
Exploiting Structure and Input-Output Properties in

Networked Dynamical Systems

Ana Sofia Rufino Ferreira

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-245

http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-245.html

December 17, 2015



Copyright © 2015, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Exploiting Structure and Input-Output Properties in Networked Dynamical
Systems

by

Ana Sofia Rufino Ferreira

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy in Engineering

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Murat Arcak, Chair
Professor Claire Tomlin

Professor Andrew Packard

Fall 2015



Exploiting Structure and Input-Output Properties in Networked Dynamical
Systems

Copyright 2015
by

Ana Sofia Rufino Ferreira



1

Abstract

Exploiting Structure and Input-Output Properties in Networked Dynamical Systems

by

Ana Sofia Rufino Ferreira

Doctor of Philosophy in Engineering in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Murat Arcak, Chair

Large coupled networks of individual entities arise in multiple contexts in nature and
engineered systems to produce rich dynamics and achieve complex behaviors. As the state-
space dimension increases, the certification of stability and performance properties of these
nonlinear dynamical systems becomes an intractable problem. In this thesis we develop
decomposition methods that break up such convoluted systems into components of smaller
dynamics whose behavior is dependent on the state of the neighboring components. These
methods explore useful input-output properties of the subsystems in conjunction with the
topology of their interconnections, providing results that scale well to large-scale networks.

We begin by developing a mathematical approach to analyze spatial pattern formation
in developmental biology that combines graph-theoretical and dynamical systems methods
to systematically predict the emergence of patterns. This approach models the contact
between cells by a graph and exploits its symmetries to create partitions of cells into classes
of equal fate. Using monotone systems theory, we derive verifiable conditions that determine
whether patterns consistent with such partitions exist and are stable. Then, we propose
an engineered synthetic circuit that mimics contact inhibition by using diffusible molecules
to spontaneously generate sharply contrasting patterns. Using a compartmental model, we
determine a condition that serves as a parameter tuning guide for patterning.

We next focus on exploring the symmetric topology of the interconnection to provide
efficient certification of performance properties of large networks. Performance certification
can be cast as a distributed optimization problem for which the existence of a solution is
equivalent to the existence of a solution with repeated variables. We demonstrate that fast
certification of stability and performance is possible by searching over solutions in a reduced
order domain.

Finally, motivated by the stochastic behavior of biological networks, we provide stochastic
stability results for systems modeled by stochastic differential equations. We use stochas-
tic passivity properties of the subsystems and a diagonal stability condition of the inter-
connection matrix together with the passivity gains to guarantee stochastic stability and
noise-to-state stability.
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Chapter 1

Introduction

Networked systems are formed by components that behave in accordance to the output of
their corresponding neighboring or communicating components. These ubiquitous systems
occur in nature and in engineered systems. However, most existing analytical methods do
not scale to large networks. Efficient and scalable certification techniques for such large-
scale systems are imperative. In this thesis, we develop new approaches for the analysis of
networked dynamical systems that exploit the interconnection structure of their components
together with relevant input-output properties, such as passivity and monotonicity. This ap-
proach decouples the certification problem into two. First, we examine analytical conditions
for the individual subsystems that guarantee the relevant input-output properties without
knowledge about the interconnection. Then, we derive conditions for the interconnection by
representing each subsystem as an appropriate abstraction of its input-output behavior.

The thesis addresses three main topics. In Chapters 2 and 3 we address pattern for-
mation in developmental biology and inspect the existence and stability of spatial patterns
in networks of biological cells. We employ tools from graph theory to identify symmetries
and equitable partitions in the network, and show that such partitions are templates of re-
peated dynamics that allow for the dimensionality reduction of the analysis. In Chapter 3 we
address a cellular biological mechanism by which cells compete with its neighbors through
contact, while Chapter 4 focuses on the design and analysis of an engineered synthetic circuit
with similar lateral inhibition properties but in which communication is achieved with the
use of diffusible molecules. In the second part, Chapter 4, we extend the use of symmetries
to the certification of performance properties. In several optimization problems with linear
constraints, symmetries imply that the existence of a solution is equivalent to the existence
of a solution with repeated elements, and thus one needs to search over a reduced number
of variables. We show how to achieve efficient performance certification by exploring this
reduction in semidefinite programming problems. Finally, Chapter 5 addresses nonlinear
systems driven by noise, that are modeled by stochastic differential equations. Sufficient
conditions are provided to guarantee stochastic stability in probability and noise-to-state
stability by exploiting stochastic passivity properties and diagonal stability of the passivity
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matrix together with the interconnection matrix.

1.1 Preliminaries

We consider a networked system to be a large dynamical system that can be decomposed
into several decoupled subsystems Hi : ui → yi, i = 1, ..., N , with exogenous disturbances d
and performance output e, and a communication topology defined by an interconnect matrix
M ∈ RN×N , see Figure 1.1. The input/output relation is determined by [ ue ] = M [ yd ] and
the subsystems Hi are described by the nonlinear dynamics ẋ = f(x, u), y = h(x, u).

H1

H2

Hi

HN

M

u y

e d

b
b

b

b
b

b

Figure 1.1: Networked System.

In Chapters 2-4, we interpret the interconnection matrix M as the adjacency matrix of a
graphM and explore its symmetric properties. For each subsystem Hi we use monotonicity
properties to show stability and emergence of spatial patterns in biological cell networks,
Chapters 2 and 3; and we use dissipativity properties in Chapter 4. We study stochastic sys-
tems in Chapter 5 and explore properties of stochastic passivity and noise-to-state stability.
We consider closed systems in Chapters 2 and 3, i.e., without d and e; Chapter 4 addresses
systems with exogenous d and e; and Chapter 5 considers systems driven by noise.

Algebraic Graph Theory and Symmetries

A graph G consists of a set of vertices, V = {1, ..., N}, and edges E, where every edge con-
nects two vertices. In this thesis, we consider both directed and undirected graphs. In the
former, each edge has a tail vertex and a head vertex, and there is a notion of orientation.
The latter can be seen as an undirected graph where each edge shows up in pairs of opposite
directions. Each edge might include a binary value (1 or 0, if nodes are connected or not), or
include a weight between nodes, wi,j. We will use the notion of connectedness in undirected
graphs, which dictates that every pair of vertices is connected through a path of one or
several edges. Next, we define symmetry properties in graphs, [55].
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Automorphisms
A symmetry in a graph is normally understood as a transformation, e.g., rotation, reflection,
that preserves the topology of the graph edges. Formally, in a weighted graph G(V,E), an
automorphism is a permutation of the vertices g : V → V such that if (i, j) ∈ E then also
(gi, gj) ∈ E and wi,j = wgi,gj, where gi denotes the image of vertex i under permutation g.
The set of all automorphisms of G forms a group designated by automorphism group,

Aut(G) =
{
g : V → V

∣∣∣ (gi, gj) ∈ E and wi,j = wgi,gj for all (i, j) ∈ E
}
.

A subset H of the automorphism group Aut(G) that is closed under composition and inverse
is called a subgroup. Given a subgroup of the automorphism group, H ⊆ Aut(G), the vertices
of G can be partitioned into sets of vertices that permute with each other, which we call orbits.
The orbit of index i ∈ V = {1, ..., N} under the action of H is defined as:

Oi =
{
j ∈ V

∣∣∣ gi = j for some g ∈ H ⊆ Aut(G)}.

The orbits form an equivalence class given by the equivalence relation ∼, where

i ∼ j if j ∈ Oi.

Due to symmetry, at each vertex u in an orbit Oi, the sum of edge weights coming from
all elements in another orbit Oj, must be constant regardless of the choice of u in Oi. There-
fore, the action of a subgroup H ⊆ Aut(G) defines a quotient graph G/H whose vertices are
the orbits of V , and the edges represent the sum of the edge weights between a vertex u ∈ Oi

and all vertices in Oj, [55].

Example: Consider the undirected cyclic graph with five vertices, represented in Figure
1.2a. This graph is rich in symmetries. In fact, this is a vertex-transitive graph, since for
any two vertices i, j ∈ V there exists an automorphism g ∈ Aut(G) that permutes i into
j. Consider the subgroup H ⊂ Aut(G) formed by the identity permutation together with
the permutation along the vertical axis represented in Figure 1.2b, H = {(1, 2, 3, 4, 5) →
(1, 2, 3, 4, 5), (1, 2, 3, 4, 5)→ (1, 5, 4, 3, 2)}. The action of H permutes vertices 2 with 5, and
3 with 4, and the orbits of graph G become O1 = {1}, O2 = {2, 5}, and O3 = {3, 4}, see
1.2c. For this orbit partition, the corresponding quotient graph is represented in Figure 1.2d,
which in this example is a directed graph.

Adjacency Matrix
The adjacency matrix of graph G is the matrix M ∈ RN×N where entry mij is equal to 0 if
there is no edge between vertices i and j, otherwise mij equals the edge weight wi,j. Let R be
the permutation matrix that represents a permutation g ∈ Aut(G). Then, due to symmetry,

RM = MR.
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1
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1/21/2

1/2 1/2
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1
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O1

O2

O3

1/21

1/2
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(d)

Figure 1.2: Example of a cyclic graph with five vertices: original graph in (a); symmetry
along vertical axis in (b); orbit partition due to the action of subgroup H, composed by the
vertical symmetry and the identity, in (c), and corresponding quotient graph, in (d).

Consider a subgroup H ⊆ Aut(G) and let r be the corresponding number of distinct orbits.
Define the matrix Q ∈ RN×r such that qij = 1 when vertex i is in orbit j, and qij = 0
otherwise. The following holds,

MQ = QM,

where M ∈ Rr×r is the quotient matrix, which corresponds to the adjacency matrix of the
quotient graph G/H. The following are the adjacency matrices of the graph G and the
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quotient graph G/H in Figure 1.2:1

M =


0 1/2 0 0 1/2
1/2 0 1/2 0 0
0 1/2 0 1/2 0
0 0 1/2 0 1/2
1/2 0 0 1/2 0

 M =

[
0 1 0
1/2 0 1/2
0 1/2

1/2

]
.

Remark : Note that the eigenvalues of M are also eigenvalues of M . Moreover, since
each vertex of the quotient graph represents an orbit, we can find a correspondence between
the eigenvectors of M and M . Consider an eigenvector v ∈ RN of M with corresponding
eigenvalue λ, and let v ∈ Rr be the vector with entries {v}k = 1

|Ok|
∑

u∈Ok vu. If v is not a

zero vector, then it is an eigenvector of M with corresponding eigenvalue λ. On the other
hand, an eigenvector v corresponding to λ of M can also be chosen from the eigenvector v
for λ of M , by repeating the elements of v over the indices in the same orbit, [17].

In Chapters 2 and 3 we use the more general notion of equitability, which is based on
vertex partitions and their edge weights. For the graph G(V,E) with adjacency matrix M , a
partition of the vertex set V into classes O1, ..., Or is equitable if there exist mij, i, j = 1, ..., r
such that ∑

v∈Oj

muv = mij ∀u ∈ Oi.

This means that the sum of the normalized edge weights from some vertex in a class Oi into
all the vertices in a class Oj is invariant of the choice of the vertex in class Oi. The notions of
quotient graph and quotient matrix also apply for equitable partitions. The quotient matrix
M is formed by the entries mij.

Indeed, the action of each subgroup H of the full automorphism group Aut(G) defines
an equitable partition. Note that, the action of H on V partitions the vertex set into orbits,
Oi = {hi |h ∈ H}, such that Oj = Oi for all j ∈ Oi. Let r be the number of distinct orbits
under the subgroup H, and relabel them as {O1, . . . , Or}. This orbit partition is indeed
equitable, because the sum

∑
k∈Oj mi∗k = mij is constant independently of the choice of

i∗ ∈ Oi.

Monotone Systems

A monotone system is one that preserves a partial ordering of the initial conditions as its
trajectories evolve. The partial ordering is defined with respect to a positivity cone K in
the Euclidean space that is closed, convex, pointed (K ∩ (−K) = {0}), and has nonempty

1where Q =

[
1 0 0
0 1 0
0 0 1
0 0 1
0 1 0

]
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interior. For such cone, x � x̂ means that x̂ − x ∈ K; x ≺ x̂ means that x � x̂ and x 6= x̂;
and x� x̂ means that x̂− x is in the interior of K.

Given the positivity cones KU , KY , KX , for the input, output, and state spaces, the dy-
namical system ẋ = f(x, u), y = h(x) is said to be monotone if x(0) � x̂(0) and u(t) � û(t)
for all t ≥ 0 imply that the resulting solutions satisfy x(t) � x̂(t) for all t ≥ 0, and that the
output map is such that x � x̂ implies h(x) � h(x̂), [4].

Useful properties include the fact that the linearization of a monotone system around a
steady-state (x∗, u∗) is also a monotone system with respect to the same positivity cone [3].
Moreover, it has been shown that the stability of a linear monotone system with positive
feedback can be determined by the steady-state gain of the open-loop system, [39].

Stochastic Differential Equations

We consider continuous-time nonlinear stochastic systems driven by noise:

dx = f(x)dt+ l(x)Σdw.

The noise, w(t), is an independent standard Wiener process, and Σ = {σij} is a nonnegative-
definite matrix, where σij represents the intensity with which the jth source of uncertainty
influences the ith state.

The stochastic system above, with f(0) = 0 and l(0) = 0, has an equilibrium at the origin
that is said to be globally stable in probability if the sample paths of the process starting at
point x0 at time t = 0 remain within a prescribed neighborhood of the origin with probability
tending to one as x0 tends to zero, [31], i.e., if ∀ε > 0, ∃γ ∈ K such that

P{|x(t)| ≤ γ(|x0|)} ≥ 1− ε, ∀t ≥ 0,∀x0 ∈ Rn.

It is globally asymptotically stable in probability if it is globally stable in probability and the
trajectories eventually converge to the equilibrium.

A stochastic counterpart of the Lyapunov theory will be used to show stochastic stability.
For the system above, assume that there exists a storage function V (x) that is nonnegative
and radially unbounded, and such that

LV (x) ,
∂V

∂x
f(x) +

1

2
Tr

{
Σ>l(x)>

∂2V

∂x2
l(x)Σ

}
≤ −S(x), ∀x,

for some function S(x). When S(x) is a nonnegative (positive) function, the origin is glob-
ally (asymptotically) stable in probability, [66]. The infinitesimal generator LV (x) is a
partial differential operator and defines a notion of expected derivative, since LV (x) =
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limt→0
E[V (x(t)]−V (x0)

t
. Note that the first term corresponds to the deterministic part of the

system, while the second term is always positive when V (x) is a convex storage function,
which makes stochastic stability harder to achieve. However, in some cases, it might be
possible to construct storage functions with negative concavity in some intervals, that show
global stability in probability of the origin even if the deterministic part is not globally at-
tractive at the origin.

We use the notion of noise-to-state stability (NSS) in cases of unknown noise intensity
Σ and nonvanishing noise at the origin, l(0) 6= 0, [31]. A system is NSS when its state is
bounded in probability, i.e., for any ε > 0, there exists a KL function β, and a K∞ function
δ, such that

P
{
|x| < β(|x0|, t) + δ

(
|ΣΣ>|F

)}
≥ 1− ε ∀t ≥ 0.

Consider now the controlled stochastic nonlinear system{
dx = f(x, u)dt+ l(x, u)Σdw

y = h(x, u)

The system is stochastic dissipative if the storage function is such that

EV (x(t))− V (x(s)) ≤ E

∫ t

s

W
(
x(τ), u(τ)

)
dτ,

where W is the supply rate. Equivalently, LV (x) ≤ W (x, u). In Chapter 5, we choose
W (x, u) = h(x, u)>u − S(x). When there exists a positive semidefinite (definite) function
S(x), the system is called stochastic (strictly) passive, [45]. It is stochastic output strictly
passive (sOSP) if S(x) = 1

γ
h(x)>h(x), and γ is said to be a gain.

Note that, we recover the deterministic notion of dissipativity when l(x) ≡ 0, [110]. In
Chapter 4, we consider problems that address quadratic supply rates,

W (x, u) =

[
u

h(x, u)

]>
X

[
u

h(x, u)

]
.

For example, to certify an L2-gain from scalar u(t) to y(t) choose X =
[
γ2 0
0 -1

]
, which implies

that ‖y‖22 ≤ γ2‖u‖22 + V (x(0)).

1.2 Summary of the Thesis

In biology, multicellular developmental processes rely on spatial patterning to initiate dif-
ferentiation. Even though the majority of results on patterning investigate diffusion-driven
mechanisms, lateral inhibition is a common pattern formation mechanism where cell-to-cell
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contact signaling induces neighboring cells to compete and diverge into sharply contrasting
fates that can initiate developmental processes such as segmentation or boundary formation.
Known examples of lateral inhibition are the Notch pathway in Metazoans and contact-
dependent inhibition (CDI) in E. coli.

In Chapter 2, we analyze spatial patterns on networks of cells where adjacent cells inhibit
each other through contact signaling. We represent the network as a graph where each vertex
represents the dynamics of identical individual cells and where graph edges represent cell-
to-cell signaling. To predict steady-state patterns we find equitable partitions of the graph
vertices and assign them into disjoint classes. Equitable partitions of the contact graph allow
for a systematic identification of patterns. We use results from monotone systems theory to
prove the existence of patterns that are structured in such a way that all the cells in the
same class have the same final fate. To study the stability properties of these patterns, we
rely on the graph partition to perform a block decomposition of the system and reduce its
dimension. Then, to guarantee stability, we provide a small-gain type criterion that depends
on the input-output properties of each cell in the reduced system. Finally, we discuss pat-
tern formation in stochastic models. With the help of a modal decomposition we show that
noise can enhance the parameter region where patterning occurs. The results in this chapter
appear in [40].

Despite the vigorous research on elucidating natural pathways such as Notch-Delta and
CDI, a synthetic lateral inhibition system for pattern formation has not been successfully en-
gineered. In order to achieve patterning with synthetic circuits, we propose a compartmental
lateral inhibition system, in Chapter 3, where contrasting patterns between neighboring com-
partments emerge due to communication via diffusible molecules. Our proposed construct
consists of a set of compartments interconnected by channels, where in each compartment we
place a colony of cells that can produce diffusible molecules to be detected by the neighbor-
ing colony. We equip each cell with an inhibitory circuit that reacts to the detected signal,
so that the more diffusible molecules detected in one compartment, the less production in
that colony. To prevent auto-inhibition, we utilize two orthogonal diffusible quorum sensing
molecules and design two inhibitory circuits each of which detects only one type of molecule
and produces the other type.

We derive analytical conditions that guarantee contrasting patterning in this spatially-
distributed construction by defining the cell network as a graph, where each compartment
corresponds to a vertex, and each graph edge corresponds to a diffusion channel between two
compartments. We model the diffusion with the Laplacian matrix of the weighted graph and
use a notion of equitable partition to provide existence and stability conditions of contrast-
ing patterns. Finally, we propose and analyze a synthetic circuit which is currently under
implementation. The results in this chapter appear in [42, 43].

We also exploit symmetries in the interconnection topology of a networked system, in
Chapter 4, to provide a dimensionality reduction in the certification of stability and per-
formance. The certification method provides a guarantee with respect to exogenous distur-
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bances and output performance, and exploits the dissipativity properties of the subsystems,
thus the conservatism introduced by the reduction is minimal when the subsystems possess
similar dissipativity characteristics. We combine this reduction with distributed optimization
techniques and robust dissipativity analysis, and show that the number of decision variables
in the global optimization constraint can be reduced, as well as its size in several cases. This
leads to the efficient analysis of large networks. To certify frequency dependent properties,
we also extend the results to a state-space variant of integral quadratic constraints (IQCs).
The results in this chapter have been submitted to IEEE Transactions on Control of Network
Systems, [44].

Finally, in Chapter 5, we analyze the stability of large-scale nonlinear stochastic systems,
represented as an interconnection of lower-order stochastic subsystems. Stochastic stabil-
ity in probability and noise-to-state stability are addressed using Lyapunov theory. The
method proposed proves network stability by using appropriate stochastic passivity proper-
ties for its subsystems, and a linear matrix inequality for the structure of their interactions.
In particular, stability is established by the diagonal stability of a dissipativity matrix,
which incorporates information about the passivity properties of the systems, together with
the interconnection matrix. Due to the difficulty of determining the equilibrium of such
large-scale systems, we derive equilibrium-independent conditions for the verification of the
relevant stochastic passivity properties of the subsystems. To certify noise-to-state stability,
we provide sufficient conditions that rely only on the system state and, thus, are independent
of the noise intensity. We illustrate the proposed approach on a class of biological reaction
networks. The results in this chapter appear in [41].
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Chapter 2

Pattern Formation in Lateral
Inhibition Systems using Graph
Partitions

Spatial patterning is crucial for multicellular developmental processes [51, 111]. The major-
ity of theoretical results on pattern formation rely on diffusion-driven instabilities, proposed
by Turing [101] and further studied by other authors [50, 33, 84]. Although some early
events in developmental biology employ diffusible signals, most of the patterning that leads
to segmentation and fate-specification relies on contact-mediated signals. In particular, lat-
eral inhibition [96] is a cell-to-cell contact signalling mechanism that leads neighboring cells
to compete and diverge to contrasting states of differentiation. An example of lateral inhi-
bition is the Notch pathway, where neighboring cells compete through the binding of Notch
receptors and Delta ligands [26].

Analytical results that pursue explicit conditions for patterning by lateral inhibition,
such as [26, 107, 87, 49], study simple networks with only a few cells, and do not reveal the
variety of patterns that may arise in large networks. A broader dynamical model for lateral
inhibition is proposed in [8], and results that are independent of the size of the network are
presented. In this reference, the large-scale network is viewed as an interconnection of indi-
vidual cells, each defined by an input-output model. The contact signaling is represented by
an undirected graph, where each vertex is a cell, and a link between two vertices represents
the contact between two cells. Results for the instability of the homogeneous steady-state
and the existence of two-level patterns for bipartite contact graphs are presented in [8].

In this chapter, we use the model introduced in [8] and derive results for pattern for-
mation on a general contact graph, recovering the results of [8] for bipartite graphs as a
special case. Our main idea is to partition the graph vertices into disjoint classes, where the
cells in the same class have the same final fate. We use algebraic properties of the graph
and tools from monotone systems theory [92] to prove the existence of steady-states that
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are patterned according to these partitions. We then address the stability of these patterns
by decomposing the system into two subsystems. The first describes the dynamics on an
invariant subspace defined according to the partition; and the second describes the dynamics
transversal to this subspace. We provide a small-gain type criterion [105, 32], that relies only
on the dynamics of the first invariant subspace.

A key property that the graph partition must satisfy is that the sum of the normalized
edge weights from one vertex in another class into all those vertices in some class is inde-
pendent of the choice of vertex. Partitions with this property are called equitable and allow
us to study a reduced model where all vertices in the same class have the same state. As
examples of equitable partitions, we study bipartite graphs and graphs with symmetries.
Permutations of the graph nodes that leave the edge set invariant are called automorphisms
[55], and the set of all automorphisms of the graph has a group structure. We show that
subgroups of the full automorphism group, which can be found with numerical tools such as
[46], can be used to identify equitable partitions.

Symmetry reduction has been explored in dynamical systems and bifurcation theory [77,
98, 56]. In particular, the idea of clustering the graph vertices into classes of synchronized
states has been studied [98, 56, 106]. The notion of equitable partitions in this chapter is
related to the definition of balanced relations and synchrony subspaces introduced in [98,
56], and similarly the reduced models defined by the equitable partitions correspond to the
notion of quotient networks in these references. However, our results are the first to combine
symmetry with monotone systems properties to characterize the emergence of steady-state
patterns in lateral inhibition systems. These results are readily applicable to various lateral
inhibition models [26, 96] and specify the ranges of meaningful biological parameters that
yield patterning.

Other uses of symmetry properties in control theory include dimension reduction and
block decomposition of semidefinite programming problems, such as fastest mixing Markov
chains on the graph [17, 19], and sum-of-squares [48]. Symmetry has also been explored to
investigate controllability in agreement problems [88].

Finally, we discuss the formation of patterns in stochastic models and show that noise can
enhance the parameter region where patterning occurs. Such enlargement of the parameter
region by stochasticity has been observed for Turing patterns in [15, 22, 60]. Although lateral
inhibition is a fundamentally different mechanism than Turing’s diffusion-driven patterning,
we follow an approach similar to [60], and show that high-frequency spatial modes can be
excited by noise, even when the homogeneous steady-state is stable.

In Section 2.1, we define the model and introduce necessary graph theoretical concepts.
In Section 2.2, we present the main result of the chapter, which provides conditions for
the existence of steady-state patterns. In Section 2.3, we apply the main results to graphs
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with symmetries, and present examples. In Section 2.4, we present a decomposition that is
helpful for the stability analysis of steady-state patterns, and derive a small-gain stability
type criterion. Finally, in Section 2.5, we discuss stochastic models and pattern formation
driven by noise.

2.1 Lateral Inhibition Model

We represent the cell network by an undirected and connected graph G = G(V,E), where
the set of vertices V represents a group of cells, and each edge e ∈ E represents a contact
between two cells. The connectivity between cells i and j is represented by the nonnegative
constant wi,j ∈ R≥0. We let wi,j = 0 when i and j are not in contact, and wi,j > 0 when
they are in contact. A common choice is to select wi,j = 1; however, to be more general and
to allow distinct contact signal strengths, we allow weights other than 0 and 1. Since this
contact graph is undirected, the weights must satisfy wi,j = wj,i.

