A Dynamic Analysis for Tuning Floating-point Precision

Cuong Nguyen

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-6
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-6.html

February 13, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

A Dynamic Analysis for Tuning Floating-Point Precision

by Cuong Nguyen

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Rowoshe Qs

Professor Koushik Sen
Research Advisor

(02/10/2015)

¥ % %k k %k ¥ X%

O k4

Professor James Demmel
Second Reader

A Dynamic Analysis for Tuning Floating-Point
Precision

Cuong Nguyen

Abstract

Floating-point numbers are widely used to approximate real number arithmetic in applications from
domains such as scientific computing, graphics, and finance. However, squeezing one or more real
numbers into a finite number of bits requires an approximate representation. As a consequence, the
result of a floating-point computation typically contains numerical errors. To minimize the chance
of problems, developers without an extensive background in numerical analysis are likely to use the
highest available precision throughout the whole program. While more robust, this can increase the
program execution time, memory traffic, and energy consumption.

In this work, we propose a dynamic analysis technique to assist developers in tuning precisions
of floating-point programs with the objective of decreasing the program execution time. Our tech-
nique includes two phases. The first phase is a white-box analysis to reduce the precision search
space, entitled Blame Analysis. The second phase is a black-box Delta Debugging based search
algorithm that finds a type configuration that minimizes the set of variables that are required to be
in higher precision, such that the new program, when transformed according to type configuration,
will produces an accurate enough output and runs at least as fast as the original program. Our
preliminary evaluation using ten programs from the GSL library and NAS benchmarks shows that
our algorithm can infer type configurations that result in 4.56% execution time speed up on average,
and up to 40% execution time speed up. In addition, Blame Analysis helps to speed up the analysis
time of the second phase 9x on average.

Contents
[Introduction|. 3
ROverview]o 6
2.1 A Motivating Example| oo oo 6
2.2 Overview of Our Approach| 6
13 Reducing the Precision Search Space using Blame Analysis| 10
3.1 Blame by Example|o oo 10
3.2 Shadow Executionl 12
[3.3 Online Blame Analysis|o 0 000 14
3.4 Handling Branch Divergence| 16
[3.5 Heuristic and Optimization| 17
|4 Minimizing Precision Usage using Delta-Debugging Based Search| 19
4.1 Creating Search Space| o o o 19
4.2 Search Algorithm|. 20
4.3 Validating Configuration|., 22
5 Experimental Evaluation|. o 0o 23
b.1 Experiment Setup| 23
[5.2 Experiment Results]. 24
B3 Discussionl 27
6 Related Workl 30

1 Introduction 3

1 Introduction

Floating-point numbers are widely used in applications from domains such as scientific
computing, graphics, and finance [19]. However, programs that use floating-point numbers
are usually hard to reason about because of a number of numerical errors the program might
have. Indeed, floating-point arithmetic most likely contain roundoff errors because floating-
point numbers are inherently approximations of real values, The following two examples
illustrate how computing with floating-point numbers might be frustrated.

Example 1.1. [19] Consider depositing $100 every day into a bank account that earns
an annual interest rate of 6%, compounded daily. If n = 365 and ¢ = .06, the amount
of money accumulated at the end of one year is 100(1“‘1.//#. Computing this result
using float on an IEEE standard machine yields the result $37615.45 compared to the
exact answer of $37614.05, a discrepancy of $1.40.

Example 1.2. [26] Consider the recurrence u, = 111 — % + % where up = 2 and

u; = —4. Computing ugg with float, double, or long double on an IEEE standard
machine yields the result 99.999999999998948 which is wrong in every single digit
compared with the exact value 6.0067860930312057585. The following table shows
that the computed value diverges from the exact value when n gets bigger.

n Computed Value Exact Value
3 185 18.5
4 9.378378378378379 9.3783783783783783784

30 99.999999999998948 6.0067860930312057585
31 99.999999999998943 6.0056486887714202679

To minimize the chance of problems, developers without an extensive background in
numerical analysis are likely to use the highest precision available throughout the whole
program. While more robust, this approach can increase program execution time, memory
usage or energy assumption. For example, consider the program written by D. Bailey
[4], which we will discuss in greater detail in Section as an example. This program
computes the arc length of an irregular function, written in Fortran. An implementation
using double precision computes a result whose error is about 2x 10713, compared to a second
more accurate implementation using double double precision, but is about 20x slowerﬂ On
the other hand, if double double precision is used only for one carefully chosen variable
in the program, then the result computed is as accurate as if double double precision had
been used throughout the whole computation while being almost as fast as the all-double
implementation. Aside from the Bailey experiment [4], many other efforts [3, 11 23| 25]
have shown that programs implemented in mixed precision can sometimes compute a result
of the same accuracy and be faster than when using solely the highest precision arithmetic.

! The author performed the experiment on an Intel-based Macintosh system, using the gfortran compiler
and the QD package [20] to implement the double double type (approximately 31 digits).

1 Introduction 4

In this work, we propose a dynamic analysis to assist developers in finding parts of the
program that can be performed in lower precision. In addition, the program, when trans-
formed according to our suggestion, will still produce an accurate enough answer and run at
least as fast as the original program. Specifically, our analysis produces a type configuration
that maps each floating-point variable to be tuned to its desired floating-point type. Our
analysis consists of two phases. In the first phase, we employ a novel white-box dynamic
analysis to reduce the size of the type configuration search space. We call this analysis
Blame Analysis. Essentially, Blame Analysis computes the precision requirements of every
instruction in the execution trace. The precision requirement specifies which precisions are
required for the operand variables and the variable that holds the end result, so that the
end result can be accurate enough with respect to a given error threshold. We will visit our
definition of being accurate enough in Section 2] Essentially, it is accurate enough compared
to the result as if the highest precision was used throughout the whole program. Blame
Analysis then propagates and accumulates the precision requirements from the instruction
that computes the end result to the beginning of the execution trace, and outputs all vari-
ables that are required to be computed in higher precision. We collect this set of variables
as the search space for the second phase, while changing the type of other variables to lower
precision. The analysis time is bounded by the number of instructions in the execution
trace. When heuristics are applied, we observe that the overhead of the analysis is about
50 times the execution time of the program under analysis.

In the second phase of the analysis, we employ a black-box Delta Debugging [36] based
search on the set of double precision variables inferred using Blame Analysis. The second
analysis outputs a local minimal configuration that, when applied to the original program,
results in a program that is accurate enough with respect to the given error threshold, and
at least as fast as the original program, while using less precision. The analysis time of
the second phase is bounded by the number of floating-point variables under analysis, and
exhibits an O(log(n)) best-case complexity and an O(n?) worst-case complexity, where n
is the number of variables to be tuned. We note that both phases of our analysis require
a representative set of program inputs. We do not guarantee that the analysis results will
remain correct for other inputs.

We evaluate our analysis on a set of 10 programs, including 8 programs from the GSL
library [I3] and 2 programs from the NAS parallel benchmarks [31]. Our experiment shows
encouraging results: the analysis was able to infer type configurations that translate to as
high as 40% program execution speed up. In addition, Blame Analysis helps to speed up
the analysis time of the second phase 9 times on average.

Our main contributions are as follows:

1. We introduce a novel dynamic analysis to assist developers in tuning precision of
floating-point programs. The programs, when tuned according to our suggestion, are
guaranteed to be accurate enough within the given error threshold and as least as fast
as the original program, with respect to a set of representative inputs.

2. Our analysis consists of two novel algorithms: a black-box Delta Debugging based
search algorithm to tune floating-point precisions, and a white-box analysis to reduce
the search space for the previous algorithm, entitled Blame Analysis.

1 Introduction 5

3. We implement our analysis and demonstrate its effectiveness on 10 numeric programs.
Our implementation and benchmarks are publicly available at https://github.com/
corvette-berkeley.

The rest of this paper is structured as follows. In Section [2] we present a motivating
example and give an overview of our analysis. We then provide a detailed presentation of
two algorithms used in our approach in Section [3] and Section [respectively. We present
our experimental evaluation in Section [3, which is followed by related work in Section [6]
We finally conclude in Section [7]

https://github.com/corvette-berkeley
https://github.com/corvette-berkeley

2 Overview 6

2 Overview

2.1 A Motivating Example

We begin with an example to motivate how changing the floating-point precision can affect
the program execution time. Consider the program introduced by Bailey [4], which estimates
the arc length of the following function over the interval (0, 7).

g(x) =z + Z 27" gin(2%x)
1<k<5

The corresponding program sums /h2 + (g(zx + h) — g(zx))? for 2}, € [0, 7) divided into n
subintervals, where n = 1,000, 000, so that h = 7 and zy = kh. An example implementation
in C using long double precision is shown in Figure When compiled with gcc with
optimization option 02 and run on an Intel x86 systenﬂ, this program produces the answer
5.795776322412856 (stored in variable s1 on line 28). If the program uses double precision
instead, the resulting value would be 5.79577632241311, which is only correct up to 11 or
12 digits after the decimal point (compared to the result produced by the long double
precision program).

