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Abstract

Distributed Control and Synchronization of Diffusively Coupled Systems

by

Sayed Yusef Shafi

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Murat Arcak, Chair

Diffusively coupled networks, in which different components of a network adjust their be-
havior according to the local sum of differences between their own and neighbors’ states,
are a ubiquitous class of spatially-distributed models appearing in engineered and biological
systems, and produce surprisingly rich dynamics. In this dissertation, we develop analy-
sis methods and distributed algorithms that exploit the local structure of the network as
well as individual component dynamics in order to guarantee the desirable operation of the
aggregate network system in the absence of centralized coordination.

We begin by formulating network design problems to guarantee coordination of multi-agent
systems by imposing constraints on the underlying structure of the diffusive coupling graph
linking agents. The resulting constraint-derived linear matrix inequalities may then be iter-
atively solved using convex semidefinite programming, resulting in significant performance
gains in several multi-agent systems problems. Our approach furthermore identifies critical
nodes and edges in a network, and aids in developing strategies to enhance connectivity and
robustness.

Next considering the case where desired steady-state trajectories may be time-varying, we
derive conditions to determine whether limit cycle oscillations synchronize in diffusively
coupled systems. Conversely, we highlight cases of diffusion-driven instability, a phenomenon
widely hypothesized as a mechanism behind pattern formation in biological systems, in which
sufficiently large diffusive coupling may destabilize a spatially homogeneous periodic orbit.
The analytical and numerical conditions we derive lend insight to designing distributed laws
where the local behavior about a specific attractor is of interest.

We then turn to the problem of developing distributed laws that guarantee spatially uniform
behavior globally in diffusively coupled systems. We first study systems with spatially-
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dependent diffusive coupling, and subsequently examine the case where the network itself has
dynamics and adapts according to the agents’ states. We develop adaptive laws to guarantee
synchronization in systems with spatially-dependent coupling, and apply these results to a
number of problems of interest arising from multi-agent systems and cooperative control. We
finally address the case where the dynamics of the agents may be subject to spatially-varying
input disturbances, and derive distributed laws to guarantee synchronization in the presence
of such heterogeneities.
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Chapter 1

Introduction

Spatially distributed models with diffusive coupling constitute a fundamental class of systems
crucial to understanding the dynamical behavior of a range of engineered and biological
systems. Diffusive coupling encompasses, among others, feedback laws for coordination
of multi-agent systems [36, 59, 6, 2], electromechanical coupling of synchronous machines
in power systems [9, 17], local update laws in distributed agreement algorithms [106, 11,
93, 73], and the interaction of chemical concentrations in biological networks [71, 20, 75].
Synchronization in diffusively coupled models is itself an active and rich research area [50],
with applications spanning these areas and beyond. Conversely, developing conditions that
rule out synchrony is also important, as such conditions facilitate the study of spatial pattern
formation. One of the major ideas behind pattern formation in cells and organisms is based
on diffusion-driven instability [86, 96], which occurs when higher-order spatial modes in a
reaction-diffusion partial differential equation (PDE) are destabilized by diffusion [71, 20,
75, 61, 57]. Diffusion-driven instability with space-dependent coupling coefficients has also
been used in developing realistic textures and patterns for computer graphics [105].

In this dissertation, we develop distributed algorithms that guarantee spatially uniform be-
havior in diffusively coupled systems by exploiting local network structure as well as the
dynamics of the individual components of the subsystems. In doing so, we derive analysis
and design tools that lend insight to the structure and behavior of diffusively coupled sys-
tems. Our methods apply both to the study of local behavior near a specific attractor, as
well as that of global behavior of the full nonlinear dynamics.

We first consider the problem of designing distributed coordination laws for multi-agent sys-
tems. We propose a convex optimization framework making use of linear matrix inequalities
for determining the weights of the nodes and the edges representing the coupling graph link-
ing agents. We demonstrate the effectiveness of the strategy on several multi-agent systems
problems, including formation control algorithms to achieve desired equilibrium configura-
tions when agent dynamics can be destabilized by high gain feedback. We also study the
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problem of guaranteeing synchronization of trajectories near a limit cycle. We develop numer-
ical and analytical conditions to determine whether oscillations synchronize, and highlight
cases of diffusion-driven instability.

In the remainder of the dissertation, we develop distributed laws that guarantee spatially
uniform behavior when global behavior is of interest. We first discuss the case of space-
dependent diffusive coupling, and then develop adaptive algorithms in which the weights
of the coupling graph are adapted according to local disagreement between agents with
the goal of reducing time to synchrony. We also consider the case where individual agents
may be subject to disturbances. Throughout the dissertation, we present results both for
compartmental systems of ODEs, in which each compartment represents a well-mixed spatial
domain wherein like components in adjacent compartments are coupled by diffusion, and
reaction-diffusion PDEs with Neumann boundary conditions, the spatial continuum analogue
of the former setting. In Section 1.1 of this chapter, we first outline the contributions of
the dissertation. We then introduce fundamental concepts that we employ throughout the
dissertation in Section 1.2.

1.1 Overview of the Dissertation

Local Coordination through Coupling Weight Optimization

In Chapter 2, we study distributed control of diffusively coupled agents through the use
of relative sensing information, and specifically consider the problem of guaranteeing fast
convergence to a desired equilibrium formation. A well-examined tool for characterizing the
interconnection topology of a network of diffusively coupled agents is the graph Laplacian
matrix [18]. In particular, the spectrum of the Laplacian contains useful information about
the dynamics of the network. For example, the smallest positive eigenvalue of a Laplacian,
known as the algebraic connectivity, or Fiedler eigenvalue [37], is a common measure of
how well connected a network is [36, 59, 73, 88]. On the other hand, the largest eigenvalue
must be sufficiently small for stability of discrete-time consensus algorithms [59, 2], and for
continuous-time formation control algorithms when agent dynamics can be destabilized by
high gain feedback [6].

We present a scheme to enforce constraints on the Laplacian spectrum (ordered from least
to greatest) by treating both node and edge weights as decision variables. Our goal is to
achieve individual upper and lower bounds for several Laplacian eigenvalues simultaneously.
We show how these bounds can be recast as linear matrix inequality constraints [12] that
can be applied using semidefinite programming. We then study the case of larger graphs
by deriving dual formulations of the optimization framework that we have developed. As
demonstrated in the chapter, joint tuning of node and edge weights is an especially powerful
tool that goes beyond the commonly-used edge weighting strategies for achieving spectral
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constraints. Our framework furthermore addresses the problem of time-scale separation in
networks in which groups of densely-connected nodes are sparsely connected with each other.

Synchronization of Limit Cycle Oscillations

Synchronization in diffusively coupled systems is essential to understanding the dynamical
behavior of a range of engineered and biological systems. In Chapter 3, we study diffusively
coupled nonlinear systems that exhibit limit cycles in the absence of diffusion. We develop
analytical and numerical tools to determine whether diffusion stabilizes the spatially ho-
mogeneous limit cycle trajectories, thereby synchronizing the oscillations across the spatial
domain. Our methods apply to reaction-diffusion PDEs conditions as well as compartmental
ODEs.

In the case of sufficiently small or large diffusion, we use Floquet theory to decompose the
linearized system into fast and slow time scales, and present results using two-time scale
averaging theory [83, 94] that guarantee synchrony. In the case of diffusion coefficients of
intermediate strength, we turn to a numerical approach, in which we use harmonic balance
[101, 110] to represent the linearized system as an infinite-dimensional linear time invariant
system. We make use of the structured singular value (SSV) [76] to determine stability of
the linearized system in the presence of diffusion coefficients spanning a given finite interval.
We apply our tests to a relaxation oscillator system and find that large enough diffusion
indeed leads to loss of synchrony. Unlike standard examples of diffusion-driven instability
of a homogeneous steady-state [86, 96, 71], this example demonstrates destabilization of a
spatially homogeneous periodic orbit by diffusion.

Synchronization under Space-Dependent Diffusive Coupling

In Chapter 4, we present a condition that guarantees synchronization in diffusively coupled
compartmental ODEs. Each set of like components has its own weighted undirected graph
describing the topology of the interconnection between compartments. The condition makes
use of the Jacobian of the vector field of the uncoupled dynamics as well as the Laplacian
eigenvalues of each of the interconnection graphs. We present linear matrix inequalities
that can be used to numerically verify the condition guaranteeing spatial uniformity, and
apply the result to a coupled oscillator network. Next we turn to reaction-diffusion PDEs
with diffusion terms that vary by species and in space, and derive an analogous condition
guaranteeing spatial homogenization of solutions. The main contribution of the chapter is a
relaxed condition to check synchronization that allows individual components to have their
own specific diffusion terms and corresponding interconnection structures that may vary
spatially.



4

Adaptive Synchronization of Diffusively Coupled Systems

In Chapter 5, we consider the case where the coupling network in addition to the nodes
has dynamics. We present an adaptive algorithm that guarantees synchrony in diffusively
coupled nonlinear systems using an incremental output-feedback passivity property [104,
85, 87] of the agents. A similar property was employed in [84] for static networks without
adaptation. A related condition that restricts the Jacobian of the vector field describing the
uncoupled dynamics was used in [1] to guarantee spatial homogeneity in reaction-diffusion
PDEs, and generalized to heterogeneous diffusion in Chapter 4. Using these results as a
starting point, here we first consider compartmental models and derive adaptive laws that
update interconnection strengths locally to achieve sufficient connectivity for synchroniza-
tion. We next consider reaction-diffusion PDEs, and show that a similar control law that
adapts the strength of diffusion coefficients guarantees spatial homogeneity. We present nu-
merical examples that demonstrate the effectiveness of adaptation in enhancing synchrony
and that lend insight to understanding the structure and bottleneck edges of the network.

Synchronization under space and time-dependent heterogeneities

While the previous chapters have considered the case where each subsystem in the diffusively
coupled network is identical, in Chapter 6, we consider synchronization in the presence
of heterogeneities. We study diffusively coupled systems in which the nominal identical
subsystems satisfy an incremental passivity property and are subject to a class of disturbance
inputs including constants and sinusoids. Building on the robust DAC estimator in [7], we
propose a distributed control law that achieves output synchronization in the presence of
disturbances by defining an internal model subsystem at each node corresponding to the
disturbance inputs. We next consider reaction-diffusion PDEs and present a distributed
control law that achieves spatial homogenization in the presence of space and time-dependent
disturbances. Our controller applies to systems with multiple input and output channels and
allows non-identical disturbances to enter each channel.

1.2 Preliminaries

We introduce the following preliminaries of which we will make repeated use in the disser-
tation.
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Spectral Graph Theory

We first review notions from spectral graph theory that are essential to this dissertation. A
graph G is a collection of nodes and a corresponding set of edges, each consisting of a pair of
nodes. In this dissertation, we consider undirected graphs, where two nodes are connected
when there exists an edge incident to both. A graph itself is connected if there exists a
sequence of edges connecting any pair of nodes in the graph.

Next, we assign an arbitrary orientation to the edges of the undirected graph G, label the
edges ` = 1, . . . ,M , and introduce the N ×M incidence matrix:

Ei` =


1 if node i is the head of edge `
−1 if node i is the tail of edge `
0 if node i is not connected to edge `.

(1.1)

We note that the incidence matrix is not unique for an undirected graph, and choice of
orientation does not change our results.

We define the N ×N graph Laplacian matrix L by

L = EET . (1.2)

We next recall key facts about Laplacian matrices [18]. Clearly, L is symmetric positive
semidefinite. Moreover, it has least one eigenvalue at zero corresponding to an eigenvector
1N = 1√

N
[1 . . . 1]T . If the graph represented by L is connected, then L has exactly one

eigenvalue at zero.

Self-Adjoint Elliptic Operators

We now turn to the spatial continuum analogue of the graph Laplacian matrix. Consider a
bounded, connected domain Ω ⊆ Rr with smooth boundary ∂Ω, spatial variable χ ∈ Ω, and
outward normal vector n̂(χ) for χ ∈ ∂Ω. We consider self-adjoint elliptic operators L given
by:

L(·) = −∇ · (d(χ)∇(·)), d(·) : Ω→ Rr×r, (1.3)

where ∇· is the divergence operator and ∇ represents the gradient with respect to the
spatial variable χ, the matrix-valued function d(χ) is symmetric with d(χ) = d(χ)T for all
χ and bounded and ∃α > 0 such that for all χ ∈ Ω and for all ζ = (ζ1, ζ2, . . . , ζr) ∈ Rr,∑r

i,j dij(χ)ζiζj ≥ α|ζ|2.

We will make use of a Lemma following from the Poincaré principle [54, Equation (1.37)]:

Lemma 1 Let λ2 denote the second smallest of the Neumann eigenvalues 0 = λ1 ≤ λ2 ≤ · · ·
of the operator L = −∇· (d(χ)∇(·)) defined as in (1.3) on the connected, bounded domain Ω
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with smooth boundary ∂Ω and spatial variable χ ∈ Ω. Let u(t, χ) be a function not identically
zero in L2(Ω) with derivatives ∂u

∂χi
∈ L2(Ω) that satisfies the Neumann boundary condition

∇u(t, χ) · n̂(χ) = 0 where “·” is the inner product in Rr and
∫

Ω
u(t, χ) dχ = 0. Then the

following inequality holds:∫
Ω

∇u(t, χ) · (d(χ)∇u(t, χ)) dχ ≥ λ2

∫
Ω

u(t, χ)2 dχ. (1.4)

�

Incremental Output-Feedback Passivity

We introduce a fundamental input-output property that characterizes several of the systems
we consider in this dissertation. Consider a dynamical system H defined by:

H : ẋ = f(x) + g(x)u (1.5)

y = h(x), (1.6)

in which x ∈ Rn, u ∈ Rp, y ∈ Rp, and f(·) : Rn → Rn, g(·) : Rn → Rn×p, and h(·) : Rn → Rp

are continuously differentiable maps. Hi is said to satisfy an incremental output-feedback
passivity property [91, 84] if there exist a positive definite storage function S : Rn → R
and a scalar θ ∈ R such that for any two solution trajectories xa(t) and xb(t) of H with
input-output pairs ua(t), ya(t) and ub(t), yb(t):

d

dt
S(δx) =: Ṡ(δx) ≤ θδyT δy + δuT δy, (1.7)

with δx = xa(t)− xb(t), δu = ua(t)− ub(t), and δy = ya(t)− yb(t). When θ ≤ 0, H is called
incrementally passive, and when θ < 0, H is called output-strictly incrementally passive.
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Chapter 2

Local Coordination through Coupling
Weight Optimization

A well-studied tool for characterizing the interconnection topology of a network of distributed
agents is the graph Laplacian matrix [18]. In particular, the spectrum of the Laplacian
contains useful information about the dynamics of the network. For example, the smallest
positive eigenvalue of a Laplacian, known as the algebraic connectivity, or Fiedler eigenvalue
[37], is a common measure of how well connected a network is [36, 59, 73, 88]. On the
other hand, the largest eigenvalue must be sufficiently small for stability of discrete-time
consensus algorithms [59, 2], and for continuous-time formation control algorithms when
agent dynamics can be destabilized by high gain feedback [6].

We present a scheme to enforce constraints on the Laplacian spectrum by treating both
node and edge weights as decision variables. Let λi be the ith-smallest eigenvalue of the
Laplacian, whose eigenvalues are ordered from least to greatest. Given m ∈ {2, . . . , n} and
λm > 0, the lower eigenvalue bound assignment problem is to guarantee λm ≥ λm. Likewise,
given p ∈ {2, . . . , n} and λp > 0, the upper eigenvalue bound assignment problem is to
guarantee λp ≤ λp. Our goal is to achieve individual upper and lower bounds for several
Laplacian eigenvalues simultaneously. We show how these bounds can be recast as linear
matrix inequality constraints [12] that can be applied using semidefinite programming.

Convex optimization solutions to several graph problems are well-documented in the lit-
erature, including fastest distributed linear averaging (FDLA) [106], minimization of total
effective resistance on a graph [46], fastest mixing Markov chains [11] and processes [93], and
Fiedler eigenvalue maximization through vertex positioning [68]. In FDLA [106], a particular
interconnection structure for a discrete system with symmetric interconnections is specified.
The number of iterations required for linear averaging is minimized by finding a particular
weight distribution that assigns iterative update laws for each node’s state. The goal in
many resistor network problems [46] is to minimize the total effective resistance on a graph
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by assigning different weights representing resistances to the edges connecting the nodes of
an electrical network. The aim for fastest mixing Markov chains [11] and processes [93] is
to find the optimal transition probabilities between states to reach a stationary distribution
as quickly as possible. Finally, vertex positioning [68] aims to find the optimal locations of
vertices, corresponding to edge weights, in order to maximize the Fiedler eigenvalue.

Our approach is unique when compared to previous literature on optimization of the Lapla-
cian spectrum because it is applicable to any selection of eigenvalues, and assigns weights
independently to both nodes and edges. As demonstrated in the chapter, joint tuning of
node and edge weights is an especially powerful tool that goes beyond the commonly-used
edge weighting strategies for achieving spectral constraints.

The remainder of the chapter is organized as follows. Section 2.1 introduces preliminary
results in linear algebra and spectral graph theory that are necessary for our analysis. Section
2.2 outlines a general optimization framework that enables upper and lower bounds on several
Laplacian eigenvalues simultaneously based on node and edge weighting. Section 2.3 presents
sample problems that can be formulated and solved using the methods of Section 2.2. Section
2.4 explores applications to multi-agent systems. Larger graphs are addressed in Section 2.5
with dual formulations of the optimization framework developed in Sections 2.2 and 2.3. We
conclude in Section 2.6.

2.1 Linear Algebra Preliminaries

We review the following results from linear algebra, which we will use in Section 2.2. The
first result concerns the eigenvalues of a product of two matrices ([56], Theorem 1.3.20):

Lemma 2 Let A ∈ Rr×q, B ∈ Rq×r, and r ≥ q. Then AB and BA have identical nonzero
eigenvalues and AB has r − q additional eigenvalues at zero. �

The next lemma follows from the Courant-Fischer theorem, which characterizes the eigen-
values of a symmetric matrix ([56], Corollary 4.3.23):

Lemma 3 If A ∈ Rn×n is symmetric and if xTAx ≥ 0 for all vectors x ∈ Rn in a k-
dimensional subspace, then A has at least k nonnegative eigenvalues. �

Definition 1 The square matrices A and B are congruent if B = SAST for some square,
nonsingular S.

The following lemma is known as Sylvester’s Law of Inertia ([56], Theorem 4.5.8):
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Lemma 4 Let A, B ∈ Rn×n be symmetric matrices. A and B are congruent if and only
if A and B have the same inertia, i.e., the same number of positive, negative, and zero
eigenvalues. �

An inequality due to Sylvester characterizes the relationship between the eigenvalues of two
matrices and their products ([43], Section 3.5):

Lemma 5 Given two matrices A ∈ Rr×n and B ∈ Rn×q, the following inequality holds:

rank(A) + rank(B)− n ≤ rank(AB) ≤ min {rank(A), rank(B)}.
�

Next, consider an undirected graph G. We denote by L = EET the n × n graph Laplacian
matrix where E is an incidence matrix of G as defined in (1.1). We define by Le = EKET

the edge-weighted Laplacian, where K � 0 is the diagonal edge weighting matrix. We denote
by Lg = M−1EKET the node- and edge- weighted graph Laplacian (henceforth weighted
Laplacian), where M � 0 is the diagonal node weighting matrix. Note that Le retains the
properties of L in Section 1.2. Although Lg is not symmetric in general, its eigenvalues
possess properties similar to those of L and Le:

Lemma 6 Every eigenvalue of Lg = M−1EKET is real and nonnegative. If Lg represents
a connected graph, then all eigenvalues of Lg, excepting one at zero, are positive. �

Proof: A similarity transformation brings Lg to the symmetric form M−1/2LeM
−1/2, and

so all eigenvalues of Lg are real. Furthermore, the symmetric matrices M−1/2LeM
−1/2 and

Le are congruent, and hence Lemma 4 guarantees that all eigenvalues of Lg are nonnegative.
When Le represents a connected graph, and, thus, has only one eigenvalue at zero, Lemma
4 implies that all eigenvalues of Lg, excepting one at zero, are positive.

2.2 Convex Characterizations of Upper and Lower

Eigenvalue Constraints

Our goal is to find node and edge weighting matrices M and K, respectively, to assign
individual lower and upper bounds for several eigenvalues of Lg simultaneously. Let λk(Lg)
denote the k-th smallest eigenvalue of Lg. Given a, b ≤ N , define the sets of indices {mi}ai=1

and {pi}bi=1 with each 2 ≤ mi ≤ N and 2 ≤ pj ≤ N an integer contained in {2, N}. Define
the sets of positive scalars {λmi

}ai=1 and {λpj}bj=1. We wish to see if there exist M and K
that satisfy the constraints in the following problem:
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Find M, K

subject to λmi
(Lg) ≥ λmi

, i = 1, . . . , a

λpj(Lg) ≤ λpj , j = 1, . . . , b.

(2.1)

A. Bounding Eigenvalues from Below

Given m < N and λm > 0, we wish to design node and edge weights M and K, respectively,
such that λm(Lg) ≥ λm. We note that by itself, the lower eigenvalue bound λm(Lg) ≥ λm can

be enforced by scaling M by λm(L)
λm

or K by
λm

λm(L)
. However, when the graph optimization

problem also imposes upper eigenvalue constraints as in (2.1) or objective functions, this
approach would likely be infeasible. In contrast, our results make it possible to apply several
upper and lower eigenvalue bounds at once. To begin, we construct a linear matrix inequality
enforcing the eigenvalue constraint, making use of the following lemma:

Lemma 7 Suppose that m < N , Qm ∈ RN×(N−m+1) is a full column rank matrix whose
columns are orthogonal, and S is a symmetric matrix. If QT

mSQm � 0, then λm(S) ≥ 0. �

Proof: The result follows immediately from Lemma 3: the subspace spanned by the columns
of Qm is N −m+ 1 dimensional, so λm(S) ≥ 0. �

The next theorem provides a sufficient condition in the form of a linear matrix inequality
constraint to enforce lower eigenvalue bounds:

Theorem 2 Let Qm be as in Lemma 7. The constraint

QT
m(Le − λmM)Qm � 0 (2.2)

implies that λm(Lg) ≥ λm. �

Proof: First, we note by Lemma 7 that if (2.2) holds, then the matrix Le − λmM has
at most m − 1 negative eigenvalues. By congruence, M−1/2LeM

−1/2 − λmI has at most
m − 1 negative eigenvalues, which means that the symmetric positive semidefinite matrix
Ls , M−1/2LeM

−1/2 has at most m − 1 eigenvalues less than λm. Similarity of Lg to Ls
implies that Lg has at most m− 1 eigenvalues less than λm, implying that λm(Lg) ≥ λm.�

We now present a convex feasibility program that enforces the lower eigenvalue bound suffi-
cient linear matrix inequality condition of Theorem 2:
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Find M, K

subject to QT
m(EKET − λmM)Qm � 0

M � 0, K � 0; M, K diagonal.