Let N be the number of cells and define the scaled adjacency matrix M ∈ RN×N of G as:

mij = d−1i wi,j, (2.1)

where the scaling factor is the node degree di =
∑

j wi,j. The structure of M is identical
to the transposed probability transition matrix of a reversible Markov Chain (i.e., let π be
a stationary distribution such that πi = di/

∑
k dk, for i = 1, ..., N , then πimij = πjmji).

Therefore, M is nonnegative and row-stochastic, i.e., M1N = 1N , where 1N ∈ RN denotes
the vector of ones, and it has real valued eigenvalues and eigenvectors.

Consider a network of identical cells i = 1, . . . , N each described by the dynamical model:{
ẋi = f(xi, ui)
yi = h(xi)

(2.2)

where xi ∈ X ⊂ Rn describes the state in cell i (typically, a vector of reactant concentrations),
ui ∈ U ⊂ R is an aggregate input from neighboring cells, and yi ∈ Y ⊂ R represents the
output of each cell that contributes to the input to its neighbors. We represent the cell-to-cell
interaction by

u = My (2.3)

where M is the scaled adjacency matrix of the contact graph as in (2.1), u , [u1 . . . uN ]>,
and y , [y1 . . . yN ]>. This means that the input to each cell is a weighted average of the
outputs of adjacent cells.

Standing Assumptions. We assume that f(·, ·) and h(·) are continuously differentiable,
and that for each constant input u∗ ∈ U , system (2.2) has a globally asymptotically stable
steady-state

x∗ , S(u∗), (2.4)
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that is also a hyperbolic equilibrium (i.e., ∂f
∂x
|(x∗,u∗) has no eigenvalues on the imaginary

axis). Furthermore, we assume that the map S : U → X and the map T : U → Y , defined
as:

T (·) , h(S(·)), (2.5)

are continuously differentiable, and that T (·) is a positive, bounded, and decreasing function.
The decreasing property of T (·) is consistent with the lateral inhibition feature, since higher
outputs in one cell lead to lower values in adjacent cells. An example of such a map is the
transfer function of a biochemical inverter, see [113, 109].

Note that the steady-states of the system (2.2)-(2.3) are given by xi = S(ui) in which
u1, . . . , uN are solutions of the equation:

u = MTN(u), (2.6)

where
TN(u) = [T (u1), . . . , T (uN)]>. (2.7)

In particular, since M is row-stochastic, (2.6) admits a solution that is homogeneous across
all cells, i.e., ui = u∗ for all i = 1, . . . , N , where u∗ is the unique fixed point of T (·), i.e,

T (u∗) = u∗. (2.8)

We refer to the corresponding steady-state x∗i = S(u∗) ∀i as the homogeneous steady-state
(HSS) of the interconnection. We now give a sufficient condition for the instability of the HSS.
This condition is similar to [8, Theorem 1] but our proof does not rely on the monotonicity
assumption ([4]) made in [8].

Lemma 1. Consider the system (2.2)-(2.3). Let λN be the smallest eigenvalue of M , and
let u∗ be as in (2.8). Then, if

|T ′(u∗)|λN < −1, (2.9)

the homogeneous steady-state xi = x∗ , S(u∗), i = 1, . . . , N , is unstable.

Proof. The linearization of (2.2)-(2.3) about the HSS can be brought to a block-diagonal
form consisting of the matrices A + λkBC, where λk denote the eigenvalues of M , A ,
∂f(x,u)
∂x
|(x,u)=(x∗,u∗), B , ∂f(x,u)

∂u
|(x,u)=(x∗,u∗), and C , ∂h(x)

∂x
|x=x∗ , as in [8, Proof of Theorem 1].

We thus guarantee instability of the HSS if one of the matrices A+λkBC, for k = 1, . . . , N has
a positive eigenvalue. Furthermore, we note from (2.11) that T ′(u∗) = −CA−1B. This means
that, given the assumption (2.9), we just need to prove that the condition 1 +λkCA

−1B < 0
implies that A + λkBC has a positive eigenvalue. To show this, we will make use of the
multiplication property of determinants and Claim 2 below. Given the second statement in
Claim 2, if we prove that 1 + λkCA

−1B < 0 implies (−1)ndet(A+ λkBC) < 0, then we can
conclude that A+ λkBC has a positive eigenvalue and, therefore, the HSS is unstable.
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Note that by assumption, any constant input has an hyperbolic globally asymptotically
stable steady-state, which implies that A is Hurwitz, and therefore that, from the first part
of Claim 2, (−1)ndet(A) > 0. The next inequality then follows from the condition that
det(1 + λkCA

−1B) < 0:

(−1)ndet(A+ λkBC) = (−1)ndet(A)det(In + λkBCA
−1)

= (−1)ndet(A)det(1 + λkCA
−1B) < 0, (2.10)

where the second equality holds from Sylvester’s Determinant Theorem [2]. We then conclude
that A+ λkBC has a positive and real eigenvalue.

Claim 2. If A ∈ Rn×n is Hurwitz then (−1)ndet(A) > 0. If (−1)ndet(A) < 0 then A has a
positive and real eigenvalue.

Proof. To prove the claim, note that the characteristic polynomial of A can be written as
det(λIn − A) = (λ − λ1) . . . (λ − λn), where λ1, . . . , λn are the eigenvalues of A. Then,
the following holds: det(−A) = det(−InA) = (−λ1) . . . (−λn), and also (−1)ndet(A) =
(−1)nλ1 . . . λn.

Lemma 3 (In [8], Proof of Theorem 1). Consider the system (2.2) with static input-output
map T (·) as in (2.5). The following equality holds

T ′(u) = −CwA−1w Bw (2.11)

where Cw , ∂h(x)
∂x

∣∣∣
x=S(w)

, Aw , ∂f(x,u)
∂x

∣∣∣
(x,u)=(S(w),w)

, and Bw , ∂f(x,u)
∂u

∣∣∣
(x,u)=(S(w),w)

.

2.2 Identifying Steady-State Patterns

To identify nonhomogeneous steady-states, we use equitable graph partitions. For a weighted
and undirected graph G(V,E) with scaled adjacency matrix M , a partition π of the vertex
set V into classes O1, . . . , Or is said to be equitable if there exist mij, i, j = 1, . . . , r, such
that ∑

v∈Oj

muv = mij ∀u ∈ Oi. (2.12)

This definition is a modification of [55, Section 9.3] which considers a partition based on
the weights of the graph wi,j instead of the scaled weights mij in (2.1). We let the quotient
matrix M ∈ Rr×r be formed by the entries mij, which is also a row-stochastic matrix and its
eigenvalues are a subset of the eigenvalues of M , as can be shown with a slight modification
of [55, Theorem 9.3.3]. As we will further discuss, equitable partitions are easy to identify
in bipartite graphs and in graphs with symmetries.
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We now search for nonhomogeneous solutions to (2.6) in which the entries corresponding
to cells in the same class have the same value. This means that we examine the reduced set
of equations

z = MTr(z), (2.13)

where M is the quotient matrix of the contact graph G, and z ∈ Rr. The patterns determined
from the solutions of (2.13) are structured in such a way that all cells in the same class have
the same fate, i.e,

ui = zj for all i ∈ Oj. (2.14)

Thus, an equitable partition defines a “template” for a pattern, and a steady-state consistent
with this template exists if (2.13) has a nonhomogeneous solution. To determine if (2.13)
has a nonhomogeneous solution, we define the reduced graph Gπ to be a simple graph in
which the vertex set is Ṽ = {O1, . . . , Or} and the edge set is

Ẽ = {(Oi, Oj) : i 6= j, mij 6= 0 or mji 6= 0}. (2.15)

Assumption 4. The reduced graph Gπ is bipartite.

Note that, although mii may take nonzero values, we omit self-loops in the definition
of Gπ; therefore, this assumption does not rule out self-loops in the quotient matrix. In
the following theorem, we determine whether there exists a solution to the reduced set of
equations (2.13) other than the homogeneous solution z∗ = u∗1r.

Theorem 5. Let π be an equitable partition of the vertices of G such that Assumption 4
holds. Let vr be the eigenvector of M associated with the smallest eigenvalue λr. If T (·) is
positive, bounded, and decreasing, and if T ′(u∗) is such that

|T ′(u∗)|λr < −1, (2.16)

then there exists a solution of (2.13) other than

z∗ = u∗1r. (2.17)

Proof. Consider the auxiliary dynamical system: ż1
...
żr

 = −

 z1
...
zr

+M

 T (z1)
...

T (zr)

 , F (z), (2.18)

where z ∈ Rr
≥0 lies in the positive orthant, since M is nonnegative and T (·) is a positive

function. Note that around the homogeneous steady-state z∗ = Tr(z
∗), the Jacobian matrix

DF (z∗) = −Ir + T ′(u∗)M (2.19)
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is nonpositive (since M is nonnegative, and from (2.16), T ′(u∗) < 0).

We show that under a coordinate transformation the auxiliary system in (2.18) is co-

operative. The system is said to be cooperative if ∂Fi(z)
∂zj

≥ 0 for i 6= j and z ∈ Rr, see

[92, Definition 3.1.3]. Cooperativity is a particular case of monotonicity with respect to the
standard cone. Following the bipartite property of Gπ in Assumption 4, we define a partition
J ⊂ {1, . . . , r} and J ′ = {1, . . . , r}\J such that no two vertices in the same set are adjacent.
Let εj = 0 if j ∈ J and εj = 1 if j ∈ J ′, and choose the transformation Rz to be

R = diag((−1)ε1 , . . . , (−1)εj , . . . , (−1)εr). (2.20)

Since the reduced graph is bipartite, R−1MR = RMR is a matrix similar to M and all of
its off-diagonal elements are nonpositive. In the new coordinates Rz, the Jacobian matrix
in (2.19) becomes J , R(DF (z∗))R and has nonnegative off-diagonal elements. This means
that the system is cooperative.

To prove the existence of a solution z̃ 6= z∗ of (2.13), we will show: (i) that the largest
real part of the eigenvalues of J (designated by s(J)) is positive with associated eigenvector
v � 0 (i.e., all elements are positive); and (ii) that the solutions of (2.18) are bounded.
These two facts guarantee the existence of a steady-state z̃ 6= z∗, because (i) implies that
solutions that start at z∗ + εv for sufficiently small ε have a positive derivative and will
be increasing with respect to the standard order [92, Theorem 4.3.3]. Combined with the
boundedness property (ii), this implies that the solution converges to a steady-state z̃ 6= z∗,
cf. [92, Proposition 3.2.1]. We complete the proof by ascertaining (i) and (ii):

(i) Note that J is a quasi-positive and irreducible matrix (this is because the reduced
graph is connected, and T ′(u∗) 6= 0). Then, we conclude from a Corollary to the Perron-
Frobenius Theorem for quasi-positive matrices [92, Corollary 4.3.2] that there exists an
eigenvector v � 0 such that Jv = s(J)v. The eigenvalues of J are all real and given by

− 1 + λkT
′(u∗), k = 1, . . . , r, (2.21)

where λk are the eigenvalues of M . Therefore, s(J) = −1 + T ′(u∗)λr. From condition (2.16)
we conclude that s(J) > 0 with positive eigenvector v, and that vr = Rv is an eigenvector
of M associated with λr (i.e., MRv = λrRv).

(ii) Since the transformed cooperative system is monotone with respect to the standard
cone Rr

≥0, we conclude that z∗+Rr
≥0 and z∗−Rr

≥0 are forward invariant. Furthermore, since
T (·) is bounded and decreasing (and T (u∗) = u∗), there exists an hypercube [0, u]r, with
0 < u∗ < u which is also forward invariant. This can be seen from the fact that at z = 0,
F (z) = MT (0) ≥ 0, and at z = u, F (z) ≤ 0 (since u > T (u)). The sets

S1 = (z∗ +Rr
≥0) ∩ [0, u]r and S2 = (z∗ −Rr

≥0) ∩ [0, u]r, (2.22)

are forward invariant. Therefore, we conclude from [92, Theorem 4.3.3], there exists an
equilibrium point z̃ 6= z∗, and it satisfies (2.13).
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Figure 2.1: Graphical sketch of the proof. The red areas represent the forward invariant
and bounded sets S1 and S2. Despite the fact that there might exist a stable manifold
(blue) intersecting u∗1r, when condition (2.16) holds, the eigenvector vr corresponding to
the smallest eigenvalue of M (λr) lies inside S1 and S2. Since this also implies that the
largest eigenvalue of J is positive, we conclude any trajectories starting at u∗1r + εvr for any
ε > 0, inside the cones, converge to z̃ 6= z∗.

Remark 6. Given the resemblance between the conditions (2.9) and (2.16), one may ask
when the two conditions coincide; that is, when the instability criterion for the HSS (2.9) also
guarantees the existence of a nonhomogeneous steady-state pattern (2.16). We see that (2.9)
and (2.16) depend only on the smallest eigenvalue of M and M , respectively. Furthermore,
it is known that the eigenvalues of M are a subset of the eigenvalues of M , see [17]. Thus,
the equivalence of conditions (2.9) and (2.16) depend on the eigenvalues that are preserved
or lost in the reduction from M to M . If the smallest eigenvalue of M is preserved, then
(2.9) and (2.16) are identical. Otherwise, the range of T ′(u∗) in (2.16) is a strict subset of
(2.9).

Example 1: Checkerboard Patterns in Bipartite Graphs
Suppose that the contact graph G is bipartite, and choose O1 and O2 to be the partition
such that every edge can only connect a vertex in O1 to a vertex in O2. Then, up to vertex
relabeling, the scaled adjacency matrix of G can be written as

M =

[
0 M12

M21 0

]
. (2.23)

Since the rows of M12 (and also rows of M21) sum up to 1, we conclude that π, consisting of
sets O1 and O2, is an equitable partition. Moreover, the reduced graph Gπ is itself bipartite
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(i.e., Assumption 4 holds), and matrix M is given by

M =

[
0 1
1 0

]
. (2.24)

Since the eigenvalues of M are λ1 = 1 and λ2 = −1, the next Corollary follows.

Corollary 7. Let G be bipartite, and define a partition O1 ⊂ {1, . . . , N} and O2 = {1, . . . , N}\O1

such that no two vertices in the same set are adjacent. Then, if

|T ′(u∗)| > 1, (2.25)

there exists a steady-state x = S(u) such that u = [u1 . . . uN ] is a vector where ui = z1 if
i ∈ O1, ui = z2 if i ∈ O2, and z1 6= z2 6= u∗.

The steady-state defined by Corollary 7 results in a “checkerboard” pattern as in Figure
2.3A, since it has distinct states for adjacent cells: xi = S(z1) if i ∈ O1 and xi =
S(z2) if i ∈ O2. As discussed in Remark 6, since the smallest eigenvalue of M is preserved
in M , condition (2.25) coincides with (2.9). For bipartite graphs, the HSS loses stability
where the checkerboard steady-state appears.

2.3 Graphs with Symmetries

An important class of equitable partitions results from graph symmetries, which are rep-
resented by graph automorphisms. For a weighted graph G(V,E), an automorphism is a
permutation g : V → V such that if (i, j) ∈ E then also (gi, gj) ∈ E and wi,j = wgi,gj, where
gi denotes the image of vertex i under permutation g. The set of all automorphisms of G
forms a group designated by automorphism group, Aut(G). A subset H of a full automor-
phism group Aut(G) is called a subgroup if H is closed under composition and inverse.

Since any subgroup of the full automorphism group of a graph leads to an equitable
partition, we conclude by Theorem 5 that any orbit partition generated by a subgroup of
Aut(G) is a candidate for a pattern structured according to this partition.

The computation of automorphism groups and the identification of the reduced order
systems become cumbersome as the size and symmetries of the graphs increase. However,
these can be obtained from computer algebra systems with emphasis on computational group
theory, such as GAP [46].

Example 2: Two-Dimensional Mesh
Consider a two-dimensional mesh with wrap-arounds as in Figure 2.2. Since the graph
is bipartite, an equitable partition is given by the two disjoint subsets of vertices O1 =
{1, 3, 6, 8, 9, 11, 14, 16}, and O2 = {2, 4, 5, 7, 10, 12, 13, 15}. From Corollary 7, we conclude
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that a pattern with final value u1 for all cells in O1, and u2 for all cells in O2, with u1 6=
u2 6= u∗, is a steady-state of the network when |T ′(u∗)| > 1; see Figure 2.3A.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 2.2: Graph representation for a two-dimensional mesh with wraparounds.

(A) (B)

Figure 2.3: Steady-state patterns for the graph in Figure 2.2.

We next consider the automorphism subgroup that is generated by a combination of two
cell rotations in the horizontal direction, one cell rotation in the vertical direction, and one
cell rotation in both vertical and horizontal directions. This subgroup leads to the orbits
O1 = {1, 3, 5, 7, 10, 12, 14, 16}, O2 = {2, 4, 6, 8, 9, 11, 13, 15}. The quotient matrix associated
with this partition is given by

MB =

[
1
4

3
4

3
4

1
4

]
,

and has eigenvalues −1/2 and 1. Therefore, from Theorem 5, a nonhomogeneous steady-
state given as in Figure 2.3B exists if |T ′(u∗)| > 2.

In this example, we predict the existence of two steady-state patterns. We note that the
HSS loses stability for the same parameter range (when |T ′(u∗)| > 1) where the checkerboard
steady-state in Figure 2.3A appears. As discussed in Remark 6, this is a result of the smallest
eigenvalue of M being preserved in M . However, the steady-state pattern in Figure 2.3B
only appears for the parameter range |T ′(u∗)| > 2, and this is due to the fact that λN = −1
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is lost in MB with this choice of equitable partition.

Since |T ′(u∗)| may be interpreted as the intensity of competition between neighboring
cells, this example demonstrates that more intense competition can generate new steady-
states with interesting patterns clustering among the cells. In fact, the dependence of condi-
tion (2.16) on T ′(u∗) provides a bifurcation parameter that guarantees the instability of the
homogeneous steady-state and the existence of contrasting stead-state patterns.

Example 3: Two-dimensional Hexagonal Cyclic Lattice
The number of distinct equitable partitions in a hexagonal lattice of cells is considerably
large [106]. We use the computational algebra algorithms in [46] to find all the possible
two-level equitable partitions obtained by automorphism subgroups in a 6× 6 cyclic lattice.
Five distinct partitions, each with two classes, are plotted in Figure 2.4.

(A) (B) (C) 

(D) (E) 

Figure 2.4: Five distinct partitions, each with two classes, in a 6× 6 two-dimensional cyclic
hexagonal lattice obtained by symmetries on the contact graph.

For these partitions, we have the following scaled adjacency matrices of the auxiliary
systems:

MA =

[
0 1
1
2

1
2

]
,MB =

[
1
3

2
3

2
3

1
3

]
,MC =

[
1
3

2
3

1
3

2
3

]
,

and MD = MC , ME = MB. For each matrix we have the following smallest eigenvalue
λA = −1/2, λB = λE = −1/3, and λC = λD = 0. We thus conclude from Theorem 5
that the steady-state represented by pattern A in Figure 2.4 exists when |T ′(u∗)| > 2, and
patterns B,E are steady-states when |T ′(u∗)| > 3. Theorem 5 is inconclusive for patterns
C,D. The condition for instability of the HSS occurs as the condition for existence of pattern
A is met (|T ′(u∗)| > 2), while patterns B and E are only guaranteed to occur for a stricter
parameter range, see Remark 6.
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Example 4: Soccerball Pattern on a Buckminsterfullerene Graph
The next example addresses a larger graph, with 32 cells. It is motivated by the truncated
icosahedron solid, also known as the Buckminsterfullerene [55], formed by 12 regular pen-
tagonal faces, and 20 regular hexagonal faces, see Figure 2.5. In this case, we assume that
each face is a vertex and that two vertices are connected if the corresponding faces have a
common edge.

Figure 2.5: Cell network and soccerball pattern for the Buckminsterfullerene graph.

The full automorphism group leads to two orbits, one that consists of all the regular
pentagon cells (OP ), and the second orbit encloses all the regular hexagon cells (OH). The
quotient matrix associated with the orbit partition is then

M =

[
0 1

1/2 1/2

]
. (2.26)

This matrix has eigenvalues 1 and −1/2. Therefore, we conclude from Theorem 5, that a
steady-state as in Figure 2.5 exists when |T ′(u∗)| > 2. Note that this coincides with the
instability condition for the HSS, see Remark 6.

Example 5: Nonbipartite and Nonsymmetric Equitable Partition
As discussed above, both bipartitions and automorphism subgroups (symmetries) lead to
equitable partitions. However, these are not the only cases that lead to equitable partitions.
Consider the graph in Figure 2.6 with partition C1 = {3, 6}, and C2 = {1, 2, 4, 5, 7, 8}. This
partition is equitable, but it does not result from an automorphism subgroup (for instance,
there is no automorphism exchanging vertices 1 and 4), and the graph is also not bipartite
(due to the odd length cycles).
The quotient matrix is the same as in Example 4, we conclude that a two level steady-state
pattern formed by cells C1 and C2 exists when |T ′(u∗)| > 2.
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1

2
3 4 5 6

7

8
M =

[
0 1

1/2 1/2

]

Figure 2.6: Example of an equitable partition that is neither bipartite nor a symmetry
(C1 = {3, 6}, C2 = {1, 2, 4, 5, 7, 8}).

For a general network, it has been proven in [1] that the set of all equitable partitions,
which is a lattice, can be determined from the network adjacency matrix.

2.4 Stability Analysis of Patterns

In the previous sections we discussed the existence of nonhomogeneous steady-states for the
cell network (2.2)-(2.3). To qualify as viable patterns, these steady-states must be asymp-
totically stable. Determining stability for these steady-states may become a cumbersome
task due to the nonlinearity and large order of the network of cells. To simplify this task, we
decompose the system into an appropriate interconnection of lower order subsystems that
arise from the structure of the equitable partition considered in the previous section.

Network Decomposition

Note that an equitable partition defines an invariant subspace for the full system (2.2)-(2.3)
where xi = xj for vertices i and j in the same class. Therefore, the steady-states identified
using an equitable partition of the contact graph lie on the corresponding invariant subspace.
For a partition of dimension r, (O1, . . . , Or), the reduced order dynamics on this subspace
consists of r subsystems as defined in (2.2), coupled by u = My.
Let the steady-state be defined by

xi = S(ui), i = 1, . . . , N with ui = zj if i ∈ Oj, (2.27)

where [z1, . . . , zr] is a solution of (2.13). The linearization at this steady-state has the form

˙̃x = (A+BMC)x̃, (2.28)

where A ∈ RNn×Nn is a block-diagonal matrix where the i-th block is equal to:

Aj ,
∂f(x, u)

∂x
|(xj ,uj), if i ∈ Oj. (2.29)

In addition, B ∈ RNn×N and C ∈ RN×Nn are block-diagonal matrices structured similarly
to A, with Bj = ∂f(x,u)

∂u
|(xj ,uj), and Cj = ∂h(x)

∂x
|xj .
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To decompose (2.28) into two subsystems, we select a representative vertex Vi for each
class Oi. The set of r representatives of each class defines the state of the subsystem on the
invariant subspace. To see this, let Q be a matrix in RN×r, where qi,j = 1 if cell i is in class
j, and qi,j = 0 otherwise. Since the partition is equitable, we conclude that

MQ = QM. (2.30)

Letting T , [Q R] where R is a matrix in RN×(N−r) with columns that, together with those
of Q, form a basis for RN , we conclude that there exist matrices U and P such that

M [ Q R ] = [ Q R ]

[
M U
0 P

]
, TM̃. (2.31)

The matrix T is invertible and, thus, defines a similarity transformation from M to M̃ . Note
that the upper left diagonal block of M̃ is the matrix M , which describes the reduced order
subsystem defined by the representative vertices.

Next, we study a particular choice of the matrix R that gives a meaningful variable rep-
resentation to the transverse subspace dynamics. Let the columns of R be given by standard
vectors ei, defined as eij = δij, j = 1, . . . , N ; and further select the columns of R to be ei,
i ∈ {O1\V1, . . . , Or\Vr}, in such a way that if i ∈ Op\Vp, j ∈ Oq\Vq, and p < q, then ei is in
a column before ej, i.e., the column with non-zero entry i is placed before the column with
entry j if vertex i is in a class with smaller index than the class of vertex j.

For this choice of R, we conclude from [29, Section 5.3] that the change of variables

x̂ = (T−1 ⊗ In)x̃ (2.32)

leads to the decomposition of the linearized dynamics into two subsystems: (i) an invariant
subspace defined by the r representative cells of each class, i.e, Vi i = 1, . . . , r; and (ii) a
transverse subspace, that corresponds to the distance of each non-representative cell to its
corresponding class representative. The new state variables are then,

x̂i =

{
x̃Vi , i = 1, . . . , r

x̃k − x̃Vj , i = r + 1, . . . , N
, where k ∈ Oj\Vj. (2.33)

Therefore, the linearized system is decomposed into the representative subsystem SR and
the transverse subsystem SD,

SR = {AR, BR, CR} and SD = {AD, BD, CD}, (2.34)

where AR = blkdiag(A1, A2, . . . , Ar), and AD is also a block-diagonal matrix, with the
remaining repeated entries of A being given by Aj in (2.29), and ordered by the index
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j = 1, . . . , r. A structure identical to AR and AD follows for BR, BD, and CR, CD. To see
why the linearized system decomposes into SR and SD, note that

˙̃x = (T−1 ⊗ In)(A+BMC)(T ⊗ In)x̃ = (Ã+ B̃M̃C̃)x̃, (2.35)

where

Ã , T−1 ⊗ InAT ⊗ In
, diag(A1, A2, . . . , Ar, A1, . . .

