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Abstract
Low-resource speech recognition and keyword search (KWS) are important topics
for speech technologies. However, their performance often suffers from out-of-
vocabulary (OOV) keywords. Subword units like syllables are useful in handling
this issue. This report introduces a weighted finite state transducer (WFST) based
syllable transduction framework for OOV handling in KWS. Syllable lattices are
generated by performing syllable decoding and OOV keywords are entered into a
pronunciation dictionary using a word-to-syllable pronunciation prediction system.
Syllable lattices are then transduced into word lattices using both in-vocabulary
word pronunciations and OOV pronunciations. Experiments on 5 languages pro-
vided by IARPA Babel project 1 are presented, and it is shown that syllable trans-
duction can effectively spot OOV keywords. Combination of this approach with
two other OOV handling methods further improves keyword search performance.

1Supported by the Intelligence Advanced Research Projects Activity (IARPA) via Department of
Defense US Army Research Laboratory contract number W911NF-12-C-0014. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. Disclaimer: The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of IARPA, DoD/ARL, or the U.S. Government.
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1 Introduction
Nowadays, keyword search in speech/audio is becoming more and more important
as lots of multimedia are available on the Internet. However, unlike text search,
audio/speech search is a much harder task. Researchers have been developing Key-
word Search (KWS) systems based on speech recognition technology, which itself
is an unsolved artificial intelligence problem. Thanks to the progress made by the
speech community, speech search is becoming a more practical technique in recent
years.
Multilingual speech search presents a unique set of challenges, including novel
speech sounds, agglomerative morphology which causes large vocabularies, and
lack of transcribed data for model training. Especially, when training data is limited,
there will be lots of out-of-vocabulary (OOV) words in the test set that makes it
impractical to search them without special treatment.
The IARPA Babel program [1] instantiates this scenario well in providing a limited
amount of transcribed training data and lexicons for words and syllables in several
minority languages. For the five languages provided in 2014 the numbers of OOV
keywords are from 10% to 25%. This report investigates KWS in the Babel low-
resource condition, with an emphasis on the OOV issue.
The organization of the report is as follows. Section 2 introduces the background
of speech recognition and keyword search, together with two OOV handling meth-
ods. Section 3 illustrates the WFST framework for syllable transduction. Section 4
introduces the BABEL project and Section 5 presents experimental results on five
languages. Section 6 is the conclusion.

2 Background
KWS in audio is usually based on speech recognition. A set of audio files and
their corresponding transcriptions are given as training data to train a speech rec-
ognizer. Test audio files are then transcribed via Automatic Speech Recognition
(ASR) and word lattices containing possible transcriptions are generated (this pro-
cedure is called decoding). KWS is conducted based on the produced word lattices.

2.1 WFST Framework for ASR
The speech recognition task could be well formulated as a composition task in the
framework of weighted finite state transducers (WFST). A typical WFST decoding
graph generation in speech recognition [2] is represented as

H ◦ C ◦ L ◦G (1)
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where H , C, L and G are WFSTs for a state network of triphone HMMs, context-
dependency transducer of phones, pronunciation lexicon for words, and an n-gram
word LM, respectively; operation ◦ represents the composition operator.

2.2 Keyword search
Keyword search is usually done in four phases:

• Index generation. Given a list of keywords and word lattices, generate indexes
for keywords that appear in word lattices.

• Score normalization. Normalize posterior scores (or other confidence scores)
for each hypothesis in the index.

• System combination. Combine hypotheses from several different systems.

• Thresholding. Set thresholds for keywords and output searching results based
on hypotheses and the thresholds.

There are two widely-used keyword search strategies for index generation. Both of
them are based on decoded word lattices from ASR, but they use different searching
algorithms.

2.2.1 WFST based indexation

Decoded lattices are converted into finite-state acceptors with posterior score, start
time and end-time for each word encoded as weights. An inverted index is then
created from these individual acceptor, with paths to accept every possible word
sequence in the original lattice. KWS is done via composition of keyword acceptors
K and the inverted index, and posterior score, start time and end time for keywords
could be obtained at the same time. Finally, a yes/no decision is made according to
the posterior score from the search.

