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Abstract

Visual Representations for Fine-grained Categorization

by

Ning Zhang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

In contrast to basic-level object recognition, fine-grained categorization aims to distinguish
between subordinate categories, such as different animal breeds or species, plant species or
man-made product models. The problem can be extremely challenging due to the subtle
differences in the appearance of certain parts across related categories and often requires
distinctions that must be conditioned on the object pose for reliable identification. Discrimi-
native markings are often highly localized, leading traditional object recognition approaches
to struggle with the large pose variations often present in these domains. Face recognition
is the classic case of fine-grained recognition, and it is noteworthy that the best face recog-
nition methods jointly discover facial landmarks and extract features from those locations.
We propose pose-normalized representations, which align training exemplars, either piece-
wise by part or globally for the whole object, effectively factoring out differences in pose and
in camera viewing angle.

I first present the methods of using the idea of pose-normalization for two related applica-
tions: human attribute classification and person recognition beyond frontal face. Following
the recent success of deep learning, we use deep convolutional features as feature represen-
tations. Next, I will introduce the part-based RCNN method as an extension of state-of-art
object detection method RCNN for fine-grained categorization. The model learns both
whole-object and part detectors, and enforces learned geometric constraints between them.
I will also show the results of using the recent compact bilinear features to generate the
pose-normalized representations. However, bottom-up region proposals is limited by hand-
engineered features and in the final work, I will present a fully convolution deep network,
trained end-to-end for part localization and fine-grained classification.
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Chapter 1

Introduction

Fine-grained classification is a challenging task due to striking variations in pose, subtle
differences in appearance between classes, and strong intra-class variety. Fine-grained classi-
fication has made progress in improving accuracy and now covers several domains including
aircraft [73], cars [97], plants [1, 2, 7, 77, 78, 92], and animal breeds [70]. In contrast
to basic-level recognition, fine-grained categorization aims to distinguish between different
breeds, species or product models, and often requires distinctions that must be conditioned
on the object pose for reliable identification. Facial recognition is the classic case of fine-
grained recognition, and it is noteworthy that the best facial recognition methods jointly
discover facial landmarks and extract features from those locations.

The motivation of my work is to use pose-normalized representation that relies on corre-
spondence to align part representations so that the subtle distinguishing features of different
classes can be learned. Localizing the parts in an object is therefore central to establishing
correspondence between object instances and discounting object pose variations and camera
view position. Several part localization methods using strong supervision are investigated
in this dissertation. The Poselet [12] and DPM [33] methods have been utilized to obtain
part localizations with a modest degree of success and they achieve adequate localization
performance when given a known bounding box at test time. RCNN [41], the state-of-art
object detection approach which uses bottom-up region proposals and deep features, has
been extended to jointly predict bounding box and part locations without the assumption of
bounding box at test time. All these methods are seperated into two modules: localization
and feature learning. To overcome that, we propose an end-to-end trainable deep network
for simultaneously learning localization and category prediction.

In the past few years, deep convolutional networks originally pioneered by LeCun et
al. [62] have been a tremendous success by achieving the state-of-art performance in image
classification [55], object detection [41, 90], face recognition [99], keypoint prediction [102],
semantic segmentation [71] and other computer vision tasks. The strength of the deep nets
is its ability to learn discriminative features from raw image input unlike hand-engineered
features. DeCAF [26] showed the deep features extracted from the network pretrained on
large datasets can be generalized to other recognition problems.
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The fine-grained recognition task requires not only recognition but localization. Whether
or not a deep network can effectively learn all necessary invariances to pose is an open ques-
tion. We believe it is still critical to model parts and pool features into a pose-independent
representation to best distinguish between similar subordinate classes. This makes good use
of limited training data by reserving model capacity for appearance given the discounting
of pose. While recent work [49, 68, 54] has made impressive progress without strong super-
vision, we show that the correspondence gained from end-to-end keypoint and classification
training improves fine-grained recognition accuracy.

The main contributions of my thesis are:

• Present approaches of using pose-normalized representations for two related tasks,
including human attribute classification and person recognition beyond frontal face
(Chapter 2 and Chapter 3).

• Introduce a novel part-based RCNN method which leverages deep convolutional fea-
tures for both part localizations and category prediction (Chapter 4).

• Propose an end-to-end trainable fully convolutional deep network that directly predicts
part locations from pixel and generate pose-normalized descriptors using the estimated
keypoints. The approach achieves state-of-art performance on the CUB200-2011 bench-
mark dataset (Chapter 5).

Some of the work in this dissertation have been presented over the course of several
research papers [119, 121, 72, 118, 116, 120]. The outline of the dissertation is as follows:

Chapter 2 presents using the idea of pose-normalization for a related application to
fine-grained categorization, i.e. human attribute classification. The signal associated with
some attributes, e.g. wear glasses, long hair, is very subtle and the image is dominated by
the effects of pose and viewpoint, just like the fine-grained classification task. Specifically,
we propose the PANDA model, which augments deep convolutional networks to have input
layers based on semantically aligned part patches by poselets. While this chapter only focuses
on using poselet as the part model, our model can be generalized to other part-based models
as well.

Following Chapter 2, Chapter 3 discusses another important application of recognizing
people beyond frontal face. We rely a variety of subtle cues from other parts to recognize
people we know from unusual poses. Non-frontal views are very common in real-world photo
albums but no large-scale public dataset is available. We introduce a new large-scale dataset
and propose a part-level person recognizers to account for pose variations. Though we use
the same part detectors in Chapter 2, we find that combining parts by concatenating their
feature in the manner of Chapter 2 is not effective for this task and we introduce a novel
way to combine the representations from different parts.

Having discusses the effectiveness of pose-normalized representations in two related ap-
plications, Chapter 4 moves on to the fine-grained categorization task. The part model
Poselets relies on hand-engineered features and report adequate part localization only when
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given a known bounding box at test time. In this chapter, we propose a part-based RCNN
model for fine-grained categorization without the assumption of bounding box at test time.
The motivation is still to use strong supervision to localize the parts and establish corre-
spondence between object instances in order to discount object pose variations and camera
view points. Specifically, we extend the state-of-art detection model, RCNN, to predict the
bounding box and part locations and then generate pose-normalized representations to pre-
dict the fine-grained category. We will show the results of using compact bilinear pooling
features. We will also show a dense window sampling method for keypoint localization to
overcome the limitation of bottom-up region proposals.

Chapter 5 proposes an end-to-end trainable network supervised by keypoint locations
and class labels that localizes parts by a fully convolutional network for the fine-grained
classification task. All the methods discussed in the previous chapters have separated fine-
grained recognition into stages which first localize parts using hand-engineered or coarsely-
localized proposal features, and then separately learns deep descriptors centered on inferred
part positions. Our model simultaneously learn the part locations and fine-grained category
prediction in a unified network. We design a semantic pooling layer—which is called the co-
ordinate transfer layer—to pool feature maps using predicted keypoints and the classification
errors can be back-propagated.



4

Chapter 2

Human Attribute Classification

In this chapter, we show an important application of human attribute classification by using
the idea of pose-normalized representations. Recognizing human attributes, such as gender,
age, hair style, and clothing style, has many applications, such as facial verification, visual
search and tagging suggestions. This is, however, a challenging task when dealing with
non-frontal facing images with low image quality, occlusion, and pose variations.

The signal associated with some attributes is very subtle and the image is dominated by
the effects of pose and viewpoint, just like the fine-grained classification task. For example,
consider the problem of detecting whether a person wears glasses. The signal (glasses frame)
is weak at the scale of the full person and the appearance varies significantly with the
head pose, frame design and occlusion by the hair. Therefore, localizing object parts and
establishing their correspondences with model parts can be key to accurately predicting the
underlying attributes.

Deep learning methods, and in particular convolutional nets [62], have achieved very good
performance on several tasks, from generic object recognition [55] to pedestrian detection [91]
and image denoising [17]. Moreover, Donahue et al. [26] show that features extracted from
the deep convolutional network trained on large datasets can benefit related tasks because
they provide good generic visual features. However, as we report below, they may un-
derperform compared to conventional methods which exploit explicit pose or part-based
normalization. We conjecture that available training data, even ImageNet-scale, is presently
insufficient for learning pose normalization in a CNN, and propose a new class of deep
architectures which explicitly incorporate such representations. We combine a part-based
representation with convolutional nets in order to obtain the benefit of both approaches.
By decomposing the input image into parts that are pose-specific we make the subsequent
training of convolutional nets drastically easier, and therefore, we can learn very powerful
pose-normalized features from relatively small datasets.