Figure shows an optimized implementation written in C by an expert numerical
analyst. Compared to the original program, the optimized program uses long double
precision only for the variable s1 on line 17. Six other variables have been lowered to double
precision and one variable to float. The program produces the answer 5.795776322412856,
which agrees with the answer when computed using all long double to 16 digits, and runs
10% faster than the long double precision version. When replacing long double with even
higher double double precision from the QD package [20], the same transformation still
produces the answer that agrees with the answer when computed using call double double
to 16 digits, [4] and the performance improvements can be as high as 20x. We note that
double double arithmetic is considerably slower than long double arithmetic because it
is done in software, and each operation requires a sequence of roughly 20 instructions.

2.2 Overview of Our Approach

In this paper, we develop a dynamic analysis approach to assist developers in identifying
parts of the program that can be performed in lower precision, with as little programming
effort or mathematical analysis on their part as possible. Figure [1| depicts the overview
of our approach. Inputs to our approach are the floating-point program under analysis,
represented in the format of LLVM bitcode [24], a set of representative inputs, and an
analysis input parameter file which specifies the program point of interest and the error
threshold(s). LLVM bitcode representation of a program can be obtained from its source
code using the CLANG compiler [24]. The source languages that we support include C, C++
and Fortran. Output of our approach is a type configuration that maps each floating-point

2 All floating-point types used in this paper conform to the IEEE 754-2008 standard as implemented
on various x86 architectures. In particular, float is implemented as the 32-bit precision type with 23
significant bits, double is implemented as the 64-bit precision type with 52 significant bits and long double
is implemented as the 80-bit extended precision type with 64 significant bits. double double is implemented
using pairs of double precision values.

2 Overview 7

variable to be tuned to its desired precision. This configuration, when applied to the original
program, will result in another program that produces an answer that is accurate enough
compared to the answer produced by the original program, within a given error threshold
specified by the user, which may for example use a problem-dependent metric to compare
the (trusted) computed answer from the all-double-precision version to the answer from
the version with lower precision. We will refer to such an answer as an accurate enough
answer. In addition, the new program is also guaranteed to run at least as fast as the
original program.

Analysis Input
Parameters

LLVM Bitcode Tuned Program

T

. Test Input Minimal Type
Blame Analysis < est Inputs Configuration
—
Proposed Type Transformed < Delta
Configuration Program Debugging

Fig. 1: Overview of Our Approach

Our approach comprises two core algorithms. The first algorithm divides the floating
point variables into two categories: (1) those which may safely be converted to single
precision, and (2) those which may or may not have to be in double precision; category (2)
is further analyzed by the second algorithm. The second algorithm is a Delta-Debugging
based search that infers a minimal set of variables that are required to be in double precision,
such that the new program when changed accordingly will run at least as fast as the original
program, while still being accurate enough.

The main challenge of our analysis is to devise an efficient search strategy through the
type configuration space, to find a type configuration that (1) uses less precision, (2) pro-
duces an accurate enough answer, and (3) results in a program with better performance than
the original program. We note here that our success metric is not to minimize the number
of double precision variables alone, as doing that might increase the program execution time
due to the overhead of type conversion between single and double precision. Instead, we
minimize the number of double precision variables, while making sure that the transformed
program gets better performance. We achieve this in two ways. First, we employ Blame
Analysis to effectively reduce the type configuration search space. The overhead of Blame
Analysis is about 50 times the program execution time. This number is comparable with
the overhead of widely-used dynamic analysis tools such as VALGRIND or JALANGI [33].
The second phase of our approach looks for the minimal type configuration that satisfies
the three conditions mentioned earlier. This second phase exhibits an O(n?) worst-case
complexity, which requires O(n?) program transformations and re-executions, where n is
the number of variables under analysis.

We consider two definitions of minimum in this work.

Finding a Global Minimum. Finding a global minimal set of floating-point variables

2 Overview]

1 long double fun(long double x) { 1 double fun(double x) {

2 intk, n=25; 2 intk, n=25;
3 long double t1; 3 double t1;
4+ long double d1 = 1.0L; 4+ float d1 = 1.0f;
5 5
6 tl =x; 6 tl =x;
7 for(k=1, k <=n; k++) { 7 for(k=1 k <=n; k++) {
8 dl = 2.0 % d1; 8 dl = 2.0 % d1;
9 tl = t1 + sin (d1 * x) / d1; 9 tl = t1 + sin (d1 % x) / d1;
10 } 10 }
11 return tl; 11 return tl;
12 } 12 }
13 13
14 int main(int argc, char sxargv) { 14 int main(int argc, char sxargv) {
15 int i, n = 1000000; 15 int i, n = 1000000;
16 long double h, t1, t2, dppi; 16 double h, t1, t2, dppi;
17 long double s1; 17 long double si;
18 18
19 tl = —1.0; 19 tl = —1.0;
20 dppi = acos(tl); 20 dppi = acos(tl);
21 = 0.0; 21 sl =0.0;
22 tl1 = 0.0; 22 t1 =0.0;
23 h =dppi/ n; 23 h =dppi/ n;
24 24
5 for(i=1;i<=n;i++){ 55 for(i=1;i<=n;i++) {
26 t2 = fun (i x h); 26 t2 = fun (i % h);
27 sl = sl + sqrt (h«h + 27 sl = sl + sqrt (h*h +
28 (t2 — t1)*(t2 — t1)); 28 (t2 — t1)*(t2 — t1));
29 tl = t2; 29 tl = t2;
30 } 30 }
s1 // final answer is stored s1 // final answer is stored
s2 //in variable s1 s2 // in variable s1
33 return 0; 33 return 0;
34 } 34 }
(a) Original program (b) Tuned program

Fig. 2: Two implementations of the arclength program using different type configurations.
The programs differ on the precision of all floating-point variables except for variable
si.

that are required to be in double precision to satisfy the three conditions mentioned earlier
may require evaluation of an exponential number of type configurations. To be precise, we
may be required to evaluate as many as 2" configurations, where n is the total number

2 Overview 9

of variables under analysis. This naive approach evaluates all possible type configurations
by changing the type of one variable at a time. The shortcoming of this approach is that
it does not scale to programs that have hundreds to thousands of variables, as typically
observed in real world applications.

Finding a Local 1-Minimum. We denote A to be the set of floating-point variables that
are required to be in double precision, so that the program satisfies the three conditions
mentioned earlier. This means that all variables in A are in double precision, while other
elements are in single precision. We say A is a local 1-minimum if when we remove any
variable from A, which means that element removed can be in a lower precision, while all
other elements remained in A are in the higher precision, the corresponding program will
either (1) compute an end result that is inaccurate or (2) run slower than the original pro-
gram. We note that a local 1-minimum solution might not be as good as a global minimum
solution, which means that a local 1-minimum solution might result in a program that runs
slower than the program transformed according to the global minimum solution. However,
a local 1-minimum solution can be effectively found using a Delta Debugging based search
algorithm, as we will show in Section[dl We therefore target local 1-minimum in this work.

3 Reducing the Precision Search Space using Blame Analysis 10

1 /* computing factor*a™n */

2 double mpow(double a, double factor, int n) {
3 double res = factor;

4 int i;

5 for (i = 0; i < n; i++) {

6 res = res * a;

7 }

8 return res;

9 }

10

11 int main() {

12 double a = 1.84089642; /* stored as 1.8408964199999... in double precision */
13 double res, t1, t2, t3, t4;

14 double r1, r2, r3;

15

16 tl = 4x*a;

17 t2 = mpow(a, 6, 2);
18 t3 = mpow(a, 4, 3);
19 t4 = mpow(a, 1, 4);

20
21 /* Tes = a"4 — 4*%a"3 + 6*a"2 - 4*a + 1
2 * = (a-1)74 */

23 rl = t4 - t3;

24 12 rl + t2;

25 r3 =12 - ti;

26 res = r3 + 1;

27

28 printf("res = %.10f\n", res);

29 return 0;

30 }

Fig. 3: Blame by Example

3 Reducing the Precision Search Space using Blame Analysis

We discuss the realization of Blame Analysis as a practical and effective tool for dynamically
reducing the precision search space. We will start with an example to illustrate how the
algorithm works.

3.1 Blame by Example

Consider the example program in fig. [3| which produces a result on line 24. When written
using only double precision variables the result is (res = 0.5000000113). When executed
solely in single precision, the result will be (res = 0.4999980927). Assuming that we are
only interested in 8 significant digits of the result, then the required result would be ((res
= 0.50000001xy), where x and y can be any decimal digits. For each instruction in the
program, Blame Analysis determines the precision that the corresponding operands are
required to carry in order for its result to be accurate to a given precision. In this example,

3 Reducing the Precision Search Space using Blame Analysis 11

Tab. 1: The r3 = r2 - t1 statement executed when operands have different precisions.
The column Prec shows the precisions used for the operands (f1 corresponds to
float, db to double, and dbg is a value accurate up to 8 digits). Columns r2 and t1
show the values for the operands in the corresponding precisions. Column r3 shows
the result for the subtraction. Finally, column S? shows whether the result satisfies
the given precision requirement.

Prec r2 t1 r3 S?

