
Synthesis of Reliable and Cost-Effective Cyber-Physical
System Architectures

Nikunj Bajaj

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-41
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-41.html

May 1, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Synthesis of Reliable and Cost-Effective Cyber-Physical System
Architectures

by Nikunj Bajaj

Research Project

Submitted to the Department of Electrical Engineering and Computer Sci-
ences, University of California at Berkeley, in partial satisfaction of the require-
ments for the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Alberto L. Sangiovanni Vincentelli
Research Advisor

(Date)

* * * * * * *

Professor Sanjit Seshia
Second Reader

(Date)

Abstract

Cyber physical system (CPS) are interconnection of computation, networking and
physical elements. Modern CPS are distributed, networked and safety-critical sys-
tems and architectural design of such systems with fault tolerance and performance
constraints is a challenging task. In this thesis, we address the problem of synthe-
sizing safety-critical cyber-physical system architectures to minimize a cost func-
tion while guaranteeing the desired reliability. We cast it as an optimization prob-
lem with the component cost as the objective and the performance and reliability
requirements as the constraints. The challenge is to generate symbolic reliability
constraints, which is exponential in the size of the system due to exhaustive enu-
meration of failure cases on all possible system configuration. We propose two al-
gorithms to overcome this problem that we refer to as Integer-Linear Programming
Modulo Reliability (ILP-MR) and Integer-Linear Programming with Approximate
Reliability (ILP-AR). ILP-MR solves an easier optimization problem with perfor-
mance constraints and iteratively introduces redundancy in the system with a back-
ground reliability analysis routine. Conversely, ILP-AR solves the problem in one
iteration by symbolically representing the reliability constraints computed using
an in house developed approximate algebra. We compare the two approaches and
demonstrate their effectiveness on the design of aircraft electrical power system
architectures.

i

Acknowledgements

I offer my regards and blessings to all those who supported me in any aspect during
the completion of this thesis. Foremost, I would like to express my sincere gratitude
to my advisor Prof. Alberto Sangiovanni Vincentelli for offering me the opportu-
nity to work on my Master Thesis at the University of California, Berkeley, under
his guidance. I thank him for his continuous support, encouragement and advice
throughout my stay at Berkeley.

I owe my deep gratitude to Pierluigi Nuzzo, for his patient guidance, con-
tinuous encouragement, insightful comments and constructive criticism. I really
enjoyed working under his supervision on this compelling project. I thank Safa
Messaoud and Mohammad Mozumdar for their contributions in the development
of the design example. I thank Prof. Sanjit Seshia, Prof. Edward Lee, Prof. Jaijeet
Roychowdhury, Prof. Stavros Tripakis and Prof. El Ghaoui for the kind transfer of
knowledge and inspiration through lectures and meetings.

I am very grateful to our sponsors- the iCyPhy consortium, The Terraswarm
Research Center, IBM and UTC. I am thankful to our industrial partners especially
Michael Masin and Eelco Scholte for the productive discussions and their valuable
feedback on the work.

I am thankful to my labmates John Finn, Liangpeng Guo, Alberto Puggelli,
Mehdi Maasoumy, Baihong Jin, Ankush Desai and especially Shromona Ghosh,
Gautam Kumar, Anurag Khandelwal, Antonio Iannopollo for their constant support
during this work and to all my friends and colleagues for making my stay at Berke-
ley so amazing. Last but not the least, I would like to thank my father, my mother,
my sisters and brothers-in-law, who have always been a constant source of love and
support for me in every possible way.

ii

Contents

Page

Chapters

1 Introduction . 1

1.1 Cyber Physical Systems . 1

1.2 Design Challenges . 2

1.3 Contributions . 2

2 Previous Work . 4

2.1 CPS Design Methodology . 4

2.2 Fault Tolerant Systems . 5

2.3 Summary . 6

3 Problem Formulation . 7

3.1 System Modeling . 7

3.2 Optimization Problem . 10

Objective Function . 10

Interconnection Constraints . 10

Reliability Constraints . 12

3.3 Summary . 13

4 ILP Modulo Reliability . 14

4.1 Algorithm . 14

iii

4.2 Learning Constraints to Improve Reliability . 15

4.3 Soundness and Completeness of ILP-MR . 18

4.4 Summary . 18

5 ILP with Approximate Reliability . 19

5.1 Approximate Reliability Algebra . 19

5.2 Bound on Approximation . 20

5.3 Correctness and Complexity of ILP-AR . 27

5.4 Summary . 28

6 Case Study and Results . 29

6.1 Aircraft Electric Power System . 29

6.2 Results . 30

ILP-MR . 31

ILP-AR . 31

6.3 Scalability and Discussion . 32

6.4 Summary . 33

7 Conclusions and Future Work . 34

References . 35

iv

List of Figures
Page

1 (a)Sensor Network (b) Automotive Systems (c) Communication
Network . 1

2 (a) Architecture template configuration example; (b) Architecture
analyzed in Example 5.1. 8

3 (a) Architecture template configuration for multiple loads; (b)
Architecture template configuration for single load 21

4 Sample single-line diagram of an aircraft electric power system
from [1]. Contactors are represented by double bars. 30

5 EPS architectures and reliability as obtained at each iteration of
an ILP-MR run with r∗ = 2 × 10−10: (a) r = 6 × 10−4; (b)
r = 2.8× 10−10; (c) r = 0.79× 10−10. 31

6 EPS architectures synthesized using ILP-AR for different reliability
requirements: (a) r∗ = 2 × 10−3, r̃ = 6.0 × 10−4, r = 6 × 10−4;
(b) r∗ = 2 × 10−6, r̃ = 2.4 × 10−7, r = 3.5 × 10−7; (c)
r∗ = 2× 10−10, r̃ = 7.2× 10−11, r = 2.8× 10−10. 32

v

List of Tables
Page

1 Components and attributes used in the EPS example. 30

2 Number of iterations, reliability analysis and solver time for different
EPS architecture sizes (r∗ = 10−11, n = 5) using ILP-MR with
LEARNCONS (top) and with a lazier strategy, adding only one path at
each iteration (bottom). 33

3 Number of constraints, problem generation (setup) and solver time for
different EPS architecture sizes (r∗ = 10−11, n = 5) using ILP-AR. 33

vi

Chapter 1
Introduction

In this chapter, we give some background about Cyber Physical Systems (CPS)
and the challenges involved in their design. We conclude with a summary of the
contribution of our work.

1.1 Cyber Physical Systems

CPS imply a tight synergy of the physical world with the computation and com-
munication worlds. A typical CPS is modeled as a distributed network of several
interacting elements with a physical interface [2] [3]. For instance, a wireless sen-
sor network, as shown in Fig. 1 a, monitoring certain aspect of the environment and
sending data to a central server could be characterized as a typical CPS. The sensors
reflect the physical part of the system that monitors properties of the environment
(like temperature, pressure, humdidity). On the other hand, sensors might commu-
nicate with a central server where computations can take place to convert the local
data into global information. The central node might communicate back to the dis-
tributed sensor network, for instance, to increase or decrease the data polling rate.
This constitutes the cyber part of the system. This scenario would typically entail an
ensemble of sensors distributed at different geographical locations. Other examples
of CPS include but not limited to, distributed robotics, automotive systems, smart
grids.

Figure 1: (a)Sensor Network (b) Automotive Systems (c) Communication Network

It is easy to notice from the above example, that a CPS architecture is an in-
terconnection of heterogeneous components assembled to perform a specified func-
tion where embedded software components are connected in feedback with physi-

1

cal processes to form a large, distributed, networked control system subject to tight
cost, safety and reliability constraints.

1.2 Design Challenges

The design of such systems places several challenges in terms of their analysis, test-
ing and verification because of the large scale, performance constraints and hetero-
geneity of components and requirements. A derivative approach is often followed
in the design process where minor additions are made over pre-existing implemen-
tations. This process hardly scales to the complexity of the system. Heuristic ap-
proaches fail to guarantee the desired reliability. The safety critical nature of the
CPS entails design algorithms based on sound mathematical techniques whereas
the complexity of the system necessitates scalable algorithms. It is, therefore, highly
desirable to devise effective abstractions that enable co-design and optimization of
CPS architectures under several, possibly conflicting concerns, while guaranteeing
design correctness and fault tolerance.

Specifically, this work contributes towards architecture synthesis of systems
with a focus on certain key aspects like physical properties of components, dis-
tributed nature of system, scale and reliability. We focus on a class of CPS that can
be represented as a distributed network of components serving a common function-
ality modeled as a flow. Common examples of such systems include a communica-
tion network that represents a flow of message (Fig. 1 c.) from source to sink nodes,
or a sensor network that represents a flow of data (Fig. 1 a.) from sensors to a central
server, or a swarm of robots (serving a purpose such as surveillance) that represents
a flow of actuation commands from a central server to the robots or amongst the
robots themselves, or a power network that represents a flow of power from genera-
tor to load. These large systems are often composed of components that are subject
to failure, still, used in safety-critical applications, which entails introducing redun-
dancy in the system. Introducing redundancy implies increasing system cost and
size, therefore, it is not possible to introduce redundancy arbitrarily in an attempt to
make the system fault-tolerant.

