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Abstract

We present a new model of semantic change that traces the evolution of a word’s meaning
through a phylogeny. By mapping meaning changes to WordNet paths, we are able to identify
common kinds of semantic change. We find optimal weights for our model using expectation-
maximization (EM), and use the results to conjecture about the relative frequency of different
kinds of semantic change.

1 Introduction

Lexical semantic change has been poorly understood. We know the ways in which lexical change
can manifest itself, but we still have only a rough sense of which changes are the most frequent, or
even how often changes tend to occur overall. Do words tend to become more general over time,
as in the case of English dog? Or more specific, like English deer? Is there a “rate” of semantic
change, in analogy to the (controversial) rate of cognate loss from [10]? In this paper, we take a
computational approach to studying semantic change, building a probabilistic model that simulates
the evolution of meanings of words over time.

Previously, authors have investigated computational approaches to phylogenetics and dating,
offering insights into the spread of large language families like the Indo-European family and Aus-
tronesian language family [5]. More recently, efforts have been made at phonetic reconstruction
using probabilistic models [2]. However, unlike other diachronic phenomena such as sound change,
semantic change has been difficult to model because semantic relationships between meanings are
difficult to define systematically.

Historically, semantic change has been considered to be “ ‘fuzzy’, highly irregular, and diffi-
cult to predict"[13]. In contrast to this view, Wilkins (1993) introduced the idea that there are
natural tendencies of semantic change that can be rigorously studied for the purposes of historical
reconstruction [13], particularly in the semantic domain of body parts.

For example, one of the natural tendencies proposed by Wilkins is that “for a term for a visible
person-part to shift to refer to the visible whole for which it is a part, [while] the reverse change is
not natural."[13] In other words, Wilkins claims that within the semantic field of body parts, part
holonymy (part-to-whole semantic change, such as brain → head) should be much more common
than part meronymy (whole-to-part semantic change, such as belly → navel).1

1While there are other types of meronymy/holonymy, such as substance meronymy/holonymy and member
meronymy/holonymy, our model predicts these types of semantic change to be rare enough to be negligible, so for
the remainder of the paper I will use part holonymy and holonymy interchangeably, and likewise for part meronymy
and meronymy.
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In line with Wilkins’ position, we propose the use of probabilistic models as a way of estimating
the parameters governing semantic change. In this paper, we present a new model of lexical semantic
change that traces the evolution of a word’s meaning through a phylogeny (sections 2 and 3), as
well as a procedure for training this model using available semantic networks and machine learning
techniques (sections 4 and 5).

2 Definitions

Mcr

Mc`1 Mc`2

Mc`3 Mc`4 Mc`5 Mc`6

t`1 t`2

t`3

t`4 t`5
t`6

λθ

|C|

Figure 1: Graphical representation of our time-aware model for a sample phylogeny.
(Note that in general, only a subset of the full phylogeny is relevant for any given cognate set.)

• |C| is the number of cognate sets

• Mcr represents the reconstructed meaning of cognate set c in the root language

• Mc` represents the meaning of cognate set c in language `, with the shaded nodes representing
observed languages

• t` is the length (in years) of the branch leading to language `

• λ is the model parameter specifying the overall rate of change

• θ is the model parameter specifying the multinomial distribution from which semantic changes
are chosen

We assume the existence of a (known) phylogeny T over languages, indexed by `. The phylogeny
T also has branch lengths t. We will denote the length of a branch leading to language ` as t`. We
also assume the existence of a set C of cognate sets Wc, with reflexes Wc` in each modern language,
though reflexes are possibly unobserved in some or many languages.

Our interest is not in the words themselves, but in their meanings. Specifically, we wish to model
how words change their meanings as they evolve through time. We assume that each reflex of each
root Wcr has some meaning Mcr. Each reflex’s meaning is generated conditional on the meaning
of that word’s parent. That is, the probability of change p(Mc` = m′|Mcpar(`) = m,T = t`), for
meanings m and m′ and where par(`) is the parent of the language `. We are interested in learning
the parameters of this distribution.
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3 The Model

In our model (see Figure 1), the distribution p(Mc` = m′|Mcpar(`) = m,T = t`) is parameterized as
a continuous time Markov jump process, where the number of jumps (meaning changes) is governed
by a Poisson process. That is, the number of changes in a length of time t is given by Poi(tλ), where
λ is the overall rate of change.