(£1,f1) 6.8635854721 7.3635854721 -0.5000000000 No
(f1,dbg) 6.8635854721 7.3635856000 -0.5000001279 No
(f1,db) 6.8635854721 7.3635856800 -0.5000002079 No
(dbg,fl) 6.8635856000 7.3635854721 -0.4999998721 No
(dbg,dbg) 6.8635856000 7.3635856000 -0.5000000000 No

(db,db) 6.8635856913 7.3635856800 -0.4999999887 Yes

we consider three precisions: f1 (float), db (double) and dg (accurate up to 8 significant
digits compared to the double precision value). More specifically, the value in precision
dg should represent a value that agrees with the value obtained when double precision is
used throughout the entire program in 8 significant digits. Formally, such a value can be
obtained from the following procedure. Let v be the value obtained when double precision
is used throughout the entire program, and vg is the value of v in precision dbg. According
to the IEEE 754-2008 standard, the binary representation of v has 52 mantissa bits. We
first find the number of bits that corresponds to 8 significant decimal digits in these 52
mantissa bits. The number of bits can be computed as lg(10%) = 26.57 bits. We therefore
keep the 27 significant bits in the 52 mantissa bits, and set other bits in the mantissa to 0
to obtain the value vg. Similarly, if we are interested in 4, 6 or 10 significant decimal digits,
we can keep 13, 19 and 33 significant bits in the mantissa respectively, and set other bits
to 0.

Consider the statement on line 23: r3 = r2 - t1. Since the double value of r3 is
-0.4999999887, this means that we require r3 to be -0.49999998 (i.e., the value with
precision dbg that can be computed using the procedure described earlier, printed up to 8
significant digits). In order to determine the precision requirement for the two operands (r2
and t1), we perform the subtraction operation with operands in all considered precisions.
Table [1I| shows some of the precision combinations we use for the operands. We note here
that (1) the precision of the operator is single precision if both operands are in single
precision; otherwise the precision of the operator is double precision, and (2) we only show
value to 11 significant digits because we are only interested in up to 8 significant digits. For
example, (f1,dbg) means that r2 has float precision, and t1 has dbg precision. For this
particular statement, all but one operand precision combinations fails. Only when we try
(db, db), do we obtain a result that satisfies the precision requirement for the result (see last
row of table . Blame Analysis will record that the precision requirement for the operands
in the statement on line 23 is (db, db), when the result is required to have precision dbg.

Statements that occur in loops are executed more than once, such as line 5: res = res
* a. Assume we also require precision dbg for the result of this operation. The first time

3 Reducing the Precision Search Space using Blame Analysis 12

we encounter the statement, the analysis records the double values for the operands and
the result (6.0000000000, 1.8408964199, 11.0453785199), which is a tuple of input value
of res, input value of a and output value of res. The algorithm tries different precision
combinations for the operands, and determines that precision (£1, dbg) suffices. The second
time the statement is encountered, the analysis records new double values (11.0453785199,
1.8408964199, 20.3333977737). After trying all precision combinations for the operands, it
is determined that this time the precision required is (db,dbg), which is different from the
requirement set the first time the statement was examined. At this point, it is necessary to
merge both of these precision requirements to obtain a unified requirement. In Blame Anal-
ysis, the merge operation over-approximates the precision requirements. In this example,
merging (£1,dbg) and (db, dbg) would result in the precision requirement (db, dbsg).

Finally, after computing the precision requirements for every instruction in the program,
the analysis performs a backward pass starting from the target statement on line 24. The
pass finds the program dependencies, and collects all variables that are determined to be
in single precision. Concretely, if we require the final result computed on line 24 to be
accurate to 8 digits dbg, the backward pass finds that the statement on line 24 depends
on statement on line 23, which depends on statements on lines 22 and 15, and so on. The
analysis collects the variables that cannot be allocated in single precision based on the
program dependencies. In this example, all except for the variable factor in function mpow
are collected because factor is the only variable that can be single precision (it always
stores integer constants which do not require double precision).

In the rest of this section, we formally describe Blame Analysis algorithm and its im-
plementation. Figure [4] depicts the architecture of our implementation of Blame Analysis,
which is built on top of the LLVM compiler infrastructure [24]. Inputs to the tool are the
LLVM bitcode of the program under analysis, a set of test inputs and an analysis input
parameters. The analysis input parameters include (i) the program point(s) of interest and
(ii) the number of significant digits that are required to be accurate. The output of the
tool is a proposed type configuration that maps each floating-point variable to its desired
precision.

Our implementation of Blame Analysis consists of two main components: a shadow
execution engine for performing single and double precision computation side-by-side with
the concrete computation (Section , and an online blame analysis algorithm integrated
inside the shadow execution runtime (Section [3.3)). In Section we discuss a method
for handling branch divergence during shadow execution, which sometimes presents in our
benchmark programs. Finally, we present some heuristics and optimizations in Section
In Section [3.5] we also discuss some alternative ways to implement Blame Analysis, and
present their strengths and weaknesses.

3.2 Shadow Execution

We introduce a kernel language (Figure [5|) for formal discussion. The language includes
standard arithmetic and boolean operation instructions. It also includes an assignment
statement which assigns a constant value to a variable. Other instructions include if-goto
and native function call instructions such as sin, cos and fabs.

In our shadow execution engine, each concrete floating-point value in the program has

3 Reducing the Precision Search Space using Blame Analysis 13

Analysis Input
Parameters
. X Instrumented Shadow Online Blame Proposed Type
LLVM Bitcode | —p Instrumentation — Bitcode ™ Execution e Analysis Configuration
L

A A

Heuristic and Handling Branch
Optimization Divergence

A 4

Test Inputs

Fig. 4. Architecture of an Implementation of Blame Analysis

Pgm == (L: Instr)x
Instr == x = yaopz|x = ybopz|if x goto L |
x = nativefun(y)| z = ¢
aop = +| — | x|/
bop = = | #] < | <
nativefun := sin | cos | fabs

L € Labels z,y,z € Vars ¢ € Consts

Fig. 5: Kernel Language

an associated shadow value. A shadow value associated with a concrete value carries two
values corresponding to the concrete value when the program is computed entirely in single
or double precision. We will represent a shadow value of a value v as {single : vgingie, double :
Udouble }, Where vgingre and vgoupe are the values corresponding to v when the program is
computed entirely in single or double precision.

In our implementation, the shadow execution is performed side-by-side with the concrete
execution. Our implementation of shadow execution is based on instrumentation. We
instrument callbacks for all instructions in the program. The shadow execution runtime
interprets the callbacks following the same semantics of the corresponding instructions,
however, it computes shadow values rather than concrete values.

Let A be the set of all memory addresses used by the program, .S be the set of all shadow
values associated with the concrete values computed by the program, and L be the set of
labels of all instructions in the program. Shadow execution maintains two data-structures:

e a shadow memory M that maps a memory address to a shadow value, i.e. M : A — S.
If M(a) = s for some memory address a, then it denotes that the value stored at
address a has the associated shadow value s,

e a label map LM that maps a memory address to an instruction label, i.e. LM : A —
L. If LM (a) =l for some memory address a, then it denotes that the value stored at
address a was last updated by the instruction labeled [.

As an example, Figure [6] shows how M and LM are updated when an add instruction
l :x = y+4 z is executed. In this example, z,y, 2z are variables and [is an instruction
label. We also denote &x, &y, &z as the addresses of the variable x,y, z, respectively, in
that state. In this example, the procedure AddShadow is the callback associated with the

3 Reducing the Precision Search Space using Blame Analysis 14

Procedure AddShadow

Inputs

l:x=y+z : instruction
Outputs

Updating the shadow memory M and the label map LM
Method

1 {single: ysingie, double: yaoupie} = M[&y]

2 {single: Zgingie, double: zgoupe} = M[&7]

3 M[&X] = {Single: Ysingle + Zsingle: double: Ydouble + Zdouble}
1 LM[&x] = |

Fig. 6: Shadow Execution of fadd Instruction

add instruction. Line 3 of the procedure re-interprets the semantic of an add instruction,
but uses the shadow values of the left and right operands (obtained from line 1 and 2 of the
same procedure) as operands. Line 3 performs the additions and returns the results in the
same precision as the two operands. Line 4 of the procedure updates the label map LM to
save the fact that = was last updated at the instruction labeled I.

Modeling C standard numeric library functions. We commonly encounter functions
from C standard numeric library [1] such as cos, sin or fabs in our benchmark programs.
Each of these functions has an associated single precision version, e.g. sinf is the single
precision version of sin. Therefore, to compute the single precision results of these functions,
the callbacks invoke the single precision versions of these functions using single precision
arguments. Similarly, to compute the double precision results, the callbacks invoke the
double precision versions of these functions using double precision arguments.

