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Abstract

Mixed-Precision Vector Processors

by

Albert Ji-Hung Ou

Master of Science in Computer Science

University of California, Berkeley

Professor Krste Asanović, Chair

Mixed-precision computation presents opportunities for programmable accelerators to
improve performance and energy efficiency while retaining application flexibility. Building
on the Hwacha decoupled vector-fetch accelerator, we introduce high-occupancy vector lanes
(HOV), a set of mixed-precision hardware optimizations which support dynamic configu-
ration of multiple architectural register widths and high-throughput operations on packed
data. We discuss the implications of HOV for the programming model and describe our
microarchitectural approach to maximizing register file utilization and datapath parallelism.
Using complete VLSI implementations of HOV in a commercial 28 nm process technology,
featuring a cache-coherent memory hierarchy with L2 caches and simulated LPDDR3 DRAM
modules, we quantify the impact of our HOV enhancements on area, performance, and en-
ergy consumption compared to the baseline design, a decoupled vector architecture without
mixed-precision support. We observe as much as a 64.3% performance gain and a 61.6%
energy reduction over the baseline vector machine on half-precision dense matrix multiplica-
tion. We then validate the HOV design against the ARM Mali-T628 MP6 GPU by running
a suite of microbenchmarks compiled from the same OpenCL source code using our custom
HOV-enabled compiler and the ARM stock compiler.
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Chapter 1

Introduction

The prominent breakdown of Dennard scaling, amid ongoing difficulties with interconnect

scaling, has driven VLSI design into a new regime in which severe power constraints and

communication costs prevail. Technology trends have culminated in an evolutionary plateau

for conventional superscalar processors, as overly aggressive pipelining, speculation, and

out-of-order execution become counterproductive beyond a certain degree of complexity.

These challenges have thus prompted a retreat away from maximal sequential performance,

a pursuit which heretofore has characterized mainstream computer architecture since its

infancy, and has initiated a transition towards throughput-oriented computing that instead

emphasizes sustained performance per unit energy. These throughput-oriented architectures

derive performance from parallelism and efficiency from locality [1], [2].

Fully harnessing the abundant parallelism and locality in emerging applications gener-

ally entails some form of hardware specialization, a familiar concept made progressively

feasible by the vast transistor budgets afforded by modern CMOS processes. How to bal-

ance efficiency with flexibility—and ideally elevate both—is the eternal research question.

Mixed-precision optimizations may serve as one answer.

Compared to fixed-function hardware, programmable processors contend with inefficien-

cies from at least two major sources: overhead of instruction delivery and wasteful power

consumption by over-provisioned datapaths. In this work, we propose a dual strategy of

seamless mixed-precision computation on a vector architecture to address both aspects.
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1.1 Justification for Mixed Precision

Relying on prior knowledge within a restricted scope of applications, fixed-function accel-

erators notably exploit heterogeneous and minimal word sizes in their custom datapaths.

Fundamentally, less energy dissipation and higher performance both ensue with fewer bits

communicated and computed. In contrast, commodity processors must support a generic as-

sortment of conventional number representations to fulfill a general-purpose role. Thus, the

datapath width is often conservatively fixed to the maximum precision and widest dynamic

range imposed by any plausible application.

Recently, growing attention is being paid to the impact of limited numerical precision

across a variety of application domains relevant to high-throughput processing. It is becom-

ing increasingly common practice in high-performance computing to forgo double-precision

floating-point in favor of single precision, owing to the two-fold disparity in peak FLOPS

that GPGPUs and SIMD processors customarily manifest. There is cause to be optimistic

about the general-purpose viability of reduced-precision computation. In the context of deep

learning, for example, the presence of statistical approximation and estimation errors ren-

ders high precision largely unnecessary [3]. Moreover, additional noise during training can

in fact enhance the performance of a neural network. Workloads that exhibit a natural error

resilience at the algorithmic level therefore seem to offer a compelling basis for hardware

optimizations capitalizing on precision reduction, while the diversity of applications clearly

motivates a programmable solution.

One can imagine a more versatile accelerator capable of programmatically switching its

datapath from one reduced-precision mode to another at a time. However, rarely is one

global precision optimal or even sufficient throughout all phases of computation. In areas

that historically have been the exclusive realm of double-precision floating-point arithmetic,

such as scientific computing, there is potential for reformulating existing problems by means

of mixed-precision methods [4]. These schemes combine the use of different precisions to

minimize cost, completing the bulk of the work in lower precision, while also preserving

overall accuracy. Iterative refinement techniques, widely applied to linear systems, improve

the quality of an approximate solution via gradual updates calculated in extra precision.

Similarly, instability in an algorithm may be overcome by selectively resorting to higher
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precision during more sensitive steps.

The design space of mixed-precision hardware extends from the simple coexistence of

variable-width information, such as integer data versus memory addresses, to widening arith-

metic operations, such as a fused multiply-add (FMA) that sums the product of two n-bit

values and a 2n-bit value without intermediate rounding.

1.2 Justification for Vector Processors

Vector architectures are an exceptional match for the data-level parallelism (DLP) prevalent

in throughput computing applications. Compared to instruction-level parallelism (ILP) and

thread-level parallelism (TLP), DLP is the most rigid form of machine parallelism but is

therefore the most efficient with respect to control overhead.

Each vector instruction concisely expresses an entire set of homogeneous and indepen-

dent elementary operations, thereby amortizing the cost of instruction fetch, decode, and

scheduling. Fewer instructions that encapsulate more work also relaxes bandwidth demands

on instruction supply. Whereas managing all possible dependencies among the same num-

ber of scalar operations incurs quadratic complexity, the explicit data parallelism reinforces

constraints which dramatically simplify the control logic.

From an implementation perspective, the inherent regularity of vector operations pro-

motes extensive modularity and scalability to meet varying performance/power targets. A

massively parallel machine may be constructed from a multiplicity of identical and largely

self-contained lanes, each housing a portion of the vector register file and functional units

but together sharing a common scalar and control unit.

Vector data accesses adhere to highly structured and predictable communication patterns.

This permits microarchitectural optimizations such as register file banking to reduce port

count. Long vectors expose substantial memory-level parallelism to more easily saturate

memory bandwidth. In the common case, constant-stride memory operations are particularly

conducive to access/execute decoupling and prefetching techniques for hiding latency, since

the address stream can be generated separately from other computations.

Vector architectures are readily adaptable to reduced-precision computation. Due to the
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intrinsic data independence, a wide datapath can be naturally partitioned to operate on

several narrower elements concurrently. For compute-bound workloads, this subword paral-

lelism offers an area-efficient mechanism for multiplying arithmetic throughput by an integer

factor. The marginal implementation cost principally involves the replication of functional

units—crucially, the existing register file ports and interconnection fabric for operand traffic

remain unaltered yet enjoy improved utilization.

Reduced precision alleviates memory-bound workloads as well. In general, it is fairly

straightforward to increase functional unit bandwidth by instantiating extra ALUs, for their

individual area penalties are exceedingly modest as a result of advances in semiconductor

device technology, but system-wide memory bandwidth cannot be increased with the same

ease. With global communication as a limiting factor, a more compact representation of

data realizes more effective use of available bandwidth.

Precision truncation can be regarded as a lossy compression scheme that makes larger

problem sizes more economical across all levels of the memory hierarchy. Denser storage of

elements directly translates into longer vectors with the same register file capacity. This en-

ables greater register blocking, aiding in-register operand reuse and correspondingly lessening

memory pressure. The expanded buffering provided by the vector register file further assists

with decoupled execution to better tolerate memory latency. Lastly, a greater concentration

of useful data is resident in a cache—if the working set now manages to fit within the L1 or

L2 caches where it formerly could not, then a superlinear speedup becomes attainable.

1.3 Thesis Organization

Chapter 2 reviews existing architectural techniques for mixed-precision computation and

some of their disadvantages. Chapter 3 provides a deeper analysis of subword SIMD and

vector architectures, discussing why vector processing serves as a more refined foundation for

a mixed-precision programming model. Chapter 4 describes the baseline vector accelerator

design, and Chapter 5 elaborates on high-occupancy vectors (HOV), the architectural and

microarchitectural augmentations to support efficient mixed-precision vector computation.

Chapter 6 details the evaluation framework, including RTL development methodology with
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Chisel and the physical design flow in a commercial 28 nm process technology. Chapter 7

compares complete VLSI implementations of the HOV and baseline designs, first to each

other and then against an ARM Mali-T628 MP6 GPU, using a suite of compiled OpenCL

and manually optimized assembly microbenchmarks.

1.4 Project History

Collaboration

This thesis is the result of a collaborative group project. Other people have made direct

contributions to the ideas and results included here. The Hwacha vector-fetch accelerator

was developed by Yunsup Lee, myself, Colin Schmidt, Sagar Karandikar, Krste Asanović,

and others from 2011 through 2015. As the lead architect of Hwacha, Yunsup Lee directed

the development and evaluation of the architecture, microarchitecture, RTL, compiler, ver-

ification framework, microbenchmarks, and application kernels. I was primarily responsible

for the RTL implementation of the Vector Memory Unit and the mixed-precision extensions

described in this thesis. Colin Schmidt took the lead on the definition of the Hwacha ISA,

RTL implementation of the scalar unit, C++ functional ISA simulator, vector torture test

generator, Hwacha extensions to the GNU toolchain port, and the OpenCL compiler and

benchmark suite. Sagar Karandikar took the lead on the bar-crawl tool for design-space

exploration, VLSI floorplanning, RTL implementation of the Vector Runahead Unit, ARM

Mali-T628 MP6 GPU evaluation, and the assembly microbenchmark suite. Palmer Dabbelt

took the lead on the physical design flow and post-PAR gate-level simulation in the 28 nm

process technology used in this study. Henry Cook took the lead on the RTL implemen-

tation of the uncore components, including the L2 cache and the TileLink cache coherence

protocol. Howard Mao took the lead on the dual LPDDR3 memory channel support in the

testbench and provided critical fixes for the outer memory system. Andrew Waterman took

the lead on the definition of the RISC-V ISA, the RISC-V GNU toolchain port, and the RTL

implementation of the Rocket core. Andrew also helped to define the Hwacha ISA. John

Hauser took the lead on the development of the hardware floating-point units. Many others

contributed to the surrounding infrastructure, such as the Rocket Chip SoC generator. Huy
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Vo, Stephen Twigg, and Quan Nguyen contributed to earlier versions of Hwacha. Finally,

Krste Asanović was integral in all aspects of the project.