2.2.2 Word lattice based indexation

Decoded lattices are traversed and a word based index is created tracking all of the
words that occur in the lattices. For single word keywords, a list of all the keyword
occurrences is returned. For multiword keywords, one retrieve the individual words
from the index in the correct order with respect to their start and end times but
discard occurrences where the time gap between adjacent words is bigger than a
predefined threshold.
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2.3 Methods for OOV handling
Out-of-vocabulary (OOV) words are words in the test set that do not appear in
the training set. When an OOV word turns out to be a keyword to be searched, a
standard searching pipeline on word lattices will not produce any hypotheses.
One way to mitigate OOV issue is to find in-vocabulary (IV) words which are clos-
est in pronunciation to the OOV keywords. Confusion matrices are used in [3–6]
to generate alternatives words or string of words to stand as proxies for OOV key-
words. These systems provide a way of dealing with OOV keywords which have a
close IV keyword or series of IV keywords in the training data.
Another way to handle OOV keywords is to use sub-word units. It is possible to use
phones, syllables and morphs as subword units for representing OOV words. Sub-
word index is created either by performing subword decoding [7–9] or by convert-
ing word lattice into sub-word lattice [10,11]. Hartmann et al. compares converting
word-based lattices to subword lattices, separate decoding for each subword type
and single decoding using all possible subword units, reporting a best performance
by carrying out a separate decoding for each subword type [12].

2.3.1 Word Proxy

This approach tries to find IV word proxies which are closest in pronunciation to
the OOV keywords. Let K represent a finite-state acceptor for an OOV keyword,
L2 a finite state transducer for lexicon containing OOV keywords, E be an edit-
distance transducer that maps a phone sequence to another phone sequence with
costs estimated from a phone confusion matrix, L1 denote the pronunciation lexicon
for IV words. The proxy keyword K ′ can be generated by

K ′ = Project(ShortestPath(K ◦ L2 ◦ E ◦ (L1)
−1)) (2)

E is a phone to phone confusion matrix expressed in a finite-transducer form, es-
timated through standard maximum likelihood estimation. Training data for the
conditional probabilities estimation are collected by aligning the reference phone
string to the ASR hypothesis on a held-out set.

2.3.2 Subword Search

Direct search of OOV keywords in subword lattices serves as another baseline
method. It follows the pipeline in [8]. Instead of doing mixed word and subword
decoding, we decode with subwords only (i.e., syllables) in this work. We create a
syllable-based index from the lattices, tracking all of the syllables that occur in the
lattices, their start and end times, and their lattice posterior probabilities. Keywords
can be searched from the index with their corresponding syllable representation.
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For multiword keywords, their representation would be the cross product of all the
representations of each component word.

3 Syllable Lattice Transduction for KWS
This method follows the syllable decoding procedure first, generating syllable lat-
tices. Instead of searching for keywords directly in subword lattices, we transduce
syllable lattices to word lattices, using G2S systems to produce syllable pronunci-
ations for the OOV keywords. This method has the advantage of using larger, less
confusable units than phones for the decoding, and has a weak LM because many
possible syllable sequences are allowed within a language. For a number of OOV
words, the pronunciation contains syllables which were not seen in the training
data. For those OOV syllables predicted by G2S system, we choose the percep-
tually nearest IV syllable to substitute for the OOV syllable. The match requires
that the vowel nucleus and the onset consonants match closely and the coda conso-
nants be nearest in place and manner of articulation, following the results of phone
perceptual experiments [13].

3.1 Syllable Decoding
To perform a syllable decoding, we substitute word transducers with syllable trans-
ducers in the standard word decoding graph generation

H ◦ C ◦ Lphn2syl ◦Gsyl (3)

where Lphn2syl denotes lexical transducer for syllable-phone pronunciations and
Gsyl is syllable LM.
Lphn2syl can be easily constructed using a syllable lexicon given by experts. For
syllable language model Gsyl, a simple way is decomposing words into syllable
sequences using a word to syllable lexicon. As words may have several pronunci-
ations, randomly picking could be used. However, a more appropriate approach is
first aligning transcriptions with acoustics using trained acoustic models, and then
mapping words to syllable sequences that match phone alignments.
With the resulting syllable transcription, we can build an n-gram language model
and use it for decoding. Note that in a low-resources condition, syllable LMs tend
to be better modeled by n-gram than word LMs because the number of syllables is
usually less than the number of words, making training data relatively sufficient.