3.3 Online Blame Analysis

Our implementation of Blame Analysis receives the program point(s) of interest and the
error threshold(s) as input. The error thresholds correspond to whether we want the results
computed by the instructions at the program points of interest to be accurate to 4, 6, 8, or
10 significant digits. It outputs a type configuration that maps each floating-point variable
to the desired precision, so that the results produced from the program points of interest are
accurate within the error threshold. If more than one error threshold is given, it produces
one type configuration for each error threshold.
We will need a set of precisions

P = {f1, dby, dbg, dbg, dbyo, db}

which represents the precision requirement we will infer for each variable in the program.
Precisions f1 and db stands for single and double precision, respectively. Precisions dby,
dbe, dbg, dbig means to be accurate to 4, 6, 8 and 10 significant digits in double precision,
respectively. Concretely, the values that correspond to these precisions are computed as
follows. Assume that v is a value computed when double precision is used throughout the

3 Reducing the Precision Search Space using Blame Analysis 15

entire the program, and v; is the value of v in precision db;, where i can be 4, 6, 8 or 10.
We first compute the number of bits in the binary representation of v that corresponds to
i significant decimal digits using the formula [Ig(10%)]. We then keep [lg(10%)] significant
bits in the 52 mantissa bits of v, and set other bits in the mantissa to 0 to obtain the value
v;. Specifically, we keep 13, 19, 27 and 33 significant bits in the mantissa and set other bits
to 0 to compute values of precisions dbg, dbg, dbg, dbig respectively. We also define a total
order of precisions as follows: f1 < dbg < dbg < dbg < dbyg < db.
We also define a data structure

B : LxP—P(LxP)

which maps a pair of instruction label and precision to a set of pairs of instruction labels
and precisions, where P(S) denotes the power set of S. If B(l,p) = {(l1,p1), (l2, p2)}, then
it means that during an execution, if the instruction labelled [produces the value that is
accurate to precision p, then instructions at label [and I must produce values that are
accurate to precision p; and po, respectively.

In shadow execution, we update data structure B on the execution of every instruction.
We initialize B to the empty map at the beginning of the execution. We illustrate how
B is updated for arithmetic operation and native function call instructions using a generic
instruction of the form [: x = f(y1,y2, - ,Yn), where x,y1,...,y, are variables and f is
an operator, which could be +, —, %, sin, cos, etc. We also denote &x, &y1, - - - , &y, as the
addresses of x,ya, - -+ ,yn, respectively, in that state. We update B(l,p) for each p € Prec
when this instruction is executed as follows. We use two functions, BuildBlame and merge
L, to update B(l,p).

The function BuildBlame receives an instruction and a precision requirement as input,
and returns the precision requirements of the instructions that compute the operands. Fig-
ure [7] shows the pseudo-code of the function BuildBlame. The procedure first computes
the correct result by obtaining the shadow value corresponding to the input instruction,
and truncating the shadow value to precision p (line 1). The function truncs(s, p) com-
putes the floating-point value corresponding to the precision p using the shadow value s.
Specifically, if the input precision is £1, truncs returns the single precision value from the
shadow value. If the input precision is db, truncs returns the double precision value from
the shadow value. If the input precision is dbg, dbg,dbg or dbig, truncs first obtains the
double precision value from the shadow value, and truncates it according to the procedure
described earlier. Line 2 obtains the shadow values corresponding to all operand variables.
Then, the procedure find the minimal precisions p1,pa2,- - ,pn such that if we apply £ to
S1,Sa, -+ , Sy truncated to precisions py,pa,- - -, Pn, respectively, then the result truncated
to precision p is equal to the correct result computed in line 1. The function trunc(v,p)
returns the value v truncated to precision p. We note here that we require the two values at
line 5 to be equal because we already truncate the two results to keep only the significant
bits that correspond to precision p. Also, we order two tuples of precisions (p1,p2,- -+ ,Pn)
and (p},p5, -+ ,p'n) in the following way. We say that (p1,p2,--- ,pn) < (P1,Ph, - ,p'n) if
and only if there exist i where 1 <i < n such that p; <p} and Vj,1 < j <i:pj=pj.

The merge function LI is defined as

U : PLxP)xPLxP)—PLxP)

3 Reducing the Precision Search Space using Blame Analysis 16

Procedure BuildBlame

Inputs
l:x="f(y1,---,yn) : instruction
p : precision requirement
Outputs
{(l1,p1), -, (Iln,pn)} : precision requirement
of the instructions that computed the operands
Method

1 correct_res = truncs(M[&x],p)
(s1,---5n) = (M[&y1],.. .. M[&yx])

™)

3 find minimal precision p1, ..., pn such that the following holds:
4 (vi,...,vn) = (truncs(s1,p1),. . .,truncs(sy,,pr))
5 trunc(f(vi,...,vn), p) == correct_res

6 return {(LM(&y1),p1), ..., (LM(&yn).pn)}

Fig. 7: BuildBlame Procedure

If (1,p1),(1,p2), -+ ,(1,pn) are all the pairs involving the label 1 present in LP; and LP;,
then (1,max(pi1,p2,- - ,pn) is the only pair involving 1 present in (LP, U LP,).

Given the functions BuildBlame and LI, we compute B([,p) LI BuildBlame(1 : x = f(y1,

-, ¥n),p) and use the resulting set to update B(l,p). In the special case of the instruction

l:x = C, for every precision p, B always maps the instruction label [to an empty set, i.e.
B(l,p) = 0, because this instruction does not have any operand variables. Instructions that
compute boolean values do not have any corresponding mappings in B, because they do
not compute floating-point variables. However, they play an important role in preventing
branch divergence, which we will discuss in Section

At the end of the execution, we get a non-empty map B. Suppose we want to make sure
the result computed by a given instruction labeled [,,; is accurate to precision p. Then we
want to know what would be the accuracy of the results computed by other instructions
so that the accuracy of the result of the instruction labeled I, is p. We compute this
using the function Accuracy (loy¢, p, B) which returns a set of pair of instruction labels and
precisions, such that if I, p is present in Accuracy (lyys, p, B) then the results of executing
the instruction labeled !’ must have a precision at least p’. Accuracy(lyy,p, B) can be
defined recursively as follows.

Accuracy(l,p,B) : {(l,p)} U Uy pyepqp) Accuracy(l',p', B)

3.4 Handling Branch Divergence

We must make sure that the configuration proposed by Blame Analysis, when applied
to the original program, will not result in a new program that has different execution
paths from the original program. To guarantee that, we exploit the concept of discrete
factor introduced in [5]. Essentially, discrete factors are operations that have floating-point
values as operands and produce discrete values as results. In our kernel language, boolean
operation instructions are discrete factors. Similar to [5], we also want to guarantee that

3 Reducing the Precision Search Space using Blame Analysis 17

none of the discrete factors induce different discrete values due to precision changes to the

program.
For every boolean operation instruction x = y bop z, we infer a pair of minimal precisions
p1 and pe, such that trunc(y,p1) bop trunc(z,ps) == x. This means that the value of x

does not change when we change the precisions of y and z to p; and po, respectively.
We then find the precision requirements for other instructions in the program such that
values computed and stored in y and z are accurate to precisions p; and ps, respectively.
Formula-wise, if I1,--- ,l, are labels of instructions that compute the values of variables
involved in all boolean operation instructions, and p1, - - - , p,, are the corresponding minimal
precisions required for the values, respectively, such that the values computed by each
boolean operation instruction are the same as the values computed when double precision
is used throughout the program, we have:

Accuracy(lowt, p, B) + (L,p) U Uw p)eBon,p Accuracy(l',p', B)
U L, Accuracy(ly, p1, B)

Once we have computed Accuracy(lout,p, B), we know that if (I’,p’) is present in
Accuracy(lout, p, B), then the instruction labeled !’ must be executed with precision at
least p’ if we want (i) the program not to have different execution paths due to precision
changes, and (ii) the result of executing instruction labeled l,,; to have a precision p.

3.5 Heuristic and Optimization

Our implementation of online Blame Analysis is memory efficient because the size of the B
mapping is bounded by the number of static instructions in the program. An alternative
way to implement Blame Analysis is to implement offline Blame Analysis. Offline Blame
Analysis first collects the complete execution trace, and builds the blame set of each executed
instruction. As each instruction is examined only once, merging of operand precision is
not required. Thus, when compared to online Blame Analysis, the offline Blame Analysis
exhibits lower overhead per instruction, and sometimes produces better quality solutions.
However, offline Blame Analysis is not scalable because the size of B explodes for large
inputs and for long running programs. In particular, when running offline Blame Analysis
on the ep program from the NAS benchmarks with input A [31], offline Blame Analysis
returned an out of memory error code after using all 256 GB memory of our system. On the
other hand, online Blame Analysis was able to complete the analysis for the same program,
using only 81MB memory.

Another alternative way to implement Blame Analysis is to implement Blame Analysis
without shadow execution. Without shadow execution, we do not have the values corre-
sponding to the precision £1, which are the values computed when single precision is used
throughout the entire program. Instead, we define another precision db¢; to replace pre-
cision £1. Values in dbs; precision can be obtained by converting the values computed in
double precision to single precision. The strength of this approach is that Blame Analysis
runs faster without shadow execution. However, we note that the values in dbs; precision
are often more accurate than the values in f1 precision. Therefore, obtaining the values
that are accurate to dbg; precision requires higher precisions throughout the program. As a
consequence, Blame Analysis without shadow execution is less effective in finding variables

3 Reducing the Precision Search Space using Blame Analysis 18

that can be allocated in single precision than Blame Analysis with shadow execution. For
example, when running Blame Analysis on the root program from the GSL library [13], if
we want the end result to be accurate to precision dbg, Blame Analysis with shadow execu-
tion determines that 15 out of 16 variables can be in single precision, while Blame Analysis
without shadow execution can only determine that 3 out of 16 variables can be in single
precision. On the other hand, running Blame Analysis on long running programs, such that
the ep and cg programs from NAS benchmarks [31], shows that shadow execution intro-
duces only 30% slowdown on average. We note that the main bottleneck in Blame Analysis
is the function BuildBlame (Section [3.3)), which is required for both Blame Analysis with
and without shadow execution.