(2.3)

Theorem 2 provides only a sufficient condition to imply λm(Lg) ≥ λm, because the choice of
Qm is arbitrary. We now present a necessary and sufficient condition enabled by a specific
choice of Qm:

Theorem 3 The inequality λm(Lg) ≥ λm holds if and only if QTm(Le−λmM)Qm � 0, where
Qm ∈ RN×(N−m+1) is the matrix whose columns are the eigenvectors corresponding to the
N −m+ 1 largest eigenvalues of Le − λmM . �

Proof: Necessity follows from Theorem 2. To prove sufficiency, suppose that λm(Lg) ≥ λm.
By similarity, Ls = M−1/2LeM

−1/2 has the same spectrum as Lg. Then Ls − λmI has
at most m − 1 negative eigenvalues. By congruence, so does Le − λmM . Considering
the projection matrix QmQTm, it follows that (Le − λmM)QmQTm must have exclusively
nonnegative eigenvalues. Lemma 2 then implies that QTm(Le − λmM)Qm � 0. �

Theorem 3 is the basis for an iterative procedure presented in Section 2.3-A that allows for
improved performance when the constraints of (2.3) are paired with an objective.

B. Bounding Eigenvalues from Above

Given p ≤ N and λp ≥ 0, we wish to design node and edge weights M and K, respectively,
such that λp(Lg) ≤ λp. We construct a linear matrix inequality enforcing this eigenvalue
constraint. The analysis is similar to that of the previous section, and so the proofs are
omitted.

Theorem 4 Let Up ∈ RN×p be a full column rank matrix whose columns are orthogonal.
The constraint

UT
p (λpM − Le)Up � 0 (2.4)

implies that λp(LG) ≤ λp. �

We now present a convex feasibility program that enforces the upper eigenvalue bound
sufficient linear matrix inequality condition of Theorem 4:
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Figure 2.1: A chain graph with N nodes.

Find M, K

subject to UT
p (λpM − EKET )Up � 0

M � 0, K � 0; M, K diagonal.

(2.5)

As in the case of bounding eigenvalues from below, Theorem 4 provides only a sufficient
condition to imply λp(Lg) ≤ λp. The following theorem gives a necessary and sufficient
condition enabled by a specific choice of Up:

Theorem 5 The inequality λp(Lg) ≤ λp holds if and only if UTp (λpM − Le)Up � 0, where
Up ∈ RN×p is the matrix whose columns are the eigenvectors corresponding to the p smallest
eigenvalues of λpM − Le. �

An iterative procedure presented in Section 2.3-B employs Theorem 5 and allows for improved
performance when the constraints of (2.3) and (2.5) are paired with an objective. A special
case of Theorem 5 is when p = N . In this case, the Up that satisfies Theorem 5 is a square,
orthogonal matrix, and thus the eigenvalues of UTp (λpM −EKET )Up and λpM −EKET are
equal by Lemma 2. Theorem 5 therefore simplifies to the following corollary:

Corollary 1 The inequality λN(Lg) ≤ λN holds if and only if λNM − Le � 0. �

2.3 Examples of Graph Design Problems

We provide two sample problems that can be addressed by combining (2.3) and (2.5), demon-
strating the flexibility of our formulation to impose individual constraints on several eigen-
values simultaneously. In our numerical examples, we require that all node and edge weights
be contained in [ε, ε−1], where ε < 1 is a small positive parameter that guarantees that the
largest and smallest weights do not have too great a relative difference. Smaller values of
ε increase the number of feasible M and K matrices, making it more likely that any given
constraint set is feasible, but run the risk of numerical loss of precision with very large dif-
ferences in individual node and edge weightings. We perform our numerical examples using
CVX, a package for disciplined convex programming [48] [49], and the SDPT3 interior point
solver [95].
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Figure 2.2: An eight node graph with two clusters.

A. Minimizing the Largest Eigenvalue Given a Minimum
Connectivity Constraint

In formation control problems (see, e.g., Section 2.4), it is desirable to have a lower bound
on λ2 to ensure adequate convergence time while at the same time imposing an upper bound
on λN for stability. We present the problem of minimizing the largest eigenvalue λN(Lg) of a
graph given the requirement λ2(Lg) ≥ λ2, making use of (2.3) and (2.5) as well as including
upper and lower bounds on the entries of M and K:

minimize
κ,M,K

κ

subject to κλ2M − EKET � 0

QT
2 (EKET − λ2M)Q2 � 0

ε−1I �M � εI, ε−1I � K � εI; M, K diagonal.

(2.6)

The problem is quasiconvex for any Q2 ∈ RN×(N−1). To find the optimal κ = λN (Lg)

λ2
for

the problem, we perform a bisection on the interval [λ2, λN(L)], where in each iteration, a
convex feasibility problem is solved for the value of κ given by the bisection. As discussed in
Section 2.2-A, an arbitrary choice of Q2 may lead to conservatism in the optimal κ achieved.
To improve the value of κ, we propose Algorithm 1, which makes use of Theorem 3 and
updates Q2.

Algorithm 1 Iterative Updates for Q2

1: M ⇐ I, K ⇐ I, µ > 0.
2: repeat
3: Set Q2 to be the matrix whose columns are the eigenvectors corresponding to the N−1

largest eigenvalues of EKET − λ2M .
4: Solve (2.6) and update M , K.
5: until |κi − κi−1| ≤ µ OR (max(M) = ε−1 AND min(M) = ε)

OR (max(K) = ε−1 AND min(K) = ε).
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We note that when M and K are identity and Q2 is initialized as in Algorithm 1, the columns
of Q2 are orthogonal both to each other and to 1n. In our implementation, we choose µ to
be very small, and the effective stopping criteria are the conditions on M and K involving
ε. The parameter ε can be tuned by being made smaller or larger to achieve improved or
worsened values of κ with the resulting difference |κi − κi−1| relatively smaller or larger,
respectively, when the algorithm terminates.

Numerical Example: For an unweighted chain graph with twenty nodes obeying the structure
of Figure 2.1, we have λ2(L) = 0.025 and κ = λ20(L)

λ2(L)
= 161.602. We set ε = 10−2, and apply

our method to reduce κ. For the first three experiments, (2.6) was solved with Q2 set to
be a matrix whose N − 1 columns are orthogonal to 1N . The lower eigenvalue bound was
set to be λ2 = λ2(L). Solving for edges only, with nodes weighted to identity, produced no
re-weighting of edges, and so κ was unchanged. In contrast, solving for nodes only, with
edges weighted to identity, resulted in κ = 123.529. Simultaneous optimization with both
the nodes and edges as decision variables produced a marked improvement to κ = 52.862.
Allowing Q2 to vary in accordance with Algorithm 1 described above resulted in κ = 13.050.
By setting ε = 10−3, we achieved κ = 6.302.

B. Minimizing the Gap between λp and λp+1

We consider graphs with clusters, that is, groupings of densely connected nodes with sparse
external edges. The Laplacian of a graph with p clusters exhibits, in addition to the first
eigenvalue at zero, p−1 additional eigenvalues close to zero. Thus, in such graphs, there is a
gap between the first p eigenvalues and the rest. Examples of systems obeying the clustered
structure have been studied in building sensor networks [66] and power systems [17], where
distributed estimation algorithms are increasingly prevalent. The gap in the eigenvalues
may be undesirable because it leads to a two-time-scale behavior in the convergence of these
algorithms [9].

To obtain uniform convergence rates for nodes in different clusters, we maximize λ2 while
requiring λp+1 ≤ λp+1, and in so doing, minimize the gap between λp(Lg) and λp+1(Lg).
Additionally, we fix λN(Lg) ≤ λN , so that the rest of the spectrum of the weighted Laplacian
does not deviate far from its original location. The problem is solved with a bisection to
maximize κ on the interval [λ2(L), λp+1]. We impose upper and lower bounds on the entries
of M and K, and introduce Q2 ∈ RN×(N−1) and Up+1 ∈ RN×(p+1) defined according to

Theorems 2 and 4, respectively. We now write the quasiconvex problem, with κ = λp+1

λ2(Lg)
:
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maximize
κ,M,K

κ

subject to λNM − EKET � 0

QT
2 (EKET − κM)Q2 � 0

UT
p+1(λp+1M − EKET )Up+1 � 0

ε−1I �M � εI, ε−1I � K � εI, M, K diagonal.

(2.7)

We can realize significant improvements in reducing the gap between λp(Lg) and λp+1(Lg)
by employing Algorithm 2, an iterative procedure similar to Algorithm 1 of Section 2.3-A.

Algorithm 2 Iterative Updates for Q2, Up+1

1: M ⇐ I, K ⇐ I, µ > 0.
2: repeat
3: Set Q2 to be the matrix whose columns are the eigenvectors corresponding to the N−1

largest eigenvalues of EKET − λ2M .
4: Set Up+1 to be the matrix whose columns are the eigenvectors corresponding to the

p+ 1 smallest eigenvalues of λp+1M − EKET .
5: Solve (2.7) and update M , K.
6: until |κi − κi−1| ≤ µ OR (max(M) = ε−1 AND min(M) = ε)

OR (max(K) = ε−1 AND min(K) = ε).

Numerical Example: Consider the eight node graph with two clusters in Figure 2.2. Such
a graph, with identical weights, exhibits a significant gap between λ2 and λ3. We have the
relation λ3(L)

λ2(L)
= 11.293, with the eigenvalues of the unweighted graph at {0.000, 0.354, 4.000,

4.000, . . . , 4.000, 5.646}. Our goal is to reduce the gap λ3(L)
λ2(L)

by increasing the second eigen-
value while bounding the third and eighth eigenvalues from above. To do so, we employ
Algorithm 2, iteratively updating both Q2 and U3 while requiring λ3(Lg) ≤ 4.000 and
λN(Lg) ≤ 5.646 and setting ε = 10−2. We find the optimal value λ2(Lg) = 4.000, with
λ3(Lg)

λ2(Lg)
= 1.

2.4 Application to Multi-Agent Systems

We now apply the results of Section 2.3-A to multi-agent systems whose feedback structure
is described by a graph Laplacian.

Each of the N subsystems possesses identical dynamics:

Hi :

{
ẋi = Axi +Bui
yi = Cxi.

(2.8)
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Figure 2.3: Block diagram of the multi-agent system (2.8-2.9).

and is controlled according to the feedback law:

ui = −M−1
i

∑
j∈Ni

Kj(yi − yj), (2.9)

where A ∈ Rn×n, B ∈ Rn×no , and C ∈ Rno×n, with n and no the dimension of the state space
and input and output, respectively. The set Ni consists of the neighbors j of agent i, that
is, the other agents whom agent i senses. We assume that the individual plants are stable or
can be stabilized by local state feedback (see the numerical example below). Therefore, we
assume that A is Hurwitz. Mi and Kj denote entries i and j of the diagonal node and edge
weighting matrices M and K, respectively. The block diagram of the system is shown in
Figure 2.3, with each subsystem Hi having input given by (2.9). We let x = [xT1 , . . . , x

T
N ]T ,

and rewrite (2.8) and (2.9) as:

ẋ = [IN ⊗ A− Lg ⊗ (BC)]x. (2.10)

As a consequence of the identical dynamics of each subsystem, the system can be decoupled
into n identical subsystems by a change of coordinates using the basis of eigenvectors of Lg
[36]. Let U be the orthogonal change-of-coordinates matrix that diagonalizes Lg and let Λ
be the diagonal matrix of eigenvalues of Lg. Then Λ = U−1LgU . Now let V = U ⊗ I, and
let x̃ = V −1x. In the new coordinates, the dynamics are given by:

˙̃x = [IN ⊗ A− Λ⊗ (BC)]x̃, (2.11)

and, thus, the eigenvalues are determined from the characteristic polynomials ofA−λi(Lg)BC,
i = 1, . . . , N . This means that the multi-agent system can be analyzed as n decoupled
feedback systems with constant gain λi(Lg), i = 1, . . . , N . In particular, larger Laplacian
eigenvalues imply higher gains for these decoupled systems, which is often undesirable. For
example, if the transfer function C(sI − A)−1B has non-minimum phase zeros or relative
degree higher than two, high gain will result in right half plane poles, rendering the multi-
agent system unstable. The largest eigenvalue minimization method of Section 2.3-A can
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mitigate this instability by finding a node and edge weighting such that the spectrum of Lg
spectrum falls within a range specified by design requirements.

Numerical Example: We consider formation control for four planar vertical takeoff and
landing, or PVTOL, aircraft, as described in [82]. We model the state of the aircraft by its
lateral position, x, vertical position y, and its roll, θ. The equations of motion, in input-
output linearized form, are given by the following:

ẍ = u1

ÿ = u2

θ̈ = ε−1(sin θ + cos θu1 + sin θu2).

(2.12)

The zero dynamics of the system are unstable and the system is non-minimum phase:

θ̈ = ε−1 sin θ. (2.13)

We assume that the aircraft are in hover operation and are stabilized vertically, so we discard
y and u2, the vertical thrust input. We set ε = 0.1 and see that the linearized dynamics
around x = 0, θ = 0 are:

Ã =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 10 0

 B =


0
1
0
10

 C =


−1
0
0
0


T

. (2.14)

The input to each aircraft is dictated by the input term of (2.8), with the graph structure
of a four node chain. We choose a state feedback J = [ 0 −90.616 42.147 13.216 ],

which renders A = Ã−BJ Hurwitz. To achieve a reasonable response time and to maintain
stability, we wish to contain the eigenvalues of the weighted Laplacian in the interval [50, 125].
In particular, the upper bound of this interval guarantees a damping ratio greater than 0.6.
For the unweighted Laplacian, we have κ = λ4(L)

λ2(L)
= 5.828, which means that scaling the

Laplacian by a constant α = 50
λ2(L)

to meet the lower eigenvalue constraint λ2(αL) ≥ 50 will

violate the upper eigenvalue constraint λ4(αL) ≤ 125 and lead to instability as illustrated in
Figure 2.4. In contrast, applying the node and edge weights found by applying Algorithm 1
results in an improvement to κ = 1.020. We show simulation results with the new weights
in Figure 2.5.
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Figure 2.4: PVTOL formation of four aircraft with unweighted, scaled graph. Each row
represents a snapshot in time in ascending order. Each aircraft’s maximum roll angle and
amplitude of deviation from the desired relative position increases in time, indicating insta-
bility.
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Figure 2.5: PVTOL formation of four aircraft with weighted graph. Each row represents a
snapshot in time in ascending order. Each aircraft’s maximum roll angle and amplitude of
deviation from the desired relative position of the aircraft decrease in time as it converges
to formation.
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2.5 Dual Formulation of the Largest Eigenvalue

Minimization Problem

Popular interior point methods, such as SDPT3 [95], when applied to the convex problems
derived Section 2.3, are limited as to the size of graph they can handle, breaking down for
many graphs with more than several tens of nodes. We show how using Lagrangian dual
formulations enables our eigenvalue optimization framework to accommodate graphs with
several hundred nodes and edges. In the following exposition, we derive the dual of the
largest eigenvalue minimization problem of Section 2.3-A.

We begin with the convex problem solved as part of the solution to the largest eigenvalue
minimization problem. We denote by 〈·, ·〉 the trace inner product of two matrices of appro-
priate dimension. We set Q ∈ RN×(N−1) to be a matrix with columns orthogonal to each
other and to 1n. The convex problem we dualize is:

Find K,M

subject to κM − EKET � 0

QT (EKET −M)Q � 0

M � εI, K � 0;M, K diagonal.

(2.15)

To derive the dual problem, we note that the Lagrangian function is:

L(K,M,Z,R, v, w) =− 〈Z, κM − EKET 〉
− 〈R,QT (EKET −M)Q〉
− vT (diag(M)− ε1N)− wTdiag(K).

(2.16)

We seek to obtain a finite minimization of the Lagrangian function with respect to M and
K. Thus, minimizing (2.16) with respect to M yields the constraint:

diag(R̃− κZ) = v, (2.17)

where we have defined a new variable R̃ = QRQT , from which we observe that R̃1n = 0.
Likewise, minimizing the Lagrangian with respect to K yields the constraint:

diag(ET (Z − R̃)E) = w. (2.18)

To express the nullspace constraint on R̃ as a single equality constraint, we begin by defining
the matrix E ∈ RN×N to be E = 1N1TN , and state and prove the following lemma:

Lemma 8 Let G be a positive semidefinite matrix. Then G1N = 0 if and only if 〈G,E〉 =
0. �
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Table 2.1: Random Graphs with N Nodes and m Edges

N , m, κ Primal Runtime (s) Dual Runtime (s)
50, 100, 3 16.066 4.594
50, 500, 1.5 48.666 7.986
100, 200, 3 141.267 11.724
100, 1000, 1.5 N/A 27.186
200, 400, 3 N/A 32.980

Proof: G1N = 0 ⇐⇒ 1TNG1N = 0 ⇐⇒ tr(1TNG1N) = 0 ⇐⇒ 〈G,E〉 = 0. �

Combining the constraints found by minimizing (2.16) with respect to M and K, we now
write the resulting dual problem, where we have eliminated the slack variable w:

maximize
Z,R̃,v

1Tnv

subject to diag(ET (Z − R̃)E) ≥ 0

diag(R̃− κZ) = v

〈R̃, E〉 = 0

Z, R̃ � 0, v ≥ 0.

(2.19)

The dual problem we have derived explicitly separates semidefinite matrix variables and
linear variables as well as limits the growth of the number of equality constraints to scale
linearly with the number of nodes and edges in the graph. Solving it using interior point
methods is reasonably fast for graphs with up to 1000 edges, meaning that in addition to be-
ing substantially faster than the primal formulation, the dual formulation can accommodate
significantly larger graphs.

We compare the performance of the SDPT3 algorithm on the primal and dual problems.
The goal is to find feasible M and K matrices for (2.15) and (2.19) given κ. We characterize
the performance in terms of CPU runtime in seconds on an Intel Quad Core 2 Duo 2.2 GHz
system with 8 GB of RAM. In Table 2.1, we consider random graphs with N nodes, m edges,
and parameter κ, while in Table 2.2, we consider chain graphs with N nodes with κ = 3. As
compared to the primal formulation, the dual formulation can accommodate graphs with an
order of magnitude more nodes.
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Table 2.2: Chain Graphs with N Nodes

N Primal Runtime (s) Dual Runtime (s)
50 21.076 7.223
100 N/A 18.861
200 N/A 44.928
400 N/A 207.388

2.6 Conclusion

The graph Laplacian is an indispensable tool for assessing the dynamics of a multi-agent
system. In this chapter, we have presented a novel approach to impose bounds on the
Laplacian spectrum. We have shown how node and edge weights can be adjusted using
convex optimization to impose individual constraints on several eigenvalues simultaneously.
Finally, we have demonstrated the effectiveness of the approach on multi-agent systems
problems arising in formation control and time-scale separated networks.
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Chapter 3

Synchronization of Limit Cycle
Oscillations

Diffusively coupled models are crucial to understanding the dynamical behavior of a range
of engineering and biological systems. In particular, synchronization of diffusively coupled
models is an active and rich research area [50]. Conversely, developing conditions that rule
out synchrony is also important, as these conditions can facilitate study of spatial pattern
formation. One of the major ideas behind pattern formation in cells and organisms is based
on diffusion-driven instability [86, 96], which occurs when higher-order spatial modes in a
reaction-diffusion partial differential equation (PDE) are destabilized by diffusion [71, 20,
75, 61, 57].

The majority of synchronization studies address phase coupled oscillators [69, 92, 16, 30],
which rely on the assumption of weak coupling to be able to represent the subsystems with a
single phase variable. Full state models have been studied in [1, 79, 98, 91, 80, 84]; however,
these references derive global results that may be conservative when synchronization of
trajectories close to a specific attractor, such as a limit cycle, is of interest. The reference [78]
gives a method to determine synchronization applicable to a wide class of coupled oscillators;
however, it does not allow direct determination of synchronization for intervals of diffusion
coefficients and may encounter loss of accuracy due to difficulties in numerically computing
the state transition matrix.

In this chapter, we study diffusively coupled nonlinear systems that exhibit limit cycles in
the absence of diffusion. We develop analytical and numerical tools to determine whether
diffusion stabilizes the spatially homogeneous limit cycle trajectories, thereby synchronizing
the oscillations across the spatial domain. Our methods apply to reaction-diffusion PDEs
with Neumann boundary conditions as well as compartmental ODEs. In the latter case, each
compartment has identical dynamics and represents a well-mixed spatial domain wherein like
components in adjacent compartments are coupled by diffusion.
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We first linearize the system about an asymptotically stable limit cycle trajectory and then
study the resulting periodic linear time varying system. In both the PDE and ODE cases,
synchrony amounts to stability of an auxiliary system of the form

ẋ = (A(t)− λkD)x, (3.1)

where A(t) is periodic, D is a matrix of diffusion coefficients, and λk is the kth eigenvalue
of the Laplacian operator (for PDEs) or matrix (for ODEs). In the case of sufficiently
small or large diffusion, we use Floquet theory to decompose the linearized system into fast
and slow time scales, and present results using two-time scale averaging theory [83, 94] that
guarantee synchrony. In the case of diffusion coefficients of intermediate strength, we turn to
a numerical approach, in which we use harmonic balance [101, 110] to represent the linearized
system as an infinite-dimensional linear time invariant system.

We make use of concepts from robust control, in particular the structured singular value
(SSV) [76], to determine stability of the linearized system in the presence of diffusion coef-
ficients spanning a specified finite interval. In particular, our method extends the notion of
structured singular value to the infinite-dimensional harmonic transfer operators that may
be used to describe the frequency-domain behavior of periodic linear time-varying systems.
We apply our tests to a relaxation oscillator system and find that large enough diffusion can
indeed lead to loss of synchrony. Unlike standard examples of diffusion-driven instability
of a homogeneous steady-state [86, 96, 71], this example demonstrates destabilization of a
spatially homogeneous periodic orbit by diffusion.

The stability of (3.1) in which the matrix A(t) is constant has been studied in the literature.
In [14], the authors showed that the stability of a homogeneous steady-state in a reaction-
diffusion PDE with Neumann boundary conditions is equivalent to the simultaneous stability
of a family of matrices of the form (3.1). In this case, the matrix A(t) = A is constant
because it represents the Jacobian linearization of the reaction terms at the steady-state. In
the typical case where the matrix D of diffusion coefficients is diagonal, a sufficient condition
for the desired simultaneous stability property is that A be an additively D-stable matrix
[63], which means that A − D is Hurwitz for all diagonal D ≥ 0. While recent work has
sought to characterize additive D-stability for constant matrices [97, 45, 67], the periodic
time-varying case addressed here has not been studied.