. . . , A1, A2, . . . , A2, . . . , Ar, . . . , Ar)

, diag(AR, AD),

(2.36)

and B̃ and C̃ are defined analogously to Ã. This means that a necessary and sufficient
condition for the asymptotic stability of (2.28) is the stability of the matrices

AR +BRMCR and AD +BDPCD. (2.37)

In a typical large-scale system, the matrix AR +BRMCR is of low dimension but the size of
AD +BRPCD may be prohibitively large.

A Small-Gain Criterion for Stability

In this section, we provide a small-gain type condition [105, 32] for stability. This condition
is only sufficient, but it requires checking the spectral radius of a matrix whose dimension is
the same as that of M . Thus, it is easier to apply than checking stability of both matrices
in (2.37).

Consider again the linearization introduced in (2.29). This describes a network with
interconnection defined by u = My and where each individual cell is given by the following
linearized subsystem:

Hi :

{
˙̃xi = Aix̃i +Biũi

ỹi = Cix̃i
, (2.38)

where Ai = Aj, if i ∈ Oj as in (2.29), and similarly for Bi and Ci, see Figure 2.7. Note that
Hi = Hj if i, j ∈ Ok. Recall that Ai is Hurwitz, and assume that each linearized subsystem
Hi is observable [23].

Since subsystems in the same class have identical models, they have identical L2-gains.
Let γi denote an L2-gain of each subsystem in class i, and let Γ be a diagonal matrix with
entries

{Γ}jj = γi for j ∈ Oi. (2.39)

The following Lemma provides a small-gain criterion for the stability of the cell network
around the steady-state pattern.
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Figure 2.7: Linearized system interconnection with Hi, i = 1, . . . , N independent subsystem.

Lemma 8. Consider the network (2.2)-(2.3). The steady-state pattern defined by (2.27) is
locally asymptotically stable if

ρ(MΓ) < 1, (2.40)

where Γ is as in (2.39), and ρ(·) represents the spectral radius.

Proof. Since each linearized subsystem Hi, in (2.38), has bounded L2-gain, by the Bounded
Real Lemma [34], we conclude that there exists a positive definite matrix Qi such that, for
Vi(z) = z>Qiz, we have V̇i(x

i, ui) ≤ γ2i u
iTui − yiTyi. Let D = diag(d1, . . . , dn), where di is

some positive constant, and let V (x) =
∑

i diVi. We then obtain,

V̇ (x) =
∑
i

diV̇i(x
i, ui) ≤ u>DΓ2u− y>Dy

= y>((ΓM)>D(ΓM)−D)y,

(2.41)

where u = [(u1)> . . . (uN)>]>, y = [(y1)> . . . (yN)>]>, and the second equality follows from
the fact that u = My. From inequality (2.41), we conclude that the steady-state (2.27) is
stable if there exists a positive diagonal matrix D such that D − (ΓM)>D(ΓM) is positive
definite. This is equivalent to the condition that I −ΓM be a M-matrix, see [7, Theorem 2].
Therefore, since the spectra of MΓ is the same as ΓM , and since assumption (2.40) implies
that I − ΓM is a nonsingular M-matrix, see [14, Definition 6.1.2], we conclude stability of
the interconnection.

Finally, since V̇ (x) is negative semidefinite, we conclude from LaSalle’s Invariance Prin-
ciple [64] and from properties of linear systems ([90]), that every trajectory converges to the
unobservable subspace of the system. Furthermore, under the same assumption, and since
each Hi is observable, we conclude that each trajectory must converge to the singleton {0}.
Thus, the steady-state (2.27) is locally asymptotically stable.

We now show that (2.40) is equivalent to ρ(M Γ) < 1, where

Γ = diag(γ1, . . . , γr). (2.42)
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This result simplifies the verification of this small-gain stability condition to the reduced
system SR in (2.34) with interconnection matrix M .

Lemma 9. Consider an equitable partition π of G. Then,

ρ(M Γ) = ρ(MΓ), (2.43)

where M is as in (2.12), and Γ is as in (2.42).

Proof. First, note that M Γ is a nonnegative irreducible matrix. Thus, by the Perron-
Frobenius Theorem [14], we conclude that r = ρ(M Γ) > 0 is an eigenvalue of M Γ with
corresponding eigenvector v � 0.
Claim: r > 0 is also an eigenvalue of MΓ with corresponding eigenvector v such that entries
vi = vj if i ∈ Oj.
According to this claim, we conclude that v is a positive eigenvector. Therefore, by appeal-
ing again to the Perron-Frobenius Theorem, and since MΓ is also a nonnegative irreducible
matrix, we conclude that v has to be the eigenvector associated with eigenvalue r = ρ(MΓ).

To prove the claim, note that matrix Γ is positive diagonal with repeated entries for
vertices in the same class. Therefore, since the vertex partition is equitable for the scaled
adjacency graph M , then it is also equitable when we consider a modified adjacency graph
MΓ, i.e., ∑

v∈Oj

puvγjj = pijγjj ∀u ∈ Oi, (2.44)

where pij is as defined in (2.12). From this observation we see that this claim is a gen-
eralization of the Lifting Proposition in [17], which holds not only for partitions obtained
through an automorphism subgroup but also for any equitable partition. The proof of the
claim follows similarly to the proof of the Lifting Proposition, with matrices MΓ and M Γ
as in (2.44).

Combining Lemma 8 and Lemma 9 we obtain the following stability condition.

Theorem 10. Consider the network (2.2)-(2.3). The steady-state pattern defined by (2.27)
is locally asymptotically stable if

ρ(M Γ) < 1. (2.45)

Special Case: Bipartite Graph

Consider the special case of a bipartite graph, with a partition π consisting of two classes,
chosen so that no two vertices in the same set are adjacent. As discussed in Example 1, the
quotient matrix M is given by

M =

[
0 1
1 0

]
. (2.46)
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Therefore, the eigenvalues ofM Γ are±√γ1γ2. The next result follows trivially from Theorem
10.

Corollary 11. Assume that the contact graph G of the cell network (2.2)-(2.3) is bipartite,
and that there exists a steady-state u ∈ RN such that ui = z1 if i ∈ O1 and ui = z2 if i ∈ O2,
with z1 6= z2 6= z∗, as in Corollary 7. This steady-state solution is locally asymptotically
stable if

γ1γ2 < 1, (2.47)

where γ1 and γ2 are L2-gains of the linearized subsystems around z1 and z2, respectively.

In the particular case where the L2-gain is identical to the dc-gain:

γi = −Ci(Ai)−1Bi = −T ′(zi), (2.48)

the local asymptotic stability condition in (2.47) reduces to

T ′(z1)T
′(z2) < 1. (2.49)

The L2-gain is indeed equal to the dc-gain when each subsystem (2.2) is input-output mono-
tone [3], as assumed in [8]. We have thus recovered Theorem 2 in [8] which used the condition
(2.49) to prove the existence of stable checkerboard patterns. Unlike the proof in [8], which
relies heavily on monotonicity properties, here we have made the less restrictive assumption
that the L2-gain be equal to the dc-gain.

Remark 12. Several results discussed in [26] for the Delta-Notch lateral inhibition model
are recovered in this chapter. In particular, that the HSS is unstable when the inhibition
mechanism is sufficiently strong (condition (2.9)), and that the instability of HSS for patterns
with two distinct levels implies the existence of pairs of inhomogeneous steady-states, since
condition (2.16) is identical for a pattern with opposite high/low cell output. Our results
study pattern motifs that form equitable partitions, and therefore, are consistent with the
patterning rule that low level cells cannot be completely surrounded by other low level cells.
On the other hand, the pattern in Figure 2.3B conflicts with the patterning rule that no two
high notch cells lie next to each other. We have found a set of parameters for the Delta-Notch
model (Example 6 below), where such pattern is stable. However, only very few simulations
can converge to such pattern, specially if starting close to the HSS. We believe its region of
convergence to be fairly small compared to the “checkerboard” pattern, and thus the reason
why such patterns had not been found through simulation.

2.5 Noise Driven Patterning

In the previous sections, we provided sufficient conditions for the instability of the homo-
geneous steady-state and the emergence of patterned steady-states. We now focus on the
case where the HSS is locally asymptotically stable, but where the persistence of noise can
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generate spatial patterns. This means that noise can enhance the parameter regime where
patterns emerge. A similar situation was observed for Turing patterns [15, 22, 60]. Follow-
ing [60], we will use tools from robust control, namely, an H2-norm analysis (see [115]), to
characterize the sensitivity of each spatial mode to noise. We show with an example that the
highest frequency spatial mode (associated with the smallest eigenvalue of the interconnec-
tion M) is more sensitive to noise and, thus, predominant in stochastic simulations, when
the HSS is on the verge of instability.

We now consider a stochastic differential equation (SDE) of the linearization of system
(2.2)-(2.3) representing the state variations around the HSS, x∗:{

dx̃i = A∗x̃idt+B∗ũidt+G∗dwi
ỹi = C∗x̃i

(2.50)

where G∗ ∈ Rn×r, wi(t) is an r−dimensional independent standard Wiener process; and
where A∗ is given by

A∗ =
∂f(x, u)

∂x
|(x∗,u∗). (2.51)

Similarly, B∗ = ∂f(x,u)
∂u
|(x∗,u∗), and C∗ = ∂h(x)

∂x
|x∗ .

When considering systems representing biochemical reactions, r will typically be the
number of reactions in each cell, and the linearized system represents a linear approximation
of the system’s variation around the equilibrium point defined by HSS [63, 60]. The full
interconnection of the linearization is the following,

dx̃ = (IN ⊗ A∗ +M ⊗B∗C∗) x̃dt+ (IN ⊗G∗)dw. (2.52)

We apply a change of coordinates that decomposes the system into N independent prob-
lems, each of dimension n,

x̂ = (V −1 ⊗ In)x̃, (2.53)

where the columns of matrix V are the eigenvectors of the adjacency matrix M , i.e. vectors
{v1, . . . , vN} associated with λ1, . . . , λN . The full system decomposes into N spatial modes
governed by:

dx̂k = (A∗ + λkB
∗C∗)x̂kdt+G∗dŵ, k = 1, . . . , N, (2.54)

where x̂k ∈ Rn. Unlike x̃i, which represents a vector of concentrations in cell i, x̃k represents
an aggregate concentration vector for spatial mode k. The H2-norm for each of these inde-
pendent SDE modes is given by the covariance of the linearized state, i.e., Qk , E

[
x̂kx̂

>
k

]
∈

Rn×n, which is the positive semidefinite solution of the following Lyapunov equation [47],

(A∗ + λkB
∗C∗)Qk +Qk(A

∗ + λkB
∗C∗)> +G∗(G∗)> = 0. (2.55)

The H2-norm is then defined by

µk , Tr{CQkC
>} (2.56)
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where C is chosen such that Cx̃i is the concentration of interest to be designated as the
output. Given this decomposition, the covariance of each mode Qk provides the H2-norm of
each spatial mode. This norm can be interpreted as the sensitivity of each spatial mode to
noise.

Example 6: Delta-Notch Lateral Inhibition in a Ring of Cells
We consider the Notch pathway, where Delta and Notch are trans-membrane proteins that
allow cell-to-cell signaling. In this mechanism, Delta ligands in one cell will bind to Notch
receptors in a neighboring cell and trans-activate them. This leads to the release of the
Notch intracellular domain, which in turn inhibits the production of Delta in the same cell
[26]. The following dynamical system describes such behavior:{

ẋi1 = −γ1xi1 + g1(x
i
2)

ẋi2 = −γ2xi2 + g2(〈xj1〉i)
, (2.57)

where 〈·〉i denotes the average over all the output of all cells adjacent to i, and

g1(s) =
b

1 + sr
, g2(s) =

asp

1 + sp
,

with γ1 > 0, γ2 > 0, a > 0, b > 0, r > 0, p > 0. The states xi1 and xi2 in each cell i = 1, . . . , N
represent the concentrations of Delta, and the intracellular domain of Notch, respectively.
Parameter γj represents the degradation rate of the corresponding species, the decreasing
property of g1(·) represents the inhibition of Delta production by the intracellular domain
of Notch, and the increasing property of g2(·) represents the trans-activation of intracellular
Notch due to Delta. In this example, we consider an N -cell cycle. Thus, the neighboring
cells of cell i, are the ones with index mod(i− 1, N) and mod(i+ 1, N).

Note that this dynamical system can be written in same form as (2.2)-(2.3):
ẋi1 = −γ1xi1 + b

1+(xi2)
r

ẋi2 = −γ2xi2 + a(ui)p

1+(ui)p

yi = xi1

i = 1, . . . , 16, (2.58)

where the interconnection is defined by (2.3), with M being the scaled adjacency matrix for
the 16-node cyclic graph (and with wi,j = 1 if cells i and j are adjacent in the cycle). The
linearization of (2.58) at the HSS yields:

A∗ =

[
−γ1 − rb(x∗2)

r−1

(1+(x∗2)
r)2

0 −γ2

]
B∗ =

[
0

ap(x∗1)
p

(1+(x∗1)
p)2

]
, (2.59)

and C∗ = [1 0]. Finally, we choose the noise term G∗ to be:

G∗ =

[
−γ1x∗1 b

1+(x∗2)
r 0 0

0 0 −γ2x∗2 ax∗1
1+(x∗1)

p

]
, (2.60)
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whose structure is motivated by the Chemical Langevin Equation approximation, [54, 65].
In this example, G∗(G∗)>, is a 2-by-2 diagonal matrix. Since we are considering the output
of each cell to be xi1, consider C = [1 0]. Therefore, to calculate the H2-norm of each spatial
mode we need to solve (2.55) for {Qk}, k = 1, . . . , N . We choose the parameters to be
γ1 = γ2 = 1, a = 8, b = 2.1, p = 2, and r = 1. By doing so, we have T ′(u∗) = −0.9931. For
such parameters, it can be calculated that the HSS is stable, and that the steady steady is
very close to instability (cf. (2.9)).

Modes 1 2/3 4/5 6/7 8/9 10/11 12/13 14/15 16

λk -1 -0.9239 -0.7071 -0.3827 0 0.3827 0.7071 0.9239 1

µk 53.9812 4.834 1.5697 0.9192 0.6907 0.5880 0.5369 0.5123 0.5049

Table 2.1: H2-Norm µk for each spatial mode k = 1, . . . , N .

The results for H2 under such parameters are in Table (2.1). We note that the norm
is much larger for Mode 1, for which the associated eigenvector is composed of alternat-
ing {+1,−1} entries, related to a checkerboard (or on-off) pattern. Indeed, in Figure 2.8
(Left), we see that under noise, a nonstationary on-off wave is persistent along the horizon-
tal axis (individual cells), as we progress in time (vertical axis). Figure 2.8 (Right) shows a
stochastic simulation for a larger ring of cells, where it is easier to see a striped on-off pattern.

In this particular case, we see that the on-off patterns arising from the stochastic simula-
tions are nonstationary, unlike what is expected in the deterministic case (with the instability
of the HSS). The reason why these nonstationary patterns arise is due to the fact that both
on-off or off-on pattern can occur in this interconnection, and the initial conditions determine
to which one the system converges. The noise introduces a persistent change in the system’s
state, thus forcing the pattern to shift along the cell cycle.

2.6 Conclusions

In this chapter we presented analytical results to predict steady-state patterns for large-
scale lateral inhibition systems, independent of network size. We have shown that equitable
partitions provide templates for steady-state pattern candidates, as they identify invariant
subspaces where the fate of cells in the same class is identical. We proved the existence of
steady-state patterns by relying only on the static input-output model of each cell and the
algebraic properties of the contact graph. One limitation in these results is the assumption
that the reduced graph is bipartite. This assumption is not overly restrictive, since it holds,
for instance, in the study of two-level steady-state patterns. Nevertheless, the generalization
to a larger class of graph partitions that do not necessarily result in bipartite reduced graphs
needs to be considered. Since this assumption was made to be able to identify an orthant as
the positivity cone, a possible relaxation would be to investigate monotonicity with respect
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Figure 2.8: Stochastic simulation of Delta-Notch in a cyclic interconnection, where each cell
behavior is governed by (2.50). Cell output results over time. (Left) 16-cell cycle; (Right)
64-cell cycle.

to other cones. The proposed procedure assumes a single-input single-output model for each
cell. However, there exists evidence that cell-to-cell contact inhibition mechanisms may de-
pend on more than a single species, [97]. Several results can be extended to multiple-input
multiple-output cells by including further monotonicity assumptions in the dynamics of each
cell.

We have analyzed the stability of steady-state patterns by providing a decomposition into
a representative subsystem SR and a transverse subsystem SD. We provided a small-gain
stability type criterion, which relies only on the reduced order subsystem SR to guarantee
stability of the steady-state patterns. A critical topic for further work in the stability anal-
ysis of these patterns is to provide a better characterization of their domains of attraction.
As discussed in Section 2.4, we found analytical conditions that guarantee convergence of
such steady-state patterns with neighboring high notch cells, contrary to the rule obtained
from simulation in [26]. However, we suspect that their regions of attraction are fairly small
and potentially not intersecting the neighborhood of the HSS.

Finally, we discussed how the parameter regime where patterns emerge can be enhanced
by noise. We connected such results with the H2-norm of decomposed modes, which allowed
the prediction of predominant spatial modes.
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One practical limitation of the model introduced in this chapter is the assumption that
the contact graph is constant, and thus it does not account for the mobility of cellular
organisms, nor for the continuous growth and division of cells. There are, however, several
applications where this assumption might still be acceptable: In developmental biology,
there are certain developmental phases that involve long periods between cell divisions [51];
In synthetic biology, it is possible to inhibit cell growth without affecting transcription or
translation [89], and there are also methods to guarantee the immobilization of cells [112].
Regardless of that, it is imperative to investigate the robustness of the patterning behavior
with respect to changes in the contact graph.
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Chapter 3

Compartmental Lateral Inhibition
Systems

Multicellular developmental processes rely on spatial patterning to initiate differentiation
[51, 111]. Commonly-studied methods of pattern formation include diffusion-driven instabil-
ity [101, 78, 61], gradient or density detection [12, 72], locally-synchronized oscillators [30],
and lateral inhibition [68, 26, 96]. Lateral inhibition is a mechanism where cell-to-cell signal-
ing induces neighboring cells to compete and diverge into sharply contrasting fates, enabling
developmental processes such as segmentation or boundary formation [79]. The best-known
example of lateral inhibition is the Notch pathway in Metazoans where membrane bound
Delta ligands bind to the Notch receptors on the neighboring cells. This binding releases the
Notch intracellular domain in the neighbors, which then inhibits their Delta ligand produc-
tion [85, 26, 97, 8]. Recent discoveries have shown that lateral inhibition is not limited to
complex organisms: a contact-dependent inhibition (CDI) system has been identified in E.
coli where delivery via membrane-bound proteins of the C-terminus of the gene cdiA causes
down regulation of metabolism [6, 5, 108]. Despite the vigorous research on elucidating
natural pathways such as Notch and CDI, a synthetic lateral inhibition system for pattern
formation has not been developed.

In this chapter, we propose a compartmental lateral inhibition system that is able to
spontaneously generate contrasting patterns between neighboring compartments. Our sys-
tem consists of a set of compartments interconnected by channels as in Figure 3.1. In each
compartment, we place a colony of cells that produce diffusible molecules to be detected
by the neighboring colonies. We equip each cell with an inhibitory circuit that reacts to
the detected signal, i.e., the more diffusible molecules are detected in one compartment, the
less production in that colony. To prevent auto-inhibition, we use two orthogonal diffusible
quorum sensing pairs [27] and design two inhibitory circuits each of which detects only one
type of molecule and produces the other type. In the examples of Figure 3.1, cells of type A
produce a diffusible molecule X that is only detectable by cells of type B, and cells of type
B produce a diffusible molecule Y which is only detectable by A.
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Figure 3.1: Compartmental lateral inhibition systems with cells of type A and B, where
contrasting patterns between neighboring compartments emerge. In each compartment Ai
(Bi) we place a colony with cells of type A (B) that communicate through channels. Each
cell type can only detect signaling molecules produced by the other type, preventing auto-
inhibition.

To derive conditions under which this system will exhibit contrasting patterns, we define
the cell network as a graph where each compartment corresponds to a vertex. The diffu-
sion of molecules between two compartments occurs through the channels and is represented
by the graph edges. We model the diffusion with a compartmental model, and represent
the compartment-to-compartment communication by the Laplacian matrix of the weighted
graph. The edge weights depend on the distance between the compartments and the diffu-
sivity of the quorum sensing molecules. We then use the graph-theoretic notion of equitable
partition to ascertain the existence of contrasting steady-state patterns. Equitable partitions
reduce the steady-state analysis to finding the fixed points of a scalar map, and each fixed
point represents a steady-state where all the compartments of the same type have the same
final value. We also show that the slope of the scalar map at each fixed point provides a sta-
bility condition for the respective steady-states. Finally, we propose and model a synthetic
circuit with cells of type A and B, which is currently under implementation, and apply our
analysis to show that it is capable of patterning.

In Chapter 2, we have used graph theoretical results to analytically determine patterning
by lateral inhibition using a contact inhibition model for networks of identical cells. In this
chapter, we analyze a diffusion model that allows two cell types which is critical for avoiding
auto-inhibition. The notion of equitable partition is equivalent in both chapters. In the for-
mer it is defined in terms of the adjacency matrix of the contact graph, while in the latter,
it is based on the Laplacian matrix defined by the channel topology.

Reaction-diffusion mechanisms have been widely used in the past to achieve spatial pat-
tern generation with synthetic systems; mostly relying on one-way communication achieved
through either the external spatiotemporal manipulation of the cell’s chemical environment
[25, 93, 74], the precise positioning of cells containing different gene networks which secrete
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or respond to diffusible signals [12, 13], or the interplay between cell growth and gene expres-
sion [86]. A two-way communication mechanism using orthogonal quorum sensing systems
has been employed to demonstrate a predator-prey system in [11]. Unlike these results, this
chapter achieves spatial patterning by lateral inhibition by using orthogonal quorum sens-
ing systems and by positioning colonies of cells inside compartments that are connected by
channels.

In Section 3.1 we define the model for the proposed compartmental system and demon-
strate how equitability allows to determine the existence of contrasting steady-state patterns.
Under equitability and monotonicity assumptions, we derive a scalar condition for stability
of such steady-state patterns, in Section 3.2. Finally, in Section 3.3, we propose a synthetic
lateral inhibition circuit and analyze its patterning behavior.

3.1 An Analytical Test for Patterning

Composing a Compartmental Lateral Inhibition Model

We propose a network of NA compartments of type A and NB compartments of type B that
communicate through diffusible molecules. Each cell of type A produces diffusible species
X, and only cells of type B are equipped with a receiver species that binds to X and forms
a receiver complex. Similarly, the diffusible species Y is produced by cells of type B and
detected by cells of type A. We represent the dynamics in each cell type with three mod-
ules: the transmitter module where species X (or Y ) is produced and released; the receiver
module where Y (or X) is detected, and an inhibitory module which inhibits the transmitter
activity in the presence of the receiver complex.

To facilitate the analysis, we separate the transmitter module of A and receiver module
of B, and merge them into a “transceiver” block for the diffusible species X, which also
includes the diffusion process. Similarly, the transceiver block of Y is composed by the
transmitter module of B and the receiver module of A. The cell network is represented in
Figure 3.2. Each compartment is represented with a block labeled HA or HB, corresponding
to the inhibitory circuit of types A and B, respectively. The concentration of the autoinducer
synthase for the production of X (respectively, Y ) is denoted by yA (yB), and RA (RB) is
the concentration of the receiver complex, the result of Y (X) binding to the receiver protein.

The transceiver blocks incorporate diffusion in an ordinary differential equation compart-
mental model that describes the concentrations of the diffusible species at each compartment.
We define an undirected graph G = G(V,E) where each element of the set of vertices V repre-
sents one compartment, and each edge (i, j) ∈ E represents a channel between compartments
i and j. For each edge (i, j) ∈ E we define a weight dij = dji (and dij = 0 if compartments
i and j are not connected). The constant dij is proportional to the diffusivity of the species
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Figure 3.2: Cell network with two types of compartments A and B communicating through
diffusion. For each type of diffusible species, the transceiver includes the dynamics of the
senders’ transmitter modules, the receivers’ detection modules, and the diffusion process.

and inversely proportional to the square of the distance between compartments i and j. We
define the weighted Laplacian of the graph to be:

{L}ij =

{
−∑N

j=1 dij if i = j

dij if i 6= j.
(3.1)

The dynamical model of the transceiver tx/rx for X is then represented by:

tx/rxA→B :


[
ẊA

ẊB

]
=

[
ΓX(XA, yA)
ΦX(XB, RB)

]
+ L

[
XA

XB

]
ṘB = ΨX(XB, RB),

(3.2)

where XA ∈ RNA
≥0 represents the concentration of species X in compartments A due to

production, XB ∈ RNB
≥0 the concentration of species X at compartment B due to diffusion,

and RB ∈ RNB
≥0 the concentration of complexes at compartment B formed by the binding

of species X with a receiver molecule. The functions ΓX(·, ·) ∈ RNA
≥0 , ΦX(·, ·) ∈ RNB

≥0 ,

and ΨX(·, ·) ∈ RNB
≥0 are concatenations of the decoupled elements γiX(X i

A, u
i) ∈ R≥0, i =

1, ..., NA, φjX(Xj
B, R

j
B) ∈ R≥0 and ψjX(Xj

B, R
j
B) ∈ R≥0, j = 1, ..., NB, and assumed to be

continuously differentiable. The function γiX(·, ·) models the production and the degradation
of X in compartment i of type A, the function φjX(·, ·) models the degradation of X and the
binding of X with the receiver protein in compartment j of type B, and ψjX(·, ·) models the
binding of the receiver complex in compartment j of type B. The transceiver tx/rxB→A for
Y is defined similarly, by changing X to Y and switching indices A with B in (3.2).

