama, 2014:31). While Intel represents a very strong force as a buyer because of its

power and size, they are still an attractive customer. If our IP is integrated into their

design, we will have a significant share in the market.

 Another potential market is EDA companies themselves. We can license our

product to EDA companies who can include our IP as a part of their libraries. This can

potentially create a very strong distribution channel because all chip producers use these

EDA tools to design and manufacture their products. Currently, EDA is a $2.1 billion

industry, with Synopsys (34.7%) and Cadence (18.3%) representing 53% of the total

	
 Mistry	
 14	

market share (Boyland, 2014:20). Having our switch in one of these EDA libraries would

result in immediate recognition of our product by a large percentage of the market.

 Another option for going to market would be selling a standalone product. This

means that we will design a chip, send our design to foundries to manufacture it, and

finally sell it to companies who will then integrate the chip into their products. This

contrasts with licensing our design to other semiconductor companies. Licensing our

design would allow our customers to directly embed our IP into their own chips. One

downside of manufacturing our own chip is the high cost. Barriers to entry in this

industry are high and increasing, due to the high cost of production facilities and low

negotiation powers of smaller companies (Ulama, 2014:28). Selling a standalone chip

versus licensing an IP also targets two very different customers—companies who buy

parts and integrate them, or companies who manufacturer and sell integrated circuits.

 The main application of our product is in warehouse scale computing. The growth

in cloud computing and media delivered over the internet means that demand for servers

will see considerable growth (Ulama, 2014:8). High-speed high-radix switches will be

essential in the future for distributed computing to scale (Binkert, 2012:100). In a data

center, thousands of servers work together to perform computations and move data. Our

product can be integrated in network routers connecting these servers together.

Companies such as Cisco and Juniper, who supply networking routers, are our potential

buyers. They purchase chips and use them to build systems that are sold to data centers.

Our product can also be integrated directly inside the servers themselves. Major

companies producing these servers include Oracle, Dell, and Hewlett-Packard. These

companies design and sell custom servers to meet the needs of data centers. As the

	
 Mistry	
 15	

number of processing units and memories increase in each of these servers, a high-radix

switch is needed to allow efficient communication between all of these subsystems.

 In order to enter the market strategically, we need to consider our positioning. The

market share of the four largest players in the networking equipment industry—our target

customers—has fallen by 5.2% over the past five years (Kahn, 2014:20). The competition

is steadily increasing, and the barriers to entry are currently high but decreasing (Kahn,

2014:22). With the influx of specialist companies offering integrated circuits, new

companies can take advantage of this breakdown in vertical integration (Kahn, 2014:22).

This means that the industry may expect to see a rise in new competitors in the near

future. With the increase in competition among the buyers, their power is expected to

decrease. Thus, if we have a desirable technology, we may be in a strong position to

make sales. Competition in server manufacturing is also high and increasing with low

barriers of entry (Ulama, 2014:22). This competitive field in both networking equipment

and data center servers is advantageous for us because these companies are all looking for

any competitive edge to outperform each other. A technology that will give one of these

companies an advantage would be very valuable.

 In order to create a chip, we will need to pay a foundry to manufacture our

product. Unfortunately, although there is healthy competition among the top companies

in the semiconductor manufacturing industry, prices have remained relatively stable

because of high manufacturing costs and low margins (Ulama, 2014:24). Because custom

and unique tools are required for producing every chip, there are very high fixed costs

associated with manufacturing a design. Unless we need to produce very large volumes

of our product, the power of the foundries, our suppliers, is very strong. The barriers of

	
 Mistry	
 16	

entry for this industry are extremely high, and we don’t expect to see much new

competition soon. EDA tools developed by companies such as Synopsys and Cadence are

also required to create and develop our product. As discussed in previous sections, these

two companies represent more than half of the market share. As a result, small startups

have weak negotiation power. Both our suppliers, foundries who manufacture chips and

EDA companies that provide tools to design chips, possess very strong power largely in

the form of fixed costs.

CONCLUSION
 In this paper, we have thoroughly examined a set of relevant trends in the market

and, using Porter’s Five Forces as a framework, conducted an analysis of the

semiconductor industry and our target market. We have concluded that our project will

provide a solution for a very important problem, and is well positioned to capitalize on

projected industry trends in the near future. We have proposed and analyzed two different

market approaches - IP licensing and selling discrete chips - and weighed the pros and

cons of each. We have surveyed the competitive landscape by looking at industry

behaviors and researching a few key competitors, as well as thinking about potential

substitutes. With all of this in mind, we can carefully tailor our market approach in a way

that leverages our understanding of the bigger picture surrounding our technology.

	
 Mistry	
 17	

IP Strategy
Distributed computing is rapidly growing due to demand for high performance

computation. Today, computers have multiple cores to divide and solve complex

computational problems. In the near future, they will have many more cores which will

need to work in unison. In this project, we are designing a high-radix router which will

serve as an interconnect between processor cores and memory arrays in data centers. Our

project addresses the problem of transferring large amounts of data between processors

and memories to achieve high speed computation. It is a part of ongoing research in

Berkeley Wireless Research Center (BWRC) for building hardware for next generation

data centers.