The remainder of the chapter is organized as follows. In Section 3.1, we formulate the
problem, and present an example of a system with an asymptotically stable limit cycle that
loses spatial synchrony in the presence of diffusion. In Section 3.2, we outline tests for
synchrony in the case of sufficiently small or sufficiently large perturbations. In Section
3.3, we develop a method to verify synchrony for an interval of diffusion coefficients. We
present relaxation and ring oscillator examples in Section 3.4, and give the conclusions in
Section 3.5. Derivations of our application of structured singular value to periodic linear
time-varying systems and harmonic transfer operators are given in the Appendix.
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3.1 Problem Formulation

In this section, we formulate the problem of synchronization of limit cycle oscillations in
diffusively coupled systems. For both reaction-diffusion systems of PDEs with Neumann
boundary conditions and compartmental systems of ODEs, we show that determining syn-
chrony, in the sense of a system exhibiting spatially homogeneous oscillations, amounts to
examining stability of a linear system with time-periodic coefficients. To motivate our devel-
opments, we also provide an example of a system with an asymptotically stable limit cycle
that loses spatial synchrony in the presence of large enough diffusion.

We first discuss systems governed by reaction-diffusion PDEs, and define the spatial domain
Ω ∈ Rr with smooth boundary ∂Ω, spatial variable χ ∈ Ω, and outward normal vector n̂(χ)
for χ ∈ ∂Ω. The PDE model is:

∂x(t, χ)

∂t
= f(x(t, χ)) +D∇2x(t, χ), (3.2)

subject to Neumann boundary conditions ∇xi(t, χ) · n̂(χ) = 0 for all χ ∈ ∂Ω, where
x(t, χ) ∈ Rn, D ∈ Rn×n, and

∇2x(t, χ) = [∇2x1(t, χ) · · · ∇2xn(t, χ)]T (3.3)

is a vector of Laplacian operators with respect to the spatial variable χ applied to each entry
of x. In a reaction-diffusion system, x(t, χ) represents a vector of concentrations for the
reactants and D is a diagonal matrix of diffusion coefficients. However, for generality of our
derivations, we will not assume D to be diagonal unless we state otherwise.

We say that a solution x(t, χ) of (3.1) synchronizes if x(t, χj) − x(t, χk) → 0 for any two
points χj and χk in Ω. We assume that the lumped system ẋ = f(x) has an asymptotically
stable limit cycle and that x̄(t) is a solution of ẋ = f(x) along the limit cycle. Then x(t, χ) =
x̄(t) for all χ ∈ Ω is a solution of (3.2). In the absence of diffusion (D = 0), the system (3.2)
admits out-of-phase oscillations, that is, solutions of the form x(t, χ) = x̄(t + ϕ(χ)), where
ϕ(χ) is a phase that depends on the location χ. To determine whether diffusion eliminates
such spatial phase differences, we examine the Jacobian linearization about the limit cycle
trajectory x̄(t, χ):

∂x̃(t, χ)

∂t
= (A(t) +D∇2)x̃(t, χ) (3.4)

where x̃(t, χ) = x(t, χ)− x̄(t) and

A(t) = J(x̄(t)) =
∂f

∂x

∣∣∣∣
x̄(t)

. (3.5)

Let 0 = λ1 ≤ λ2 ≤ . . . denote the eigenvalues and φ1(χ), φ2(χ), . . . denote the corresponding
orthogonal eigenfunctions of the operator L = −∇2 on Ω with Neumann boundary condi-
tions:

Lφi(χ) = λiφi(χ), ∇φi(χ) · n̂(χ) = 0 for all χ ∈ ∂Ω. (3.6)
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The solution to (3.4) can be expressed as:

x̃(t, χ) =
∞∑
i=1

σi(t)φi(χ), (3.7)

where σi(t) ∈ Rn satisfy the decoupled system of ODEs:

σ̇i = (A(t)− λiD)σi, i = 1, 2, . . . . (3.8)

Since the eigenfunction φ1(χ) for λ1 = 0 is constant, the term corresponding to i = 1
represents a spatially homogeneous mode σ1 governed by σ̇1 = A(t)σ1. When the subsystems
(3.8) are asymptotically stable for i = 2, 3, . . ., the contributions of the inhomogeneous
modes φ2(χ), φ3(χ), . . . to the solution x̃(t, χ) decay to zero in time, which implies that
x(t, χ) synchronizes.

We also study a compartmental ODE model, where each compartment represents a well-
mixed spatial domain interconnected with the other compartments over an undirected graph:

ẋi = f(xi) +D
∑
j∈Ni

(xj − xi), i = 1, . . . , N. (3.9)

The vector xi ∈ Rn represents each compartment’s state, Ni denotes the neighbors of
compartment i, and D ∈ Rn×n. We say that a solution (x1(t), . . . , xN(t)) synchronizes if
xj(t) − xk(t) → 0 for any pair (j, k). We take the Jacobian linearization about a limit cy-
cle trajectory x̄(t), and aggregate the dynamics of the subsystems using the state variable
x̃ = [x̃T1 · · · x̃TN ]T , x̃i(t) = xi(t) − x̄(t). We represent the interaction between state variables
by a graph Laplacian matrix L = LT ∈ RN×N , defined as

L = EET , (3.10)

where E is an incidence matrix as in (1.1) whose rows represent nodes (compartments)
and columns represent edges (couplings between the compartments). The dynamics of the
aggregated system may be written as:

˙̃x = (I ⊗ A(t)− L⊗D)x̃, (3.11)

where A(t) is as in (3.5) and ⊗ denotes the Kronecker product. Let U ∈ RN×N be a unitary
similarity transformation that brings L into the diagonal matrix of its eigenvalues Σ ∈ RN×N :
L = UΣUT . Choosing ỹ = (U−1⊗ I)x̃, we rewrite (3.11) as a block diagonal system, making
use of the Kronecker product identity (M ⊗S)(T ⊗W ) = MT ⊗SW for matrices M, T and
S, W of conformable dimensions, respectively. We then have:

˙̃y = (I ⊗ A(t)− Σ⊗D)ỹ, (3.12)

which is decoupled into the subsystems:

˙̃yl = (A(t)− λlD)ỹl, l = 1, . . . , N, (3.13)
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Figure 3.1: Spatio-temporal evolution of x2 for system (3.2)-(3.14) with d1 = 100, d2 = 0, and
µ = 0.1 on the one-dimensional spatial domain Ω = [0, 1] with initial condition x2(0, χ) =
5 + cos(πχ) and Neumann boundary conditions. The oscillations do not synchronize, and in
fact growth of the spatial mode φ2(χ) is observed.

where ỹl ∈ Rn and λl is the lth eigenvalue of the Laplacian matrix, respectively. In par-
ticular, λ1 = 0 and λl > 0, l = 2, 3, . . . , N when the graph is connected. Note that
(3.13) is analogous to (3.8) except that it consists of finitely many modes l = 1, . . . , N . If
the subsystems (3.13), l = 2, . . . , N , are asymptotically stable, then for any pair (j, k) ∈
{1, . . . , N} × {1, . . . , N}, we have xj(t)− xk(t)→ 0 exponentially as t→∞, which implies
that (x1(t), . . . , xN(t)) synchronizes.

Motivating Example

To see that a diagonal D � 0 does not necessarily guarantee synchronization, consider the
system (3.2) with the dynamics:

f(x) =

[
1
µ
(x1 − 1

3
x3

1 − x2)

x1 + µx2

]
and D =

[
d1 0
0 0

]
, (3.14)

with d1 > 0. When µ > 0 is sufficiently large, the vector field f(x) has the behavior of a
relaxation oscillator [64] and admits a stable limit cycle. The Jacobian linearization about
the limit cycle trajectory x̄(t) is given by:

A(t) =

[
1
µ
(1− x̄2

1(t)) 1
µ

1 µ

]
. (3.15)
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Figure 3.2: Trajectories of x12 (blue, solid) and x22 (red, dashed) of (3.9) and (3.14) for two
compartments synchronize under small diffusion coefficient d1 = .5 and initial conditions
(x12(0), x22(0)) = (−1, .5).
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Figure 3.3: Trajectories of x12 (blue, solid) and x22 (red, dashed) of (3.9) and (3.14) for
two compartments do not synchronize under larger diffusion coefficient d1 = 100 and initial
conditions (x12(0), x22(0)) = (−1, .5).
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When λid1 � 1/µ, system (3.8) exhibits two-time scale behavior, with the slow dynamics
unstable:

σ̇i2 = µσi2. (3.16)

Thus, we expect the system (3.2), with f(x) and D as in (3.14), to be unstable when λid1

is sufficiently large. Indeed, for d1 = 100 and µ = 0.1, the simulations over the spatial
domain [0, 1] demonstrate the growth of the spatial mode φ2(χ) = cos(πχ); see Figure 3.1.
Unlike standard examples of diffusion-driven instability of a homogeneous steady-state [86,
96, 71], this example demonstrates destabilization of a spatially homogeneous periodic orbit
by diffusion.

Similar behavior can be observed for the compartmental model (3.9) with two compartments,
and f(x) and D given by (3.14). The two-node graph representing the interconnection of
the two compartments has Laplacian eigenvalues λ1 = 0 and λ2 = 2. When d1 is small, we
find that oscillations synchronize spatially, as shown in Figure 3.2. When d1 is large, the
trajectories corresponding to compartments one and two diverge from each other, as shown
in Figure 3.3.

3.2 Synchronization under Weak or Strong Coupling

As shown in the previous section, for both the PDE (3.2) and the compartmental ODE (3.9),
synchrony is determined by the stability of the time-varying system (3.1). For simplicity of
notation we drop λk from (3.1) and analyze

ẋ = (A(t)−D)x, (3.17)

since D can be appropriately scaled to account for λk.

When D is sufficiently small or large, we use Floquet theory to decompose (3.17) into fast
and slow time scales, and develop stability conditions using two-time scale averaging theory.

Recall that A(t) = ∂f
∂x

∣∣
x̄(t)

is the linearization of f(x) about a limit cycle trajectory x̄(t), and

let T denote the period of oscillations: A(t + T ) = A(t) for all t. We first consider the case
with D = 0, that is:

ẋ = A(t)x, (3.18)

and note that it admits the periodic solution x(t) = ˙̄x(t). To see this, observe the following:

˙̄x(t) = f(x̄(t)) =⇒ ¨̄x(t) =
∂f

∂x

∣∣∣∣
x̄(t)

˙̄x(t) = A(t) ˙̄x(t). (3.19)

Floquet’s Theorem (Thm. 2.2.5, [35]) implies that the state transition matrix Φ(t, t0) of
(3.18) is periodic and can be written as

Φ(t, t0) = U(t) exp (F (t− t0))V (t0), (3.20)
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where F ∈ Rn×n is a constant matrix, U(t + T ) = U(t) ∈ Rn×n and U(t) = V −1(t) ∈ Rn×n,
with the columns of U(t) given by ui(t) and the rows of V (t) given by vTj (t). Since (3.18)
results from linearization about a stable limit cycle, F can be written as

F =

[
0 0
0 F2

]
, (3.21)

where F2 is an (n− 1)× (n− 1) Hurwitz matrix and u1(t) = ˙̄x(t). The eigenvalues of F are
called Floquet exponents, and the evaluation of the state transition matrix over one period
with initial condition t0, Φ(t0 + T, t0) = exp(FT ), is called the monodromy matrix.

In what follows, we derive a condition that relates the stability of (3.17) with sufficiently
small D to u1(t) and v1(t). First, we review properties of u1(t) and v1(t) that follow from
Floquet theory. The definition of U(t) and V (t) implies that vTj (t)ui(t) = δij, where δij is
the Kronecker delta. In particular, v1(t) is a periodic solution of the adjoint system:

ρ̇ = −AT (t)ρ. (3.22)

To compute u1(t) and v1(t), we follow [27] and numerically integrate

∂

∂t
Φ(t, t0) = A(t)Φ(t, t0) (3.23)

over one period with the initial condition Φ(t0, t0) = I. We then compute the eigenvector of
the monodromy matrix corresponding to its eigenvalue at one:

u1(t0) = Φ(t0 + T, t0)u1(t0). (3.24)

Using the numerically-computed state transition matrix Φ(t, t0), we then calculate the tra-
jectory u1(t) = Φ(t, t0)u1(t0). To obtain v1(t), we begin by computing the left eigenvector of
the monodromy matrix corresponding to its eigenvalue at one:

vT1 (t0)Φ(t0 + T, t0) = vT1 (t0). (3.25)

We scale v1(t0) such that vT1 (t0)u1(t0) = 1. Finally, to obtain v1(t), we numerically integrate
the adjoint system (3.22) backwards in time with the terminal condition ρ(t0 + T ) = v1(t0).

Having reviewed the case D = 0, we now prove a result about the stability of (3.18) with
sufficiently small D.

Proposition 6 Let vT1 (t) be the first row of V (t) and u1(t) be the first column of U(t), where
Φ(t, t0) = U(t) exp (F (t− t0))V (t0) as described above. Given a matrix D0 ∈ Rn×n, if the
inequality ∫ t0+T

t0

vT1 (t)D0u1(t) dt > 0 (3.26)
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holds, then the origin of the system

ẋ = (A(t)− εD0)x (3.27)

is exponentially stable for sufficiently small ε > 0. �

Proof: Floquet theory implies that the time-varying change of coordinates y = V (t)x trans-
forms (3.18) into a linear time invariant system:

ẏ = Fy, (3.28)

where F is as in (3.21). Introducing the decomposition y = [wT zT ]T , we rewrite (3.28) as:[
ẇ
ż

]
=

[
0 0
0 F2

] [
w
z

]
. (3.29)

When applied to system (3.27), the preceding change of coordinates yields:[
ẇ
ż

]
=

([
0 0
0 F2

]
− εV (t)D0U(t)

)[
w
z

]
. (3.30)

For small ε, this time-varying periodic system exhibits two-time scale behavior, which allows
us to exploit the theory of two-time scale averaging [83, 94]. The averaged slow system
corresponding to (3.30) is given by

ẇs = −εaws,

a =
1

T

∫ t0+T

t0

vT1 (t)D0u1(t)dt.
(3.31)

Since F2 is Hurwitz, an application of Lemma A1 in Appendix A shows that if a > 0, then
the equilibrium y = 0 is exponentially stable for sufficiently small ε. �

Note that Proposition 3.1 does not require D0 to be diagonal. When D0 is diagonal, the test
(3.26) can be simplified as follows:

Corollary 2 Let u1i and vT1j be the ith and jth components of u1 and vT1 , respectively. If
the inequalities ∫ t0+T

t0

vT1i(t)u1i(t) dt > 0, i = 1, . . . , n (3.32)

hold, then given any diagonal matrix D0 � 0, D0 6= 0, the periodic solution of the linearized
system (3.27) is stable for sufficiently small ε > 0. �
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We now turn to the case where D is large. Standard results from perturbation theory
[64] guarantee stability of (3.17) when D is nonsingular and sufficiently large. When D is
singular, we again leverage two-time scale arguments to derive a condition that guarantees
stability of (3.17):

Proposition 7 Given a matrix D0 ∈ Rn×n, consider the linear time varying system:

ẋ = (A(t)− ε−1D0)x (3.33)

A(t) =

[
A11(t) A12(t)
A21(t) A22(t)

]
, D0 =

[
0 0
0 D2

]
, (3.34)

where x ∈ Rn, A(t + T ) = A(t) for all t, A22(t) and D2 have the same dimension, −D2 is
Hurwitz, and ε > 0. If

Ā11 =
1

T

∫ t0+T

t0

A11(t) dt (3.35)

is Hurwitz, then x = 0 is an exponentially stable equilibrium of (3.33) for sufficiently small
ε. �

The proof follows from Lemma A1. Note that if D0 is not block diagonal, but is singular with
trivial Jordan blocks corresponding to its eigenvalues at zero and all remaining eigenvalues
in the closed right half plane, there exists a similarity transformation that will bring (3.33)
to the form required by (3.34).

The tests that we have derived, while analytic in nature, may be applied to problems of
interest by computing a linearization about a periodic solution, and numerically integrating
the resulting differential equation (3.23) in order to obtain u1 and v1. We demonstrate the
application of these tests in Section 3.4.

3.3 Numerical Verification of Synchronization using

SSV

In this section, we develop numerical tools to determine the stability of (3.17) for a family
of matrices D parametrized as:

D = M +B∆C, (3.36)

where M ∈ Rn×n, B ∈ Rn×m, and C ∈ Rm×n are fixed matrices, and ∆ ∈ Rm×m is a diagonal
matrix whose entries take values in [−1, 1]. For example, suppose that the system (3.17) has
one diffusible component, with

D = diag([d1 0 · · · 0]), (3.37)
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where d1 ∈ [r, R]. Then D can be written as in (3.36) with M = R+r
2
e1e

T
1 where ei is a

standard basis vector, B =
[
R−r

2
0 · · · 0

]T
, C = [1 0 · · · 0], and ∆ = δ is a scalar. The

problem is then to ascertain that the system (3.17) is stable for all values of δ on the interval
[−1, 1].

Structured singular value (SSV) analysis provides a useful test for determining the robustness
of a stable linear time invariant system to structured modeling uncertainty. However, since
(3.38) is time-varying, in order to apply SSV analysis directly we must first bring the system
to an equivalent time invariant form. For such analysis, it is useful to rewrite the system
(3.17) as:

ẋ = (A(t)−M)x−Bq
y = Cx

q = ∆y.

(3.38)

Previous efforts to apply SSV analysis to time-varying systems have focused on the time-
domain lifting idea of [8, 15], outlined in [65, 70, 32], where system (3.38) is discretized and
converted to a continuous time invariant system.

Instead, we pursue an SSV analysis that makes use of the harmonic balance approach [101]
and frequency-domain lifting as in [34], and avoids the numerical difficulties and sensitivity of
computing the state transition matrix and discretizing with an adequate number of samples
in the lifting approach. Our computational experiments show that the harmonic balance
approach frequently leads to less conservative results in establishing the values of diffusion
coefficients that lead to instabilities. We give a brief summary of harmonic balance, and
then outline its application to the problem of determining the stability of (3.17).

We assume that each entry of the matrix A(t) is a continuous function of t that has an
absolutely convergent Fourier series, and so A(t) may be expressed as:

A(t) =
∑
m∈Z

Ame
jmωpt, (3.39)

where ωp is the fundamental frequency. Define doubly infinite vectors representing the
harmonics of the state:

XT = [· · · xT−1 xT0 xT1 · · · ], (3.40)

and do the same for the input Q and output Y . The doubly infinite block Toeplitz matrix
A is determined by the harmonics of A(t):

A =


. . .

...
...

...
. . . A0 A−1 A−2 . . .
. . . A1 A0 A−1 . . .
. . . A2 A1 A0 . . .

...
...

...
. . .

 . (3.41)
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We define the doubly infinite matrices I = blkdiag(I), B = blkdiag(B), and C = blkdiag(C),
and define the modulation frequency matrix as:

N = blkdiag{jmωpI}, ∀m ∈ Z. (3.42)

We define the matrix ∆̃ = blkdiag(∆) to be block diagonal with copies of the diagonal matrix
∆ in each block, and the matrixM = blkdiag(M) to be a block diagonal scaling matrix with
copies of the matrix M in each block. We now introduce the harmonic state space model,
where s = jω:

sX = (A−M−N )X − BQ
Y = CX
Q = ∆̃Y.

(3.43)

We perform SSV analysis to determine if there exist matrices D such that (3.17) is unstable.
For the precise definition of the structured singular value in the context of periodic linear-
time varying systems represented by a harmonic state space model, we refer the reader to
Appendix B. To obtain a computationally tractable test, we truncate the doubly infinite
system. As shown in Appendix B, we may approximate (3.43) arbitrarily well. In the
examples we consider there exist fewer than ten significant harmonics, and we represent the
doubly infinite system by a finite dimensional system. We then perform SSV analysis on the
truncated version of (3.43) to determine the range of matrices ∆ for which (3.17) remains
stable. In particular, we use the MATLAB command mussv in the Robust Control Toolbox,
which performs SSV analysis to test if there exists a ∆ such that (3.43) is unstable. We
summarize our procedure in Algorithm 3.

Algorithm 3 Numerical verification of synchrony using harmonic balance

1: Using the parametric decomposition (3.36) for the given family of matrices D under
consideration, determine the matrices B and C in order to express (3.17) in the form of
(3.38).

2: Determine the Fourier series coefficients of A(t).
3: Define the truncated linear time invariant harmonic state space model as in (3.43).
4: Compute the structured singular value µ of the harmonic state space model.

Following the completion of Algorithm 3, if µ > 1, we compute the corresponding matrix ∆
with smallest norm such that the truncated harmonic state space model is unstable. We then
use the computed matrix ∆ and (3.36) to compute a candidate for a matrix D that makes
(3.17) unstable. If µ ≤ 1, appealing to the convergence properties in Appendix B provides
evidence that system (3.17) is stable. The choice of the number of terms in the truncation
resulting from Step 3 involves a tradeoff between numerical accuracy and computation time.

Since the problem of computing the structured singular value of a system is NP complete
[76], the Robust Control Toolbox employs linear matrix inequality relaxations as well as a
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discretization of the continuous frequency domain, which can lead to numerical inaccuracies
and conservatism. This conservatism can pose a problem in certifying stability over large
intervals. In many cases, it may be necessary to perform SSV analysis on smaller intervals,
and to certify the remaining (possibly infinite) interval using the perturbation arguments of
Section 3.2.

3.4 Examples

Example 1 - Relaxation Oscillator
We first discuss numerical results for the relaxation oscillator example given by (3.14) in
Section 3.1. We set the parameter µ = 0.1, and first study the two compartment ODE
model (3.9). When D is small, the techniques of Section 3.2 apply, and we can easily
check that the conditions of Corollary 2 are satisfied for nonnegative λid1 < ε∗, where ε∗

is computed from the proof of Lemma A1. In Figure 3.2, we show the oscillations of the
solution of x2 synchronizing spatially under small D, as expected.

We next examine the case of larger D for both (3.9) and (3.2). To apply the harmonic
balance method, we compute the harmonic components of x1(t) and find that eight harmonics
are sufficient to represent the signal. We then use the harmonic expansion to generate a
corresponding finite dimensional approximation of the matrix A. Because D is diagonal and
nonnegative, we set M = r+ε∗

2
e1e

T
1 , B = [ r−ε

∗

2
0]T , C = [1 0], and ∆ = δ, and perform SSV

analysis to determine values of d1 that lead to instabilities. We find that at λid1 ≥ 87.6,
stability is lost.

Indeed, when the product λid1 ≥ 87.6, the two compartment ODE, with λ2 = 2, will exhibit
trajectories that diverge, and the reaction-diffusion PDE model, with λi = (i − 1)2, i =
2, 3, . . ., will lose spatial uniformity for initial spatial modes with large enough wavenumber
i regardless of d1. In Figures 3.1 and 3.3, we show that the oscillations of the solution of x2

do not synchronize spatially for large D, and observe increasing spatial inhomogeneity over
time.