Assumption 13. For each constant input y∗A ∈ RNA
≥0 (and y∗B ∈ RNB

≥0 ), the system (3.2) has
a globally asymptotically stable steady-state (X∗A, X

∗
B, R

∗
B), which is a hyperbolic equilibrium,
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i.e., the Jacobian has no eigenvalues on the imaginary axis. Furthermore, there exist positive
and increasing functions T

tx/rx
AB : RNA

≥0 → RNB
≥0 and T

tx/rx
BA : RNB

≥0 → RNA
≥0 such that

R∗B , T
tx/rx
AB (y∗A), and R∗A , T

tx/rx
BA (y∗B). (3.3)

The increasing property of these maps is meaningful, since a higher input of the autoin-
ducer synthase leads to more production and, thus, more detection on the receiver side.

Next, we represent the blocks H i
k, i = 1, ..., N of type k ∈ {A,B} with models of the

form:

H i
k :

{
ẋi = fk(xi, ui)
yi = hk(xi),

(3.4)

where xi ∈ Rn
≥0 describes the vector of reactant concentrations in compartment i, yi ∈ R≥0 is

the output of compartment i (in this context, the concentration of an autoinducer synthase),
and ui ∈ R≥0 is the input of compartment i (the concentration of the receiver complex). We
denote xk = [x>1 , ..., x

>
Nk

]> ∈ RnNk
≥0 , uk = [u1, ..., uNk ]

> ∈ RNk
≥0, and yk = [y1, ..., yNk ]

> ∈
RNk
≥0, k ∈ {A,B}.

Similar to the cell dynamics in Chapter 2, we assume that fk(·, ·) and hk(·) are continu-
ously differentiable and further satisfy the following properties:

Assumption 14. For k ∈ {A,B} and each constant input u∗ ∈ R≥0, the system (3.4) has
a globally asymptotically stable steady-state

x∗ , Sk(u
∗), (3.5)

which is a hyperbolic equilibrium. Furthermore, the maps Sk : R≥0 → Rn
≥0 and Tk : Rn

≥0 →
R≥0, defined as:

Tk(·) , hk (Sk (·)) , (3.6)

are continuously differentiable, and Tk(·) is a positive, bounded and decreasing function.

The decreasing property of Tk(·) is consistent with the lateral inhibition feature, since a
higher input in one cell leads to lower output values.

When do Contrasting Patterns Emerge?

We now present a method to find steady-state patterns for the system defined by (3.4)-(3.2).
Given Assumptions 13 and 14, the existence of variables zA ∈ RNA

≥0 and zB ∈ RNB
≥0 such that: zA = TA

(
T

tx/rx
BA

(
TB

(
T

tx/rx
AB (zA)

)))
zB = TB

(
T

tx/rx
AB

(
TA

(
T

tx/rx
BA (zB)

))) (3.7)
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where

TA(uA) = [TA(u1A), ..., TA(uNAA )]> : RNA
≥0 → RNA

≥0 ,

TB(uB) = [TB(u1B), ..., TB(uNBB )]> : RNB
≥0 → RNB

≥0 .

is sufficient to conclude the existence of a steady-state for the full system (3.2)-(3.4). Our
goal is to determine when zA and zB exhibit sharply contrasting values, indicating an on/off
pattern.

To reduce the dimension of the maps defined in (3.7), we use the notion of equitable
partition. For the weighted and undirected graph G(V,E) represented by the Laplacian
matrix L in (3.1), a partition of the vertex set V into classes O1, ..., Or is equitable if there
exists dij i, j = 1, ..., r, such that∑

v∈Oj

duv = dij ∀u ∈ Oi, i 6= j. (3.8)

We let the quotient Laplacian L ∈ Rr×r be formed by the off-diagonal entries dij, and{
L
}
ii

= −∑r
j=1,j 6=i dij.

Assumption 15. The partition of the compartments V into the classes OA and OB of type
A and B, respectively, is equitable, and the quotient Laplacian is given by

L =

[
−dAB dAB
dBA −dBA

]
. (3.9)

This assumption implies that the total incoming edge weight of the species X is the
same for all the compartments of type B, and the total incoming edge weight of the species
Y is the same for all the compartments of type A. For example, the network in Figure
3.1(left) is equitable with respect to the classes OA and OB when d13 + d14 = d23 + d24 and
d13 + d23 = d14 + d24, which implies d13 = d24 and d23 = d14. Since the edge weights dij are
inversely proportional to the square of the distance, this means that opposite channels must
have the same length, thus exhibiting a parallelogram geometry, see Figure 3.3.

Assumption 15 allows us to search for solutions to (3.7) where the compartments of the
same type have the same steady-state, i.e.,

z = [zA, ..., zA, zB, ..., zB]> = [zA1>NA , zB1>NB ]> (3.10)

where zA ∈ R≥0 and zB ∈ R≥0. This means that the transceiver input-output maps become
decoupled and that

T
tx/rx
AB (zA1NA) = TAB(zA)1NB , (3.11)
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Figure 3.3: Examples of equitable partitions for the compartmental lateral inhibition system
in Figure 3.1(left).

where TAB : R≥0 → R≥0. The same holds for T
tx/rx
BA (·) with TBA : R≥0 → R≥0. Note that

the diffusion coefficients are implicit in the maps TAB(·) and TBA(·). Furthermore, zA and
zB satisfy the following reduced system of equations:{

zA = TA (TBA (TB (TAB (zA)))) , TA (zA)

zB = TB (TAB (TA (TBA (zB)))) , TB (zB)
, (3.12)

where TA : R≥0 → R≥0 and TB : R≥0 → R≥0 are a composition of scalar maps. The solutions
of the scalar equations in (3.12) are solutions of the coupled system of NA (and NB) equations
in (3.7). Note that it is sufficient to study the solution of one of the equations in (3.12): if z̃A
is a solution to the top equation, then z̃B , TB(TAB(z̃A)) must be a solution to the bottom
one. The derivative of these two functions at the fixed points z̃A and z̃B , TB(TAB(z̃A)) is
the same and given by

dTA
dzA

∣∣∣∣
z̃A

= T ′AB(z̃A)T ′B (TAB(z̃A))T ′BA(z̃B)T ′A (TBA(z̃B)) =
dTB
dzB

∣∣∣∣
z̃B

, (3.13)

where T ′(zk) , dT
dz

∣∣
z=zk

.

From Assumptions 13 and 14, the input-output transfer maps TA(·) and TB(·) are decreas-
ing and bounded, whereas TBA(·) and TAB(·) are increasing. Since TA(·) and TB(·) in (3.12)
are compositions of these four maps, they are positive, increasing and bounded functions.
Figure 3.4 illustrates typical shapes of the input-output maps TA(·) and TB(·). In Fig-
ure 3.4(a) there exists only one solution pair (orange circles). This is a near-homogeneous
steady-state, where the discrepancy between z̃A and z̃B is due only to nonidentical TA(·)
and TB(·). The map TA(·) in Figure 3.4(b) has three fixed points: a middle solution (near-
homogenous steady-state), a large fixed point (blue triangle), and a small fixed point (green
square). The latter two have a corresponding opposite fixed point pair in TB(·), specifically
z̃B , TB(TAB(z̃A)), and therefore represent a contrasting steady-state pattern.

Note that a contrasting pattern emerges when the near-homogenous steady-state has a
slope larger than 1, that is:

T ′AB(z̃A)T ′B (TAB(z̃A))T ′BA(z̃B)T ′A (TBA(z̃B)) > 1. (3.14)
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Figure 3.4: Typical shapes of input-output maps TA(·) and TB(·): (a) In this case, the
unique pair of fixed points (orange circles) is near-homogenous and no contrasting patterns
emerge; (b) In this case, there exist three pairs of fixed points (orange circle, green square,
and blue triangle), and the two extra solutions represent contrasting steady-state patterns.

Indeed, due to the boundedness and strictly increasing properties of the map TA(·), if (3.14)
holds for (z̃A, B̃) then there must exist at least two other fixed point pairs of (3.12),(

z∗A, z
∗
B , TB (TAB (z∗A))

)
and (z∗∗A , z

∗∗
B )

for which
(z∗A > z̃A and z∗B < z̃B) (z∗∗A < z̃A and z∗∗B > z̃B) . (3.15)

In the next section, we show that (3.14) implies that the near-homogenous steady-state
becomes unstable, setting the stage for contrasting patterns to emerge. Condition (3.14)
provides a parameter tuning principle and is instrumental in characterizing the parameter
ranges for patterning in Section 3.3.

3.2 Convergence to Contrasting Patterns

To analyze convergence to the steady-state patterns in (3.12), we employ the following
monotonicity assumptions.

Assumption 16. The system tx/rxA→B in (3.2) is monotone with respect to KU = RNA
≥0 ,

KY = RNB
≥0 , and KX = RN+NB

≥0 . Similarly tx/rxB→A is monotone with respect to KU = RNB
≥0 ,

KY = RNA
≥0 , and KX = RN+NA

≥0 .

Assumption 17. The systems HA and HB in (3.4) are monotone with respect to KU =
−KY = R≥0, and KX = K, where K is some positivity cone in R.



CHAPTER 3. COMPARTMENTAL LATERAL INHIBITION SYSTEMS 41

These monotonicity assumptions are consistent with Assumptions 13 and 14, as they
imply the increasing property of the input-output maps T

tx/rx
BA (·) and T

tx/rx
AB (·) and the de-

creasing behavior of TA(·) and TB(·). We now state a stability result for solutions restricted
to the steady-state solutions described by (3.12).

Theorem 18. Consider the network (3.2)-(3.4) and suppose Assumptions 13, 14, 16 and 17
hold. Let the partition of the compartments into the classes OA and OB be equitable. Then
the steady-state described by (3.12) is asymptotically stable if

T ′AB(z̃A)T ′B (TAB(z̃A))T ′BA(z̃B)T ′A (TBA(z̃B)) < 1, (3.16)

and unstable if (3.14) holds.

To prove Theorem 18, we first use the result that the compartmental network (3.2)-(3.4)
is monotone.

Lemma 19. If monotonicity Assumptions 16 and 17 hold, then the network (3.2)-(3.4) is
monotone.

Proof of Lemma 19. The main idea of the proof follows similarly to [8, Theorem 3], we can
represent the network as a unitary positive feedback interconnection of a monotone system
where the inputs and outputs are ordered with respect to the same positivity cone. Note
the network is a cascade of an “anti-monotone” system (HA composed with tx/rxA→B)
with another “anti-monotone” system (HB composed with tx/rxB→A), thus the composite
system is monotone with the same input and output ordering, KU = KY = RNA

≥0 and

KX = KNA×RN+NB
≤0 ×{−K}NB×RN+NA

≥0 .

Since the network is monotone, we know from [3, Lemma 6.4] that the linearized system
around the steady-state is also monotone with respect to the same positivity cones. Fur-
thermore, [39, Theorem 2] shows that for a linear system ẋ = Ax + Bu and y = Cx that is
monotone with respect to the cones KU = KY , KX , and Hurwitz matrix A, the following
equivalence holds: A + BC is Hurwitz if and only if −(I + CA−1B) is Hurwitz. Therefore,
we can prove stability of the positive feedback monotone system from the “dc-gain” of the
open loop system.

Proof of Theorem 18. The linearization of the full network (3.2)-(3.4) about the steady-state
is given by: 

AA⊗INA 0 0 (BA⊗INA)CBA

BAB(CA⊗INA) AAB 0 0

0 (BB⊗INB)CAB AB⊗INB 0

0 0 BBA(CB⊗INB) ABA

 , (3.17)
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where matrices AA ∈ Rn×n, BA ∈ Rn×1, CA ∈ R1×n are associated with the linearization of
HA; and matrices AAB ∈ R(NA+2NB)×(NA+2NB), BAB ∈ R(NA+2NB)×NA , CAB ∈ RNB×(NA+2NB)

are the linearization matrices of the transceiver tx/rxA→B. For the transceiver, the lineariza-
tion matrices are of the form:

AAB =

 LAB
0
0

0 0 0

+

 ∂Γx 0 0
0 ∂Φx ∂ΦR

0 ∂Ψx ∂ΨR

 ,
and with

BAB =
[
∂Γu 0NB×NA 0NB×NA

]>
, CAB =

[
0NB×NA 0NB×NB INB

]
,

where due to the structure of the steady-state, ∂Γx = ∂γXINA with ∂γX , ∂γiX
∂Xi

A
|x̃A , and

similarly the matrices ∂Φx, ∂ΦR, ∂Ψx, ∂ΨR, and ∂Γu, are diagonal with constants ∂φx, ∂φR,
∂ψx, ∂ψR and ∂γu, respectively. The matrix LAB is the Laplacian matrix of the network
when labeling first the nodes of type A.

Due to the monotonicity property of the network proved in Lemma 19, the proof follows
as discussed above. We write (3.17) as a unitary positive feedback system: A + BC where

C = [0 0 0 CAB], B =
[
BA⊗I>NA 0 0 0

]>
, and A is the block triangular matrix defined in

(3.17) except for the block (BA⊗INA)CBA, which is replaced by 0 ∈ RnNA×(NB+2NA). Then,
since the network is monotone with respect to the same input and output cones, we conclude
stability from −(I + CA−1B). First note that:

CA−1B = −CBAA−1BABBA(CBA
−1
B BB ⊗ INB)CABA

−1
ABBAB(CAA

−1
A BA ⊗ INA)

= −T ′A(TBA(z̃B))T ′B(TAB(z̃A))(CBAA
−1
BABBA)(CABA

−1
ABBAB),

where the second equality follows from Claim 3 where T ′k(z̃) = −C z̃
k(Az̃k)

−1B z̃
k is the static

input-output map for each block at steady-state z̃, and Cj, Aj, Bj are the linearization ma-
trices of each block at z̃, we drop the superscripts z̃ to simplify the notation. Assumptions
13 and 14 guarantee that A−1j exists and that A is nonsingular.

For the final step, we use the equitability assumption on the partition defined by the
classesOA andOB to derive the largest eigenvalue of the matrix (CBAA

−1
BABBACABA

−1
ABBAB) ∈

RNB×NB , and therefore the stability of the matrix −(I + CA−1B).

Claim 20. The largest eigenvalue of the matrix (CBAA
−1
BABBACABA

−1
ABBAB) is given by

(CBAA
−1
BABBACABA

−1
ABBAB) with eigenvector 1NA, where

AAB =

 LAB
0
0

0 0 0

+

 ∂γx 0 0
0 ∂φx ∂φR
0 ∂ψx ∂ψR

 ,
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and with
BAB =

[
∂γu 0 0

]>
, CAB =

[
0 0 1

]
,

where AAB ∈ R3×3, LAB ∈ R2×2 is the quotient Laplacian, CAB ∈ R1×3, and BAB ∈ R3×1;
and by appropriate change of subscripts the same follows for the matrices AAB, BAB and
CAB.

The theorem follows from this claim because T ′AB(z̃A) = −CABA
−1
ABBAB, and thus the

largest eigenvalue of CA−1B is given by T ′A(TBA(z̃B))T ′B(TAB(z̃A))T ′AB(z̃A)T ′BA(z̃B). There-
fore, when inequality (3.16) holds the matrix −(I+CA−1B) is Hurwitz and the steady-state is
asymptotically stable. If the condition (3.14) holds, −(I + CA−1B) has a positive eigenvalue
and the steady-state is unstable.

Proof of Claim 20. First note that due to equitability of the compartmental network, we can
construct matrices QAB ∈ R(NA+2NB)×3 where

QAB =

 1 ... 1 0 ... 0 0 ... 0
0 ... 0 1 ... 1 0 ... 0
0 ... 0 0 ... 0 1 ... 1

> ,
︸ ︷︷ ︸
×NA

︸ ︷︷ ︸
×NB

︸ ︷︷ ︸
×NB

and similarly QBA ∈ R(NB+2NA)×3 with appropriate dimensions. Therefore, due to equitabil-
ity LABQAB = QABLAB and LBAQBA = QBALBA. Let P , [Q R] where R is a matrix in
R(NA+2NB)×(NA+2NB−3) (or R ∈ R(NB+2NA)×(NB+2NA−3)) such that its columns, together with
those of Q, form a basis for RNA+2NB (or RNB+2NA). We conclude that, there exist matrices
N and M such that

P−1ABAABPAB =

[
AAB N

0 M

]
, (3.18)

and similarly for ABA. Therefore,

CABA
−1
ABBAB1NA = (CABPAB)(P−1ABAABPAB)−1(P−1ABBAB1NA)

=
[
CAB1NB S

] [ A−1AB U
0 V

] [
BAB

0

]
,

= CABA
−1
ABBAB1NB .

for some matrices S, U , and V with appropriate dimensions. This implies that

CBAA
−1
BABBACABA

−1
ABBAB1NA = (CABA

−1
ABBAB)CBAA

−1
BABBA1NB

= (CBAA
−1
BABBACABA

−1
ABBAB)1NA

i.e., the scalar CBAA
−1
BABBACABA

−1
ABBAB = T ′AB(z̃A)T ′BA(z̃B) is an eigenvalue of the matrix

CBAA
−1
BABBACABA

−1
ABBAB, with associated eigenvector 1NA . Note that this eigenvalue is
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positive since the static input-output maps of the transceivers have positive slope. Finally,
we need to show that this is the largest eigenvalue. Note that due to Assumption 16,
the transceivers’ input-output maps T

tx/rx
AB

′(z̃A1NA) = −CABA−1ABBAB and T
tx/rx
BA

′(z̃B1NB) =

−CBAA−1BABBA are nonnegative matrices [4], and thus so is T
tx/rx
AB

′(z̃A1NA)T
tx/rx
BA

′(z̃B1NB),
with no zero rows. This concludes the proof of the claim since, by the Perron-Frobenius
Theorem [14], the eigenvalue with associated positive eigenvector 1NA , must be the largest
positive eigenvalue.

3.3 Synthetic Lateral Inhibition Circuit

We propose a lateral inhibition circuit with two types of compartments as described above.
The diffusible species are two acyl-homoserine lactones (AHL), namely 3-O-C12-HSL and
3-O-C6-HSL, while the two receiver proteins are LasR and LuxR, respectively. This choice
guarantees that the LuxR-AHL and LasR-AHL pairs interact orthogonally with each other
[27]. To keep the notation used in the previous section, we denote 3OC12HSL by X,
3OC6HSL by Y , and the complexes LasR-3OC12HSL by RB, and LuxR-3OC6HSL by RA.

In Figure 3.5 we represent the synthetic circuit for each cell of type A (left) and B (right).
We use the luxI /luxR (and lasI /lasR) genes as autoinducer synthase and receptor, the au-
toinducer synthase luxI (lasI ), which is transcribed by PLtetO-1, translates LuxI (LasI) which
is responsible for the production of X or Y . The receptor proteins, variants of LuxR, in
each compartment, detect and bind to the X and Y received, forming the complexes RB

and RA, respectively. The RB (RA) complex induces the production of the protein TetR and
inhibition occurs when TetR represses the promoters PLtetO-1, thus inhibiting the production
of LuxI (LasI). We use red fluorescence protein (RFP) as reporters for each compartment,
which are induced by RA (or RB).

Figure 3.5: Diagram of the synthetic lateral inhibition circuit under implementation, using
two orthogonal AHL/LuxR pairs: 3OC12HSL/LasR and 3OC6HSL/LuxR.

We study the following equations for this network, grouped into the transceiver blocks
and the inhibitory cell circuits as defined in the Section 3.1. The model for the inhibitory
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circuit of cell type A is:

H i
A :



d
dt
mi
TY

= VPLuxI
NPLuxI

C
(

1
1+(KRA/R

i
A)
nRA

+ `PLuxI

)
− γmTmi

TY
d
dt
piTY = εTm

i
TY
− γTpiTY

d
dt
mi
IX

= VPLtetO-1
NPLtetO-1

C

(
1

1+(piTY
/KT )

nT
+ `PLtetO-1

)
− γmIXmi

IX

d
dt
piIX = εIXm

i
IX
− γIXpiIX

(3.19)

where mk is the mRNAk concentration and pk the protein concentration (with subscripts T
for TetR and I for LuxI); γk the degradation rate; εk the translation rate; Vk the transcrip-
tional velocity rate; Nk the copy number; C the concentration (in M) of a single molecule
in a cell; `k the leakage rate; Kk the dissociation constant; while nRA and nT represent the
cooperativity.

For the dynamics of the transceiver of X, we consider X i
A, i = 1, ..., NA to be the concen-

tration of species X at compartment i of type A, and Xj
B, j = 1, ..., NB the concentration

of species X at compartment j of type B. Let [X>, R>B]> be the transceiver state, with
X = [X>A , X

>
B ]> = [X1

A, ..., X
NA
A , X1

B, ..., X
NB
B ]> and RB = [R1

B, ..., R
NB
B ]>. The transceiver

dynamics are:

tx/rxA→B :


d
dt
X i
A = νpiIX − γXX i

A + LiX
d
dt
Xj
B = −konXj

B(pRX −Rj
B) + koffR

j
B − γXXj

B + Lj+NAX
d
dt
Rj
B = konX

j
B(pRX −Rj

B)− koffRj
B,

(3.20)

for i = 1, ..., NA, j = 1, ..., NB, where Li corresponds to the row i of the Laplacian matrix,
pRk is the constitutive concentration of total LuxR (bound and unbound), kon/koff are the
binding rates, and ν is the generation rate of AHL. The dynamics for the inhibitory circuit of
cell type B and for the transceiver tx/rxB→A are obtained similarly, by changing the indices
appropriately.

Next, we analyze the range of parameters where patterning occurs. To analyze the
steady-states of the network above, note that both HA and tx/rxA→B (HB and tx/rxB→A)
meet the Assumptions in 14, 17 and 13, 16, respectively. From (3.19), for each constant
input Ri∗

A , there is only one steady-state solution (mi∗
TY
, pi∗TY , m

i∗
IX
, pi∗IX ), which is a globally

asymptotically stable hyperbolic equilibrium, due to the lower triangular structure of (3.19)
with bounded nonlinearities. Furthermore, the static input-output map is decreasing:

T iA(Ri∗
A ) = K1

 1

1 +
(
K2

KT

(
1

1+(KRA/R
i∗
A )nRA

+ `PLuxI

))nT + `PLtetO-1

 , (3.21)

where

K1 =
εIX
γIX

VPLtetO-1
NPLtetO-1

C

γmIX
and K2 =

εT
γT

VPLuxI
NPLuxI

C

γmT
(M).
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The subsystem is monotone with respect to KU = −KY = R≥0, K = {x ∈ R4|x1 ≥ 0, x2 ≥
0, x3 ≤ 0, x4 ≤ 0} [8, Lemma 4].

As for the transceiver tx/rxA→B in (3.20), we see that in steady-state, for a constant
input p∗IX ∈ RNA , the dynamic equations for RB become zero, which implies that the first
terms of the dynamical equations for XB are also zero. Therefore, due to the linearity of the
remainder terms, there exists a unique solution for [X∗TA , X∗TB ]>:[

X∗A
X∗B

]
= (−L+ γXIN)−1

[
νp∗IX
0NB

]
. (3.22)

The inverse of (−L + γXIN) exists since −L is a positive semidefinite matrix (property of
Laplacian matrices). The single solution for the steady-state of Ri

B is given by

Ri∗
B =

pRX

1 +
koff
kon

1
Xi∗
B

, (3.23)

where X i∗
B is as in (3.22). Note that the static input-output map T

tx/rx
AB (pi∗IX ) is positive and

increasing, because (−L + γXIN) is a positive definite matrix with nonpositive off-diagonal
elements, and thus its inverse is a positive matrix (i.e., all elements are positive) [14, Theorem
6.2.3]. Finally, to conclude that these steady-states are asymptotically stable and hyperbolic,
we write the Jacobian of the transceiver as:

J =

 L− γXIN 0
0

0 0 0

+

 0 0 0
0 −DRB DXB

0 DRB −DXB

 , (3.24)

where DRB and DXB are diagonal matrices with elements {DRB}ii = kon(pRX−Ri∗
B) and

{DXB}ii = konX
i∗
B + koff , i = 1, ..., NB. The matrix J has negative diagonal terms and

nonnegative off-diagonal terms, and there exists a D such that the column sum of DJD−1

are all negative for all states in the nonnegative orthant1. Note that this implies that the
matrix measure of DJD−1 with respect to the one-norm is negative [32, Chapter 2], and
µD(J) = µ1(DJD

−1) < 0. This is a contraction property with respect to the weighted
one-norm; therefore, for each constant input, the steady-state is globally asymptotically
stable [94]. Moreover, it is an hyperbolic equilibrium since Re{λk(J)} ≤ µ(J) < 0 [32].
The transceiver is monotone with respect to the cones in Assumption 16 since the Jacobian
off-diagonal terms are all positive and the dependence on the input variable pIX is positive [4].