The router we are designing is unique among other routers available today in

several ways. First, it is a high-radix router which means it can be used to direct traffic to

and from a large number of endpoints. Second, the router can support very high

bandwidth. We have designed such a high-performing router by proposing a novel

system architecture based on a few key design decisions from the results of our design

space exploration. These design decisions differentiate our router from existing designs in

the commercial and research domains, and would form the core of our patent application.

If we are successful in implementing our proposed design changes, then the router

design can qualify for a patent. We would apply for a utility patent since the router will

produce a useful tangible result like increased bandwidth. One of our marketing strategies

is to sell the router as a standalone chip, which means we will be mass producing the

router from a chip foundry. This makes it an article of manufacture, another quality of a

utility patent. In addition to qualifying for one of the patent categories, our router can be

	
 Mistry	
 18	

considered novel invention since it is a high radix router with up to 256 ports. This is

much higher than any others that we have come across during our literature review.

Patenting our novel design will give us a huge competitive advantage because we

would be the first to develop a petabit bandwidth router. In general, the semiconductor

industry is highly litigiousness because of rapid change in the technology each year.

Many lawsuits are filed every year between rivals like Broadcom, Qualcomm, and

Samsung. Furthermore, many of these companies have very deep pockets, along the

motivation and resources to rigorously protect their patent portfolio. Therefore, before

commercializing our technology, we must to exercise careful scrutiny to ensure we do not

infringe on anyone else’s patents. In this environment, it also becomes necessary for us to

hold our own patents, both to keep others from copying our technology and to prevent

them from coming after us with lawsuits. However, as a small startup, we would have to

weigh any sort of legal action very carefully, as we would likely not have sufficient

funding to carry out protracted legal battles.

The primary risk of choosing not to patent our novel router architecture would be

forfeiting the legal protections that a patent grants. As a small company starting out, we

would not provide much value as to our customers beyond our technological advantage.

Without a patent, we risk allowing a much larger company to copy our technology.

Combined with their vast resources, this could effectively put us out of business. While

we might not actually be able to defend our patent, having one would at least deter others

from blatantly copying us.

Something else to consider here would be how easy we think it would be for our

technology to be reverse engineered. Since our project is conducted in a research setting

	
 Mistry	
 19	

under BWRC, any major breakthroughs would most likely be published and peer

reviewed, rather than kept as a trade secret. Furthermore, since our technology would be

based on a novel architecture rather than an implementation detail, others would almost

certainly be able to engineer their own solutions based on our architecture, depending on

how much we decide to publish. Thus, without a patent, we would have no way of

controlling or profiting from our technology.

 A potential secondary risk of not patenting might be that we would be passing on

the chance to attract potential investors. In addition to the legal protection described

above, holding a patent could have the additional effect of demonstrating strength to

investors in multiple ways. First, the patent would differentiate us from our competitors;

it gives us a sustainable, legally enforceable competitive advantage. Second, the patent

would signal a high level of expertise to investors; it can signal that we are truly experts

in our particular domain. Finally, the patent could provide assurances to investors that

other companies will not be able to patent something similar and attempt to come after us

for infringement.

With all of this in mind, we would most definitely want to obtain a patent for our

novel technology. Practically, the extent of legal protection we might receive remains

questionable given our limited financial resources, but a patent still grants us many other

advantages which could provide a huge boost to a company in its early stages. From this

preliminary analysis, the benefits far outweigh to costs, and we would thus want to

pursue a patent as soon as possible. We will conduct a thorough patent search with

assistance from a patent attorney to make sure our invention has not previously been

patented and does not infringe on any existing patents.

	
 Mistry	
 20	

Technical Contributions
OVERVIEW

This section constitutes my contribution in exploring the design space and

optimizing a router (a.k.a. switch network) to enable faster and larger bandwidth of data

transfer. For the project, we amended the working prototype of the router created by

Daniel Becker (2012). During the course of the year, we explored different

implementations of the working prototype and scale it for faster and larger bandwidth

communication. The final outcome is a scaled version of the original prototype and a

quantitative analysis of its area, power, and performance.

 Our team identified a set of tasks that would strategically lead us to

achieve the project goal within the timespan of nine months. The tasks includes study of

materials relevant to the network-on-chip (NoC) routers, study the Verilog code of the

prototype router, set-up of the CAD tools to design and test the router, and perform

design space exploration on the router to achieve maximum feasible throughput. The

study of materials and Verilog code prepared us with the background of the state-of-the-

art in the NoC domain, and it also provided us with a convenient launch pad to start with

the design space exploration. As with many other design methodologies, CAD tools have

a major impact on how efficiently we can design the router. Therefore, setting-up of the

necessary tools early on was imperative for initiating the design space exploration. These

CAD tools are prevalent in the semiconductor industry for digital circuit designing and

are specifically called as Very Large Scale Integration (VLSI) tools. Following the tools

set-up, we implemented different design parameters for the router and reported its area,

power, and timing details to narrow down the scope of optimization focus.