3.2 Grapheme-to-syllable prediction
Our pronunciation prediction utilizes the Phonetisaurus G2P system [14] and trains
on IV pronunciations. This system itself is WFST-based, and predicts pronuncia-
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tions based on a multigram alignment between graphemes and phonemes. Our ini-
tial experiments aligning multiple character sequences to syllable symbols proved
that the space is too sparse to learn syllables directly. In order to utilize the better
accuracy of G2P when predicting syllables, we exploit the fact that Phonetisaurus
is WFST-based, and impose additional constraints on the output of the system to
produce syllables.
For each language, we collect statistics over which phones can appear in onset, nu-
cleus, or coda positions; we also collect statistics over the different kinds of syllable
structures (including frequency of onset clusters or coda clusters). Then two trans-
ducers are created: one that maps phones to the same phone with possible syllable
positions, and another that maps the phone/syllable position pairs to the syllable
position. We also create an acceptor that provides a unigram language model over
valid syllable structures. When these three constraints are composed and realized as
a phone to phone/syllable position pair transducer, this can be used as a constraint
to be composed with the original Phonetisaurus G2P system, but produces phones
annotated with syllable positions. We can then read off the syllable structure of the
predicted phone pronunciation easily.
This G2S system described above can produce syllables that do not appear in train-
ing data set (i.e. OOV syllables). Once these OOV syllables have been found, it is
necessary to find the perceptually nearest IV syllable to be a proxy for them. We
use a syllable to phone system to find the phone pronunciation of the OOV syllable
and then match it to the pronunciations of the IV syllables using a metric which
weighs the vowel identity highest, the onset consonants the next highest and the
coda consonants the lowest. This weighting is justified by perceptual experiments
which show humans perceive the vowel and prevocalic consonants better than the
postvocalic consonants [13]. As a first step, we only selected one IV syllable per
OOV syllable.

3.3 Syllable to Word Transduction
After generating syllable lattices, we can construct a syllable to word lexical trans-
ducer Lsyl2wrd using the Babel lexicon (we will cover OOV part in next section) and
then compose it with syllable lattices to get word lattices. This last step concludes
the lattice generation part, while for KWS, we need one extra step (word alignment)
to retrieve time information from composed word lattices.

3.4 Boosted Language Model
To better exploit the knowledge of keywords, a unigram language model is trained
on all keywords and then interpolated with original word language model. This
boosted language model is compiled into a grammar WFST and then composed
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with syllable to word lexical transducer. To use the composed lexical transducer,
we first remove language model scores in syllable lattices, and then perform trans-
duction to word lattices via composition, i.e.

L̂atsyl ◦ Lsyl2wrd ◦Gboost (4)

where L̂atsyl denotes syllable lattices without language model score, Lsyl2wrd de-
notes lexical transducer for word-syllable pronunciations and Gboost is boosted LM.

4 The Babel Project

4.1 Background
The Babel Program focuses on developing agile and robust speech recognition tech-
nology that can be rapidly applied to any human language in order to provide ef-
fective search capability for analysts to efficiently process massive amounts of real-
world recorded speech [1]. It provides language packs on several different minority
languages. Each language pack contains a limited amount of training data which
has been transcribed at the word level and lexicons for words and syllables. The data
we used in this study is divided into subsets called the full language pack (FLP) and
the limited language pack (LLP) which have approximately 65 hours and 10 hours
of training data respectively. Around 10 hours of development data are provided for
performance testing and parameter tuning. In addition, an evaluation set is provided
for final system evaluation, and around one third of the evaluation set, called eval-
part1, is given for evaluation analysis. In this work, we used the LLP for training
and eval-part1 for testing.
In the work we reported here, performance evaluation is split into 3 stages:

• training stage (training data and development data is released and researchers
begin building models and tuning recognition parameters);

• ingestion stage (evaluation data is released and used for decoding);

• search stage (keywords are given and KWS is performed).

A so-called ”No test audio re-use” (NTAR) condition requires no decoding oper-
ation be performed in search stage, reducing the total amount of time it takes to
perform KWS. Doing syllable decoding in the second stage and adding in OOV
pronunciations before transduction allows the OOV words to be recognized in the
third stage, while satisfying the NTAR condition. OOVs are handled via G2S and a
mapping procedure previously described.
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4.2 Languages
Here I am reporting experiments on 5 different languages: Assamese, Bengali, Cre-
ole, Zulu and Tamil. The version of the language packs are summarized in Table 1,
and Table 2 records actual speech time (after segmentation).