To find stable steady-state patterns where all the compartments of the same type have the
same final value, let the network be an equitable graph G with respect to the compartment

1choose D = diag(1, ..., 1︸ ︷︷ ︸
Ntimes

, k, ..., k︸ ︷︷ ︸
NBtimes

), with 1 < k < 1 + γX
konpRX



CHAPTER 3. COMPARTMENTAL LATERAL INHIBITION SYSTEMS 47

types. The transceiver input-output map decouples into the scalar maps,

TAB(z̃A) =
1

1 +
koff
kon

γX(γX+dAB+dBA)

dBAν
1
z̃A

, (3.25)

where dAB and dBA are as in (3.8). As discussed in the previous section, we look for the
steady-states that are fixed points of TA(·) and TB(·).

Table 3.1: Parameters used in the simulations of the synthetic lateral inhibition circuit.

Parameter Description Value Units

kon binding rate between LuxR and AHL 1e9 s-1M-1

koff dissociation rate between LuxR and AHL 50 s-1

pRi constitutive concentration of total LuxR variable M

d12 diffusion rate of AHL variable s-1

VPLuxI
velocity rate of promoter PLuxI 0.26 s-1

NPLuxI
copy number of promoter PLuxI 5 1

C concentration of a single molecule in a cell 1.5e-9 M

KRA dissociation constant between pRA and PLuxI 1.5e-9 M

nRA cooperativity 2 1

`PLuxI
leakage of promoter PLuxI 1/167 1

VPLtetO-1
velocity rate of promoter PLtetO-1 0.3 s-1

NPLtetO-1
copy number of promoter PLtetO-1 5 1

KT dissociation constant between TetR and PLtetO-1 1.786e-10 M

nT cooperativity 2 1

`PLtetO-1
leakage of promoter PPLtetO-1

1/5050 1

γA rate of degradation of AHL 7.70e-4 s-1

γmT degradation constant of mRNA TetR 5.78e-3 s-1

γT degradation constant of TetR 2.89e-4 s-1

γmI degradation constant of mRNA LuxI/LasI 5.78e-3 s-1

γI degradation constant of LuxI/LasI 1.16e-3 s-1

εT translation rate TetR 6.224e-6 s-1

εI translation rate LuxI/LasI 2.655e-5 s-1

ν generation rate of AHL 0.0135 s-1

The reaction parameters used for the analysis are displayed in Table 3.1, and are similar
to the parameters suggested in [61]. We assume that the two orthogonal types of AHL have
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similar induction and binding reception parameters, and thus consider both cell types to
have the same parameter values. In this particular case, the maps TA(·) and TB(·) are iden-
tical, and when there exist three fixed points as in Figure 3.4(b), the middle solution pair is
the same for A and B (i.e., z̃A = z̃B). The slope of these maps at the fixed points depends,
among others, on the edge weights dij and constitutive concentration of total LuxR/LasR
pRk , which are tunable parameters. As discussed next, dij can be tuned by changing the
channel lengths, and pRk can be tuned by changing the strength of the constitutive promoter.

When each compartment is a square of side w, and the channel connecting the compart-
ments be of length lij and width w, the edge weight is, by [35]:

dij =
DAHL

lijw
= k

DAHL

l2ij
. (3.26)

Here we let the width be a factor c of the length, i.e. w = l/c. In the laboratory, we laser
cut acrylic sheets into the shape of the desired channels and then we fill these channels and
compartments with agar (so that diffusion occurs mostly on the surface of the agar), and
then pipettes one colony in each compartment. As the agar solidifies, a thin layer of water
is formed on its surface. The AHL diffusion occurs on the agar surface. Although the cells
remain on the agar surface, the AHL diffusion occurs through the agar as well, but we as-
sume this to be negligible in comparison with the diffusion on the surface. We consider the
diffusivity coefficient for AHL in water at 25◦C [99]: DAHL,25◦C = 4.9× 10−10m2/s.

As an illustration of the patterning condition (3.14), consider now two compartments
connected by one channel, one compartment of type A and the other of type B. This is
equivalent to considering any equitable network topology with the same dAB and dBA. Fig-
ure 3.6 maps the regions over the pairs (pRk , l12) where contrasting patterns emerge. We
obtain patterning within a wide range of realistic values of pRk . At the extreme values, if
the concentration of pRk is too low, the detection ability of each cell is affected, which leads
to a low concentration of the receiver complexes LuxR-AHL and LasR-AHL. Thus, no cell
is being inhibited (fluorescence reporters are low) and no contrasting patterning emerges.
When pRk is too high, no contrasting patterning occurs, both compartments are inhibited
since both cells are too sensitive to the received signal due to leakage production of AHL.

Further analysis using condition (3.14) reveals that the circuit, for this set of parame-
ters, is fairly robust to parameter uncertainty. We introduced a variation of 10% in each
parameter and the patterning range didn’t suffer significant change. Patterning occurs when
nTnRA ≥ 2, greater nT and nRA implies stronger inhibition and in general increases the
patterning region.

There is also a limit on the length of the channel for the emergence of contrasting patterns
(Figure 3.6). In implementation, we expect a stricter limit on the length of the channel since
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Figure 3.6: Patterning (yellow) vs. non-patterning (dark red) region, for varying pRk and
l12, with c = 2.

the compartmental model does not account for degradation of AHL along the channels. For
validation, we have implemented the compartment network in COMSOL, a finite element
analysis, solver and simulation software for multi-physics applications, which allows for cou-
pled systems of partial differential equations (PDEs) with complex geometry. In COMSOL,
we define the geometry of the channel and the compartments, and only allow AHL to diffuse
through the channel. For the values of pRi studied, we have seen a cap on patterning for
lengths no larger than 5 mm. Due to degradation along the channel, only a small portion
of the AHL actually reaches the opposite compartment. Although the ODE model does not
account for this, for shorter channels (≤ 3mm), we compute a degradation correction factor
for the ODE compartmental model that compensates for the extra degradation along the
channel. In these regimes, we obtain an accurate steady-state and dynamical match between
the ODE model and the PDE COMSOL model, see Figure 3.7.

When the equitability condition is satisfied approximately rather than exactly, we treat
the system as a perturbation of an equitable one. If the nonlinear system verifies Lipschitz
continuity in x (uniformly in L, for small variations), which is true for the proposed cir-
cuit, the solutions are continuously dependent on the parameters of the Laplacian L, i.e.,
weights of dij. We see such behavior in simulations on networks with approximately equi-
table topologies (by adding small random changes to dij), where the emergence of on/off
patterning behavior doesn’t get affected, and where there is only a small variation on the
final values of cells with the same type.
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Figure 3.7: Result comparison between ODE model, in MATLAB, and PDE model, in
COMSOL (with pRi = 5× 10−7, l12 = 500µm, and k = 2). Note that both models converge
to the same steady-state, with a similar time constant (∼22hrs vs. ∼19hrs, respectively).

3.4 Conclusions

In this chapter we proposed a synthetic lateral inhibition circuit where contrasting patterns
between neighboring compartments emerge using diffusible molecules. For a generic network,
we show that equitable partitions allow for a dimensionality reduction of the steady-state
analysis into fixed points of a scalar map. Those solutions, represent steady-states where
all the compartments of the same type have the same final value. For the synthetic circuit
we propose, the emergence of contrasting patterns occurs within a realistic range of reaction
parameters. We validate our analysis by simulating the compartmental ODE model agains
the PDE model in COMSOL.
In addition to the current effort to implement this design in the laboratory, several analytical
problems remain to be explored: i) due to the inherent stochastic nature of biochemical
reactions and diffusion, it is of interest to investigate the stochastic patterning behavior of
these networks; ii) in practice, one would expect to be hard to build an equitable network, it is
important to further investigate perturbation analysis for the emerging patterns in networks
where small variations to the channel lengths exist, resulting in quasi-equitable graphs.
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Chapter 4

Symmetry Reduction for Performance
Certification of Interconnected
Systems

Consider the system in Figure 4.1 where Hi are subsystems mapping ui → yi and M is
a static matrix characterizing the interconnection topology. In [80], certification of perfor-
mance from a disturbance d to an exogenous output e is cast as a feasibility problem with
local constraints guaranteeing dissipativity properties of the individual subsystems together
with a global constraint that certifies the desired property of the interconnected system. The
local constraints only depend on the dynamics of each subsystem, while the global constraint
depends on the subsystem properties and M . In this chapter we take advantage of symmetry
in the interconnection to reduce the complexity of the global constraint.

H1

H2

Hi

HN

M

u y

e d

b
b

b

b
b

b

Figure 4.1: Interconnected System.

The global constraint is a linear matrix inequality (LMI) that becomes computationally
intractable for large interconnections. Exploiting the symmetry of the interconnection, we
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partition the subsystems into equivalence classes and reduce the number of decision variables
and size of the global constraint. For this reduction the subsystems in each equivalence class
are allowed to be different and only required to share dissipativity properties. These re-
ductions significantly reduce the computational time required and allow the analysis of very
large systems.

In general it may be difficult to determine symmetry from the matrix M , but it is readily
apparent in many physical systems, like vehicle platoons or biological networks, e.g., Chap-
ters 2 and 3, where M can be interpreted as the adjacency matrix of a weighted directed
graph. In some cases, the networks may have a symmetric structure but the weights in the
interconnection M break the symmetry. We demonstrate that, in some cases, it is possible
to diagonally scale M to recover this symmetry and then apply the symmetry reduction to
the scaled system.

For large interconnections we use the symmetry reduction with distributed optimization
techniques to decompose the problem into local and global subproblems that are solved itera-
tively. In this case the symmetry reduction is especially beneficial since the global constraint
is solved multiple times. Often the subsystems in an interconnection are similar but have
uncertain or slightly different parameters. For such cases, robust dissipativity is valuable,
since it certify properties that are shared among the similar subsystems.

Symmetry reduction techniques have been widely applied. In [57] stability of large inter-
connections is inferred from the stability of a reduced, equivalent system under the assump-
tions that the subsystems are identical and the interconnection has a certain structure that
implies symmetry. Symmetry reduction techniques were used in [48] to reduce the complexity
of sum-of-squares (SOS) and semidefinite programming (SDP) problems. These results have
been applied to many problems including controller synthesis for symmetric linear systems
in [24] and the fastest mixing problem in reversible Markov chains with graph symmetries
in [17]. Symmetries in the network topology have been associated in [88] to uncontrollability
of networked consensus dynamics.

In this chapter we quantify local properties and global performance in the framework of
dissipative systems with quadratic supply rates [110].

Definition 21. A nonlinear system of the form

ẋ(t) = f(x(t), u(t)), f(0, 0) = 0

y(t) = h(x(t), u(t)), h(0, 0) = 0
(4.1)

with x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, is dissipative with respect to a quadratic supply
rate defined by the symmetric matrix X ∈ R(m+p)×(m+p) if there exists a differentiable and
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nonnegative storage function V : Rn → R+ such that V (0) = 0 and

∇V (x)>f(x, u)−
[

u
h(x, u)

]>
X

[
u

h(x, u)

]
≤ 0 (4.2)

for all x ∈ Rn, u ∈ Rm.

The notion of dissipativity implies that
∫ T
0

[
u(t)
y(t)

]>
X
[
u(t)
y(t)

]
dt+ V (x(0)) ≥ 0 for all T in

the time interval where solutions to the system exist. The following section describes a com-
positional approach to dissipativity certification. We certify that an interconnected system
is dissipative with respect to a global supply rate, specified by the analyst, by searching over
supply rates for individual subsystems.

Later in the chapter we extend the symmetry reduction techniques to systems that satisfy
integral quadratic constraints (IQCs), using a state-space approach. This is a generalization
of the dissipativity framework that allows frequency dependent properties of a system to be
certified.

In section 4.1, we introduce the performance certification problem using local and global
constraints. In Section 4.2, we define symmetries in the interconnection matrix, which are
used in Section 4.3 to reduce the dimensionality of the global constraint. We provide ap-
plications of the results in Section 4.4 and study examples in Section 4.5. We finalize with
Sections 4.6 and 4.7, discussing how the results can be used to certify performance using
IQCs and to certify stability.

4.1 Performance Certification via Dissipativity

In Figure 4.1 the dynamical systems Hi are given by:

Hi :

{
ẋi(t) = fi(xi(t), ui(t)), fi(0, 0) = 0

yi(t) = hi(xi(t), ui(t)), hi(0, 0) = 0
(4.3)

with xi(t) ∈ Rni , ui(t) ∈ Rmi , yi(t) ∈ Rpi . The coupling of these systems is dictated by:[
u
e

]
= M

[
y
d

]
=

[
M11 M12

M21 M22

] [
y
d

]
(4.4)

where M is a static matrix, d(t) ∈ Rpd is a disturbance input, and e(t) ∈ Rme is a per-
formance output. We assume well-posedness of the interconnection, i.e., by substituting
yi = hi(xi, ui) in (4.4), u can be uniquely solved as a function of x and d.
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Consider the interconnected system described by (4.3)-(4.4) and suppose that we wish
to certify its dissipativity with respect to a global supply rate[

d
e

]>
W

[
d
e

]
, (4.5)

where W is a real symmetric matrix specified by the analyst. For example, to certify an

L2-gain from d(t) to e(t) choose W =

[
γ2 0
0 −1

]
, which implies that ‖e‖22 ≤ γ2‖d‖22+V (x(0)).

Using the dissipativity properties of the subsystems, we can certify dissipativity of the
interconnected system. The problem is casted as a feasibility problem where the local con-
straint sets are

Li ,
{
Xi

∣∣∣∣∣ the i-th subsystem is dissipative w.r.t. the supply rate

[
ui
yi

]>
Xi

[
ui
yi

]}
(4.6)

and the global constraint set is

G ,

{
X1, ..., XN

∣∣∣∣∣
[
M
Ip

]>
P>π QPπ

[
M
Ip

]
� 0

}
(4.7)

where Q = blkdiag(X1, ..., XN ,−W ) and the matrix Pπ is defined such that

u1
y1
...
uN
yN
d
e


= Pπ


u
e
y
d

 . (4.8)

It then follows from (4.4) and (4.8) that[
y
d

]> [
M
Ip

]>
P>π QPπ

[
M
Ip

] [
y
d

]
=

N∑
i=1

[
ui
yi

]>
Xi

[
ui
yi

]
−
[
d
e

]>
W

[
d
e

]
. (4.9)

Thus, if there exists X1, . . . XN satisfying

Xi ∈ Li for i = 1, . . . , N

(X1, ..., XN) ∈ G, (4.10)

the interconnected system is dissipative with respect to the global supply rate (4.5). To see
why, choose the storage function to be V (x) =

∑
i Vi(xi), where Vi(·) is a storage function
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that guarantees (4.6) for the i-th subsystem.

For systems with linear or polynomial dynamics (4.10) can be cast as a SDP using SOS
programming techniques. The local constraints depend only on the individual subsystems
and their supply rates, but the global constraint depends on the supply rates for all the
subsystems. Therefore, the resulting SDP becomes computationally intractable for large
interconnections.

In this chapter, we explore the symmetries in the interconnection matrix M to reduce the
number of variables of the LMI in the global constraint set (4.7), thus, reducing the number
of decision variables. The next section introduces the necessary notions of symmetry for
the interconnection matrix M . For simplicity of notation, we address the case where each
subsystem is SISO (i.e., mi = pi = 1, i = 1, ..., N) although the results are generalizable to
MIMO systems (see Remark 29).

4.2 Interconnection Symmetries

To characterize the symmetry properties we adapt the notion of automorphism to the inter-
connection matrix M , which takes into account inputs and outputs.

Definition 22. Consider the interconnection defined by the matrix M in (4.4). An auto-
morphism is a tuple (RN , RD, RE) where RN ∈ RN×N , RD ∈ Rpd×pd, and RE ∈ Rme×me are
permutation matrices, and the following equalities hold:

RNM11 = M11RN RNM12 = M12RD

REM21 = M21RN REM22 = M22RD.
(4.11)

The set of all automorphisms of the interconnection M forms a group, called the auto-
morphism group:

Aut(M) = {(RN , RD, RE) such that (4.11) holds } . (4.12)

Definition 23. Given the automorphism group Aut(M), the orbit of index i ∈ VN =
{1, ..., N} is defined as:

Oi =
{
j ∈ VN

∣∣∣ RNqi = qj for some (RN , RD, RE) ∈ Aut(M)
}

(4.13)

where qi ∈ RN×1 is the i-th unit vector.

Hence, two indices i, j are in the same orbit if there exists a permutation in Aut(M)
that permutes subsystem Hi with Hj. The orbits form an equivalence class given by the
equivalence relation ∼, where i ∼ j if j ∈ Oi. Let r be the number of distinct orbits,
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Figure 4.2: Graph representation of a cyclic network with six subsystems. White vertices
represent the subsystems Hi, green dashed vertices represent the disturbances dl, and orange
filled vertices represent the outputs ek. The network in (a) has one disturbance and three
performance outputs. The network in (b) has one disturbance and one performance output
per subsystem and exhibits a richer class of symmetries.

labeled as Ô1, ..., Ôr.

To recover the definition of automorphism in Chapter 1, we can view the interconnection
matrix M as the adjacency matrix of graph M(V,E). The vertex set of M(V,E) is

V = VN ∪ VD ∪ VE (4.14)

where VN = {1, ..., N} corresponds to the subsystems Hi, i = 1, ..., N , and similarly, VD =
{N + 1, ..., N + pd} and VE = {N + pd + 1, ..., N + pd + me} correspond to the disturbance
inputs dl, l = 1, ..., pd, and performance outputs ek, k = 1, ...,me. The set of edges is

E = EN ∪ ED ∪ EE ∪ EO, (4.15)

where EN includes the edges between Hi and Hj with weight {M11}ij; the edges ED from
VD to VN represent the effect of disturbance dl in Hi with input weight {M12}il; the edges
EE from VN to VE represent the effect of Hi in the output ek with weight {M21}ki; and the
edges EO from VD to VE represent the throughput of the disturbance dk on the output el
with weight {M22}kl.

As an illustration, consider the cyclic network with six subsystems H1, ..., H6, one distur-
bance d1, and three performance outputs e1, e2, e3, with incidence graph depicted in Figure
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4.2a. Since the graph is symmetric with respect to the vertical axis, it remains unchanged
when 2 permutes with 6, 3 with 5, and 8 with 10. The automorphism group is given by
Ri = (Ri

N , R
i
D, R

i
E), for i = 1, 2:

R1 = (I6, 1, I3) and R2 =




1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

 , 1,
[

0 0 1
0 1 0
1 0 0

].
The four distinct orbits are Ô1 = {1}, Ô2 = {2, 6}, Ô3 = {3, 5}, Ô4 = {4}.

In Figure 4.2b each subsystem has a disturbance input performance output pair, and
M12 = M21 = IN . Thus, definition (4.11) implies that RD = RE = RN , and the automor-
phisms are determined by RN alone. The graph now exhibits rotational symmetry as well
as symmetry with respect to all axes that are angled by integer multiples of 30o. Thus all
subsystems permute with each other (as well as all disturbances and outputs) and there is
only one orbit: Ô1 = {1, ..., 6}.
Remark 24. The full automorphism group of the interconnection may be hard to com-
pute [73]. However, we can still make use of subgroups corresponding to symmetries that are
easy to identify. The reduction discussed in the next section is valid for subgroups of Aut(M)
although the reduction may not be as extensive.

4.3 Main Result: Using Symmetries for Performance

Certification

In this section, we use the automorphism group of the interconnection matrix M to reduce
the dimensionality of the LMI in the global constraint set (4.7).

Lemma 25. If the LMI in (4.7) is satisfied by (X1, ..., XN ,W ) then it is also satisfied by
(X̃1, ..., X̃N , W̃ ), where

X̃i ,
1

|Oi|
∑
j∈Oi

Xj and W̃ ,
1

k

k∑
i=1

[
Ri
D 0

0 Ri
E

]>
W

[
Ri
D 0

0 Ri
E

]
(4.16)

with k = |Aut(M)| and (Ri
N , R

i
D, R

i
E) ∈ Aut(M).

Proof. Let RL , blkdiag(RN , RE) and RR , blkdiag(RN , RD) be constructed from an au-
tomorphism (RN , RD, RE) ∈ Aut(M), such that RLM = MRR. Since the matrices RN , RE,
RD are orthonormal, the following holds for M and Pπ,[

M
I

]
=

[
RL 0
0 RR

] [
M
I

]
R>R and Pπ

[
RL 0
0 RR

]
= SPπ (4.17)
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where

Pπ =

 IN⊗
[

1
0

]
0 IN⊗

[
0
1

]
0

0 0 0 Ipd
0 Ime 0 0

 and S =

RN⊗
[

1 0
0 1

]
0

0
RD 0
0 RE

 . (4.18)

Then, the following LMI equivalence holds:[
M
I

]>
P>π QPπ

[
M
I

]
� 0 ⇔

[
M
I

]>
P>π S

>QSPπ

[
M
I

]
� 0. (4.19)

Since Q is block diagonal we obtain

S>QS =


X
RN (1)

. . .

X
RN (N)

0

0 −Ŵ

 , with Ŵ =

[
RD 0
0 RE

]>
W

[
RD 0
0 RE

]
, (4.20)

and where the subscripts RN(i) represent the subsystem to which i gets permuted. Finally,
since the equivalence in (4.19) holds for all automorphisms in Aut(M), take the mean over
all automorphisms to obtain:[

M
I

]>
P>π QPπ

[
M
I

]
� 0 ⇔

[
M
I

]>
P>π

1

k

k∑
i=1

S>i QSi︸ ︷︷ ︸
, Q̃

Pπ

[
M
I

]
� 0, (4.21)

where |Aut(M)| = k, and where each block in Q̃ becomes

X̃i =
1

|Oi|
∑
j∈Oi

Xj, and W̃ =
1

k

m∑
i=1

Ŵi. (4.22)

Therefore, X̃i = X̃j for i ∼ j.

This lemma implies that (4.7), when feasible, admits a solution satisfying

X̃i = X̃j if i ∼ j; (4.23)

thus, we may search for one common variable for subsystems in the same orbit. In particu-
lar, when M is vertex-transitive (i.e., all the vertices in VN , VD and VE permute with each
other) there is only one orbit Ô1 = VN and the number of decision variables Xi reduces to one.

Note, however, that in this reduction W is replaced with W̃ in (4.16). Since W specifies
the desired performance, and may not be altered, we ask that W be invariant under Aut(M),
so that W̃ = W .
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Assumption 26. The matrix W is invariant under Aut(M); that is,[
RD 0
0 RE

]
W = W

[
RD 0
0 RE

]
for all (RN , RD, RE) ∈ Aut(M). (4.24)

As an example, suppose we want to certify an L2-gain bound in the network of Figure
4.2a with the global supply rate ‖d1‖2 − 1

γ21
‖e1‖2 − 1

γ22
‖e2‖2 − 1

γ23
‖e3‖2. If we seek the same

gain bound for e1 and e3, i.e., γ1 = γ3, then the corresponding W is invariant under Aut(M)
because the global supply rate is unchanged under the automorphism that permutes e1 and
e3.

The combination of Lemma 25 with Assumption 26 leads to the following main result:

Theorem 27. If (X1, ..., XN) is an element of the global set G in (4.7) and Assumption 26
holds, then (X̃1, ..., X̃N) such that X̃i = X̃j when i ∼ j is also an element of G.

Theorem 27 states that the feasibility of the LMI in (4.7) is not compromised if we reduce
the search space to identical supply rates for subsystems in the same orbit. However, de-
manding a common supply rate in the local constraint sets (4.6) may introduce conservatism.
Nevertheless, this conservatism is minimal for systems with near-identical dynamics or with
similar dissipativity properties (see the robust dissipativity application in the next section).

In addition to this result, the contrapositive of Lemma 25 provides an infeasibility cer-
tificate for the supply rate desired.

Corollary 28. If there is no solution (X̃1, ..., X̃N , W̃ ) to (4.7) such that X̃i = X̃j for i ∼ j,
then no other solution (X1, ..., XN ,W ) exists.

Remark 29. For MIMO systems, the definition of automorphism in (4.11) changes to the
tuple (RU , RY , RD, RE), such that RUM11 = M11RY , where M11 ∈ R

∑
imi×

∑
i pi, RU ∈

R
∑
imi×

∑
imi, and RY ∈ R

∑
i pi×

∑
i pi. Instead of interpreting the automorphism as a per-

mutation on the subsystems, we now look for permutations of inputs and outputs for each
subsystem. In this case, the Pπ matrix in (4.7) must be changed accordingly, in the blockwise
sense, e.g., the top left block becomes blkdiag(Im1 , Op1 , ..., ImN , OpN ). Moreover, note that
Xi ∈ R(mi+pi)×(mi+pi) and that equality (4.23) still holds, but the labeling of ui and yi must
be chosen appropriately in order to obtain X̃i as in Lemma 25.

When considering the case where all MIMO systems have the same input and output
dimensions, i.e., pi = mi = m ∀i, the permutations RU = RY = RN ∈ RmN×mN can be
defined as RN = R̃N ⊗ Im, where R̃N ∈ RN×N , i.e., a permutation of systems.
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Reducing the Global LMI to a Quotient LMI

In Lemma 25, we conclude that it is equivalent to analyze the problem as an ”averaged”
global constraint LMI given by

A ,

[
M
I

]>
P>π Q̃Pπ

[
M
I

]
� 0, (4.25)

where Q̃ = 1
k

∑k
i=1 S

>
i QSi for Si = blkdiag(Ri

N⊗I2, Ri
D, R

i
E) with (Ri

N , R
i
D, R

i
E) ∈ Aut(M).