1.3 Contributions

As mentioned above, introducing optimal redundancy in the system entails quanti-
fying failure and a rigorous analysis of how component failure propagates to system
level. We address this problem by using an optimization-based methodology for the
synthesis of CPS architectures whose reliability is a function of the interconnec-
tion structure. Our goal is to minimize the overall system cost (e.g. number and

2

weight of components) while guaranteeing that an upper bound on system failure
probability is met. Our contributions can be summarized as follows:

– We provide a general graph representation of an architecture that allows an effi-
cient casting of the design problem as an integer linear program (ILP), capable
of modeling a variety of system requirements, such as connectivity, safety, reli-
ability and energy balance;

– We propose two algorithms to decrease the complexity of exhaustively enumer-
ating all failure cases on all possible graph configurations, i.e. Integer-Linear
Programming Modulo Reliability (ILP-MR) and Integer-Linear Programming
with Approximate Reliability (ILP-AR). ILP-MR lazily combines an ILP solver
with a background exact reliability analysis routine. The solver iteratively pro-
vides candidate configurations that are analyzed and accordingly modified, only
when needed, to satisfy the reliability requirements. Conversely, ILP-AR ea-
gerly generates monolithic problem instances using approximate reliability com-
putations that can still generate estimations to the correct order of magnitude,
and with an explicit theoretical bound on the approximation error;

– We develop a tool ARCHEX that implements the two approaches and provides
an easy interface to customize the system specifications and properties.

– We compare the performance of the two approaches and demonstrate their effec-
tiveness on the design of safety-critical industrial-scale architectures for aircraft
electrical power distribution.

The research in this thesis is the result of a collaborative effort. In particular,
the presented work has been carried out in close collaboration with the co-authors of
the paper [4], on which this thesis is largely based. While it is difficult to draw sharp
boundaries among the distinct contributions, we observe that the contribution of the
author of this thesis was instrumental in the development of Algorithm 2 jointly
with P. Nuzzo, the development of the ILP-AR algorithm, jointly with P. Nuzzo,
and under the guidance of M. Masin, and the implementation of the ILP-MR and
ILP-AR algorithms under the guidance of P. Nuzzo.

The remainder of the thesis is organized as follows. After giving a brief
survey of the previous work in CPS design in Chapter 2 we present the system
model used in this thesis and mathematical formulation of the synthesis problem
in Chapter 4. Then we detail the ILP-MR and ILP-AR algorithms, respectively,
in Chapter 4 and Chapter 5. We compare both algorithms and validate their effec-
tiveness on the design of aircraft electrical power system (EPS) architectures in
Chapter 6. Finally, we draw conclusions and present some future work in Chapter 7.

3

Chapter 2

Previous Work
In this chapter we discuss the high-level challenges in CPS design and the method-
ologies to address these challenges, proposed in the literature. We then provide a
brief analysis of the methods explored for the design of fault tolerant systems. We
also compare how our design methodology and algorithms compare to the ones
existing in the literature.

2.1 CPS Design Methodology

Although, the advent of CPS is a fairly recent phenomenon in both academia and
industry, its economic and social potential has been realized and major investments
are being made on this technology [5]. In turn, design of CPS has become a key
focus area and researchers are well aware of the challenges in deploying the full
potential of CPS in real world applications. As mentioned in [6] “Cyber Physical
Systems will not be operating in a controlled environment and must be robust to
unexpected conditions and adaptable to subsystem failures”. A well-explored so-
lution in this regard is model based design technique, which entails mathematical
modeling of the physical systems, testing and simulating offline, putting the system
together with a formal model of communication layer and repeating the steps at a
higher level of abstraction. An interesting analysis has been provided in [7] that il-
lustrates how these steps are inter dependent and a design methodology is proposed
that facilitates correct coevolution of the model with system realization. Other key
concerns pointed out in the literature regarding the design of CPS are the need of a
strong semantic foundation and compositional reasoning. Carolyn Talcott [8] pro-
poses an event-based semantics for CPS design. Event- based semantics has the
potential to reason locally about individual components and globally about system
properties. Lee [6] appropriately raises the concern of how to design predictable and
reliable systems, given, components that might deviate from expected behavior un-
der certain operating conditions. Our methodology addresses both these concerns.
We work on event based semantics in designing CPS architecture, because we anal-
yse how failure event of a component propagates to the system and enable the sys-
tem to respond to combination of such events, whereas our platform-based-design
(PBD) approach encapsulates compositional and heirarchical reasonsing.

Platform-based design(PBD) has been successfully adopted in the automo-
tive and consumer electronics [9] domains to overcome similar challenges, by for-

4

malizing the design flow as a sequence of refinement steps from the original spec-
ification to the final implementation. A basic principle of PBD is the distinction
between the function (what the system is supposed to do, i.e. the specifications) and
the architecture (how specifications are realized, i.e. the components implementing
the function together with their interconnections), which allows for automatic de-
sign space exploration. At each refinement step, the design is regarded as a platform
instance, i.e. a valid composition of library elements that are pre-characterized by
their cost and performance metrics. The objective is therefore to select a platform
instance that correctly implements a given specification. The mapping of such a
specification onto an architecture can be formalized by an optimization problem
whose solution represents the functional specification to be implemented by the
subsequent refinement step. This process repeats recursively until an implementa-
tion is reached.

2.2 Fault Tolerant Systems

The approach presented above allows us to evaluate reliability directly from the
system structure, by associating a reliability model to each system component and
interconnection, which is one of the key contributions of the work. Fault toler-
ance is a widely discussed topic in the literature, however in this chapter, we re-
strict the disucssion to methods pertaining to compositional reasoning. For instance,
Kaiser et al. [10] proposed compositional fault trees that allows to construct fault
trees of the system, from the fault trees of its components. Many traditional safety
and reliability assessment is based on a set of methods that are hard to incorporate
into automatic design space exploration and optimization frameworks. In addition
to the complexity of exact network reliability analysis, which is an NP-hard prob-
lem [11], techniques such as Fault Tree Analysis (FTA) or Reliability Block Dia-
grams (RBD) often rely on a set of system abstractions, which are hardly interoper-
able with system design flows [10]. For instance, in FTA, causal chains leading to
some failure are depicted as a tree, inherently describing a hierarchical breakdown.
However, in FTA, decomposition into modules mostly relates to the hierarchy of
failure influences rather than to the actual system architecture. Therefore, the inte-
gration of fault trees with other system design models, or the automatic generation
of fault trees from design artifacts, if at all sufficient to model failure propagation
paths, is not directly possible.

In contrast, our compositional approach and simplistic system representa-
tion allows us to optimize for reliability, performance and cost simultaneously. We
are able to formulate two concrete algorithms- ILP-MR and ILP-AR that trades
between domain knowledge and computation time respectively, to synthesize CPS

5

archiectures. Instead of formulating a single, “flat” optimization problem, the ILP-
MR algorithm avoids the expensive generation of symbolic reliability constraints
via an iterative approach inspired by the ILP Modulo Theory paradigm [1, 12]. An
instance of this approach has already shown to be promising when applied to topol-
ogy design of aircraft power systems [12, 13] On the other hand, the ILP-AR al-
gorithm aims to efficiently solve a single optimization problem, albeit of a larger
size, to provide the optimal solution without repetitive calls to the exact reliability
analysis function, which may also be expensive. ILP-AR exploits an approximate
“algebra” for reliability calculation, inspired by the work of Helle et al. [14]. How-
ever, our algebra is richer than the previously proposed one, since it accounts for the
number of redundant paths implementing a certain function as well as the number
of components of the same type that are actually used in these paths. Our reasoning
on individual components allows us to relax the simplifying assumption that any
used component is either maximally redundant (i.e. participates in just one path) or
essential (i.e. participates in all paths) because at this level of granularity we can ac-
count for the exact degree of redundancy of each component, instead of entire path
which may share componnets. We also generate failure probability expressions that
can be used in an ILP formulation, provide estimations to the correct order of mag-
nitude, and with well-defined theoretical bounds on their potential “optimism”. Our
algebra provides a better bound than the one proposed before along with proof based
on a sound mathematical foundation. Finally, while [14] focuses on the analysis and
combination of different failure cases, we assess, for the first time, the effectiveness
of using an approximate reliability algebra on a synthesis problem.

2.3 Summary

This chapter endows a review of the challenges, methodologies and algorithms for
CPS design proposed in the literature. We also give a brief overview of our ap-
proach. In the next chapter we provide a detailed mathematical formulation of our
design problem.

6

Chapter 3
Problem Formulation

In this chapter, we formally introduce some key concepts and terminology about the
system and give intuitive explanation drawn from two examples- Wireless Sensor
Network (WSN) and Electric Power System (EPS). We also provide the mathemat-
ical formulation of architecture synthesis as an optimization problem.