Example 2 - Ring Oscillator
We next study a coupled three-stage ring oscillator model (Figure 3.4), with the dynamics
of each circuit given by:

ẋi1 = −η1xi1 − α1 tanh(β1xi3) + wi1

ẋi2 = −η2xi2 − α2 tanh(β2xi1)

ẋi3 = −η3xi3 − α3 tanh(β3xi2),

(3.44)

with coupling at node 1 of each circuit. The parameters ηi = 1
RiCi

, α1, and β1 correspond to
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the gain of each inverter. The coupling is defined by:

wi1 = −d1

(∑
j∈Ni

(xi1 − xj1)

)
, (3.45)

where d1 = 1/(RC1) and Ni denotes the set of circuits to which circuit i is connected. The
Laplacian matrix describing the interaction between three coupled circuits as in Figure 3.4
is given by:

L =

 2 −1 −1
−1 2 −1
−1 −1 2

 . (3.46)

Following (3.9), the vector field f(x) is given by (3.44) with D = diag([d1 0 0]).
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Figure 3.4: Three-stage ring oscillators as in (3.44) coupled through node 1.

In order for (3.44) with wi1 to admit a limit cycle, it must have αiβi > 2 [44]. We set ηi = 1,
αi = 2, and βi = 1.2 for all i. When d1 is small, we use the techniques of Section 3.2 to
study the effects of small D on (3.9). Upon computing u1(t) and v1(t), it is readily seen that
the conditions of Corollary 2 are satisfied. Thus, the equilibrium at x = 0 is exponentially
stable for nonnegative λid1 < ε∗, where ε∗ is computed from the proof of Lemma A1.

We next apply Proposition 7 to study the effects of large D on (3.9). Linearization about a
limit cycle trajectory x̄(t) brings (3.44) to the form: ẋ1

ẋ2

ẋ3

 = −

 λid1 0 0
0 0 0
0 0 0

−
 1 0 γ1(x̄1)
γ2(x̄2) 1 0

0 γ3(x̄3) 1

 x1

x2

x3

 , (3.47)
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with γ1(x̄1) = α1β1sech (β1x̄3)2, γ2(x̄2) = α2β2sech (β2x̄1)2, and γ3(x̄3) = α3β3sech (β3x̄2)2.
When d1 is large, the system exhibits two-time scale behavior. Since D � 0 is diagonal and
the averaged slow system corresponding to [x2 x3]T , given by:[

ẋ2

ẋ3

]
= −

(∫ t0+T

t0

[
1 0

γ3(x̄3) 1

]
dt

)[
x2

x3

]
, (3.48)

has an exponentially stable equilibrium at zero, we conclude from Proposition 7 that the
equilibrium at x = 0 is exponentially stable for λid1 > m∗, where m∗ is computed from the
proof of Lemma A1.

We use SSV analysis to certify synchrony for the remaining interval [ε∗,m∗]. Following

Section 3.3, we set M = m∗+ε∗

2
e1e

T
1 , B =

[
m∗−ε∗

2
0 . . . 0

]T
, C = [1 0 . . . 0], and ∆ = δ.

A discrete Fourier transform of a periodic trajectory x̄(t) suggests that eight harmonics are
sufficient to represent the truncated harmonic state space model for the time-varying system.
SSV analysis indicates that coefficients λid1 ∈ [ε∗,m∗] will result in (3.9) being stable. In
Figure 3.5 we show an example of a coefficient d1 ∈ [ε∗,m∗] with synchronized oscillations.
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Figure 3.5: Coupled identical three-staged ring oscillators as in (3.44) with ηi = 1, αi = 2,
and βi = 1.2 for all i. Oscillations synchronize with initial conditions x11 = 1 (blue),
x21 = −5 (red), and x31 = 2 (green). For brevity we show only the first component.

3.5 Conclusion

We have studied diffusively coupled compartmental ODEs as well as reaction-diffusion PDEs
that admit stable limit cycles. We have established analytic tests using two-time scale
averaging theory to study the case of weak or strong coupling. We then presented a numerical
method applying the harmonic balance and structured singular value analysis on intervals
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of intermediate coupling strength to determine whether limit cycle oscillations synchronize.
Finally, we applied our tests to examples, where we identified cases in which diffusion leads
to loss of spatial synchrony. Our results could also be used to decide on coupling strengths
to guarantee synchrony in diffusively coupled systems such as voltage controlled oscillators
and multiagent systems in which agent dynamics can be destabilized by high gain feedback.
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Chapter 4

Synchronization under
Space-Dependent Diffusive Coupling

We present a condition that guarantees synchronization in diffusively coupled compartmen-
tal systems of ODEs and reaction-diffusion PDEs. The majority of the literature makes use
of global Lipschitz conditions on the vector field of the uncoupled dynamics to guarantee
synchronization [4, 19, 60, 74]. In [1], the author derived a significantly relaxed condition
that restricts the Jacobian of the vector field describing the uncoupled dynamics in order to
guarantee synchronization. Using the results in [1] as a starting point, we derive a condition
that allows each set of like components to have its own weighted coupling structure describ-
ing the topology of the interconnection between compartments. The condition we derive
furthermore allows the diffusive coupling to vary spatially.

We begin our discussion in Section 4.1 by studying compartmental ODE models, where each
compartment represents a well-mixed spatial domain wherein like components in different
compartments are diffusively coupled. In Section 4.2, we apply the LMI tests to study the
behavior of a coupled ring oscillator circuit. We emphasize that each node in a component
may have its own set of neighboring nodes to which it is diffusively coupled independent of
the set of neighbors of other nodes in the same compartment. We next turn to reaction-
diffusion PDEs with Neumann boundary condition in Section 4.3, and establish a condition
guaranteeing spatial homogeneity analogous to the result for compartmental ODEs. We
summarize our contribution in Section 4.4.
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4.1 Compartmental Systems of ODEs

We begin by considering a compartmental ODE model where each compartment represents
a spatial domain interconnected with the other compartments over an undirected graph:

ẋi,k = f(xi)k +
∑
j∈Ni,k

w
(k)
ij (xj,k − xi,k), i = 1, . . . , N. (4.1)

The vector xi ∈ Rn is the state of the i-th compartment, the vector field f(xi)k is the k-th
component of the vector field f(xi) acting on xi, the set Ni,k consists of the neighbors of

the k-th component of compartment i, and the scalar w
(k)
ij = w

(k)
ji ∈ R is a weighting factor.

We aggregate the dynamics of each compartment using the stacked vector X = [xT1 . . . x
T
N ]T

and represent the interconnections between like components in different compartments by a
generalized symmetric positive semidefinite graph Laplacian matrix Lk ∈ RN×N :

Ẋ = F (X)−
(

n∑
k=1

Lk ⊗ Ek
)
X, (4.2)

where Ek = eke
T
k ∈ Rn×n is the product of the k-th standard basis vector ek multiplied

by its transpose, and F (X) = [f(x1)T . . . f(xN)T ]T . In the event that the k-th set of like

components are not interconnected with one another, we set Lk = 0. Define λ
(k)
2 as the

second smallest eigenvalue of Lk, and note that since Lk1N = 0,

zTLkz ≥ λ
(k)
2 zT z (4.3)

for all z ∈ Rn with z ⊥ 1N . Let J(x) = ∂f
∂x
|x denote the Jacobian of f(x) at x.

Theorem 8 Consider the system (4.2). Suppose there exists a convex set X ∈ Rn, a positive
definite matrix P , and a constant ε > 0 such that the following conditions hold:

P

(
J(x)−

n∑
k=1

λ
(k)
2 Ek

)
+

(
J(x)−

n∑
k=1

λ
(k)
2 Ek

)T

P � −εI ∀x ∈ X (4.4)

PEk + EkP � 0 for each k ∈ {1, . . . , n} with Lk 6= 0. (4.5)

If solutions are bounded, then for any pair (i, j) ∈ {1, . . . , N} × {1, . . . , N} and any index
k ∈ {1, . . . , n}, we have: xi,k(t)− xj,k(t)→ 0 exponentially as t→∞. �
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Proof: First recall that zTLkz ≥ λ
(k)
2 zT z for all z ⊥ 1N , and that zT (Lk ⊗ In)z ≥ λ

(k)
2 zT z

for all z ⊥ 1N ⊗ In. Define the following terms:

x̄ =
1

N

N∑
i=1

xi =
1

N
(1TN ⊗ In)X

X̄ = 1N ⊗ x̄
x̃i = xi − x̄
X̃ = X − X̄.

(4.6)

Since
∑N

i=1 x̃i = 0, it holds that X̃T (1N ⊗M) = 0 for all matrices M with n rows. The
dynamics of X̃ are given by:

˙̃X = F (X)− ˙̄X − LX
= F (X)− ˙̄X − LX̃,

(4.7)

where L =
∑n

k=1 Lk⊗Ek. We differentiate the candidate Lyapunov function V = 1
2
X̃T (IN ⊗

P )X̃:

V̇ = X̃T (IN ⊗ P )(F (X)− ˙̄X)− X̃T (IN ⊗ P )LX̃

= X̃T (IN ⊗ P )(F (X)− ˙̄X)− X̃T

n∑
k=1

(Lk ⊗ PEk)X̃.
(4.8)

We observe that

(Lk ⊗ PEk) + (Lk ⊗ PEk)T = Lk ⊗ (PEk + EkP ), (4.9)

and that because condition (4.5) holds, there exists a matrix Qk such that QT
kQk = 1

2
(PEk+

EkP ). Then
X̃T (Lk ⊗ PEk)X̃ = X̃T (IN ⊗QT

k )(Lk ⊗ In)(IN ⊗Qk)X̃

= yTk (Lk ⊗ In)yk,
(4.10)

where yk = (IN ⊗Qk)X̃. Because of the orthogonality relation yk ⊥ 1N ⊗ In and condition
(4.3), it follows that

X̃T (IN ⊗ P )LX̃ =
n∑
k=1

yTk (Lk ⊗ In)yk

≥
n∑
k=1

λ
(k)
2 yTk yk

=
n∑
k=1

λ
(k)
2 X̃T (IN ⊗ PEk)X̃

=
n∑
k=1

λ
(k)
2

N∑
i=1

x̃Ti PEkx̃i.

(4.11)
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Defining F (X̄) = 1N ⊗ f(x̄) and adding and subtracting X̃(IN ⊗ P )F (X̄), we have:

V̇ ≤ X̃T (IN ⊗ P )(F (X)− ˙̄X)−
n∑
k=1

λ
(k)
2

N∑
i=1

x̃Ti PEkx̃i

= X̃T (IN ⊗ P )(F (X)− F (X̄)) + X̃T (IN ⊗ P )(1N ⊗ (f(x̄)− ˙̄x))

−
n∑
k=1

λ
(k)
2

N∑
i=1

x̃Ti PEkx̃i

= X̃T (IN ⊗ P )(F (X)− F (X̄)) + X̃T (1N ⊗ P (f(x̄)− ˙̄x))

−
n∑
k=1

λ
(k)
2

N∑
i=1

x̃Ti PEkx̃i.

(4.12)

Recalling that X̄T (1N ⊗ M) = 0, we take M = P (f(x̄) − ˙̄x) and apply the mean value
theorem:

V̇ ≤
(

N∑
i=1

x̃Ti P (f(xi)− f(x̄))

)
−
(

n∑
k=1

λ
(k)
2

N∑
i=1

x̃Ti PEkx̃i

)

=
N∑
i=1

x̃Ti

(
P (f(xi)− f(x̄))− P

n∑
k=1

λ
(k)
2 Ek

)
x̃i

=
N∑
i=1

∫ 1

0

x̃Ti P

(
J(x̄+ sx̃i)−

n∑
k=1

λ
(k)
2 Ek

)
x̃i ds.

(4.13)

Because condition (4.4) holds, we have:

V̇ ≤ − ε
2
X̃T X̃ ≤ − ε

λmax(P )
V, (4.14)

which concludes the proof. �

The additional condition that the product PEk be symmetric for each k ∈ {1, . . . , n} with
Lk 6= 0 allows us to generalize Proposition 8, as in [1], to handle non-symmetric generalized

graph Laplacians (e.g., where w
(k)
ij 6= w

(k)
ji ). In place of (4.9), take

(Lk ⊗ PEk) + (Lk ⊗ PEk)T = (Lk + LTk )⊗ (PEk), (4.15)

which holds when PEk is symmetric, and define λ
(k)
2 as the smallest positive number such

that (4.3) holds.

In order to check the conditions of Theorem 8, we note two results that follow from ([1],
Theorems 2 and 3), where the Jacobian matrix over the convex set X is itself parametrized
by a convex set.
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Theorem 9 If there exist constant matrices Z1, . . . , Zq and Sl, . . . , Sm such that

J(x) ∈ conv{Z1, . . . , Zq}+ cone{Sl, . . . , Sm} ∀x ∈ X , (4.16)

then the existence of a symmetric matrix P satisfying

P

(
Zk −

n∑
k=1

λ
(k)
2 Ek

)
+

(
Zk −

n∑
k=1

λ
(k)
2 Ek

)T

P ≺ 0, k = 1, . . . , q

PSk + STk P � 0, k = 1, . . . ,m

(4.17)

implies condition (4.4) for some ε > 0. If J(x) is surjective onto conv{Z1, . . . , Zq} +
cone{Sl, . . . , Sm}, then the converse is true. �

Next, we define a convex box as:

box{M0,M1, . . . ,Mp} = {M0 +ω1M1 +. . .+ωpMp |ωk ∈ [0, 1] for each k = 1, . . . , p}. (4.18)

Theorem 10 Suppose that J(x) is contained in a convex box:

J(x) ∈ box{A0, A1, . . . , Al} ∀x ∈ X , (4.19)

where A1, . . . , Al are rank-one matrices that can be written as Ai = BiC
T
i , with Bi, Ci ∈ Rn.

If there exists a positive definite matrix P with:

P =


P 0 . . . 0
0 ql 0 0
...

. . . . . .
...

0 . . . 0 ql

 , P ∈ Rn×n, qi ∈ R, i = 1, . . . , l, (4.20)

satisfying:

P
[
A0 −

∑n
k=1 λ

(k)
2 Ek B

CT −In

]
+

[
A0 −

∑n
k=1 λ

(k)
2 Ek B

CT −In

]T
P ≺ 0, (4.21)

with B = [B1 . . . Bl] and C = [C1 . . . Cl], then the upper left (positive definite) principal
submatrix P satisfies condition (4.4) for some ε > 0. If l = 1 and the image of X is
surjective onto box{A0, A1}, then the converse is true. �
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Figure 4.1: Example of a three-stage ring oscillator circuit as in (4.22) coupled through nodes
1 and 2.

4.2 Ring Oscillator Circuit Example

Consider the n-stage ring oscillator whose dynamics are given by:

ẋi,1 = −η1xi,1 − α1 tanh(β1xi,n) + wi,1

ẋi,2 = −η2xi,2 + α2 tanh(β2xi,1) + wi,2
...

ẋi,n = −ηnxi,n + αn tanh(βnxi,n−1) + wi,n,

(4.22)

with coupling between corresponding nodes of each circuit. The parameters ηk = 1
RkCk

, αk,
and βk correspond to the gain of each inverter. The input is given by:

wi,k = dk
∑
j∈Ni,k

(xj,k − xi,k), (4.23)

where dk = 1
R(k)Ck

and Ni,k denotes the nodes to which node k of circuit i is connected. We
wish to determine if the solution trajectories of each set of like nodes of the coupled ring
oscillator circuit given by (4.22)-(4.23) synchronize, that is:

xi,k − xj,k → 0 exponentially as t→∞ (4.24)

for any pair (i, j) ∈ {1, . . . , N} × {1, . . . , N} and any index k ∈ {1, . . . , n}.
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For clarity in our discussion, we take n = 3 as in Figure 4.1, noting that the derivation is
identical for any choice of n. We first write the Jacobian of the system (4.22), where we have
omitted the subscripts indicating circuit membership:

J(x) =

 −η1 0 −α1β1sech 2(β1x3)
α2β2sech 2(β2x1) −η2 0

0 α3β3sech 2(β3x2) −η3

 . (4.25)

Define the matrices

A0 =

 −η1 0 0
0 −η2 0
0 0 −η3

 A1 =

 0 0 −α1β1

0 0 0
0 0 0


A2 =

 0 0 0
α2β2 0 0

0 0 0

 A3 =

 0 0 0
0 0 0
0 α3β3 0

 .
(4.26)

Then it follows that J(x) is contained in a convex box:

J(x) ∈ box{A0, A1, A2, A3}. (4.27)

While the method of Theorem 9 involves parametrizing a convex box as a convex hull with
2p vertices, and potentially a prohibitively large linear matrix inequality computation, the
problem structure can be exploited using Theorem 10 to obtain a simple analytical condition
for synchronization of trajectories. In particular, the Jacobian of the ring oscillator exhibits
a cyclic structure. The matrix for which we seek a P satisfying (4.21) is given by:

M =

[
A0 −

∑n
k=1 λ

(k)
2 Ek B

CT −I

]

=



−η1 − λ(1)
2 0 0 0 0 −α1β1

0 −η2 − λ(2)
2 0 α2β2 0 0

0 0 −η3 − λ(3)
2 0 α3β3 0

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1


.

(4.28)

Note that the matrix M exhibits a cyclic structure, and by a suitable permutation G of its
rows and columns, it can be brought into a cyclic form M̃ = GMGT . Since M̃ is cyclic, it
is amenable to an application of the secant criterion [3], which implies that the condition

Π3
k=1αkβk

Π3
l=1(ηl + λl)

< sec3
(π

3

)
(4.29)

holds if and only if M̃ satisfies
P̃M̃ + M̃T P̃ ≺ 0 (4.30)
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for some diagonal P̃ � 0. Pre- and post-multiplying (4.30) by GT and G, respectively, we
have

GT P̃GM +MTGT P̃G ≺ 0. (4.31)

Note that GT P̃G is diagonal, and so if M̃ is diagonally stable, then M is diagonally stable as
well. We conclude that if the secant criterion in (4.29) is satisfied, then Theorem 10 holds,
and so Theorem 8 holds, with:

xi,k − xj,k → 0 exponentially as t→∞ (4.32)

for any pair (i, j) ∈ {1, . . . , N} × {1, . . . , N} and any index k ∈ {1, 2, 3}.
We note that the condition for synchrony that we have found recovers Theorem 2 in [44],
which makes use of an input-output approach to synchronization [84]. We have derived the
condition using Lyapunov functions in an entirely different manner from the input-output
approach.

4.3 Reaction-Diffusion PDEs

Consider the connected, bounded domain Ω ⊆ Rr with smooth boundary ∂Ω, spatial variable
χ ∈ Ω, and outward normal vector n̂(χ) for χ ∈ ∂Ω. We consider elliptic operators Lk given
by:

Lku(t, χ) = −∇ · (Ak(χ)∇u(t, χ)), Ak : Ω→ Rr×r, k ∈ {1, . . . , n}, (4.33)

where the function Ak(χ) is symmetric and bounded and ∃α > 0 such that for all χ ∈ Ω and
for all ζ = (ζ1, ζ2, . . . , ζr) ∈ Rr,

∑r
i,j aij(χ)ζiζj ≥ α|ζ|2. We will study the reaction-diffusion

equation:
∂x(t, χ)

∂t
= f(x(t, χ)) + Lx(t, χ), (4.34)

subject to Neumann boundary conditions

∇xi(t, χ) · n̂(χ) = 0 ∀χ ∈ ∂Ω, (4.35)

where “·” is the inner product in Rr, n̂(χ) is a vector normal to ∂Ω, x(t, χ) ∈ Rn, and

Lx(t, χ) = −[∇ · (A1(χ)∇x1(t, χ)) . . .∇ · (An(χ)∇xn(t, χ))]T (4.36)

is a vector of elliptic operators with respect to the spatial variable χ applied to each entry
of x(t, χ). In a reaction-diffusion system, x represents a vector of concentrations for the
reactants.

Define:

x̄(t) :=
1

|Ω|

∫
Ω

x(t, χ)dχ, x̃(t, χ) := x(t, χ)− x̄(t) (4.37)

In Theorem 11 below, we show that the solutions of (4.34) achieve spatial uniformity under
the conditions (4.4)-(4.5):
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Theorem 11 Consider the system (4.34). Suppose there exists a convex set X ⊆ Rn, pos-
itive definite matrix P , and constant ε > 0 such that the conditions (4.4)-(4.5) hold. Then
for every bounded classical solution x(t, χ) : [0,∞) × Ω → X , ||π{x(t, χ)}||L2(Ω) → 0 expo-
nentially as t→∞. �

Theorem 11 applies to classical solutions that exist for all t ≥ 0. Results on the existence of
classical solutions to reaction-diffusion PDEs can be found in [89, 90, 42].

Proof of Theorem 11: First define x̃ = π{x}. Note that

∂x̃(t, χ)

∂t
= π{f(x(t, χ))}+ Lx(t, χ). (4.38)

Consider the candidate Lyapunov function

V =
1

2

∫
Ω

x̃(t, χ) · Px̃(t, χ)dχ. (4.39)

Differentiating, we have:

V̇ ≤
∫

Ω

x̃(t, χ) · Pπ{f(x(t, χ))}dχ+

∫
Ω

x̃(t, χ) · PLx(t, χ)dχ. (4.40)

We consider the expansion:∫
Ω

x̃(t, χ) · PLx(t, χ)dχ =
n∑
k=1

∫
Ω

x̃(t, χ) · PEkLx(t, χ)dχ, (4.41)

and note that ∫
Ω

x̃(t, χ) · PEkLx(t, χ)dχ =

∫
Ω

x̃(t, χ) · PEkLkx(t, χ)dχ, (4.42)

where the linear operator Lk is defined:

Lkx(t, χ) = [Lkxk(t, χ) . . . Lkxk(t, χ) . . . Lkxk(t, χ)]T . (4.43)

From the condition (4.5), we know there exists a matrix Qk such that QT
kQk = 1

2
(PEk+EkP ).

Substituting, we have:∫
Ω

x̃(t, χ) · PEkLkx(t, χ)dχ =

∫
Ω

Qkx̃(t, χ) ·QkLkx̃(t, χ)dχ =

∫
Ω

yk(t, χ) · Lkyk(t, χ)dχ,

(4.44)
where yk(t, χ) = Qkx̃(t, χ). Consider the following identity:

∇ · (gG) = g∇ ·G+G · ∇g. (4.45)
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Taking G = Ak(χ)∇yk,i(t, χ) and g = yk,i(t, χ), we next integrate both sides of the identity,
noting the Neumann boundary conditions, and apply the divergence theorem, finding that
the left hand side of the integrated identity is zero. We then have:∫

Ω

yk,i(t, χ)∇ · (Ak(χ)∇yk,i(t, χ)) dχ = −
∫

Ω

∇yk,i(t, χ) · (Ak(χ)∇yk,i(t, χ)) dχ. (4.46)

Noting that
∫

Ω
yk(t, χ) dχ = Qk

∫
Ω
x̃(t, χ) dχ = 0, we apply Lemma 1:∫

Ω

∇yk,i(t, χ) · (Ak(χ)∇yk,i(t, χ)) dχ ≥ λ
(k)
2

∫
Ω

yk,i(t, χ)2 dχ, (4.47)

where λ
(k)
2 is the second Neumann eigenvalue of Lk. Substituting, we have:∫

Ω

x̃(t, χ) · PLx(t, χ)dχ =
n∑
k=1

∫
Ω

yk(t, χ) · Lkyk(t, χ)dχ

≤ −
n∑
k=1

λ
(k)
2

∫
Ω

yk(t, χ) · yk(t, χ)dχ

= −
n∑
k=1

λ
(k)
2

∫
Ω

x̃(t, χ) · PEkx̃(t, χ)dχ.