version keyword list
Assamese IARPA-babel102b-v0.5a conv-eval.kwlist4
Bengali IARPA-babel103b-v0.4b conv-eval.kwlist4
Creole IARPA-babel201b-v0.2b conv-eval.kwlist4
Zulu IARPA-babel206b-v0.1e conv-eval.kwlist4
Tamil IARPA-babel204b-v1.1b conv-eval.kwlist5

Table 1: Babel data for OP1 languages

LLP-training dev evalp1
Assamese 10.03 8.67 3.69
Bengali 10.32 8.83 4.81
Creole 11.36 9.63 4.27
Zulu 10.38 9.95 4.22
Tamil 11.77 10.33 13.11

Table 2: Babel audio data in hours

4.3 Statistics
Table 3 shows language pack and keyword list statistics. In general, #Words-
to#Syls ratio is between 2 to 10, and OOV rate varies from 16% to 22%2.

#Words #Syls #KWs #OOV KWs
Assamese 7661 1679 1608 259
Bengali 7933 2082 1594 283
Creole 4897 1981 1533 287
Zulu 13674 1345 1412 380
Tamil 14265 2620 2188 500

Table 3: Statistics for language packs

2OOV are counted with regard to eval-part1
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5 Experiments

5.1 Setup
The Kaldi toolkit [15] is used for the speech recognition part. A standard 13 di-
mensional PLP feature, together with 3-dim Kaldi pitch feature [16], is extracted
and used for maximum likelihood GMM model training. Features are then trans-
formed using LDA+MLLT before SAT training. With ’standard’ GMM training
recipe performed, a tanh-neuron DNN-HMM hybrid system is trained using the
same features. Details of DNN training are documented in section 2.2 in [17]. The
major difference between our setup and default Kaldi setup is that we use word
position-independent phones for acoustic models. This is necessary for syllable
transduction with word alignment because position-dependent phones would blow
up the alignment lexicon for lattice word alignment.

5.2 Syllable Decoding
To evaluate the performance of syllable decoding, we need to map transcriptions
from word to syllables. Just as described in Section 3.1, we force align transcrip-
tions with the acoustic training data to reach a more accurate result.
Table 4 shows WERs of word decoding and Syllable Error Rates (SERs) of syllable
decoding (first two columns)3. These two metrics are not comparable in general –
we present them here just for a quick reference. It is shown that syllable error rate
is usually lower than word error rate, which is reasonable in that a correct word
recognition requires all syllables within the word to be correctly recognized.

WER SER S2W ER
Assamese 66.6 64.1 70.7
Bengali 68.9 63.4 73.7
Creole 61.6 57.3 67.1
Zulu 71.5 73.7 77.5
Tamil 79.0 77.9 81.0

Table 4: Syllable Error Rate and Syllable-to-word Error Rate

5.3 Grapheme to Syllable
G2S prediction is evaluated by comparing the ground truth lexicon with predicted
lexicon. BABEL FLP language pack provides a lexicon that covers more words

3”S2W ER” refers to Syllable-to-word Error Rate which will be introduced in 5.4
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than those appear in LLP. Since the G2S training only uses pronunciations of words
in LLP, all other words can serve as evaluation set. Table 5 shows the phone error
rate (PER) and syllable error rate (SER) on that ’OOV’ set (i.e. FLP v.s. LLP).
Note that the predicted SER concept in this section is different from the recognized
SER.

PER SER
Assamese 7.0 18.7
Bengali 9.7 25.2
Creole 5.7 31.5
Zulu 5.9 11.9
Tamil 2.2 7.6

Table 5: Pronunciation Prediction Error Rate

It is shown in Table 5 that SERs for Creole and Bengali are quite high. Actually,
those high SERs are mainly caused by mis-assign of phones to successive syllables,
and these may not influence following procedure much since syllable lattices may
contain different assignments as well and may compensate for that.

5.4 Lattice Transduction
WER is used as a validation metric for lattice transduction. In this part, we do
not use a keyword boosted language model as it is designed for KWS task rather
than recognition. Table 4 shows WERs for baseline word decoding versus syllable
transduction word error rate (first and last column). It can be observed that syllable
transduced lattices have a higher word error rate, which indicates word language
models are still stronger than syllable ones in terms of word recognition.

