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1 Introduction

This work-in-progress document outlines the Hwacha decoupled vector-fetch microarchitecture in

detail. We first discuss how we modified the open-source Rocket Chip SoC generator to provide

a system framework comparable to commercially available data-parallel accelerators. We exploit

the generator’s RTL libraries, including an in-order core implementing the RISC-V instruction set,

multiple levels of coherent caches, and a standardized accelerator interface we used to attached the

Hwacha vector accelerator. The vector accelerator executes the Hwacha instruction set architecture

described in the Hwacha vector-fetch architecture manual. We present the overall machine orga-

nization, then describe the details of the vector frontend and the scalar unit, vector execution unit

(VXU), vector memory unit (VMU), and the vector runahead unit (VRU).
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2 System Architecture

Figure 1 illustrates the overall system architecture of the Hwacha vector microprocessor. We use

the open-source Rocket Chip SoC generator to elaborate our design [5]. The generator consists

of highly parameterized RTL libraries written in Chisel [1]. In this section, we discuss the salient

capabilities of the generator that allows us to integrate the Hwacha vector accelerator productively

within a modern SoC environment while being efficient and providing a simple assembly program-

ming model.
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Figure 1: System architecture provided by the Rocket Chip SoC generator.

A tile consists of a Rocket control processor and a RoCC (Rocket Custom Coprocessor) socket.

Rocket is a five-stage in-order RISC-V scalar core that talks to its private blocking L1 instruction

cache and non-blocking L1 data cache [5]. The RoCC socket provides a standardized interface

for issuing commands to a custom accelerator, as well as an interface to the memory system. The
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Hwacha decoupled-vector accelerator, alongside its blocking vector instruction cache, is designed

to fit within the RoCC socket. The control thread and the worker thread of the Hwacha assem-

bly programming model (consult the Hwacha vector-fetch architecture manual) are mapped to the

Rocket control processor and Hwacha vector accelerator respectively.

The shared L2 cache is banked, set-associative, and fully inclusive of the L1 caches. Addresses

are interleaved at cache line granularity across banks. The tile and L2 cache banks are connected

through an on-chip network that implements the TileLink cache coherence protocol [3]. There are

two flavors of TileLink IO: cached and uncached. The cached TileLink interface is used by clients

that create private copies of cache blocks such as the L1 data cache and L2 cache banks. These

blocks are kept coherent throughout the memory system. The uncached TileLink interface is used

for clients that do not keep private copies, such as the vector unit. Note, instruction caches use

uncached TileLink IO, as the cache-coherence protocol does not keep the content of those caches

coherent with respect to the data stream. The L2 cache banks are coherence master endpoints that

implement a cache-coherence protocol, which is selected during elaboration. There is also an option

to accelerate the protocol using directory bits that live in the L2 cache tag array.

TileLink offers several capabilities in support of the vector accelerator. Cache coherence be-

tween the L1 data cache and the vector accelerator preserves the shared memory abstraction be-

tween the control processor and vector accelerator. This keeps the assembly programming model

simple. There is no need to keep two separate address spaces: one for host memory and the other

for accelerator’s target memory. When the vector accelerator makes a read request to a cache line,

the L2 cache bank looks up the directory bit to quickly determine whether the cache line resides in

the L1 data cache. If so, the L2 cache bank will then take appropriate steps to guarantee that the

L1 data cache does not hold any dirty data. The mechanism the L2 cache bank uses to meet the

guarantee depends on the cache-coherence protocol. If the cache line has an exclusive state, the L2

cache bank will send a message to the L1 data cache requesting the line be downgraded to shared.

If the cache line is already in a shared state, no action is needed. When the vector accelerator makes

a write request, the L2 will check whether the cache line is in a shared or exclusive state and send a

message to the L1 asking it to drop the line, if necessary. Sub-cache-block accesses to words within

a cache line reduce memory bandwidth for vector gathers and scatters. Data prefetch requests,

which the L2 efficiently merges with subsequent sub-block accesses, help the system overlap data

transfer and computation to achieve better bandwidth utilization. Atomic memory operations, which

are performed by ALUs inside each L2 cache bank, offload the work of reduction computations.