(4.48)

After adding to and subtracting
∫

Ω
x̃(t, χ) · f(x̄(t))dχ from the right hand side of (4.40), we

arrive at:

V̇ ≤
∫

Ω

x̃(t, χ) · Pf(x(t, χ))− f(x̄(t))dχ−
n∑
k=1

λ
(k)
2

∫
Ω

x̃(t, χ) · PEkx̃(t, χ)dχ

=

∫
Ω

x̃(t, χ) · P
(
f(x(t, χ))− f(x̄(t))−

n∑
k=1

λ
(k)
2 Ekx̃(t, χ)

)
dχ.

(4.49)

An application of the mean value theorem to f(x(t, χ)) − f(x̄(t, χ)) taken together with
condition (4.4) gives:

V̇ ≤
∫ 1

0

∫
Ω

x̃(t, χ)TP

(
J(x̄(t) + sx̃(t, χ))−

n∑
k=1

λ
(k)
2 Ek

)
x̃(t, χ) dχ ds

≤
∫ 1

0

∫
Ω

− ε
2
x̃(t, χ) · x̃(t, χ) dχ ds ≤ − ε

λmax(P )
V,

(4.50)

which concludes the proof. �
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4.4 Conclusion

We have derived Lyapunov conditions that guarantee synchronization in compartmental
ODEs and reaction-diffusion PDEs when the diffusion terms vary between species. We have
used convex optimization to develop tests using linear matrix inequalities that imply the
inequality conditions, and have applied the tests to coupled ring oscillator circuits.
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Chapter 5

Adaptive Synchronization of
Diffusively Coupled Systems

The majority of the literature assumes a static interconnection between the nodes in full
state models [1, 79, 98, 91, 80, 84, 78] or phase variables in phase coupled oscillator models
[69, 92, 16, 30]. However, recently, the situation where the interconnection strengths are
adapted according to local synchronization errors has started to attract interest. In [5], the
authors proposed a phase-coupled oscillator model in which local interactions were reinforced
between agents with similar behavior and weakened between agents with divergent behavior,
leading to enhanced local synchronization. In [24], the authors presented an adaptive law
to establish synchrony across agents in a coupled compartmental system of ODEs. In [107],
the authors relaxed the full-state coupling assumption.

In this chapter, we present an adaptive algorithm that guarantees synchrony in diffusively
coupled nonlinear systems using an incremental output-feedback passivity property [104,
85, 87] of the agents. A similar property was employed in [84] for static networks without
adaptation. A related condition that restricts the Jacobian of the vector field describing the
uncoupled dynamics was used in [1] to guarantee spatial homogeneity in reaction-diffusion
PDEs, and generalized to heterogeneous diffusion in Chapter 4. Using these results as a
starting point, here we first consider compartmental models and derive adaptive laws that
update interconnection strengths locally to achieve sufficient connectivity for synchroniza-
tion. We next consider reaction-diffusion PDEs, and show that a similar control law that
adapts the strength of diffusion coefficients guarantees spatial homogeneity. We present nu-
merical examples that demonstrate the effectiveness of adaptation in enhancing synchrony
and that lend insight to understanding the structure and bottleneck edges of the network.

Our results make several key contributions differing from the existing literature on adaptive
networks. A fundamental achievement of our approach is that it applies to systems that
satisfy an incremental output-feedback passivity property, which encompasses a broad and
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numerically-verifiable class of systems, including those studied in [24, 107] but extending
them significantly [38, 39]. Another feature of our method is the ability to handle multiple
input-output channels interconnected according to different graphs. In this case, the edge
weights for each graph are adjusted with separate update rules. In addition, we present
a novel PDE analogue of the proposed adaptation, in which we consider systems defined
on a spatial continuum rather than discrete compartments connected according to graph
topologies. In [26], the author considered synchronization and consensus in linear parabolic
distributed systems, and in [25] presented an adaptive algorithm for identical linear spatially-
distributed systems coupled by a graph to guarantee state regulation and to improve conver-
gence of coupled agents to common transient trajectories. However, nonlinear models and
nonequilibrium dynamics were not considered. We study nonlinear models and do not make
any assumptions on the attractors of the models. This allows us to achieve synchronization
for limit cycle oscillators, multi-stable systems, etc. Furthermore, to our knowledge the lit-
erature does not address the question of spatial homogenization in reaction-diffusion PDEs
in which the coefficients of the elliptic operator vary in time.

The chapter is organized as follows. In Section 5.1, we present the adaptive algorithm
for compartmental systems of ODEs. We then present examples of the result applied to
nonlinear oscillators and multiagent systems in Section 5.2. In Section 5.3, we present the
adaptive algorithm for reaction-diffusion PDEs, and give an example of a system whose
nominal dynamics are bistable with diffusive coupling on a domain with a bottleneck. We
conclude and offer directions for future research in Section 5.4.

5.1 Compartmental Systems of ODEs

A. Main Result

Consider a collection of N dynamical systems Hi, i = 1, . . . , N , defined by:

Hi : ẋi = f(xi) + g(xi)ui i = 1, . . . , N (5.1)

yi = h(xi), (5.2)

in which xi ∈ Rn, ui ∈ Rp, yi ∈ Rp, and f(·) : Rn → Rn, g(·) : Rn → Rn×p, and h(·) : Rn →
Rp are continuously differentiable maps. Recall from Section 1.2 that Hi is said to satisfy
an incremental output-feedback passivity property [91, 84] if there exist a positive definite
storage function S : Rn → R and a scalar θ ∈ R such that:

d

dt
S(δx) =: Ṡ(δx) ≤ θδyT δy + δuT δy. (5.3)

Let G be an undirected, connected graph with N nodes and M edges, where the nodes
i = 1, . . . , N represent the dynamical systems given by Hi, and the edges represent the
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H1

H2

HN

L(t)⊗ Ip

U Y

−

Dynamical systems H , i 1 · · · N, coupled according to

Figure 5.1: Dynamical systemsHi, i = 1, . . . , N , coupled according to the weighted Laplacian
matrix L(t)⊗ Ip. The vectors U and Y denote U = [uT1 · · ·uTN ]T and Y = [yT1 · · · yTN ]T .

couplings between systems. To represent the coupling terms, define the inputs:

ui =
N∑
j=1

kij (yj − yi) i = 1, . . . , N, (5.4)

in which the scalars kij = kj i for each pair (i, j). Nodes i and j are called neighbors in
G if there is a edge in G connecting i with j. We take kij = 0 when nodes i and j are
not neighbors in G so that the dynamical systems defined by (5.1)-(5.2), i = 1, . . . , N , are
coupled according to the graph structure. When i and j are neighbors, kij = kj i is updated
according to:

k̇ij = γij (yi − yj)T (yi − yj) (5.5)

where γij = γj i > 0 is an adaptation gain to be selected by the designer. This update
law increases kij(t) according to the synchronization error between nodes i and j and can
be implemented at each node. To maintain the symmetry kij(t) = kji(t), nodes i and j
would employ the same adaptation gain γij = γji and start their updates with equal initial
conditions kij(0) = kji(0). To avoid numerical drift, occasional resets can be incorporated
with a minimal additional communication requirement.

Next, we assign an arbitrary orientation to the edges of the graph G, label the edges
` = 1, . . . ,M , and introduce the N × M incidence matrix E as in (1.1). We define
U = [uT1 · · ·uTN ]T , Y = [yT1 · · · yTN ]T , and

L(t) = EK(t)ET (5.6)

where E is the graph incidence matrix defined in (1.1) and K(t) is a diagonal matrix of
the edge weights. Thus, L(t) is a weighted Laplacian matrix where the weights are updated
according to (5.5), and (5.4) becomes:

U = −(L(t)⊗ Ip)Y. (5.7)
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We show the networked dynamical systems Hi with the feedback (5.7) in Figure 5.1. Next,
define

x̄ :=
1

N
(x1 + · · ·+ xN), x̃i := xi − x̄, and ỹi := yi − ȳ. (5.8)

Theorem 12 Consider the interconnected system (5.1)-(5.2)-(5.4), i = 1, . . . , N , where
kij = kj i is updated according to (5.5) when nodes i and j are neighbors in G and is inter-
preted as zero otherwise, and suppose that there exists a storage function for (5.1)-(5.2) that
satisfies (5.3). If the solutions are bounded, then ỹi(t)→ 0 as t→∞. 2

Proof: We first consider the function:

V =
1

2N

N∑
i=1

N∑
j=1

S(xi − xj). (5.9)

Differentiating with respect to time, we have:

V̇ ≤ 1

2N

N∑
i=1

N∑
j=1

θ(yi − yj)T (yi − yj) + (ui − uj)T (yi − yj). (5.10)

Defining ū := 1
N

∑N
i=1 ui and ȳ := 1

N

∑N
i=1 yi, we have:

N∑
i=1

N∑
j=1

(ui − uj)T (yi − yj) = N
N∑
i=1

2uTi yi − ūTyi − uTi ȳ (5.11)

= N
N∑
i=1

(ui − ū)Tyi + uTi (yi − ȳ) (5.12)

= 2N
N∑
i=1

ũTi ỹi, (5.13)

where we have made use of the fact that
∑N

i=1(ui − ū)Tv = 0 for constant v. Substituting
(5.13) in the second product of the right hand side of (5.10) and expanding its first product
similarly, we have:

V̇ ≤ θỸ T Ỹ + Ỹ T Ũ , (5.14)

where Ỹ := (Π⊗Ip)Y , Ũ := (Π⊗Ip)U , and Π := I− 1
N

1N1N
T . We next define k̃ij = kij−k∗ij

where

k∗ij =

{
k∗ if i and j are neighbors in G
0 otherwise

(5.15)

and k∗ is a constant to be selected. Consider the function:

W =
1

4

N∑
i=1

N∑
j=1

1

γij
k̃2
ij. (5.16)
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Differentiating with respect to time, we have:

Ẇ =
1

2

N∑
i=1

N∑
j=1

k̃ij(yi − yj)T (yi − yj)

=
1

2

N∑
i=1

N∑
j=1

k̃ij(ỹi − ỹj)T (ỹi − ỹj).
(5.17)

We note that (E⊗Ip)T Ỹ , with E defined as in (1.1), is a column vector that is a concatenation
of p-dimensional components, and the `th such component is ỹi− ỹj, where i is the head and
j is the tail of edge `. It then follows from (5.15) that:

N∑
i=1

N∑
j=1

k∗ij(ỹi − ỹj)T (ỹi − ỹj) = 2k∗Ỹ T (E ⊗ Ip)(E ⊗ Ip)T Ỹ

= 2k∗Ỹ T (EET ⊗ Ip)Ỹ .
(5.18)

Since EET is the Laplacian matrix for the graph G, its smallest eigenvalue is λ1 = 0 and
the vector of ones 1N is a corresponding eigenvector. Likewise, for EET ⊗ Ip, λ1 = 0
has multiplicity p and the corresponding eigenspace is the range of 1N ⊗ Ip. Because G is
connected, the second smallest eigenvalue λ2 is strictly positive and, since Ỹ T (1N ⊗ Ip) = 0
from (5.8), the following inequality holds:

Ỹ T (EET ⊗ Ip)Ỹ ≥ λ2Ỹ
T Ỹ . (5.19)

Substituting, we then have

Ẇ = Ỹ T (L(t)⊗ Ip)Ỹ − k∗Ỹ T (EET ⊗ Ip)Ỹ
≤ −ŨT Ỹ − k∗λ2Ỹ

T Ỹ .
(5.20)

The candidate Lyapunov function Z = V +W then satisfies:

Ż ≤ −(k∗λ2 − θ)Ỹ T Ỹ , (5.21)

and choosing k∗ large enough that ε := k∗λ2 − θ > 0 guarantees:

Ż ≤ −εỸ T Ỹ . (5.22)

By integrating both sides of the inequality (5.22), we conclude that ỹi(t) is in L2, i = 1, . . . , N .
Furthermore, the boundedness of solutions implies that ẋi(t) and, thus ˙̃yi(t) is bounded.
Barbalat’s Lemma [64] then guarantees ỹi(t)→ 0 as t→∞. 2
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Remark 1 An extension of Theorem 12 to the case of multiple input-output channels, con-
nected according to different graphs, is straightforward. The system now takes the form:

ẋi = f(xi) +
m∑
q=1

g(q)(xi)u
(q)
i (5.23)

y
(q)
i = h(q)(xi), (5.24)

where g(q) and h(q) are continuously-differentiable vector fields and y
(q)
i ∈ Rpq , q = 1, . . . ,m.

A graph G(q) is defined for each channel q and k
(q)
ij = k

(q)
j i 6= 0 only when nodes i and j are

adjacent in G(q). The update rule (5.5) then becomes:

k̇
(q)
ij = γ

(q)
ij (y

(q)
i − y(q)

j )T (y
(q)
i − y(q)

j ), γ
(q)
ij > 0, q = 1, . . . ,m, (5.25)

and the inputs in (5.4) are now:

u
(q)
i =

N∑
j=1

k
(q)
ij

(
y

(q)
j − y(q)

i

)
.

The assumption (5.3) is modified as:

Ṡ(δx) ≤
m∑
q=1

θδy(q)T δy(q) + ω(q)δu(q)T δy(q), (5.26)

and the storage function W in the proof of Theorem 12 is modified as:

W =
m∑
q=1

N∑
i=1

N∑
j=1

ω(q)

2γ
(q)
ij

(
k̃

(q)
ij

)2

, (5.27)

where ω(q) > 0. The steps of the proof are otherwise identical and are not repeated to avoid
excessive notation. 2

Remark 2 Since the proof of Theorem 1 analyzes the evolution of xi relative to the average
x̄, it cannot reach any conclusions about the absolute behavior of the variables xi. Thus,
boundedness of the solutions does not follow from the proof and was assumed in the theorem.
However, it is possible to conclude boundedness with an additional restriction on the vector
field f(x) when g(x) is constant. Since kij = kji, the coupling terms in (5.4) do not affect
the evolution of the average x̄, which is governed by:

˙̄x =
1

N

N∑
i=1

f(xi) =
1

N

N∑
i=1

f(x̄+ x̃i). (5.28)
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If this system has a bounded-input-bounded-state (BIBS) property when x̃i are interpreted as
inputs, then we conclude boundedness of all solutions. This follows because the Lyapunov
arguments in the proof show that x̃i(t) are bounded on the maximal interval of existence
[0, tf ) with bounds that do not depend on tf and, thus, a similar conclusion holds for x̄(t)
implying that tf =∞. 2

B. Rapprochement with Classical Adaptive Control

To give further insight into the proof of Theorem 1 and to make a connection to classical
model reference adaptive control (MRAC), we draw a detailed block diagram of L(t) ⊗ Ip
in Figure 5.2 that encompasses the adaptation of edge weights. Adding and subtracting k∗

from each edge weight and defining k̃ij(t) = kij(t)− k∗, we rewrite (5.6) as:

L(t) = k∗L0 + EK̃(t)ET (5.29)

where L0 := EET is the unweighted Laplacian and K̃(t) is a diagonal matrix with entries
k̃ij(t). The upper branch in Figure 5.2 represents the first term k∗L0 and the lower branch
represents the second term EK̃(t)ET , further depicting the evolution of k̃ij(t) according to
(5.5).

The symmetry of the multiplication blocks before and after the integrator ensures passivity
of the lower branch, and is analogous to pre- and post-multiplication with the regressor and
its transpose in MRAC [58]. The upper branch is a feedthrough term that provides the excess
of passivity needed to compensate for the shortage of passivity in the feedforward path in
Figure 5.1. Note that the passivity properties discussed above are with respect to Ũ and
Ỹ which are obtained from U and Y by subtracting their orthogonal projections onto the
range space of 1N ⊗ Ip. Since this corresponds to the eigenspace for the smallest eigenvalue
λ1 = 0 of L0 ⊗ Ip, the excess of passivity, k∗λ2, provided by k∗L0 ⊗ Ip is due to the second
smallest eigenvalue λ2 > 0.

As in MRAC, the passivity properties demonstrated here are instrumental for a systematic
construction of a Lyapunov function from the associated storage functions. Indeed, the
Lyapunov function Z = V +W in the proof of Theorem 1 comprises of V , which certifies a
shortage of passivity in the feedforward system in Figure 5.1, and W , which certifies an excess
of passivity in the feedback path. The excess compensates for the shortage in (5.21)-(5.22)
and Z = V +W serves as a Lyapunov function.

C. A Class of Systems Satisfying the Incremental Passivity
Assumption

We now highlight a class of systems for which the incremental output feedback passivity
assumption (5.3) and its generalization (5.26) are easily verifiable. Consider a system of the
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Y−U + k∗L0⊗ Ip

k̃i j ỹi j

ỹi j ỹT
i j

γi j
∫× ×E⊗ Ip ET ⊗ Ip

The feedback path in Figure 1 redrawn to include the link weight adaptation (5). The Laplacian is rewritten as L(t)
Figure 5.2: The feedback path in Figure 5.1 redrawn to include the edge weight adaptation
(5.5). The Laplacian is rewritten as L(t) = EK(t)ET = k∗L0 +EK̃(t)ET where L0 = EET

and K̃(t) is a diagonal matrix of entries k̃ij(t) = kij(t) − k∗. The evolution of k̃ij(t) is
represented with the lower branch of the block diagram. In particular, (ET ⊗Ip)Y is a vector
that is a concatenation of p-dimensional components of the form ỹij(t) := yi(t)− yj(t) for
each edge (i, j).

form:

ẋ = f(x) +
m∑
q=1

B(q)u(q) (5.30)

y(q) = C(q)x, (5.31)

where B(q) ∈ Rn×pq , B = [B(1) · · ·B(m)] ∈ Rn×p, C(q) ∈ Rpq×n, and C = [C(1)T · · ·C(m)T ]T ∈
Rp×n. We define the Jacobian

J(x) =
∂f(x)

∂x
(5.32)

and give a condition that guarantees the existence of a quadratic storage function satisfying
(5.26).

Lemma 9 Suppose there exist a constant θ > 0, scalars ω(i) > 0 for i = 1, . . . ,m, and a
matrix P = P T > 0 such that:

PJ(x) + J(x)TP ≤ θCTC (5.33)

PB = [ω(1)C(1)T · · ·ω(m)C(m)T ]. (5.34)

Then the storage function S = 1
2
(xi − xj)TP (xi − xj) satisfies (5.26). 2



57

Proof : Differentiating with respect to time, we have:

Ṡ =(xi − xj)TP (f(xi)− f(xj) +Bui −Buj) (5.35)

=(xi − xj)TP
∫ 1

0

J(xj + s(xi − xj)) ds (xi − xj) (5.36)

+
m∑
q=1

ω(q)(y
(q)
i − y(q)

j )T (u
(q)
i − u(q)

j )

≤θ
2

(xi − xj)TCTC(xi − xj) +
m∑
q=1

ω(q)(y
(q)
i − y(q)

j )T (u
(q)
i − u(q)

j ) (5.37)

≤
m∑
q=1

θ(y
(q)
i − y(q)

j )T (y
(q)
i − y(q)

j ) + ω(q)(y
(q)
i − y(q)

j )T (u
(q)
i − u(q)

j ), (5.38)

where (5.36) follows from the Mean Value Theorem. 2

A subset of these systems where the product BC is diagonal and the assumptions (5.33)-
(5.34) of Lemma 9 hold with P = I is considered in [24, 23, 107]. In contrast, Lemma 9 allows
P 6= I, does not restrict BC to be diagonal, and furthermore allows multiple input-output
channels connected according to different graphs. Note that the general class of systems
studied in Section 5.1-A is even less restrictive, as we do not insist on a quadratic storage
function. Fully characterizing this general class is a current research topic and significant
advances are reported in [38, 39].

The next result, a modification of Theorem 3 in [1], leads to a sufficient condition for (5.33)
that may be numerically verified using linear matrix inequalities.

Theorem 13 Suppose that:

J(x) ∈ {A0 + κ1A1 + . . .+ κpAl |κi ∈ [0, 1], i = 1, . . . , p}, (5.39)

where A1, . . . , Al are rank-one matrices that can be written as Ai = GiH
T
i , with Gi, Hi ∈ Rn.

If there exists a matrix P = PT > 0 with:

P =


P 0 . . . 0
0 q1 0 0
...

. . . . . .
...

0 . . . 0 ql


P ∈ Rn×n, qi ∈ R, i = 1, . . . , l,

(5.40)

satisfying:

P
[
A0 G
HT −In

]
+

[
A0 G
HT −In

]T
P ≤

[
θCTC 0

0 0

]
, (5.41)

with G = [G1 . . . Gl] and H = [H1 . . . Hl], then the upper left principal submatrix P = P T > 0
satisfies (5.33). 2
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5.2 Numerical Examples

In this section, we first consider ring oscillator circuits coupled according to differing graphs.
Subsequently, we turn to the problem of mitigating time scale separation in clustered net-
works. Both examples demonstrate the benefits of adaptive coupling in improving synchro-
nization.

A. Nonlinear oscillator synchronization

We illustrate the adaptive approach on a nonlinear oscillator. In Chapter 3, we presented a
method to check for synchrony of limit cycle oscillations in diffusively coupled systems. In
an example, we considered a ring oscillator model in which three interconnected three-stage
ring oscillators (Figure 5.3) were coupled through the first node. Ring oscillators constitute
a class of voltage-controlled oscillators frequently found in clock recovery circuits and disk-
drive read channels [28, 72], and are also encountered in synthetic gene circuits [53]. We
showed that trajectories sufficiently close to a limit cycle trajectory of the nominal system
synchronized under small diffusive coupling.

We now demonstrate that the adaptive algorithm described in this chapter allows additional
flexibility in assigning differing coupling structures to each component. The dynamics of
each oscillator is given by:

f(x) =

 −η1x1 − α1 tanh(x3)
−η2x2 − α2 tanh(x1)
−η3x3 − α3 tanh(x2)

 . (5.42)

If Π3
i=1αi > 8 and ηi = 1 for all i, (5.42) admits a limit cycle [44]. We set ηi = 1 and αi = 2.2

for all i.

We set each adaptation gain γij = 1. In our first simulation, the second node in each circuit is
coupled to corresponding nodes by a path graph (blue in Figure 5.3) with B = CT = [0 1 0]T

as in Section 5.1-C. An application of Theorem 13 shows that the assumptions in Lemma 9
hold, e.g., with θ = 12.425, P = Diag([1.000 2.593 0.663]). We show the evolution of the
trajectories corresponding to the third node in Figure 5.4, which synchronized as expected.