	
 Mistry	
 21	

Although I was involved each of the above mentioned tasks, my specific focus

began with studying different types of Allocators that are responsible for assigning “fair”

amount of available resources to the incoming agents competing for multiple resources

within the router. Also, I performed the Verilog code study of the separable input first

allocator implemented in the prototype. The study of allocators filled into the overall

structure of the router whose other components were studied by other team members.

As mentioned earlier, setting-up of the VLSI tools was one of the important

project requirements; therefore I next focused on to integrating the VLSI tools provided

by Berkeley Wireless Research Center (BWRC). Although all the team members initiated

with setting up the tools, Ian Juch successfully kept the infrastructure in place. The tools

setup enabled the evaluation of initial results of the router prototype in terms of its area,

power, and timing requirements. Also, the tools provided the functional verification of

the prototype router. In functional verification a set of input vectors is applied at the input

channel of the router along with the information for the output channel where the input is

expected to appear. It was an additional learning curve in understanding the functioning

of the router.

After the tool set up, my next focus was to perform design space exploration in

which I increased the size of the router to 32-ports from the 5-ported baseline design.

This was the first iteration of the design space exploration, the result of which was

supposed to provide a pointer to areas of further optimization in the router. The result of

the first iteration underscored the extremely long run time by the VLSI tools to process

the design, and thus run time optimization became my next focus of the project. The

results of the run time optimization indicated the bottleneck in router’s crossbar

	
 Mistry	
 22	

architecture, which became the next focus of the optimization. The details of steps I took

for run time optimization and redesign of crossbar architecture and their results are

mentioned in Methods and Materials and Results and Discussion sections of the paper.

Rest of the paper is organized as Literature Review discussing the materials I studied,

Methods and Materials explaining the specific methods I performed incrementally, and

Results and Discussion showing the obtained results.

LITERATURE REVIEW
A typical router consists of input and output unit, crossbar switch, virtual channel

(VC) allocator, and switch allocator as shown in the figure below sourced from Dally:

The input data (a.k.a incoming flit or input flit) comes into the input unit and is

routed to one of the output units through a crossbar switch. Because any incoming data

may want to reach to any of the output units, an efficient scheduler is required to ensure

that maximum possible incoming data is routed to the output units without creating

congestion along the path. VC allocator and switch allocator performs the task of

Note:	
 A	
 router	
 may	
 contain	
 additional	
 components	
 or	
 may	
 contain	
 fewer	
 components	
 than	
 what	
 is	
 shown	
 in	

the	
 figure.	
 The	
 figure	
 best	
 resembles	
 to	
 the	
 type	
 of	
 router	
 we	
 worked	
 on.	

Figure	
 1	
 Virtual	
 Channel	
 type	
 Router

	
 Mistry	
 23	

efficiently scheduling the incoming flits to the output port. VC allocator allocates a

virtual channel for the incoming flit before assigning a physical channel that connects

input to the output. Ian Juch (2015) and Bhavana Chaurasia (2015) have discussed VC

allocators and switch allocators respectively in detail. In this section, I will first present

the background of switches and their evolution from telecommunication networks to their

VLSI adaptation as high-speed switch fabrics. After that I will talk in detail about

different allocation techniques that are used as scheduler in VC allocators and switch

allocators.

Switching networks can be traced from as old as the invention of telephone and its

network. Ahmadi and Denzel provides a brief history of how the shortcomings of earlier

telecommunication networks led to the evolution of the concept of packet switching that

provides flexibility in terms of bit-rate of data transfer and can be accommodated as on-

chip device that reduced its cost with the advancement in semiconductor industry.

According to them, conventional telecommunication networks were built on the principle

of circuit switching techniques that were based on either “space division multiplexing

(SDM), time division multiplexing (TDM), or the combination of the both” (Ahmadi and

Denzel 1091). In SDM the constant stream of data is dedicated to a single channel that

carries only the specific data type and so suffers from inefficiency when one channel is

operated at higher rate than other because the channel with lower data rate may remain

idle while the channel with higher data rate may get congested. TDM allows different

data streams to be passed over a single channel by time multiplexing different data

streams over the channel. However, TDM also suffers from inefficiency when the data

rates of the data streams are different.

	
 Mistry	
 24	

Source:	
 Principles	
 and	
 Practices	
 of	
 Interconnection	
 Networks	

Packet switching came into existence as a solution for carrying data streams at

multiple data rate efficiently and it is this principle of packet switching that is used in

high-speed switch fabrics. Ahmadi and Denzel surveyed various switch fabric

architectures all of which employs resource (channel path from input to output) sharing

and some kind of scheduler to achieve fairness in resource allocation. The various

architectures are classified based on their internal structure and are categorized as:

“Banyan and buffered banyan-based fabrics, Sort-banyan-based fabrics, disjoint-path

topology, crossbar fabrics, time division fabrics, and fabrics with shared medium”

(Ahmadi and Denzel 1092). For the purpose of brevity, I will restrict our discussion to

crossbar fabrics because the router for our project is based on crossbar structure.

