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1 Introduction

This work-in-progress document presents preliminary Hwacha evaluation results. We first discuss

the details of our evaluation framework. Using this framework, we compare a baseline Hwacha de-

sign to a Hwacha design with mixed-precision support to see how it affects performance, power/energy,

and area. For the discussion, we name the Hwacha machine with mixed-precision support, high-

occupancy vector lanes, or HOV. Obviously, this is not the only experiment we can run (consult

the Hwacha microarchitecture manual for Hwacha parameters that we can change), however, it

serves as a good example for the purpose of this document. We also validate the Hwacha design

against the ARM Mali-T628 MP6 GPU by running a suite of microbenchmarks compiled from the

same OpenCL source code using our custom LLVM-based scalarizing compiler and the ARM stock

compiler.
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2 Evaluation Framework

This section outlines how we evaluate HOV against the baseline Hwacha design, and validate our

decoupled vector-fetch architecture against a commercial GPU that can run OpenCL kernels. The

evaluation framework used in this study is described in Figure 1. The high-level objective of our

evaluation framework is to compare realistic performance, power/energy, and area numbers using

detailed VLSI layouts and compiled OpenCL kernels, not only hand-tuned assembly code.

As a first step towards that goal, we wrote a set of OpenCL microbenchmarks for the study (see

Section 2.1), and developed our own LLVM-based scalarizing compiler that can generate code for

the Hwacha vector-fetch assembly programming model (see Section 2.2). These microbenchmarks

are compiled with our custom compiler and ARM’s stock compiler. We then selected realistic

parameters for the Rocket Chip SoC generator to match the Samsung Exynos 5422 SoC, which has

an ARM Mali-T628 MP6 GPU. We chose that specific SoC because it ships with the ODROID-XU3

development board that has instrumentation capabilities to separately measure power consumption

of the Mali GPU (see Section 2.3 for more details). We synthesize and place-and-route both Hwacha

designs (the baseline and HOV) in a commercial 28 nm process resembling the 28 nm high-κ metal

gate (HKMG) process used to fabricate the Exynos 5422, and run the compiled microbenchmarks

OpenCL Microbenchmarks

Chisel

Synthesis
Place&Route

Gate-Level
Simulator

Scalarizing
Compiler

ARM Stock
Compiler

RISC-V/Hwacha
ELF

ARM/Mali
ELF

Hwacha RTL

Verilog

Gate-Level
Model

Switching
Activity Cycles

Power/Energy
Analysis

Power/Energy

Layout

ARM Mali
T628 MP6

CyclesPower/Energy

Figure 1: Hwacha Evaluation Framework.
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Kernel Mixed-Precision Predication

{s,d}axpy
{hs,sd}axpy X

{s,d}gemm
{hs,sd}gemm X

{s,d}gemm-opt
{hs,sd}gemm-opt X

{s,d}filter
{hs,sd}filter X

mask-{s,d}filter X
mask-{hs,sd}filter X X

Table 1: A listing of the microbenchmarks used.

on both gate-level simulators to obtain accurate switching activities and performance numbers (see

Section 2.4 for more details). The switching activities are then combined with the VLSI layout to

generate accurate power/energy numbers. These numbers are subsequently compared against each

other, but are also validated against ARM Mali performance and power/energy numbers obtained

from the ODROID-XU3 board. Due to time constraints, we were only able to push through single-

lane configurations for both baseline and HOV designs.

2.1 Microbenchmarks

For the study, we wrote four types of OpenCL kernels in four different precisions. Table 1 lists all

microbenchmarks.

The microbenchmarks are named with a prefix and a suffix. The suffixes denote the type of

the kernel: axpy for y ← ax + y, a scaled vector accumulation; gemm for dense matrix-matrix

multiplication; and filter for a Gaussian blur filter, which computes a stencil over an image.

The mask versions of filter accept an additional input array determining whether to compute

that point, thus exercising predication. For reference, we also wrote hand-optimized versions of

gemm-opt in order to gauge the code generation quality of our custom OpenCL compiler. For

C← A×B, gemm-opt loads unit-strided vectors of C into the vector register file, keeping them in

place while striding through the A and B matrices. The values from B are unit-stride vectors; the

values from A reside in scalar registers.