Part-based methods have gained significant recent attention as a method to deal with pose
variation and are the state-of-the-art method for attribute prediction today. For example,
spatial pyramid matching [60] incorporates geometric correspondence and spatial correlation
for object recognition and scene classification. The DPM model [33] uses a mixture of



CHAPTER 2. HUMAN ATTRIBUTE CLASSIFICATION 5

poselet 
detection

wear shortswear hat wear sunglasses
wear dressis_female

whole person region part-based deep representation

Linear classifier

poselet 1

poselet 2
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Figure 2.1: Overview of Pose Aligned Networks for Deep Attribute modeling
(PANDA). One convolutional neural net is trained on semantic part patches for each poselet
and then the activations of all nets are concatenated to obtain a pose-normalized deep
representation. The final attributes are predicted by linear SVM classifier using the pose-
normalized representations.

components with root filter and part filters capturing viewpoint and pose variations. Zhang
et al. proposed deformable part descriptors [119], using DPM part boxes as the building
block for pose-normalized representations for fine-grained categorization task. Poselets [12,
13] are part detectors trained on positive examples clustered using keypoint annotations;
they capture a salient pattern at a specific viewpoint and pose. Several approaches [32, 117]
have used poselets as a part localization scheme for fine-grained categorization tasks which
are related to attribute prediction. Although part-based methods have been successful on
several tasks, they have been limited by the choice of the low-level features applied to the
image patches.

In this chapter, we propose the PANDA model, Pose Alignment Networks for Deep
Attribute modeling, which augments deep convolutional networks to have input layers based
on semantically aligned part patches. Our model learns features that are specific to a certain
part under a certain pose. We then combine the features produced by many such networks
and construct a pose-normalized deep representation. In this work, we use poselets, but
the method can also be generalized to other part-based models, such as DPM [33]. We
demonstrate the effectiveness of PANDA on attribute classification problems and present
state-of-the-art experimental results on three datasets, a large-scale attribute dataset from
the web, the Berkeley Attributes of People Dataset [11] and the Labeled Faces in the Wild
dataset [56].
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2.1 Background

2.1.1 Attribute classification

Attributes are used as an intermediate representation for knowledge transfer in [58, 31] on
object recognition tasks. By representing the image as a list of human selected attributes
enables it to recognize unseen objects with few or zero examples. Other related work on
attributes includes that by Parikh et al. [81] exploring the relative strength of attributes by
learning a rank function for each attribute, which can be applied to zero-shot learning as
well as generating richer textual descriptions. There are also some related work in automatic
attribute discovery. Berg et al. [8] proposed automatic attribute vocabularies discovery by
mining unlabeled text and image data sampled from the web. Duan et al. [27] proposed an
interactive crowd-sourcing method to discover both localized and discriminative attributes
to differentiate bird species.

In [56], facial attributes such as gender, mouth shape, facial expression, are learned for
face verification and image search tasks. Some of the attributes used by them are similar
to what we evaluate in this work. However, the difference is that all of their attributes are
about human faces and most of images in their dataset are just frontal face subjects while
our dataset is much more challenging in terms of image quality and pose variations.

A very closely related work on attribute prediction is Bourdev et al. [11], which is a
three-layer feed forward classification system and the first layer predicts each attribute value
for each poselet type. All the predicted scores of first layer are combined as a second layer
attribute classifier and the correlation between attributes are leveraged in the third layer.
Our method is also built on poselets, from which the part correspondence is obtained to
generate a pose-normalized representation.

2.1.2 Deep learning

The most popular deep learning method for vision, namely the convolutional network, has
been pioneered by LeCun and collaborators [62] who initially applied it to OCR [63] and
later to generic object recognition tasks [51]. As more labeled data and computational power
has become recently available, convolutional nets have become the most accurate method
for generic object category classification [55] and pedestrian detection [91].

Although very successful when provided very large labeled datasets, convolutional nets
usually generalize poorly on smaller dataset because they require the estimation of millions
of parameters. This issue has been addressed by using unsupervised learning methods lever-
aging large amounts of unlabeled data [87, 51, 61]. In this work, we take instead a different
perspective: we make the learning task easier by providing the network with pose-normalized
inputs and we also train on a related task using a larger dataset.

While there has already been some work on using deep learning methods for attribute
prediction [21], in this work we explore many more ways to predict attributes, we incorporate
the use of poselets in the deep learning framework and we perform a more extensive empirical
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Figure 2.2: Part-based Convolutional Neural Nets. For each poselet, one convolutional
neural net is trained on patches resized 64x64. The network consists of 4 stages of convo-
lution/pooling/normalization and followed by a fully connected layer. Then, it branches
out one fully connected layer with 128 hidden units for each attribute. We concatenate the
activation from fc attr from each poselet to obtain the pose-normalized representation. The
details of filter size, number of filters and stride we used are depicted above.

validation which compares against conventional baselines and deep CNNs evaluated on the
whole person region.

2.2 Pose Aligned Networks for Deep Attribute

modeling (PANDA)

We explore part-based models, specifically poselets, and deep learning to obtain pose-
normalized representation for attribute classification tasks. Our goal is to use poselets for
part localization and incorporate these normalized parts into deep convolutional nets in order
to extract pose-normalized representations. Towards this goal, we leverage both the power of
convolutional nets for learning discriminative features from data and the ability of poselets
to simplify the learning task by decomposing the objects into their canonical poses. We
develop Pose Aligned Networks for Deep Attribute modeling (PANDA), which incorporates
part-based and whole-person deep representations.

While convolutional nets have been successfully applied to large scale object recognition
tasks, they do not generalize well when trained on small datasets. In this work, we propose a
part-based deep convolutional neural nets, using poselets based part model (but DPM could
also be used). Starting from well-aligned poselet patches, a deep net is trained on patches
from each poselet yielding highly localized and discriminative feature representations.

Specifically, we start from aligned poselet patches and resize each patch to 64x64 pixels
and some example poselet patches are shown in Figure 2.3. The overall convolutional net
architecture is shown in Figure 2.2. First, we randomly jitter the image and flip it hori-
zontally with probably 0.5 in order to improve generalization. The network consists of four
convolutional, max pooling, local response normalization stages, then followed by a fully
connected layer with 576 hidden units. After that, the network branches out one fully con-
nected network with 128 hidden units for each attribute and each of the branch outputs a
binary classifier of the attribute. The last two layers are split to let the network develop
customized features for each attribute (e.g., detecting whether a person wears a “dress” or
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poselet 1

poselet 16

poselet 79

Figure 2.3: Poselet Input Patches. For each poselet, we use the detected patches to
train a convolution neural net. Here are some examples of input poselet patches and we are
showing poselet patches with high scores for poselet 1,16 and 79.

“sunglasses” presumably reuqires different features) while the bottom layers are shared to
a) reduce the number of parameters and b) to leverage common low-level structure.

The whole network is trained jointly by standard back-propagation of the error [88] and
stochastic gradient descent [10] using as a loss function the sum of the log-losses of each
attribute for each training sample. The details of the layers are given in Figure 2.2, further
implementation details can be found in [55]. To deal with noise and inaccurate poselet
detections, we train on patches with high poselet detection scores and then we gradually add
more low confidence patches.

Different parts of the body may have different signals for each of the attributes and
sometimes signals coming from one part cannot infer certain attributes accurately. For
example, deep net trained on person leg patches contains little information about whether the
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person wears a hat. Therefore, we first use deep convolutional nets to generate discriminative
image representations for each part separately and then we combine these representations
for the final classification. Specifically, we extract the activations from fc attr layer in Figure
2.2, which is 576 dimensional, for the CNN at each poselet, and concatenate the activations
of all poselets together into 576*150 dimensional feature. If a poselet does not activate for
the image, we simply leave the feature representation to zero.

The part-based deep representation mentioned above leverages both the discriminative
deep convonvolutional features and part correpondence. However, poselet detected parts
may not always cover the whole image region and in some degenerate cases, images may
have few poselets detected. To deal with that, we also incorporate a deep network covering
the whole-person bounding box region as input to our final pose-normalized representation.