In our next simulation, we allow coupling through two nodes (Remark 1) and connect the
first node by a cycle graph (green in Figure 5.3) with B1 = CT

1 = [1 0 0]T and the second
node as before with B2 = CT

2 = [0 1 0]T . An application of Theorem 13 shows that the
assumptions in Lemma 9, with:

PB = [ω(1)C(2)Tω(2)C(2)T ], (5.43)
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Figure 5.3: Example of three-stage ring oscillators as in (5.42) coupled through nodes 1 and
2.
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Figure 5.4: Evolution of trajectories corresponding to third node x3i in each circuit i = 1, 2, 3,
coupled through second node with adaptation. Trajectories synchronize.

hold, e.g., with θ = 7.704, P = Diag([1.000 1.622 1.656]), and ω(1) = 1 and ω(2) = P22. The
corresponding trajectories and weight updates in Figures 5.5 and 5.6 show that synchroniza-
tion is accelerated.

B. Mitigating time scale separation in clustered networks

In [9], it was shown that a network consisting of several densely-connected clusters of nodes
interconnected to other clusters by sparse edges exhibited a time scale separation, in which
agents within each cluster quickly synchronized, while the clusters themselves subsequently
synchronized in a slower time scale. In our simulations, we consider a 48 node network with
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Figure 5.5: Evolution of trajectories corresponding to third node xi3 in each circuit i =
1, 2, 3, coupled through first and second nodes with adaptation. Trajectory synchronization
is improved.
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Figure 5.6: Evolution of weights of graphs corresponding to coupling of first and second
nodes with adaptation.
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Figure 5.7: Example of 48 node clustered graph with sparse interconnection edges between
clusters.

three completely connected components with randomly generated external edges between
each cluster pair, shown in Figure 5.7. Each node obeys the following dynamics:

ẋi =
∑
j∈Ni

kij(xj − xi), (5.44)

and the assumptions in Lemma 9 are trivially satisfied.

In the first case, we turn adaptation off, and set the weights kij = 1 for all i, j. As expected,
the agents cluster into groups (denoted by blue, green, and red in Figure 5.8). In the second
case, we turn adaptation on. We set the gains γij corresponding to within-cluster edges to
unity, and those corresponding to external edges to 103. For example, cluster head nodes
in sensor networks, which may be the endpoints of edges between clusters, typically have
greater computational and power resources in order to adapt quickly to changes in other
parts of the network and relay the information to the rest of the cluster. We set the initial
weights to kij(0) = 1, which are the constant values in the nonadaptive simulation. With
adaptation, the time scale separation is mitigated and the agents’ trajectories converge more
quickly (Figure 5.9), with external edge weights evolving (Figure 5.10) as global synchrony
is achieved. As one may expect from the structure of the network, the curves corresponding
to the edges between clusters reach the largest values.
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Figure 5.8: Evolution of agents with adaptation turned off. The agents first synchronize
within their clusters (denoted by blue, green, and red as in Figure 5.7), and then synchronize
globally.
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Figure 5.9: Evolution of agents with adaptation turned on. The agents of each cluster
(denoted by blue, green, and red as in Figure 5.7) quickly synchronize to a common value.
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Figure 5.10: Evolution of weights of coupling graph as in Figure 5.7 with adaptation turned
on. Weights continue to evolve until synchrony is attained, with the greatest stress on the
sparse edges between clusters.

5.3 Reaction-Diffusion PDEs

In this section, we formulate the problem of spatial homogenization for systems of reaction-
diffusion PDEs, which is analogous to the problem of synchronization of like components in
compartmental systems of ODEs.

A. Main Result

Let Ω be a bounded and connected domain in Rr with smooth boundary ∂Ω, and consider
the PDE:

∂x(t, χ)

∂t
= f(x(t, χ)) +

p∑
`=1

g`(x(t, χ))u` (5.45)

y`(t, χ) = h`(x(t, χ)), ` = 1, . . . , p (5.46)

u` = ∇ · (k(t, χ)∇y`(t, χ)) , ` = 1, . . . , p, (5.47)

where χ ∈ Ω is the spatial variable, x(t, χ) ∈ Rn is the state variable with initial condition
x(0, χ) = x0(χ), k(t, χ) ∈ R, f(·) : Rn → Rn, g(·) = [g1 · · · gp] : Rn → Rn×p, and h(·) =
[hT1 · · ·hTp ]T : Rn → Rp are continuously differentiable maps, ∇· is the divergence operator
and ∇ represents the gradient with respect to the spatial variable χ. We assume Neumann
boundary conditions:

∇xi(t, χ) · n̂(χ) = 0 ∀χ ∈ ∂Ω, ∀t ≥ 0, i = 1, . . . , n (5.48)
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where “·” is the inner product in Rr, xi(t, χ) denotes the ith entry of the vector x(t, χ) and
n̂(χ) is a vector normal to the boundary ∂Ω.

In relation to synchronization of each like state xi,k across compartments i = 1, . . . , N , we
now derive an adaptive law that guarantees synchronization of each concentration xi(t, χ)
across the spatial domain Ω. The topology of Ω is the spatial continuum analogue to the
topology of the interconnection graph G, which represents the network of compartments. In
analogy with (5.5), we introduce the update law:

∂k(t, χ)

∂t
= γ(χ)

p∑
`=1

∇y`(t, χ) · ∇y`(t, χ), (5.49)

where γ(χ) > 0 is a design choice, with the initial condition k(0, χ) = k0(χ). Define:

x̄(t) :=
1

|Ω|

∫
Ω

x(t, χ)dχ, x̃(t, χ) := x(t, χ)− x̄(t)

ỹ`(t, χ) := y`(t, χ)− ȳ`(t).
(5.50)

In Theorem 14 below, we give conditions that guarantee the following output synchronization
property:

lim
t→∞

∫
Ω

|ỹ(t, χ)|2dχ = 0, (5.51)

where | · | denotes the Euclidean norm.

Theorem 14 Consider the system (5.45)-(5.47) with boundary condition (5.48), and sup-
pose that there exists a storage function for (5.45)-(5.46) that satisfies (5.3). Then, the
update law (5.49) guarantees (5.51) for every bounded classical solution1. 2

Theorem 14 applies to classical solutions that exist for all t ≥ 0. Results on the existence of
classical solutions to reaction-diffusion PDEs can be found in [89, 90, 42]; well-posedness in
the context of adaptive control of distributed parameter systems is considered in [55, 10].

Proof of Theorem 14: We first consider the function:

V =
1

2|Ω|

∫
Ω

∫
Ω

S(x(t, χa)− x(t, χb)) dχa dχb. (5.52)

Note that (5.45)-(5.46), without the coupling term (5.47), is identical to (5.1)-(5.2). There-
fore, using (5.3), we have:

V̇ ≤ 1

2|Ω|

∫
Ω

∫
Ω

θ(y(t, χa)− y(t, χb)) · (y(t, χa)− y(t, χb)) (5.53)

+ (u(t, χa)− u(t, χb)) · (y(t, χa)− y(t, χb)) dχa dχb.

1A solution of a PDE of order k is said to be classical it it is at least k times continuously differentiable
so that all derivatives that appear in the PDE exist and are continuous [33].
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Defining ū(t) :=
∫

Ω
u(t, χ) dχ and ȳ(t) :=

∫
Ω
y(t, χ) dχ, we have:∫

Ω

∫
Ω

(u(t, χa)− u(t, χb)) · (y(t, χa)− y(t, χb)) dχa dχb (5.54)

=

∫
Ω

∫
Ω

u(t, χa) · y(t, χa)− u(t, χa) · y(t, χb) (5.55)

− u(t, χb) · y(t, χa) + u(t, χb) · y(t, χb) dχa dχb

=|Ω|
∫

Ω

u(t, χa) · y(t, χa) dχa − |Ω|
∫

Ω

u(t, χa) · ȳ(t) dχa (5.56)

− |Ω|
∫

Ω

ū(t) · y(t, χa) dχa + |Ω|
∫

Ω

u(t, χb) · y(t, χb) dχb.

Rewriting (5.56) with a substitution of variables, we have:

|Ω|
∫

Ω

2u(t, χ) · y(t, χ)− u(t, χ) · ȳ(t)− ū(t) · y(t, χ) dχ (5.57)

= |Ω|
∫

Ω

u(t, χ) · (y(t, χ)− ȳ(t)) + (u(t, χ)− ū(t)) · y(t, χ) dχ (5.58)

= 2|Ω|
∫

Ω

(u(t, χ)− ū(t)) · (y(t, χ)− ȳ(t)) dχ, (5.59)

where we have made use of the fact that
∫

Ω
(u(t, χ)− ū(t)) ·v(t) dχ = 0 for v(t) not dependent

on χ. Substituting (5.59) in the second product of the right hand side of (5.53) and expanding
its first product similarly, we have:

V̇ ≤
∫

Ω

θỹ(t, χ) · ỹ(t, χ) + ỹ(t, χ) · ũ(t, χ) dχ. (5.60)

We next define:

W =

∫
Ω

1

2γ(χ)
|k̃(t, χ)|2dχ (5.61)

where k̃(t, χ) = k(t, χ) − k∗, and k∗ is to be selected. Taking derivatives with respect to
time, applying (5.49), and substituting ∇y`(t, χ) = ∇ỹ`(t, χ), we get:

Ẇ =

p∑
`=1

∫
Ω

k̃(t, χ)∇ỹ`(t, χ) · ∇ỹ`(t, χ)dχ. (5.62)

We now claim that:∫
Ω

ỹ`(t, χ)∇ · (k(t, χ)∇ỹ`(t, χ))dχ = −
∫

Ω

k(t, χ)∇ỹ`(t, χ) · ∇ỹ`(t, χ)dχ. (5.63)
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This follows by first applying the identity ∇ · (fF ) = f∇ · F + F · ∇f , which holds when f
is scalar valued, with F = k(t, χ)∇ỹ`(t, χ) and f = ỹ`(t, χ), next integrating both sides of
the identity over Ω, and finally noting that the left-hand side is zero, since:∫

Ω

∇ · (ỹ`(t, χ)k(t, χ)∇ỹ`(t, χ))dχ =

∫
∂Ω

ỹ`(t, χ)k(t, χ)∇ỹ`(t, χ) · n̂(χ)dS (5.64)

from the Divergence Theorem and ∇ỹ`(t, χ) · n̂(χ) = 0 for χ ∈ ∂Ω from the boundary
condition (5.48). Moreover, because

∫
Ω
ỹ`(t, χ)dχ = 0, it follows from Lemma 1 that:∫

Ω

|∇ỹ`(t, χ)|2dχ ≥ λ2

∫
Ω

ỹ`(t, χ)2dχ (5.65)

where λ2 denotes the second smallest of the eigenvalues 0 = λ1 ≤ λ2 ≤ · · · of the operator
L = −∇2 on Ω with Neumann boundary condition, and λ2 > 0 since Ω is connected.
Substituting in (5.62), we have:

Ẇ =

p∑
`=1

∫
Ω

−ỹ`(t, χ) · ũ(t, χ)− k∗λ2ỹ`(t, χ)2 dχ

= −
∫

Ω

ỹ(t, χ) · ũ(t, χ) + k∗λ2ỹ(t, χ) · ỹ(t, χ) dχ

(5.66)

The candidate Lyapunov function Z = V +W then satisfies:

Ż ≤ −(k∗λ2 − θ)
∫

Ω

|ỹ(t, χ)|2 dχ, (5.67)

and choosing k∗ large enough that ε := k∗λ2 − θ > 0 guarantees:

Ż ≤ −ε
∫

Ω

|ỹ(t, χ)|2 dχ =: −εQ(t). (5.68)

This implies that limT→∞
∫ T

0
Q(t)dt exists and is bounded. Since Q̇(t) is also bounded, it

follows from Barbalat’s Lemma [64] that Q(t)→ 0 as t→∞ which proves (5.51). 2

B. Bistable Reaction-Diffusion PDE

Consider a continuous domain consisting of two rectangular subdomains joined by their
intersection as in Figure 5.11. Suppose the system is governed by (5.45)-(5.46) where B =
C = 1 and

f(x) = x− x3. (5.69)

Thus, the assumptions of Lemma 9 hold with P = 1 and θ = 2.
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Figure 5.11: Two rectangular subdomains joined by their intersection.

Note from (5.69) that each point in the space is a bistable system with stable equilibria at
±1 and a saddle point at 0. To simulate the reaction-diffusion system, we employ a second-
order finite-difference scheme to discretize the diffusion operator, and solve the resulting
system of ODEs in MATLAB. Indeed, when we set the edge weights to zero and turn off
the adaptation, x(t, χ) evolves independently at each point in space and converges to +1 or
−1 (Figure 5.13). Next, we turn on the adaptation with gain γ(χ) = 1 and initial condition
k(0, χ) = 1 for all χ. Figures 5.14 and 5.15 confirm that the solution becomes spatially
uniform, converging to a consensus value of +1 or −1, depending on the initial conditions.
The final distribution of weights for the solution in Figure 5.14 is shown in Figure 5.16. Note
from (5.49) that k(t, χ) converges to the squared L2 norm of the gradient ∇x(t, χ) at each
point χ. As one may expect from the weakly connected structure of the domain, the portion
of k corresponding to the bottleneck between rectangular subdomains reaches the largest
value, indicating a high “stress” on the bottleneck.

5.4 Conclusion

We have developed adaptive synchronization laws that allow the interconnection strength to
evolve according to local synchronization errors. We studied both compartmental ODE and
reaction-diffusion PDE models, and demonstrated the benefits of the adaptive approach in
eliminating the slow time scales due to bottlenecks in the interconnection graph for ODEs
and the spatial domain for PDEs. Indeed, the interconnection strengths reach larger values
around bottlenecks, which means that the proposed algorithms establish stronger connections
where needed in a decentralized way.
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Figure 5.12: Solution x(t, χ) at initial time t = 0 s.

Figure 5.13: Solution x(t, χ) with no adaptation and initial condition in Figure 5.12 at time
t = 10 s. Solution converges to patches at 0, +1, and −1.
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Figure 5.14: Solution x(t, χ) with adaptation and initial condition in Figure 5.12 at time
t = 10 s that converges to +1.

Figure 5.15: Solution x(t, χ) from a different initial condition with adaptation at time t = 10
s that converges to −1.
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Figure 5.16: Weights k(t, χ) at time t = 10 s for the solution with initial condition in Figure
5.12. The red at the center of the domain indicates increased stress in the portion of the
domain corresponding to the bottleneck between regions.
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Chapter 6

Synchronization under space and
time-dependent heterogeneities

Common to much of the literature is the assumption that the agents to be synchronized
are homogeneous with identical dynamics, and are furthermore not subject to disturbances.
However, recent work has considered synchronization and consensus in the presence of exoge-
nous inputs. In [7], the authors addressed the problem of robust dynamic average consensus
(DAC), in which the use of partial model information about a broad class of time-varying in-
puts enabled exact tracking of the average of the inputs through the use of the internal model
principle [40] and the structure of the proportional-integral average consensus estimator for-
mulated in [41]. The internal model principle has been useful in establishing necessary and
sufficient conditions for output regulation [77] and synchronization [103, 102, 22]. Reference
[13] proposed internal model control strategies in which controllers were placed on the edges
of the interconnection graph to achieve output synchronization under time-varying distur-
bances. Recent work has also addressed robust synchronization in cyclic feedback systems
[52] and in the presence of structured uncertainties [29].

Spatial homogenization of reaction-diffusion PDEs has also been studied in the literature.
In [1], the author gave a Lyapunov inequality for the Jacobian of the reaction term, signifi-
cantly reducing conservatism of dominant approaches making use of global Lipschitz bounds
[19]. However, the problem of spatial homogenization of reaction-diffusion PDEs subject to
heterogeneities has not yet been addressed.

In this chapter, we consider synchronization of nonlinear systems satisfying an incremental
passivity property and subject to a class of disturbance inputs including constants and sinu-
soids. Building on the robust DAC estimator in [7], we propose a distributed control law that
achieves output synchronization in the presence of disturbances by defining an internal model
subsystem at each node corresponding to the disturbance inputs. Our controller applies to
systems with multiple input and output channels and allows non-identical heterogeneities to
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enter each channel.

A key property of our approach is that local communication, computation and memory
requirements are independent of the number of the systems in the network and the network
connectivity, which is of interest in dense networks under processing and communication
constraints. In contrast to the edge-based approach [13], which defines an internal model
subsystem for each edge in the graph, our approach introduces such a subsystem only to
each node, offering the advantage of a reduced number of internal states.

We next address the PDE case and present a distributed control law that achieves spatial ho-
mogenization in reaction-diffusion PDEs in the presence of spatially and temporally-varying
heterogeneities.

The rest of the chapter is organized as follows. Section 6.1 reviews output synchronization
of diffusively coupled networks with incrementally passive systems under input disturbances.
Our main result on spatial homogenization under heterogeneities is presented Section 6.2. In
Section 6.3, we illustrate the effectiveness of our control law on models with ring oscillator
dynamics and bistable dynamics. Conclusions and future work are discussed in Section 6.4.

Notation: Let 1N be the N × 1 vector with all entries 1. Let 0N be the N × 1 vector with all
entries 0. Let the transpose of a real matrix A be denoted by AT . Let IN denote the N ×N
identity matrix.

6.1 Compartmental Systems of ODEs

Consider a collection of N dynamical systems Hi, i = 1, . . . , N , defined by:

Hi : ẋi = f(xi) + g(xi)ui i = 1, . . . , N (6.1)

yi = h(xi), (6.2)

in which xi ∈ Rn, ui ∈ Rp, yi ∈ Rp, and f(·) : Rn → Rn, g(·) : Rn → Rn×p, and h(·) : Rn →
Rp are continuously differentiable maps. Recall from Section 1.2 that Hi is said to satisfy
an incremental output-feedback passivity property [91, 84] if there exist a positive definite
storage function S : Rn → R and a scalar θ ∈ R such that:

d

dt
S(δx) =: Ṡ(δx) ≤ θδyT δy + δuT δy. (6.3)

Consider the case where the input ui for each Hi is subject to a class of unknown disturbances
φi(t) ∈ Rp, i.e.,

ui = u∗i + φi, (6.4)

in which each disturbance φi can be characterized by

ξ̇i = Aξi, ξi(0) ∈ Rd (6.5)

φi = Cξi, (6.6)
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with A = −AT ∈ Rd×d, C ∈ Rp×d, and the pair (A,C) observable. This class includes
constant as well as sinusoidal disturbances.

Main Result

We seek to design the control u∗ such that the outputs yi, i = 1, . . . , N synchronize. First,
corresponding to each subsystem Hi, we define an internal model subsystem Gi. Let GI be an
undirected, connected graph with N nodes and MI edges corresponding to the information
flow between the Gi subsystems. Each Gi is given by:

Gi : ζ̇i = Aζi +Bi

N∑
j=1

nij(yi − yj) (6.7)

ηi = BT
i ζi, (6.8)

where Bi ∈ Rd×p, (A,BT
i ) is designed to be observable, and the initial condition ζi(0) may

be arbitrarily chosen. The coupling term
∑N

j=1 nij(yi − yj) is such that nij = nji > 0 if
there is an edge in GI connecting nodes i and j, and nij = 0 otherwise. Note that since
A = −AT and Gi is a linear system, it is straightforward to show that Gi is passive and thus
incrementally passive with respect to input

∑N
j=1 nij(yi − yj) and output ηi.

Next, let GP be an undirected graph with N nodes and MP edges corresponding to the
coupling of the Hi subsystems. We propose the controller

u∗i = −
N∑
j=1

pij(yi − yj)−
N∑
j=1

nij(ηi − ηj), (6.9)

in which pij = pji > 0 if there is an edge connecting nodes i and j in GP , and pij = 0
otherwise, and nij as in (6.7). The left and right sums represent the coupling between
outputs of the Hi and Gi subsystems, respectively.

Next, we assign an arbitrary orientation to the edges of the graph GP , label the edges
` = 1, . . . ,MP , and introduce the N × MP incidence matrix E as in (1.1). We define
U = [uT1 · · ·uTN ]T , Y = [yT1 · · · yTN ]T , and

LP = EPKPE
T
P , (6.10)

where EP is the graph incidence matrix defined in (1.1) and KP is a diagonal matrix of the
edge weights pij. We denote by λ2 the second smallest eigenvalue of LP .

Similarly, we define a weighted graph Laplacian LI for GI by introducing theN×MI incidence
matrix EI and diagonal matrix KI of edge weights nij:

LI = EIKIE
T
I . (6.11)
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We define U = [uT1 · · ·uTN ]T , Y = [yT1 · · · yTN ]T , U∗ = [u∗T1 . . . ū∗TN ]T and H = [ηT1 . . . η
T
N ]T .

Then the control in (6.9) can be rewritten as

U∗ = −(LP ⊗ Ip)Y − (LI ⊗ Ip)H. (6.12)

The diagram in Fig. 6.1 shows the closed-loop system given by (6.1), (6.2), (6.4), (6.9), (6.7)
and (6.8).

Next, define

x̄ :=
1

N
(x1 + · · ·+ xN), x̃i := xi − x̄, and ỹi := yi − ȳ. (6.13)

We first address the case where BT
i = C for all i = 1, . . . , N , and using the control in (6.9),

we prove the following theorem to guarantee output synchronization for the subsystems Hi:

Theorem 15 Consider the nonlinear systems Hi in (6.1)-(6.2) satisfying (6.3) with the
input given in (6.4), (6.7)-(6.8), and (6.9), with BT

i = C for all i = 1, . . . , N . Suppose that
λ2 − θ > 0 and that GI is connected. If the solutions are bounded, then ỹi(t)→ 0 as t→∞.

�

If θ < 0, i.e., Hi possesses an excess of incremental passivity, Theorem 15 allows λ2 to be
zero, which means that the graph GP need not be connected. However, if θ ≥ 0, it follows
that λ2 > θ ≥ 0, which means that GP must be connected.

We next employ the incremental passivity property of both Hi and Gi and the symmetry of
both LI and LP to prove Theorem 15.