The prefix denotes the precision of the operands: h, s and d for half-, single-, and double-

precision, respectively. sd signifies that the benchmark’s inputs and outputs are in single-precision,

but the intermediate computation is performed in double-precision. Similarly, hs signifies that the

inputs and outputs are in half-precision, but the computation is performed in single-precision.
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2.2 OpenCL Compiler

We developed an OpenCL compiler based on the PoCL OpenCL runtime [10] and a custom LLVM [12]

backend. The main challenges in generating Hwacha vector code from OpenCL kernels are moving

thread-invariant values into scalar registers [17, 8, 14], identifying stylized memory access patterns,

and using predication effectively [11, 9, 13]. Thread-invariance is determined using the variance

analysis presented in [14], and is performed at both the LLVM IR level and machine instruction

level. This promotion to scalar registers avoids redundant values being stored in vector registers,

improving register file utilization. In addition to scalarization, thread invariance can be used to drive

the promotion of loads and stores to constant or unit-strided accesses. Performing this promotion is

essential to the decoupled architecture because it enables prefetching of the vector loads and stores.

To fully support OpenCL kernel functions, the compiler must also generate predicated code for

conditionals and loops. Generating efficient predication without hardware divergence management

requires additional compiler analyses. The current compiler has limited predication support, but we

plan to soon generalize it for arbitrary control flow, based on [13].

Collecting energy results on a per-kernel basis requires very detailed, hence time-consuming,

simulations. This presents a challenge for evaluating OpenCL kernels, which typically make heavy

use of the OpenCL runtime and online compilation. Fortunately, OpenCL supports offline compi-

lation, which we rely upon to avoid simulating the compiler’s execution. To obviate the remaining

runtime code, we augmented our OpenCL runtime with the ability to record the inputs and outputs

of the kernels. Our runtime also generates glue code to push these inputs into the kernel code and,

after execution, to verify that the outputs match. The effect is that only the kernel code of interest is

simulated with great detail, substantially reducing simulation runtime.

2.3 Samsung Exynos 5422 and the ARM Mali-T628 MP6 GPU

Figure 2 shows the block diagram of the Samsung Exynos 5422 SoC. The quad Cortex-A15 com-

plex, quad Cortex-A7 complex, and the ARM Mali-T628 MP6 are connected through the CCI-400

cache coherent interconnect to talk to two LPDDR3 channels of 1 GB running at 933 MHz [3, 2].

Table 2 presents the specific Rocket Chip SoC generator parameters we chose to match the Samsung

Exynos 5422 SoC.

The Mali-T628 MP6 GPU has six shader cores (termed MPs, or multiprocessors) that run at

600 MHz, exposed as two sets of OpenCL devices. Without explicitly load balancing the work

on these two devices by software, the OpenCL kernel can either only run on the two shader core

device or on the four shader core device. We first run the microbenchmarks on the two shader core

device, named Mali2, and again on the four shader core device, named Mali4. Each shader core

has four main pipes: two arithmetic pipes, one load/store pipe with a 16 KB data cache, one texture

pipe with a 16 KB texture cache. Threads are mapped to either arithmetic pipe, which is a 128-bit
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4xSFMA
8xHFMA

32-bit
Scalar
ALU

1xSFMA

128-bit SFU
7 SFLOP/cycle

Figure 2: Exynos 5422 Block Diagram.

wide VLIW SIMD execution pipeline. The compiler needs to pack three instructions per very long

instruction word. The three instruction slots are a 32-bit scalar FMA (fused multiply add) unit, a

128-bit SIMD unit (which supports two 64-bit FMAs, four 32-bit FMAs, or eight 16-bit FMAs),

and a 128-bit SFU (special functional unit) unit for dot products and transcendentals. Each shader

Component Settings

Hwacha vector unit baseline/HOV, 1/2/4 lanes
Hwacha L1 vector inst cache 4 KB, 2-ways

Rocket L1 data cache 16 KB, 4 ways
Rocket L1 inst cache 16 KB, 4 ways

L2 Cache 256 KB/bank, 8 ways, 4 banks
Cache coherence MESI protocol,

directory bits in L2$ tags

DRAMSim2 LPDDR3, 933 MHz,
1 GB/channel, 2 channels

Table 2: Used Rocket Chip SoC generator parameters.
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core has an associated 32 KB of L2 cache, making the total capacity 192 KB. Further details on the

Mali architecture and how the L2 cache is split among these two devices are sparse; however, [1]

and [4] provide some insight into the organization of Mali.