Previous Publications

This thesis is a direct descendant of the publication “MVP: A Case for Mixed-Precision

Vector Processors” [5], presented at the PRISM-2 workshop at ISCA 2014. That paper itself

culminated from two graduate-level course projects: CS250 (Fall 2013) and CS252 (Spring

2014), both times undertaken with co-conspirator Quan Nguyen. Whereas all previous work

involved retrofitting two earlier incarnations of Hwacha, retroactively designated V2 and V3,

this thesis builds on the V4 redesign. V4 represents a complete overhaul of both the ISA

and RTL, and unlike its predecessors, it was architected from the very beginning with mixed-

precision support as an explicit design objective. The result is an improved mixed-precision

implementation with respect to functionality, performance, and ease of integration.

The text has been extensively rewritten to cover additional design rationale, deeper

explanation of mechanisms, and other details beyond the scope of the MVP paper. Such

material include: in Chapter 3, discussion of vector length control (or lack thereof) and

its implications on programming abstractions and, in Chapter 5, sections on portability

considerations, polymorphic instructions, and updated microarchitecture.

In addition, this thesis was authored concurrently with a set of UCB technical reports,

resulting in some shared content. Chapter 4 appear as expanded passages in the “Hwacha

Vector-Fetch Architecture Manual” [6] and the “Hwacha Microarchitecture Manual” [7].

Chapters 6 and 7 are adapted from “Hwacha Preliminary Evaluation Results” [8].

Funding

Research is partially funded by DARPA Award Number HR0011-12-2-0016, the Center for

Future Architectures Research, a member of STARnet, a Semiconductor Research Corpo-

ration program sponsored by MARCO and DARPA, and ASPIRE Lab industrial sponsors

and affiliates Intel, Google, Nokia, NVIDIA, Oracle, and Samsung. Any opinions, findings,

conclusions, or recommendations in this paper are solely those of the authors and do not

necessarily reflect the position or the policy of the sponsors.
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Chapter 2

Related Work

Subdividing a wide datapath to perform multiple reduced-precision operations in parallel

is a classic technique employed by early vector supercomputers, such as the CDC STAR-

100 [9]. Asanović [10] and Kozyrakis [11] similarly describe how a vector machine may be

viewed as an array of “virtual processors” whose widths are set collectively through a virtual

processor width (VPW) control register. However, the element size of an individual vector

cannot be configured independently, complicating the intermixture of different types in the

same register file: Either VPW must be initialized for the widest datatype in a given block

of code, possibly wasting space, or must be appropriately manipulated before each register

access, enlarging the instruction footprint.

A related approach is the subword single-instruction multiple-data (SIMD) architectural

pattern whose earliest instance was perhaps the Lincoln TX-2, which featured separate

instructions for treating a full 36-bit machine as four 9-bit parallel machines, among other

variations [12]. This style of design has widely endured in multimedia accelerators such as

the IBM Cell Broadband Engine [13], and it has witnessed tremendous popular adoption

by contemporary general-purpose instruction sets through various forms of packed SIMD

extensions, e.g., x86 AVX [14] and ARM NEON [15]. Because vector and subword SIMD

architectures are so frequently conflated, chapter 3 aims to elucidate the salient differences

between the two—in particular, how subword SIMD’s inferior programming abstractions

inconvenience a mixed-precision environment.

In what may be considered an inversion of subword packing, an architecture might store
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datatypes larger than its nominal bit width by splitting them across multiple adjacent reg-

isters. Graphics processing units (GPUs), for example, traditionally possess 32-bit registers;

double-precision values occupy aligned register pairs referenced via even-numbered specifiers.

This arrangement, while adequate for limited variable-precision support, essentially halves

the architectural register set available to an application.

Newer generations of mobile GPUs have acquired native support for half-precision floating-

point arithmetic (FP16), despite the IEEE 754-2008 standard intending it only as a storage

format. It is well known that graphics workloads do not always require the highest fidelity

due to limitations in human perception. The NVIDIA Tegra X1, based on the Maxwell

architecture, executes FP16 FMAs at “double-rate” throughput, essentially two-wide SIMD

operation from the normal FP32 perspective [16]. This development is by no means unique—

the ARM Midgard, Imagination PowerVR Rogue, and AMD Graphics Core Next Generation

3 (GCN3) families all incorporate FP16 in their rendering pipelines, with implementations

sharing varying degrees of resources with the FP32 units.

Classic fixed-point digital signal processors (DSPs) are distinguished by special-purpose

features to curtail overflow and rounding errors. These include multiplier-accumulator

(MAC) units supporting widening arithmetic, dedicated extended-precision accumulator reg-

isters, and supplementary guard bits for saturation. The C54x generation of the famous

Texas Instruments TMS320 family serves as a good example with its 17× 17 multiplier and

40-bit accumulators [17]. However, DSPs characteristically suffer from irregular architec-

tures as a result of ad-hoc evolution, which render them a challenging compiler target and

hinder their suitability for a more general-purpose mixed-precision function.
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Chapter 3

Comparison of ISA Approaches

Vectors and subword SIMD are two approaches to instruction set architecture (ISA) design

that, to a casual observer, appear outwardly alike: Both leverage data-level parallelism by op-

erating on one-dimensional arrays of quantities and admit microarchitectural optimizations

based on subword parallelism. However, a deeper examination reveals significant differences

in the ways that mixed-precision computation can be mapped to each architecture. We argue

that the advantages of true vector processing revolve around a key innovation in abstraction:

flexible hardware vector length control.

3.1 Subword SIMD

The term subword SIMD, also known as “short-vector” extensions in the context of a scalar

ISA, broadly describes the practice of explicitly packing contiguous subwords of equal size

within a single architectural register. These are acted upon in parallel by special instructions

provided per subword data type.

Fixed-width Property

Opcodes designate a fixed “vector” length. In other words, the SIMD width is exposed as

part of the ISA. This is the most distinguishing feature of subword SIMD and also its most

decisive drawback, as the subsequent discussion will prove.
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+ + +

ymm0 ymm1 ymm2

ymm5ymm3 ymm4

ymm6 ymm7 ymm8

(a) Visualization

vaddpd ymm0 , ymm3 , ymm6
vaddpd ymm1 , ymm4 , ymm7
vaddpd ymm2 , ymm5 , ymm8

(b) Pseudo-assembly

Figure 3.1: Double-precision SIMD addition

Figure 3.1a depicts how four 64-bit subwords may be packed into a single 256-bit SIMD

register. Each register may alternatively hold 8 32-bit, 16 16-bit, or 32 8-bit values.

Short-vector Property

SIMD widths tend to be relatively short. Modern SIMD extensions originated as an ad-hoc

retrofit of scalar microarchitectures for a multimedia focus. The reuse of existing scalar reg-

ister files presented what was then the path of least resistance towards subword parallelism,

and it offers some historical basis for the habit of embedding the SIMD width in the ISA as

well as for the short length of SIMD “vectors”.

Nowadays, a separate register file is normally dedicated to the SIMD unit, decoupling it

from the scalar width. Nevertheless, conventional SIMD units remain tightly integrated with

the host scalar pipeline. Implementations rely nearly exclusively on spatial execution, forcing

use of superscalar issue mechanisms to saturate functional units and hide long latencies.

Control complexity and power consumption are both adversely impacted, especially if it

involves out-of-order scheduling and register renaming.

Moreover, this imposes a practical upper bound on SIMD width—now typically either

128 or 256 bits, fairly modest in relation to the degree of parallelism commonly found in

DLP-intensive workloads, which may comprise as much as hundreds of parallel operations.

In combination with the inflexible nature of SIMD registers, utilizing the entire register

file capacity often entails splitting a longer application vector across multiple architectural

registers. Doing so inevitably requires more instructions. Figure 3.1b demonstrates such a

situation where vectors of twelve elements must be subdivided among three SIMD registers

each, resulting in three separate (though independent) vaddpd instructions.



12

These effects all counteract the efficiency gains from DLP.

Non-Portability

SIMD extensions contribute directly to unrestrained instruction set growth. As technology

advances, the desire to scale performance across processor generations, along with commercial

pressure, begets a natural tendency towards successively wider SIMD implementations. Each

transition to a new width involves introducing a complete set of new instructions. The x86

architecture’s own cluttered progression from MMX to AVX-512, summarized in Figure 3.2,

perfectly illustrates such a trend.

The proliferation of new instructions leads to rapid depletion of opcode encoding space,

despite instructions being largely redundant except to distinguish SIMD width. As an ex-

ample, four versions of packed double-precision floating-point add operations exist in x86:

addpd from SSE2 (with opcode 66 0F 58 /r) and vaddpd from AVX (with prefixes VEX.128,

VEX.256, and EVEX.512) [18]. AVX instructions have therefore become as long as 11 bytes.

Worse, applications targeting a particular SIMD width are inherently not portable. Legacy

applications cannot automatically benefit from the increased SIMD widths. Code must

undergo explicit migration: recompilation at the very least to include the new instructions,

but more often a tedious rewrite when intrinsics are used instead of auto-vectorization.