In our implementation, we allow developers to specify what parts of the program they
are interested in analyzing. For short running programs, such as functions within the GSL
library [I3], examining all instructions is feasible. Many long running scientific programs
fortunately use iterative solvers. In this case, analyzing the last few iterations is likely to
lead to a good solution, given that precision requirements are increased towards the end of
the execution. This is the case in the NAS benchmarks we have analyzed. If no options
are specified, Blame Analysis by default will be performed throughout the entire program
execution.

4 Minimizing Precision Usage using Delta-Debugging Based Search 19

4 Minimizing Precision Usage using Delta-Debugging Based Search

In Section[3] we proposed Blame Analysis, a method to infer a type configuration that, when
applied to the original program, resulted in a program that (i) had the same execution paths
as the original program, and (ii) produced an accurate enough answer within a given error
threshold. In this section, we propose a black-box search algorithm that takes the type
configuration produced by Blame Analysis as input, and produces a type configuration that
(i) uses minimal precision, and (ii), when applied to the original program, will result in a
new program that runs at least as fast as the original program. Our search algorithm is
based on Delta Debugging search [36].

Figure[§|depicts the architecture of our Delta-Debugging based type configuration search
algorithm, which is built on top of the LLVM compiler infrastructure [24]. Inputs to the
tool are the LLVM bitcode of the program under analysis, a set of test inputs and a search
configuration file. The search configuration file contains a map from each variable under
tuning to a set of candidate precisions. Section describes how we can infer this mapping
given the program under analysis, and the type configuration produced by Blame Analysis.
Output of the tool is the type configuration that, when applied to the original program,
will result in a new program that runs at least as fast as the original program, while still
producing an accurate enough answer.

Our tool consists of three main components: creating the search configuration file (Sec-
tion [4.1)), a feedback loop to create candidate type configurations based on delta-debugging
search (Section and a validator to validate the candidate configuration integrated within
the feedback loop (Section [4.3)).

Validation
Result

LLVM Bitcode > . .
I Delta Candidate Type Configuration
Search Debugging w Validator
Configuration
| et

Proposed Type
Configuration

Fig. 8: Architecture of the Delta-Debugging Based Type Configuration Search

4.1 Creating Search Space

We start by creating the search configuration file, which consists of all variables whose
precisions need to be tuned. The search file associates each floating-point variable with the
set of floating-point types to be explored (e.g., float, double). The input to this process is
the program under analysis in the format of LLVM bitcode. In the current implementation,
the search file includes the local variables of all functions statically reached from main. We
include only those global variables that are accessed by these functions. We include both

4 Minimizing Precision Usage using Delta-Debugging Based Search 20

scalars and arrays. We note that for arrays, all entries of an array need to have the same
precision. We currently do not support structure. The set of floating-point types to be
explored for each variable is {float,double}.

We use the type configuration proposed by Blame Analysis to reduce the search space
for Delta Debugging search in the following way. Firstly, if the variable x is determined
to be of float precision in the type configuration proposed by Blame Analysis, we change
the type of x in the (LLVM bitcode) program to float accordingly. In addition, we also
remove the entry for z from the search configuration file.

4.2 Search Algorithm

We devise a modified version of the delta-debugging algorithm [36] to find a type assignment
for floating-point variables so that the resulting program uses less precision while producing
results that satisfy both accuracy and performance constraints.

Given a configuration search file, our goal is to find a type configuration that maps each
variable to a type and that exhibits lower cost (performance improvement). Initially, each
variable in the search file is associated with a set of types. Our algorithm iteratively refines
each of these sets of types until it consists of only one type. Because our algorithm is based
on the delta-debugging search algorithm, with heuristic pruning, it is efficient in practice. To
balance between the searching cost and the quality of the selected configuration, we choose
to search for a local 1-minimum configuration instead of a global minimum. As shown in
Section [5 our algorithm finds type configurations for most of the analyzed programs (for
the workloads under consideration), leading to performance speedup.

Figure [9] shows our lower cost configuration search algorithm, entitled LCCSEARCH. In
this algorithm, a change set is a set of variables. The variables in the change set must have
higher precision. The algorithm outputs a minimal change set, which consists of a set of
variables that must be allocated in the higher precision (all other variables of interest can
be in lower precision) so that the transformed program produces an accurate enough result
and satisfies the performance goal. We note that for mixed-precision computations, the
precision of the operation is the maximum precision of the two operands.

The algorithm starts by dividing the change set A into two subsets of equal or almost
equal size A; and Agy. It also creates the complement set of these subsets Vi = A\
Ay and Vo = A\ Ay (lines 4-5). For each of these subsets, the algorithm creates the
corresponding program variant, checks whether the program variant produces an accurate
enough result and is faster (4.3), and records the one that has the lowest cost (lines 6-11).
The function accurate(P, A) transforms the program P according to A and returns a
boolean value indicating whether the transformed program is accurate enough. Similarly,
the function cost (P, A) transforms the program P according to A and returns the cost of
the transformed program. We will discuss the realization of functions accurate and cost in
greater detail in Section If a change set with a lower cost exists, the algorithm recurses
with that smaller change set (lines 15-16 and 24); otherwise it restarts the algorithm with
a finer-grained partition (lines 21-24). In the special case where the granularity can no
longer be increased, the algorithm returns the current A, which is a local minimum type
configuration (lines 18-19).

Finally, we transform the program according to the change set A computed using LCC-

4 Minimizing Precision Usage using Delta-Debugging Based Search 21

Procedure LCCSearch
Inputs

P : target program

A : change set

Outputs
A minimal change set

Algorithm
1 div =2
2 Arc = A

3 diVLC = div
4 for iin [1..div]:
NN TNET)

L voag

7 if accurate(P, A;) and cost(P, A;) < cost(P, Arc):
8 Arec = A;

9 diVLc =2

10 if accurate(P, V;) and cost(P, V;) < cost(P, Arc):
11 ALC = Vl

12 divie = div—1
13 end for

1 if A # A:

15 A= ALC

16 div = divig

17 else:

18 if div > |A|

19 return A

20 else:

21 div = 2 x div
22 end if

23 end if

21 goto 3

Fig. 9: Lower Cost Configuration Search Algorithm

Search. We then measure the running time for the transformed program. If the running
time of the transformed program is at least as fast as the running time of the original pro-
gram, we return A as the proposed configuration. Otherwise, we return the configuration
that corresponds to the original program as the output of the analysis. This final step
guarantees that the configuration we produce will result in a program that runs at least as
fast as the original program.

4 Minimizing Precision Usage using Delta-Debugging Based Search 22

4.3 Validating Configuration

We validate a candidate configuration by first transforming the program according to the
type configuration. We then run the transformed program and check for two criteria:
correctness and performance.

We perform the transformation at the bitcode level, and by modifying the original
program. First, we replace the alloca instructions to allocate the correct amount of memory
for the variables whose type is to be changed. Second, we iterate through the use of each of
these variables to identify instructions that may need to be transformed. We define a set of
program transformation rules to be applied depending on the instruction to be transformed.
For each transformed instruction, we iterate through its uses to continue to propagate the
changes. Finally, in the case of arithmetic operation instructions, we run a final pass to
make sure each operation is performed in the precision of its highest-precision operand.

To check for correctness criteria (function accurate in Figure @, we compare the result
produced by the transformed program against the expected result. The expected result is
the value (or values) obtained by running the original program on a given set of inputs. We
take into account the error threshold provided by the programmer when comparing results.
To check for performance criteria (function cost in Figure[J), we measure the running times
for the transformed programs. Note that the developer can specify the compiler to be used
and the level of optimizations to be applied. In our experiments, we use the clang compiler
with optimization level 02.

5 Experimental Evaluation 23

5 Experimental Evaluation

As noted earlier, we developed Blame Analysis as a method to speed up the analysis time
of the LCCSearch algorithm (Section , by removing variables from the algorithm search
space. This section first evaluates whether Blame Analysis helps to speed up LCCSearch
analysis time. We then evaluate how Blame Analysis affects the type configurations pro-
posed by LCCSearch overall. To facilitate our representation, we use the term Blame
LCCSearch to refer to the combination approach of Blame Analysis and LLCSearch that
is described in this paper. We use the term LCCSearch to refer to the approach that uses
merely LCCSearch algorithm, without Blame Analysis. In our evaluation, we will compare
Blame LCCSearch and LCCSearch approaches in term of analysis time, and the quality of
the configurations proposed, measured by the speedup of the final configuration compared
to the original code.