3.1 System Modeling

In the context of Platform Based Design, we assume that a design is assembled out
of a library (collection) L of components and composition rules. For instance, in
a WSN the library might be composed of sensors, routers, base stations, gateways,
servers or in case of EPS, components like generators, buses, rectifiers, loads might
constitute the library. Each component is associated with a set of attributes, which
are used to capture both its functional and non-functional properties, such as energy,
performance, and cost. Sensors can be characterized by properties like battery life,
communication range, size; generators can be characterized by power rating; almost
any component will have an associated cost parameter. We also assume in this prob-
lem, that tentative failure probability is known for every component in the network
which could be derived statistically or by reliability analysis of its components.

Components can be connected via terminals and terminal variables. At this
level of abstraction, terminals are logic in nature. Input terminals are used to receive
a signal or the value of a terminal variable; output terminals are used to send a signal
or assign a value of a terminal variable. Composition rules define how terminals
are connected and terminal variables are assigned between components. For the
purpose of this report, L is parameterized by a set of vectors, including terminal
variables w, component costs c, and failure probabilities p.

In the context of synthesis, it becomes extremely important to distinguish
between the notion of a template and an architecture, which can be formalized as
below.

Definition 3.1 (Template). A system template T consists of a finite set of compo-
nents (X) in which the set of nodes is fixed, while the interconnection structure is
variable and can be reconfigured.

Definition 3.2 (Architecture). A system architecture consists of a finite set of com-
ponents and their interconnections, and can be modeled as a directed graph G =

7

(V,E), where each node vi ∈ V ⊆ X represents a component and each edge
eij ∈ E represents the interconnection from vi to vj (i, j ∈ {1, . . . , |V |}, |V | being
the cardinality of V).

(a) (b)

Figure 2: (a) Architecture template configuration example; (b) Architecture ana-
lyzed in Example 5.1.

An assignment over E is a configuration. As shown in Fig. 2 (a) which
could represent an EPS or a WSN, the template T is the entire set of nodes (cardi-
nality 18), architecture is the set of “used” (cardinality 13) components connected
in the given configuration. Therefore, synthesis of an architecture refers to an as-
signment over edges or choosing a configuration over a subset of nodes in a given
template while satisfying the composition rules. It is important to note that it is de-
sired to synthesize architecture with minimal number of components. In practice,
every node in a template can be mapped to an element of a physical architecture.
In a reconfigurable architecture, edges can also be conveniently associated with
switches to denote interconnections that are selectively activated. This is because
the system might respond to component failure by changing the truth assignments
over switches dynamically. Based on the attributes of our library, both nodes and
edges can be labeled with the terminal variablesw, costs c and failure probabilities
p.

Finally, we assume that an external control unit can react to component
failures, by modifying the link (switch) configuration to activate alternative paths
from sources to sinks. The reliability of an architecture is then determined by its
topological structure and the redundancy of the paths available to perform a critical
function, associated to a functional link. To define a functional link, we assume that
each component can also be labelled with a type, defining its functionality (role or
task) in a system. We first introduce a partition on G, to which we link the notion of
component type as follows.

8

Definition 3.3 (Graph Partition and Component Type). A partitionΠ = {Π1, Π2,
. . . , Πn} over the set of nodes V of G is a set of nonempty subsets of V such that
V is a disjoint union of these subsets. We say that two nodes a and b have the same
type, written a ∼ b, when they belong to the same set in Π . If a is in Πi, then we
say that its type is i.

In this regard, we mean to augment the template T with an additional pa-
rameter called type with each component in the set. For instance, in case of power
system the type of components might refer to different electrical components that
serve a specific function: Generators - supplies power, AC buses- carries AC Power,
Rectifiers- converts AC power to DC power, DC Buses- carries DC power or Loads-
converts the electrical energy to different usable forms. This entire system together
is performing a functionality of carrying power from the generator to the load.

We also recall that a walk µ(va, vb) of G is a sequence of nodes {n0, . . . , nk}
such that n0 = va, nk = vb and enini+1

∈ E for each i. When all nodes in µ are
distinct, we say that µ is a (simple) path, and write |µ| to denote the length of µ. Let
Π1 and Πn be the subsets of V including, respectively, all sources and sinks. Then,
a functional link Fi is the set of paths from any source in Π1 to a sink vi ∈ Πn that
are used to perform an essential system function, on which a reliability requirement
is given. For instance, in Fig. 2 functional link corresponding to sink L1 is given by
{G1 → B1 → R1 → D1 → L1;G2 → B2 → R3 → D2 → L1;G4 → B3 →
R4→ D3→ L1}.

In practice, such a function may consist in transferring data or energy from
a source to the sink through a sequence of input-output links. For example, in case
of WSN different components might serve different functionalities in the commu-
nication stack. For instance, sensors might characterize the physical layer, while
gateways might serve as the network layer. Switches might represent communica-
tion between physical and data link layer while routers might be used for commu-
nication between data link and network layer. The web servers could represent the
application layer. Again, any subset of components that includes atleast one com-
ponent of each type in serving a function of carrying the sensor data to the server
for further processing may be regarded as a functional link. We should note here,
that to have one component of each type is not a restrictive assumption because our
framework makes no assumptions on the number of functional links. If there exists
one or more paths performing a required function and including different types of
components then a new functional link can be defined to represent the set.

9

3.2 Optimization Problem

Based on the definitions above, we cast the architecture synthesis problem as an
optimization problem. Given a library L and a template T , our goal is to derive
a configuration that satisfies a set of interconnection and reliability requirements,
while minimizing the cost and the complexity (number of components) of the overall
network. The set of Boolean variables E will then include our decision variables.
Based on the final assignment over E, some of the edges and nodes in T will be
selected to generate an optimal architecture; unnecessary nodes and edges will in-
stead be pruned away to minimize the overall cost. In the following, we provide
example formulations for the objective function and the requirements in terms of
Boolean arithmetic constraints.

Objective Function Let e be the adjacency matrix of T , i.e.

eij =

{
1 if there is one connection from vi to vj
0 otherwise

Then, the objective function can be expressed as the sum of the costs of all
components (associated with nodes) and switches (associated with edges) used in
the template, i.e.

|V |∑
i=1

δici +

|V |∑
i=1

|V |∑
j=i+1

(eij ∨ eji)c̃ij (1)

where ci is the cost of component i, c̃ij is the cost of the switch on edge eij , and δi
is a binary variable equal to one if the component is instantiated in a configuration
and zero otherwise. We express δi in terms of the edge variables as

δi =

|V |∨
j=1

(eij ∨ eji) (2)

meaning that δi is one if there exists at least an edge (incoming or outgoing)
between vi and any other node in the graph (we assume eii = 0 for all i). Moreover,
we use (eij∨eji) when computing the cost of the switches, to avoid double counting
the contribution of a switch associated to a bidirectional interconnection.

Interconnection Constraints Interconnection requirements originate from the com-
position rules in L and are used to enforce legal connections among components.

10

For example, let D, L, and B be subsets of V . Then, we can prescribe that there
exists at least (most) one connection from a node in L and a node in D as follows:

|D|∑
i=1

eljdi ≥ (≤) 1 ∀ j ∈ N : 1 ≤ j ≤ |L|, (3)

where eljdi is the edge from node lj to node di, and the inequality turns into an equal-
ity when one and only one connection is admitted. The above pattern of constraint is
often observed in networked architectures because a component can communicate
with the rest of the network through another specific component only and it must
be connected to the same.

For instance, suppose in a WSN L represents a set of sensors and D repre-
sent a set of gateways. For the sensors to communicate with the server, data has to
pass through a router. This could be formulated as an interconnection constraint of
the form of equation Eqn. (4). The textual translation of the above statement is that
there exists at least one path from every sensor to a router. Similarly, in case of an
EPS a typical connectivity constraint that forbid parallel connection of AC Sources
can be easily formulated in the form of above equation. Suppose we denote the
set of AC generators by G and the set of Buses by B, then the constraint can be
formulated as

|G|∑
i=1

ebjgi ≤ 1 ∀ j ∈ N : 1 ≤ j ≤ |B|, (4)

Moreover, we can state that if there exists an interconnection from any node
in L to a node dj in D, then dj must be connected to at least one node in B, using a
constraint of the form:∨

1≤i≤|L|

elidj ≤
∨

1≤k≤|B|

edjbk ∀ j ∈ N : 1 ≤ j ≤ |D|. (5)

Referring to the WSN, if L represents the set of sensors, D represents the
set of routers and B represents the set of gateways then a constraint can be imposed
in the form of equation 5. It states that if a router is connected to a sensor then it
must be connected to at least one gateway.

Another set of interconnection constraints can be used to enforce conserva-
tion laws or balance equations in physical systems, e.g. an EPS requiring that the
maximum power provided by a source in T is greater than or equal to the maxi-
mum power required by the connected sinks. Let d be a node in the graph, which is

11

neither a source nor a sink. Let B be the set of direct predecessors of d, and L be
the set of its direct successors. Then, the balance equation at the terminals of d can
be written as

|B|∑
i=1

wbiebid ≥
|L|∑
j=1

wljedlj . (6)

Interconnection requirements as the ones above originate linear arithmetic con-
straints in the decision variables, or include logical operations (conjunctions and
disjunctions) that can be linearized with standard techniques [15].