Figure 2 shows a simplest possible crossbar network that contains switch matrix

connecting inputs and outputs. Intuitively, we can see that any one of the inputs want to

go to any one of the outputs will create a contention at the output in the case when

multiple inputs want to go to the same output. To minimize the contention various

upgrades to the conventional crossbar network have been proposed all of which can be

classified as input queue-, output queue-, cross points queue-, or the combination of all

Figure	
 2	
 Simple	
 Crossbar

Figure	
 3	
 Crossbar	
 with	
 input	
 and	
 output	
 buffers

	
 Mistry	
 25	

depending upon the buffer location in the crossbar. A typical example of input and output

queue (buffer) crossbar is shown in figure 3. The idea is to buffer the data at either one of

these queues and schedule the buffered data to the output using various heuristics. The

scheduler that schedules the data through the crossbar is called arbiter that arbitrates the

data modestly such that maximum possible stored data reaches at their respective output

destination, although some of the buffered data may never reach to its output destination

in which case the agent again sends the data from the source. A detailed discussion about

the arbiters is covered by Yale Chen (2015). Mhamdi and Hamdi have discussed

crossbars achieving higher throughput using sophisticated scheduling algorithm and

improved structure.

Having talked about the evolution of switching networks and crossbars that is one

of the core components of the switching network, I’ll now discuss allocators – a

scheduling mechanism that allocates resources (data path from input to output) to the

incoming agents. The allocators discussed here will find its applications in building VC

allocators and switch allocators discussed in Technical Contribution section of Ian Juch

(2015) and Bhavana Chaurasia (2015) respectively. Selecting a proper allocation

mechanism is a design tradeoff for the routers in terms of latency and area (Ye Lu 358). It

means that a simple allocation technique may be cheap in term of the silicon area, but it is

less efficient in providing fairness to the resource allocation and thus increases the

latency for the input data to reach to the output destination. On the other hand, a more

complex allocation scheme can provide high throughput by allocating resources

efficiently thereby decreasing latency, but the silicon area of such complex allocation

scheme is larger.

	
 Mistry	
 26	

Allocators works on the principle of: “i) resources are only granted to agents that

requested them ii) each agent is granted access to at most one resource and iii) each

resource is granted to at most one agent” (Becker 28). To demonstrate the operation,

consider the following case:

Figure 4 shows a request, grant, and efficient grant matrix. Each row and column

represents an agent and a resource respectively. Thus, there are three agents and three

resources; agent 0 requested for resource 0,1, and 2; agent 1 requested resource 0 and 1;

agent 2 requested resource 0. Figure 4 (grant matrix) shows the resource allocation by an

inefficient allocator because it was only capable of allocating resource to agent 0 and 1

represented by dark dot. Agent 2 requested for resource 0 only that got allocated to agent

0 and thus according to principle (iii) resource 0 cannot be allocated to agent 2. Figure 4

(efficient grant matrix) shows a fair and efficient allocator that is capable of allocating

resources to all agents. Here none of the resources and agents is idle, thus demonstrating

an efficient allocation.

Different types of allocators are proposed based on the allocation mechanisms.

Becker and Dally discuss techniques that include separable allocation, wavefront

allocation, and maximum-size allocation. Separable allocators are of two types: separable

Figure	
 4	
 Request	
 matrix,	
 grant	
 matrix,	
 and	
 efficient	
 grant	
 matrix

	
 Mistry	
 27	

input first in which first arbitration is done on incoming agents requesting resources and

then second round of arbitration is done on the resources to ensure each agent is granted

at the most only one resource; on the other hand, separable output first straight away

forward all the incoming requests to the associated resources and arbitration is done at the

output. Separable allocators are attractive for high-radix router because its delay (latency)

only increases logarithmically with the increase in port size, however they suffers the

disadvantage of weak fairness due to independent arbitration in the two rounds (Becker

31).

Poor fairness of separable allocation schemes can be overcome by implementing a

wavefront allocation scheme shown by Tamir and Chi. Wavefront allocator arbitrates

along the diagonal of the request-resource matrix (figure 3c) based on the priority cell

selection as opposed to linear arbitration employed by the separable allocators. The

grants generated along the diagonal of the request matrix are guaranteed to be singular

and thus maximum allocation is possible by iterating through the diagonals of the matrix.

Tamir and Chi (22) evaluated the performance of wavefront scheme in comparison with

other schemes and underscored its best performance with marginal complexity relative to

other schemes for high-radix routers.

METHODS AND MATERIALS
This section will discuss methods employed and materials used during different

phase of the project. My project focus initiated with setting up of the VLSI tools after

which I executed a 32-radix (32-ports) router through various stages of the tools to

validate correct functioning of the tools and the router design. Next, I switched the focus

on to optimizing the runtime of the tools for large radix (64-radix) router. Lastly, I

redesigned the crossbar architecture to improve the runtime and area of the router. Tools

	
 Mistry	
 28	

setup for the router design began in the last week of October’14 and lasted throughout

December’14. Knowledge gained during the coursework of Introduction to Digital

Integrated Circuits (EE141) was used to setup the tool-flow. Tool includes CAD

software from Synopsys (EDA manufacturer) called Design Compiler (DC) and IC

Compiler (ICC). First step in the tool setup is to create a bashrc (UNIX file system) file

that contains the path to the tools location on the server. Next step is to create a separate

build directories for DC and ICC containing relevant scripts that executes necessary

commands needed to synthesize and place and route the router design (details of DC and

ICC commands are covered later in this section). Final step is to create a Makefile that is

a text file that links and executes various source files in order. The scripts containing DC

and ICC flow and their respective Makefiles were all built by BWRC research team, we

just used the existing infrastructure for our project.