Meanings change according to a random walk on a semantic graph – a labeled multigraph
consisting of edges connecting meanings labeled by the kind of change. When a change happens,
the kind of edge to take is chosen according to some multinomial distribution θ, and then the new
meaning is chosen uniformly from among those meanings that are connected to the current label
by that meaning. If no such edge is available, the process repeats until an acceptable walk is found.
We are ultimately interested in the parameters λ and θ, telling us the rate of semantic change and
the relative likelihood of different kinds of changes, respectively.

The likelihood is given by:

p(Mc` = m′|Mcpar(`) = m;T = t`,λ, θ)

=
∑

π is from m to m′

(
Poi(|π|; tλ) ·

∏
e∈π

p(type(e); θ) · 1

#neighbors of m with type(e)

)
(1)

Through the rest of this paper, we abbreviate p(Mc` = m′|Mcpar(`) = m;T = t`; θ;λ) by
P(m′|m; t`; θ;λ), and omit the parameters θ,λ when they are implied.

4 WordNet Search

In order for our model to be trained, we must first determine the nature of the semantic relationship
between each pair of meanings within each cognate set. We employ WordNet[4], a semantic graph
of 117,000 nodes (synsets), each of which consists of one or more wordforms, a definition, and a set
of semantic relationships to other nodes.

To findWordNet paths between arbitrary pairs of meanings, we perform a depth-limited breadth-
first search. However, as Table 1 shows, a simple BFS yields poor path coverage even at a relatively
high depth2. This happens for two reasons. First, WordNet primarily only covers relationships of
hyper/hyponymy and holo/meronymy, so any pair of meanings that are related in a more compli-
cated way will most likely not be linked on WordNet. Secondly, many of the meanings that we’re
interested in (e.g. “small bone") are not in WordNet at all, because WordNet only contains meanings
that can be expressed as single lexical entries in English.

To deal with the first issue, we modify our search procedure by using the definition (gloss) of
each node to find potential relationships to other nodes (described in section 4.1). To deal with the
second issue, we use a set of parsing rules to connect complex meanings to existing meanings in
WordNet (described in section 4.2). As Table 1 shows, these two techniques together result in an
enormous improvement in WordNet coverage for meaning pairs.

2Trying a depth higher than 3 would both be very computationally expensive and lead to linguistically unsound
results, since it would be very strange for the meaning of a word to change in such a complicated way in a single
transition.
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Coverage by depth and search type Depth 1 Depth 2 Depth 3
BFS 7.2% 9.8% 13.8%
BFS with gloss search (4.1) 13.8% 23.3% 39.5%
BFS with gloss search and complex meanings (4.2) 15.4% 27.2% 46.6%

Time taken (in seconds) Depth 1 Depth 2 Depth 3
BFS 50.3 s 63.7 s 270 s
BFS with gloss search (4.1) 59.1 s 97.2 s 574 s
BFS with gloss search and complex meanings (4.2) 86.2 s 194 s 1876 s

Table 1: Percentage of meaning pairs in the Indo-European body parts semantic field that have
WordNet paths between them, using different search methods and depths, as well as the amount of
time that each method takes (for a set of 93 protoforms, each having between 2 and 74 meanings).

Condition Path type
1. Dest contains “part of (Det) Node" Meronym
2. Node contains “part of (Det) Dest" Holonym
3. Dest contains “kind of (Det) Node" Hyponym
4. Node contains “kind of (Det) Dest" Hypernym
5. Dest contains “Node" or Node contains “Dest" “related"

Table 2: Rules used to determine the kind of relationship that a given node (Node) has to the
destination node (Dest) by comparing the definitions and wordforms provided by WordNet for each
node. Here, X contains “Y" means that X’s definition contains one of Y’s wordforms, and (Det)
represents the optional presence of a determiner (e.g. a, an, the).

4.1 Searching through Glosses

To deal with the fact that the set of relationships that a given WordNet node has to other nodes
is frequently incomplete, we additionally compare each node’s definition and wordforms to the
definition and wordforms of the destination node, using the list of conditions in Table 2 to determine
when two nodes are related, and what kind of relationship they have.3

For example,

• The nodes [step, stair: support consisting of a place to rest the foot while ascending or
descending a stairway] and [tread: structural member consisting of the horizontal part of a
stair or step] are given a meronym link (by condition #1).

• The nodes [body: the entire structure of an organism] and [blood: the fluid that is pumped
through the body by the heart] are given a related link (by condition #5).