Based on our experiments, we find a more complex net is needed for the whole-person re-
gion than for the part regions. We extract deep convolutional features from the model trained
on Imagenet [55] using the open source package provided by [26] as our deep representation
on whole image patch.

As shown in Figure 2.1, we incorporate both part-based deep representation and deep
representation on whole image patch in our model to obtain the deep pose-normalized rep-
resentation. A linear SVM classifier is trained using the pose-normalized representation for
each of the attribute to get the final prediction.

2.3 Datasets

2.3.1 The Berkeley Human Attributes Dataset

We tested our method on the Berkeley Human Attributes Dataset [11]. This dataset con-
sists of 4013 training, and 4022 test images collected from PASCAL and H3D datasets. The
dataset is challenging as it includes people with wide variation in pose, viewpoint and occlu-
sion. About 60% of the photos have both eyes visible, so many existing attributes methods
that work on frontal faces will not do well on this dataset.

2.3.2 Attributes 25K Dataset

Unfortunately the training portion of the Berkeley dataset is not large enough for training
our deep-net models (they severely overfit when trained just on these images). We collected
an additional dataset from the web of 24963 people split into 8737 training, 8737 validation
and 7489 test examples. We made sure the images do not intersect those in the Berkeley
dataset. The statistics of the images are similar, with large variation in viewpoint, pose and
occlusions.

We train on our large training set and report results on both the corresponding test
set and the Berkeley Attributes test set. We chose to use a subset of the categories from
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Figure 2.4: Statisitcs of the number of groundtruth labels on Attribute 25k Dataset. For
each attribute, green is the number of positive labels, red is the number of negative labels
and yellow is the number of uncertain labels.

the Berkeley dataset and add a few additional categories. This will allow us to explore the
transfer-learning ability of our system.

Not every attribute can be inferred from every image. For example, if the head of the
person is not visible, we cannot enter a label for the ”wears hat” category. The statistics of
ground truth labels are shown on Figure 2.4.

2.4 Experiments

In this section, we will present a comparative performance evaluation of our proposed
method.

2.4.1 Results on the Berkeley Attributes of People Dataset

On Table 2.1 we show the results on applying our system on the publicly available Berkeley
Attributes of People dataset. Poselets and DPD rows show the results on that dataset
as reported by [11] and [119]. For our method, PANDA, we use Attributes25K dataset
to train the poselet-level CNNs of our system, and we used the Berkeley dataset validation
examples to train the SVM.

As the table shows, our system outperforms all the prior methods across most attributes.
In the case of t-shirt, [11] performs slightly better, perhaps due to the fact that they use
skin-tone channel and part masks. It should be noted that our method is conceptually
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(a) Query: Women with long hair who wear glasses.

(b) Query: people who wear hats and glasses.

(c) Query: men with short pants and glasses.

Figure 2.5: Example of PANDA queries. Top results returned by our proposed method
PANDA on Berkeley Attributes of People Dataset for query about multiple attributes. The
prediction scores of multiple attributes are computed as a linear combination of attribute
prediction scores.

very simple: We feed the raw RGB pixels to each poselet CNN, then we concatenate the
features extracted from each CNN and train a linear SVM classifier. In contrast, [11] uses a
combination of HOG features, color histogram features, skin channels, and part-dependent
soft masks and combines the results using context by training a polynomial SVM. [119] use
gradient, LBP, RGB and normalized RGB combined in Spatial Pyramid Match Kernel.

Note also that the attributes t-shirt, shorts, jeans and long pants are not present in the
Attributes25K dataset. In Figure 2.5, we show the attribute prediction results returned by
PANDA by generating queries of several attributes. To search for person images wearing both
hat and glasses, we return the images with the largest cumulative score for those attributes.

In Figure 4.5, we show the top failure cases for wear tshirts and wear long sleeves on the
test dataset. In the case of wearing tshirt, the top failure cases are picking the sleeveless,
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Attribute male long hair glasses hat tshirt
Poselets[11] 82.4 72.5 55.6 60.1 51.2
DPD[119] 83.7 70.0 38.1 73.4 49.8
PANDA 91.7 82.7 70.0 74.2 49.8
Attribute longsleeves shorts jeans long pants Mean AP

Poselets[11] 74.2 45.5 54.7 90.3 65.18
DPD[119] 78.1 64.1 78.1 93.5 69.88
PANDA 86.0 79.1 81.0 96.4 78.98

Table 2.1: Attribute classification results on Berkeley Attributes of People Dataset as com-
pared to the methods of Bourdev et al. [11] and Zhang et al. [119] .

Attribute male long hair hat glasses
Poselets150[11] 86.00 75.31 29.03 36.72

DPD[119] 85.84 72.40 27.55 23.94
DeCAF [26] 82.47 65.03 19.15 14.91

PANDA 94.10 83.17 39.52 72.25
dress sunglasses short sleeves baby mean AP
34.73 50.16 55.25 41.26 51.06
48.55 34.36 54.75 41.38 48.60
44.68 26.91 56.40 50.19 44.97
59.41 66.62 72.09 78.76 70.74

Table 2.2: Average Precision on the Attributes25K-test dataset.

which look very similar to tshirts. And for the case of wearing long sleeves, some of failures
are due to the occlusion of the arms and presence of jacket.

2.4.2 Results on the Attributes25K Dataset

Table 2.2 shows results on the Attributes25K-test Dataset.
Poselets150. shows the performance of our implementation of the three-layer feed-

forward network proposed by [11]. Instead of the 1200 poselets in that paper we used the
150 publicly released poselets, and instead of multiple aspect ratios we use 64x64 patches.
Our system underperforms [11] and on the Berkeley Attributes of People dataset yields
mean AP of 60.6 vs 65.2, but it is faster and simpler and we have adopted the same setup
for our CNN-based poselets. This allows us to make more meaningful comparisons between
the two methods.

DPD and DeCAF We used the publicly available implementations of [119] based on
deformable part models and [26] based on CNN trained on ImageNet. The results in this
table confirm that our method performs very well.
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Figure 2.6: Example of failure cases on Berkeley Attributes of People Dataset. On the top
we show highest scoring failure cases for ”wears t-shirt” and on the bottom – for ”wears long
sleeves”.

2.4.3 Component Evaluation

We now explore the performance of individual components of our system as shown on Ta-
ble 2.3 using the Berkeley dataset. Our goal is to get insights into the importance of using
deep learning and the importance of using parts.

How well does a conventional deep learning classifier perform? We first explore a simple
model of feeding the raw RGB image of the person into a deep network. To help with rough
alignment and get signal from two resolutions we split the images into four 64x64 patches
– one from the top, center, and bottom part of the person’s bounds, and one from the full
bounding box at half the resolution.

We resize each image to 64x128 pixels and crop it into three overlapping 64x64 squares
(top, middle and bottom). We also resize the input image to 64x64 pixels to provide the
network with information about the whole image at a coarser scale. In total we have 4
concatenated 64x64 square color images as input (12 channels). We train a CNN on this
12x64x64 input on the full Attributes-25K dataset. The structure we used is similar to the
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Attribute male long hair glasses hat tshirt
DL-Pure 80.65 63.23 30.74 57.21 37.99
DeCAF 79.64 62.29 31.29 55.17 41.84

Poselets150 L2 81.70 67.07 44.24 54.01 42.16
DLPoselets 92.10 82.26 76.25 65.55 44.83

PANDA 91.66 82.70 69.95 74.22 49.84
Attribute longsleeves short jeans long pants Mean AP
DL-Pure 71.76 35.05 60.18 86.17 58.11
DeCAF 78.77 80.66 81.46 96.32 67.49

Poselets150 L2 71.70 36.71 42.56 87.41 58.62
DLPoselets 77.31 43.71 52.52 87.82 69.15

PANDA 86.01 79.08 80.99 96.37 78.98

Table 2.3: Relative performance of baselines and components of our system on the Berkeley
Attributes of People test set.

CNN in Figure 2.2 and it consists of two convolution/normalization/pooling stages, followed
by a fully connected layer with 512 hidden units followed by nine columns, each composed
of one hidden layer with 128 hidden units. Each of the 9 branches outputs a single value
which is a binary classifier of the attribute. We then use the CNN as a feature extractor
on the validation set by using the features produced by the final fully connected layer. We
train a logistic regression using these features and report its performance on the ICCV test
set as DL-Pure on Table 2.3.