Conversely, code compiled for wider SIMD registers fail to execute on older machines with

narrower ones. Such incompatibilities necessitate dynamic dispatch to different versions of

code at runtime.

64 bit

MMX→
128 bit︷ ︷

SSE / SSE2 / SSE3 / SSSE3 / SSE4→
256 bit︷ ︷

AVX / AVX2→
512 bit

AVX-512→
1024 bit

?

Figure 3.2: Evolution of SIMD extensions in the x86 ISA
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3.2 Vectors

The deficiencies of subword SIMD are not fundamental to data-parallel architectures, rather

being artifacts of poor design. In fact, a solution has already existed decades before commod-

ity microprocessors first adopted SIMD extensions, in traditional vector machines descended

from the Cray archetype [19].

Vector architectures provide longer, genuine vectors counted in terms of elements instead

of bits. The hardware vector length generally ranges from 64 to thousands of elements,

an aspect of their supercomputer heritage. Unlike the vast majority of subword SIMD

implementations, vector machines incorporate temporal execution to process long vectors

over multiple cycles, supplemented by chaining (the vector equivalent of register bypassing)

to overlap dependent operations.

The hardware vector length is dynamically adjustable. A critical architectural feature is

the vector length register (VLR), which indicates the number of elements to be processed per

vector instruction, up to the maximum hardware vector length (HVL). Software manipulates

the VLR by requesting a certain application vector length (AVL) with the vsetvl instruction;

hardware responds with the lesser of the AVL and HVL. In Figure 3.3, for example, the VLR is

set to 12. Note that only three architectural vector registers are needed here to represent the

operands and the result, unlike the SIMD case, producing code that is expressively minimal.

This method of controlling the vector length enables greater scalability while preserving

forward and backward compatibility. The VLR informs the program at runtime how to strip-

mine application vectors of arbitrary length. Essentially, it confers a level of indirection

such that software remains oblivious to the HVL: The same code executes correctly and

with maximal efficiency on implementations of any HVL. Most importantly, this portability

[0] [vlen-1]

+

v0

v1

v2

vlen
12

(a) Visualization

vsetvl vlen , 12
vadd v2, v0, v1

(b) Pseudo-assembly

Figure 3.3: Double-precision vector addition
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is achieved without any additional developer effort or ISA changes. (In practice, the ISA

may specify a minimum HVL, e.g. 4, to elide stripmining overheads for short vectors.)

3.3 Reduced Precision

Now we consider how well the vector and subword SIMD models each accommodate smaller

data types, while maintaining the invariant of identical input and output precisions. Our

analysis builds upon the previous examples by substituting double precision with single.

With a fixed bit-width, SIMD registers contain a variable number of elements depending

on the precision. This burdens the software with a potential fringe case when the application

vector length is not a clean multiple of the SIMD width, resulting in partially utilized registers

for the tail of the vector. A reduction in precision raises the likelihood of such an occurrence

for a given SIMD width.

Simple cases akin to Figure 3.4a might be tolerated by padding the vectors in memory,

but others require the insertion of extra fringe code. A compiler generally has two options:

either predicate the trailing SIMD instructions based on the element indices or, in the absence

of full support for conditional execution, resort to a scalar loop for the remainder.

Conversely, the reduced-precision vector example shown in Figure 3.4b does not deviate

conceptually from its predecessor, Figure 3.3. Note that the VLR is agnostic to the precision of

the elements and entirely averts all fringe cases for non-2n problem sizes. The programming

model therefore scales more gracefully.

ymm0 ymm1

+ +

ymm2 ymm3

ymm4 ymm5

(a) SIMD

+

[0] [vlen-1]

v0

v1

v2

vlen
12

(b) Vector

Figure 3.4: Single-precision addition
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3.4 Mixed Precision

Next, we proceed to the generalized case in which the sources and destinations of an operation

may differ in precision. Our analysis concentrates on a hypothetical FMA operation whose

output precision is exactly twice that of the input precision, but the same observations also

apply if that ratio were reversed.

Figure 3.5a portrays how mixed-precision computation can be quite intricate to convey

with subword SIMD. The main difficulty lies in the unequal element counts of the source and

destination registers. Consequently, the 8-wide FMA must be decomposed into two separate

operations, each reading from either the upper or lower segments of the two sources and then

writing to a different destination. Yet SIMD extensions typically provide only instructions

that work on the lower end of registers, so extra shuffling to rearrange the operands must

precede the upper operation. In the x86 ISA, for example, this might involve a VPERM2F128

instruction (“permute float-point values”) to exchange the upper/lower 128 bits of a 256-bit

AVX register [18].

A simpler alternative is to store 4 lower-precision operands in a register pair, rather than

the maximum of 8 in one, to match the quantity in the destination registers—basically, to

restrict the number of elements per register according to the highest precision in order to

equalize their lengths. Although tempting, it is still far from ideal, as the inefficient register

usage would limit the extent of software pipelining and register blocking.

Contrast that with the vector model shown in Figure 3.5b, which continues to be as

× ×

+ +

ymm0 ymm1

ymm2 ymm3

(a) SIMD

×

+

vlen
8

[vlen-1]

[vlen-1]

[0]

v0

v1

v2

(b) Vector

Figure 3.5: Widening FMA. For brevity, the destination register implicitly supplies the
addend in this visualization, although in practice it would usually originate from a third
source register.
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elegant as before. Hardware vectors always contain the same number of elements regardless

of precision—again, a benefit of the VLR. Therefore merely one instruction suffices per vector,

no matter the peculiar combination of input/output precisions.

To summarize the fundamental weakness of SIMD, a static encoding of the SIMD width

in the ISA exposes what is essentially a microarchitectural detail—namely, subword packing

being software-visible. Vector architectures successfully avoid this by providing indirection

through a vector length register.

There remains a question, however, about how exactly the vector register file could

leverage subword packing for improved storage density if that aspect is completely invisible

to software. Chapter 5 describes how it is possible, by extending the vector ISA with optional

configuration hints about register usage, for a microarchitecture to automatically recoup and

near-optimally redistribute the space among mixed-precision vectors.
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Chapter 4

Baseline Vector Architecture

Hwacha is a decoupled vector-fetch data-parallel accelerator which serves as the vehicle for

our architectural exploration. Its microarchitecture and programming paradigm combines

facets of predecessor vector-threaded architectures, such as Maven [20], [21], with concepts

from traditional vector machines—in particular, divergence handling mechanisms in software.

4.1 Programming Model

The Hwacha accelerator supports a novel programming model, vector fetch. It is best ex-

plained by contrast with the traditional vector programming model. As an example, we use

a conditionalized SAXPY kernel, CSAXPY. Figure 4.1 shows CSAXPY expressed in C as

both a vectorizable loop and as a Single-Program Multiple-Data (SPMD) kernel. CSAXPY

takes as input an array of conditions, a scalar a, and vectors x and y; it computes y += ax

for the elements for which the condition is true.

Hwacha builds on traditional vector architectures, with a key difference: The vector

operations have been hoisted out of the stripmine loop and placed in their own vector fetch

block. This allows the scalar control processor to send only a program counter to the vector

processor. The control processor is then able to complete the current stripmine iteration

faster and continue doing useful work, while the vector processor is independently executing

the vector instructions.

Like a traditional vector machine, Hwacha has vector data registers (vv0–255) and vector
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1 void csaxpy(size_t n, bool cond[],
2 float a, float x[], float y[])
3 {
4 for (size_t i = 0; i < n; ++i)
5 if (cond[i])
6 y[i] = a*x[i] + y[i];
7 }

(a) Vectorizable loop

1 void csaxpy_spmd(size_t n, bool cond[],
2 float a, float x[], float y[])
3 {
4 if (tid < n)
5 if (cond[tid])
6 y[tid] = a*x[tid]+y[tid];
7 }

(b) SPMD

Figure 4.1: Conditional SAXPY kernels written in C. The SPMD kernel launch code for (b)
is omitted for brevity.

1 csaxpy_tvec:
2 stripmine:
3 vsetvl t0, a0
4 vlb vv0 , (a1)
5 vcmpez vp0 , vv0
6 !vp0 vlw vv0 , (a3)
7 !vp0 vlw vv1 , (a4)
8 !vp0 vfma vv0 , vv0 , a2, vv1
9 !vp0 vsw vv0 , (a4)

10 add a1, a1, t0
11 slli t1, t0, 2
12 add a3, a3, t1
13 add a4, a4, t1
14 sub a0, a0, t0
15 bnez a0, stripmine
16 ret

(a) Traditional vector

1 csaxpy_control_thread:
2 vsetcfg 2, 1
3 vmcs vs1 , a2
4 stripmine:
5 vsetvl t0, a0
6 vmca va0 , a1
7 vmca va1 , a3
8 vmca va2 , a4
9 vf csaxpy_worker_thread

10 add a1, a1, t0
11 slli t1, t0, 2
12 add a3, a3, t1
13 add a4, a4, t1
14 sub a0, a0, t0
15 bnez a0, stripmine
16 ret
17
18 csaxpy_worker_thread:
19 vlb vv0 , (va0)
20 vcmpez vp0 , vv0
21 !vp0 vlw vv0 , (va1)
22 !vp0 vlw vv1 , (va2)
23 !vp0 vfma vv0 , vv0 , vs1 , vv1
24 !vp0 vsw vv0 , (va2)
25 vstop

(b) Hwacha

Figure 4.2: Conditional SAXPY kernels mapped to pseudo-assembly. a0 holds variable n,
a1 holds pointer cond, a2 holds scalar a, a3 holds pointer x, and a4 holds pointer y.

predicate registers (vp0–15), but it also has two flavors of scalar registers. These are the

shared registers (vs0–63, with vs0 hardwired to constant 0), which can be read and written

within a vector fetch block, and address registers (va0–31), which are read-only within a

vector fetch block. This distinction supports non-speculative access/execute decoupling,

described in Section 4.3.