To measure power consumption of the various units, we sample the current through three sep-

arate power rails, distinguishing the power consumption of the CPU complex, the GPU, and the

memory system. We average these samples over the kernel execution, and use the average power

and kernel runtime to compute the energy consumed by the Mali GPU during kernel execution. We

examine this comparison in detail in the next section.

One MP possesses approximately the same arithmetic throughput as one Hwacha vector lane

with mixed-precision support. The Hwacha vector lane is 128 bits wide, and has two vector func-

tional units that each support two 64-bit FMAs, four 32-bit FMAs, or eight 16-bit FMAs.

2.4 RTL Development and VLSI Flow

The Hwacha RTL is written in Chisel [6], a domain-specific hardware description language embed-

ded in the Scala programming language. Because Chisel is embedded in Scala, hardware developers

can apply Scala’s modern programming language features, such as parameterized types and object-

oriented and functional programming, for increased productivity. Chisel generates both a cycle-

accurate software model as well as synthesizable Verilog that can be mapped to standard FPGA or

ASIC flows. We also use a custom random instruction generator tool to facilitate verification of the

vector processor RTL.

We use the Synopsys physical design flow (Design Compiler, IC Compiler) to map the Chisel-

generated Verilog to a standard cell library and memory-compiler-generated SRAMs in a widely

used commercial 28 nm process technology, chosen for similarity with the 28 nm HKMG process

in which the Exynos 5422 is fabricated. We use eight layers out of ten for routing, leaving two for

the top-level power grid. The flow is highly automated to enable quick iterations through physical

design variations. When coupled with the flexibility provided by Chisel, this flow allows a tight

feedback loop between physical design and RTL implementation. The rapid feedback is vital for

converging on a decent floorplan to obtain acceptable quality of results: A week of physical design

iteration produced approximately 100 layouts and around a 50% clock frequency increase when

tuning the single-lane design.

We measure power consumption of the design using Synopsys PrimeTime PX. Parasitic RC

constants for every wire in the gate-level netlist are computed using the TLU+ models. Each mi-

crobenchmark is executed in gate-level simulation to produce activity factors for every transistor

in each design. The combination of activity factors and parasitics are fed into PrimeTime PX to

produce an average power number for each benchmark run. We derive energy dissipation for each

benchmark from the product of average power and runtime (i.e., cycle count divided by implemen-

tation clock rate).
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3 Preliminary Evaluation Results

We compare the HOV design against the baseline Hwacha design in terms of area, performance, and

energy dissipation to observe the impact of our mixed-precision extensions. After validating our

simulated memory system against that of the Exynos 5422 SoC, we use our OpenCL microbench-

mark suite to compare the two Hwacha implementations to the ARM Mali-T628 MP6 GPU.

Due to time constraints, only the single-lane Hwacha configurations have been fully evaluated.

Consequently, it must be noted that the comparisons against the Mali2 and Mali4 devices were not

perfectly fair from Hwacha’s perspective, given that the former have the advantage of twice and

quadruple the number of functional units, respectively. Nevertheless, the results are encouraging in

light of this fact, although they should be considered still preliminary, as there remain substantial

opportunities to tune the benchmark code for either platform.

3.1 Memory System Validation

We configure DRAMSim2 [16] with timing parameters from a Micron LPDDR3 part to match those

of the dual-channel 933 MHz LPDDR3 modules on the Samsung Exynos 5422 SoC. We then use

ccbench to empirically confirm that our simulated memory hierarchy is similar to that of the Exynos

5422. The ccbench benchmarking suite [7] contains a variety of benchmarks to characterize multi-

core systems. We use ccbench’s caches benchmark, which performs a pointer chase to measure

latencies of each level of the memory hierarchy.

Figure 3 compares the performance of our cycle-accurate simulated memory hierarchy against

the Exynos 5422. On the simulated RISC-V Rocket core, ccbench measures cycles, normalized to

nanoseconds by assuming the 1 GHz clock frequency attained by previous silicon implementations

of Rocket [15]. On the Exynos 5422, ccbench measures wall-clock time.

This comparison reveals that our simulated system and the Exynos 5422 match closely in terms
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of both cache latency and LPDDR3 latency. On both a 1 GHz Rocket and a 2 GHz ARM Cortex-

A15, the L1 hit latency is approximately 4 cycles, and the L2 hit latency is approximately 22 cycles.

The simulated LPDDR3 used in our experiments and the LPDDR3 in the Exynos 5422 exhibit

similar latencies of approximately 110 ns.