We also show the results of our second baseline – DeCAF, which is the global component
of our system. Even though it is a convolutional neural net originally trained on a completely
different problem (ImageNet classification), it has been exposed to millions of images and it
outperforms DL-Pure.

How important is deep learning at the part level?. By comparing the results of Pose-
lets150L2 and DLPoselets we can see the effect of deep learning at the part level. Both
methods use the same poselets, train poselet-level attribute classifiers and combine them
at the person level with a linear SVM. The only difference is that Poselets150L2 uses the
features as described in [11] (HOG features, color histogram, skin tone and part masks)
whereas DLPoselets uses features trained with a convolutional neural net applied to the
poselet image patch. As our table shows, deep-net poselets result in increased performance.

PANDA shows the results of our proposed system which combines DeCAF and DL-
Poselets. As Table shows, our part and holistic classifiers use complementary features and
combining them together further boosts the performance.
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Partition male long hair glasses hat tshirt
Frontal 92.55 88.40 77.09 74.40 51.69
Profile 91.42 59.38 37.06 69.47 49.02

Back-facing 88.65 63.77 72.61 72.19 55.20
All 91.66 82.70 69.95 74.22 49.84

Partition longsleeves shorts jeans long pants Mean AP
Frontal 86.84 78.00 79.63 95.70 80.47
Profile 84.61 85.57 82.71 98.10 73.04

Back-facing 84.32 74.01 86.12 96.68 77.06
All 86.01 79.08 80.99 96.37 78.98

Table 2.4: Performance of PANDA on front-facing, profile-facing and back-facing examples
of the Berkeley Attributes of People test set.

2.4.4 Robustness to viewpoint variations

In Table 2.4, we show the performance of our method as a function of the viewpoint of the
person. We considered as frontal any image in which both eyes of the person are visible,
which includes approximately 60% of the dataset. Profile views are views in which one eye is
visible and Back-facing are views where both eyes are not visible. As expected, our method
performs best for front-facing people because they are most frequent in our training set.
However, the figure shows that PANDA can work well across a wide range of viewpoints.

2.4.5 Results on the LFW Dataset

We also report results on the Labeled Faces in the Wild dataset [56]. The dataset consists
of 13233 images of cropped, centered frontal faces. Such constrained environment does not
leverage the strengths of our system in its ability to deal with viewpoint, pose and partial
occlusions. Nevertheless it provides us another datapoint to compare against other methods.
This dataset contains many attributes, but unfortunately the ground truth labels are not
released. We used crowd-sourcing to collect ground-truth labels for the gender attribute
only. We split the examples randomly into 3042 training and 10101 test examples with the
only constraint that the same identity may not appear in both training and test sets. We
used our system whose features were trained on Attribute-25K to extract features on the
3042 training examples. Then we trained a linear SVM and applied the classifier on the
10101 test examples. We also used the publicly available gender scores of [56] to compute
the average precision of their system on the test subset. The results are shown on Table 2.5.

PANDA’s AP on LFW is 99.54% using our parts model, a marked improvement over the
previous state of the art. Our manual examination of the results shows that roughly 1 in 200
test examples either had the wrong ground truth or we failed to match the detection results
with the correct person. Thus PANDA shows nearly perfect gender recognition performance
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Method Gender AP
Simile [56] 95.52

FrontalFace poselet 96.43
PANDA 99.54

Table 2.5: Average precision of PANDA on the gender recognition of the LFW dataset.

in LFW. This experiment also shows the difficulty of the Berkeley Attributes of People and
the Attributes25K datasets.

One interesting observation is that, even though the dataset consists of only frontal-face
people, the performance of our frontal-face poselet is significantly lower than the performance
of the full system. This suggests that our system benefits from combining the signal from
multiple redundant classifiers, each of which is trained on slightly different set of images.

2.5 Summary

In this chapter, we propose a part-based method for human attribute classification. The
motivation comes from the same idea of using parts to discount pose and viewpoint variations
to distinguish the subtle differences. The method is conceptually simple and leverages the
strength of convolutional neural nets without requiring datasets of millions of images. It
uses poselets to factor out the pose and viewpoint variation which allows the convolutional
network to focus on the pose-normalized appearance differences. We concatenate the deep
features at each poselet and add a deep representation of the whole input image. This might
not be ideal and we will show an alternative way of combining features in the next chapter.
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Chapter 3

Person recognition beyond frontal
faces

Recognizing people we know from unusual poses is easy for us, as illustrated on Figure 3.1.
In the absence of a clear, high-resolution frontal face, we rely on a variety of subtle cues
from other body parts, such as hair style, clothes, glasses, pose and other context. We can
easily picture Charlie Chaplin’s mustache, hat and cane or Oprah Winfrey’s curly volume
hair. Yet, examples like these are beyond the capabilities of even the most advanced face
recognizers. While a lot of progress has been made recently in recognition from a frontal
face, non-frontal views are a lot more common in photo albums than people might suspect.
For example, in our dataset which exhibits personal photo album bias, we see that only 52%
of the people have high resolution frontal faces suitable for recognition. Thus the problem of
recognizing people from any viewpoint and without the presence of a frontal face or canonical
pedestrian pose is important, and yet it has received much less attention than it deserves.
We believe this is due to two reasons: first, there is no high quality large-scale dataset for
unconstrained recognition, and second, it is not clear how to go beyond a frontal face and
leverage these subtle cues. We address both of these problems in this chapter and show
pose-normalized representations can also improve the application of person recognition.

To address the first problem, we introduce the People In Photo Albums (PIPA) dataset, a
large-scale recognition dataset collected from Flickr photos with creative commons licenses.
It consists of 37,107 photos containing 63,188 instances of 2,356 identities and examples are
shown in Figure 3.2. We tried carefully to preserve the bias of people in real photo albums
by instructing annotators to mark every instance of the same identity regardless of pose
and resolution. Our dataset is challenging due to occlusion with other people, viewpoint,
pose and variations in clothes. While clothes are a good cue, they are not always reliable,
especially when the same person appears in multiple albums, or for albums where many
people wear similar clothes (sports, military events), as shown in Figure 3.3. As an indication
of the difficulty of our dataset, the DeepFace system [99], which is one of the state-of-the-
art recognizers on LFW [47], was able to register only 52% of the instances in our test set
and, because of that, its overall accuracy on our test set is 46.66%. The dataset is publicly
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Figure 3.1: Recognizing people beyond frontal face. We are able to easily recognize people
we know in unusual poses, and even if their face is not visible. In this chapter we explore
the subtle cues necessary for such robust viewpoint-independent recognition.

available1.
To address the second problem, we propose a Pose Invariant PErson Recognition (PIPER)

method, which uses part-level person recognizers to account for pose variations. Inspired by
Chapter 2, we also use poselets [12] as our part models and train identity classifiers for each
poselet. However this task is significantly harder than attribute classification since we have
many more classes with significantly fewer training examples per class. Also, we found that
combining parts by concatenating their feature in the manner of Chapter 2 is not effective for
this task. It results in feature vectors that are very large and overfit easily when the number
of classes is large and training examples are few. Instead, we found training each part to
do identity recognition and combining their predictions achieves better performance. Unlike
[11], we propose a new way to handle the sparsity from poselet detections which boosts the
performance by a large margin.

We demonstrate the effectiveness of PIPER by using three different experimental settings
on our dataset. Our method can achieve 83.05% accuracy over 581 identities on the test
set. Moreover when a frontal face is available, it improves the accuracy over DeepFace from
89.3% to 93.4%, which is close to 40% decrease in relative error.

3.1 Background

3.1.1 Face recognition

There has been dramatic progress made in face recognition in the past few decades from
EigenFace [104] to the state-of-art face recognition system [99] by using deep convolutional
nets. Most of the existing face recognition systems require constrained setting of frontal faces
and explicit 3D face alignment or facial keypoint localizations. Some other works [109, 22]
have addressed robust face recognition systems to deal with varying illumination, occlusion

1http://www.eecs.berkeley.edu/~nzhang/piper.html
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Facebook Co-Identification Dataset (in progress) 

•  Collected from Flickr public photos with Creative Commons License 

•  Annotated as same / not-same by Facebook annotations team 

•  Includes people / cats / dogs 
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Figure 3.2: Example photos from our dataset. These are taken from a single album
and show the associated identities. Each person is annotated with a ground truth bounding
box around the head, with each color representing one identity. If the head is occluded, the
expected position is annotated.

and disguise. Due to our unconstrained setting, most conventional face recognition systems
have limited performance on our dataset.