We present results for eight programs from the GSL library [13] and two programs from
the NAS parallel benchmarks [3I]. We use clang with no—optimizationﬁ] and a Python-
wrapper [30] to build whole-program (or whole-library) LLVM bitcode, and clang with
02 optimization to compile programs for performance measurement. In particular, we use
clang 3.0 to compile programs for LCCSearch, as our implementation of LCCSearch does
not support the newer version of LLVM currently. We use a newer version of clang, which
is clang 3.4 to compile programs for Blame Analysis, as well as for measuring performance
measurement. We run our experiments on an Intel(R) Xeon(R) CPU E5-4640 0 @ 2.40GHz
8 core machine running Linux with 252GB RAM.

5.1 Experiment Setup

We expect that users of our approach have access to the source code of the program under
analysis, and know which statements compute the end result of the program. For Blame
Analysis, we specify the statements of interest in the format of lines of code, and the
error threshold as 1074,107%,107® or 1070 in the analysis input parameter file. These
error thresholds correspond to the number of decimal significant digits we are interested in,
which are 4, 6, 8 and 10 respectively.

Blame Analysis then transforms the set of lines of code to the set of LLVM instructions,
and use that as the input to the analysis. Blame Analysis outputs the mapping of LLVM
instructions to their desirable precisions. We use that to create a type configuration that
maps each floating-point variable to its desired precision in the following way. We first map
each LLVM instruction to the program line of code at the source code level. If that LLVM
instruction is determined to be of precision dbg,dbg,dbg,dbig or db then we map every
variables appeared in the corresponding line of code to double precision. Other variables
in the program are mapped to single precision. We could interpret the results of Blame
Analysis in a more fine-grained way, which would be a subject for future work.

For LCCSearch, we manually annotate the input program to specify the error threshold,
log and check the results produced. LCCSearch explicitly outputs which variables need to
be allocated in double precision, and which variables can be allocated in single precision.

3 Optimization sometimes removes variables, consequently causes the set of variables at the bitcode level
to differ from the source code level.

5 Experimental Evaluation 24

We note that in an operation where one or more operands are in single precision and one
or more operands are in double precision, the single precision operands are converted to
double precision and the operation is performed in double precision. Type conversions in
this case are handled automatically by the compiler.

Tab. 2: Average analysis time speedup of BLAME LCCSEARCH compared to LCCSEARCH

Program Speedup Program Speedup

bessel 22.48 x sum 1.85x
gaussian 1.45x% fft 1.54 %
roots 18.32x blas 2.11x
polyroots 1.54x ep 1.23x
rootnewt 38.42 % cg 0.99x

For the NAS parallel benchmarks (program ep and cg), we use the provided input
Class A. For other programs, we generate at random 1000 floating-point inputs and classify
them based on code coverage. We then pick one representative from each group to create
test inputs, thus the goal is to maximize code coverage. We log and read the inputs in
hexadecimal format to ensure that the inputs generated and the inputs used match at the
bit level. This typically requires a few changes to the programs under analysis to read
and use the inputs. In our experiments, we use four error thresholds that correspond to
the number of digits of accuracy requirement, in particular, 4, 6, 8 and 10 digits. Finally,
when comparing the performance, we run each program thousands of times (or millions
depending on its size) to ensure that the program runs long enough to obtain a reliable
timing measurement. The minimum total run time is 2 seconds, over all programs tested.
We run the programs ep and cg only once because their running time is already long enough.

In addition, to measure the analysis time of Blame LCCSearch, for each error threshold,
we sum up the analysis time of Blame Analysis and search time of LCCSearch. Furthermore,
for ep and cg programs, we configure Blame Analysis to analyze only the last 10% of the
executed instructions. For the rest of the programs, we configure Blame Analysis to analyze
all executed instructions. For both approaches, if the configuration proposed results in a
program that runs slower than the original program, we produce the original program as
the output.

5.2 Experiment Results

Evaluation of Analysis Time. Figure [10|shows the analysis time of Blame LCCSearch
(B4L) and LCCSearch (L) for ten benchmark programs. It also shows the analysis time for
each error threshold (1074, 1076, 10~® and IO_IO)ﬁ As noted earlier, the error threshold
indicates the number of accurate digit required. For example, 10~* roughly means that the
result is required to be accurate to 4 digits.

Our result shows that Blame LCCSearch is faster than LCCSearch in 33 out of 39 (which
is 85%) experiments. In general, we would expect that as variables are removed from the

4 The program ep only supports error threshold down to 1078, therefore we do not consider the error
threshold 1070,

5 Experimental Evaluation 25

Tab. 3: Configurations found by Blame Analysis (B), BLAME LCCSEARCH (B+L), and
LCCSEARCH alone (L). The column Initial gives the number of floating-point vari-
ables (double D, and float F') declared in the programs. For each selected error
threshold, we show the type configuration found by each of the three analyses B,
B+L, and L (number of variables per precision).

Error Threshold 10~* Error Threshold 10~
Initial B B+L L B B+L L
Program D F D F D F D F D F D F D F
bessel 26 0 1 25 26 0 26 0 1 25 26 0 26 0
gaussian 56 0 54 2 56 0 5 0 54 2 56 0 5 0
roots 16 0 1 15 16 0 16 0 1 15 16 0 16 0
polyroots 31 0 10 21 10 21 31 0 10 21 10 21 31 0
rootnewt 14 0 1 13 14 0 14 0 1 13 14 0 14 0
sum 34 0 24 10 11 23 11 23 24 10 11 23 34 0
fft 22 0 16 6 0 22 0 22 16 6 0 22 0 22
blas 17 0 1 16 0o 17 0 17 1 16 0o 17 0 17
ep 45 0 42 3 42 3 45 0 42 3 42 3 45 0
cg 32 0 26 6 2 30 2 30 28 4 13 19 13 19
Error Threshold 10~8 Error Threshold 10~19
Initial B B+L L B B+L L
Program D F D F D F D F D F D F D F
bessel 26 0 25 1 26 0 26 0 25 1 26 0 26 0
gaussian 56 0 54 2 56 0 56 0 54 2 56 0 56 0
roots 16 0 5 11 16 0 16 0 5 11 16 0 16 0
polyroots 31 O 10 21 10 21 31 0 10 21 10 21 31 0
rootnewt 14 0 5 9 14 0 14 0 5 9 14 0 14 0
sum 34 0 24 10 11 23 34 0 24 10 24 10 34 0
fft 22 0 16 6 22 0 22 0 16 6 22 0 22 0
blas 17 0 10 7 17 0 17 0 10 7 17 0 17 0
ep 45 0 42 3 42 3 45 0 - - - - - -
cg 32 0 28 4 16 16 12 20 28 4 16 16 16 16

search space, the overall analysis time would be reduced. However, this is not necessarily
true, especially when the number of variables removed is small. In some cases, removing
variables from the search space can alter the search path of LCCSEARCH, which might result
in a slower analysis time. For example, in the experiment with error threshold 10~* for the
gaussian program, Blame Analysis removes only 2 variables from the search space (Table
3)), a small reduction that alters the search path and actually slows down the analysis. For
ep and cg programs, the search space reduction results in analysis speed up for LCCSearch.
However, the overhead of Blame Analysis causes Blame LCCSearch’s analysis time to be
slower than LCCSearch when using error threshold 10~ for ep and error thresholds 10~*
and 1076 for cg program (Figure .

Table [2| shows the average analysis time speedup per program for all error thresholds.
We observe analysis time speedups for 9 out of 10 programs. The largest speedup observed

5 Experimental Evaluation 26

Tab. 4: Speedup observed after precision tuning using configurations produced by BLAME
LCCSEARCH and LCCSEARCH alone (L)

Threshold 104 Threshold 10~ Threshold 108 Threshold 10~10

Program B+L L B+L L B+L L

bessel 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
gaussian 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
roots 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
polyroots 0.4% 0.0% 0.4% 0.0% 0.4% 0.0% 0.4% 0.0%
rootnewt 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
sum 39.9% 39.9% 39.9% 0.0% 39.9% 0.0% 0.0% 0.0%
fft 8.3% 8.3% 8.3% 8.3% 0.0% 0.0% 0.0% 0.0%
blas 5.1% 5.1% 5.1% 5.1% 0.0% 0.0% 0.0% 0.0%
ep 0.6% 0.0% 0.6% 0.0% 0.6% 0.0% - -
cg 7.7% 7.7% 7.9% 7.9% 7.9% 7.4% 7.9% 7.9%

is 38.42 times and corresponds to the analysis time of program rootnewt program. When-
ever we observe a large speedup, Blame Analysis removes a large number of variables from
the search space of LCCSearch, at least for error thresholds 10~% and 1076 (Table . The
only experiment in which BLAME LCCSEARCH is slower than LCCSEARCH is when ana-
lyzing the cg program, however the slowdown is only 1%. We note the in Table |3, there are
programs for which B4+L and L return the configurations where all variables are in double
precision as the output. We remind that this is because when the configuration proposed by
LCCSearch results in a program that runs slower than the original program, we produce the
original configuration, which is the configuration where all variables are in double precision,
as the output.