3A quick note on the semantic terminology used here: if X is a kind of Y, then X is a hyponym of Y and Y is
a hypernym of X. If X is a part of Y, then X is a meronym of Y and Y is a holonym of X. If nodes X and Y are
related in some way but we can’t easily characterize the relationship between them, we simply call them related.
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Treat ... as ...
“Det N" “N"
“Adj N" Hyponym(“N")

“kind of N" Hyponym(“N")
“part of N" Meronym(“N")
“N1 of N2" Hyponym(“N1") or Meronym(“N2")

Table 3: Rules used to connect more complex meanings to meanings already in WordNet.
(N = noun, Adj = adjective, Det = determiner)

4.2 Connecting Complex Meanings to WordNet

Many meanings that we are interested in do not appear verbatim inWordNet but can be connected to
meanings in WordNet through kind-of (hyponymy) or part-of (meronymy) relations. We accomplish
this by running the meaning through the Stanford part-of-speech tagger[11] and applying the rules
in Table 3, repeating the process recursively until either a meaning within WordNet is found or no
more rules can be applied.

For example,

• “small bone" = Hyponym(“bone")

• “part of the hand" = Meronym(“hand")

• “part of a horse hoof" = Meronym(Hyponym(“hoof"))

• “ham of horse" = Hyponym(“ham") or Meronym(“horse").

Note that a given meaning could potentially map to multiple WordNet nodes. In the case that
there are multiple start and/or end nodes, the WordNet search will find paths between any start
node and any end node.

4.3 Overall Algorithm

The overall WordNet search algorithm, incorporating the improvements described above, is:

1: Find-WordNet-Path(startMeaning, destMeaning, depth)
2: startPaths← Find-Synsets-And-Paths(startMeaning)
3: destPaths← Find-Synsets-And-Paths(destMeaning)
4: pathsFound← ∅
5: for d = 1 to depth do
6: for all startPath ∈ startPaths do
7: for all destPath ∈ destPaths do
8: startSynset← Synset(startPath)
9: destSynset← Synset(destPath)

10: if startSynset = destSynset then
11: add

(
startPath+ Reversed(destPath)

)
to pathsFound

12: else if Are-Related(startSynset, destSynset) then
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13: link ← Related-Link(startSynset, destSynset)
14: add

(
Add-Link(startPath, destSynset, link) + Reversed(destPath)

)
to pathsFound

15: end if
16: end for
17: end for
18: newPaths← ∅
19: for all path ∈ startPaths do
20: for all (dest, link) ∈ Get-Linked-Synsets(path) do
21: newPath← Add-Link(startPath, dest, link)
22: end for
23: end for
24: startPaths← newPaths
25: end for
26: return pathsFound

where:

• Find-Synsets-And-Paths(meaning) returns a set of paths corresponding to the givenmeaning,
if any exist. Each path consists of a synset (i.e. WordNet node) and a list of links. Table 3
is used to determine the links (if any) that connect meanings to WordNet nodes. For exam-
ple, we can represent Find-Synsets-And-Paths(“small bone”) as

{
(Bone, [Hyponym])

}
,

where Bone is the synset that has “bone" as a wordform.4

• Synset(path) returns the synset of the given path.

• Reversed(path) returns a reversed copy of path – for example, for an arbitrary synset s,

Reversed
(
(s, [Hyponym,Related,Meronym])

)
= (s, [Holonym,Related,Meronym])

• Are-Related(start, dest) uses Table 2 to determine if there is any relationship between the
start and dest synsets.

• Related-Link(start, dest) uses Table 2 to return the link type between the start and dest
synsets, assuming that they are related.

• Add-Link(path, synset, link) returns a copy of path with link added to its list of links and
its synset replaced with synset.

• Get-Linked-Synsets(startSynset) returns a set of (destSynset, link) pairs representing
destination synsets related to startSynset and the link between each pair of synsets.

• + is the concatenation operator for paths:

(s1, [link11, · · · , link1m])+(s2, [link21, · · · , link2n]) = (s2, [link11, · · · , link1m, link21, · · · , link2n])

4.4 Making WordNet Relationships More Linguistically Plausible

One type of semantic change that is held to be natural, especially within the semantic field of body
parts, is the change between parts in the same category (e.g. snout ↔ nose or beak ↔ face)[13].

4In practice, WordNet usually has multiple synsets corresponding to any given word.
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However, WordNet generally represents transitions of this nature as two changes (hyponymy →
hypernymy) rather than one. In order for our model to treat this kind of transition as a single
change, we compress [Hyponym, Hypernym] sequences within paths into a single change that we
call Sister.