3.1.2 Person identification in photo albums

Tagging of personal photo albums is an active research topic. To address the limitation of
face recognition systems, various approaches have been proposed to incorporate context. For
example, the authors in [3, 76] proposed methods to incorporate contextual cues including
clothing appearance and meta data from photos for person identification in photo collections.
Sivic et al. [96] proposed a simple pictorial structure model to retrieve all the occurrences
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(a) While clothing can be discriminative it does not help for military or business activities,
for example, where people dress similarly.

(b) The same individual may appear in multiple albums wearing different clothes.

Figure 3.3: Challenges of our dataset.

of the same individual in a sequence of photographs. Lin et al. [66] presented a generative
probabilistic approach to model cross-domain relationships to jointly tag people, events and
locations. In [39], the authors try to find all images of each person in the scene from a crowed
public event.

There is also some related work to discover the social connection between people in the
photo collections. Wang et al. [107] proposed a model to represent the relationship between
the position and pose of people and their identities. In [37], the authors investigated the
different factors that are related to the positions of people in a group image. Another
interesting direction is to name characters in TV series. In [29, 95, 28], the authors proposed
approach to automatically label the characters by using aligned subtitle and script text.
Tapaswi et al. [100] proposed a Markov Random Field (MRF) method to combine face
recognition and clothing features and they tried to name all the appearance of characters
in TV series including non frontal face appearance. Later they presented another semi-
supervised learning method [16] for the same task.
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Split All Train Val Test Leftover

Photos 37,107 17,000 5,684 7,868 6,555
Albums 1,438 579 342 357 160

Instances 63,188 29,223 9,642 12,886 11,437
Identities 2,356 1,409 366 581 -

Avg/identity 26.82 20.74 26.34 22.18 -
Min/identity 5 10 5 10 -
Max/identity 2928 99 99 99 -

Table 3.1: Statistics of our dataset.

3.1.3 Person re-identification in videos

The task of person re-identification is to match pedestrian images from different cameras and
it has important applications in video. Existing work is mainly focused on metric learning
[85, 45, 64] and mid-level feature learning [44, 123, 122, 30, 59, 80]. Li et al. [65] propose
a deep network using pairs of people to encode photometric transformation. Yi et al. [115]
used a siamese deep network to learn the similarity metric between pairs of images.

3.2 People In Photo Albums Dataset

To our knowledge, there is no existing large scale dataset for the task of person recognition.
The existing datasets for person re-identification, such as VIPeR [43] and CUHK01 [64],
come mostly from videos and they are low resolution images taken from different cameras
from different viewpoints. The Gallagher Collection Person Dataset [36] is the closest to
what we need, however the released subset has only 931 instances of 32 identities which is
approximately 1.5% of the size of our dataset. Furthermore, [36] have only labeled the
frontal faces. The Buffy dataset used in [95, 29] is a video dataset and it only has less than
20 different characters.

Our problem setting is to identify a person in the “wild” without any assumption of
frontal face appearance or straight pedestrian pose. We don’t assume that the person is
detected by a detector; our instruction to annotators is to mark the head (even if occluded)
for any people they can co-identify, regardless of their pose, and the image resolution.

3.2.1 General statistics

We collected our dataset, People In Photo Albums (PIPA) Dataset, from public photo albums
uploaded to Flickr 2. Those albums were uploaded from 111 users. Photos of the same person
have been labeled with the same identity but no other identifying information is preserved.
Table 3.1 shows statistics of our dataset.

2https://www.flickr.com/
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 Figure 3.4: Example of sparsity filling. On the left we show the predictions of the global

model for every identity and every instance. The poselet classifier in the middle does not
activate for two instances (the white rows) and is not trained to recognize two identities
(the white columns). On the right we show how in the normalized probability we fill-in
missing rows from the global model as in the top of Equation 3.2. In addition we account for
the missing columns by linearly interpolating each row with the global model based on the
likelihood that the identity is not coming from one of the missing columns (the triangles)

3.2.2 Collection Method

Our data collection consists of the following steps:

1. Album Filtering. After downloading thousands of albums from Flickr, we first show
the annotators a set of photos from the album and ask them to filter out albums
which are not of people albums, such as landscape, flowers, or photos where person
co-occurrence is very low.

2. Person Tagging. Then given each album, we ask the annotators to select all the
individuals that appear at least twice in that album and draw a bounding box around
their heads with different color indicating different identity. If the head is partially/fully
occluded, we mark the region of where the head should be. The head bounds may also
be partially/fully outside the image. Not every person is tagged. In a crowd scene we
ask the annotators to tag no more than 10 people. The interface of person tagging
is shown in Fig 3.9a. The annotator can scroll over the faces on the left. If clicking
on one individual, it will show all the instances of that person. The original images
and head annotations are shown on the right where the annotators draw all the heads
of different individuals. If the person’s head is occluded, the annotator will draw a
bounding box around the expected position of the head.

3. Cross-Album Merging. Often the same identities appear in multiple albums, in
which case their identities should be merged. While it is not feasible to do so across
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all albums, we consider the set of albums uploaded by the same uploader and we try
to find the same identities appearing in multiple albums and merge them. Showing all
identities from all albums is a challenging UI task for uploaders that have dozens of
large albums. We show our annotation interface in Figure 3.9b. The top row shows a
set of merged individuals. Each column in the bottom section corresponds to an album
from the same uploader. Each face is an example face of a different individual. Merging
is done by selecting a set of faces across albums, optionally selecting an individual from
the top row to merge into, and clicking the merge button.

4. Instance Frequency Normalization. After merging, we count the number of in-
stances for each individual and discard individuals that have less than 10 instances.
In addition, a few individuals have a very large number of instances which could bias
our dataset. To prevent such bias, we restrict the maximum number of instances per
individual to be 99. We randomly sample 99 instances and move the remaining ones
into a “leftover” set. Our leftover set consists of 11,437 instances of 54 individuals.

5. Dataset Split. We split the annotations randomly into three sets – training, validation
and test. To ensure complete separation between the sets, all the photos of the same
uploader fall in the same set. That ensures that the set of photos, identities and
instances across the three sets is disjoint. We do a random permutation of the uploaders
and we pick the first K of them so that the number of person instances reaches about
50% and we assign those to the training set. We assign the next 25% to validation and
the remaining 25% to test. While we target 50-25-25 split we cannot assure that the
instances will be partitioned precisely due to the constraints we impose. See Table 3.1
for more details about the splits.

3.3 Pose Invariant Person Recognition (PIPER)

We introduce a novel view invariant approach to combine information of different classifiers
for the task of person recognition. It consists of three components:

• The global classifier, a CNN trained on the full body of the person.

• A set of 107 poselet classifiers, each is a CNN trained on the specific poselet pattern
using [12]. 3

• An SVM trained on the 256 dimensional features from DeepFace [99].

In total we have 109 part classifiers. The identity prediction of PIPER is a linear combination
of the predicted probabilities of all classifiers:

3The original set of poselets is 150 but some of them did not train well.
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s(X, y) =
∑
i

wiPi(y|X) (3.1)

Here Pi(y|X) is the normalized probability of identity label y given by part i for feature
X and wi is the associated weight of the part. The final identity prediction is y∗(X) =
argmaxy s(X, y).
Here is an overview of the training steps. The next sections provide a more detailed descrip-
tion.

1. We run poselets [12] over our dataset and match the person predictions coming from
poselets to our ground truths.

2. Using the poselet patches of step 1, we train a CNN for each poselet to recognize the
identities on our training set. In addition, we train a CNN for the global classifier
using the patches corresponding to the full body images. In all cases we use the
Convolutional Neural Net architecture by Krizhevsky et al. . [55]. We fine-tune the
network pre-trained on ImageNet on the task of identity recognition. While recent
architectures have improved the state-of-the art [94, 98] and might further improve our
performance, we decided to use the Krizhevsky architecture because its performance is
well studied on a number of visual tasks [26]. We then discard the final FC8 layer and
treat the activations from the FC7 layer as a generic feature on which we train SVMs
in the next steps.