We show that when A is quasi-positive, apart from reducing the number of decision variables
in the global constraint LMI, we can also reduce its dimension.

To explore the symmetric structure of A, we first let rN , rd, and re be the number of
distinct orbits of the vertices VN , VD, and VE, respectively. Then, we define

TI , blkdiag(TN , TD) and TO , blkdiag(TN , TE), (4.26)

where TI ∈ R(N+pd)×(rN+rd), TO ∈ R(N+me)×(rN+re), with {TN}ij = 1 if vertex i ∈ VN is in
orbit j, and {TN}ij = 0 otherwise; and TD and TE are defined similarly for vertices in VD and
VE and their orbits.1 The symmetry in the interconnection matrix implies that MTI = TOM
where

M , (T>O TO)−1T>OMTI (4.28)

is the quotient interconnection matrix. Moreover, due to the symmetry of Q̃, the matrix A
in (4.25) is also symmetric and ATI = TIA where

A , (T>I TI)
−1T>I ATI = (T>I TI)

−1
[
M
I

]>
P
>
πQP π

[
M
I

]
(4.29)

and where P π , (T>S TS)−1T>S PπT , Q , T>S QTS, with T , blkdiag(TO, TI) and TS ,
blkdiag(TN ⊗ I2, TD, TE). The symmetric property of the LMI condition in (4.25) allows for
further reduction.

Proposition 30. Consider the LMI (4.25) and assume that A is a quasi-positive matrix2.
Then

A � 0 ⇔ λmax(A) ≤ 0. (4.30)
1For the example In Figure 4.2a, we have:

TN =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0

 TD = 1 TE =

 1 0
0 1
1 0

 (4.27)

2A matrix N is said to be quasi-positive if {N}ij ≥ 0 for i 6= j.
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Proof. Since A is symmetric, it is enough to show that its largest eigenvalue is nonpositive
if and only if the largest eigenvalue of A is also nonpositive. Thus, due to quasi-positiveness
of A, the proof follows from the claim:

Claim 31. The largest eigenvalue of A is the largest eigenvalue of A.

Proof of Claim: First we show that all the eigenvalues of A are also eigenvalues of A.
Letting Av = λv and v = TI v̄ we have

Av = ATIv = TIAv = λTIv = λv. (4.31)

Then, since A is quasi-positive, it follows from the Perron-Frobenius Theorem that λmax(A)
has an associated eigenvector that is positive, i.e., vM > 0. Since vM is positive, the vector
vM = (T>I TI)

−1T>I vM is nonzero and we can show it is an eigenvector of A:

AvM = (T>I TI)
−1T>I ATIvM = (T>I TI)

−1T>I ATI(T>I TI)−1T>I vM
= (T>I TI)

−1A>T>I vM =
(
(T>I TI)

−1T>I
)
λmaxvM = λmaxvM . (4.32)

The third and fourth equalities hold since T>I A = T>T A> = A>I T>I . We conclude that
λmax(A) = λmax(A).

The following are sufficient conditions that guarantee A to be quasi-positive.

Claim 32. Let the interconnection matrix M be nonnegative, with M22 ≡ 0, and consider
quadratic supply rates X1, . . . , XN and W of the form:

Xi =

[
Qi Si
S>i Ri

]
, i = 1, ..., N and W =

[
Q0 S0

S>0 R0

]
.

Then, the following conditions on Xi and W guarantee the quasi-positiveness of A in (4.25):

• For k 6= l, {Ri}kl ≥ 0 (i.e., diagonal elements can be negative);

• Qi, Si are nonnegative;

• For k 6= l, {Q0}kl ≤ 0, {R0}kl ≤ 0 (i.e. diagonal elements can be positive)3;

• S0 is nonpositive.

For each specific interconnection, one can derive less restrictive quasi-positiveness conditions
by inspecting the sign structure of A.

3If M22 6= 0 then R0 needs to be nonpositive.
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Recovering Symmetry with Weight Balancing

In practice the unweighted incidence graph of M may possess symmetries which are lost in
the weighted graph because the edges are not compatibly weighted. An example is Figure
4.3a where the apparent rotational symmetry is broken unless the weights gi are identical
for each i, and the same holds for gdi and gei . In this case symmetry can be recovered by
transforming M into an interconnection M̂ with weight redistributions on the edges of M .
Indeed, our performance certificate remains valid under the transformation

M̂ ,

[
DN 0
0 DE

]−1
M

[
DN 0
0 DD

]
, (4.33)

where DN ∈ CN×N , DD ∈ Cpd×pd , and DE ∈ Cme×me are diagonal and invertible.

Lemma 33. The LMI in (4.7) is satisfied by (X1, ..., XN ,W ) with the interconnection matrix
M if and only if it is satisfied by (X̂1, ..., X̂N , Ŵ ) with the interconnection matrix M̂ , where
X̂i = |{DN}i|2Xi and

Ŵ =

[
DD 0
0 DE

]∗
W

[
DD 0
0 DE

]
. (4.34)

An application of Lemma 33 is illustrated in Figure 4.3 where the graph in Figure 4.3a
is transformed into the vertex-transitive graph in Figure 4.3b with the weight balancing
matrices:

DN = diag
(

1,
g2g3
r2

,
g3
r

)
,

DD = diag

(
1

gd1
,
g2g3
gd2r

2
,
g3
gd3r

)
, (4.35)

DE = diag
(
ge1 ,

g2g3ge2
r2

,
g3ge3
r

)
,

where r = (g1g2g3)
1
3 . The performance certification problem then reduces to a single decision

variable. When g1g2g3 < 0, these matrices are complex and the weights throughout the cycle
can be balanced to r = |g1g2g3|

1
3 e−i

π
3 .

4.4 Large-Scale Performance Certification

Distributed Optimization

In practice, the feasibility problem in (4.10) may be too large to solve directly. This is espe-
cially true for polynomial systems where certifying dissipativity requires SOS programming
techniques. A more scalable approach to solving this problem is proposed in [80] using dis-
tributed optimization techniques to decompose the problem. In this section we demonstrate
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(a) Original interconnection with trivial
Aut(M).
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(b) Balanced interconnection with a
unique orbit O1 = VN

Figure 4.3: Balancing the weights of the original interconnection M as in (4.33), with (4.35).

that the symmetry reduction can be combined with this technique for further scalability.

Each local constraint in (4.10) depends only on Xi and the dynamics of the relevant
subsystem, while the global constraint depends on (X1, . . . , XN). This structure allows the
decomposition of the problem into smaller subproblems that are solved iteratively. To decou-
ple the local and global constraints, the authors in [80] use auxiliary variables (Z1, . . . , ZN)
to rewrite (4.10) as the following optimization problem

minimize
X1:N ,Z1:N

N∑
i=1

ILi(Xi) + IG(Z1, . . . , ZN)

subject to Xi = Zi for i = 1, . . . , N

(4.36)

where X1:N , (X1, . . . , XN), Z1:N , (Z1, . . . , ZN), and the indicator functions ILi and IG are
defined as

ILi(Xi) ,

{
0 Xi ∈ Li
∞ otherwise

, and IG(Z1, . . . , ZN) ,

{
0 (Z1, . . . , ZN) ∈ G
∞ otherwise.

We combine Theorem 27 with (4.36) and reduce the problem to

minimize
{Xi,Zi}Ni=1

N∑
i=1

ILi(Xi) + IG(Z1, . . . , ZN)

subject to Zi = Zj for i ∼ j

Xi = Zi for i = 1, . . . , N.

(4.37)
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Distributed optimization algorithms, like dual decomposition or the alternating direction
method of multipliers (ADMM) [18], can be applied to (4.37). The ADMM algorithm is
solved as follows:

1. X-updates: for each i, solve the subsystem problem:

Xk+1
i = arg min

X∈Li

∥∥X − Zk
i + Uk

i

∥∥2
F

2. Z-update: solve the global problem:

Zk+1
1:N = arg min

Z1:N∈G

N∑
i=1

∥∥(Xk+1
i − Zi + Uk

i )
∥∥2
F

subject to Zi = Zj for i ∼ j

3. U -update: update U by
Uk+1
i = Xk+1

i − Zk+1 + Uk
i

and return to step 1.

Once (Z1, . . . , ZN) satisfy the local constraints, the performance of the system is certified
and the algorithm can be terminated. However, it becomes inefficient to check this condition
for each subsystem at every iteration, when the number of subsystems is large. Instead, one
could check the convergence of the primal and dual residuals, defined as rk+1

i , Xk+1
i −Zk+1

i

and sk+1
i , Zk+1

i − Zk
i , respectively. Solving problem (4.37) using ADMM is guaranteed to

converge as k →∞, if a feasible point exists, [80].

Robust Dissipativity

Local constraints (4.2) for systems with known linear or polynomial dynamics can be casted
as SDPs. These formulations can be generalized to the case where the systems depend on
uncertain or unknown parameters. For interconnections where the subsystems have the same
structure but where their parameter values may vary, it is of interest to provide a certifica-
tion approach that, given a bound on the range of the unknown parameters, can determine
supply rates that satisfy the constraints for all values in the parameter range.

Consider a system of the form

ẋ = f(x, u, δ)

y = h(x, u, δ)

δ ∈ ∆

(4.38)

where ∆ , {δ ∈ Rd | qi(δ) ≤ 0 for i = 1, . . . , nq} is a closed semialgebraic set and qi : Rd → R
are real polynomials. This system is robustly dissipative with respect to a quadratic supply
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rate defined by the symmetric matrix X ∈ R(m+p)×(m+p) if it is dissipative with respect to
this supply rate for all δ ∈ ∆. A sufficient condition for robust dissipativity is the existence
of a differentiable and nonnegative storage function V : Rn → R+ and nonnegative functions
ri : Rn+m+d → R+ such that

∇V (x)>f(x, u, δ)−
[
u
y

]>
X

[
u
y

]
−

nq∑
i=1

ri(x, u, δ)qi(δ) ≤ 0 (4.39)

for all x ∈ Rn, u ∈ Rm, δ ∈ Rd, and y = h(x, u, δ).

The symmetry approach described above is particularly useful when certifying robust
dissipativity. Consider the case where multiple subsystems are in the same orbit, under the
action of Aut(M). If such subsystems have identical structure but if their parameter values
are distinct, or uncertain, then it is possible to search simultaneously for a supply rate and
a storage function certifying robust dissipativity for all these subsystems. This, significantly
reduces the size of the problem and is especially beneficial if there are many similar systems
in the same orbit.

4.5 Examples

Vehicle Platoon We analyze the disturbance attenuation properties of a vehicle platoon
[21, 28, 80], where each vehicle’s control input depends on the relative distances between its
position and that of its neighbors. The dynamics of the ith vehicle is described by

v̇i(t) = −vi(t) + vnomi + ui(t)

where vi(t) is the vehicle velocity, vnomi the nominal velocity, and ui(t) the control input.

The interconnection of vehicles is represented by a connected, bidirectional, acyclic graph,
where L links interconnect N vehicles. See the platoon example in Figure 4.4(top), where
d1 is an additive disturbance on u3, and ei are the performance outputs which correspond to
the velocity of the respective vehicles.

Letting p`(t) be the relative displacement between the vehicles connected by link ` gives
ṗ`(t) = vi(t)− vj(t) where i is the leading node and j is the trailing node. Define D ∈ RN×L

as

Di` ,


1 if i is the leading node of edge `
−1 if i is the trailing node of edge `
0 otherwise,

so that D maps the vehicles velocities to the relative velocities of each link which we define
as η:

η(t) , ṗ(t) = D>v(t). (4.40)
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Figure 4.4: Vehicle platoon with linear topology. Each vehicle measures the relative distance
of all vehicles connected to it by a link (dotted line) (top). Reduction due to the symmetry
along the middle vehicle (bottom).

Consider a class of control laws that encompass those presented in [21, 28]:

ui(t) = −
L∑
`=1

Di`φ`(p`(t))

where φ` : R → R is increasing and surjective, but otherwise unknown. This assumption
guarantees the existence of an equilibrium point p` = p?` , vi = v? for the interconnected
system [21]. Letting p̃` , p` − p?` , the dynamics of the `th link Λ` is then given by

Λ` :

{
˙̃p`(t) = η`(t)

z`(t) = φ`(p̃`(t) + p?`) + φ`(p
?
`)

` = 1, . . . , L

with input η`(t) and output z`(t). Note that, each Λ` subsystem is dissipative with supply
rate matrix X = [ 0 1

1 0 ]. Similarly, we let ṽi(t) , vi(t) − v? and ũi(t) , ui(t) − u?i where
u? = Dφ(p?) so that the vehicle dynamics are

Σi :

{
˙̃vi(t) = −vi(t) + ũi(t)

yi(t) = ṽi(t)
i = 1, . . . , N

with input ũi(t) and output yi(t). In the following computations the supply rates of each Λ`

are fixed and the supply rates of each Σi are decision variables.
The interconnected system can then be represented as in the block diagram in Figure 4.5

where Σ = blkdiag(Σ1, . . . ,ΣN) and Λ = blkdiag(Λ1, . . . ,ΛL).

We now exploit the symmetric topology of the vehicle platoon using the results of the
previous sections. Consider a platoon of N = 101 vehicles with the interconnection depicted
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[
0 −D
D> 0

]
[
Σ 0
0 Λ

]
[

ṽ
φ(p̃+ p?)− φ(p?)

][
ũ
η

]

Figure 4.5: Block diagram of the vehicle platoon dynamics.

in Figure 4.4 and where the nominal velocity of each vehicle is randomly chosen. To nu-
merically test our reduction algorithm we apply a disturbance d to the 51-st vehicle and
investigate the L2-gain from disturbance d to the velocity output of the first and last ve-
hicles, designated as the performance variables e1 and e2. This configuration allows us to
exploit the symmetry of the interconnection about the center vehicle (Figure 4.4) reducing
the number of unique supply rates in the global LMI constraint from 101 to 51. Since the
supply rate Xi for each vehicle has three unique entries, the number of decision variables
reduces from 303 to 153.

Using the ADMM algorithm and the symmetry reduction we certify that the L2-gain from
d to e is not greater than 1. In fact, the original ADMM algorithm cannot certify a smaller
gain; hence, for this example the symmetry reduction does not add extra conservatism.
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6 15 7 16 8 17 9 18 10

19 20 21 22 23
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Figure 4.6: Two-lane vehicle platoon (top), and respective symmetry reduction (bottom).

Another interesting example of a symmetric topology is a two-lane interconnection where,
in addition to communicating with the vehicles in front and behind, each vehicle also com-
municates with the three vehicles on the other lane, Figure 4.6. In this example, there exists
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a symmetry along the longitudinal line that divides the two lanes. This allows the reduction
of the problem to a single lane linear platoon topology, i.e., 1 and 6 are in O1, 2 and 7 are
in O2, 3 and 8 are in O3, and so on.

Large-Scale Polynomial Example Consider a cyclically interconnected system, as in
Figure 4.2b, where each subsystem has a disturbance input and performance output. The
N subsystems are described by

Hi :


ẋ1(t) = x2(t)

ẋ2(t) =
−aix2(t)− bix1(t)3 + ui(t) + di(t)

1 + cix2(t)2

yi(t) = ei(t) = x2(t)

where ai, bi, ci > 0 are parameters, di(t) is the input disturbance, and ei(t) the exogenous
output. For N = 100 subsystems we certified an L2-gain bound from d to e using three
different methods: (1) ADMM without symmetry reduction; (2) ADMM with symmetry
reduction; and (3) robust analysis with symmetry reduction.

The parameters ai, bi, and ci are chosen uniformly from the interval [1.1, 1.2] so that the
subsystems are all different. For each method we certify subsystem dissipativity using SOS
programming with a quartic storage function.

Without symmetry reduction, the ADMM algorithm certifies that the system has an L2-
gain less than 0.58. By taking advantage of the interconnection symmetry, the number of
supply rate matrices reduces from 100 to 1, thus reducing the number of decision variables
in the global constraint from 300 to 3, one for each unique entry in the symmetric matrix
Xi ∈ R2×2. In this case, ADMM certifies that the system has an L2-gain less than 0.64.
While this bound is more conservative, solving the global constraint takes 25−30% less time,
specifically, 5.0 seconds on average compared to 7.1 seconds 4. This reduction is especially
beneficial since the global constraint must be solved multiple times (in this case, the ADMM
algorithm ran in 12 iterations).

For the robust analysis, the subsystems parameters ai, bi, and ci are uncertain but con-
tained in the interval [1.1, 1.2]. This method also certifies that the system has an L2-gain
less than 0.64. Since, in this case, there is only one local constraint, the problem can be
solved directly without decomposing the problem. Therefore, it takes less then 10 seconds
to solve both the local and global constraints simultaneously.

Computational Considerations

In the previous examples, we see that the symmetry reduction provides a modest reduction
in the solution time of the global constraint. The reason for this is because the computa-

4computations were performed on a desktop computer with a 2.8 GHz Intel i7-860 processor. The
problem was formulated in MATLAB and the SDP was solved with SDPT3 [102].
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tional complexity for solving a semidefinite program (SDP) depends not only on the number
of decision variables v, but also on the dimension of the semidefinite cone s and the sparsity
of the problem. For the global constraint (4.7) we have v = 1

2

∑N
i=1(pi + mi + 1)(pi + mi)

and s = pd+
∑N

i=1 pi. The symmetry reduction applied greatly reduces v but s is unchanged.

However, as discussed in the second part of Section 4.3, under certain conditions, it is
possible to reduce the global LMI to a quotient LMI, which effectively implies a reduction
in the dimension of the SDP cone, s. It is shown in Proposition 30 that, since the LMI
has the same symmetric structure as the interconnection matrix M , when the left hand
side of the LMI is quasi-positive, the certification of the LMI (4.7) with original dimension
s = pd +

∑N
i=1 pi reduces to rd +

∑rN
i=1 pi, where rd and rN are the number of distinct orbits

in VD and VN , respectively.

Even though the primal-dual interior point methods used to solve SDPs have polyno-
mial complexity [103], they can still become computationally intractable for large prob-
lems. In fact, these algorithms are guaranteed to converge to an ε-suboptimal solution in
O
(√

s log
(
1
ε

))
iterations and for each iteration the computational complexity is given by

αv2s2 + βvs3 + γv3 +O(vs2 + v2s+ s3), where α, β, γ > 0 are constants that depend on the
search direction of the specific algorithm [83]. The dimensionality reduction on both v and
s are of particular interest for an actual fast certification of large scale interconnections.

Examples

Polynomial : Consider again the polynomial example in Section 4.5 and note that the left
hand side of the LMI in (4.7) is quasi-positive for this interconnection if the local supply

rate matrices are of the form
[
xi11 xi12
xi12 −xi22

]
where xi11, x

i
12, x

i
22 ≥ 0. Therefore, by constraining

the local supply rates to be of this form the dimension of the LMI in the global constraint
can be reduced from 200 to 2. Combining this reduction with the ADMM algorithm allows
the global problem to be solved in less than 0.1 seconds. For the robust analysis the local
and global problem can be solved simultaneously in less than 0.5 seconds.

Table 4.1 compares the size of the problem for each certification method used. Specifically,
N is the number of local problems that must be solved, v is the number of decision variables
in the global constraint LMI, and s is the size of this LMI.

Platoon: This LMI reduction can also be applied to the vehicle platoon example with inter-

connection as in Figure 4.4. For this case, we consider supply rates Xi of the form
[

0 xi12
xi12 −xi22

]
,

where xi12, x
i
22 ≥ 0, which guarantee quasi-positiveness for the left hand side of the LMI in

(4.7). Then, in addition to the reduction in the number of decision variables, the dimension
of the global LMI is reduced from 202 (101 vehicles, 100 links, and 1 disturbance) to 102 (51
vehicles, 50 links, and 1 disturbance) without introducing additional conservatism.
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Table 4.1: Dimensionality comparison for various performance certification methods.

Method N v s Gain Bound

ADMM 100 300 200 0.58

ADMM + Sym. Reduction 100 3 200 0.64

ADMM + Quotient Reduction 100 3 2 0.64

Robust Analysis + Sym. Reduction 1 3 200 0.64

Robust Analysis + Quotient Reduction 1 3 2 0.64

4.6 Extension to Integral Quadratic Constraints

(IQCs)

IQCs are a generalization of the dissipativity framework that capture frequency dependent
properties of a system. Here we employ a state-space variant of IQCs [104, 91] and let
(Â, B̂, Ĉ, D̂) be the realization of a stable LTI system Ψ with input [ uy ], state η, and output
z, and let X be a real symmetric matrix. The system of the form (4.3) satisfies the IQC
defined by Π = Ψ∗XΨ if there exists a positive semidefinite storage function V (x, η) such
that

∇xV (x, η)>f(x, u) +∇ηV (x, η)>
(
Âη + B̂

[
u

h(x, u)

])
≤

≤
(
Ĉη + D̂

[
u

h(x, u)

])>
X

(
Ĉη + D̂

[
u

h(x, u)

]) (4.41)

for all x ∈ Rn and u ∈ Rm. Dissipativity is recovered when Ψ = Im+p.

The approach in the previous subsection can be extended to the performance certifica-
tion of an interconnected system with respect to a global IQC of the form ΠW , Ψ∗WWΨW ,
where ΨW is a stable linear system with realization (ÂW , B̂W , ĈW , D̂W ), and W is a real
symmetric matrix, both specified by the user.

First redefine the local constraint sets as

Li , {Xi | ∃Vi(xi, ηi) � 0 such that (4.41) holds} (4.42)

where ηi is the state of a stable linear system Ψi specified by the analyst and the symmetric
matrix Xi is a decision variable. Next let (Âi, B̂i, Ĉi, D̂i) be a state-space realization of Ψi,
and redefine the global constraint set as:

G =

{
X1, ..., XN

∣∣∣∣∣ ∃P � 0 s.t.

[
Â>P+PÂ PB̂

B̂>P 0

]
+

[
Ĉ>

D̂>

]
Q

[
Ĉ>

D̂>

]>
� 0

}
(4.43)
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where Q = blkdiag(X1, ..., XN ,−W ) and

Â , blkdiag(Â1, ..., ÂN , ÂW )

B̂ , blkdiag(B̂1, ..., B̂N , B̂W )Pπ

[
M
I

]
Ĉ , blkdiag(Ĉ1, ..., ĈN , ĈW )

D̂ , blkdiag(D̂1, ..., D̂N , D̂W )Pπ

[
M
I

] (4.44)

form a state-space realization of the stable linear system Ψ with input [ ud ]. Note that if the
IQCs are static (i.e., Â, B̂, Ĉ have dimension 0) and D̂ = Pπ [MI ], then the local and global
constraints simplify to (4.6) and (4.7), respectively.

Under the following assumptions, the automorphisms of the interconnection matrix M
provide a dimensionality reduction in the number of variables of the global constraint (4.43).

Assumption 34. The state-space realizations for the stable linear system Ψi, i = 1, ..., N ,
used in the IQCs Ψ∗iXiΨi, and given by (Âi, B̂i, Ĉi, D̂i) are identical for systems in the same
orbit, under the action of Aut(M).

Assumption 35. The state-space realization for the stable linear system ΨW given by
(ÂW , B̂W , ĈW , D̂W ) is symmetric with respect to the input permutations RU = blkdiag(RD, RE),
i.e., there exist permutation matrices RX and RY such that

ÂWRX = RXÂW , B̂WRU = RXB̂W , ĈWRX = RY ĈW , D̂WRU = RY D̂W . (4.45)

The next Corollary is the IQC counterpart of Lemma 25. To simplify the notation, we
assume that the state-space realizations of each Ψi, i = 1, ..., N have the same dimension,
where Âi ∈ Rq×q, B̂i ∈ Rq×2, Ĉi ∈ Rl×q, and D̂i ∈ Rl×2. The Corollary still holds when the
dimensions are different but the matrices SX and SY need to be appropriately modified.

Corollary 36. Let the Assumptions (34) and (35) hold. If the LMI defined in (4.43) is
satisfied by (X1, ..., XN ,W ) with P � 0 then it is also satisfied by (X̃1, ..., X̃N , W̃ ), with
X̃i = X̃j if i ∼ j, and P = 1

k

∑m
i=1 S

iT
X PS

i
X , where SiX = blkdiag(Ri

N⊗Iq, Ri
X), (Ri

N , R
i
U) ∈

Aut(M), and Ri
X is as in (4.45).

Remark 37. The size of P depends on the dimension of the state-space realization of the
IQCs and therefore can be very large. Corollary 36 shows that P and Q are also solutions
of the LMI in (4.43) that have repeated elements. The reduction on the number of variables
for the block diagonal matrix Q is the same as before. The diagonal variables of P repeat in
a similar way, i.e., {P}kk = {P}ll if elements k, l ∈ (VN , VD, VE) are in the same orbit. The
off-diagonal elements of P repeat with the following pattern: {P}ij = {P}kl if there exists
a permutation R , (RN , RX) consistent with Aut(M) such that Rei = ek and Rej = el or
such that Rei = el and Rej = ek.
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Corollary 36. First note that due to the Assumptions above, the following holds for each
automorphism in Aut(M): [

Ĉ>

D̂>

]>
= SY

[
Ĉ>

D̂>

]> [
S>X 0
0 R>R

]
where SY , blkdiag(RN⊗Il, RY ) and[

A>P+PA PB
B>P 0

]
=

[
SX 0
0 RR

] [
Â>P+PÂ PB̂

B̂>P 0

] [
S>X 0
0 R>R

]
where RR , blkdiag(RN ⊗ 2, RU). Then, the proof follows from the equivalence[

Â>P+PÂ PB̂

B̂>P 0

]
+

[
Ĉ>

D̂>

]
Q

[
Ĉ>

D̂>

]>
� 0⇔

[
Â>P+PÂ PB̂

B̂>P 0

]
+

[
Ĉ>

D̂>

]
Q

[
Ĉ>

D̂>

]>
� 0

(4.46)
with Q = S>Y QSY .