The refill ports of the L2 cache banks are connected to a bank of cached TileLink IO to AXI4

converters. The AXI4 interfaces are then routed to the appropriate LPDDR3 channels through the

AXI4 crossbars. The LPDDR3 memory channels are implemented in the testbench, where the

DRAM timing is simulated using DRAMSim2 [6].

The memory system parameters, such as the cache size, associativity, number of L2 cache banks
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and memory channels, and cache-coherence protocol, are set from a configuration object during

elaboration. The configuration object also holds design parameters for the Rocket control processor

and the Hwacha vector accelerator.

The Hwacha vector accelerator is influenced by several system-level decisions inherent to the

Rocket Chip SoC generator. In mapping the control thread to the Rocket scalar core, we exploit

vector-fetch decoupling to push the limits of in-order processors. The unified and coherent virtual

address space enables restartable exceptions for vector instructions. By connecting the accelerators

to the L2 cache instead of the L1 data cache, we have traded off longer average access latency for

substantially higher bandwidth to the cache. However, this decision makes memory access coa-

lescing a more important design feature for the accelerator. Exploiting these built-in SoC generator

features allowed us to substantially improve the capabilities of the Hwacha vector accelerator while

simultaneously making it simple to apply as much parameter tuning as possible to balance the mem-

ory system and vector accelerator designs.
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3 Hwacha Machine Organization

Hwacha combines ideas from access/execute decoupling [7], decoupled vector architectures [4], and

cache refill/access decoupling [2], applying them to work within a cache-coherent memory system

without any risk of deadlocking. Extensive decoupling enables the microarchitecture to effectively

tolerate long and variable memory latencies with an in-order design.

Figure 2 presents the high-level anatomy of the vector accelerator. Hwacha is situated as a

discrete coprocessor with its own independent frontend. This vector-fetch decoupling relieves the

control processor to resolve address calculations for upcoming vector fetch blocks, among other

bookkeeping actions, well in advance of the accelerator.

Hwacha consists of one or more replicated vector lanes assisted by a scalar unit. Internally, the

lane is bifurcated into two major components: the Vector Execution Unit (VXU), which encom-

passes the vector and predicate register files and the functional units, and the Vector Memory Unit

(VMU), which coordinates data movement between the VXU and the memory system.

Hwacha also features a Vector Runahead Unit (VRU) that exploits the inherent regularity of

constant-stride vector memory accesses for aggressive yet extremely accurate prefetching. Unlike

out-of-order cores with SIMD that rely on reorder buffers and GPUs which rely on multithreading,

the Hwacha architecture is particularly amenable to prefetching without requiring a large amount of

state.
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4 RoCC Frontend and Scalar Unit

Control thread instructions arrive through the Vector Command Queue (VCMDQ). Upon encounter-

ing a vf command, the scalar unit begins fetching at the accompanying PC from the 4 KB two-way

set-associative vector instruction cache, continuing until it reaches a vstop in the vector-fetch block.

The scalar unit includes the address and shared register files and possesses a fairly conventional

single-issue, in-order, four-stage pipeline. It handles purely scalar computation, loads, and stores,

as well as the resolution of consensual branches and reductions resulting from the vector lanes. The

FPU is shared with the Rocket control processor. At the decode stage, vector instructions are steered

to the lanes along with any scalar operands.
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5 Vector Execution Unit

The VXU, depicted in Figure 3, is broadly organized around four banks. Each contains a 256x128b

1R1W 8T SRAM that forms a portion of the vector register file (VRF), alongside a 256x2b 3R1W

predicate register file (PRF). Also private to each bank are a local integer ALU and PLU. A crossbar

connects the banks to the long-latency functional units, grouped into clusters whose members share

the same operand, predicate, and result lines.

Vector instructions are issued into the sequencer, which monitors the progress of every active

operation within that particular lane. The master sequencer, shared among all lanes, holds the com-

mon dependency information and other static state. Execution is managed in “strips” that complete

eight 64 b elements worth of work, corresponding to one pass through the banks. The sequencer

acts as an out-of-order, albeit non-speculative, issue window: hazards are continuously examined

for each operation; when clear for the next strip, an age-based arbitration scheme determines which

ready operation to send to the expander.

The expander converts a sequencer operation into its constituent micro-ops (µops), low-level

control signals that directly drive the lane datapath. These are inserted into shift registers with the

displacement of read and write µops coinciding exactly with the functional unit latency.