3. We partition the validation set into two halves. We train an SVM for each part using
the FC7 layer feature from Step 2 on the first half of validation and use it to compute
the identity predictions Pi(y|X) on the second half, and vice versa.

4. We use the identity predictions of all parts on the validation set to estimate the mixing
components wi .

5. We split the test set in half and train SVMs on top of the FC7 features on the first
half of the test set and use them to compute the identity predictions Pi(y|X) on the
second half, and vice versa.

6. We use the identity predictions on the test set for each part Pi(y|X) as well as the
mixing components wi to compute the combined identity prediction S(X, y) using
equation 3.1.

In the next sections we will describe the training steps, and way we compute Pi(y|X)
and wi.
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3.3.1 Computing Part Activations

Our groundtruth annotations consist of bounding boxes of heads. From the head boxes, we
estimate the bounding box locations by setting approximate offset and scaling factor. We
run poselets [12] on the images, which returns bounding boxes of detected people in the
images, each of which comes with a score and locations of associated poselet activations.
We use a bipartite graph matching algorithm to match the ground truth bounds to the ones
predicted by the poselets. This algorithm performs globally optimal matching by preferring
detections with higher score and higher overlap to truths. The output of the algorithm is a
set of poselet activations associated with each ground truth person instance. We extract the
image patches at each poselet and use them to train part-based classifiers.

3.3.2 Training the Part Classifiers Pi(y|X)

Global classifier P0(y|X)

Using the FC7 layer of the CNN trained for the full body area of each instance, we train a
multi-class SVM to predict each identity y. We refer to its prediction as P0(y|X).

Part-level SVM classifier P̂i(y|X)

Given the FC7 layer features X extracted from detected part i patch and identity labels y,
we train a multi-class SVM on X to predict y and we denote the softmax of the output score
as P̂i(y|X).

Notice that P̂i is sparse in two ways:

• Each poselet activates only on instances that exhibit the specific pose of that poselet.
Some poselets may activate on 50% while others on as few as 5% of the data.

• Not all identities have examples for all poselets and thus each poselet level SVM clas-
sifier for part i is only trained on a subset Fi of all identities. Thus P̂i(y|X) is inflated
when y ∈ Fi and is zero otherwise.

The sparsity pattern is correlated with the pose of the person and has almost no correlation
to the identity that we are trying to estimate. Thus properly accounting for the sparsity is
important in order to get high accuracy identity recognition.
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Sparsity filling

We address both of these sparsity issues by using the probability distribution of our global
model P0 which is defined for all identities and activates on all instances:

Pi(y|X) =

{
P0(y|X), if part i doesn’t activate, or

P (y ∈ Fi)P̂i(y|X) + P (y /∈ Fi)P0(y|X)
(3.2)

P (y ∈ Fi) =
∑
y′∈Fi

P0(y
′|X) (3.3)

In Figure 3.4 we give a visual intuition behind this formula.

3.3.3 Computing the part weights wi

We use the validation set to compute w. We split the validation set into two equal subsets.
We train the part-based SVMs on one subset and use them to compute Pi(y|X) on all
instances of the second subset, and vice versa. Let P j

i (y|X) denote the probability that the
classifier for part i assigns to instance j being of class y given feature X. We formulate a
binary classification problem which has one training example per pair of instance j and label
y. If we have K parts its feature vector is K+1 dimensional: [P j

0 (y|X);P j
1 (y|X); ... P j

k (y|X)].
Its label is 1 if instance j’s label is y and -1 otherwise. We solve this by training a linear
SVM. The weights w are the weights of the trained SVM.

We use the first split of validation to do a grid search for the C parameter of the SVM
and test on the second split. Once we find the optimal C we retrain on the entire validation
set to obtain the final vector w.

3.4 Experiments

We report results of our proposed method on our PIPA dataset and compare it with baselines.
Specifically, we conduct experiments in three different settings: 1) Person recognition, 2)
One-shot person identification, and 3) Unsupervised identity retrieval.

In all experiments we use the training split of our dataset to train the deep networks
for our global model and each poselet and we use the validation set to compute the mixing
weights w and tune the hyper-parameters. All of our results are evaluated on the test split.

3.4.1 Person Recognition

We first present experimental results on the person recognition task with our PIPA dataset.
It is a standard supervised classification task as we train and test on same set of identities.
Since the set of identities between training and test sets is disjoint, we split our test set in two
equal subsets. We train an SVM on the first, use it to compute Pi(y|X) on the second and
vice versa. We then use the weights w trained on the validation set to get our final prediction
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Method Classification accuracy
Chance Performance 0.17%

DeepFace [99] 46.66%
FC7 of Krizhevsky et al. [55] 56.07%

Global Model 67.60%
PIPER w/out sparsity filling 75.35%

PIPER 83.05%

Table 3.2: Person recognition results on PIPA test set using 6442 training examples over 581
identities

Method Non-faces subset Faces subset
Global Model 64.3% 70.6%
DeepFace[99] 0.17% 89.3%

PIPER 71.8% 93.4%

Table 3.3: Performance on the test set when split into the subset where frontal face is visible
(52%) and when it is not (48%).

as the identity that maximizes the score in equation 3.1 and we average the accuracy from
both halves of the test set. Qualitative examples are shown on Figure 3.5.

Overall Performance

Table 3.2 shows the accuracy in this setting compared to some standard baselines. We
compared it against DeepFace [99], which is one of the state-of-the-art face recognizers.
Although it is very accurate, it is a frontal face recognizer, so it doesn’t trigger on 48% of
our test set and we use chance performance for those instances. As a second baseline we
trained an SVM using the FC7 features of the CNN proposed by Krizhevsky et al. . and
pretrained on ImageNet[25]. We use its activations after showing it the full body image patch
for each instance. The Global Model baseline is the same CNN, except it was fine-tuned for
the task of identity recognition on our training set. We also tested the performance of our
model by combining the sparse part predictions, i.e. using P̂i(y|X) instead of Pi(y|X) in
equation 3.1. The performance gap of more than 7% shows that sparsity filling is essential
to achieve high recognition accuracy.

Ablation Study

Our method consists of three components – the fine-tuned Krizhevsky CNN (the Global
Model), the DeepFace recognizer, and a collection of 107 Poselet-based recognizers. In this



CHAPTER 3. PERSON RECOGNITION BEYOND FRONTAL FACES 28

cropped'bounding'box'

cropped'bounding'box'

(a) Body falls outside image (b) Unusual pose

(c) Same clothing similar pose (d) Confusion with other person

Figure 3.5: Examples that the combination of the Global model and DeepFace misclassify
and are recovered by using all of PIPER. (a) In a closeup shot the full body falls outside
the image and the extracted full-body patch, shown on the right, is severely misaligned.
A profile-face poselet should handle this case without misalignment. (b) In unusual pose
the full body patch may fall on the background or (d) on another person which will further
confuse the classifier. In (c) people have the same clothes and similar pose which will confuse
the global model.

section we explore using all combinations of these three components4. For each combination
we retrain the mixture weights w and re-tune the hyper parameters. Table 3.4 shows the
performance of each combination of these components. As the table shows, the three parts of
PIPER are complementary and combining them is necessary to achieve the best performance.

4Since our method relies on sparsity filling from a global model P0(y|X), to remove the effect of the
global model we simply set P0(y|X) to be uniform distribution.
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Global Model DeepFace[99] Poselets Accuracy
X – – 67.60%
– X – 46.66%
– – X 72.18%
X X – 79.95%
X – X 78.79%
– X X 78.08%
X X X 83.05%

Table 3.4: Person recognition performance on the PIPA test set using 6442 training examples
over 581 identities as we disable some of the components of our method. PIPER gets more
than 3% gain over the very strong baseline of using the fine-tuned CNN combined with the
DeepFace model. DeepFace’ s score is low because it only fires on 52% of the test images
and we use chance performance for the rest.

Performance on face and non-face instances

Since the presence of a high resolution frontal face provides a strong cue for identity recog-
nition and allows us to use the face recognizer, it is important to consider the performance
when a frontal face is present and when it is not. Table 3.3 shows the performance on the
face and non-face part of our test set. We considered the instances for which DeepFace
generated a signature as the face subset. As the figure shows, when the face is not present
we can significantly outperform a fine-tuned CNN on the full image. More importantly,
the contextual cues and combinations of many classifiers allow us to significantly boost the
recognition performance even when a frontal face is present.