Additionally, when two meanings are part of the same synset in WordNet, we treat the transition
between them as a “free" change – in other words, links between meanings that belong to the same
synset are not counted in the length of a path.5

5 Training the Model with EM

To find the weights for our model, we use EM. In the Expectation step, we compute the set of
expected changes πc` for each cognate set c and language `, and the likelihood of each such change
Lc`, via Viterbi. In the Maximization step, we maximize the log-likelihood L(θ,λ;µ) to find the
optimal parameters θ, λ.

5.1 The Expectation Step

In the E-step, we first determine the most likely meaning for each language within each cognate set
(that is, Mc` ∀c ∈ C, ` ∈ T ) by the Viterbi algorithm[12].

We compute the ↑-messages from the leaves to the root:

µ`→par(`)(m) = max
m′
P(m′|m; t`)µ`↑(m

′) (2)

α`→par(`)(m) = argmax
m′
P(m′|m; t`)µ`↑(m

′) (3)

µ`↑(m) =


−∞ if ` is an observed language and m is

not an observed meaning for ` in c∑
`′∈children(`)

µ`′→`(m) otherwise
(4)

where P(m′|m; t`) is defined as in (1).

We then proceed from the root r downwards to find the most likely meaning for each language.

Mcr = argmax
m

µ`↑(m) (5)

Mc` = α`→par(`)(Mcpar(`)) ∀` 6= r (6)

Next, for each language within each cognate set, we determine the most likely change from
m =Mcpar(`) to m′ =Mc` by finding the path π from m to m′ that maximizes the path likelihood:

∏
e∈π

(
p(type(e); θ) · 1

#neighbors of m with type(e)

)
(7)

The E-step returns the set of expected πc`s and the likelihood of each πc`, which we will call Lc`.
5However, treating same-synset transitions as free chances can cause unexpected problems for us due to the fact

that we store meaning strings rather than synsets in M . This is discussed further in section 7.1.
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5.2 The Maximization Step

In the M-step, we maximize the sum of the log likelihoods of each transition taken.

Let πc` be the most likely change from Mcpar(`) to Mc` and Lc` be the likelihood of πc`.

We can now compute the new λ and θ parameters and the objective as follows:

λ =
# individual changes

total time span
=

∑
c∈C

∑
`

|πc`|

|C|
∑
`

t`
(8)

∀ type θtype =
# changes of given type
# individual changes

=

∑
c∈C

∑
`

∑
e∈πc`

I[e = type]∑
c∈C

∑
`

|πc`|
(9)

obj =
∑
c∈C

∑
`

logLc` (10)

5.3 The EM Algorithm

The overall algorithm is:
1: EM(C)
2: threshold← 0.01 · |C|
3: θ ← [0, . . . , 0]
4: λ← 10−4

5: i← 0
6: obj0 ←∞
7: repeat
8: i← i+ 1
9: for all c ∈ C do

10: πc,Lc ← Expectation(c, θ,λ)
11: end for
12: obji, θ,λ←Maximization(C,π,L, θ,λ)
13: until |obji − obji−1| < threshold
14: return θ,λ, obji

6 Experiment

To get a measure of our model’s accuracy and to see what predictions it makes, we tested it on
the 156 cognate sets in the Body Parts category within the Indo-European Lexicon assembled by
the LRC [8]. In order to improve WordNet coverage, we ignored all meanings that were not nouns
and threw out the cognate sets whose reconstructed protoform wasn’t a noun, leaving 93 cognate
sets. Semantic paths were found between 46.6% of possible meaning pairs in this dataset. For our
phylogeny, we used a distance-labelled Indo-European phylogeny adapted from [3].
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6.1 Accuracy

We assessed our model through a protoform reconstruction task. For each cognate set, we compared
the root meaning (protoform) predicted by our model to the annotated protoform given in the
dataset, and we scored our model based on the percentage of protoforms that it predicted correctly.

We compared the performance of our model in this task to two other models: a parsimony
model that takes into account time-spans but not WordNet paths (essentially treating every path as
a none path) and a time-unaware log-linear model that takes into account WordNet paths but not
time-spans. We also compared each model against a most common meaning (MCM) baseline score,
obtained by simply taking the meaning that occurs most frequently among observed languages for
each cognate set.