The µops iterate through the elements as they sequentially traverse the banks cycle by cycle.

As demonstrated by the bank execution example in Figure 4, this stall-free systolic schedule sus-

tains n operands per cycle to the shared functional units after an initial n-cycle latency. Variable-

latency functional units instead deposit results into per-bank queues for decoupled writes, and the

sequencer monitors retirement asynchronously. Vector chaining arises naturally from interleaving

µops belonging to different operations.
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6 Vector Memory Unit

The per-lane VMUs are each equipped with a 128 b interface to the shared L2 cache. This arrange-

ment delivers high memory bandwidth, albeit with a trade-off of increased latency that is overcome

by decoupling the VMU from the rest of the vector unit. Figure 5 outlines the organization of the

VMU.

As a memory operation is issued to the lane, the VMU command queue is populated with

the operation type, vector length, base address, and stride. Address generation for constant-stride

accesses proceeds without VXU involvement. For indexed operations such as gathers, scatters,

and AMOs, the Vector Generation Unit (VGU) reads offsets from the VRF into the Vector Virtual

Address Queue (VVAQ). Virtual addresses are then translated and deposited into the Vector Physical

Address Queue (VPAQ), and the progress is reported to the VXU. The departure of requests is

regulated by the lane sequencer to facilitate restartable exceptions.
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The address pipeline is assisted by a separate predicate pipeline. Predicates must be examined

to determine whether a page fault is genuine, and are used to derive the store masks. The VMU

supports limited density-time skipping given power-of-2 runs of false predicates.

Unit strides represent a very common case for which the VMU is specifically optimized. The

initial address generation and translation occur at a page granularity to circumvent predicate latency

and accelerate the lane sequencer check. To more fully utilize the available memory bandwidth,

adjacent elements are coalesced into a single request prior to dispatch. The VMU correctly handles

edge cases with base addresses not 128 b-aligned and irregular vector lengths not a multiple of the

packing density [8].

The Vector Store Unit (VSU) multiplexes elements read from the VRF banks into the Vector

Store Data Queue (VSDQ). An aligner module following the VSDQ shifts the entries appropriately

for scatters and unit-stride stores with non-ideal alignment.

In reverse, the Vector Load Unit (VLU) routes data from the Vector Load Data Queue (VLDQ)

to their respective banks. As the memory system may arbitrarily order responses, two VLU opti-

mizations become crucial. The first is an opportunistic writeback mechanism that permits the VRF

to accept elements out of sequence; this reduces latency and area compared to a reorder buffer.

The VLU is also able to simultaneously manage multiple operations to avoid artificial throttling of

successive loads by the VMU.
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7 Vector Runahead Unit

The Vector Runahead Unit (VRU), shown in Figure 6, takes advantage of the decoupled nature of

the Hwacha architecture to hide memory latency and maximize functional unit utilization. Unlike

out-of-order machines with SIMD that rely on the reorder buffer for decoupling and GPUs which

rely on multithreading, the Hwacha design is particularly amenable to prefetching without relying

on large amounts of state.

The VRU has a separate vector runahead command queue (VRCMDQ) between Hwacha and

the Rocket control processor. It receives the current vector length from vsetvl commands as

well as addressing information from vmca commands, which it stores in an internal copy of the

vector address register file. Upon receiving a vf command, the VRU fetches instructions from

Hwacha’s L1 vector instruction cache and decodes unit-strided load and store instructions. Using the

previously collected address information along with the vector length, the VRU issues prefetching
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Figure 6: Block Diagram of Vector Runahead Unit (VRU). VRCMDQ = vector runahead command queue,
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commands directly to the L2, in anticipation of loads and stores issued by the vector lanes. Unlike

in other machines, these prefetches are in most cases non-speculative. Since the address registers

and vector length cannot be changed by the worker thread, the VRU will be certain what data is

being fetched at each vector load and store instruction.

Efficiently using L2 tracking resources and managing the runahead distance are critical to bal-

ancing latency-hiding with allowing the rest of Hwacha to make forward-progress at a reasonable

pace. We limit the VRU to using at most one-third of the outstanding access trackers in the L2

cache, since in the unit strided case, the VRU’s prefetch blocks are twice as large as the execution

unit’s loads and stores.