Reliability Constraints A typical reliability requirement prescribes that the fail-
ure probability of a sink, i.e. the probability that a sink gets disconnected from a
source because of failures, should be less than a desired threshold. Therefore, to
formulate a reliability constraint, we need to compute the probability of composite
failure events in the system, starting from the failure probabilities of the compo-
nents. Specifically, we denote as system failure Ri an event in which there is no
possible connection between any of the available sources and a sink i, i.e. when
the functional link Fi breaks, and as reliability level ri the probability of Ri. Prac-
tically, the above notion of failure models the interruption of any information or
energy transfer to an essential portion of the system. We assume that when a com-
ponent fails it cannot be recovered, and the adjacent links are no longer usable.
Moreover, failures in different components are independent.

Let Pi be the event that component i fails (self-induced failure). Then, the
event Ri of a system failure affecting component i can be recursively computed as
follows

Ri = Pi ∪
⋂

1≤j≤|V |,eji 6=0

Rj, (7)

where eji is jth-row, ith-column element of the adjacency matrix e of T . In other
words, component i fails when either a failure is generated in itself, or when fail-
ures are induced through its predecessors. A symbolic constraint for ri can then be
generated using Eqn. (7) to enumerate all possible failure events while traversing T
from node i to the sources. However, such an exact computation, based on the enu-
meration of all possible component failure events, has exponential complexity on a
fixed graph configuration [11]. The problem is further exacerbated when compiling
a symbolic expression for a reconfigurable graph, since, in general, enumerating all
possible configurations results in exponential number of constraints. To overcome
this issue, we propose two approaches to the solution of the optimal architecture

12

selection problem, namely, ILP-MR and ILP-AR, which we detail in the following
chapters.

3.3 Summary

In this chapter we provided details on how we model a Cyber Physical System
for architecture synthesis. We introduce our formalism and key terminology and
explain them with some examples. We also frame architecture synthesis as an opti-
mization problem and provide a method to obtain the objective function (cost of sys-
tem) from the system representation. We also provide formulation of some generic
constraints and show how they can be used to represent typical consraints on CPS
architecture.

13

Chapter 4
ILP Modulo Reliability

We pointed out in that architecture synthesis of CPS typically involves interconnec-
tion, energy balance and reliability constraints. Out of these, it is relatively simpler
to formulate the interconnection and energy balance requirements as integer linear
constraints. However, reliability analysis of the network is an NP Hard problem
and results in an exponential number of constraints. Therefore, in our ILP- MR al-
gorithm we solve a simpler optimization problem without introducing the reliability
constraint at all. The optimizer therefore results in a minimal redundancy topology
satisfying the inter-connection and energy balance constraints. If the system does
not meet reliability requirements then the optimizer is called iteratively (with a re-
liability analysis module in loop) with added constraints till sufficient redundancy
is introduced in the system.

4.1 Algorithm

As mentioned above, the ILP Modulo Reliability (ILP-MR) algorithm avoids the
expensive generation of symbolic reliability constraints by adapting the ILP Modulo
Theory approach [12] to reliability computations, as summarized in Algorithm 1.
ILP-MR receives as inputs: the library of components L, together with their at-
tributes c, w and p, the template T , and the set of requirements, including inter-
connection and reliability constraints. To simplify, we assume that r is the worst
case failure probability over a set of nodes of interest, for which the same reliability
requirement r∗ must be satisfied.

An ILP is solved in a loop with a reliability analysis routine. SOLVEILP
generates minimum cost architectures for the given set of interconnection con-
straints. The RELANALYSIS routine computes the probability of composite failure
events at critical nodes, starting from the failure probabilities of the components,
a problem known as K-terminal reliability problem in the literature [11]. To do
so, we implement a modified depth-first search algorithm to traverse the graph G,
representing the architecture, from node i (root) to the source nodes (leaves), by
applying a path enumeration method, and by turning event relations as in Eqn. (7)
into probability expressions. However, any other exact reliability analysis method
for directed graph can also be used [11]. Although the K-terminal reliability prob-
lem is NP-hard, the key idea is to solve it only when needed, i.e. a small number of
times, and possibly on smaller graph instances.

14

Algorithm 1 ILP Modulo Reliability (ILP-MR)
Input: Architecture template T , component variables w, costs c and failure probabilities p, reliability require-
ment r∗

Output: Adjacency matrix e∗ of the final architecture G∗

r ← 2r∗

(Cost, Cons)← GENILP(T , w, c)
while r > r∗ do . failure probability

e∗← SOLVEILP(Cost, Cons)
if e∗ = [] then return UNFEASIBLE
r ← RELANALYSIS(e∗, p)
if r > r∗ then

Cons← LEARNCONS(Cons, r, r∗, e∗)
if Cons = [] then return UNFEASIBLE

return e∗

At each iteration of ILP-MR, if the optimal architecture satisfies the re-
liability constraints, it is returned as the final solution. Otherwise, LEARNCONS

estimates the number of redundant paths needed to achieve the desired reliability
and suggests a set of strategies to implement the required paths by augmenting the
original optimization problem with a set of interconnection constraints. This con-
straint learning function is, therefore, instrumental to efficiently converge towards a
reliable architecture, while minimizing the number of calls to RELANALYSIS. We
provide details about this function in the following section.

4.2 Learning Constraints to Improve Reliability

When no reliability constraints are enforced in the ILP, the solver attempts to use the
minimum number of components and interconnections to perform a specific func-
tion at minimum cost. Typically, such a “minimal” architecture has also minimal
redundancy, hence minimal reliability. Based on this intuition, we develop strate-
gies that increase the reliability of the solution, albeit at a higher cost, by enforcing
a larger number of redundant components and interconnections. An iterative ap-
proach similar to ILP-MR has been recently reported, based on a set of ad hoc
strategies, customized for the specific problem at hand [1] [16]. In Algorithm 2, we
introduce instead a generic template that can directly apply to the general problem
formulation in Chapter 4, hence to a broader set of applications.

The idea is to add more components and connections to increase the reliabil-
ity. The challenge is to determine the granularity of how much redundancy should
be added. On the two extremes exist: Firstly, adding all the components available
in the template and create a maximally redundant architecture in the first iteration;
Secondly, adding only one component or one connection each time and iterate till

15

reliability requirement is met or the template is exhausted. While the second ap-
proach may become computationally expensive and take a long time to converge,
the first approach may result in an over redundant architecture. Our approach de-
scribed in Algorithm 2 is incremental i.e. it increases reliability only when required,
still, it ensures fast convergence by minimizing the number of calls to the optimizer.
It increases the reliability of the system in two stages which we refer to as Coarse
Tuning and Fine Tuning. The first stage operates when the reliability of the obtained
architecture is far from the requirement while the second stage initiates when the
obtained reliability is in the proximity of requirement. We measure the closeness of
the obtained reliability to required reliability by introducing the notion of a relia-
bility of a path calculated from reliability of components. If the obtained reliability
differs from the required reliability by more than the reliability of single indepen-
dent path from source to sink then we introduce more paths which increases the
reliability by orders of magnitude otherwise we fine tune reliability by incremen-
tally adding one component/ connection at a time.

Algorithm 2 LEARNCONS
Input: Current constraints Cons, reliability r, reliability requirement r∗, adjacency matrix e∗

Output: Final constraints Cons
Based on the current reliability level r, LEARNCONS estimates the number of additional redundant paths k
required to satisfy the desired reliability r∗ (function ESTPATH). As an example, under the assumption that all
the paths in a functional link F are independent, then k can be computed as

k = blog(r∗/r)/ log ρc , (8)

where ρ is the failure probability of a single path in F , and bxc denotes the integer part of x.
k ← ESTPATH(r, r∗, e∗)
NewCons← []
S ← GETSINKS(e∗)
(T1, . . . , Tn)← GETTYPES(e∗)
for all v ∈ S do

if k ≥ 1 then
for all i ∈ (Tn−1, Tn−2, . . . , T1) do

NewCons← ADDPATH(v, i, k, NewCons, e∗)
else

i← FINDMINREDTYPE(v, e∗)
NewCons← ADDPATH(v, i, 1, NewCons, e∗)

if NewCons = [] then return UNFEASIBLE
Cons← (Cons,NewCons)
return Cons

Since, in reality, the paths in F are not independent, this is a conservative es-
timation which avoids over-design. Then, if at least one additional path is required,
for a sink node and component types implementing F and used in the current ar-

16

chitecture, ADDPATH generates new constraints to enforce that at least k additional
components of each type have a path to the sink. These constraints do not nec-
essarily translate into instantiating more components, as far as additional paths to
the sink can be obtained by just increasing the number of interconnections. If k
additional paths cannot be obtained with the current template, ADDPATH attempts
to enforce the maximum available number of paths. Conversely, if the estimated
number of paths is zero, LEARNCONS attempts to still improve the overall relia-
bility by enforcing one additional path between the sink and a component whose
type has minimum redundancy in the current architecture, i.e. for which the total
number of paths to the sink is minimum (as obtained from FINDMINREDTYPE).
If no additional paths can be added between a sink and a component of any type,
LEARNCONS terminates with UNFEASIBLE.