Nevertheless, one significant difference remains in the inclusion of a streaming prefetcher within

the Cortex-A15, which reduces the latency of unit-stride and non-unit-stride loads/stores [5].

3.2 Area and Cycle Time

Table 3 lists the clock frequencies and total area numbers obtained for a variety of Hwacha config-

urations. Figure 4 shows the layout for the single-lane HOV design.

Recall that Mali2 is clocked at 600 MHz but contain approximately twice the number of func-

tional units. To attempt to match functional unit bandwidth, we target Hwacha for a nominal fre-

quency of 1.2 GHz. While actual frequencies fall slightly short, they are still generally above 1 GHz.

However, the aggressive physical design does involve a trade-off in area.

As seen in Figure 5, the area overhead for the HOV extensions spans from 4.0% in the single-

lane design to 12.5% in the four-lane design. The additional functional units account for a large

portion of the increase. The banks also become somewhat larger from the widening of the predicate

register file, as does the control due to the non-trivial amount of comparators needed to implement

the expander hazard check in the sequencers.

Hwacha Hwacha + HOV

Lanes 1 1 2 4 1 1 2 4
mm2 2.11 2.23 2.60 3.59 2.21 2.32 2.82 4.04

ns 0.90 0.95 0.93 0.93 0.94 0.98 1.02 1.08
GHz 1.11 1.05 1.08 1.08 1.06 1.02 0.98 0.93

PNR? X X

Table 3: VLSI quality of results. Columns not marked as “PAR” are results from synthesis.
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(a) Tile: Rocket and Hwacha

(b) Uncore: L2 cache and interconnect

Figure 4: Layout of single-lane Hwacha design with HOV.
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3.3 Performance Comparison

For the set of hand-optimized assembly and OpenCL benchmarks, Figure 6 graphs the speedup

normalized to baseline Hwacha running the OpenCL version. Compared to Mali2, Hwacha suf-

fers from a slight disadvantage in functional unit bandwidth from being clocked closer to 1 GHz

rather than the ideal 1.2 GHz. Compared to Mali4, Hwacha has less than half the functional unit

bandwidth.

For *axpy, HOV has a marginal effect on performance. As a streaming kernel, it is primarily

memory-constrained and therefore benefits little from the higher arithmetic throughput offered by

HOV. *axpy is also the only set of benchmarks in which Mali2 and Mali4 consistently outperforms

Hwacha by a factor of 1.5 to 2. This disparity most likely indicates some low-level mismatches in

the outer memory systems of Mali and our simulated setup—for example, in the memory access

scheduler. We used the default parameters for the memory access scheduler that were shipped with

the DRAMSim2 project.

The benefits of HOV become clearer with *gemm as it is more compute-bound, and more op-

portunities for in-register data reuse arise. As expected for dgemm* and sdgemm*, no difference

in performance is observed between the baseline and HOV, since the two designs possess the same

number of double-precision FMA units. A modest speedup is seen with sgemm-unroll, although still

far from the ideal factor of 2 given the single-precision FMA throughput. Curiously, HOV achieves

almost no speedup on sgemm-unroll-opt. It is possible that the matrices are simply too undersized

for the effects to be major. hgemm* and hsgemm* demonstrate the most dramatic improvements;

however, the speedup is sublinear since, with the quadrupled arithmetic throughput, memory latency

becomes more problematic per Amdahl’s law.

A significant gap is apparent between the OpenCL and hand-optimized versions of the same

benchmarks. The primary reason is that the latter liberally exploits inter-vector-fetch optimizations

whereby data is retained in the vector register file and reused across vector fetches. It is perhaps a

fundamental limitation of the programming model that prevents this behavior from being expressed

in OpenCL, resulting in redundant loads and stores at the beginning and end of each vector fetch

block.

For all precisions of *gemm, Mali2 performs surprisingly poorly, by a factor of 3 or 4 slowdown

relative to the Hwacha baseline. Mali4 performs about 2× better than Mali2, however, is still slower

than the Hwacha baseline. We speculate that the working set is simply unable to fit in cache. Thus,

this particular run should not be considered to be entirely fair.

Finally, the baseline and HOV perform about equivalently on *filter. A slight improvement is

discernible for sfilter and mask-filter, and a more appreciable speedup is evident with hsfilter and

mask-hsfilter. The performance of Mali2 is generally about half that of Hwacha, and Mali4 is on

par with Hwacha.
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3.4 Energy Comparison

Figure 7 graphs the energy consumption for each benchmark, normalized once again to the baseline

Hwacha results for the OpenCL versions. Note that the Mali GPU runs on a supply voltage of 0.9 V,

whereas we overdrive Hwacha with a 1 V supply to meet a 1 GHz frequency target.