Body Parts only (93 sets) All semantic fields (430 sets)
Our model 45.2% 30.7%
Parsimony 40.7% 31.6%
Time-unaware 38.7% 27.4%
MCM 46.6% 45.1%

As shown above, our model outperformed the other two when trained on the Body Parts semantic
field. None of the models performed as well as the MCM baseline on this task, but this is not
surprising: the LRC dataset is largely based on the work of Pokorny[6], a German linguist, and
thus appears to both have on average a higher coverage of Germanic reflexes than of those in other
families and a slight bias toward picking Germanic meanings as the annotated protoform. Thus,
MCM has a appears to have a structural advantage in this task that the models do not have.

When we tried expanding the experiment to cover all semantic fields (as opposed to just Body
Parts), all of models performed significantly worse, and our model ended up performing slightly
worse than the parsimony model. The most likely explanation for this is that the meanings in the
Body Parts semantic field tend to have well-defined relationships between them, while meanings in
other semantic fields tend to have more poorly defined relationships between them.

6.2 Results

After training on the Body Parts semantic field, the final parameters are λ = 4.05 · 10−5 and θ as
shown in Table 4 below.

Semantic change type Expected count
related 33.81%
hypernym 16.79%
none 15.11%
hyponym 12.47%
sister 11.51%
part_holonym 5.04%
part_meronym 4.08%
all others 1.20%

Table 4: Counts for different semantic changes predicted by our model.
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7 Conclusion

The results in 6.1 are promising in that they suggest that, at least within the Body Parts semantic
field, WordNet paths and timespans are both important factors in our model. However, the task that
we are using to measure model accuracy is problematic one, since it relies on data (reconstructed
protoforms) whose accuracy is generally difficult to demonstrate. Perhaps a better task (albeit one
that cannot be automated) would be to assess the opinions of historical linguists regarding how
plausible the trees reconstructed by our model look compared to those reconstructed other models.
Another interesting task would be to use our model to try to reconstruct the phylogeny itself,
using techniques similar to [3], and to see how similar the result is to established Indo-European
phylogenies.

As far as the questions that motivated this research go, the final λ predicts that semantic changes
occur on average once every 23,700 years in each branch of the phylogeny for any given word6, and
the final θ predicts that most common categorizable semantic changes are hypernymy, hyponymy,
and sisterhood (hyponym → hypernym), in that order, with hypernymy being about 1.3 times as
common than hyponymy. In line with Wilkins’s theory, our model predicts holonymy to be more
common than meronymy for body parts, though the difference is less extreme than what Wilkins
predicted.

Our results do have a high margin of error, because almost half of the changes predicted are
either not categorizable (related) or entirely semantically implausible (none). Both the hypernymy
> hyponymy and the holonymy > meronymy result are likely to not be statistically significant. In
order to improve on this, we would most likely have to improve our WordNet coverage.

7.1 Further Steps

There are two areas that could potentially be improved upon: the model itself and the WordNet
search.

One major drawback of the current model is that it only considers meanings that have already
been observed as possible candidates for the unobservedMc` s. This is a problem when the meaning
that we want at a given node is unobserved – for example, eye and ear could both derive from
head by meronomy, but our model would not be able to predict head for a parent node if it is
not observed anywhere else. Making our model consider all of WordNet as a possible destination
for each transition would be computationally infeasible for our exact E-step approach, so we would
have to perform an approximate E-step instead, using a Markov chain Monte Carlo method such
as Metropolis-Hastings.

The fact that our WordNet search method can still only find paths for 46.6% of possible meaning
pairs is likely to be a big obstacle in the performance of our model. Improvement could come in
the form of more parsing rules of the sort in Table 3, or by augmenting our usage of WordNet with
additional sources of semantic relationships, such as the augmented WordNets generated in [9]. It
would also be helpful to try a similar approach to parts of speech other than nouns, using alternative
semantic resources such as FrameNet[1] or VerbNet[7].

It may also be helpful to make the model explicitly model transitions between WordNet nodes
(that is, synsets) rather than meaning strings. Right now, when a path is found between m and m′,

6Perhaps a better way of thinking about this is: “Every year, any given word has on average a 4.05 · 10−5 chance
of changing its meaning in any given language."
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that path can be between any two WordNet nodes that have m and m′ as wordforms, respectively,
but because the identities of the nodes themselves are not stored in M , this means that m′ could
refer to completely different senses of a given word in m → m′ and m′ → m′′ transitions. This is
particularly prevalent when m′ is a particularly common word with many disparate definitions.
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