Proof of Theorem 15: First, consider the storage function

V =
1

2N

N∑
i=1

N∑
j=1

S(xi − xj), (6.14)

and define Π := I − 1
N

1N1TN . The time derivative of (6.14) along (6.1)-(6.2) is given by

V̇ ≤ 1

2N

N∑
i=1

N∑
j=1

[
θ(yi − yj)T (yi − yj) + (yi − yj)T (ui − uj)

]
(6.15)

= θỸ T Ỹ + Ỹ T Ũ , (6.16)
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LP
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φ

ū

−u

LI

G1 ...
GN

η
LI

H1

...
HN

Figure 6.1: The block diagram of the closed-loop system given by (6.1)-(6.2), (6.4), (6.7)-
(6.8), and (6.9).

where Ỹ := (Π⊗ Ip)Y and Ũ := (Π⊗ Ip)U . The equality in (6.16) follows because

N∑
i=1

N∑
j=1

(yi − yj)T (ui − uj) = N
N∑
i=1

2yTi ui − ȳTui − yTi ū (6.17)

= N
N∑
i=1

(yi − ȳ)Tui + yTi (ui − ū) (6.18)

= 2N
N∑
i=1

ỹTi ũi, (6.19)

where we have made use of the fact that
∑N

i=1(ui − ū)Tv = 0 for constant v. We define
Φ = [φT1 . . . φ

T
N ]T and Φ̃ = (Π⊗ Ip)Φ and substitute (6.4) into (6.16), obtaining

V̇ ≤ θỸ T Ỹ + Ỹ (Φ̃ + U∗). (6.20)

Substituting (6.12) into (6.20), we have

V̇ ≤ θỸ T Ỹ + Ỹ T (Φ̃− (LI ⊗ Ip)H − (LP ⊗ Ip)Y )

= θỸ T Ỹ − Ỹ T (LP ⊗ Ip)Ỹ + Ỹ T (Φ̃− (LI ⊗ Ip)H). (6.21)

Since Ỹ T (1N ⊗ Ip) = 0 and λ1 = 0 is an eigenvalue of LP ⊗ Ip with eigenspace equal to the
range of 1N ⊗ Ip, from (6.21) we have:

V̇ ≤ −(λ2 − θ)Ỹ T Ỹ + Ỹ T (Φ̃− (LI ⊗ Ip)H). (6.22)



76

We next consider the auxiliary systems

˙̂
ξi = Aξ̂i, ξ̂i(0) ∈ Rd, i = 1, . . . , N (6.23)

φ̂i = Cξ̂i. (6.24)

Defining Ξ = [ξT1 . . . ξ
T
N ]T and Φ̂ = [φ̂T1 . . . φ̂

T
N ]T , we show that an appropriate choice of ξ̂(0),

i = 1, . . . , N guarantees
Φ̃ = (LI ⊗ Ip)Φ̂. (6.25)

We define a matrix Q ∈ RN×(N−1) that satisfies QT1N = 0, QQT = Π and QTQ = IN−1. We
let

Γ = Q(QTLIQ)−1QT (6.26)

and denote by Γij the element at the ith row and jth column of Γ. The inverse of QTLIQ
exists because 1N spans the null spaces of LI and QT . Note that Γ is the Moore-Penrose
pseudoinverse of LI .

To verify (6.25), we note that Ξ̂(0) = (Γ ⊗ Id)Ξ(0) results in Φ̂ = (Γ ⊗ Ip)Φ. Using (6.26),
we obtain

(QTLI ⊗ Ip)Φ̂ = (QT ⊗ Ip)Φ. (6.27)

Pre-multiplying (6.27) by (Q⊗Ip) and noting QQTLI = ΠLI = LI together guarantee (6.25).

Having proved that (6.25) can be achieved by appropriately selecting zi(0) in (6.34) and ξi(0)
in (6.23), we define

δi := ζi − ξ̂i, i = 1, . . . , N, (6.28)

and consider the following storage function:

W =
1

2

N∑
i=1

δTi δi. (6.29)

Using (6.7), (6.8), (6.34) and (6.35), we obtain:

Ẇ =
N∑
i=1

δTi C

N∑
j=1

nij(yi − yj) (6.30)

= (H − Φ̂)T (LI ⊗ Ip)Y. (6.31)

The sum Z = V +W yields

Ż = V̇ + Ẇ

≤ −(λ2 − θ)Ỹ T Ỹ + Ỹ T (Φ̃− (LI ⊗ Ip)H) + (H − Φ̂)T (LI ⊗ Ip)Ỹ
= −(λ2 − θ)Ỹ T Ỹ + Ỹ T (Φ̃− (LI ⊗ Ip)Φ̂). (6.32)
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By choosing zi(0) in (6.34) such that (6.36) is guaranteed, we have

Ż ≤ −(λ2 − θ)Ỹ T Ỹ ≤ 0. (6.33)

By integrating both sides of (6.33), we see that ỹi(t) is in L2, i = 1, . . . , N . Furthermore, the
boundedness of solutions implies that ẋi and thus ẏi are bounded for all i. An application
of Barbalat’s Lemma [64] guarantees that ỹi(t)→ 0 as t→∞. �

Remark 3 In the event that A and C in (6.5)-(6.6) have a specific block diagonal structure,
we may choose Bi 6= C in (6.7)-(6.8). Suppose that A = blkdiag{A1, . . . , Ap} with Ak ∈
Rdk×dk and

∑p
k=1 dk = d, C ∈ Rp×d with C = blkdiag{C1, . . . , Cp} with Ck ∈ R1×dk , and the

pairs (Ak, Ck) observable. Suppose also that Bi = blkdiag{B(1)
i , . . . , B

(p)
i } with B

(k)
i ∈ Rdk×1

where the pairs (Ak, B
(k)T
i ) are designed to be observable.

To address the fact that each Bi differs from C, we introduce the auxiliary systems

żi = Azi, zi(0) ∈ Rd, i = 1, . . . , N (6.34)

ψi = BT
i zi, (6.35)

and define Ψ = [ψT1 . . . ψ
T
N ]T . We show that an appropriate choice of zi(0), i = 1, . . . , N

implies Ψ = Φ̂, and thus guarantees

Φ̃ = (LI ⊗ Ip)Ψ. (6.36)

In particular, we choose zi(0) = O−1
Bi
OC ξ̂i(0), where OBi

is the block diagonal matrix of

observability matrices corresponding to the pairs (Ak, B
(k)T
i ) of (6.7)-(6.8) and OC is the

block diagonal matrix of observability matrices corresponding to the pairs (Ak, Ck) of (6.23)-
(6.24). Since zi(0) = O−1

Bi
OC ξ̂i(0), zi(t) = O−1

Bi
OC ξ̂i(t), which means OBi

zi(t) = OC ξ̂i(t).

Noting that the first rows of each block of OBi
and OC are B

(k)T
i and C(k), respectively,

we have ψi = blkdiag{B(1)T
i , . . . , B

(p)T
i }zi = blkdiag{C1, . . . , Cp}ξ̂i = φ̂i, i = 1, . . . , N . We

modify the difference δi in (6.28) and (6.29) as δi := ζi−zi. The rest of the proof is identical
and is omitted to avoid repetition. �

6.2 Reaction-Diffusion PDEs

In this section, we formulate the problem of spatial homogenization for systems of reaction-
diffusion PDEs, which is analogous to the problem of synchronization of like components in
compartmental systems of ODEs.
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Let Ω be a bounded and connected domain in Rr with smooth boundary ∂Ω, and consider
the PDE:

∂x(t, χ)

∂t
= f(x(t, χ)) +

p∑
`=1

g`(x(t, χ))u`(t, χ) (6.37)

y`(t, χ) = h`(x(t, χ)), ` = 1, . . . , p, (6.38)

where χ ∈ Ω is the spatial variable, x(t, χ) ∈ Rn is the state variable with initial condition
x(0, χ) = x0(χ), f(·) : Rn → Rn, g(·) = [g1 · · · gp] : Rn → Rn×p, and h(·) = [hT1 · · ·hTp ]T :
Rn → Rp are continuously differentiable maps, and the inputs u`(t, χ) consist of linear differ-
ential operators to be specified below. In what follows, we will assume Neumann boundary
conditions:

∇xi(t, χ) · n̂(χ) = 0 ∀χ ∈ ∂Ω, ∀t ≥ 0, i = 1, . . . , n (6.39)

where ∇ represents the gradient with respect to the spatial variable χ, “·” is the inner
product in Rr, xi(t, χ) denotes the ith entry of the vector x(t, χ) and n̂(χ) is a vector normal
to the boundary ∂Ω.

We consider the scenario where the input u(t, χ) = [u1(t, χ) . . . up(t, χ)]T is subject to a class
of unknown heterogeneities φ(t, χ) = [φ1(t, χ) . . . φp(t, χ)]T , i.e.,

u(t, χ) = u∗(t, χ) + φ(t, χ). (6.40)

We assume that the heterogeneity φ(t, χ) can be characterized by

ξ̇(t, χ) = Aξ(t, χ)

φ(t, χ) = Cξ(t, χ),
(6.41)

in which A ∈ Rd×d satisfies A = −AT , C ∈ Rp×d, the pair (A,C) is observable, and the
initial condition ξ(0, χ) may be arbitrarily chosen in L2(Ω). We assume that the matrix A
is available.

In relation to synchronization of each like output yi,k across compartments i = 1, . . . , N , we
now derive a control law that guarantees homogenization of each output y`(t, χ) across the
spatial domain Ω. The topology of Ω is the spatial continuum analogue to the topology of
the interconnection graph, which represents the network of compartments.

Main Result

We seek to design the control u∗(t, χ) such that the outputs y(t, χ) = [y1(t, χ) . . . yp(t, χ)]T

are homogenized spatially. As in Section 6.1, we consider the following design of u∗(t, χ):

u∗(t, χ) = ∇ · (p(χ)∇y(t, χ))−∇ · (n(χ)∇η(t, χ)), (6.42)
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in which ∇· is the divergence operator, ∇ · (n(χ)∇(v(t, χ))) with slight abuse of notation is
the vector representation of the diffusion operator ∇· (n(χ)∇(·)) applied to each component
v`(t, χ) of v(t, χ):

∇ · (n(χ)∇(v(t, χ))) = [∇ · (n(χ)∇(v1(t, χ))) . . .∇ · (n(χ)∇(vp(t, χ)))]T , (6.43)

p(χ), n(χ) ∈ R are diffusion coefficients with p(χ) > 0, n(χ) > 0, and η is to be defined
below. The first term in (6.42) serves an analogous role to that of (6.9). For the second
term, we design η to be the output of the internal model system G given by

G :
∂ζ(t, χ)

∂t
= Aζ(t, χ) +B∇ · (n(χ)∇y(t, χ)) (6.44)

η(t, χ) = BT ζ(t, χ), (6.45)

where (A,BT ) is designed to be observable with B ∈ Rd×p, and the initial condition ζ(0, χ)
may be arbitrarily chosen in L2(Ω).

Define:

x̄(t) :=
1

|Ω|

∫
Ω

x(t, χ)dχ, x̃(t, χ) := x(t, χ)− x̄(t)

ỹ`(t, χ) := y`(t, χ)− ȳ`(t).
(6.46)

In Theorem 16 below, we give conditions that guarantee the following output synchronization
property:

lim
t→∞

∫
Ω

|ỹ(t, χ)|2dχ = 0, (6.47)

where | · | denotes the Euclidean norm. As in Theorem 15, we consider the case where
BT = C.

Theorem 16 Consider the system (6.37)-(6.38) with the boundary condition in (6.39) on
a connected, bounded domain Ω, with the input given in (6.40), (6.42), (6.44)-(6.45) and
BT = C. Suppose there exists a storage function for (6.37)-(6.38) satisfying (6.3) with
λ2 − θ > 0. Then for every bounded classical solution1, the outputs synchronize in the sense
of (6.47). �

Theorem 16 applies to classical solutions that exist for all t ≥ 0. Results on the existence of
classical solutions to reaction-diffusion PDEs can be found in [89, 90, 42].

Proof of Theorem 16: We first consider the function:

V =
1

2|Ω|

∫
Ω

∫
Ω

S(x(t, χa)− x(t, χb)) dχa dχb. (6.48)

1A solution of a PDE of order k is said to be classical it it is at least k times continuously differentiable
so that all derivatives that appear in the PDE exist and are continuous [33].



80

Note that (6.37)-(6.38), without the coupling term (6.40), is identical to (6.1)-(6.2). There-
fore, using (6.3), we have:

V̇ ≤ 1

2|Ω|

∫
Ω

∫
Ω

θ(y(t, χa)− y(t, χb)) · (y(t, χa)− y(t, χb)) (6.49)

+ (u(t, χa)− u(t, χb)) · (y(t, χa)− y(t, χb)) dχa dχb.

Defining ū(t) := 1
|Ω|

∫
Ω
u(t, χ) dχ and ȳ(t) := 1

|Ω|

∫
Ω
y(t, χ) dχ, we have:∫

Ω

∫
Ω

(u(t, χa)− u(t, χb)) · (y(t, χa)− y(t, χb)) dχa dχb (6.50)

=

∫
Ω

∫
Ω

u(t, χa) · y(t, χa)− u(t, χa) · y(t, χb) (6.51)

− u(t, χb) · y(t, χa) + u(t, χb) · y(t, χb) dχa dχb

=|Ω|
∫

Ω

u(t, χa) · y(t, χa) dχa − |Ω|
∫

Ω

u(t, χa) · ȳ(t) dχa (6.52)

− |Ω|
∫

Ω

ū(t) · y(t, χa) dχa + |Ω|
∫

Ω

u(t, χb) · y(t, χb) dχb.

Rewriting (6.52) with a substitution of variables, we have:

|Ω|
∫

Ω

2u(t, χ) · y(t, χ)− u(t, χ) · ȳ(t)− ū(t) · y(t, χ) dχ (6.53)

= |Ω|
∫

Ω

u(t, χ) · (y(t, χ)− ȳ(t)) + (u(t, χ)− ū(t)) · y(t, χ) dχ (6.54)

= 2|Ω|
∫

Ω

(u(t, χ)− ū(t)) · (y(t, χ)− ȳ(t)) dχ, (6.55)

where we have made use of the fact that
∫

Ω
(u(t, χ)− ū(t)) ·v(t) dχ = 0 for v(t) not dependent

on χ. Substituting (6.55) in the second product of the right hand side of (6.49) and expanding
its first product similarly, we have:

V̇ ≤
∫

Ω

θỹ(t, χ) · ỹ(t, χ) + ỹ(t, χ) · ũ(t, χ) dχ. (6.56)

Substituting (6.40) into (6.56), we have:

V̇ ≤
∫

Ω

θỹ(t, χ) · ỹ(t, χ) +

p∑
`=1

ỹ`(t, χ)
(
φ`(t, χ) (6.57)

+∇ · (p(χ)∇y`(t, χ))−∇ · (n(χ)∇η`(t, χ))
)
dχ

=

∫
Ω

θỹ(t, χ) · ỹ(t, χ) +

p∑
`=1

[
ỹ`(t, χ)∇ · (p(χ)∇ỹ`(t, χ)) (6.58)

+ ỹ`(t, χ)
(
φ`(t, χ)−∇ · (n(χ)∇η`(t, χ))

)]
dχ.
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We now claim that:∫
Ω

ỹ`(t, χ)∇ · (p(χ)∇ỹ`(t, χ))dχ = −
∫

Ω

p(χ)∇ỹ`(t, χ) · ∇ỹ`(t, χ)dχ. (6.59)

To see this, consider the identity

∇ · (fF ) = f∇ · F + F · ∇f, (6.60)

which holds when f is scalar-valued. Defining F = p(χ)∇ỹ`(t, χ) and f = ỹ`(t, χ) and
integrating both sides of the identity over Ω, we have∫

Ω

∇ · (ỹ`(t, χ)p(χ)∇ỹ`(t, χ))dχ =

∫
Ω

ỹ`(t, χ)∇ · (p(χ)∇ỹ`(t, χ))dχ

+

∫
Ω

p(χ)∇ỹ`(t, χ) · ∇ỹ`(t, χ)dχ.

(6.61)

Applying the Divergence Theorem and noting that ∇ỹ`(t, χ) · n̂(χ) = 0 for χ ∈ ∂Ω from the
boundary condition (6.39), we have:∫

Ω

∇ · (ỹ`(t, χ)p(χ)∇ỹ`(t, χ))dχ =

∫
∂Ω

ỹ`(t, χ)p(χ)∇ỹ`(t, χ) · n̂(χ)dS = 0, (6.62)

verifying (6.59). Moreover, because
∫

Ω
ỹ`(t, χ)dχ = 0, it follows from Lemma 1 that:∫

Ω

p(χ)∇ỹ`(t, χ) · ∇ỹ`(t, χ)dχ ≥ λ2

∫
Ω

ỹ`(t, χ)2dχ. (6.63)

Substituting in (6.58) and using the fact that
∫

Ω
ỹ`(t, χ)φ̄`(t) dχ = 0, we have:

V̇ ≤
∫

Ω

−(λ2 − θ)ỹ(t, χ) · ỹ(t, χ) +

p∑
`=1

ỹ`(t, χ)
(
φ̃` −∇ · (n(χ)∇η`(t, χ))

)
dχ, (6.64)

where φ̃`(t, χ) = φ`(t, χ)− φ̄`(t, χ).

We next consider the auxiliary system:

˙̂
ξ(t, χ) = Aξ̂(t, χ) (6.65)

φ̂(t, χ) = Cξ̂(t, χ). (6.66)

Noting that the eigenfunctions of the elliptic operator ∇ · (n(χ)∇(·)) form a complete or-
thogonal basis for L2(Ω), and that

∫
Ω
φ̃`(t, χ) dχ = 0, ` = 1, . . . , p, the initial conditions of

ξ̂(t, χ) may be chosen such that

∇ · (n(χ)∇φ̂`(0, χ)) = φ̃`(0, χ), ` = 1, . . . , p (6.67)
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and thus ∇ · (n(χ)∇φ̂`(t, χ)) = φ̃`(t, χ) for all ` = 1, . . . , p.

We define
δ(t, χ) := ζ(t, χ)− ξ̂(t, χ), (6.68)

and consider the following storage function:

W =
1

2

∫
Ω

δ(t, χ) · δ(t, χ) dχ. (6.69)

Differentiating W with respect to time, we obtain:

Ẇ =

∫
Ω

δ(t, χ) · C (∇ · (n(χ)∇ỹ(t, χ))) dχ (6.70)

=

∫
Ω

(η(t, χ)− φ̂(t, χ)) · (∇ · (n(χ)∇ỹ(t, χ))) dχ. (6.71)

The sum Z = V +W yields

Ż = V̇ + Ẇ (6.72)

≤
∫

Ω

−(λ2 − θ)ỹ(t, χ) · ỹ(t, χ) +

p∑
`=1

[
ỹ`(t, χ)

(
φ̃`(t, χ)−∇ · (n(χ)∇η`(t, χ))

)
(6.73)

+
(
η`(t, χ)− φ̂`(t, χ)

)(
∇ · (n(χ)∇ỹ`(t, χ))

)]
dχ.

We now make use of the self-adjointness property of the diffusion operator, apply the identity
in (6.60) with f = ỹ`(t, χ) and F = n(χ)∇η`(t, χ), and get∫

Ω

ỹ`(t, χ)∇ · (n(χ)∇η`(t, χ))dχ = −
∫

Ω

n(χ)∇η̃`(t, χ) · ∇ỹ`(t, χ)dχ (6.74)

=

∫
Ω

η`(t, χ)∇ · (n(χ)∇y`(t, χ))dχ, (6.75)

where the second equality follows with a subsequent application of the identity with f =
η`(t, χ) and F = n(χ)∇ỹ`(t, χ). Similarly, we have:∫

Ω

φ̂`(t, χ)∇ · (n(χ)∇y`(t, χ))dχ =

∫
Ω

ỹ`(t, χ)∇ · (n(χ)∇φ̂`(t, χ))dχ. (6.76)

Substituting (6.75) and (6.76) into (6.73), we then have:

Ż ≤
∫

Ω

−(λ2 − θ)ỹ(t, χ) · ỹ(t, χ) +

p∑
`=1

ỹ`(t, χ)
(
φ̃`(t, χ)−∇ · (n(χ)∇φ̂`(t, χ))

)
dχ. (6.77)
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By choosing ξ̂`(0, χ) such that (6.67) is satisfied, we have:

Ż ≤
∫

Ω

−(λ2 − θ)ỹ(t, χ) · ỹ(t, χ) dχ = −ε
∫

Ω

|ỹ(t, χ)|2 dχ =: −εQ(t). (6.78)

This implies that limT→∞
∫ T

0
Q(t) dt exists and is bounded. Since Q̇(t) is also bounded, it

follows from Barbalat’s Lemma [64] that Q(t)→ 0 as t→∞, which proves (6.47). �

Remark 4 When A and C have block diagonal structure as in Remark 3, we may choose
B 6= C. In particular, suppose A = blkdiag{A1, . . . , Ap} with Ak ∈ Rdk×dk and

∑p
k=1 dk = d,

C ∈ Rp×d with C = blkdiag{C1, . . . , Cp} with Ck ∈ R1×dk , and the pairs (Ak, Ck) observable.
Then B in (6.44)-(6.45) may be chosen such that B = blockdiag{B1, . . . , Bp} and Bk ∈ Rdk×1

with the pairs (Ak, B
T
k ) observable. The proof is modified as in Remark 3, and is omitted to

avoid excessive notation. �

6.3 Numerical Examples

In this section, we consider several numerical examples. We first consider a compartmental
system with nominal bistable dynamic. We then turn to the spatially continuous case, and
first consider a ring oscillator model subject to a constant, spatially-varying heterogeneity.
We subsequently consider a system with nominal bistable dynamics subject to a spatially and
temporally-varying heterogeneity. The examples demonstrate the effectiveness of the internal
model approach in guaranteeing spatial homogenization in the presence of heterogeneities.

A. Bistable Compartmental System

We consider a 48 node network with three completely connected components with randomly
generated external links between each cluster pair, as in Figure 5.7. We assume that the
coupling graphs GP and GI are identical. Each node obeys the following dynamics:

ẋi = f(xi) + φi(t)−
∑
j∈Ni

pij(xi − xj)−
∑
j∈Ni

nij(ηi − ηj), (6.79)

where f(xi) = xi − x3
i and φi(t) is given by:

φi(t) = sin(2πt+
π

N
i) (6.80)

with initial conditions xi(0) drawn uniformly at random from [−1, 1]. It can be shown that
there exists a quadratic storage function such that the system satisfies the inequality (6.3)
with θ = 2 (see the example in Section 5.3-B), and so the assumption of Theorem 15 is
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Figure 6.2: Evolution of trajectories as in (6.79) with disturbances (6.80) with nij = 0 for
all i, j. Trajectories do not synchronize.
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Figure 6.3: Evolution of trajectories as in (6.79) with disturbances (6.80) with internal
model controllers, where nij = 1 for each pair (i, j) that is an edge in the coupling graph.
Trajectories synchronize.

satisfied whenever λ2 > 2. We set pij = p∗ for each pair (i, j) that is an edge in the coupling
graph where p∗ is chosen large enough so that λ2 > 2 and specify nij for each simulation
below.

Figure 6.2 shows the trajectories xi in the presence of the input disturbances (6.80) with
nij = 0 for all i, j. Trajectories synchronize somewhat within clusters, but do not synchronize
across all agents. We then set nij = p∗ for each pair (i, j) that is an edge in the coupling
graph. Under the internal model controllers, the trajectories synchronize, as shown in Figure
6.3.
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B. Nonlinear oscillator synchronization

We illustrate the adaptive approach on a nonlinear oscillator. In Chapter 3, we presented a
method to check for synchrony of limit cycle oscillations in compartmental diffusively coupled
systems. In an example, we considered a ring oscillator model in which three interconnected
three-stage ring oscillators were coupled through the first node. Ring oscillators constitute
a class of voltage-controlled oscillators frequently found in clock recovery circuits and disk-
drive read channels [28, 72], and are also encountered in synthetic gene circuits [53]. We
showed that trajectories sufficiently close to a limit cycle trajectory of the nominal system
synchronized under small diffusive coupling.

x1 x2 x3

Figure 6.4: Three-stage ring oscillator schematic with dynamics given in (6.81).