Figure 4.2b shows the CSAXPY code for Hwacha. The control thread (lines 1–16) first
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executes the vsetcfg instruction (line 2), which adjusts the maximum hardware vector length

taking the register usage into account. vmcs (line 3) moves the value of a scalar register from

the control thread to a vs register. The stripmine loop sets the vector length with a vsetvl

instruction (line 5), moves the array pointers to the vector unit with vmca instructions (line

6–8), and then executes a vector-fetch (vf) instruction (line 9), which causes the worker

thread to begin executing the vector fetch block (lines 18–25). The code in the vector fetch

block is equivalent to the vector code in Figure 4.2a, with the addition of a vstop instruction

to signify the end of the block.

4.2 System Architecture

Figure 4.3 illustrates the overall system architecture surrounding Hwacha. The open-source

Rocket Chip SoC generator is used to elaborate the design [22]. The generator consists of

highly parameterized RTL libraries written in Chisel [23].
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Figure 4.3: System architecture provided by the Rocket Chip SoC generator
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A tile consists of a Rocket control processor and a Rocket Custom Coprocessor (RoCC)

socket. Rocket is a five-stage in-order RISC-V scalar core attached to a private blocking L1

instruction cache and non-blocking L1 data cache. The RoCC socket provides a standardized

interface for issuing commands to a custom accelerator, as well as an interface to the memory

system. The Hwacha decoupled vector accelerator, along with its blocking vector instruction

cache, is designed to fit within the RoCC socket. The control thread and the worker thread

of the vector-fetch programming model are mapped to Rocket and Hwacha, respectively.

The shared L2 cache is banked, set-associative, and fully inclusive of the L1. Addresses are

interleaved at cache line granularity across banks. The tile and L2 cache banks are connected

via an on-chip network that implements the TileLink cache coherence protocol [24].

The refill ports of the L2 cache banks are connected to a bank of cached TileLink IO

to AXI4 converters. The AXI4 interfaces are then routed to the appropriate LPDDR3

memory channels through the AXI4 crossbars. The LPDDR3 channels are implemented in

the testbench, which simulates the DRAM timing using DRAMSim2 [25].

The memory system parameters such as the cache size, associativity, number of L2 cache

banks and memory channels, and cache-coherence protocol are set with a configuration object

during elaboration. This configuration object also holds design parameters that are chosen

for the Rocket control processor and the Hwacha vector accelerator.

4.3 Microarchitecture

The Hwacha vector accelerator combines ideas from access/execute decoupling [26], decou-

pled vector architectures [27], and cache refill/access decoupling [28], applying them to work

within a cache-coherent memory system without risk of deadlock. Extensive decoupling en-

ables the microarchitecture to effectively tolerate long and variable memory latencies with

an in-order design.

Figure 4.4 presents the high-level anatomy of the vector accelerator. Hwacha is situated

as a discrete coprocessor with its own independent frontend. This vector-fetch decoupling

relieves the control processor so that it can resolve address calculations for upcoming vector

fetch blocks, among other bookkeeping actions, well in advance of the accelerator.
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Hwacha consists of one or more replicated vector lanes assisted by a scalar unit. Internally,

the lane is bifurcated into two major components: the Vector Execution Unit (VXU), which

encompasses the vector data and predicate register files and the functional units, and the

Vector Memory Unit (VMU), which coordinates data movement between the VXU and the

memory system.

Hwacha also features a Vector Runahead Unit (VRU) that exploits the inherent regularity

of constant-stride vector memory accesses for aggressive yet extremely accurate prefetching.

Unlike out-of-order cores with SIMD that rely on reorder buffers and GPUs that rely on mul-

tithreading, vector architectures are particularly amenable to prefetching without requiring

a large amount of state.

RoCC Frontend and Scalar Unit

Control thread instructions arrive through the Vector Command Queue (VCMDQ). Upon

encountering a vf command, the scalar unit begins fetching at the accompanying PC from

the 4 kB two-way set-associative vector instruction cache (VI$), continuing until it reaches

a vstop in the vector-fetch block.

The scalar unit includes the address and shared register files and possesses a fairly con-

ventional single-issue, in-order, four-stage pipeline. It handles purely scalar computation,

loads, and stores, as well as the resolution of consensual branches and reductions result-

ing from the vector lanes. The FPU is shared with the Rocket control processor via the

floating-point request queue (FPREQQ) and floating-point response queue (FPRESPQ). At

the decode stage, vector instructions are steered to the lanes along with any scalar operands.

Vector Execution Unit

The VXU, depicted in Figure 4.5, is broadly organized around four banks. Each contains a

256×128b 1R/1W 8T SRAM that forms a portion of the vector register file (VRF), alongside

a 256×2b 3R/1W predicate register file (PRF). Also private to each bank are a local integer

arithmetic logic unit (ALU) and predicate logic unit (PLU). A crossbar connects the banks

to the long-latency functional units, grouped into clusters whose members share the same

operand, predicate, and result lines.
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VSDQ = vector store-data queue, VLDQ = vector load-data queue.
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Vector instructions are issued into the sequencer, which monitors the progress of every

active operation within that particular lane. The master sequencer, shared among all lanes,

holds the common dependency information and other static state. Execution is managed

in “strips” that complete eight 64-bit elements worth of work, corresponding to one pass

through the banks. The sequencer acts as an out-of-order, albeit non-speculative, issue

window: Hazards are continuously examined for each operation; when clear for the next

strip, an age-based arbitration scheme determines which ready operation to send to the

expander.

The expander converts a sequencer operation into its constituent micro-ops (µops), low-

level control signals that directly drive the lane datapath. These are inserted into shift

registers with the displacement of read and write µops coinciding exactly with the functional

unit latency. The µops iterate through the elements as they sequentially traverse the banks

cycle by cycle. As demonstrated by the bank execution example in Figure 4.6, this stall-

free systolic schedule sustains n operands per cycle to the shared functional units after an

initial n-cycle latency. Variable-latency functional units instead deposit results into per-bank

queues (BWQs) for decoupled writes, and the sequencer monitors retirement asynchronously.

Vector chaining arises naturally from interleaving µops belonging to different operations.

Vector Memory Unit

The per-lane VMUs are each equipped with a 128-bit interface to the shared L2 cache. This

arrangement delivers high memory bandwidth, albeit with a trade-off of increased latency

that is overcome by decoupling the VMU from the rest of the vector unit. Figure 4.7 outlines

the organization of the VMU.

As a memory operation is issued to the lane, the VMU command queue is populated

with the operation type, vector length, base address, and stride. Address generation for

constant-stride accesses proceeds without VXU involvement. For indexed operations such as

gathers, scatters, and AMOs, the Vector Generation Unit (VGU) reads offsets from the VRF

into the Vector Virtual Address Queue (VVAQ). Virtual addresses are then translated and

deposited into the Vector Physical Address Queue (VPAQ), and the progress is reported to

the VXU. The departure of requests is regulated by the lane sequencer to facilitate restartable
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(b) Cycle 1
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(c) Cycle 2
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(d) Cycle 3
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Figure 4.6: Systolic bank execution of a 2-ary arithmetic operation with a 1-cycle fixed
latency. In cycle i, µop R1 reads the first operand into a buffer at Bank i. In cycle i + 1, µop R2 reads
the second operand into a buffer at Bank i, while R1 simultaneously reads the first operand into a buffer at
Bank i + 1. In cycle i + 2, a crossbar µop (not shown) connects the buffers at Bank i to the two operand
lines feeding the shared functional unit at the bottom. In cycle i + 3, µop W commits the finished result to
Bank i. Thus, the operand supply is fully pipelined after an initial 1-cycle latency.

exceptions.

The address pipeline is assisted by a separate predicate pipeline. Predicates must be ex-

amined to determine whether a page fault is genuine, and are used to derive the store masks.

The VMU supports limited density-time skipping given 2n runs of false predicates [29].

Unit strides represent a very common case for which the VMU is specifically optimized.

The initial address generation and translation occur at a page granularity to circumvent

predicate latency and accelerate the sequencer check. To more fully utilize the available

memory bandwidth, adjacent elements are coalesced into a single request prior to dispatch.

The VMU correctly handles edge cases with base addresses not 128-bit-aligned and irregular

vector lengths not a multiple of the packing density.

The Vector Store Unit (VSU) multiplexes elements read from the VRF banks into the

Vector Store Data Queue (VSDQ). An aligner module following the VSDQ shifts the entries

appropriately for scatters and unit-stride stores with non-ideal alignment.
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The Vector Load Unit (VLU) routes data from the Vector Load Data Queue (VLDQ) to

their respective banks, using a rotation-based permutation network to handle alignment. As

the memory system may arbitrarily order responses, two VLU optimizations become crucial.

The first is an opportunistic writeback mechanism that permits the VRF to accept elements

out of sequence; this reduces latency and area compared to a reorder buffer. The VLU is also

able to simultaneously manage multiple operations to avoid artificial throttling of successive

loads by the VMU.
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Vector Runahead Unit

The Vector Runahead Unit (VRU) takes advantage of the decoupled nature of Hwacha to

hide memory latency through prefetching. The VRU consumes a separate Vector Runa-

head Command Queue (VRCMDQ) ahead of the scalar unit, identifying future vector-fetch

targets and maintaining a runahead copy of the address register file. As it populates the

vector instruction cache with impending vector-fetch blocks, it decodes and pre-executes

unit-strided vector memory operations to refill the L2 cache in anticipation of the actual

requests by the vector lanes. Unlike in other machines, these prefetches are in most cases

non-speculative. Since the address registers and the vector length cannot be changed by the

worker thread, the information provided to the VRU is certain to be accurate.