To enforce additional paths, ADDPATH uses the walk indicator matrix of T ,
defined below.

Lemma 4.1 (Walk Indicator Matrix). Let e be the adjacency matrix of a graph
T ; let a�b the logical product of two logical matrices a and b in Bm×m, defined as
(a�b)ij =

∨m
k=1 aik∧bkj; let ek = e� . . .� e︸ ︷︷ ︸

k times

be the k-th logical power of e. Then,

the entry in row i and column j, ηnij , of the walk indicator matrix ηn =
∨n
k=1 e

k is
1 if and only if there exists a directed walk of length less or equal n from vertex vi
to vertex vj .

We can then require at least k additional connections of components of type Ti,
belonging to the set Πi of the partition Π of T , to a sink v via at least one path of
length n− i+ 1 by enforcing∑

w∈Πi

ηn−i+1w,v ≥ k +
∑
w∈Πi

η∗n−i+1w,v
, (9)

where ηn−i+1 and η∗n−i+1 are the walk indicator matrices, respectively, for T (deci-
sion variables) and the current architecture G∗. The constraint (9) can be converted
into an equivalent set of linear constraints in the elements of e (edge variables) by
using standard linearization techniques. The following result summarizes the prop-
erties of the ILP-MR approach.

Similarly, FINDMINREDTYPE determines the type j with minimum redun-
dancy as

j = arg min
Πi∈Π

∑
w∈Πi

η∗n−i+1w,v
. (10)

17

Theorem 4.1 (Soundness and Correctness of ILP-MR). For a given template T
and within the approximation error ε of the SOLVEILP and RELANALYSIS rou-
tines, ILP-MR (Algorithm 1) is sound and complete.

4.3 Soundness and Completeness of ILP-MR

To prove the above theorem we introduce an architecture transformation function δ
that takes an architectureA and produces another architectureA′. This is a represen-
tation of a conjunction of the above two algorithms because Algorithm 2 requests
change in architecture (to increase redundancy) and Algorithm 1 implements the
same. Here we assume architecture A represents the functional link corresponding
to one sink node. The same analysis can be repeated for other functional links with-
out loss of generality. Let us also denote the architecture A′ obtained from the ith

call to the function δ by Ai. Clearly A0 is the first minimal redundancy architecture
obtained from the first call to Algorithm 1. We also denote by qi as the failure prob-
ability of the sink node of architecture Ai. Let us denote A = A0, A1, A2 . . . as the
sequence of architectures obtained from the repeated application of function δ and
we define a set ordering as Ai ≤ Aj if qj ≥ qi. We know that the function δ always
add more components or connections on existing architecture ∴ q0 ≥ q1 ≥ q2 . . .
and A is a totally ordered set.

We know that the algorithm terminates when either qi ≥ r∗for i ∈ 0, 1, 2 . . .,
(where r∗ denotes the reliability requirement) i.e. the obtained architecture meets
the reliability requirement or the function δ reaches a fixed point, δ(Ai) = Ai, i.e.
all components and connections in the given template are exhausted. We observe
that, since the number of components in T is finite, the ILP-MR routine, based on
Algorithms 1 and 2, will terminate.

Moreover, if the algorithm terminates because of the condition qi ≥ r∗, we
know that architecture Ai will satisfy all the requirements, because RELANALYSIS

implements an exact reliability analysis method, being only subject to the rounding
error ε due to the ILP solver and to RELANALYSIS. On the other hand, because
all available components will be eventually used to increase the reliability, if ILP-
MR terminates with UNFEASIBLE, then there is no architecture, obtained from the
given template, which is able to satisfy all the constraints.

4.4 Summary

In this chapter we introduced our ILP-MR algorithm that solves the synthesis prob-
lem in loop with a reliability analysis routine. We show efficient and generic ways
to iterate between the optimizer and reliability analysis routine and prove the termi-
nation, soundness and completeness of the algorithm.

18

Chapter 5

ILP with Approximate Reliability
As pointed in Section 3.2 exhaustive enumeration of all failure cases and gener-

ating exact reliability expression can result in exponential number of constraints.
The ILP-AR algorithm replaces exact reliability computations with an approximate
algebra that allows encoding a reliability requirement into a number of linear con-
straints on Boolean variables. In Sec. 5.1 we introduce the approximate reliability
algebra, which estimates the correct order of magnitude for the failure probabilities
of all the components in an architecture by leveraging the fact that components with
the highest failure probability tend to dominate the overall failure probability. Then,
in Sec. 5.3 we report the main results on correctness and complexity of ILP-AR.

5.1 Approximate Reliability Algebra

In the approximate algebra, components contribute to the system failure probabil-
ity based on their degree of redundancy, which is defined based on the notions of
functional link and component type defined in Chapter 4. We recall that any path
in a functional link Fi consists of an interconnection of components, each having a
role or performing a sub-task defined by its type. Components of the same type can
be interchanged and introduce redundancy in the system architecture. We say that a
component type j, associated to a partition Π of G, jointly implements a functional
link Fi, written Πj ` Fi, if all paths in the functional link Fi include at least one
node in Πj , i.e.

Πj ` Fi iff ∀µ ∈ Fi : µ ∩Πj 6= ∅. (11)

Trivially, we have Π1 ` Fi and Πn ` Fi for all i. Moreover, multiple nodes
of the same type are allowed in a path as far as they are adjacent to each other. This is
not a restrictive assumption because if same type of components occur at different
levels of the path then they can just be named as a different type of component
and the calculations do not change. Given a path µ, possibly including multiple
instances of the same type, we denote as µ̂ the reduced path obtained from µ after
replacing all the instances of the same type with a single node, still of the same
type.

We can then define the degree of redundancy hij associated with type j and
link Fi as the number of components of type j used in at least one reduced path of

19

Fi, i.e. hij = |(∪µ∈Fi
µ̂) ∩Πj|. Finally, we approximate the failure probability ri of

a functional link Fi by
r̃i =

∑
j∈Ii

hijp
hij
j (12)

where Ii = {j|Πj ` Fi} is the set of all component types that jointly implement
Fi, pj is the probability of failure of any of the components of type j, and hij is the
degree of redundancy associated with type j and link Fi.

Example 5.1. We illustrate the application of (12) to the architecture E represented
in Fig. 2 (b). We consider a partition where Π1 = {G1, G2}, Π2 = {B1, B2},
Π3 = {D1, D2} and Π4 = {L}. Sink L is connected to sources G1 and G2 via two
(reduced) paths, each using components of all the four types listed above. Then, the
approximate expression for the failure probability of L would be r̃L = pL + 2p2D +
2p2B + 2p2G, while exact calculations lead to

rL = pL + (1− pL){pD + (1− pD)[pB + (1− pB)pG]}2.

When all components are assumed to fail with the same probability p, we obtain
r̃L = p+ 6p2 and rL = p+ 9p2 +O(p3).

5.2 Bound on Approximation

The estimation in Example 5.1 has the same order of the exact calculation, and the
error becomes negligible for small p. In general, it is possible to state the following
theorem, providing a bound on the error of the approximate reliability algebra.

Theorem 5.1. Given a graph G and a partition Π , let r̃ and r be, respectively, the
approximate and exact failure probability for a functional link F = {µ1, . . . , µf},
denoted by its set of f independent paths (f = |F |). Let I = {j|Πj ` F} the set of
component types jointly implementing F . Then, the following inequality holds:

r̃

r
≥ mf

Mf

, (13)

where Mf =
∏j=f

j=1 |µj| and m = |I|.

Based on Theorem 5.1, (12) can provide “optimistic” estimations, but the
bound to such optimism can be explicitly estimated for a given graph template T .

The above theorem establishes a bound on the approximation in calculation
of failure probability. The bound is subject to the constraint on the architecture

20

of the system that restrains connection to exist only between subsequent layers,
which is characterised by type as defined in Chapter 4. Also, we recall here that a
functional link is the set of paths from any source in Π1 to a sink vi ∈ Πn.

(a) (b)

Figure 3: (a) Architecture template configuration for multiple loads; (b) Architec-
ture template configuration for single load

For instance, in figure 3 nodes of different colors represent different types
(interchangeably called layers). Green color(top layer) represent source nodes while
cyan(bottom layer) represents the sink layer. The set of paths from source nodes
to a particular sink node is called a functional link. For instance, functional link
corresponding to sink L1 is given by {G1 → B1 → R1 → D1 → L1;G2 →
B2→ R3→ D2→ L1;G4→ B3→ R4→ D3→ L1}.

Without loss of generality we can perform the analysis on one sink node
because the same calculation can be carried out for other sink nodes. We represent
functional link corresponding to sink nodeL1 in figure 3. One such generic template
can involve n types of components, represented by the set {T1, T2, ..., Tn}, jointly
implementing the function. We denote the number of instances of components of
the respective layers used in a given functional link by c1, c2,cn. In Figure 3,
n = 4, c1 = c2 = c3 = c4 = 3.