For *axpy, HOV dissipates slightly more energy than the baseline, with dynamic energy from

the functional units comprising most of the difference. In other benchmarks as well, the functional

units account for a higher proportion of losses in HOV, which may indicate sub-par effectiveness of

clock gating with the extra functional units. Consistent with its performance advantage, Mali2 and

Mali4 are twice as energy-efficient on *axpy than Hwacha.

The results for *gemm are much more varied. Although HOV is less energy-efficient than the

baseline on benchmarks for which it can provide no performance advantage, such as dgemm, it is

more so on sgemm, hsgemm, and hgemm. These collectively demonstrate a consistent downward

trend of increasingly significant reductions in energy consumption as the precision is lowered. Mali

data points are again an outlier here, and no conclusion should be drawn.

Energy dissipation on *filter generally mirrors performance. Overall, HOV is slightly worse

than the baseline except on hsfilter. Mali similarly retains an advantage as it does with performance,

with some exceptions involving reduced-precision computation, i.e., both masked and non-masked

versions sfilter and hsfilter. On these, the energy efficiency of HOV is on par with Mali2 and worse

when compared to Mali4.
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Figure 7: Preliminary energy results. (Lower is better.) H = Hwacha baseline, HV = Hwacha+HOV, M2 = Mali2, M4 = Mali4.
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4 History

The detailed project history is described in the history section of the Hwacha vector-fetch architec-

ture manual.

4.1 Funding

The Hwacha project has been partially funded by the following sponsors.

• Par Lab: Research supported by Microsoft (Award #024263) and Intel (Award #024894)

funding and by matching funding by U.C. Discovery (Award #DIG07-10227). Additional

support came from Par Lab affiliates: Nokia, NVIDIA, Oracle, and Samsung.

• Silicon Photonics: DARPA POEM program, Award HR0011-11-C-0100.

• ASPIRE Lab: DARPA PERFECT program, Award HR0011-12-2-0016. The Center for

Future Architectures Research (C-FAR), a STARnet center funded by the Semiconductor Re-

search Corporation. Additional support came from ASPIRE Lab industrial sponsors and af-

filiates: Intel, Google, HP, Huawei, LGE, Nokia, NVIDIA, Oracle, and Samsung.

• NVIDIA graduate fellowship

Any opinions, findings, conclusions, or recommendations in this paper are solely those of the au-

thors and does not necessarily reflect the position or the policy of the sponsors.
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16.7 Double-Precision GFLOPS/W RISC-V Processor with Vector Accelerators. In 2014 European
Solid-State Circuits Conference (ESSCIRC-2014), Venice, Italy, Sep 2014.

[16] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle Accurate Memory System Simula-
tor. Computer Architecture Letters, 10(1):16–19, Jan 2011.

[17] J. A. Stratton, V. Grover, J. Marathe, B. Aarts, M. Murphy, Z. Hu, and W. mei W. Hwu. Efficient
Compilation of Fine-grained SPMD-threaded Programs for Multicore CPUs. In Int’l Symp. on Code
Generation and Optimization (CGO), pages 111–119, April 2010.

19

http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored
http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127&tab_idx=2
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127&tab_idx=2
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
http://malideveloper.arm.com/downloads/ARM_Game_Developer_Days/PDFs/2-Mali-GPU-architecture-overview-and-tile-local-storage.pdf
http://malideveloper.arm.com/downloads/ARM_Game_Developer_Days/PDFs/2-Mali-GPU-architecture-overview-and-tile-local-storage.pdf
http://malideveloper.arm.com/downloads/ARM_Game_Developer_Days/PDFs/2-Mali-GPU-architecture-overview-and-tile-local-storage.pdf
https://github.com/ucb-bar/ccbench/wiki
https://github.com/ucb-bar/ccbench/wiki

	Introduction
	Evaluation Framework
	Microbenchmarks
	OpenCL Compiler
	Samsung Exynos 5422 and the ARM Mali-T628 MP6 GPU
	RTL Development and VLSI Flow

	Preliminary Evaluation Results
	Memory System Validation
	Area and Cycle Time
	Performance Comparison
	Energy Comparison

	History
	Funding

	References