Evaluation of Proposed Configurations. Table [3| shows the configurations found by
Blame Analysis (B), Blame LCCSearch (B+L) and LCCSearch (L). The configurations show
the numbers of variables in double precision (D) and single precision (F). Our evaluation
shows that Blame Analysis is effective in removing variables from LCCSEARCH search
space. In particular, in all 39 experiments (4 error thresholds for 9 programs, and 3 error
threshold for 1 program), Blame Analysis successfully removes at least one variable from
the search space. If we consider the number of variables removed in all 39 experiments, in
average, Blame Analysis removes 39.85% variables from the search space, and in median,
it removes 28.34% variables.

The configurations proposed by Blame LCCSearch and LCCSearch agree in 28 out of
39 experiments, and differ in 11 out of 39 experiments. Table [4] shows the speedup observed
when we apply the configurations proposed by Blame LCCSearch and LCCSEARCH to the
original program. In all 11 cases in which the two configurations differ, the configuration
proposed by Blame LCCSearch translates into a program that runs faster. In particular, in
3 cases, the speedup is significant, which is 39.9% compared to 0%.

Among 31 out of 39 (79.48%) experiments, Blame LCCSearch finds configurations that
differ from the configurations suggested by Blame Analysis. Among those, 9 experiments

5 Experimental Evaluation 27

Tab. 5: Overhead of Blame Analysis

Program | Execution (s) | Analysis (s) | Overhead
cg 3.52 185.45 52.55x
ep 34.7 1699.74 48.98x

(29.03%) produces configurations that are different from the original program. This shows
that LCCSearch is still useful in tuning the configurations found by Blame Analysis. And
even though, in about 70% cases, LCCSearch does not find any configurations that differ
from the original program, it is still useful in confirming that the original program is already
an optimized one in term of accuracy and performance.

Overhead of Blame Analysis. Table [5{shows the overhead of Blame Analysis for cg and
ep program. By itself, Blame Analysis introduces up to 53x slowdown, which is comparable
to the run-time overhead reported in other widely-used instrumentation-based tools such as
JALANGI or VALGRIND [33], 27]. For the rest of our benchmarks, the overhead is relatively
negligible (< 1 second).

Figure [11] shows the impact of Blame Analysis time on the Blame LCCSearch analysis
time. Overall, Blame Analysis causes Blame LCCSearch analysis time to be slower than
LCCSearch analysis time in 3 out of 7 cases, which are error threshold 10~ for ep program,
and error thresholds 10~ and 1076 for cg program.

5.3 Discussion

We note that our tool does not guarantee that the transformed program produces an ac-
curate enough answer for all inputs. These are different and more difficult problems. Our
tool relies on the user to provide a set of representative program inputs to be used within
the tuning process. Work on generating test cases specializing for floating-point programs
is available, which can be used as a complement to our work [12] [6].

We currently require the developers to map the type configuration we produced to the
source code manually. This process might be error prone and require a significant amount
of work, especially for large programs. We hope to automate this process in the future.

For this study, we used four intermediate precisions, dbg,dbg,dbg , and dbjo to track
precision requirements during the analysis. This proved a good trade-off between the quality
of the solution and runtime overhead. For some programs, increasing the granularity of
intermediate precisions may lead to more variables kept in low precision. This would be
another subject for future work.

Another direction is to use Blame Analysis as an intra-procedural analysis, rather than
an inter-procedural analysis as presented in this paper. Concretely, we can apply it on each
procedure and use the configurations inferred for each procedure to infer the configuration
for the entire program. Doing so will enable the opportunity for parallelism and might
greatly improve the analysis time in modular programs.

5 Experimental Evaluation

28

16000
14000

Time (secs)
%
2
2
5

6000
4000 L 10000 o
2000 /
y BHL 5000 .
0 T T 0+ . ;
107-4 |(]’\T6 107-8 10710 1004 1076 1008 107-10
Error threshold Error threshold
(a) bessel (b) gaussian
30000 L 9000 —L
25000 s000 Bl
7000
. 20000 6000
g § 5000
2 15000 4
E 2 4000
= 10000 £ 3000
2000
5000
1000
0 T T [e
10n-4 10"-6 1078 10710 107-4 1076 10°-8 10710
Error threshold Error threshold
(d) polyroots (e) rootnewt
10000 12000
9000 —L —-L
10000
8000 | ——
7000 8000
% 6000 4
% 5000 3 6000
E 4000 E 4000
3000 /T e
2000 2000
1000
0 PR 0 T . T T
10°4 10°6 10°8 10710 1074 1076 1008 107410
Error threshold Error threshold
(g) blas (h) fft
3500
3000
2500
%\ 2000
2 1500
3
1000
500
0

1074 107-6 107-8 107-10

Error threshold

(i) cg

Time (secs)

Time (secs)

Time (secs)

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

0

40000
35000
30000
25000
20000
15000
10000

5000

12000

10000

8000

6000

4000

2000

0

1004

107-6 107-8 107-10
Error threshold
(c) roots
Y
~<r-B+L
10n-4 107-6 1078 107-10
Error threshold
(f) sum

1074 107-6 107-8

Error threshold

(i) ep

Fig. 10: Analysis time comparion between LCCSearch (L) and Blame LCCSearch (B+L).

The vertical axis shows the analysis time.

The horizontal axis shows the error

thresholds used in each experiment. In these graphs, lower curve means to be more

efficient.

5 Experimental Evaluation

29

104 106 10°%

12000
10000
8000
6000 B
4000

2000

B+L L B+L L B+L L

(a) ep

3500
3000
2500
2000
1500
1000

500

10+

B+L L

106 108
B+L L B+L L
(b) cg

1010

B+L L

Fig. 11: Analysis time breakdown for Blame LCCSearch and LCCSearch for two NAS bench-

mark programs.

6 Related Work 30

6 Related Work

Our approach considers the problem of automatically finding a type configuration for
floating-point variables so that the resulting program still produces an accurate enough
answer while running at least as fast as the original program. In recent work developed
independently of our own, Lam et al. propose a framework for automatically finding mixed-
precision floating-point computation [2I]. This work appears to be most similar to ours.
Their approach finds double precision instructions that can be replaced by single precision.
They propose a brute-force search using heuristics. Their goal is to maximize the number
of instructions that can be changed to single precision, and they operate on the binary
code. The configurations proposed might not produce accurate results for tested inputs,
and speedup is not explicitly considered as a goal. Furthermore, precision changes are de-
scribed at the instruction level, thus it might be more difficult to map them to the source
code.

Darulova et. al [I5] develop a method for compiling a real-valued implementation pro-
gram into a finite-precision implementation program, such that the finite-precision imple-
mentation program meets all desired precision with respect to the real numbers. Schkufza
et. al [32] develop a method for optimization of floating-point programs using stochastic
search by randomly applying a variety of program transformations, which sacrifice bit-wise
precision in favor of performance. FloatWatch is a dynamic execution profiling tool for
floating point programs which is designed to identify instructions that can be computed
in a lower precision [9]. It works by first computing the overall range of values for each
instruction of interest. Using this information, the tool recommends to use less precision if
possible. Darulova and Kuncak also implemented a dynamic range analysis feature for the
Scala language [14]. The approach uses interval and affine forms to represent the input, and
examine how errors are magnified by each operation during execution. Their work might
also be used for precision tuning purposes, by first computing a dynamic range for each in-
struction of interest and then tuning the precision based on the computed range, similar to
FloatWatch. However, range analysis often incurs overestimates too large to be useful for
precision tuning analysis. Gappa is another tool that uses range analysis to verify and prove
formal properties of floating-point programs [16]. In the context of precision tuning, one
can use Gappa to verify ranges for certain variables and expressions in a program, and then
choose the appropriate precision for these variables and expressions. Nevertheless, Gappa
scales only to small programs with simple structures and several hundreds of operations,
and thus is used mostly for verifying elementary functions.

Our work is also related to a large body of work on accuracy analysis. [7] presented a
dynamic analysis approach for finding accuracy problems. Their approach computes every
floating-point instruction side by side in higher precision. The higher precision computation
is stored in a shadow value. If the differences between the original value and the shadow
value become too large, their tool reports a potential accuracy problem. FPInst is another
tool that computes floating point errors for the purpose for detecting accuracy problem
[2]. Tt also computes a shadow value side by side, but it stores an absolute error in double
precision instead. [22] proposed a tool for detecting cancellation. Cancellation is detected by
first computing the exponent of the result and the operands. If the exponent of the result is
less than the maximum of those of the two operands, a cancellation has occurred. Fluctuat is

6 Related Work 31

another static analysis tool based on abstract interpretation and affine arithmetic to analyze
the propagation of rounding errors in C programs. It can detect potential errors like run-
time errors or unstable tests due to numerical problems [I7]. Our tool can complement
accuracy analysis for debugging purposes in the following way. It can attempt to tune the
set of potentially error-generating floating-point instructions to have higher precision until
the accuracy problem goes away. The cost model could be changed to favor a configuration
that requires the fewest changes.

In addition, our work is related to code autotuning to improve performance [I8] 34 [35]
29, [§]. That previous work has however not tried to tune floating-point precision in the way
this work does. Finally, our work on Blame Analysis is related to other dynamic analysis
tools that employ shadow execution and instrumentation [33, 28, [0, 27]. These tools,
however, are designed as a general dynamic analysis framework rather than specializing in
analyzing floating-point programs like ours.