5.5 Keyword Search
5.5.1 ATWV

KWS performance is usually measured by the metric ATWV, which was developed
for the NIST 2006 Spoken Term Detection evaluation [18]. The score computed
in the following way: for a given keyword kw in a posting list (a list of putative
hits with start, end times and detection confidence) and detection threshold θ, the
probabilities of miss and false alarm rates are computed using

PMiss(kw, θ) = 1−NCorrect(kw, θ)/NRef (kw)

PFA(kw, θ) = NSpurious(kw, θ)/NNT (kw)
(5)
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where NNT (kw, θ) is the number of correctly hypothesized posting list entries with
detection scores ≥ θ, NSpurious(kw, θ) is the number of incorrectly hypothesized
posting list entries with detection scores ≥ θ, NRef (kw) is the number of reference
occurrences, and NNT (kw) is the number of non-target trials for kw in the data,
which is computed as

NNT (kw) = TAudio −NRef (kw) (6)

For a specific keyword kw, the Term Weighted Value (TWV) is defined as

TWV (kw, θ) = 1− PMiss(kw, θ)− βPFA(kw, θ) (7)

Assuming there are K keywords in total, ATWV is defined as the average TWV of
all keywords at a given detection threshold θ̂.

ATWV =
∑
kw

TWV (kw, θ̂)/K (8)

For every keywords, TWV (kw, θ) is in the range of (−∞, 1]. Unlike WER, a
higher ATWV is better. It achieves its upper bound when there are no misses and
no false alarms.

5.5.2 IV Keyword Search

Though the main focus of this work is on OOV KWS, IV ATWV still serves as
an indicator for evaluating effectiveness of different methods. Table 6 shows IV
ATWV for baseline word system (Word), syllable search (SylS) and syllable trans-
duction (SylT). It shows that the syllable transduction method gives reasonable IV

Word SylS SylT
Assamese 0.3064 0.2539 0.2958
Bengali 0.3094 0.2523 0.2914
Creole 0.3759 0.3367 0.3640
Zulu 0.3139 0.2401 0.2572
Tamil 0.2595 0.2123 0.2203

Table 6: IV ATWV

ATWV, indicating that the transduction method is effective in spotting both IV and
OOV keywords.
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Figure 1: OOV ATWV for different languages

5.5.3 OOV Keyword Search

Figure 1 shows OOV ATWV for all 5 languages. We see that syllable transduction
(SylT) generally gives comparable results to the other two methods, i.e. phone
confusion (PhoneConf) and syllable search (SylS).
To get a feeling for the characteristics of these three methods, we present miss rate
and false alarm rate on Assamese in Table 7. It shows that the syllable transduction
method tends to give lower false alarm rate, indicating more accurate hypotheses.

PhoneConf SylS SylT
PMiss 0.853 0.827 0.859
PFA 0.00006 0.00006 0.00003

Table 7: PMiss and PFA for Assamese

5.5.4 Combination

Figure 1 also shows the OOV ATWV on system combination. It is shown that
system combination can effectively improves the OOV ATWV [19].

5.6 Analysis
The phone confusion method usually generates many more hypotheses than the
other two methods, giving a higher hit rate as well as false alarm rate. The generated
index file is usually much bigger than the other two methods, and it slows down the
KWS. In addition, it uses the dev set for confusion matrix estimation, which makes
tuning of hyper-parameters a bit complicated.
Syllable search usually generates a reasonable amount of hypotheses and gives good
search results on OOV keywords. This method does not require post-processing for
syllable lattices. On the other hand, searching syllables in lattices usually takes
more time than searching in word lattices, especially when lattices are dense.
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Compared with the above methods, syllable transduction usually gives fewer but
more accurate hypotheses, and is good at spotting both IV and OOV keywords. It
has been shown that combination of a word system and a syllable transduction sys-
tem gives better results than combining the word system with syllable search [20].
This method also provides word lattices that are useful for OOV recognition. While
it does not require any modification of the KWS template, this method requires a
G2S system and a boosted language model for better performance.
In general, these three methods combine well in terms of ATWV. This combina-
tion strategy does not require training multiple acoustic models, which reduces the
training time and computation greatly.

6 Conclusion
We show that syllable transduction is helpful in handling OOVs in low resources
KWS tasks. Its good performance in both IV and OOV ATWV makes it a serious
alternative to direct-searching in subword lattices. A keyword boosted language
model further improves ATWV by mixing in unigram trained from keywords. Fu-
ture work may benefit from improving syllable decoding accuracy, adding in more
OOV pronunciations, and developing a composition algorithm that preserves time
information in lattices.
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