4.7 Stability Certification

We can certify stability of the interconnected system with a modification of the local and
global constraints sets. In this case, since we don’t consider the effect of the exogenous inputs
d and outputs e, the performance supply rate term W in (4.7) vanishes, and the global LMI
reduces to

G ,

{
X1, ..., XN

∣∣∣∣∣
[
M11

Ip

]>
P̃>π QXP̃π

[
M11

Ip

]
� 0

}
(4.47)

where QX = blkdiag(X1, ..., XN) and P̃π maps (u, y) to (u1, y1, . . . , uN , yN). Since the global
Lyapunov function needs to be positive definite, the local storage functions Vi that verify
the local constraint in (4.6) must also be positive definite.

Similarly, for the IQC case the matrices Â, B̂, Ĉ, and D̂ in (4.44) drop the terms ÂW ,
B̂W , ĈW , and D̂W of the state-space realization of ΨW , M reduces to M11, and Pπ to P̃π.
The local constraint sets in (4.42) also need to hold for positive definite storage functions.

As discussed in Section 4.3, we may also look for weight redistributions of M to search for
interconnections with a richer set of automorphisms. For stability certification, we only re-
quire the invertible diagonal matrices DN and the interconnection becomes M̂ = D−1N MDN .

For example a cyclic interconnection with weights g1, . . . , gN (as in Figure 4.3 but with
no inputs or outputs) can be transformed into a vertex-transitive graph. By choosing
DN = diag

(
1, g2...gN

r(N−1) , . . . ,
gN
r

)
the cyclic interconnection M̂ becomes balanced and all weights
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Figure 4.7: Balancing a torus network (a) into a vertex-invariant interconnection (b).

equal to r = (g1 . . . gN)
1
N .

This can also be applied to a torus graph, as in Figure 4.7a, with M = In1⊗Mn2 +Mn1⊗
In2 . The matrices Mn1 and Mn2 are as in the cyclic case with n1 and n2 elements, and

weights h1, ..., hn1 and g1, ..., gn2 , respectively. Let D1 = diag

(
1,

h2...hn1

r
(n1−1)
1

, ...,
hn1
r1

)
and D2 =

diag

(
1,

g2...gn2

r
(n2−1)
2

, ...,
gn2
r2

)
to obtain M̂ = (D1 ⊗D2)

−1M(D1 ⊗D2) = (In1 ⊗ M̂n2 + M̂n1 ⊗ In1)

which is also vertex-transitive.

4.8 Conclusions

Symmetry reduction techniques were applied to stability and performance certification of
interconnected systems. The reduction decreases the number of decision variables and the
size of the global constraint to greatly improve the computational performance of the cer-
tification method. We demonstrated that this reduction, when combined with distributed
optimization and robust dissipativity, can be used in the analysis of very large interconnec-
tions without introducing excessive conservatism. In some graph interconnections, symmetry
can be recovered through weight balancing (diagonal similarity transformation), which can
be used together with the certification method proposed.
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Chapter 5

Stability Certification of Large-Scale
Stochastic Systems using Dissipativity

In this chapter, we represent large-scale nonlinear stochastic systems as an interconnection of
lower-order stochastic dynamical subsystems. We then certify stability based on appropriate
stochastic passivity properties of the subsystems and the structure of their interactions.

Previous studies have shown the effectiveness of this approach for deterministic models of
biological networks, [10, 9, 62]. In [10], global asymptotic stability of a cyclic interconnection
structure is established from the diagonal stability of a dissipativity matrix that incorpo-
rates information about the passivity properties of the subsystems and the interconnection
structure of the network. The results are extended in [9] to a more general interconnection
structure. Both [10, 9] exploit output strict passivity (OSP) properties and corresponding
storage functions of the subsystems, and construct a composite Lyapunov function for the
interconnection using these storage functions.

Deterministic models of biochemical reaction may be inadequate, particularly when the
copy numbers of the species are small. Stochasticity appears as external noise (due to cell-
to-cell variability of external signals) and as intrinsic noise (since chemical reactions depend
on random motion). While external noise can be incorporated in noise-driven deterministic
models, i.e. stochastic differential equations (SDEs), internal noise is accounted for by a
Chemical Master Equation models (CME). Under appropriate assumptions, [54], it is com-
mon to perform a diffusion approximation of the CME, leading to the Chemical Langevin
Equation (CLE), which is a particular type of SDE. Thus, both internal and external noise
can be treated jointly with SDEs.

In this chapter, we explore large-scale nonlinear stochastic models described by SDEs. We
extend the passivity approach in [10, 9] to the stochastic framework, by using an expansion
of the definitions of passivity, [16, 45]. We prove stability in probability for an intercon-
nection of stochastic OSP (sOSP) subsystems, if an appropriate diagonal stability condition
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holds for a dissipativity matrix similar to the one in [10]. Early references, such as [81, 82],
constructed composite Lyapunov functions for stochastic stability. However, as is common
in the classical large-scale systems literature, these references restrict the magnitude of the
coupling terms without regard to their sign structure. The passivity-based approach in the
present chapter takes advantage of the negative feedback loops in the network to obtain less
restrictive stability criteria.

We next investigate the notion of Noise-to-State stability (NSS), defined in [67], which
is a stochastic counterpart of deterministic input-to-state stability, [95]. NSS implies that
if there exists a bound in the noise variance, the state of a NSS system is also bounded
in probability. This notion is less restrictive than stochastic stability in the sense that it
accommodates systems with nonvanishing noise at the equilibrium, and unknown noise in-
tensity. First, we provide a new sufficient condition for NSS that is easy to verify. We then
introduce a new input-output definition that combines NSS and OSP properties, referred to
as NSS⊕OSP. We show that the interconnected system is NSS if the diagonal stability of a
similar dissipativity matrix is ascertained.

Since passivity properties are defined in reference to the equilibrium, which depends on
the full network, the verification of the sOSP and NSS⊕OSP properties of the subsystems is a
major difficulty encountered in the methodology presented. In [10], equilibrium-independent
results for the verification of OSP properties are provided. In this chapter, we derive stochas-
tic passivity conditions for sOSP and NSS⊕OSP that do not rely on the knowledge of the
equilibrium, which are not considered in the classical literature.

In Section 5.1, we provide the necessary notation and definitions, and derive sufficient con-
ditions for NSS. The main results for stochastic stability of interconnected systems are pre-
sented in Section 5.2, where stability in probability and noise-to-state stability are achieved.
In Section 5.3, we focus on the input/output passivity properties of the systems, by deriving
equilibrium-independent conditions that guarantee sOSP and NSS⊕OSP. Finally, in Sec-
tion 5.4, we illustrate the application of the results obtained to classes of biological reaction
networks.

5.1 Preliminaries

Consider the following nonlinear stochastic system

dx = f(x)dt+ l(x)Σdw (5.1)

where x(t) ∈ Rn is the state vector, w(t) is an r-dimensional independent standard Wiener
process, Σ = {σij} is an r × r nonnegative-definite matrix, and σij represents the intensity
with which the jth source of uncertainty influences the ith state. Assume that the vector
field and matrix function f : Rn → Rn and l : Rn → Rn×r are locally Lipschitz continuous.
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For the notions of stochastic stability and passivity, defined in Sections 5.1 and 5.1, we as-
sume Σ = I because l(x) can be redefined to incorporate the constant Σ. Moreover, we also
assume f(0) = 0 and l(0) = 0, so that x(t) ≡ 0 is a solution for the system. However, for the
notion of noise-to-state stability, defined in Section 5.1, where Σ is treated as an unknown,
the assumption Σ = I is dropped, and also l(x) is not necessarily required to be vanishing
at the origin (l(0) 6= 0).

Notation and definitions: For a matrix A ∈ Rp×q, the Frobenius Norm, | · |F : Rp×q →
R≥0, is defined as |A|F =

√
Tr{A>A} =

√∑p
i=1

∑q
j=1 |aij|2. A scalar continuous function

α : R≥0 → R≥0 is said to be class K if it is strictly increasing and α(0) = 0. It is class K∞
if, in addition, lims→∞ α(s) = ∞. A scalar continuous function β : R≥0 × R≥0 → R≥0 is
class KL if, for each fixed t, function β(·, t) is class K and, for each fixed s, function β(s, ·) is
decreasing and limt→∞ β(s, t) = 0. Given functions a : R→ R and b : R→ R, the expression
a(s) = O(b(s)) as s → ∞ means that ∃K > 0 ∈ R and ∃x0 ∈ R such that |a(x)| ≤ K|b(x)|
∀x > x0. Analogously, the expression a(s) = o(b(s)) as s → ∞ means that ∀K > 0 ∈ R,
∃x0 ∈ R such that |a(x)| ≤ K|b(x)| ∀x > x0, or equivalently, lims→∞ |a(s)/b(s)| = 0. Given
a continuous function f : R→ R≥0, we denote by:

f(x) = sup
|s|≤|x|

f(s) and f(x) = inf
|s|≥|x|

f(s). (5.2)

Clearly, f and f are nondecreasing functions. Note that, f 2(x) : x → f(x)f(x), and so

f 2(x) : x→ f(x)f(x).

Stochastic Stability

An extensive coverage of stochastic stability and stochastic Lyapunov theorems exists in
the literature, [59, 70]. In what follows, we refer to [31] where a notation based on class K
functions is used, instead of the classical ε− δ.

Definition 38. The equilibrium x = 0 of system (5.1) is:
(i) Globally Stable in Probability if ∀ε > 0, ∃γ ∈ K such that

P{|x(t)| ≤ γ(|x0|)} ≥ 1− ε, ∀t ≥ 0,∀x0 ∈ Rn. (5.3)

(ii) Globally Asymptotically Stable in Probability if it is globally stable in probability and

P
{

lim
t→∞
|x(t)| = 0

}
= 1, ∀x0 ∈ Rn. (5.4)

Proposition 39. For system (5.1), with Σ = I, suppose there exists a C2 function V : Rn →
R≥0, class K∞ functions α1, α2, and a continuous nonnegative function S : Rn → R≥0, such
that for all x ∈ Rn,

α1(|x|) ≤ V (x) ≤ α2(|x|) (5.5)
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LV (x) ,
∂V

∂x
f(x) +

1

2
Tr

{
l(x)>

∂2V

∂x2
l(x)

}
≤ −S(x). (5.6)

Then, the equilibrium x = 0 is globally stable in probability. If S is a positive definite
function, the equilibrium x = 0 is globally asymptotically stable in probability, [66].

Stochastic Passivity and Output Strict Passivity

Consider now the controlled stochastic nonlinear system{
dx = (f(x) + g(x)u) dt+ l(x)Σdw

y = h(x)
(5.7)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, and y(t) ∈ Rm is the output.
The control input u may be seen as a function of t that satisfies appropriate regularity
properties so as to obtain existence and uniqueness of solutions. However, we do not need to
specify these regularity properties in this chapter, since the only place were inputs are used
is in defining passivity and other stability properties. These properties are defined in terms
of algebraic inequalities involving Lyapunov-like functions and only pointwise values of x
and u, so that regularity of u(t) as a function of t is not relevant. On the other hand, when
interconnecting several systems, u(t) becomes a function of the subsystems’ state variables,
and the closed-loop system is assumed to satisfy the conditions assumed for (5.1). Next, we
use the notion of stochastic passivity, discussed in Chapter 1.

Definition 40. The system (5.7), with Σ = I, is said to be stochastic passive, [45], if there
exists a C2 positive definite function V : Rn → R≥0, such that ∀x ∈ Rn, and ∀u ∈ Rm,

EV (x(t))− V (x(s)) ≤ E

∫ t

s

h(x(τ))>u(τ)dτ − E
∫ t

s

S(x(τ))dτ (5.8)

where S : Rn → R≥0 is a positive semidefinite function. Equivalently,

LV (x) =
∂V

∂x

>
(f(x) + g(x)u) +

1

2
Tr

{
l(x)>

∂2V

∂x2
l(x)

}
≤ h(x)>u− S(x).

(5.9)

The system is said to be stochastic strictly passive if the function S can be picked positive
definite, [71], and stochastic output strictly passive (sOSP) if

S(x) =
1

γ
h(x)>h(x), (5.10)

for some constant γ > 0, which we refer to as a “gain”.
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When l(x) ≡ 0, Definition 40 recovers the deterministic notions of passivity, strict passivity,
and output strict passivity (OSP). From Dynkin’s formula, [36], we conclude that the notion
of sOSP is similar, in terms of expectation, to the notion of OSP, since

E

∫ t

0

h(x(τ))>u(τ)dτ ≥ E

∫ t

0

LV(x(τ))dτ = E(V (x(t)))− V (x(0)) ≥ −V (x(0)). (5.11)

Proposition 41 (Stochastic Kalman-Yakubovich-Popov). The system is passive (or strictly
passive) if and only if the following holds:

∂V

∂x

>
f(x) +

1

2
Tr

{
l(x)>

∂2V

∂x2
l(x)

}
≤ 0

(
−1

γ
h(x)>h(x)

)
∂V

∂x

>
g(x) = h(x)>.

(5.12)

Note that with u ≡ 0, Equation 5.9 implies asymptotic stability in probability of the sOSP
system. Further results have been provided in the stochastic framework relating passivity
with stability and feedback stabilization, see [45, 71].

Noise-To-State Stability

In this section, we discuss systems that may have nonvanishing noise (l(0) 6= 0) and unknown
noise intensity Σ. We use the notion of noise-to-state stability (NSS) which guarantees that
for any noise covariance, there exists a probability bound on the system’s state, [67]. To
accommodate unknown noise intensity, we drop the assumption Σ = I used in the previous
sections.

Definition 42. (adapted1 from [31]) For the nonlinear stochastic system (5.1), suppose there
exists a C2 function V : Rn → R≥0, and class K∞ functions α1, α2, α3 and ρ such that

α1(|x|) ≤ V (x) ≤ α2(|x|) (5.13)

and, for all nonnegative definite matrices Σ ∈ Rr×r,

LV (x,Σ) =
∂V

∂x
f(x) +

1

2
Tr

{
Σ>l(x)>

∂2V

∂x2
l(x)Σ

}
≤ −α3(|x|) + ρ(|ΣΣ>|F ).

(5.14)

Then, the system is said to be noise-to-state stable (NSS) and V (x) is called a noise-to-state
Lyapunov function.

1In [31], inequality (5.14) is equivalently stated as: |x| ≥ ρ(|ΣΣ>|F ) ⇒ LV (x,Σ) ≤ −α(x), where ρ, α
∈ K∞.
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In the special case that α3(|x|) ≥ cV (x) for some constant c > 0, the following inequality
holds from [31, Thm4.1]:

E[V (x(t))] ≤ e−ctV (x0) + c−1ρ
(
|ΣΣ>

∣∣
F

). (5.15)

Therefore, from the Markov inequality2, and from inequality (5.13) it is easy to conclude
that, for any ε > 0, there exists a KL function β, and a K∞ function δ, such that:

P
{
|x| < β(|x0|, t) + δ

(
|ΣΣ>|F

)}
≥ 1− ε ∀t ≥ 0. (5.16)

This shows that the state of the system is bounded in probability. In the next Proposition
we derive an easy to verify sufficient condition for NSS.

Proposition 43. The nonlinear stochastic system (5.1) is noise-to-state stable if there exists
a C2 function V : Rn → R≥0 satisfying (5.13), a continuous strictly increasing function
η : R≥0 → R≥0, and a class K∞ function α, such that:

∂V (x)

∂x
f(x) ≤ −α(|x|),

∣∣∣∣l(x)>
∂2V (x)

∂x2
l(x)

∣∣∣∣
F

≤ η(|x|) (5.17)

and
η(s) = o(α(s)) as s→∞. (5.18)

Proof. From the assumptions, LV (x,Σ) satisfies

LV (x,Σ) =
∂V (x)

∂x
f(x) +

1

2
Tr

{
Σ>l(x)>

∂2V (x)

∂x2
l(x)Σ

}
=
∂V (x)

∂x
f(x) +

1

2
Tr

{
ΣΣ>l(x)>

∂2V (x)

∂x2
l(x)

}
≤ ∂V (x)

∂x
f(x) +

1

2

∣∣ΣΣ>
∣∣
F

∣∣∣∣l(x)>
∂2V (x)

∂x2
l(x)

∣∣∣∣
F

≤ −α(|x|) + η(|x|)|z|

where z = 1
2
|ΣΣ>|F , and the first inequality follows from the matrix Cauchy-Schwarz in-

equality, [75] (i.e., for any two real matrices A, B of the same order, (Tr{A>B})2 ≤
Tr{A>A}Tr{B>B}).
If lims→∞ η(s) = c < ∞, the proof is straightforward, since LV ≤ −α(|x|) + c|z|. When
lims→∞ η(s) = ∞, define η̃(·) = η(·) − η(0). Clearly, η̃ is a class K∞ function. Therefore,
LV (x,Σ) is upper bounded by

LV (x,Σ) ≤ −α(|x|) + η(0)|z|+ η̃(|x|)|z|
≤ −α(|x|) + (η(0) + θ−1(|z|))|z|+ η̃(|x|)θ(η̃(|x|))

2The Markov inequality states that for any random variable X and any constant a > 0, P (|X| ≥ a) ≤
E|X|/a.
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where θ is a class K∞ function to be selected.
Now, let q0(s) = infr≥s

α(r)
η̃(r)

for s > 0. Since α and η̃ are positive and continuous, q0(s) is

well-defined and continuous for s > 0. Moreover, by construction, q0(s) is non-decreasing

and positive. From the definition of η̃, lims→∞
α(s)
η̃(s)

= lims→∞
α(s)

η(s)−η(0) ≥ lims→∞
α(s)
η(s)

. Given

that η(s) = o(α(s)) as s→∞, lims→∞
α(s)
η̃(s)

=∞ which means that q0(s)→∞ as s→∞.

Since q0(s) is non-decreasing and goes to infinity with s, there exists a class K∞ function q(s)

such that q(s) ≤ q0(s) ∀s > 0. Since q0(s) = infr≥s
α(r)
η̃(r)
≤ α(s)

η̃(s)
∀s > 0, then q(s)η̃(s) ≤ α(s)

∀s ∈ [0,∞).
Finally, choose θ ∈ K∞ to be θ(·) = 1

2
q(η̃−1(·)), so that θ(η̃(·)) = q(·)/2. The inequality

becomes:

LV (x,Σ) ≤ −1
2
α(|x|) + |z|(θ−1(|z|) + η(0))

= −1
2
α(|x|) + ρ(|ΣΣ>|F ), (5.19)

with K∞ function ρ(s) = 1
2
s
(
θ−1(1

2
s
)

+ η(0)). The system is thus noise-to-state stable as in
(5.14).

The proposition above provides a new tool that simplifies the verification of NSS. Note
that in the definition of NSS, the second term in condition (5.14) has Σ and x coupled, while
Proposition 43 is only dependent on x.

5.2 Stochastic and Noise-to-State Stability of

Interconnected Systems

Consider an interconnection of stochastic dynamical ”subsystems” Hi, i = 1, ..., N , given by

Hi :

{
dxi = (fi(xi) + gi(xi)ui) dt+ li(xi)Σidwi
yi = hi(xi)

(5.20)

where, for each subsystem Hi, xi ∈ Rni is the state vector, ui ∈ Rm the input, yi ∈ Rm

the output, and Σi a ri × ri nonnegative definite matrix. The coupling of the subsystems is
described by:

u = (M ⊗ Im)y (5.21)

where u = [u>1 , ..., u
>
N ]>, y = [y>1 , ..., y

>
N ]>, and M ∈ RN×N . In the same manner, let

x = [x>1 , ..., x
>
N ]>. Furthermore, assume fi(0) = 0 and hi(0) = 0, so that the resulting

interconnected system has an equilibrium at the origin.

Stochastic Stability of Interconnected Systems

In the following theorem, we give a matrix condition that guarantees stochastic stability for
an interconnection of sOSP subsystems:
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Theorem 44. For the interconnected system described in (5.20)-(5.21), with Σi = Iri i =
1, ..., N , assume that each dynamical subsystem Hi is stochastic output strictly passive, as in
Definition 40, with gain γi, and storage function satisfying (5.5). If there exists a diagonal
matrix D = diag(d1, ..., dN) > 0 such that:

D(M − Γ) + (M − Γ)>D ≤ 0 (5.22)

where Γ = diag(γ−11 , ..., γ−1N ), then the interconnected system is globally stable in probability.

Proof. Let V (x) =
∑N

i=1 diVi(xi), where Vi is as in (5.9) for each Hi. Then,

LV (x) =
N∑
i=1

di
∂Vi
∂xi

(fi(xi) + gi(xi)ui) +
1

2
diΣ

>
i li(xi)

>∂
2Vi
∂x2i

li(xi)Σ
>
i

≤
N∑
i=1

− 1

γi
diy
>
i yi + diy

>
i ui

= −y>

 d1γ

−1
1

. . .

dNγ
−1
N

⊗ Im
 y + y>


 d1

. . .

dN

M ⊗ Im
 y

and,

LV (x) ≤ −1

2
y>[(DΓ + ΓD)⊗ Im]y +

1

2
y>[(DM +M>D)⊗ Im]y

= y>
[(
D(M − Γ) + (M − Γ)>D

)
⊗ Im

]
y.

Thus, from assumption (5.22), LV (x) ≤ 0 ∀x ∈ Rn1+...nN , the origin is globally stable in
probability.

Note that, since LV is bounded by a quadratic form in y = h(x), we can only conclude
that LV is negative semidefinite. A stochastic version of LaSalle’s principle is available [76]
and proves, under additional assumptions, convergence in probability to the largest invariant
set where LV (x) = 0. However, without resorting to LaSalle’s principle, negative definiteness
of LV follows under additional conditions.

Corollary 45. For the interconnected system described in (5.20)-(5.21) assume that the
conditions of Theorem 44 hold. The interconnected system is globally asymptotic stable in
probability if either one of the following conditions holds: (i) hi(s) = 0 =⇒ s = 0 for
i = 1, ..., n, and (5.22) holds with strict inequality; (ii) (5.22) is not necessarily strict but,
for each subsystem Hi, the inequality in (5.12) holds with Si(s) = 1

γi
hi(s)

>hi(s) + Wi(s),
where Wi is a positive definite function.

The classical Passivity Theorem [114] proves stability (and passivity, when exogenous in-
puts are present) for a negative feedback interconnection of two passive systems. A stochastic
version of this result follows from Theorem 44.
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Corollary 46. Let H1 and H2 be stochastic output strictly passive dynamical systems with
gains γ1, γ2, described by the stochastic differential equation in (5.20). If (i) u1 = −y2
and u2 = y1 then, for the interconnected system, the origin is stable in probability. If (ii)
u1 = v1 − y2 and u2 = v2 + y1, the interconnected system is passive with respect to the
input-output pair (v, y).

Proof. For case (i), note that for D = I2,

M =

[
0 −1
1 0

]
⇒ D(M − Γ) + (M − Γ)>D =

[
−2γ−11 0

0 −2γ−12

]
< 0.

For case (ii), the interconnection is given instead by:

u =

[
0 −1
1 0

]
y + v

where v = [v1 v2]
>. Therefore, by choosing D as before, D(M −Γ) + (M −Γ)>D < 0. From

the proof of Theorem 44 we get LV ≤ y>v.

Noise-To-State Stability of Interconnected Systems

In this section, we deal with an interconnection of stochastic subsystems with unknown noise
intensity. We show that (5.22) guarantees NSS for an interconnection of subsystems which
satisfy the following property:

Definition 47. The stochastic dynamical system (5.7) is called NSS⊕OSP if it has a storage
function V : Rn → R≥0 satisfying (5.13) and:

∂V

∂x
f(x) ≤ −α(|x|)− 1

γ
h(x)>h(x),

∂V

∂x
g(x) = h(x)> and

∣∣∣∣l(x)>
∂2V

∂x2
l(x)

∣∣∣∣
F

≤ η(|x|)
(5.23)

where γ > 0 is a constant, referred to as “gain”, α ∈ K∞, and η : R≥0 → R≥0 is a strictly
increasing continuous function, satisfying η(s) = o(α(s)) as s→∞.

To see why we refer to this property as NSS⊕OSP, note that the first and third conditions
in (5.23) guarantee NSS for the uncontrolled system (cf., Proposition 43). Likewise, the first
and second conditions imply OSP for the deterministic part of the system.

Remark 48. To illustrate the distinction between sOSP and NSS⊕OSP we analyze the
following scalar system: {

dx = (−x+ u)dt+ l(x)σdw
y = x.
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NSS⊕OSP ; sOSP: Let l(x) =
√
|x|. The storage function V (x) = 1

2
x2 satisfies (5.23) with

α(|x|) = 1
2
x2, and η(|x|) = |x|. Since η(s) = o(α(s)) as s → ∞, the system is NSS⊕OSP.

However, the system is not sOSP since, the second condition in (5.12) prohibits a different
choice of V (x), for which the first condition fails when |x| < σ2

2
.

sOSP ; NSS⊕OSP: Let l(x) = x. It is easy to verify that the system is sOSP. However, it
is not NSS⊕OSP since, for V (x) = 1

2
x2, we have α(x) ≤ (1− 1

γ
)x2 with γ > 1, and η ≥ x2.