Now suppose we denote the event of failure of a component X by E(X).
Here, we assume that the sink node failure is induced i.e it does not fail itself, but
the failure happens when all paths connecting the sink node to the source nodes fail.
For all other nodes in the architecture we assume that the failure could result due to
self failure or induced failure. Therefore for any component X

E(X) = E(Xs) ∪ E(Xi), (14)

where, E(Xs) and E(Xi) denotes self and induced failure of component X
respectively.

21

Suppose we intend to find an expression for the event of failure of a sink
node, in a maximally redundant architecture represented by the above template.
Clearly, under our connectivity constraints (connection is allowed only between
subsequent layers) maximally redundant architecture is obtained if every compo-
nent is connected to all nodes in the layer immediately above. Trivially, the top
layer represents the source and bottom layer represents sink. We can now state that
for a sink node L1 the failure event can be represented as

E(L1) = E(L1i), assuming E(Xs) is a zero-probability event

=

c1⋂
k=1

E(T1k)

where, E(Tjk) represents event of failure of kth component in jth layer

=

c1⋂
k=1

[
E(T1ks)

⋃
E(T1ki)

]
=

c1⋂
k=1

[
E(T1ks)

⋃[c2⋂
j=1

E(T2j)

]]

=

[
c1⋂
k=1

E(T1ks)

]⋃[
c2⋂
j=1

E(T2j)

]
(15)

Let us now denote the event of failure of sink node L1, when k layers of components
are present by Vk. Clearly from Equation 15

V1 =

c1⋂
k=1

E(T1k)

=

c1⋂
k=1

E(T1ks), since there is only one layer, E(T1k) = E(T1ks)

V2 =

[
c1⋂
k=1

E(T1ks)

]⋃[
c2⋂
j=1

E(T2j)

]

=

[
c1⋂
k=1

E(T1ks)

]⋃[
c2⋂
j=1

E(T2js)

]
since there are only two layers, E(T2j) = E(T2js)

(16)

22

Following the trend as shown in Equation 16 let us assume

Vm =
m−1⋃
j=1

[
cj⋂
k=1

E(Tjks)

]⋃[
cm⋂
k=1

E(Tmk)

]

=
m⋃
j=1

[
cj⋂
k=1

E(Tjks)

]
, since there are only m layers, E(Tmj) = E(Tmjs)

(17)

If we can prove that Vm+1 can also be expressed in the form above, then it concludes
the inductive step of the proof.

Vm+1 =
m−1⋃
j=1

[
cj⋂
k=1

E(Tjks)

]⋃[
cm⋂
k=1

E(Tmk)

]

=
m−1⋃
j=1

[
cj⋂
k=1

E(Tjks)

]⋃[
cm⋂
k=1

[
E(Tmks) ∪ E(Tmki)

]]

=
m−1⋃
j=1

[
cj⋂
k=1

E(Tjks)

]⋃[
cm⋂
k=1

[
E(Tmks) ∪

[cm+1⋂
r=1

E(Tm+1, r)
]]]

=
m⋃
j=1

[
cj⋂
k=1

E(Tjks)

]⋃[
cm+1⋂
r=1

E(Tm+1,r)

]

=
m+1⋃
j=1

[
cj⋂
k=1

E(Tjks)

]
since there are only m+ 1 layers, E(Tm+1,j) = E(Tm+1,js)

(18)

The above derivation establishes that for a maximally redundant functional link
comprising n types of components the failure event of sink node can be represented
in terms of failure of other components in the architecture as

E(L1) =
n⋃
j=1

[
cj⋂
k=1

E(Tjks)

]
(19)

If all the paths in the functional link have to be independent then c1 = c2 = . . . =
cn = c, thus,

E(L1) =
n⋃
j=1

[
c⋂

k=1

E(Tjks)

]
(20)

23

Therefore, we know that for any architecture that can be represented by using the
same set of components as above, the Reliability Algebra approximates it to the
same configuration. Clearly, if the obtained architecture is also maximally redun-
dant then the approximation is exact and this is the best case. If more and more
paths are removed the appproximation worsens and the worst case occurs when un-
der the connectivity constraints the obtained architecture is minimally redundant or
functional link F contains a set of parallel paths from source to sink. Therefore, if
we can establish a bound on the approximation in the worst case, that would hold
for all other cases in a given template. Formally, the minimally redundant archi-
tecture with n types of components and c independent paths would have c paths
from a source node to the sink node under consideration, each path consisting of n
components. The failure event of the sink node under this configuration denoted by

ˆE(L1) can be given as

ˆE(L1) =
c⋂

k=1

[
n⋃
j=1

E(Tjks)

]
(21)

The formula means that the load would fail when each of the c paths connecting it
to a source node fail and a path would fail if any component in the path fails. The
next step is to prove a bound on probability of failure of sink node in maximally
redundant and minimally redundant configurations, represented in equations 20 and
21 respectively. It is easy to show that the deviation in the probability expression of
the events E(L1) and ˆE(L1) is worst when we consider all components to have the
failure probability p, where

p = maxv∈V pv,where pv is the failure probability of node v (22)

Under the above assumtions, probability of failure of load under maximally redun-
dant configuration can be given by

P
(
E(L1)

)
= P

(
n⋃
j=1

[
c⋂

k=1

E(Tjks)

])
(23)

Let us denote the event of failure of all components at level j by

E(Tj) =
c⋂

k=1

E(Tjks), ∀j ∈ 1, 2, . . . , n (24)

24

P
(
E(Tj)

)
=

c∏
k=1

P
(
E(Tjks)

)
since these are independent events

P
(
E(Tj)

)
= pc, since all failure probabilities are equal

∴ P (E1) =
n∑
r=1

(−1)r−1
(
n

r

)
pcr

(25)

Again, probability of failure of load under minimally redundant configuration can
be given by

P
(ˆE(L1)

)
= P

(
c⋂

k=1

[
n⋃
j=1

E(Tjks)

])
(26)

Let us denote the event of failure of a path k by

E(Ck) =
n⋃
j=1

E
(
Tjks

)
, ∀k ∈ 1, 2, . . . , c (27)

P
(
E(Ck)

)
=

n∑
r=1

(−1)r−1
(
n

r

)
pr

∴ P
(ˆE(L1)

)
=

c∏
k=1

P (Ck) since all paths are independent

=

(
n∑
r=1

(−1)r−1
(
n

r

)
pr

)c

since all paths have same probability

(28)

Now, we have the failure probability of the sink node in both maximally and min-
imally redundant. We provide a bound for the ratio P (E(L1))/P (ˆE(L1)) below:

25

P (ˆE(L1)) =

(
n∑
r=1

(−1)r−1
(
n

r

)
pr

)c

=

(
1−

n∑
r=0

(−1)r
(
n

r

)
pr

)c

= (1− (1− p)n)c

= pc
(
1 + (1− p) + (1− p)2 + · · ·+ (1− p)n−1

)c
,

using an − bn = (a− b)(an−1 + an−2b+ · · ·+ bn−1)

(29)

P (E(L1)) =
n∑
r=1

(−1)r−1
(
n

r

)
prc

= 1−
n∑
r=0

(−1)r
(
n

r

)
(pc)r

= 1− (1− pc)n

= pc
(
1 + (1− pc) + (1− pc)2 + · · ·+ (1− pc)n−1

)
(30)

Since p ∈ [0, 1] and c is a positive integer, pc ≤ p, which implies that 1−pc ≥ 1−p.
Thus, P (E(L1)) ≥ pc (1 + (1− p) + (1− p)2 + · · ·+ (1− p)n−1).

P (E(L1)) ≥ pc
(
1 + (1− p) + (1− p)2 + · · ·+ (1− p)n−1

)
⇒ P (E(L1))

P (ˆE(L1))
≥ pc (1 + (1− p) + (1− p)2 + · · ·+ (1− p)n−1)
pc (1 + (1− p) + (1− p)2 + · · ·+ (1− p)n−1)c

=
1

(1 + (1− p) + (1− p)2 + · · ·+ (1− p)n−1)c−1

≥ 1

nc−1
, since 1 ≥ (1− p) ≥ (1− p)2 ≥ · · · ≥ (1− p)n−1

(31)

For the same configuration failure probability of the sink node using approximate
reliability algebra is given by Para(E(L1)) = cnpc ≥ cP (E(L1))

∴
Para(E(L1))

P (ˆE(L1))
≥ c

P (E(L1))

P (ˆE(L1))
≥ c

nc−1
(32)

Therefore, we see that Equation 32 proves the Theorem 5.1, where c = f represents
the number of independent paths and n = m represents the number of types.

26

5.3 Correctness and Complexity of ILP-AR

The overall ILP-AR approach is illustrated in Algorithm 3. To implement GENILP-
AR, we use the approximate algebra to capture all the reliability requirements.
While (12) is a nonlinear expression, a linear encoding of the same constraint can
be obtained as follows ∑

k∈{1,...,kmax},j∈{1,...,n}

k · xijk · pkj ≤ r∗i , (33)

where r∗i is the required failure probability, xijk is an auxiliary binary variable equal
to 1 if j ∈ Ii and hij = k, and 0 otherwise, and kmax is the maximum possible value
for hij in the given template, i.e. kmax = max1≤j≤n |Πj|.