3.4.2 One-Shot Learning

Figure 3.6 shows the performance of our system when the training set is tiny. We randomly
pick one, two or three instances of each identity in our test set, train on those and report
results on the rest of the test set. Our system performs very well even with one training
example per identity, achieving 28.1% accuracy for 581 identities. This result illustrates the
powerful generalization capability of our method. The generalization capabilities of deep
features are well studied, but we believe the mixture of multiple part-based classifiers also
helps here, since our system improves faster than the global fine-tuned Krizhevsky’s CNN
method.

3.4.3 Unsupervised identity retrieval

We evaluate our method on the task of retrieval: Given an instance, we measure the likelihood
that one of the K nearest neighbors will have the same identity.
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Figure 3.6: Recognition accuracy as a function of number of training examples per identity,
with σ = 1 error bar. As we increase the number of training examples our system’s accuracy
grows faster than the full-body baseline. Chance performance is 0.0017.

To do this we used the SVMs trained on split 0 of the validation set to predict the 366
identities in the validation set. We applied them to the instances in the test set to obtain
a 366-dimensional feature vector for each part and we combine the part predictions using
equation 3.1 with w trained on the validation set to obtain a single 366-dimensional feature
for each instance in the test set. We then, for each instance of the test set, compute the
K nearest neighbors using Euclidean distance and we consider retrieval as successful if at
least one of them is of the same identity. This has the effect of using the identities in the
validation set as exemplars and projecting new instances based on their similarities to those
identities. As Figure 3.7 shows our method is quite effective on this task – despite the low
dimensional feature and without any metric learning, the nearest neighbor of 64% of the
examples is of the same identity as the query. If we use the predictions of the Krizhevsky’s
CNN trained on ImageNet and fine-tuned on our training set, which is known to be a very
powerful baseline, the nearest neighbor is of the same class in only 50% of the examples.
This suggests that our model is capable of building a powerful and compact identity vector
independent of pose and viewpoint. Examples of our method are shown in Figure 3.8.

3.5 Summary

This chapter complements Chapter 2 by using pose-normalized CNN model for another
application: person recognition beyond frontal face. Specifically, the method combines state-
of-art frontal face recognizer, CNN models trained on full body images and cropped-out
poselet parts. PIPER can learn effectively even with a single training example and performs
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Figure 3.7: Performance of our method on identity retrieval.

surprisingly well at the task of image retrieval. While we have used PIPER for person
recognition, the algorithm readily applies to generic instance co-identification, such as finding
instances of the same car or the same dog. The other contribution of this chapter is the
People In Photo Albums dataset, which is the first of its kind large scale data set for person
coidentification in photo albums.
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Query Top 1 Top 2 Top 3 Top 4 Top 5

Figure 3.8: Example of PIPER results on unsupervised identity retrieval. For each row we
show the query image followed by the top 5 ranked retrieval images. Those are cropped
bounding box images on test split and are stretched to make visualization aligned.
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(a) Interface for annotating identities in one album.

(b) Interface for merging identities across albums.

Figure 3.9: Interfaces for our annotation system.
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Chapter 4

Part-based RCNN model

Previous chapters address using strong supervised parts to normalize the visual representa-
tions for the application of attribute classification and person recognition. In this chapter
and next chapter, we will focus on the main fine-grained categorization task. As mentioned
before, our motivation is to localize the parts and establish correspondence between object
instances in order to discount object pose variations and camera view points.

Previous work has investigated part-based approaches to this problem [9, 32, 69, 112,
117, 42]. The bottleneck for many pose-normalized representations is indeed accurate part
localization. The Poselet [12] used in the previous two chapters and DPM [33] methods have
previously been utilized to obtain part localizations with a modest degree of success; methods
generally report adequate part localization only when given a known bounding box at test
time [20, 40, 83, 82, 111]. By developing a novel deep part detection scheme, we propose a
fine grained categorization system which requires no knowledge of object bounding box at
test time, and can achieve performance rivaling previously reported methods requiring the
ground truth bounding box at test time to filter false positive detections.

The recent success of convolutional networks, like [55], on the ImageNet Challenge [48]
has inspired further work on applying deep convolutional features to related image classifica-
tion [26] and detection tasks [41]. In [41], Girshick et al. achieved breakthrough performance
on object detection by applying the CNN of [55] to a set of bottom-up candidate region pro-
posals [105], boosting PASCAL detection performance by over 30% compared to the previous
best methods. Independently, OverFeat [90] proposed localization using a CNN to regress
to object locations. However, the progress of leveraging deep convolutional features is not
limited to basic-level object detection. In many applications such as fine-grained recognition,
attribute recognition, pose estimation, and others, reasonable predictions demand accurate
part localization.

Feature learning has been used for fine-grained recognition and attribute estimation, but
was limited to engineered features for localization. DPD-DeCAF [119] used DeCAF [26] as
a feature descriptor, but relied on HOG-based DPM [33] for part localization. PANDA [121]
learned part-specific deep convolutional networks whose location was conditioned on HOG-
based poselet models. These models lack the strength and detection robustness of R-



CHAPTER 4. PART-BASED RCNN MODEL 35

Input images with region proposals 

Nearest neighbors used in geometric constraints 

Top scored object and part detections 
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Northern 
Flicker  

Figure 4.1: Overview of our part localization. Starting from bottom-up region propos-
als (top-left), we train both object and part detectors based on deep convolutional features.
During test time, all the windows are scored by all detectors (middle), and we apply non-
parametric geometric constraints (bottom) to rescore the windows and choose the best object
and part detections (top-right). The final step is to extract features on the localized seman-
tic parts for fine-grained recognition for a pose-normalized representation and then train a
classifier for the final categorization.

CNN [41]. In this work we explore a unified method that uses the same deep convolutional
representation for detection as well as part description.

We conjecture that progress made on bottom-up region proposal methods, like selective
search [105], could benefit localization of smaller parts in addition to whole objects. As we
show later, average recall of parts using selective search proposals is 95% on the Caltech-
UCSD bird dataset.

In this chapter, we propose a part localization model which overcomes the limitations of
previous fine-grained recognition systems by leveraging deep convolutional features computed
on bottom-up region proposals. Our method learns part appearance models and enforces
geometric constraints between parts. An overview of our method is shown in Figure 4.1. We
have investigated different geometric constraints, including a non-parametric model of joint
part locations conditioned on nearest neighbors in semantic appearance space. We present
state-of-the-art results evaluating our approach on the widely used fine-grained benchmark
Caltech-UCSD bird dataset [108].
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4.1 Background

4.1.1 Fine-grained categorization

Recently, a large body of computer vision research has focused on the fine-grained classifi-
cation problem in a number of domains, such as animal breeds or species [32, 53, 70, 74, 82,
114], plant species [1, 2, 57, 77, 78, 92], and man-made objects [73, 97].

Several approaches are based on detecting and extracting features from certain parts of
objects. Farrell et al. [32] proposed a pose-normalized representation using poselets [12].
Deformable part models [33] were used in [82, 119] for part localization. Based on the
work of localizing fiducial landmarks on faces [6], Liu et al. [70] proposed an exemplar-
based geometric method to detect dog faces and extract highly localized image features
from keypoints to differentiate dog breeds. Furthermore, Berg et al. [9] learned a set of
highly discriminative intermediate features by learning a descriptor for each pair of keypoints.
Moreover, in [69], the authors extend the non-parametric exemplar-based method of [6] by
enforcing pose and subcategory consistency. Yao et al. [113] and Yang et al. [112] have
investigated template matching methods to reduce the cost of sliding window approaches.
Recent work by Göring et al. [42] transfers part annotations from objects with similar global
shape as non-parametric part detections. All these part-based methods, however, require
the ground truth bounding box at test time for part localization or keypoint prediction.

Human-in-the-loop methods [15, 24, 27] ask a human to name attributes of the object,
click on certain parts or mark the most discriminative regions to improve classification ac-
curacy. Segmentation-based approaches are also very effective for fine-grained recognition.
Approaches such as [20, 40, 83, 82, 111] used region-level cues to infer the foreground segmen-
tation mask and to discard the noisy visual information in the background. Chai et al. [19]
showed that jointly learning part localization and foreground segmentation together can be
beneficial for fine-grained categorization. Similar to most previous part-based approaches,
these efforts require the ground truth bounding box to initialize the segmentation seed. In
contrast, the aim of our work is to perform end-to-end fine-grained categorization with no
knowledge at test time of the ground truth bounding box.