In managing the runahead-distance of the VRU, the controller must avoid two extremes. A VRU

that runs too close to real-time execution risks invoking a performance penalty. This penalty arises

not only from the obvious inability to hide latency, but also because the VRU wastes L2 tracking

resources and creates a hotspot around one bank of the L2 cache. A VRU that runs too far ahead of

real-time execution has the potential to remove items from the L2 that are in-use or that have been

prefetched but not yet used.

To prevent the VRU from running too close to the execution units, we ignore a small number

of vector fetch blocks at startup. We observe that sacrificing the prefetch of the loads and stores

from one or two initial vector fetch blocks greatly increases the ability of the VRU to runahead in a

steady state. To prevent the VRU from running too far ahead of the execution units, we implement a

throttling scheme that counts the total number of bytes of loads and stores that the VRU has decoded

but that have not yet been encountered by the execution units. In a vector processor like Hwacha,

this scheme is hindered by conditional execution of loads and stores in vector fetch blocks using

predication. Our scheme ensures that the counts in the VRU’s throttle mechanism are synchronized

at the end of each vector fetch block, regardless of the presence of unexecuted loads and stores

due to predication and consensual branches. In our scheme, the VRU maintains a queue containing

individual load/store byte counters for each vector fetch block that the VRU has seen, but that has

not been acknowledged by the vector lanes. A global counter is also incremented by this per-block

count of bytes whenever the VRU finishes decoding a vector fetch block. When the vector lanes

complete the execution of a vector fetch block, an acknowledgement is sent to the VRU, which pops

an entry off of the load/store byte count queue and decrements the global load/store byte counter

by the appropriate amount. This global counter is then used to throttle the runahead distance of the

VRU.
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8 Multilane Configuration

Hwacha is parameterized to support any power-of-2 number of identical lanes. Although the master

sequencer issues operations to all lanes synchronously, each lane executes entirely decoupled from

one another.

To achieve more uniform load-balancing, elements of a vector are striped across the lanes by a

runtime-configurable multiple of the sequencer strip size (the “lane stride”), as shown in Figure 7.

This also simplifies the base calculation for memory operations of arbitrary constant stride, enabling

the VMU to reuse the existing address generation datapath as a short iterative multiplier. The

striping does introduce gaps in the unit-stride operations performed by an individual VMU, but the

VMU issue unit can readily compensate by decomposing the vector into its contiguous segments,

while the rest of the VMU remains oblivious. Unfavorable alignment, however, incurs a modest

waste of bandwidth as adjacent lanes request the same cache line at these segment boundaries.

Figure 8 provides an example of such a situation.
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9 Design Space

Table 1 lists a relevant subset of Chisel configuration parameters that can be adjusted to tune the

Hwacha design at elaboration time.

Table 1: Hwacha tunable parameters and default values.

Parameter Description Default Value

HwachaNLanes Number of vector lanes 1
HwachaNSeqEntries Number of sequencer entries 8

HwachaStagesALU Number of ALU pipeline stages 1
HwachaStagesPLU Number of PLU pipeline stages 0
HwachaStagesIMul Number of IMul pipeline stages 3
HwachaStagesDFMA Number of double-precision FMA pipeline stages 4
HwachaStagesSFMA Number of single-precision FMA pipeline stages 3
HwachaStagesHFMa Number of half-precision FMA pipeline stages 3
HwachaStagesFConv Number of FConv pipeline stages 2
HwachaStagesFCmp Number of FCmp pipeline stages 1

HwachaNVVAQEntries Number of VVAQ entries 4
HwachaNVPAQEntries Number of VPAQ entries 24
HwachaNVSDQEntries Number of VSDQ entries 4
HwachaNVLDQEntries Number of VLDQ entries 4
HwachaNVLTEntries Number of Vector Load Table entries 64
HwachaNDTLB Number of data TLB entries 8
HwachaNPTLB Number of prefetch TLB entries 2

HwachaLocalScalarFPU Instantiate separate FPU for scalar unit False
HwachaBuildVRU Instantiate VRU True
HwachaConfMixedPrec Enable Mixed Precision False
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10 History

The detailed project history is described in the history section of the Hwacha vector-fetch architec-

ture manual.
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