Algorithm 3 ILP With Approximate Reliability (ILP-AR)
Input: Architecture template T , component variables w, costs c and failure probabilities p, reliability require-
ment r∗

Output: Adjacency matrix e∗ of the final architecture G∗

(Cost, Cons)← GENILP-AR(T , w, c, p, r∗)
e∗← SOLVEILP(Cost, Cons)
if e∗ = [] then return UNFEASIBLE
return e∗

Additional constraints are needed to express the auxiliary variables xijk in
terms of our decision variables. We assume that the reference template T only in-
cludes reduced paths. This is not a restrictive assumption, since multiple instances
of adjacent nodes of the same type can be added by refining T in a second step of
the selection process. Then, by lemma 4.1, we link the indicator variables xijk to the
decision variables by adding the following constraints for each type j in {1, . . . , n}:

kmax∑
k=0

xijk ≤ 1, (34)

and, ∀k ∈ N : 0 ≤ k ≤ kmax,

∑
w∈Πj

(
ηnw,vi ∧

(∨
s∈Π1

ηns,w

))
= k → (xijk = 1). (35)

The constraint in (35) counts the number of components of type j which are con-
nected by at least one path to vi and to any source in Π1. The indicator variable
xijk is then set to 1 if the number of such components is k. Constraint (34) enforces

27

that only one of the xijk variables be set to one. The implication in (35) can be eas-
ily converted into a linear constraint using standard techniques [15]. Overall, it can
be shown that the number of constraints (and auxiliary variables) generated by the
computations in (33)-(35) is O(|V |3n), where n = |Π|. This amounts to a polyno-
mial complexity in the number of nodes and partitions in T , which contrasts with
the exponential complexity of the exact computations in Chapter 4 and Chapter 5.
Finally, the following result holds for the ILP-AR approach.

Theorem 5.2 (Correctness of ILP-AR). For a given template T and within the
error bound provided in Theorem 5.1, ILP-AR (Algorithm 3) is sound and complete.

Informally, the result follows from the fact that, for each type of compo-
nents, ILP-AR attempts to determine the degree of redundancy needed to meet the
reliability requirement. Therefore, if ILP-AR returns UNFEASIBLE, assuming that
the interconnection constraints are feasible, then we can conclude that T does not
provide enough redundancy to satisfy the reliability constraints. On the other hand,
when ILP-AR provides an optimal topology, the solution will satisfy the reliability
requirement with an approximation error which is worst case bounded by (13).

5.4 Summary

In this chapter we introduced our ILP-AR algorithm that solves the synthesis prob-
lem using an approximate reliability algebra. We show how the ILP-AR algorithm
generates polynomial number of constraints in the size of the system as opposed to
the exponential number of constraints in case of exhaustive enumeration of failure
cases. We also establish rigorous bounds on the approximation, given a template,
and show that the approximation always produces failure probability to the correct
order of magnitude.

28

Chapter 6
Case Study and Results

In this chapter we present in detail the requirements and specifications for the
design of a typical Aircraft Electric Power System. We also introduce our prototype
tool ArchEx, demonstrate the application of both algorithms on the case study and
present the results and scalability of the algorithms.

6.1 Aircraft Electric Power System

We apply our algorithms to the selection of optimal architectures for power genera-
tion and distribution in a passenger aircraft. Fig. 4 illustrates a sample architecture
in the form of a single-line diagram, a simplified notation for three-phase power
systems [1]. Typically, aircraft EPS components include power sources, such as the
left and right generators (L/R-GEN) and the auxiliary power units (APU) in Fig. 4.
The generators power the buses and their loads (not shown in Fig. 4). AC power is
converted to DC power by rectifier units (TRU). A bus power control unit monitors
the availability of power sources and configures a set of switches, denoted as con-
tactors, such that essential buses remain powered even in the presence of failures.

We aim to generate an EPS architecture that satisfies a set of connectivity,
power flow and reliability requirements, while minimizing the total cost. We then
model the architecture as a directed graph, where each node represents a component
(with the exception of contactors, which are associated with edges) and each edge
represents an interconnection. We assume a template T consisting of the follow-
ing component types: generators (LG/RG), AC buses (LB/RB), rectifiers (LR/RR),
DC buses (LD/RD), loads (LL/RL), two on each side, and one APU. The platform
library attributes include generator power ratings g, load power requirements l,
component costs c and failure probabilities p, as summarized in Table 1. In our ex-
amples, we assume that only generators, buses and rectifiers fail with a probability
of 2× 10−4.

Connectivity properties can be expressed by using constraints as the ones
in (4) and (5). For instance, we can prescribe that any rectifier must be directly
connected to only one AC bus, and that all DC buses that are connected to a load or
another DC bus must be connected to at least one rectifier to receive power from an
AC bus. Power-flow constraints are used to enforce that the total power provided by
the generators in each operating condition is greater than or equal to the total power

29

L1

GEN

HVAC Bus 1

RU

L

APU

HVAC Bus 2

R

APU

HVAC Bus 3

R1

GEN

HVAC Bus 4

RU RU RU

HVDC Bus 1 HVDC Bus 2

ACT

LVAC Bus 1

LVAC ESS Bus 3

LVAC Bus 2

LVAC ESS Bus 4

L2

GEN

R2

GEN

RU RU

LVDC ESS Bus 1

LVDC Bus 3

LVDC ESS Bus 2

LVDC Bus 4

TRU TRU

ACT

Batt Batt

Figure 4: Sample single-line diagram of an aircraft electric power system from [1].
Contactors are represented by double bars.

Table 1: Components and attributes used in the EPS example.
Generators g (kW) Loads l (kW) Components c

LG1 70 LL1 30 Generator g/10
LG2 50 LL2 10 Bus 2000
RG1 80 RL1 10 Rectifier 2000
RG2 30 RL2 20 Contactor 1000
APU 100

required by the connected loads, by using expressions as in (6). Finally, a reliability
constraint prescribes that the probability that a load gets unpowered because of
failures should be less than a desired threshold. A functional link will then consist
of the set of paths from any generator to the load. Moreover, since our template
supports only reduced paths, we use an edge between two nodes of the same type
as a shorthand notation to indicate two redundant components: if vi and vj , with
vi ∼ vj , are connected by an edge, then any direct predecessor of vi is also a direct
predecessor of vj and vice versa.

6.2 Results

We have developed ARCHEX, a prototype framework for system architecture ex-
ploration and synthesis, implementing both the ILP-MR and ILP-AR algorithms.

30

ARCHEX leverages YALMIP [17] and CPLEX [18] to, respectively, formulate and
solve ILP problems. All the numerical experiments were performed on an Intel Core
i7 2.8-GHz processor with 8-GB memory.

(a) Architecture 1 (b) Architecture 2 (c) Architecture 3

Figure 5: EPS architectures and reliability as obtained at each iteration of an ILP-
MR run with r∗ = 2 × 10−10: (a) r = 6 × 10−4; (b) r = 2.8 × 10−10; (c) r =
0.79× 10−10.
ILP-MR Fig. 5 shows the architectures obtained at each iteration of the ILP-MR
algorithm for a load failure probability requirement r∗ = 2× 10−10. By solving for
just the connectivity and power flow constraints, we obtain the simplest possible
architecture (Fig. 5a), which only provides a single path from a load to a generator
(or APU), thus showing the highest failure probability. Based on the parameters in
Table 1 we obtain ρ = 8 × 10−4, which leads to k = 2, as discussed in Sec. 4.2.
Therefore, at the second iteration, two additional paths are enforced between each
load and a generator, as shown in Fig. 5b. Since the requirement is not yet satisfied,
a third iteration is used to fine tune the reliability, by adding one more path between
each load and an AC bus. The total computation time to generate the architectures
in Fig. 5 was about 38 s.

ILP-AR Three architectures obtained using the ILP-AR algorithm for different
load failure probability requirements are instead shown in Fig. 6. The lower the re-
quired failure probability, the higher the number of redundant paths and components
instantiated from the original template, and the higher the associated cost. For each
architecture, the approximate algebra provides an estimation r̃ of the failure proba-
bility which is extremely close to the actual value r obtained by exact computations.
While the failure probability of the architecture in Fig. 6c exceeds the requirement,

31

(a) Architecture 1 (b) Architecture 2 (c) Architecture 3

Figure 6: EPS architectures synthesized using ILP-AR for different reliability re-
quirements: (a) r∗ = 2×10−3, r̃ = 6.0×10−4, r = 6×10−4; (b) r∗ = 2×10−6, r̃ =
2.4× 10−7, r = 3.5× 10−7; (c) r∗ = 2× 10−10, r̃ = 7.2× 10−11, r = 2.8× 10−10.

the error is well within the bound predicted by Theorem 5.1. The execution time of
each optimization run in Fig. 6 was also approximately 38 s; however, about 70%
of the computation time was used to generate the optimization constraints, which
can also be performed off-line for a given template.