The dynamics of the three-stage ring oscillator depicted in Figure 6.4 is given by:

f(x) =

 −κ1x1 − α1 tanh(x3)
−κ2x2 − α2 tanh(x1)
−κ3x3 − α3 tanh(x2)

 . (6.81)

If Π3
i=1αi > 8 and κi = 1 for all i, (6.81) admits a limit cycle [44]. We set κi = 1 and

αi = 2.2 for all i. We set y` = x`, and define g`(x(t, χ)) = e`, where e`, ` = 1, 2, 3, are the
standard basis vectors of R3. It can be shown that there exists a quadratic storage function
such that the ring oscillator model with the given parameters satisfies the inequality (6.3)
with θ = 7.704 (see the example in Section 5.2-A), and so the assumption of Theorem 16 is
satisfied whenever λ2 > 7.704.

We subject the model to constant, spatially-varying heterogeneities:

φ`(χ) = 5 sin(10χ), ` = 1, 2, 3. (6.82)

We consider the initial conditions:

x1(0, χ) = 1 + 1.1 cos(2πχ) + 1 (6.83)

x2(0, χ) = −1 + 3.4 cos(πχ)− 1 (6.84)

x3(0, χ) = 0.5 + 2.6 sin(2πχ+ π/2). (6.85)

We simulate the system on the one dimensional spatial domain Ω = [0, 1]. Figure 6.5
shows the evolution of x1(t, χ) in the absence of heterogeneities. In Figure 6.6, we show
the trajectory of x1(t, χ) in the absence of the internal model subsystems and demonstrate
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lack of spatial homogenization. We next apply the output of the internal model subsystems
with n(χ) = 1 and initial condition ζ`(0, χ) = 1, ` = 1, 2, 3. The trajectories x(t, χ) become
spatially homogeneous as shown in Figure 6.7 for x1(t, χ). In Figure 6.8, we show the output
η1(t, χ) of the internal model subsystem G1.

Figure 6.5: Evolution of x1(t, χ) as in (6.81) with initial condition x1(0, χ) = 1+1.1 cos(2πχ)
in the absence of heterogeneity.

Figure 6.6: Evolution of x1(t, χ) as in (6.81) with initial condition x1(0, χ) = 1+1.1 cos(2πχ)
with heterogeneity as in (6.82) without internal model controller. Spatial heterogeneity
persists.
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Figure 6.7: Evolution of x1(t, χ) as in (6.81) with initial condition x1(0, χ) = 1+1.1 cos(2πχ)
with heterogeneity as in (6.82) with internal model controller. Spatial homogenization occurs.

Figure 6.8: Evolution of internal model controller η1(t, χ) with initial condition η1(0, χ) = 1
and heterogeneity as in (6.82).
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C. Bistable Reaction-Diffusion System

Consider a bistable system defined with the dynamics

f(x) = x− x3 (6.86)

with y = x and g(x(t, χ)) = 1. Note from (6.86) that each point in the space is a bistable
system with stable equilibria at ±1 and a saddle point at 0. It can be shown that there
exists a quadratic storage function such that the system satisfies the inequality (6.3) with
θ = 2 (see the example in Section 5.3-B), and so the assumption of Theorem 16 is satisfied
whenever λ2 > 2.

We subject the model to a spatially and temporally-varying heterogeneity:

φ(t, χ) = 10 sin(πt+ 2πχ). (6.87)

We consider the initial condition

x(0, χ) = 0.1 + 3.5 cos(2πχ). (6.88)

We simulate the system on the one dimensional spatial domain Ω = [0, 1]. Figure 6.9
shows the evolution of x(t, χ) in the absence of heterogeneities. In Figure 6.10, we show
the trajectory of x(t, χ) in the presence of heterogeneities without internal model control
and demonstrate lack of spatial homogenization. We next apply the output of the internal
model controllers with n(χ) = 1 and initial condition ζ(0, χ) = 1. The trajectory of x(t, χ)
becomes spatially homogeneous as shown in Figure 6.11. Note that the internal model
control compensates for effects due to the differences φ(t, χ)− φ̄(t). The remaining (spatially
homogeneous) effect is due to φ̄(t), which is zero for (6.87), and so the spatial heterogeneity
is completely attenuated and the trajectory tends to an equilibrium value across the spatial
and temporal dimensions. In Figure 6.12, we show the output η(t, χ) of the internal model
subsystem G in the case of the heterogeneity in (6.87).

We next modify φ(t, χ):

φ(t, χ) = 10 sin(πt+ 1.7πχ), ` = 1, . . . , 3, (6.89)

and simulate the system again. Note that since the average φ̄(t) is no longer zero, the
trajectory in Figure 6.13 exhibits spatially uniform oscillations.

6.4 Conclusion

We have studied spatial homogenization of nonlinear systems that are incrementally passive,
and designed a distributed control law that guarantees spatial homogeneity in the presence of
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Figure 6.9: Evolution of x(t, χ) as in (6.86) with initial condition x(0, χ) = 0.1+3.5 cos(2πχ)
in the absence of heterogeneities.

Figure 6.10: Evolution of x(t, χ) as in (6.86) with initial condition x(0, χ) = 0.1+3.5 cos(2πχ)
with heterogeneity as in (6.87) without internal model controller. Spatial heterogeneity
persists.
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Figure 6.11: Evolution of x(t, χ) as in (6.86) with initial condition x(0, χ) = 0.1+3.5 cos(2πχ)
with heterogeneity as in (6.87) with internal model controller. Spatial homogenization occurs
with equilibrium across spatial and temporal dimensions recovered.

Figure 6.12: Evolution of internal model controller η(t, χ) with initial condition η(0, χ) = 1
and heterogeneity as in (6.87).
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Figure 6.13: Evolution of x(t, χ) as in (6.86) with initial condition x(0, χ) = 0.1+3.5 cos(2πχ)
with heterogeneity as in (6.89) with internal model controller. Spatial homogenization occurs
with spatially uniform oscillations.

a class of spatially and temporally-varying heterogeneities. Our controller has the advantage
of not requiring knowledge of the initial conditions of the heterogeneities, and furthermore
is amenable to heterogeneities that vary over multiple input and output channels. We have
illustrated our results on systems with ring oscillator dynamics and bistable dynamics.
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Chapter 7

Conclusion

Diffusively coupled spatially distributed models are an essential class of systems that lend
crucial insight to understanding and improving the behavior of many engineered and bi-
ological systems. Diffusive coupling facilitates design and analysis of cooperative laws in
multi-agent systems, oscillator synchronization in electrical and biological systems, and the
spread of information in distributed systems. A good understanding of local network struc-
ture and dynamics of the individual agents is fundamental to achieving distributed control
architectures to guarantee desired operation of the overall system in the absence of a cen-
tralized leader. Furthermore, it can lend insight into underlying vulnerabilities and potential
for instabilities in the network.

In this dissertation, we have developed distributed algorithms that guarantee desirable be-
havior in diffusively coupled systems by making use of local network structure and agent
dynamics. We have studied local behavior near a specific attractor as well as global behavior
of the full nonlinear dynamics. The methods we have derived apply to systems coupled
over graphs as well as systems defined over a spatial continuum. Additionally, we have de-
rived analysis methodologies that can facilitate our understanding of coupling structure and
interaction between agents. We next summarize our contributions.

7.1 Key Contributions

In Chapter 2, we considered the problem of designing distributed coordination laws for
multi-agent systems coupled over a graph. We developed a convex optimization framework
for determining optimal weights for the nodes and edges of the coupling graph. We applied
the strategy to several graph design problems as well as a formation control problem, where
the objective was fast convergence to a stable configuration with specified spacings between
agents. We then outlined dual approaches for handling larger graphs.
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In Chapter 3, we considered synchronization of oscillations in systems whose nominal dynam-
ics admitted a stable limit cycle. We gave analytical and numerical conditions to determine
whether diffusion homogenized limit cycle trajectories across the spatial domain. We high-
lighted a case of diffusion-driven instability wherein large enough diffusion coefficients indeed
led to loss of synchrony.

We considered synchronization under space and component-dependent diffusive coupling
in Chapter 4. We gave a condition that restricts the Jacobian of the vector field of the
uncoupled dynamics as well as the Laplacian eigenvalues of each interconnection graph in
order to guarantee synchrony. We then developed a sufficient condition that may be verified
using linear matrix inequalities.

Using ideas developed in Chapter 4, in Chapter 5 we presented an adaptive algorithm for
synchronization in which coupling weights were adjusted according to local disagreement
between agents connected to the corresponding edges. The algorithm relied on the individual
subsystems satisfying an incremental output-feedback passivity property. We demonstrated
the effectiveness of the approach in reducing time to synchronization in multiple examples
in both the spatially discrete and continuous settings.

In Chapter 6, we considered the case where individual agents no longer had identical dynam-
ics. We proposed an internal model controller for agents satisfying an incremental output-
feedback passivity property and subject to disturbances that guaranteed synchronization.
We highlighted several examples in which the internal model controller successfully elimi-
nated spatial inhomogeneities.

7.2 Future Work

The study of synchronization in diffusively coupled models is a rich and active research area,
with increasing focus on designing robust algorithms that scale well to large networks. With
respect to this dissertation, several avenues for future research exist. While the convex opti-
mization framework developed in Chapter 2 is flexible and enables modifying various eigen-
values of the graph Laplacian matrix, the solution method using interior point algorithms
limits the scale of graphs that can be considered. It would be interesting to explore efficient
algorithms that exploit structural properties of specific networks to reduce the number of
edges and nodes that must be considered. Also, recent progress in the development of first
order methods to solve semidefinite programs [99][100] indicate the potential of developing
algorithms that scale to large networks.

The adaptive algorithm developed in Chapter 5 is a step towards achieving robust network
design in a completely distributed, dynamic fashion, in contrast to the static optimization
proposed in Chapter 2. Additionally, the internal model controller in Chapter 6 addresses
problems of robustness and heterogeneities between agents. We are also pursuing adap-
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tively updating the weights of the coupling coefficients in the internal model controller in
Chapter 6 as in Chapter 5. A key challenge is expanding the scope of dynamics to which
these approaches are applicable, such as the case of nonminimum phase systems and sys-
tems with relative degree greater than one. Also, it would be useful to address robustness
to broader classes of disturbances and heterogeneities with the goal of guaranteeing small
residual synchronization errors.

The most promising direction is the application of the analysis and design tools developed in
this dissertation to real systems. For instance, the techniques in Chapters 2 and 3 can lend
insight to the design of coordination laws in multi-agent systems that take into account the
possibility of diffusion-driven instabilities. Furthermore, we envision application of adaptive
algorithm to numerical experiments that elucidate bottlenecks and other interesting struc-
tural features of a complex network or continuous domain. The algorithms may be able to
assist in graph decomposition and community structure identification [47, 62] or spectral
clustering and image segmentation [88]. Finally, the increasing deployment of distributed
sensors and the development of the Internet of Things promise ever-expanding applications
for which the methods described in this dissertation are well-suited and may be further
refined.
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Appendix A

Two-Time Scale Averaging

We state a lemma that follows from standard results in two-time scale averaging (see, e.g.,
[83], Thm. 4.4.3).

Lemma A1 Let w ∈ Rp and z ∈ Rq, and consider the linear time varying system:[
ẇ
ż

]
=

([
0 0
0 G

]
− ε
[
H11(t) H12(t)
H21(t) H22(t)

])[
w
z

]
, (A.1)

where each Hij(t), i, j ∈ {1, 2} is a bounded piecewise continuous matrix-valued function of
time such that Hij(t + T ) = Hij(t), G ∈ Rq×q, and ε > 0. Define the associated averaged
slow system:

ẇs = −εH̄11ws, H̄11 =
1

T

∫ t0+T

t0

H11(t) dt. (A.2)

If −H̄11 and G are Hurwitz, then there exists ε∗ such that [wT zT ]T = 0 is an exponentially
stable equilibrium of (A.1) for 0 < ε < ε∗. �

Proof: We provide a proof for completeness and to exhibit a procedure for obtaining ε∗.
We begin by introducing a change of coordinates:

w =

[
I − ε

∫ t

0

(
H11(τ)− H̄11

)
dτ

]
ŵ. (A.3)

Upon substitution, we have:[
I − ε

∫ t

0

(
H11(τ)− H̄11

)
dτ

]
˙̂w

− ε[H11(t)− H̄11]ŵ

= −εH11(t)

[
I − ε

∫ t

0

(
H11(τ)− H̄11

)
dτ

]
ŵ

− εH12(t)z.

(A.4)
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Since each Hij(t) is bounded, we have |Hij(t)| ≤ ĥij for all t. Furthermore, since each∫ t
0

(
H11(τ)− H̄11

)
dτ is periodic, we have:∣∣∣∣∫ t

0

(
H11(τ)− H̄11

)
dτ

∣∣∣∣ ≤ 2T ĥ11. (A.5)

Then for ε < ε1 := 1

2T ĥ11
, the change of coordinates is invertible. Rewriting, we have:

˙̂w =− ε
[
I − ε

∫ t

0

(
H11(τ)− H̄11

)
dτ

]−1

×H11(t)

[
I − ε

∫ t

0

(
H11(τ)− H̄11

)
dτ

]
ŵ

− ε
[
I − ε

∫ t

0

(
H11(τ)− H̄11

)
dτ

]−1

H12(t)z

− ε
[
I − ε

∫ t

0

(
H11(τ)− H̄11

)
dτ

]−1

× [H̄11 −H11(t)]ŵ.

(A.6)

With a similar change of coordinates, we have:

ż =Gz − εH21(t)

[
I − ε

∫ t

0

(
H11(τ)− H̄11

)
dτ

]
ŵ

− εH22(t)z.

(A.7)

Define the positive definite matrices Pw and Pz such that:

PwH̄11 + H̄T
11Pw = I

PzG+GTPz = −I.
(A.8)

We next consider the candidate Lyapunov function:

V = ŵTPwŵ + zTPzz. (A.9)

Define the scalar γ := 1

1−2ε1T ĥ11
. Differentiating V , we have:

V̇ ≤− (εγ − 2ε2γT ĥ2
11)|ŵ|2 + εγĥ12|ŵ||z|

− (1− εĥ22)|z|2 + εĥ21|z||ŵ|
+ ε2(2T ĥ21ĥ11)|z||ŵ|.

(A.10)
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Because ε < ε1, the first term of (A.10) is negative. Similarly, choosing ε < ε2 := 1

ĥ22

guarantees that the second term of (A.10) is negative. If the condition[
M11 M12

M12 M22

]
≺ 0, with

M11 = −(εγ − 2ε2γT ĥ2
11)

M12 =
1

2

(
εγĥ12 + εĥ21 + ε2(2T ĥ21ĥ11)

)
M22 = −(1− εĥ22),

(A.11)

is satisfied, then (A.10) is negative. Using the Schur complement, we rewrite the condition
as:

− (εγ − 2ε2γT ĥ2
11)

+
1

4

(
εγĥ12 + εĥ21 + ε2(2T ĥ21ĥ11)

)2

(1− εĥ22)−1

< 0.

(A.12)

Therefore, there exists ε3 > 0 such that for 0 < ε < ε3, (A.12) holds. Thus, with ε∗ =
min{ε1, ε2, ε3}, [wT zT ]T = 0 is an exponentially stable equilibrium of (A.1). �
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Appendix B

Structured Singular Value for Periodic
Systems using Harmonic Balance

To justify the SSV analysis proposed in Section 3.3, in this appendix we extend the concept
of structured singular value to periodic systems using a generalized Nyquist result and a
classic result from robust control. We begin by reviewing the Nyquist criterion for periodic
linear time varying systems studied by [51, 109]. We consider the system:

ẋ = A(t)x+B(t)q

y = C(t)x

q = −∆y,

(B.1)

with A(t), B(t), C(t) ∈ Rn×n. We assume that A(t), B(t), and C(t) are periodic with period
T and continuous with absolutely convergent Fourier series, and ∆ ∈ Rn with |∆ij| ≤ 1.
The bi-infinite harmonic state space model of (B.1) is given by:

(sI +N )X = AX + BQ
Y = CX
Q = −∆̃Y,

(B.2)

where the matrix ∆̃ = blkdiag(∆), and N , I, and A as in Section 3.3, and B and C defined
similarly toA. The (infinite-dimensional) harmonic open loop transfer operator of the system
is:

G(s) = C[sI − (A−N )]−1B. (B.3)

We rewrite (B.2), substituting for Y :[
I − (sI +N )−1A (sI +N )−1B

∆̃C I

] [
X
Q

]
=

[
0
0

]
. (B.4)
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Following [109], suppose M is a linear compact operator. Denote by λi(M) and σi(M) the
i-th eigenvalue and singular value of M, respectively. Denote by Cp(l2) the set of linear
compact operators M : l2 → l2 that satisfy

||M||p =

(∑
i

σi(M)p

) 1
p

<∞. (B.5)

Elements in C1(l2) are called trace-class operators, and the determinant

det(I +M) := Π∞k=−∞(1 + λk) (B.6)

of a trace-class operator is well-defined in the sense that it converges absolutely. Elements
in C2(l2) are called Hilbert-Schmidt operators, and may not have absolutely-convergent
determinants.

We next apply the Schur determinant lemma to the left hand side of (B.4):

ψcl(∆) := det
(
I − (sI +N )−1A

− (sI +N )−1B∆̃C
)

= det
(
I − (sI +N )−1(A− B∆̃C)

)
.

(B.7)

The operator H(s) = (sI +N )−1(A−B∆̃C) is not in C1(l2), and in particular, ψcl(∆) does
not converge absolutely. Thus, it is not possible to develop a Nyquist criterion making use
of the standard infinite determinant ψcl(∆). To deal with this problem, [109] proposed an
approach using the 2-regularized determinant. Since H(s) ∈ C2(l2), it holds that R2(H) =
(I+H) exp (−H)−I ∈ C1(l2), and so the 2-regularized determinant det2(I+H) := det(I+
R2(H)) is well-defined. We note that the Sylvester determinant lemma holds for the 2-
regularized determinant: det2(I + KH) = det2(I + HK). Making use of the 2-regularized
determinant, it can be shown that:

ψG(∆) := det2(I + ∆̃G(s)) exp (−r(s+ ρ))

=
det2(I − ((s+ ρ)I +N )−1(A− B∆̃C + ρI))

det2(I − ((s+ ρ)I +N )−1(A+ ρI))
,

(B.8)

with r(s + ρ) = −tr[((s + ρ)I + N )−1(A + ρI)(sI + N − A)−1B∆̃C], and ρ > 0. The
generalized Nyquist stability criterion for periodic linear time varying systems follows (see
[109], Theorem 3.1):

Theorem B1 Assume that A(t), B(t), and C(t) are piecewise-continuously differentiable
and have absolutely convergent Fourier series expansions. Let ρ > 0 be an arbitrary positive
number, and let np be the number of unstable eigenvalues in the fundamental strip of the
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open loop operator A−N . The closed loop system (B.2) is asymptotically stable if and only
if the Nyquist locus of ψG(∆) is not zero for all points along the Nyquist contour about the
closed right half plane intersected with the fundamental strip [51]:

S :=
{
s ∈ C : −ωp

2
< Im(s) ≤ ωp

2

}
, (B.9)

and ψG(∆) encircles the origin np times in the counterclockwise direction. �

We now generalize a key result from MIMO robust control theory [108][31] to periodic time-
varying systems, making use of Theorem B1:

Theorem B2 Given a proper harmonic transfer operator G(s) ∈ C2(l2) with no unstable
poles and a bounded uncertainty set Φ ∈ Rn×n with a given sparsity structure, the closed loop
system (B.2) is asymptotically stable if and only if det2(I + ∆̃G(jω)) 6= 0 for all ∆ ∈ Φ and
ω ∈

(
−ωp

2
, ωp

2

]
. �

Proof: First, we shall prove necessity by contradiction. Suppose (B.2) is not asymptotically
stable. By the Nyquist criterion in Theorem B.2, the Nyquist plot of ψG(∆) = det2(I +
∆̃G(s)) exp (−r(s+ ρ)) encircles or touches the origin for some ω ∈

(
−ωp

2
, ωp

2

]
. Consider the

homotopy:
h(ε) = det2(I + ε∆̃G(s)) exp (−rε(s+ ρ)), (B.10)

with ε ∈ [0, 1], Im(s) = ω, and rε(s+ρ) = −tr[((s+ρ)I+N )−1(A+ρI)(sI+N−A)−1Bε∆̃C].
Because ψG(∆) is a meromorphic function (analytic except at a countable number of points)
[109], it holds by Lemma A.1.18 [21] that if h(ε) vanishes nowhere, then h(0) and h(1) must
have the same winding number, or Nyquist index. However, the curve at ε = 0 is a point at
1, while the curve at ε = 1 encircles or touches the origin. Thus h(ε) must vanish for some
ε0 ∈ (0, 1]. Now since ∆ ∈ Φ implies that ∆0 := ε∆ ∈ Φ, and because exp (−rε(s+ ρ)) 6= 0
since r(s+ ρ) is bounded (see [109], Lemma 2.3), it must hold that det2(I + ∆̃0G(jω)) = 0
for some ∆0 ∈ Φ.

Next, we prove sufficiency, also by contradiction. Suppose that there exist ω ∈
(
−ωp

2
, ωp

2

]
and ∆ ∈ Φ such that det2(I + ∆̃G(jω)) = 0. Then (B.2) has a pole on the imaginary axis,
and is not asymptotically stable. �

We now define the structured singular value for periodic linear time-varying systems in terms
of the harmonic transfer operator:

µ∆(G) :=
1

min{σ̄(∆) : ∆ ∈∆, det2(I +G(s)∆̃) = 0}
, (B.11)

where ∆ denotes a bounded structured uncertainty set and where we have invoked the
Sylvester determinant lemma. Then Theorem B2 may be recast using the structured singular
value:
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Theorem B3 Let Φ = {∆ : ∆ ∈ ∆, σ̄(∆) ≤ γ}. Then the closed loop system (B.2) is
stable if and only if µ∆(G(s)) < 1

γ
for all s ∈ S given in (B.9). �

The final step of the analysis is developing a computationally tractable test, which requires a
finite dimensional truncation of the infinite-dimensional operator G(s). In [81], the authors
showed that G(s) could be approximated arbitrarily well by a finite truncated operator
consisting of only the first N terms of the Fourier series expansion of A(t), B(t), and C(t).
We denote by GN(s) the truncated operator given by:

GN(s) = CN [sI − (AN −N )]−1BN (B.12)

where AN is the (N + 1)× (N + 1) submatrix of A centered along the A0 diagonal, and BN
and CN defined similarly. In particular, it was shown that ||G−GN ||2 ≤ K(N) := O(N−1).
From this fact and following the proof technique of Lemma 4.1 in [109], it then holds that:

|det2(I +G)− det2(I +GN)|

≤ ||G−GN ||2 exp

{
1

2
[||G||2 + ||GN ||2 + 1]

}
≤ K(N) ·M,

(B.13)

where the second inequality follows from the boundedness ofG andGN . With the observation
that the matrix ∆ may be incorporated into the matrix B(t) or C(t), we see that the term
det2(I+G∆̃) appearing in Theorem B2 and (B.11) may be asymptotically approximated by
det2(I +GN∆̃N), where ∆̃N is the truncated version of ∆̃.
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