Multi-lane Configuration

Hwacha is parameterized to support any 2n number of identical lanes. Although the master

sequencer issues operations to all lanes synchronously, each lane executes entirely decoupled

from one another.

To achieve more uniform load-balancing, elements of a vector are striped across the lanes

by a runtime-configurable multiple of the sequencer strip size (the “lane stride”), as shown in

Figure 4.8. This also simplifies the base calculation for memory operations of arbitrary con-

stant stride, enabling the VMU to reuse the existing address generation datapath as a short

iterative multiplier. The striping does introduce gaps in the unit-stride operations performed

by an individual VMU, but the VMU issue unit can readily compensate by decomposing the

vector into its contiguous segments, while the rest of the VMU remains oblivious. Unfavor-

able alignment, however, incurs a modest waste of bandwidth as adjacent lanes request the

same cache line at these segment boundaries. Figure 4.9 illustrates an example.
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Chapter 5

Mixed-Precision Vector Architecture

We extend the baseline vector architecture with a set of High-Occupancy Vector (HOV)

enhancements: automatic subword packing for longer vector lengths and higher-throughput

execution of reduced-precision operations.

5.1 Programming Model

Reconfigurable Vector Register File

Since there are advantages to both longer vectors and more numerous registers, Hwacha treats

the vector register file (VRF) as a fine-grained configurable resource to maximize utilization.

From the control thread, the program indicates the number of architectural registers desired

for the subsequent vector-fetch blocks through the vsetcfg #vv,#vp instruction. The #vv

immediate gives the number of vector data registers from 1 to 256. Similarly, #vp gives the

number of vector predicate registers from 0 to 16; if 0, all vector operations execute uncon-

ditionally. In response, the vector unit repartitions the physical register file and recalculates

the maximum hardware vector length to fill the capacity. Essentially, this provides software

with a mechanism to exchange unused architectural registers for longer hardware vectors.

As a simplified demonstration, Figure 5.1a illustrates one possible mapping of four vector

registers to an 8-entry VRF, yielding an HVL of 2. Halving the set of vector registers then

doubles the HVL to 4, as shown by Figure 5.1b.
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Figure 5.1: Simplified logical view of an 8-entry VRF

1 csaxpy_control_thread_hov:
2 vsetcfg 0, 2, 0, 1
3 vmcs vs1 , a2
4 stripmine:
5 vsetvl t0, a0
6 vmca va0 , a1
7 vmca va1 , a3
8 vmca va2 , a4
9 vf csaxpy_worker_thread

10 add a1, a1, t0
11 slli t1, t0, 2
12 add a3, a3, t1
13 add a4, a4, t1
14 sub a0, a0, t0
15 bnez a0, stripmine
16 ret
17
18 csaxpy_worker_thread:
19 vlb vv0 , (va0)
20 vcmpez vp0 , vv0
21 !vp0 vlw vv0 , (va1)
22 !vp0 vlw vv1 , (va2)
23 !vp0 vfma vv0 , vv0 , vs1 , vv1
24 !vp0 vsw vv0 , (va2)
25 vstop

Figure 5.2: Conditional SAXPY kernels updated for HOV.
Except for the expanded vsetcfg instruction, highlighted in red,
the assembly code is otherwise identical to that of Figure 4.2b.
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HOV introduces another dimension of reconfigurability in the VRF: Apart from specifying

the number of named vector registers, it also allows for selecting their data type widths from

a preset range. The programming model is unaffected except for a singular change to the

vsetcfg instruction. #vv is now decomposed into individual subfields #vvd, #vvw and #vvh,

denoting the number of requested doubleword (64 bit), word (32 bit), and halfword (16 bit)

registers, respectively. Register identifiers are assigned in aggregate by ascending numerical

order; higher addresses correspond to decreasing precision. Given vsetcfg 1,2,4,0, for

example, the program interacts with vv0 as doublewords; vv1 and vv2 as words; and vv3

through vv6 as halfwords.

From this specification, the hardware automatically determines the appropriate register

file mapping, subdivides physical registers as needed into multiple narrower architectural

registers, and extends the hardware vector length in proportion to gains in storage density.

As is apparent in Figure 5.1c, reduced precision leaves vacant space in the high-order bits of

registers. With some rearrangement of elements, of which Figure 5.1d is simply one proposal,

contiguous subword packing permits the HVL to be increased by 1.

The developer effort to embrace this optimization is minimal. For many cases, it suffices

to modify the vsetcfg instructions alone without rewriting any other code. The CSAXPY

kernel, updated for HOV in Figure 5.2, now uses vector registers configured as words in-

stead of doublewords, but it is otherwise identical to the baseline example. For higher-level

programming languages, the compiler’s register allocator performs most of the work.

Overall, this approach offers a cleaner abstraction than subword SIMD to express mixed

precision, particularly in regard to portability. From the perspective of software, architecture

register widths are being readjusted instead of packed elements being exposed; the subword

packing occurs implicitly from the vector register configuration, invisible to the program.

An implementation lacking full mixed-precision support may ignore configuration hints and

still execute the same code, albeit at reduced efficiency.

Portability Considerations

It is the responsibility of the architecture to enforce a minimum set of guarantees to ensure

consistent program behavior across the range of possible vector machine implementations.
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Irrespective of the microarchitectural decision to support subword packing for all, none, or

a subset of precisions, all operations and trap conditions should be reproducible for the

requested vector register file configuration. This concerns, in other words, the ability to exe-

cute HOV code with the same result whether or not subword packing is active at the physical

level. Portability in this sense can be viewed as matters of both functional correctness and

real-world implementation flexibility.

To reason about portability, it is first necessary to distinguish between the size of the

data type, as determined by the opcode (the “precision”), and the size of the enclosing

container (the register “width”).1 Then the portability issue can be reduced to the problem

of determining all legal combinations of precisions and widths for reads and writes. The

original baseline configuration, in which all registers are statically constrained to the largest

architectural width (64 bits), exemplifies maximal flexibility in the sense that registers are

permitted to hold any data of equal or lesser precision. Ideally, in a fully orthogonal model

generalized for multiple widths, the default baseline behavior should manifest naturally as

the degenerate case, not as an isolated special case.

The desire to impose as few restrictions as possible on the placement of data informs

an intuitive maxim: An operation involving a given set of registers is valid if and only if it

causes no unrecoverable loss of information. Rules governing the four possible relationships

between precision and width follow accordingly:

1. Writing higher-precision result to narrower destination: Prohibited on obvious grounds.

2. Writing lower-precision result to wider destination: Permitted; must be accompanied

by sign extension.

3. Reading lower-precision operand from wider source: Permitted; upper bits irrelevant

to the operation itself can be safely discarded, which already occurs implicitly inside

the functional unit.

4. Reading higher-precision operand from narrower destination: Permitted; must be ac-

companied by sign extension.

1In this discussion, the term “register” refers to the individual storage allocated per element, rather than
the entire vector, unless otherwise noted.



33

Most importantly, these enable an implementation to allocate an architecturally narrow

register as a physically wider register without requiring it to emulate the former’s truncation

and sign extension behavior. In other words, the baseline datapath could remain wholly

agnostic to the configuration of the architectural register; the only mandatory task is the

sign extension of a lower-precision result in Case 2, which is exclusively based on the opcode

known a priori by the datapath.

The practice of universal sign extension does occasionally leads to some non-intuitive

situations. Suppose a VLHU instruction (“vector load halfword unsigned”) writes to a vector

register configured as halfwords, and those contents are then stored back to memory with a

VSD (“vector store doubleword”). From the above specification, one might expect the high-

order bits of the doublewords to be sign-extended rather than uniformly cleared. However, if

the implementation elects to physically allocate the vector register in doublewords, the store

data would happen to consist of zero-extended values instead. The contradiction stems from

the fact that the 16-bit load data must be treated as implicitly 17-bit to accurately capture

their unsigned nature. Therefore, Case 1 renders invalid any VLHU with a halfword-sized

destination; the same applies to VLWU and word-sized destinations.

Case 1 more broadly prescribes that conformant implementations, including the baseline

machine if it aims to run HOV code, respect the extended vsetcfg command. Although a

microarchitecture may internally assign all requested halfword-sized and word-sized registers

to doublewords, it must nonetheless trap on invalid instructions as if those registers were of

the intended type.

Polymorphic Instruction Sets

Thus far, it has been assumed that a distinct opcode corresponds to each supported data type

(e.g., VFMADD.D, VFMADD.S, VFMADD.H for double/single/half-precision FMAs, respectively).

One could imagine polymorphic instructions whose input/output precisions are instead de-

termined by the source and destination register specifiers in conjunction with the runtime

configuration of the vector register file.

Orthogonality in the instruction set could therefore be achieved without excessive con-

sumption of opcode space or encoding complexity, an increasingly desirable proposition as
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new mixed-precision operations are added. However, no longer would vector registers be

able to hold values of narrower precision than the configured width, which may significantly

constrain register reuse by a compiler.

We choose not investigate this concept any further here, as it would involve a drastic

overhaul of the vector ISA, and leave it as future work.

5.2 Microarchitecture

The microarchitectural extensions for HOV focus on the modules shaded in Figure 4.4, with

modifications falling into two broad categories:

• Datapath: parallel functional units and subword compaction/extraction logic

• Control: data hazard checking when chaining vector operations of unequal throughput

Register Mapping

The vector register file banks are segmented into doubleword, word, and halfword regions,

with the vector registers interleaved as shown in Figure 5.3. Thus, the starting physical

address of a vector register can be straightforwardly calculated by the sum of the architectural

register identifier and the associated region offset, and traversing the elements in the vector

involves a constant stride equal to the total number of architectural registers of that type.