This implies that η(s) 6= o(α(s)) as s→∞.
This elucidates the differences between sOSP and NSS⊕OSP. While sOSP requires η(x) ≤
α(x) in the entire domain, NSS⊕OSP only requires η(x) ≤ α(x) for large enough x. On
the other hand, NSS⊕OSP requires α(·) to grow asymptotically faster than η(·), while sOSP
may hold when α(·) and η(·) are of the same order.

Theorem 49. For the interconnected system described in (5.20)-(5.21), assume that each dy-
namical subsystem Hi is NSS⊕OSP, as in Definition 47, with gain γi. If there exists a diago-
nal matrix D = diag(d1, ..., dN) > 0 satisfying inequality (5.22), where Γ = diag(γ−11 , ..., γ−1N ),
then the interconnected system is noise-to-state stable.

Proof. Let V (x) =
∑
diVi(xi), then

LV (x,Σ) =
N∑
i=1

diLVi

≤
N∑
i=1

di

(
−αi(|xi|)−

1

γi
hi(xi)

>hi(xi)

)
+

N∑
i=1

di

(
hi(xi)

>ui +
1

2
ηi(|xi|)|ΣiΣ

>
i |F
)

=
N∑
i=1

di

(
−αi(|xi|) +

1

2
ηi(|xi|)|ΣiΣ

>
i |F
)

+
1

2
y>
[
(D(M − Γ) + (M − Γ)>D)⊗ Im

]
y

≤
N∑
i=1

di (−αi(|xi|) + ηi(|xi|)|zi|) (5.24)

where zi = 1
2
|ΣiΣi|F , and the last inequality follows from assumptions on D,M , and Γ.

Let, J, I ⊂ {1, ..., N} be such that J = {j ∈ {1, ..., N}| lims→∞ ηj(s) = cj <∞} and I =
J c = {i ∈ {1, ..., N}| lims→∞ ηi(s) =∞}. Since ηi(s) = o(αi(s)) as s → ∞, there exist
θi ∈ K∞, i ∈ I, such that the next inequality follows as in the derivations leading to (5.19):

LV ≤ −1

2

N∑
i=1

diαi(|xi|) +
∑
j∈J

djcj|zj|+
∑
i∈I

di|zi|
(
θ−1i (|zi|) + ηi(0)

)
.

Let

α̃(r) = min
|x|≥r

N∑
i=1

diαi(|xi|).
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Clearly, α̃(|x|) ≤ ∑ diαi(|xi|), α̃ is nondecreasing, and α̃(0) = 0. As |x| → ∞, |xi| → ∞
for at least one i, which implies that α̃(r) → ∞. Therefore, ∃α ∈ K∞ such that α(r) ≤
α̃(r) ∀r ∈ R≥0.
Now, choose

ρi(s) =

{
ci
2
s, i ∈ J

(θ−1i (1
2
s) + ηi(0))1

2
s, i ∈ I

where, since |zi| ≤ |z| and θ−1i ∈ K∞, we know that ρi(|z|) ≥ ρi(|zi|). Let ρ(|z|) =∑N
i=1 diρi(|z|) ≥

∑N
i=1 diρi(|zi|), and ρ ∈ K∞. The inequality becomes,

LV ≤ −1

2
α(|x|) + ρ(|ΣΣ>|F ), (5.25)

and thus the interconnected system is noise-to-state stable as in (5.14).

Theorems 44 and 49 divide the problem of certifying stability properties of a large-sscale
nonlinear system into two tractable steps. Step one is to identify dissipativity properties, such
as sOSP or NSS⊕OSP, as an abstraction of the detailed dynamical model of the subsystems.
Step two is to establish the feasibility of the linear matrix inequality (5.22), for which various
computational methods exist [20, 58]. Tools for the verification of dissipation properties, for
step one, are provided in the next section.

5.3 Verifying sOSP and NSS⊕OSP

Sufficient Conditions for One-Dimensional Systems with Nonzero
Equilibrium

We now present conditions that guarantee the sOSP and the NSS⊕OSP properties for a
scalar stochastic dynamical system. The goal is to apply such results to interconnected
systems as in the previous section. As a simplifying assumption, we assume g(x) = g is a
constant, and without loss of generality g = 1 because the interconnection matrix M can be
modified to incorporate a different value of g.
Consider again Hi, one of the nonlinear stochastic subsystems defined in (5.20), with xi ∈ R,
yi ∈ R, ui ∈ R, gi(xi) ≡ 1, and where the inputs ui are given by the feedback relation in
(5.21). We drop the assumption that fi(0) = 0, hi(0) = 0, and assume instead that the
deterministic part of (5.20) has an unique equilibrium point at x∗. This means that

0 = fi(x
∗
i ) + u∗i ,

where u∗i is the ith entry of u∗ = My∗. By taking the coordinate change (̃.) = (.)− (.)∗, we
obtain: {

dx̃i = (f̃i(x̃i) + ũi)dt+ l̃i(x̃i)Σidwi
ỹi = h̃i(x̃i)

(5.26)
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where h̃i(x̃i) = hi(x̃i + x∗i ) − hi(x∗i ), l̃i(x̃i) = li(x̃i + x∗i ), f̃i(x̃i) = fi(x̃i + x∗i ) − fi(x∗i ), and,
hence, f̃i(0) = 0 and h̃i(0) = 0. In what follows, we drop the subscript i to simplify the
notation.

Corollary 50. (sOSP) For each stochastic subsystem in (5.26), with x, y, u ∈ R, Σ = 1,
l(x∗) = 0, and h differentiable, assume that ∀x 6= x∗:

(A1) (x− x∗)(h(x)− h(x∗)) > 0 and (x− x∗)(f(x)− f(x∗)) < 0;

(A2) There exists a constant γ > 0 such that

f(x)− f(x∗)

h(x)− h(x∗)
+

1

2
h′(x)

( ‖l(x)‖2
h(x)− h(x∗)

)2

≤ −1

γ
, (5.27)

where h′(x) , ∂h
∂x

.

Then, the system is stochastic output strictly passive.

Proof. Let

V (x) =

∫ x

x∗
(h(s)− h(x∗)) ds (5.28)

which is positive definite, from (A1). Therefore, ∂V
∂x

= h(x)− h(x∗) and ∂2V
∂x2

= ∂h(x)
∂x

. Hence,
from assumption (A2), inequality (5.9) holds, and the system is sOSP.

Corollary 51. (NSS⊕OSP) Consider a stochastic subsystem as described in (5.26), with
x, y, u ∈ R, g(x) = 1, and h ∈ C1. Assume the following holds:

(B1) f(·) and h(·) are such that

(x− x∗)(h(x)− h(x∗)) > 0 and (x− x∗)(f(x)− f(x∗)) < 0, ∀x 6= x∗; (5.29)

(B2) There exists a constant γ̂ > 0 such that

f(x)− f(x∗)

h(x)− h(x∗)
≤ −1

γ̂
∀x 6= x∗; (5.30)

(B3) l(·), h(·), and f(.) are such that

|(h(x)− h(x∗))(f(x)− f(x∗))| → ∞ as |x| → ∞, (5.31)

and that ∀i, j = 1, ..., r,

|h′(x)li(x)lj(x)| = o
(
|(h(x)− h(x∗))(f(x)− f(x∗))|

)
as |x| → ∞. (5.32)

Then, the system is NSS⊕OSP for any γ > γ̂.
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Proof. Without loss of generality, assume that x∗ = 0. Let V (x) be given as in (5.28), so
that the equality condition in (5.23) holds, and ∂V

∂x
f + 1

γ̂
h>h = hf + 1

γ̂
h2. Choose some

constant γ > γ̂ so that, from assumption (B2),

hf +
1

γ
h2 < 0 ∀x 6= 0. (5.33)

Moreover, from (B2) and (B1), we know that, hf + 1
γ
h2 = γ̂+(γ−γ̂)

γ
hf + 1

γ
h2 ≤ γ−γ̂

γ
hf ≤ 0,

i.e.,

|hf +
1

γ
h2| ≥ γ − γ̂

γ
|hf |. (5.34)

Then, |hf + 1
γ
h2| ≥ γ−γ̂

γ
|hf |, and from assumption (B3), ∀i, j = 1, ...r,

|h′(x)li(x)lj(x)| = o
(
|h(x)f(x) + 1

γ
h2(x)|

)
as |x| → ∞. (5.35)

Using relation (5.35) we will show that there exist functions α and η as defined in (5.23)
such that η(s) = o(α(s)) as s→∞. The following lemmas construct such functions.

Lemma 52. Consider a continuous function m : R → R such that m(x) < 0 ∀x 6= 0, and
m(x) → −∞ as |x| → ∞. Then, there exists a K∞ function α such that m(x) ≤ −α(|x|)
and |m(x)| = O(α(|x|)) as |x| → ∞.

Lemma 53. Consider a continuous function f : R→ R≥0. There exists a strictly increasing

function η : R≥0 → R≥0 such that f(x) ≤ η(|x|) and η(|x|) = O(f(x)) as |x| → ∞.

From Lemma 53, consider

η(|x|) ≥
r∑

i,j=1

|h′(x)li(x)lj(x)| ≥ |h′(x)|

√√√√ r∑
i,j=1

|li(x)lj(x)|2 =

∣∣∣∣l(x)>
∂2V

∂x2
l(x)

∣∣∣∣
F

,

and η(|x|) = O(
∑r

i,j=1 |h′(x)li(x)lj(x)|) as |x| → ∞. Likewise, we can choose α from Lemma

52 with m(x) = h(x)f(x) + 1
γ
h(x)2. Note that function hf + 1

γ
h2 satisfies conditions of

Lemma 52, from (5.33)-(5.34) and the assumption that |hf | → ∞. Finally, from (5.35) and
properties of α and η we conclude that, as |x| → ∞,

η(|x|) = O(
r∑

i,j=1

|h′(x)||li(x)lj(x)|) = o
(
|h(x)f(x) + 1

γ
h2(x)|

)
= o(α(|x|)).

The system is thus NSS⊕OSP, with constant γ > γ̂, as in Definition 47.

Proof of Lemma 53. Let (ai, bi) be the intervals where f is not increasing. Choose a constant
K > 0. For each interval i, let εi be such that 0 < εi < ai+1 − bi, f(bi + εi) − f(ai) ≤ K,
and such that the intersection between the function f and the straight line passing through
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(ai, f(ai)) and (bi + εi, f(bi + εi)) is empty for ai < x < bi + εi. Note that, from continuity
assumption of f , such εi is guaranteed to exist. Define

η̃(x) =

{
f(bi+εi)−f(ai)

bi+εi−ai (x− ai) + f(ai) , x ∈ [ai, bi + εi)

f(x) , otherwise
.

If f is such that there exists bi =∞ (i.e., f = C ∀x ≥ ai), let η̃ = f(ai) +K − e−(x−ai)2 for
x ≥ ai.
Set η = aη̃. Then, η = aη̃ ≥ af ≥ af and also η̃− f ≤ K. Therefore, if we select a constant
c > 0 such that f ≥ c for x > x0, and

η

f
≤ a

(
K

f
+ 1

)
≤ a

(
K

c
+ 1

)
for x > x0.

Thus, η = O(f).

Proof of Lemma 52. Since m(x) < 0 ∀x 6= 0 and m(x)→ −∞ as |x| → ∞, then |m(x)| > 0
∀x 6= 0 and |m(x)| → ∞ as |x| → ∞. Hence, there exists a K∞ function α such that
α ≤ |m|. Using a construction similar to the proof of Lemma 53, we can define the K∞
function α such that α ≤ |m| ≤ |m|, and |m| −α ≤ K, for some constant K > 0. Therefore,
|m| = O(α), concluding the proof.

Sufficient Conditions for One-Dimensional Systems with Unknown
Equilibrium

The equilibrium point of an interconnected system becomes harder to determine as the
system dimension increases. The following results give conditions for sOSP and NSS⊕OSP
which are equilibrium-independent.

Corollary 54. (sOSP) For the stochastic subsystem in (5.26), with x, y, u ∈ R, Σ = 1,
and l(x∗) = 0, assume that h, f , and l are differentiable and satisfy the following, for all
x ∈ R:

(A1*) f is strictly decreasing, h is strictly increasing;

(A2*) There exist constants a, bk > 0, k = 1, ..., r, such that

∂h(x)

∂x
∈ [0, a] and

∣∣∣∣∂lk(x)

∂x

∣∣∣∣ ≤√bk
∂h(x)

∂x
, (5.36)

and there exists a constant γ > 0 such that

∂f(x)

∂x
≤
(
−1

γ
− 1

2
ab

)
∂h(x)

∂x
, (5.37)

where b =
∑r

k=1 bk.
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Then, the system is stochastic output strictly passive.

Proof. Given inequality (5.36), and the fact that lk(x
∗) = 0, we have |lk(x)| ≤

√
bk|h(x) −

h(x∗)|. Thus, ‖l(x)‖22 =
∑r

k=1 lk(x)2 ≤ b(h(x) − h(x∗))2. Moreover, from (5.37), and since
∂h(x)
∂x
∈ [0, a], it is easy to see from Theorem 50 that the system is sOSP.

Corollary 55. (NSS⊕OSP) Consider a stochastic subsystem described by (5.26), with
x, y, u ∈ R, g(x) = 1, h ∈ C1, and where f is differentiable. Assume the following holds:

(B1*) f is strictly decreasing, h is strictly increasing;

(B2*) There exists a constant γ̂ > 0 such that

∂f(x)

∂x
≤ −1

γ̂

∂h(x)

∂x
; (5.38)

(B3*) l(·), h(·), and f(.) are such that |h(x)f(x)| → ∞ as |x| → ∞ and ∀i, j = 1, ...r

|h′(x)li(x)lj(x)| = o
(
|h(x)f(x)|

)
as |x| → ∞. (5.39)

Then, the system is NSS⊕OSP for any γ > γ̂.

Proof. It is clear that (B1*)-(B2*) imply (B1)-(B2) in Theorem 51. Since h(x∗) and f(x∗) are
constants, and since h and f are strictly monotone functions, we conclude that |h(x)f(x)| →
∞ as |x| → ∞ implies that |h̃(x̃)f̃(x̃)| → ∞ as |x̃| → ∞. Furthermore, such conditions imply
that |h(x)f(x)| = O(|(h(x)− h(x∗))(f(x)− f(x∗))|). Hence, assumption (B3*) implies (B3)
in Theorem 51. The subsystem is thus NSS⊕OSP with constant γ > γ̂.

5.4 Application to Biological Reaction Networks

Chemical reactions are dependent on random thermal motion, and are inherently stochastic.
Several classic chemistry examples can be accurately described by their mean deterministic
behavior when the number of species is high. Such processes are described by the laws of
mass-action of the distinct chemical reactions, which yield a set of ordinary differential equa-
tions, [37]. However, it is often the case in molecular biology, where the number of species
is very small, that fluctuations in the molecule number of species lead to large variability in
the cell’s response to a signal, [100].

Stochastic models are typically described by a Markov jump process X(t), where Xi(t)
represents the number of species i at time t. This process is usually defined by the Chemical
Master Equation (CME), a system of coupled ordinary differential equations describing the
probability transition function of every reaction over time, [63]. However, since the CME
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involves, in most cases, an infinite-dimensional probability transition vector, it is computa-
tionally expensive to obtain the exact solution. A common approach is to simulate sample
paths of the process, [52, 53], but the simulation of every reaction event is also expensive, [37].

The Chemical Langevin Equation (CLE), replaces the large dimensional CME with a
small stochastic differential equation (SDE) that is easier to compute. The solution of such
an equation is now a continuous random process instead of the discrete Markov jump process
X(t), and thus, the solutions are not exactly the same. Nonetheless, one can derive a CLE3,
from the CME, such that the solution provides an approximation of X(t) when the system
is sufficiently large that the discrete character of the stochastic process becomes secondary,
[54, 65]. This approximation is particularly useful for system sizes that are not so large that
stochastic effects are averaged out.

Below we study a class of SDEs, that can be seen as an interconnection of stochastic
subsystems as described by (5.20)-(5.21):

dxi = (−cixi + ui)dt+
√
ci|xi|σi1dwi1

+
N∑
j=1

√
kij|yj|σi1(j+1)dwi(j+1)

yi = hi(xi)

u = My

, (5.40)

where xi, yi, ui ∈ R, and dwij are independent. The structure of these equations is motivated
by the Chemical Langevin Equation. Since the regularity assumptions impose local Lipschitz
continuity, there is a technical issue that arises from the square root terms of the CLE.
We may view the results as applying to a slightly perturbed system with nonlinearities√
ε+ ci|xi|, and similarly for y, where 0 < ε � 1. As long as trajectories stay away from

the origin, this approximation is reasonable. In this class, for each subsystem i, the vector
li : RN → R1×(N+1) depends not only on xi but also on other entries of x. However, when
there exists lui : R→ R1×(N+1) so that

li(x) ≤ lui (xi) ∀x ∈ RN ,

where the inequality is elementwise, a result similar to Theorems 49 and 51 holds by using
lui (xi) instead of li(x). The proof follows similarly since

∣∣∣∣li(x)>
∂2Vi
∂x2i

li(x)

∣∣∣∣
F

=

√√√√∣∣∣∣∂2V∂x2
∣∣∣∣2 N+1∑

j=1

N+1∑
k=1

|lij(x)lik(x)|2 ≤
∣∣∣∣lui (xi)

>∂
2Vi
∂x2i

lui (xi)

∣∣∣∣
F

.

3This SDE is to be interpreted in the Itô sense, because, under appropriate assumptions, [69], a density
dependent Markov Chain can be approximated by an Itô diffusion process.
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Proposition 56. For a stochastic system as described in (5.40), assume that each hi is: (i)
strictly increasing; (ii) upper and lower bounded; (iii) has bounded derivative; and (iv) does
not converge to zero at infinity. Then, each subsystem i = 1, . . . , N is NSS⊕OSP.

Proof. It is sufficient to show that conditions in Corollary 55 hold. Since function hi is
strictly increasing, and fi = −cixi is linearly decreasing, (B1*) holds. Moreover, since hi has
bounded derivative, we know that 0 ≤ h′i(xi) ≤ ai for some ai > 0. Therefore, for γ̂i ≥ ai

ci
,

assumption (B2*) holds because:

∂fi
∂xi

= −ci ≤ −
1

γ̂i
ai ≤ −

1

γ̂i

∂hi
∂xi

.

Clearly, |hi(xi)fi(xi)| → ∞ as |xi| → ∞. Since every hi is bounded, then there exists some
constant bij ≥ 0 such that the corresponding diffusion coefficients

√
kijyj ≤ bij. Note that

li(x) =
[√

ci|xi|,
√
ki1|h1(x1)|, ...,

√
kiN |hN(xN)|

]>
≤ lui (xi) =

[√
ci|xi|, bi1, ..., bi,N

]>
.

We thus need to show that lui verifies (5.39). Since h′i(xi) ≤ ai, for j, k = 2, ..., N + 1
we obtain h′i(xi)l

u
ij(xi)l

u
ik(xi) ≤ aibijbik = o(xi) = O(|hi(xi)fi(xi)|) as |xi| → ∞, and also,

h′i(xi)l
u
i1(xi)l

u
ik(xi) ≤ aibik

√
ci|xi| = o(xi) as |xi| → ∞. Additionally, lim|xi|→∞ h

′
i(xi) = 0,

because hi is a strictly increasing and bounded. Therefore, lim|xi|→∞ |h′i(xi)lu11(xi)2/xi| =

lim|xi|→∞ h
′
i(xi)ci = 0, which implies that h′i(xi)l

u
11(xi)

2 = o(xi) as |xi| → ∞. Since (B3*)
also holds, the system is NSS⊕OSP.

The conditions imposed on hi in Proposition 56 are satisfied by standard activation mod-
els in enzyme kinetics, such as Hill equations of the form h(s) = k1sp

1+sp
. Likewise, inhibition

terms, such as h(s) = k1
1+sp

, can be encompassed by Proposition 56, by defining ĥ(s) = −h(s),
and incorporating the negative sign in the interconnection matrix M .

As a special case of (5.40), consider a cycle of three genes, each repressing the expression
of the next one in the cycle, as in [38]:

dx1 =
(
−c1x1 + k32 + k31

1+xp3

)
dt+

√
c1x1Σ11dw11 +

√
k32Σ12dw12 +

√
k31
1+xp3

Σ13dw13

dx2 =
(
−c2x2 + k12 + k11

1+xp1

)
dt+

√
c2x2Σ21dw21 +

√
k12Σ22dw22 +

√
k11
1+xp1

Σ23dw23

dx3 =
(
−c3x3 + k22 + k21

1+xp2

)
dt+

√
c3x3Σ31dw31 +

√
k22Σ32dw32 +

√
k21
1+xp2

Σ33dw33

(5.41)

where ci and kjl, for i, j, l = 1, 2, 3, are positive constants, and dwij’s are independent stan-
dard Brownian processes. Although, biologically, the system variables only make physical
sense in the positive quadrant, we view the system as evolving on R3. Therefore, we let
hi(xi) = −ki2 − ki1

1+xpi
for xi ≥ 0, and define it to be hi(xi) = −hi(−xi) + 2hi(0) for xi < 0,
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so that the system is well-defined for negative values of xi. Then, it can be written as in
(5.20)-(5.21), for x ∈ R3:

dxi = (−cixi + ui) dt+
√
ci|xi|Σi1dwi1

+
√
ki2Σi2dwi2 +

√
uiΣi3dwi3

yi = hi(xi)

, i = 1, 2, 3,

where  u1
u2
u3

 =

 0 0 −1
−1 0 0
0 −1 0

 y1
y2
y3

 .
From the proof of Proposition 56, each subsystem i is NSS⊕OSP with γi > ai/ci, where

ai ≥ max
s∈R≥0

h′i(s) =
ki1
4p

(p− 1)
p−1
p (p+ 1)

p+1
p .

In order to conclude NSS for the interconnected system, we need to verify the matrix in-
equality (5.22). Let Γ = diag(γ−11 , γ−12 , γ−13 ), and note that

(M − Γ) =

 −γ−11 0 −1
−1 −γ−12 0
0 −1 −γ−13

 .
For matrices of this cyclic form, it was shown in [10] that a diagonal matrix D > 0 satisfying
D(M − Γ) + (M − Γ)>D < 0 exists if and only if γ1γ2γ3 < sec(π

3
)3 = 8. Thus, we conclude

that the interconnected system (5.41) is NSS if

k11k21k31
c1c2c3

<
8 · 43

(p− 1)3
p−1
p (p+ 1)3

p+1
p

. (5.42)

We simulated the system with two different sets of parameters and several noise levels (i.e.,
|ΣΣ>|F ). Figure 5.1 shows the behavior of a system that is not NSS. In the absence of
noise (Σij = 0), the system converges to a steady-state oscillation, and therefore it is not
asymptotically stable. Note that NSS implies asymptotic stability of the deterministic part
of the system (cf. (5.14) with Σij = 0). For the second case, we selected a set of parameters
that satisfy the condition for NSS derived in (5.42). Indeed, in Figure 5.2 we see that the
system is asymptotically stable when Σij = 0 and, in the presence of noise, its sample paths
are bounded in probability (as seen from the 99.5% confidence level plots).

5.5 Conclusions

We use stochastic Lyapunov theory to provide a technique to certify stability in probability
and NSS using passivity of subsystems and a matrix diagonal stability condition. This tech-
nique is different from the classical large-scale literature, since it takes into account the sign
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Figure 5.1: Simulation of system (5.41) with parameters p = 4, ci = 1, ki1 = 100, ki2 = 1, for
i = {1, 2, 3}, and (x1(0), x2(0), x3(0)) = (5, 0, 5). (Top) Plots of x1(t) (blue), x2(t) (green),
and x3(t) (red) for Σij = 0. (Bottom) Plots of two sample paths of x1(t) (dashed), and
99.5% confidence levels of 2000 samples paths of x1(t) (line), for Σij = 0.05.

structure of the interconnection. We prove a sufficient condition for NSS that is only depen-
dent on the state space x, and not on the noise Σ, thus providing a new tool that simplifies
the verification of NSS. Moreover, we demonstrated that, under appropriate assumptions,
sOSP and NSS⊕OSP can be easily verifiable by equilibrium independent conditions. Liter-
ature results typically rely on the calculation of such equilibrium, which can be intractable
as the dimension of the system increases. The NSS notion is appropriate for the stability
analysis of biological reaction networks, as it admits systems with nonvanishing noise and
unknown noise intensity. In the future, it is of interest to provide extensions of the NSS
results to broader classes of biological models than the ones studied here. However, the
unbounded tails in the noise process is one drawback in the use of diffusion approximations
to obtain SDEs for reaction networks, since the invariance of the nonnegative orthant is not
guaranteed and physical relevance may be lost.
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Figure 5.2: Behavior of system (5.41) with parameters: p = 4, ci = 1, ki1 = 10, ki2 = 1 for
i = {1, 2, 3}, and (x1(0), x2(0), x3(0)) = (5, 0, 5). (Top) Plots of x1(t) (blue), x2(t) (green),
and x3(t) (red) for Σij = 0. (Middle-Bottom) Plots of two sample path of x1(t) (dashed),
and 99.5% confidence levels of 2000 samples paths of x1(t) (line), for Σij = 0.05 and Σij = 5,
respectively.
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