After successful tools setup, I executed a 32-radix router design through the tool

flow. During the execution, DC complier synthesized a gate-level netlist of the Verilog

code. Gate-level netlist converts the Verilog behavioral code into a circuit netlist

containing logical gates. IC complier then generates a floorplan of the design and

performs the placement of the standard cells of the respective gates. It also performs the

routing of the standard cells with each other and with the synthesized clock tree. After

each step during the design execution, maintaining the correct functionality of the router

design is very important. Therefore, functional verification was carried out for Verilog

design, synthesized design, and placed and routed design using the provided test bench.

The Verilog design and synthesized design passed the functional check with the test

bench that was designed to provide “ideal” input stream of data. The input data is

	
 Mistry	
 29	

provided at the rising edge of the clock and it failed after placement and route (P&R)

stage because, the P&R design emulates close to real life circuit and thus the data

appearing at the input should take hold time into account. I diagnosed that since the input

data arrived right at the clock edge, P&R design encountered setup time violation and

resulted in functional error. After delaying the input data to account for the hold time, the

P&R design passes the functional check.

Figure 5 shows the “ideal” behavior of the test bench where the input data was

applied to the router right at the clock edge violating the setup time, while the violation

was corrected in figure 6 by providing the delay at the input of the router.

Figure	
 5	
 Input	
 data	
 at	
 clock	
 edge

Figure	
 6	
 Input	
 data	
 after	
 clock	
 edge

	
 Mistry	
 30	

After functional verification, my focus shifted towards optimizing the runtime of

the design execution through the tool flow. From hereon the term design execution in

context to the runtime optimization is equivalent to performing place and route on the

design. One of the two possible ways to go about optimization is to perform the

hierarchical execution of the design in which instead of executing entire design, the

hierarchical components of the design are executed incrementally to identify the specific

module of the design that takes maximum runtime (Yale Chen 2015). Another way for

1st	
 round	

2nd	
 round	

Figure	
 7	
 Conventional	
 flow	
 (left)	
 and	
 modified	
 flow	
 (right)

	
 Mistry	
 31	

the optimization, that I followed, is to strategically perform placement and routing such

that the tools execute simpler placement and routing before performing more arduous

optimization. In order to explain the runtime optimization, first I will show the default

placement and routing procedure and then show the modified version.

Figure 7 (left) shows the conventional tool flow. It starts with generating a

synthesized netlist using DC (compile_ultra command). Next, during the floorplan stage

IC complier creates a floor plan for the chip design where it indicates the location of

various standard cells in the design. It also specifies how close each standard cell is

placed relative to each other and thus provides an initial estimate for the area of the chip.

Further, floor planning includes deriving power and ground connection for the chip and it

also specifies the routing specific to each metal layer in the design. The floor plan along

with the synthesized netlist is fed to the IC complier for placement during which all the

standard cells are placed into the location specified during the floor plan stage. In

conventional flow, the placement and its optimization are done as a single step, which is

a time consuming process. After the placement, clock tree synthesis (CTS) is carried out.

CTS generates a buffer tree that takes the primary clock and distributes equally to all

parts of the design such that the fanout (load) is balanced in the entire design. Further

optimization is done after the placement and CTS to ensure the design meets the

specification provided in the floor plan. Finally, the clock tree and the standard cells are

routed and optimized for best possible timing and area requirements. In my opinion, the

two drawbacks in the conventional flow are independent generation of synthesized netlist

and the floor plan for the actual chip and the two iterations of the placement optimization

that is an expensive runtime process.

	
 Mistry	
 32	

The two drawbacks of the conventional flow are mitigated in the optimized flow

shown in figure 7 (right). Similar to the conventional flow, first the synthesized netlist is

generated from the Verilog code and is fed for the floor planning. The floor planning

information is then again fed to DC to re-synthesize the design conducive to the floor

planned design. The newly generated synthesized netlist is then fed to IC compiler for

placement during which first the initial placement is done unlike direct placement and

optimization in the conventional flow. The advantage of the initial placement is that it

reports the bottlenecks of the design in terms of congestion, power, timing, etc. Thus, the

following placement optimization can be targeted towards optimizing the bottleneck of

the design. Unlike the conventional flow, the clock tree synthesis in the optimized flow is

performed during the placement optimization stage thereby, eliminating additional

placement-optimization iteration performed in the conventional flow. Finally, the clock

routing and chip routing are performed similar to that in the conventional flow.

PS: The runtime optimization for the tools was referenced from the Design compiler and

IC compiler user manual from [12] and [13] respectively.