It is first tempting to assign consecutive element indices to contiguous subwords within a

physical entry, but this naive approach soon fails. Consider an operation which reads from

both a doubleword register (i.e., vv0) and a word register (i.e., vv2). Should the vector

registers be arranged as depicted in Figure 5.4, elements 0 and 1 of vv0 reside in Bank 0

while elements 2 and 3 reside in Bank 1. During each strip, the read µop for vv0 visits Bank

0 for one cycle and then proceeds to Bank 1 in the next, as usual. However, elements 0 to 3

of vv2 are all located in Bank 0. The read µop for vv2 must therefore reserve Bank 0 for two

cycles, retrieving a different half of the same entry each time, and then halt before Bank 1.

For the following strip, elements 4 to 7, the vv2 µop must begin directly at Bank 1 instead,

where it again persists for two cycles.



35

vv0[0]vv0[1]

vv1[1]

vv0[5]

vv1[5]

vv0[9]

vv1[9]

vv0[13]

vv1[13]

vv1[0]

vv0[4]

vv1[4]

vv0[8]

vv1[8]

vv0[12]

vv1[12]

vv2[0]vv2[1]vv2[4]vv2[5]

vv3[0]vv3[1]vv3[4]vv3[5]

vv4[0]vv4[1]vv4[4]vv4[5]

vv2[8]vv2[9]vv2[12]vv2[13]

vv3[8]vv3[9]vv3[12]vv3[13]

vv4[8]vv4[9]vv4[12]vv4[13]

vv5
[0]

vv5
[1]

vv5
[4]

vv5
[5]

vv5
[8]

vv5
[9]

vv5
[12]

vv5
[13]

vv0[2]vv0[3]

vv1[3]

vv0[7]

vv1[7]

vv0[11]

vv1[11]

vv0[15]

vv1[15]

vv1[2]

vv0[6]

vv1[6]

vv0[10]

vv1[10]

vv0[14]

vv1[14]

vv2[2]vv2[3]vv2[6]vv2[7]

vv3[2]vv3[3]vv3[6]vv3[7]

vv4[2]vv4[3]vv4[6]vv4[7]

vv2[10]vv2[11]vv2[14]vv2[15]

vv3[10]vv3[11]vv3[14]vv3[15]

vv4[10]vv4[11]vv4[14]vv4[15]

vv5
[2]

vv5
[3]

vv5
[6]

vv5
[7]

vv5
[10]

vv5
[11]

vv5
[14]

vv5
[15]

Bank 1 Bank 0

Figure 5.3: Actual striped mapping to a 2-bank physical VRF

vv0[0]vv0[1]

vv1[1]

vv0[5]

vv1[5]

vv0[9]

vv1[9]

vv0[13]

vv1[13]

vv1[0]

vv0[4]

vv1[4]

vv0[8]

vv1[8]

vv0[12]

vv1[12]

vv2[0]vv2[1]vv2[2]vv2[3]

vv3[0]vv3[1]vv3[2]vv3[3]

vv4[0]vv4[1]vv4[2]vv4[3]

vv2[8]vv2[9]vv2[10]vv2[11]

vv3[8]vv3[9]vv3[10]vv3[11]

vv4[8]vv4[9]vv4[10]vv4[11]

vv5
[0]

vv5
[1]

vv5
[2]

vv5
[3]

vv5
[4]

vv5
[5]

vv5
[6]

vv5
[7]

vv0[2]vv0[3]

vv1[3]

vv0[7]

vv1[7]

vv0[11]

vv1[11]

vv0[15]

vv1[15]

vv1[2]

vv0[6]

vv1[6]

vv0[10]

vv1[10]

vv0[14]

vv1[14]

vv2[4]vv2[5]vv2[6]vv2[7]

vv3[4]vv3[5]vv3[6]vv3[7]

vv4[4]vv4[5]vv4[6]vv4[7]

vv2[12]vv2[13]vv2[14]vv2[15]

vv3[12]vv3[13]vv3[14]vv3[15]

vv4[12]vv4[13]vv4[14]vv4[15]

vv5
[8]

vv5
[9]

vv5
[10]

vv5
[11]

vv5
[12]

vv5
[13]

vv5
[14]

vv5
[15]

Bank 1 Bank 0

Figure 5.4: Hypothetical naive mapping to a 2-bank physical VRF
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With only one read and write port per bank, the non-uniform pace of µops would lead

to myriad bank conflicts. Circumventing these structural hazards would require generating

unique schedules for each bank, counter to the systolic execution principle. The control

logic would then become quickly intractable. To preserve a regular access schedule, all

elements with the same index should reside within the same bank. This inspires the element-

partitioned scheme demonstrated by Figure 5.3, which stripes elements such that adjacent

slices (pairs of elements) coincide with indices separated by the strip size.

The size of the SRAM arrays remain unchanged. However, the predicate register file is

widened to 8 bits so that all predicates associated with a maximally packed SRAM entry of

eight halfwords are accessible through a single port in one cycle. The predicate mapping is

also striped in the manner above.

Maximum Hardware Vector Length

The maximum hardware vector length depends on the number of SRAM entries across all

banks and lanes in the machine, as well as the number of architectural registers requested

by the program. The extended HVL is calculated with the following formula, implemented

as a lookup table in hardware:

HVL =

⌊
4r

4d+ 2w + h

⌋
× nslices × nbanks × nlanes (5.1)

Variables d, w, and w refer to the desired number of doubleword, word, and halfword vector

registers, respectively. For the default configuration, r = 256 (number of SRAM entries per

bank), nslices = 2, and nbanks = 4. If subword packing is disabled at design elaboration, the

formula reverts to one equivalent to the baseline:

HVL =

⌊
r

d+ w + h

⌋
× nslices × nbanks × nlanes (5.2)

In practice, the HVL is also constrained by the number of predicate registers requested,

but the concomitant widening of the predicate register file, while retaining the same depth,

ensures that this is no more a limiting factor for the HOV design than the baseline.
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Multi-Rate Vector Chaining

Subword parallelism enables a subset of operations to execute at a higher throughput pro-

portional to the packing density. The overall rate of an operation is constrained by the

maximum of the source and destination register widths, as well as by the availability of

parallel functional units for that particular operation. Both the register type and operation

rate are determined during the decode stage and recorded in the master sequencer entry.

Chaining allows vector operations to execute in an interleaved manner. Interim results

may be consumed by subsequent operations without waiting for the entire vector to complete.

Fundamentally, newer and faster operations must be prevented from overtaking older and

slower operations on which a data dependency exists. Comparing the remaining vector

lengths between active sequencer entries is a necessary but not sufficient check: As these

values are updated at time of sequencing rather than commit, the preceding strip may

still be partially in-flight. Although a conservative solution is possible by maintaining a

separation greater than a strip between dependent operations, this injects excessive dead

cycles and significantly degrades the performance gains of chaining.

To facilitate closer scheduling of successive operations, the sequencer additionally ex-

amines the expander queues for pending write µops. The baseline implementation detects

hazards by searching for collisions in the physical register addresses. This method remains

correct in the multi-rate case, but it is suboptimal as it unnecessarily prohibits strips from

simultaneously working on disjoint parts of the same SRAM entries—circumstances which

may be likened to false sharing.

The HOV implementation instead uses a finer-grained interval check to determine any

overlaps between strips. Expander µops are tagged with a starting strip index, denoted t,

and rate information, denoted r ∈ {1, 2, 4}. Given a valid expander entry, its strip interval is

delineated by t and t′ = t+rexp, the ending strip index. Analogously define s and s′ = s+rseq

for the sequencer operation to be next issued. Since an operation always progresses by r strips

whenever sequenced, the starting strip indices are always some multiple of r. This eliminates

any possibilities of a partial overlap: Either [s, s′) entirely contains [t, t′) if rexp ≤ rseq, or

vice-versa. The checking logic therefore simplifies to:

(s ≤ t ∧ t′ ≤ s′) ∨ (t ≤ s ∧ s′ ≤ t′) (5.3)
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which asserts whenever a hazard (overlap) exists.

Comparators constitute the primary hardware cost of this scheme. The comparison must

be performed for every sequencer entry against every expander entry. As an optimization,

less expensive identity comparators can replace two magnitude comparators in each check;

given the signal a ≤ b, its mirror signal b ≤ a can be obtained by (a = b) ∨ (¬(a ≤ b)).

Compaction/Extraction Logic

At the interface between the register file and the rest of the lane datapath, bank read/write

µops use the register type and rate information to unpack operands and repack results. A

read can be viewed as a transformation between an “input” format based on type—how

subwords are packed in a physical register—and an “output” format based on rate—how

the functional units expects sign-extend subwords to be positioned. A write is essentially

the inverse transformation. There exist six valid combinations of (type, rate): (d, 1), (w, 1),

(w, 2), (h, 1), (h, 2), and (h, 4). Of these, three are degenerate “pass-through” cases where

the type and rate match, and the contents are conveyed unaltered.

The unpack module consists of a right shift based on the subword index, followed by

extraction and sign extension appropriate for the type/rate combination. This corresponds

to approximately four levels of 2:1 multiplexers. As the logic sits between the SRAM read

port and the operand buffers, care must be taken to not impact the SRAM critical path.

The repack module, inserted after the result crossbar, performs the reverse maneuver:

concatenation of the properly sign-extended results followed by a left shift. Identical logic also

resides in the decoupled functional units (i.e., VFU2 and VSU). As these use an alternative

writeback path through the BWQs, they must be aware of subword addressing scheme.

Functional Units

To enable full throughput, two more single-precision and six more half-precision FMA units

are instantiated in both FMA0 and FMA1. Additionally, there are two more half-to-single

and two more single-to-half floating-point conversion units in FConv. The integer ALUs

local to each bank are appropriately partitioned, and the 1 b PLUs are replicated six more

times to match the widened predicate register file.
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Chapter 6

Evaluation Framework

This section outlines how we evaluate HOV against the baseline Hwacha design, and validate

our decoupled vector-fetch architecture against a commercial GPU that can run OpenCL

kernels. The evaluation framework used in this study is described in Figure 6.1. The high-

level objective of our evaluation framework is to compare realistic performance, power/en-

ergy, and area numbers using detailed VLSI layouts and compiled OpenCL kernels, not only

hand-tuned assembly code.