7 Conclusion 39

7 Conclusion

In this paper, we have presented an automated dynamic technique to assist developers in
tuning floating-point precision. Our technique comprises two novel algorithms, entitled
Blame Analysis and LCCSearch, which effectively search through the type configuration
search space, to infer a local minimum configuration that, when applied to the original
program, results in a new program that uses less precision, is accurate enough and at least
as fast as the original program. We implement our technique as an open source tool, which
is available at https://github.com/corvette-berkeley. Initial evaluation on a set of
seven GSL programs and two NAS benchmark programs show encouraging results: we are
able to find configurations that translate to as high as 40% execution time speed up. In
addition, Blame Analysis helps to speed up the analysis time of LCCSearch 9 times on
average.

In the future, we would like to apply our analysis to a wider range of applications to
gain better statistical results. We also want to explore different strategies to scale up our
approach to larger programs. One of the directions is to first employ our technique as an
intra-procedural analysis, then use the configuration inferred for each procedure to infer the
configuration for the entire program. This will be a subject for future work.

https: //github.com/corvette-berkeley

7 Conclusion 33

References

1]
2]

[3]

[10]

[11]

[12]

C numerics library. http://http://www.cplusplus.com /reference/cmath/.

D. An, R. Blue, M. Lam, S. Piper, and G. Stoker. Fpinst: Floating point error analysis
using dyninst, 2008.

M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek,
and S. Tomov. Accelerating scientific computations with mixed precision algorithms.
Computer Physics Communications, 180(12):2526-2533, 20009.

D. H. Bailey. Resolving numerical anomalies in scientific computation.
http://www.davidhbailey.com/dhbpapers/numerical-bugs.pdf, 2008.

T. Bao and X. Zhang. On-the-fly detection of instability problems in floating-point
program execution. In A. L. Hosking, P. T. Eugster, and C. V. Lopes, editors, Pro-
ceedings of the 20183 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2013, part of SPLASH
20138, Indianapolis, IN, USA, October 26-31, 2013, pages 817-832. ACM, 2013.

E. T. Barr, T. Vo, V. Le, and Z. Su. Automatic detection of floating-point exceptions.
In R. Giacobazzi and R. Cousot, editors, The 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy - Jan-
uary 28 - 25, 2013, pages 549-560. ACM, 2013.

F. Benz, A. Hildebrandt, and S. Hack. A dynamic program analysis to find floating-
point accuracy problems. In J. Vitek, H. Lin, and F. Tip, editors, PLDI, pages 453—462.
ACM, 2012.

J. Bilmes, K. Asanovié¢, C. Chin, and J. Demmel. Optimizing matrix multiply using
PHiPAC: a portable, high-performance, ANSI C coding methodology. In Proceedings
of the International Conference on Supercomputing, Vienna, Austria, July 1997. ACM
SIGARC. see http://www.icsi.berkeley.edu/ bilmes/phipac.

A. W. Brown, P. H. J. Kelly, and W. Luk. Profiling floating point value ranges for
reconfigurable implementation. In Proceedings of the 1st HiPEAC Workshop on Re-
configurable Computing, pages 6-16, 2007.

D. Bruening, T. Garnett, and S. P. Amarasinghe. An infrastructure for adaptive
dynamic optimization. In CGO, pages 265275, 2003.

A. Buttari, J. Dongarra, J. Kurzak, P. Luszczek, and S. Tomov. Using mixed precision
for sparse matrix computations to enhance the performance while achieving 64-bit
accuracy. 2008.

W. Chiang, G. Gopalakrishnan, Z. Rakamaric, and A. Solovyev. Efficient search for
inputs causing high floating-point errors. In ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 14, Orlando, FL, USA, February 15-
19, 2014, pages 43-52, 2014.

7 Conclusion 34

[13]

[14]

[15]

[18]

[19]

[20]

[21]

22]

G. P. Contributors. GSL - GNU scientific library - GNU project - free software foun-
dation (FSF). http://www.gnu.org/software/gsl/, 2010.

E. Darulova and V. Kuncak. Trustworthy numerical computation in scala. In C. V.
Lopes and K. Fisher, editors, OOPSLA, pages 325-344. ACM, 2011.

E. Darulova and V. Kuncak. Sound compilation of reals. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14,
pages 235-248, New York, NY, USA, 2014. ACM.

F. de Dinechin, C. Lauter, and G. Melquiond. Certifying the floating-point implemen-
tation of an elementary function using gappa. IEEE Trans. Comput., 60(2):242-253,
Feb. 2011.

D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine. Towards an
industrial use of fluctuat on safety-critical avionics software. In Proceedings of the 14th
International Workshop on Formal Methods for Industrial Critical Systems, FMICS
’09, pages 53-69, Berlin, Heidelberg, 2009. Springer-Verlag.

M. Frigo. A Fast Fourier Transform compiler. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, Atlanta, Georgia,
May 1999.

D. Goldberg. What every computer scientist should know about floating point arith-
metic. ACM Computing Surveys, 23(1):5-48, 1991.

Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for quad-double precision floating
point arithmetic. In Proceedings of the 15th IEEE Symposium on Computer Arithmetic,
ARITH ’01, pages 155—, Washington, DC, USA, 2001. IEEE Computer Society.

M. O. Lam, J. K. Hollingsworth, B. R. de Supinski, and M. P. LeGendre. Automatically
adapting programs for mixed-precision floating-point computation. In A. D. Malony,
M. Nemirovsky, and S. P. Midkiff, editors, ICS, pages 369-378. ACM, 2013.

M. O. Lam, J. K. Hollingsworth, and G. W. Stewart. Dynamic floating-point cancella-
tion detection. In st International Workshop on High-performance Infrastructure for
Scalable Tools, 2011.

M. O. Lam, J. K. Hollingsworth, and G. W. Stewart. Dynamic floating-point cancel-
lation detection. Parallel Computing, 39(3):146-155, 2013.

C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In 2nd IEEE / ACM International Symposium on Code
Generation and Optimization (CGO 2004), 20-24 March 2004, San Jose, CA, USA,
pages 75-88. IEEE Computer Society, 2004.

X. S. Li, J. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Y.
Kang, A. Kapur, M. C. Martin, B. Thompson, T. Tung, and D. J. Yoo. Design,
implementation and testing of extended and mixed precision BLAS. ACM Trans.
Math. Softw., 28(2):152-205, 2002.

7 Conclusion 35

[26]

[29]

J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefevre, G. Melquiond,
N. Revol, D. Stehlé, and S. Torres. Handbook of Floating-Point Arithmetic. Birkh Basel,
1st edition, 2009.

N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic binary
instrumentation. In Proceedings of the 2007 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’07, pages 89-100, New York, NY,
USA, 2007. ACM.

H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie. Pinplay: a framework for
deterministic replay and reproducible analysis of parallel programs. In A. Moshovos,
J. G. Steffan, K. M. Hazelwood, and D. R. Kaeli, editors, Proceedings of the CGO 2010,
The 8th International Symposium on Code Generation and Optimization, Toronto,
Ontario, Canada, April 24-28, 2010, pages 2-11. ACM, 2010.

M. Piischel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong,
F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo.
SPIRAL: Code generation for DSP transforms. Proceedings of the IEEE, special issue
on “Program Generation, Optimization, and Adaptation”, 93(2):232— 275, 2005.

T. Ravitch. LLVM Whole-Program Wrapper QONLINE, Mar. 2011.

W. Saphir, R. V. D. Wijngaart, A. Woo, and M. Yarrow. New implementations and
results for the nas parallel benchmarks 2. In In 8th SIAM Conference on Parallel
Processing for Scientific Computing, 1997.

E. Schkufza, R. Sharma, and A. Aiken. Stochastic optimization of floating-point pro-
grams with tunable precision. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’14, pages 53-64, New
York, NY, USA, 2014. ACM.

K. Sen, S. Kalasapur, T. G. Brutch, and S. Gibbs. Jalangi: a selective record-replay
and dynamic analysis framework for javascript. In B. Meyer, L. Baresi, and M. Mezini,
editors, Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE’13,
Saint Petersburg, Russian Federation, August 18-26, 2013, pages 488-498. ACM, 2013.

R. Vuduc, J. Demmel, and K. Yelick. OSKI: A library of automatically tuned sparse
matrix kernels. In Proc. of SciDAC 2005, J. of Physics: Conference Series. Institute
of Physics Publishing, June 2005.

C. Whaley. Automatically Tuned Linear Algebra Software (ATLAS). math-
atlas.sourceforge.net, 2012.

A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input. IEEFE
Trans. Software Eng., 28(2):183-200, 2002.

	thesis_cover
	thesis_cuong_draft_v3
	Introduction
	Overview
	A Motivating Example
	Overview of Our Approach

	Reducing the Precision Search Space using Blame Analysis
	Blame by Example
	Shadow Execution
	Online Blame Analysis
	Handling Branch Divergence
	Heuristic and Optimization

	Minimizing Precision Usage using Delta-Debugging Based Search
	Creating Search Space
	Search Algorithm
	Validating Configuration

	Experimental Evaluation
	Experiment Setup
	Experiment Results
	Discussion

	Related Work
	Conclusion