6.3 Scalability and Discussion

To test the scalability of both the approaches, we designed EPS architectures with
an increasing number of components. In Table 2, we report on the execution time
of the ILP-MR approach using Algorithm 2 (at the top) in comparison with the
one obtained by a lazier approach, which only adds one additional path at each
iteration between the load and a component with a minimal degree of redundancy.
The dramatic reduction in time spent for reliability analysis (e.g., more than one day
versus 3 min for a 50-node architecture) shows the advantage of using the analysis
results to infer the number of required redundant paths, as proposed in Algorithm 2.
When this inference is feasible, ILP-MR outperforms ILP-AR (see solver times
in Table 3) for architectures with more than 40 nodes. On the other hand, as evident
from Table 3, once the optimization problem is generated for a given template,
ILP-AR is more competitive for smaller architectures. Yet, problems with several
thousands of constraints, and including a realistic number of generators (normally
less than 10), can still be formulated and solved in a few hours. We also observe
that, because of the sparsity of the EPS adjacency matrix, in this case study, it was
possible to reduce the number of generated constraints, which is always smaller
than the asymptotic estimation in Sec. 5.

32

Table 2: Number of iterations, reliability analysis and solver time for different EPS
architecture sizes (r∗ = 10−11, n = 5) using ILP-MR with LEARNCONS (top) and
with a lazier strategy, adding only one path at each iteration (bottom).

|V | (# Generators) #Iterations Analysis time (s) Solver time (s)
20 (4) 3 34 4.3
30 (6) 3 78 9
40 (8) 3 106 14
50 (10) 3 181 18
20 (4) 4 72 13
30 (6) 7 852 28
40 (8) 10 9118 58
50 (10) 14 39563 114

Table 3: Number of constraints, problem generation (setup) and solver time for
different EPS architecture sizes (r∗ = 10−11, n = 5) using ILP-AR.

|V | (# Generators) # Constraints Setup time (s) Solver time (s)
20 (4) 5290 27 11
30 (6) 24514 402 77
40 (8) 74258 3341 494
50 (10) 176794 18902 5059

6.4 Summary

In this chapter we introduced the Aircraft Electric Power System case study and
demonstrated the application of both our algorithms. We show the results and also
showed that the algorithms scale to the complexity of industrial systems. We infer
that ILP-AR turns out to be preferable when we aim to a coarser estimation of
the capability (and limitations) of an architecture template and a platform library
in terms of reliability. On the other hand, ILP-MR makes it easier to incorporate
domain-specific knowledge, since a designer can customize the techniques adopted
to improve reliability at each iteration. Moreover, ILP-MR becomes the preferred
choice, especially for larger problem instances, when we can estimate the number
of redundant paths needed to satisfy the requirement as early as possible, or when
we are willing to pay for a longer execution time to incrementally fine tune the
reliability of the design.

33

Chapter 7
Conclusions and Future Work

We have introduced, characterized and implemented two efficient ILP-based al-
gorithms for the optimal selection of cyber-physical system architectures subject
to safety and reliability constraints. We have also demonstrated the scalability of
the algorithms on a case study of industrial significance, an Aircraft Electric Power
System. For the ILP-MR algorithm we provide generic strategies to improve the
reliability of the system in a loop with a reliability analysis routine. On the other
hand for ILP-AR algorithm we have provided explicit theoretical bounds on the
approximation which provides the confidence to use the proposed method for the
design of safety critical Cyber Physical Systems.

As a future work, we plan to further investigate the generalization of the
presented approaches to support a broader category of systems (e.g. power grids,
communication networks) and design concerns (e.g. impact of system dynamics
and transients). We also wish to augment the tool with an interface that facilitates
requirement specification i.e. supports automated translation of requirements given
in textual language (composed out of a library patterns) to integer linear constraints.

34

References
1. P. Nuzzo, H. Xu, N. Ozay, J. Finn, A. Sangiovanni-Vincentelli, R. Murray,

A. Donze, and S. Seshia, “A contract-based methodology for aircraft electric
power system design,” IEEE Access, vol. 2, pp. 1–25, 2014.

2. P. Derler, E. A. Lee, M. Torngren, and S. Tripakis, “Cyber-physical
system design contracts,” in ICCPS ’13: ACM/IEEE 4th International
Conference on Cyber-Physical Systems, April 2013. [Online]. Available:
http://chess.eecs.berkeley.edu/pubs/959.html

3. P. Derler, E. A. Lee, and A. Sangiovanni-Vincentelli, “Modeling cyber-
physical systems,” Proceedings of the IEEE (special issue on CPS),
vol. 100, no. 1, pp. 13 – 28, January 2012. [Online]. Available:
http://chess.eecs.berkeley.edu/pubs/843.html

4. B. N., P. Nuzzo, M. Masin, and A. Sangiovanni-Vincentelli., “Optimized se-
lection of reliable and cost-effective cyber-physical system architectures,” in in
Proc. Design, Automation and Test in Europe, to appear, 2015.

5. A. Fisher, C. Jacobson, E. A. Lee, R. Murray, A. Sangiovanni-Vincentelli, and
E. Scholte, “Industrial cyber-physical systems - icyphy,” in Proc. Complex
Systems Design & Management (CSD&M). Springer, December 2013, pp.
21–37, paris, France. [Online]. Available: http://icyphy.org/pubs/34.html

6. E. A. Lee, “Cyber physical systems: Design challenges,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2008-8, Jan
2008. [Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/
EECS-2008-8.html

7. J. Jensen, D. Chang, and E. Lee, “A model-based design methodology for
cyber-physical systems,” in Wireless Communications and Mobile Computing
Conference (IWCMC), 2011 7th International, July 2011, pp. 1666–1671.

8. C. Talcott, “Cyber-physical systems and events,” in Software-Intensive Systems
and New Computing Paradigms, ser. Lecture Notes in Computer Science,
M. Wirsing, J.-P. Bantre, M. Hlzl, and A. Rauschmayer, Eds. Springer
Berlin Heidelberg, 2008, vol. 5380, pp. 101–115. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-89437-7 6

9. P. Nuzzo, F. De Bernardinis, and A. Sangiovanni Vincentelli, “Platform-based
mixed signal design: Optimizing a high-performance pipelined ADC,” Analog
Integr. Circuits Signal Process., vol. 49, no. 3, pp. 343–358, 2006.

10. B. Kaiser, P. Liggesmeyer, and O. Mäckel, “A new component concept for fault
trees,” in Proc. Australian Workshop on Safety Critical Systems and Software,
2003.

11. C. Lucet and J.-F. Manouvrier, “Exact methods to compute network reliability,”
in Proc. Int. Conf. on Mathematical Methods in Reliability, 1997.

35

http://chess.eecs.berkeley.edu/pubs/959.html
http://chess.eecs.berkeley.edu/pubs/843.html
http://icyphy.org/pubs/34.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html
http://dx.doi.org/10.1007/978-3-540-89437-7_6

12. C. Hang, P. Manolios, and V. Papavasileiou, “Synthesizing cyber-physical ar-
chitectural models with real-time constraints,” in Proc. Int. Conf. Comput.-
Aided Verification, Dec. 2011.

13. C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability modulo
theories,” in Handbook of Satisfiability, A. Biere, H. van Maaren, and T. Walsh,
Eds. IOS Press, 2009, vol. 4, ch. 8.

14. P. Helle, M. Masin, and L. Greenberg, “Approximate reliability algebra for
architecture optimization,” in Proc. Int. Conf. on Computer Safety, Reliability,
and Security, 2012, pp. 279–290.

15. W. L. Winston, Operations Research: Applications and Algorithms, 4th Edi-
tion. Independence, KY: Cengage Learning, 2004.

16. S. Messaoud, “Optimal Architecture Synthesis for Aircraft Electrical Power
Systems,” Master’s thesis, T.U. Munich – U.C. Berkeley, 2013.

17. J. Löfberg, “YALMIP: A toolbox for modeling and optimization in MATLAB,”
in Int. Symp. Computer Aided Control Systems Design, 2004, pp. 284–289.

18. (2012, Feb.) IBM ILOG CPLEX Optimizer. [Online]. Available: www.ibm.
com/software/integration/optimization/cplex-optimizer/

36

www.ibm.com/software/integration/optimization/cplex-optimizer/
www.ibm.com/software/integration/optimization/cplex-optimizer/

	Introduction
	Cyber Physical Systems
	Design Challenges
	Contributions

	Previous Work
	CPS Design Methodology
	Fault Tolerant Systems
	Summary

	Problem Formulation
	System Modeling
	Optimization Problem
	Objective Function
	Interconnection Constraints
	Reliability Constraints

	Summary

	ILP Modulo Reliability
	Algorithm
	Learning Constraints to Improve Reliability
	Soundness and Completeness of ILP-MR
	Summary

	ILP with Approximate Reliability
	Approximate Reliability Algebra
	Bound on Approximation
	Correctness and Complexity of ILP-AR
	Summary

	Case Study and Results
	Aircraft Electric Power System
	Results
	ILP-MR
	ILP-AR

	Scalability and Discussion
	Summary

	Conclusions and Future Work
	References