As a first step towards that goal, we wrote a set of OpenCL microbenchmarks for the

study (see Section 6.1), and developed our own LLVM-based scalarizing compiler that can

generate code for the Hwacha vector-fetch assembly programming model (see Section 6.2).

These microbenchmarks are compiled with our custom compiler and ARM’s stock compiler.

We then selected realistic parameters for the Rocket Chip SoC generator to match the

Samsung Exynos 5422 SoC, which has an ARM Mali-T628 MP6 GPU. We chose that specific

SoC because it ships with the ODROID-XU3 development board that has instrumentation

capabilities to separately measure power consumption of the Mali GPU (see Section 6.3 for

more details). We synthesize and place-and-route both Hwacha designs (the baseline and

HOV) in a commercial 28 nm process akin to the 28 nm high-κ metal gate (HKMG) process

used to fabricate the Exynos 5422, and run the compiled microbenchmarks on both gate-level

simulators to obtain accurate switching activities and performance numbers (see Section 6.4

for more details). The switching activities are then combined with the VLSI layout to

generate accurate power/energy numbers. These numbers are subsequently compared against
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Figure 6.1: Hwacha evaluation framework

each other, but are also validated against ARM Mali performance and power/energy numbers

obtained from the ODROID-XU3 board. Due to time constraints, we were only able to push

through single-lane configurations for both baseline and HOV designs.

6.1 Microbenchmarks

For the study, we wrote four types of OpenCL kernels in four different precisions. Table 6.1

lists all microbenchmarks.

The microbenchmarks are named with a prefix and a suffix. The suffixes denote the type

of the kernel: axpy for y ← ax + y, a scaled vector accumulation; gemm for dense matrix-

matrix multiplication; and filter for a Gaussian blur filter, which computes a stencil over an

image. The mask versions of filter accept an additional input array determining whether to
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Kernel Mixed-Precision Predication

{s,d}axpy
{hs,sd}axpy X

{s,d}gemm
{hs,sd}gemm X

{s,d}gemm-opt
{hs,sd}gemm-opt X

{s,d}filter
{hs,sd}filter X

mask-{s,d}filter X
mask-{hs,sd}filter X X

Table 6.1: Listing of all microbenchmarks

compute that point, thus exercising predication. For reference, we also wrote hand-optimized

versions of gemm-opt in order to gauge the code generation quality of our custom OpenCL

compiler. For C ← A×B, gemm-opt loads unit-strided vectors of C into the vector register

file, keeping them in place while striding through the A and B matrices. The values from B

are unit-stride vectors; the values from A reside in scalar registers.

The prefix denotes the precision of the operands: h, s and d for half-, single-, and double-

precision, respectively. sd signifies that the benchmark’s inputs and outputs are in single-

precision, but the intermediate computation is performed in double-precision. Similarly, hs

signifies that the inputs and outputs are in half-precision, but the computation is performed

in single-precision.

6.2 OpenCL Compiler

We developed an OpenCL compiler based on the PoCL OpenCL runtime [30] and a custom

LLVM [31] backend. The main challenges in generating Hwacha vector code from OpenCL

kernels are moving thread-invariant values into scalar registers [32]–[34], identifying stylized

memory access patterns, and using predication effectively [35]–[37]. Thread-invariance is

determined using the variance analysis presented in [34], and is performed at both the LLVM

IR level and machine instruction level. This promotion to scalar registers avoids redundant

values being stored in vector registers, improving register file utilization. In addition to
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scalarization, thread invariance can be used to drive the promotion of loads and stores to

constant or unit-strided accesses. Performing this promotion is essential to the decoupled

architecture because it enables prefetching of the vector loads and stores.

To fully support OpenCL kernel functions, the compiler must also generate predicated

code for conditionals and loops. Generating efficient predication without hardware diver-

gence management requires additional compiler analyses. The current compiler has limited

predication support, but we plan to soon generalize it for arbitrary control flow, based on [37].

Collecting energy results on a per-kernel basis requires very detailed, hence time-consuming,

simulations. This presents a challenge for evaluating OpenCL kernels, which typically make

heavy use of the OpenCL runtime and online compilation. Fortunately, OpenCL supports

offline compilation, which we rely upon to avoid simulating the compiler’s execution. To

obviate the remaining runtime code, we augmented our OpenCL runtime with the ability to

record the inputs and outputs of the kernels. Our runtime also generates glue code to push

these inputs into the kernel code and, after execution, to verify that the outputs match. The

effect is that only the kernel code of interest is simulated with great detail, substantially

reducing simulation runtime.

6.3 Samsung Exynos 5422 and the ARM Mali-T628

MP6 GPU

Figure 6.2 shows the block diagram of the Samsung Exynos 5422 SoC. The quad Cortex-A15

complex, quad Cortex-A7 complex, and the ARM Mali-T628 MP6 are connected through

the CCI-400 cache coherent interconnect to talk to two LPDDR3 channels of 1 GB running

at 933 MHz [38], [39]. Table 6.2 presents the specific Rocket Chip SoC generator parameters

chosen to match the Samsung Exynos 5422 SoC.

The Mali-T628 MP6 GPU has six shader cores (termed MPs, or multiprocessors) that

run at 600 MHz, exposed as two sets of OpenCL devices. Without explicitly load balancing

the work on these two devices by software, the OpenCL kernel can either only run on the

two shader core device or on the four shader core device. We first run the microbenchmarks

on the two shader core device, called Mali2, and again on the four shader core device, called
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Figure 6.2: Samsung Exynos 5422 block diagram

Mali4. Each shader core has four main pipes: two arithmetic pipes, one load/store pipe with

a 16 KB data cache, one texture pipe with a 16 KB texture cache. Threads are mapped to

either arithmetic pipe, which is a 128-bit wide VLIW SIMD execution pipeline. The compiler

needs to pack three instructions per very long instruction word. The three instruction slots

are a 32-bit scalar FMA (fused multiply add) unit, a 128-bit SIMD unit (which supports two

64-bit FMAs, four 32-bit FMAs, or eight 16-bit FMAs), and a 128-bit SFU (special functional

unit) unit for dot products and transcendentals. Each shader core has an associated 32 KB

of L2 cache, making the total capacity 192 KB. Further details on the Mali architecture and

how the L2 cache is split among these two devices are sparse; however, [40] and [41] provide

some insight into the organization of Mali.

To measure power consumption of the various units, we sample the current through three

separate power rails, distinguishing the power consumption of the CPU complex, the GPU,
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Component Settings

Hwacha vector unit baseline/HOV, 1/2/4 lanes
Hwacha L1 vector inst cache 4 KB, 2-ways
Rocket L1 data cache 16 KB, 4 ways
Rocket L1 inst cache 16 KB, 4 ways
L2 Cache 256 KB/bank, 8 ways, 4 banks
Cache coherence MESI protocol

directory bits in L2$ tags
DRAMSim2 LPDDR3, 933 MHz

1 GB/channel, 2 channels

Table 6.2: Used Rocket Chip SoC generator parameters

and the memory system. We average these samples over the kernel execution, and use the

average power and kernel runtime to compute the energy consumed by the Mali GPU during

kernel execution. We examine this comparison in detail in the next section.

One MP possesses approximately the same arithmetic throughput as one Hwacha vector

lane with mixed-precision support. Each vector lane is 128 bits wide, and has two vector

functional units that each support two 64-bit FMAs, four 32-bit FMAs, or eight 16-bit FMAs.

6.4 RTL Development and VLSI Flow

The Hwacha RTL is written in Chisel [23], a domain-specific hardware description language

embedded in the Scala programming language. Because Chisel is embedded in Scala, hard-

ware developers can apply Scala’s modern programming language features, such as param-

eterized types and object-oriented and functional programming, for increased productivity.

Chisel generates both a cycle-accurate software model as well as synthesizable Verilog that

can be mapped to standard FPGA or ASIC flows. We also use a custom random instruction

generator tool to facilitate verification of the vector processor RTL.

We use the Synopsys physical design flow (Design Compiler, IC Compiler) to map the

Chisel-generated Verilog to a standard cell library and memory-compiler-generated SRAMs

in a widely used commercial 28 nm process technology, chosen for similarity with the 28 nm

HKMG process in which the Exynos 5422 is fabricated. We use eight layers out of ten
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for routing, leaving two for the top-level power grid. The flow is highly automated to

enable quick iterations through physical design variations. When coupled with the flexibility

provided by Chisel, this flow allows a tight feedback loop between physical design and RTL

implementation. The rapid feedback is vital for converging on a decent floorplan to obtain

acceptable quality of results: A week of physical design iteration produced approximately

100 layouts and around a 50% clock frequency increase when tuning the single-lane design.

We measure power consumption of the design using Synopsys PrimeTime PX. Parasitic

RC constants for every wire in the gate-level netlist are computed using the TLU+ models.

Each microbenchmark is executed in gate-level simulation to produce activity factors for

every transistor in each design. The combination of activity factors and parasitics are fed

into PrimeTime PX to produce an average power number for each benchmark run. We derive

energy dissipation for each benchmark from the product of average power and runtime (i.e.,

cycle count divided by implementation clock rate).
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Chapter 7

Preliminary Evaluation Results

We compare the HOV design against the baseline Hwacha design in terms of area, perfor-

mance, and energy dissipation to observe the impact of our mixed-precision extensions. After

validating our simulated memory system against that of the Exynos 5422 SoC, we use our

OpenCL microbenchmark suite to compare the two Hwacha implementations to the ARM

Mali-T628 MP6 GPU.