	
 Mistry	
 33	

The results of hierarchical tool flow setup by Yale Chen highlighted router’s

crossbar as the bottleneck in terms of runtime, and this was confirmed by visual

inspection of the router schematic in the DVE GUI. Both hierarchical tool flow results

and router schematic motivated me to redesign the crossbar architecture. Figure 8 and 9

shows the initial and optimized design respectively.

Figure	
 8	
 Original	
 crossbar	
 architecture

Figure	
 9	
 New	
 crossbar	
 architecture	

	
 Mistry	
 34	

Initial design consisted of number of multiplexers (mux) equal to the number of

ports, and each mux takes in input from all the input ports. This architecture can be

efficient for design that has input-output ports less than 32. Our targeted 64-ported design

blows up in area and runtime as the number of mux scaled with number of input-output

ports. The modified version uses a single mux that takes in input from all the input ports.

The select signals comes from a shift register that is clocked #ports times faster than the

original clock, for example, for 64-ports design the shift register needs to be clocked 65

times faster than the original clock to produce the select signals corresponding to each

input ports. The output of the mux is fed to another shift register that gets fed to the

output channel of the router. The resultant new crossbar architecture has pipelined the

overall router architecture. On the down side, producing fast clock that is #ports times

faster than the original clock can be impractical and therefore the practical solution is to

implement more multiplexers in the design that can reduce the ratio of fast clock and the

original clock. As an example, increasing the multiplexers from one to four will reduce

the ratio by factor of four, thus the new fast clock will have to be 16 times faster than the

original clock. Clearly, selecting number of multiplexers is a design tradeoff with

extremes at single multiplexer and number of multiplexers equal to the number of ports.

Results and Discussion section shows this tradeoff in plot of delay versus area.

RESULTS AND DISCUSSION
In this section, I will discuss results pertaining to functional verification, design

space exploration, and runtime optimization. Functional verification provides the output

of the design for the given input vectors. The output varies with variations of the input

and thus it is important to perform functional verification with as many inputs

combination as possible. Provided test bench generates the stream of input packets of

	
 Mistry	
 35	

fixed length to be injected at each input ports. At the output, the flit sink collects the

output flits and accounts for number of input flits versus number of output flits.

Functional verification for various port sizes were measured and for each router

configuration, flit size was fixed at 64bits and each input channel consisted of 128 bytes

buffer. The result is tabulated in Table 1.

Table 1 shows total number of flits sent to the router and number of flits that came

out of the router for different port sizes. Port sizes 5 and 16 were successfully able to

produce all the flits at the output while, for port sizes 32 and 64 number of flits going into

the router were decreased. Moreover, for 32 and 64 ports router not all incoming flits

comes out of the router successfully. This can be attributed to the fact that as the port size

increases the efficiency of arbiter for resource allocation decreases and part of the flits are

lost within the router itself.

Number of Ports

in Router

Incoming

Flits

Outgoing Flits

5 13260 13260

16 20234 20234

32 11995 6226

64 5210 3790

Table	
 1	
 Functional	
 verification	
 results	

	
 Mistry	
 36	

 Area (mm2)
Power Critical Path

(nS) Total (W) Leakage (W)

5-radix 0.18 0.022 0.016 3.51

32-radix 2.25 0.34 0.284 8.85

64-radix 11.65 1.27 1.15 11.81

Table	
 2	
 Area,	
 power,	
 and	
 timing	
 for	
 routers

 Area (mm2)
Power

Critical Path
(nS) Total (W) Leakage (W)

128-radix 40 7.35 6.75 NA

256-radix 160 36.75 33.75 NA

Table	
 3	
 Extrapolated	
 area,	
 power,	
 and	
 timing

Table 2 reports the area, power, and timing of 5-, 32-, and 64-radix routers after the place

and route stage. As the size of the router is doubled its area increases by a factor of ~4.

Similarly, the power number grows by the factor of ~5, while the critical path length has

no consistent pattern. Original goal of the project was to design a high radix for example

128-radix or 256-radix router, so if we extrapolate the preliminary results from above

table for 128- and 256- radix router then the resultant design will look something like the

one shown in Table 3. Due to run time limitations, we were unable to scale the router

beyond 64 ports and all the subsequent results are based on 64-port router.

 The run time optimization by changing the tool flow resulted in runtime gain of

~3 hours for 32-port router i.e. runtime reduced from original ~8-10 hours to less than 6

hours. However, the gain for 64-port router was insignificant in terms of total run time.

	
 Mistry	
 37	

The new run time with modified tool flow is ~30 hours down from original ~36 hours.

Despite the gain, the modified tool flow didn’t help much.

 As expected, the greatest advantage in terms of reducing the total run time of the

tools and area minimization was achieved by redesigning the crossbar architecture. The

total run time for 64-port router with number of multiplexers equal to 1, 4, and 8 is less

than 15 hours, while for number of multiplexers equal to 32 the run time is ~20 hours.