Due to time constraints, only the single-lane Hwacha configurations have been fully eval-

uated. Consequently, it must be noted that the comparisons against the Mali2 and Mali4

devices were not perfectly fair from Hwacha’s perspective, given that the former have the

advantage of twice and quadruple the number of functional units, respectively. Nevertheless,

the results are encouraging in light of this fact, although they should be considered still

preliminary, as there remain substantial opportunities to tune the benchmark code for either

platform.

7.1 Memory System Validation

We configure DRAMSim2 [25] with timing parameters from a Micron LPDDR3 part to

match those of the dual-channel 933 MHz LPDDR3 modules on the Samsung Exynos 5422

SoC. We then use ccbench to empirically confirm that our simulated memory hierarchy is

similar to that of the Exynos 5422. The ccbench benchmarking suite [42] contains a variety

of benchmarks to characterize multi-core systems. We use ccbench’s caches benchmark,
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Figure 7.1: ccbench “caches” memory system benchmark

which performs a pointer chase to measure latencies of each level of the memory hierarchy.

Figure 7.1 compares the performance of our cycle-accurate simulated memory hierarchy

against the Exynos 5422. On the simulated Rocket core, ccbench measures cycles, normal-

ized to nanoseconds by assuming the 1 GHz clock frequency attained by previous silicon

implementations of Rocket [22]. On the Exynos 5422, ccbench measures wall-clock time.

This comparison reveals that our simulated system and the Exynos 5422 match closely

in terms of both cache latency and LPDDR3 latency. On both a 1 GHz Rocket and a 2 GHz

ARM Cortex-A15, the L1 hit latency is approximately 4 cycles, and the L2 hit latency is

approximately 22 cycles. The simulated LPDDR3 used in our experiments and the LPDDR3

in the Exynos 5422 exhibit similar latencies of approximately 110 ns.

Nevertheless, one significant difference remains in the inclusion of a streaming prefetcher

within the Cortex-A15, which reduces the latency of unit-stride and non-unit-stride loads

and stores [43].
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7.2 Area and Cycle Time

Table 7.1 lists the clock frequencies and total area numbers obtained for a variety of Hwacha

configurations. Figure 7.2 shows the layout for the single-lane HOV design.

Recall that Mali2 is clocked at 600 MHz but contain approximately twice the number

of functional units. To attempt to match functional unit bandwidth, we target Hwacha for

a nominal frequency of 1.2 GHz. While actual frequencies fall slightly short of the ideal,

they are still generally above 1 GHz. However, the aggressive physical design does involve a

trade-off in area.

As seen in Figure 7.3, the area overhead for the HOV extensions spans from 4.0% in

the single-lane design to 12.5% in the four-lane design. The additional functional units

account for a large portion of the increase. The banks also become somewhat larger from

the widening of the predicate register file, as does the control due to the non-trivial amount

of comparators needed to implement the expander hazard check in the sequencers.

Table 7.1: VLSI quality of results. Columns not marked as “PAR” are results from synthesis.

Hwacha Hwacha + HOV

Lanes 1 1 2 4 1 1 2 4
mm2 2.11 2.23 2.60 3.59 2.21 2.32 2.82 4.04

ns 0.90 0.95 0.93 0.93 0.94 0.98 1.02 1.08
GHz 1.11 1.05 1.08 1.08 1.06 1.02 0.98 0.93

PNR? X X
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(a) Tile: Rocket and Hwacha

(b) Uncore: L2 cache and interconnect

Figure 7.2: Layout of the single-lane Hwacha design with HOV
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7.3 Performance Comparison

For the set of hand-optimized assembly and OpenCL benchmarks, Figure 7.4 graphs the

speedup normalized to baseline Hwacha running the OpenCL versions. Compared to Mali2,

Hwacha suffers from a slight disadvantage in functional unit bandwidth from being clocked

closer to 1 GHz rather than the ideal 1.2 GHz. Compared to Mali4, Hwacha has less than

half the functional unit bandwidth.

For *axpy, HOV has a marginal effect on performance. As a streaming kernel, it is primar-

ily memory-constrained and therefore benefits little from the higher arithmetic throughput

offered by HOV. *axpy is also the only set of benchmarks in which Mali2 and Mali4 consis-

tently outperforms Hwacha by a factor of 1.5 to 2. This disparity most likely indicates some

low-level mismatches in the outer memory systems of Mali and our simulated setup—for

example, in the memory access scheduler. We used the default parameters for the memory

access scheduler that were shipped with the DRAMSim2 project.

The benefits of HOV become clearer with *gemm as it is more compute-bound, and more

opportunities for in-register data reuse arise. As expected for dgemm* and sdgemm*, no

difference in performance is observed between the baseline and HOV, since the two designs

possess the same number of double-precision FMA units. A modest speedup is seen with

sgemm-unroll, although still far from the ideal factor of 2 given the single-precision FMA

throughput. Curiously, HOV achieves almost no speedup on sgemm-unroll-opt. It is possi-

ble that the matrices are simply too undersized for the effects to be major. hgemm* and

hsgemm* demonstrate the most dramatic improvements; however, the speedup is sublinear

since, with the quadrupled arithmetic throughput, memory latency becomes more problem-

atic per Amdahl’s law.

A significant gap is apparent between the OpenCL and hand-optimized versions of the

same benchmarks. The primary reason is that the latter liberally exploits inter-vector-fetch

optimizations whereby data is retained in the vector register file and reused across vector

fetches. It is perhaps a fundamental limitation of the programming model that prevents this

behavior from being expressed in OpenCL, resulting in redundant loads and stores at the

beginning and end of each vector fetch block.

For all precisions of *gemm, Mali2 performs surprisingly poorly, by a factor of 3 or 4
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slowdown relative to the Hwacha baseline. Mali4 performs about 2× better than Mali2,

however, is still slower than the Hwacha baseline. We speculate that the working set is

simply unable to fit in cache. Thus, this particular run should not be considered to be

entirely fair.

Finally, the baseline and HOV perform about equivalently on *filter. A slight improve-

ment is discernible for sfilter and mask-filter, and a more appreciable speedup is evident with

hsfilter and mask-hsfilter. The performance of Mali2 is generally about half that of Hwacha,

and Mali4 is on par with Hwacha.
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Figure 7.4: Preliminary performance results. (Higher is better.) Due to scale, bars for certain benchmarks have been
truncated. sdgemm-unroll-opt has speedups 14.0× on the baseline and 13.8× on HOV. hsgemm-unroll-opt has speedups
12.0× on the baseline and 19.0× on HOV.
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7.4 Energy Comparison

Figure 7.5 graphs the energy consumption for each benchmark, normalized once again to

the baseline Hwacha results for the OpenCL versions. Note that the Mali GPU runs on a

supply voltage of 0.9 V, whereas we overdrive Hwacha with a 1 V supply to meet a 1 GHz

frequency target.

For *axpy, HOV dissipates slightly more energy than the baseline, with dynamic energy

from the functional units comprising most of the difference. In other benchmarks as well, the

functional units account for a higher proportion of losses in HOV, which may indicate sub-par

effectiveness of clock gating with the extra functional units. Consistent with its performance

advantage, Mali2 and Mali4 are twice as energy-efficient on *axpy than Hwacha.

The results for *gemm are much more varied. Although HOV is less energy-efficient

than the baseline on benchmarks for which it can provide no performance advantage, such

as dgemm, it is more so on sgemm, hsgemm, and hgemm. These collectively demonstrate a

consistent downward trend of increasingly significant reductions in energy consumption as

the precision is lowered. Mali data points are again an outlier here, and no conclusion should

be drawn.

Energy dissipation on *filter generally mirrors performance. Overall, HOV is slightly

worse than the baseline except on hsfilter. Mali similarly retains an advantage as it does

with performance, with some exceptions involving reduced-precision computation, i.e., both

masked and non-masked versions sfilter and hsfilter. On these, the energy efficiency of HOV

is on par with Mali2 and worse when compared to Mali4.
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Chapter 8

Conclusion

We have presented HOV, a decoupled mixed-precision vector architecture that supports

seamless dynamic configuration of multiple architectural register widths and operations on

packed data. HOV is an efficient, systematic approach to mixed-precision computation

that maintains software compatibility across a wide range of implementation choices. We

gauge the performance and energy efficiency gains from these enhancements by executing

compiled OpenCL kernels and hand-tuned microbenchmarks on VLSI implementations with

and without mixed-precision support. Validation of the VLSI implementations against an

ARM Mali GPU demonstrates that our vector architecture is competitive to commercial

designs.

Existing data-parallel architectures, including subword SIMD, can support mixed-precision

operations, but only by adding new opcodes, packing narrow datatypes inefficiently, or

spreading wider types across multiple registers, reducing the effective number of architec-

tural registers. Yet these approaches are suboptimal compared to specifying the precision

information with a simple vsetcfg instruction.

In our future work, we plan to add widening functional units to avoid extra conversion

operations and reduce functional unit energy and latency. We are also interested in exploring

tools that automatically determine the appropriate floating-point precision based on values

observed at runtime, which would relieve programmers of some of the effort of manually

determining precisions for all data.
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for vector machines,” in 37th Annual International Symposium on Microarchitecture,
(Portland, OR, USA, Dec. 4–8, 2004), IEEE Computer Society, 2004, pp. 331–342.
doi: 10.1109/MICRO.2004.9.

[29] J. E. Smith, G. Faanes, and R. A. Sugumar, “Vector instruction set support for condi-
tional operations,” in 27th International Symposium on Computer Architecture, (Van-
couver, BC, Canada, Jun. 10–14, 2000), A. D. Berenbaum and J. S. Emer, Eds., IEEE
Computer Society, 2000, pp. 260–269. doi: 10.1109/ISCA.2000.854396.
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