Each of these configurations has clear run time advantage than the original 64

multiplexers design with the run time of more than 36 hours. However, this advantage

came at the cost of adding extra clock (fast clock) to the router crossbar. For the 64-port

design the magnitude of the fast clock is dependent on the number of multiplexers

implemented in the crossbar architecture, with the smallest number of multiplexer equal

to one that required fast clock to be 65 times faster than the original clock. And for

number of multiplexers equal to the number of input-output ports, fast clock is equal to

the slow clock. Table 4 shows the area, power, and critical path for 64-port router with

different number of multiplexers.

Multiplexer Area
(mm2)

Critical
Path
(nSec)

Power

Leakage
(Watts)

Total
power
(Watts)

1 6.03 10.03 0.486 0.597

4 6.22 10.03 0.506 0.617

8 6.44 10.02 0.522 0.634

32 7.96 10.16 0.659 0.778

64 11.65 11.81 1.15 1.27

Table	
 4	
 Area,	
 critical	
 path,	
 and	
 power	
 with	
 new	
 crossbar	

	
 Mistry	
 38	

 Figure 10 and 11 shows the plots of area versus delay and total power versus

delay for a 64-port router with different number of multiplexers at 10% core utilization.

Based on both the plots, an optimum 64-port router has the delay between 50 to 90nSec

with area ~6.5mm2 and total power of ~0.65 Watts.

	
 Mistry	
 39	

Figure	
 10	
 Area	
 versus	
 delay	
 for	
 different	
 number	
 of	
 multiplexers	

Figure	
 11	
 Power	
 versus	
 delay	
 for	
 different	
 number	
 of	
 multiplexers	

	
 Mistry	
 40	

Conclusion
In conclusion we studied and analyzed a network-on-chip router from various

sources. Following that, we implemented a high-radix router based on Becker’s Verilog

implementation of the router. The run time of the VLSI tools appeared to be primary

bottleneck in scaling the router beyond 64-ports and so we carried out various

optimizations in the tool flow including hierarchical implementation of the tool flow

(Yale Chen 2015), setting optimization flags (Ian Juch 2015), and modifying the tool

scripts. Finally, the modified crossbar architecture reduced the run time from originally

36+ hours down to ~15 hours. It also reduced the area of the router down from ~11 mm2

to ~6-7 mm2. Current outcomes in the router achieves the bandwidth of ~0.4 terabyte,

which is 10,000 times less in magnitude than original goal of peta-bit.

Further improvements in the current router implementation can be achieved by

moving the pipeline register between the allocator. Allocator functions by arbitrating on

the input side first followed by output arbitration. Placing pipelined register between

input and output arbitration will reduce the critical path that is along the feedback path

from allocators to the input channel and will result in further increase in the speed of the

router. However, placing a pipeline register along a feedback path in combinational loop

is challenging in general and requires sophisticated architectural implementation like loop

unrolling. I have finished implementing the pipeline register along the feed back path and

currently in the process of debugging bugs associated with the break up of the feed back

loop.

Like many industry-based projects, the success of our project is also attributed to

the efficient project management implemented by all the team members besides other

factors. Strict adherence to weekly advisor’s and team meeting allowed us to adapt

	
 Mistry	
 41	

different dynamics during the course of the project. Periodic documentation of the results

based on weekly task helped us to constantly analyze the scope of the project and helped

us maneuver from undesirable path. As an example, we realize early on in the spring

semester that due to limitations in the run time of the tools, we should not scale the router

beyond 64 ports without diagnosing and troubleshooting the limitations. This prevented

us from spending resources and time on large ports router and rather kept our focus

maintained in improving the 64-port router. Lastly, excellent offline communication

between the team members catalyzed the task actions for each team members.

Finally, we plan to upload all the project work including tool flow setup (Ian Juch

2015), SRAM integration (Ian Juch and Surabhi Kumar 2015), hierarchical

implementation of the tool flow (Yale Chen 2015), critical path analysis and different

arbiter’s implementation (Bhavana Chaurasia 2015), modified scripts in the tool flow and

redesigned crossbar architecture (Mistry Jay 2015) onto the GIT repo that can be readily

utilized by future team.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 Mistry	
 42	

Bibliography
[1] Becker, Daniel U., “Efficient Microarchitecture for Network-on-Chip Routers,” Phd

thesis. Stanford. August 2012
[2] Dally, William J., and Brian Towles. Principles and Practices of Interconnection

Networks. Amsterdam: Morgan Kaufmann, 2004. Print.
[3] Ahmadi, H.; Denzel, W.E., "A survey of modern high-performance switching

techniques," Selected Areas in Communications, IEEE Journal on , vol.7, no.7,
pp.1091,1103, Sep 1989 doi: 10.1109/49.44557

[4] Juch, Ian., “Technical Contributions to Petabit Switch Fabric Design,” Capstone
Project Report. University of California, Berkeley. March 2015.

[5] Chaurasia, Bhavana., “Technical Contributions to Petabit Switch Fabric Design,”
Capstone Project Report. University of California, Berkeley. March 2015.

[6] Chen, Yale., “Technical Contributions to Petabit Switch Fabric Design,” Capstone
Project Report. University of California, Berkeley. March 2015.

[7] Kumar, Surabhi., “Technical Contributions to Petabit Switch Fabric Design,”
Capstone Project Report. University of California, Berkeley. March 2015.

[8] Mhamdi, L.; Hamdi, M., "CBF: a high-performance scheduling algorithm for
buffered crossbar switches," High Performance Switching and Routing, 2003,
HPSR. Workshop on, vol., no., pp.67,72, 24-27 June 2003 doi:
10.1109/HPSR.2003.1226682

[9] Yoshigoe, K.; Christensen, K.J., "An evolution to crossbar switches with virtual
output queuing and buffered cross points," Network, IEEE, vol.17, no.5, pp.48,56,
Sept.-Oct. 2003 doi: 10.1109/MNET.2003.1233917

[10] Ye Lu; Changlin Chen; McCanny, J.; Sezer, S., "Design of interlock-free combined
allocators for Networks-on-Chip," SOC Conference (SOCC), 2012 IEEE
International, vol., no., pp.358,363, 12-14 Sept. 2012 doi:
10.1109/SOCC.2012.6398332

[11] Becker, D.U.; Dally, W.J., "Allocator implementations for network-on-chip routers,"
High Performance Computing Networking, Storage and Analysis, Proceedings of
the Conference on , vol., no., pp.1,12, 14-20 Nov. 2009 doi:
10.1145/1654059.1654112

[12] Tamir, Y.; Chi, H.-C., "Symmetric crossbar arbiters for VLSI communication
switches," Parallel and Distributed Systems, IEEE Transactions on , vol.4, no.1,
pp.13,27, Jan 1993 doi: 10.1109/71.205650

[13] Design Compiler User Guide. Version F-2011.09, Sept. 2011. Design Compiler.
Synopsys, Mountain View, CA.

[14] IC Compiler Implementation User Guide. Version F-2011.09, Sept. 2011. IC
Compiler. Synopsys, Mountain View, CA.

[15] Clark, Don. “Startup has big plans for tiny chip technology”. Wall Street Journal. 3
May 2011. Accessed 5 April 2015.

	
 Mistry	
 43	

[16] Binkert, N.; Davis, A.; Jouppi, N.; McLaren, M.; Muralimanohar, N.; Schreiber, R.;
Ahn, Jung-Ho, "Optical high radix switch design," Micro, IEEE , vol.32, no.3,
pp.100,109, May-June 2012.

[17] Boyland, Kevin. 2013 IBISWorld Industry Report OD4540: Electronic Design
Automation Software Developers in the US. http://www.ibis.com, accessed
February 13, 2015.

[18] Broadcom. Broadcom Delivers Industry's First High-Density 25/100 Gigabit
Ethernet Switch for Cloud-Scale Networks. Press Release. N.p., 24 Sept. 2014.
Web. 1 Mar. 2015. <http://www.broadcom.com/press/release.php?id=s872349>.

[19] “Computing: Battle of the Clouds”. The Economist. 15 October 2009.
http://www.economist.com/node/14644393?zid=291&ah=906e69ad01d2ee519601
00b7f502595.

[20] Deangelis, Stephen F. “Closing in on Quantum Computing”. Wired. 16 October
2014. http://www.wired.com/2014/10/quantum-computing-close/

[21] Handy, Jim. 2014 Semiconductors A Crazy Industry.
http://www.forbes.com/sites/jimhandy/2014/02/11/semiconductorsacrazyindustry2
/, accessed February 16, 2015.

[22] Hoover’s. “Semiconductor and other electronic component manufacturing: Sales
Quick Report”.
http://subscriber.hoovers.com/H/industry360/printReport.html?industryId=1859
&reportType=sales, accessed February 11, 2015.

[23] Hulkower Billy, “ Consumer Cloud Computing- Issues in the market”, Mintel
(2012).

[24] Kahn, Sarah. 2014 IBISWorld Industry Report 33421: Telecommunication
Networking Equipment Manufacturing in the US. http://www.ibis.com, accessed
February 10, 2015.

[25] Kahn, Sarah. 2014 IBISWorld Industry Report 51721: Wireless
Telecommunications Carriers in the US. http://www.ibis.com, accessed February
26, 2015.

[26] Porter, Michael. “The Five Competitive Forces That Shape Strategy”. Harvard
Business Review. January 2008.

[27] “The Server Market: Shifting Sands”. The Economist. 1 June 2013.
http://www.economist.com/news/business/21578678-upheaval-less-visible-end-
computer-industry-shifting-sands.

[28] Ulama, Darryle. 2014 IBISWorld Industry Report 33441a: Semiconductor & Circuit
Manufacturing in the US. http://www.ibis.com, accessed February 10, 2015.

[29] Ulama, Darryle. 2014 IBISWorld Industry Report 33329a: Semiconductor
Machinery Manufacturing in the US. http://www.ibis.com, accessed February 10,
2015.

[30] Ulama, Darryle. 2014 IBISWorld Industry Report 33411a: Computer Manufacturing

	
 Mistry	
 44	

in the US. http://www.ibis.com, accessed February 10, 2015.

	