Our part detectors use convolutional features on bottom-up region proposals, together
with learned non-parametric geometric constraints to more accurately localize object parts,
thus enabling strong fine-grained categorization.

Recent work by [14] analyze the space of staged detection, alignment, and classification
pipelines to reveal the role of feature learning in fine-grained recognition. The choice of
learned features makes the most difference but pose has its own contribution. [67] formulate
a joint localization, alignment, and classification model for fine-grained classification. [54]
achieve fine-grained recognition without part annotations.
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4.1.2 Part-based models for detection and pose localization

Previous work has proposed explicit modeling of object part appearances and locations for
more accurate recognition and localization. Starting with pictorial structures [34, 35], and
continuing through poselets [12] and related work, many methods have jointly localized a
set of geometrically related parts. The deformable parts model (DPM) [33], until recently
the state-of-the-art PASCAL object detection method, models parts with additional learned
filters in positions anchored with respect to the whole object bounding box, allowing parts to
be displaced from this anchor with learned deformation costs. The “strong” DPM [4] adapted
this method for the strongly supervised setting in which part locations are annotated at
training time. A limitation of these methods is their use of weak features (usually HOG [23]).

Most recently, generic object detection methods have begun to leverage deep CNNs and
outperformed any competing approaches based on traditional features. OverFeat [90] uses
a CNN to regress to object locations in a coarse sliding-window detection framework. Of
particular inspiration to our work is the R-CNN method [41] which leverages features from a
deep CNN in a region proposal framework to achieve unprecedented object detection results
on the PASCAL VOC dataset. Our method generalizes R-CNN by applying it to model
object parts in addition to whole objects, which our empirical results will demonstrate is
essential for accurate fine-grained recognition.

4.2 Method

While [41] demonstrated the effectiveness of the R-CNN method on a generic object detection
task (PASCAL VOC), it did not explore the application of this method to simultaneous
localization and fine-grained recognition. Because our work operates in this regime, we
extend R-CNN to detect objects and localize their parts under a geometric prior. With
hypotheses for the locations of individual semantic parts of the object of interest (e.g., the
location of the head for an animal class), it becomes reasonable to model subtle appearance
differences which tend to appear in locations that are roughly fixed with respect to these
parts.

In the R-CNN method, for a particular object category, a candidate detection x with
CNN feature descriptor φ(x) is assigned a score of wᵀ

0φ(x), where w0 is the learned vector
of SVM weights for the object category. In our method, we assume a strongly supervised
setting (e.g., [4]) in which at training time we have ground truth bounding box annotations
not only for full objects, but for a fixed set of semantic parts {p1, p2, ..., pn} as well.

Given these part annotations, at training time all objects and each of their parts are
initially treated as independent object categories: we train a one-versus-all linear SVM on
feature descriptors extracted over region proposals, where regions with ≥ 0.7 overlap with
a ground truth object or part bounding box are labeled as positives for that object or
part, and regions with ≤ 0.3 overlap with any ground truth region are labeled as negatives.
Hence for a single object category we learn whole-object (“root”) SVM weights w0 and part
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SVM weights {w1, w2, ..., wn} for parts {p1, p2, ..., pn} respectively. At test time, for each
region proposal window we compute scores from all root and part SVMs. Of course, these
scores do not incorporate any knowledge of how objects and their parts are constrained
geometrically; for example, without any additional constraints the bird head detector may
fire outside of a region where the bird detector fires. Hence our final joint object and
part hypotheses are computed using the geometric scoring function detailed in the following
section, which enforces the intuitively desirable property that pose predictions are consistent
with the statistics of poses observed at training time.

4.2.1 Geometric constraints

Let X = {x0, x1, . . . , xn} denote the locations (bounding boxes) of object p0 and n parts
{pi}ni=1, which are annotated in the training data, but unknown at test time. Our goal is to
infer both the object location and part locations in a previously unseen test image. Given
the R-CNN weights {w0, w1, . . . , wn} for object and parts, we will have the corresponding
detectors {d0, d1, . . . , dn} where each detector score is di(x) = σ(wᵀ

i φ(x)), where σ(·) is the
sigmoid function and φ(x) is the CNN feature descriptor extracted at location x. We infer
the joint configuration of the object and parts by solving the following optimization problem:

X∗ = arg max
X

∆(X)
n∏
i=0

di(xi) (4.1)

where ∆(X) defines a scoring function over the joint configuration of the object and root
bounding box. We consider and report quantitative results on several configuration scoring
functions ∆, detailed in the following paragraphs.

Box constraints. One intuitive idea to localize both the object and parts is to consider
each possible object window and all the windows inside the object and pick the windows
with the highest part scores. In this case, we define the scoring function

∆box(X) =
n∏
i=1

cx0(xi) (4.2)

where

cx(y) =

{
1 if region y falls outside region x by at most ε pixels
0 otherwise

(4.3)

In our experiments, we let ε = 10.

Geometric constraints. Because the individual part detectors are less than perfect, the
window with highest individual part detector scores is not always correct, especially when
there are occlusions. We therefore consider several scoring functions to enforce constraints
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Figure 4.2: Illustration of geometric constant δNP . In each row, the first column is the
test image with an R-CNN bounding box detection, and the rest are the top-five nearest
neighbors in the training set, indexed using pool5 features and cosine distance metric.

over the layout of the parts relative to the object location to filter out incorrect detections.
We define

∆geometric(X) = ∆box(X)

(
n∏
i=1

δi(xi)

)α

(4.4)

where δi is a scoring function for the position of the part pi given the training data. Following
previous work on part localization from, e.g. [6, 33, 35], we experiment with three definitions
of δ:

• δMG
i (xi) fits a mixture of Gaussians model with Ng components to the training data

for part pi. In our experiments, we set Ng = 4.

• δNPi (xi) finds theK nearest neighbors in appearance space to x̃0, where x̃0 = arg max d0(x0)
is the top-scoring window from the root detector. We then fit a Gaussian model to
these K neighbors. In our experiments, we set K = 20. Figure 4.2 illustrates some
examples of nearest neighbors.

The DPM [33] models deformation costs with a per-component Gaussian prior. R-
CNN [41] is a single-component model, motivating the δMG or δNP definitions. Our δNP

definition is inspired by Belhumeur et al. [6], but differs in that we index nearest neighbors
on appearance rather than geometry.
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4.2.2 Fine-grained categorization

We extract semantic features from localized parts as well as the whole object. The final
feature representation is [φ(x0) . . . φ(xn)] where x0 and x1...n are whole-object and part loca-
tion predictions inferred using one of the models from the previous section and φ(xi) is the
feature representation of part xi.

In one set of experiments, we extract deep convolutional features φ(xi) from an ImageNet
pre-trained CNN, similar to DeCAF [26]. In order to make the deep CNN-derived features
more discriminative for the target task of fine-grained bird classification, we also fine-tune
the ImageNet pre-trained CNN for the 200-way bird classification task from ground truth
bounding box crops of the original CUB images. In particular, we replace the original
1000-way fc8 classification layer with a new 200-way fc8 layer with randomly initialized
weights drawn from a Gaussian with µ = 0 and σ = 0.01. We set fine-tuning learning rates
as proposed by R-CNN [41], initializing the global rate to a tenth of the initial ImageNet
learning rate and dropping it by a factor of 10 throughout training, but with a learning rate
in the new fc8 layer of 10 times the global learning rate. For the whole object bounding
box and each of the part bounding boxes, we independently finetune the ImageNet pre-
trained CNN for classification on ground truth crops of each region warped to the 227× 227
network input size, always with 16 pixels on each edge of the input serving as context as in
R-CNN [41]. At test time, we extract features for the predicted whole object or part region
using the network fine-tuned for that particular whole object or part.

For training the classifier, we employ a one-versus-all linear SVM using the final feature
representation. For a new test image, we apply the whole and part detectors with the
geometric scoring function to get detected part locations and use the features for prediction.
If a particular part i was not detected anywhere in the test image (due to all proposals falling
below the part detector’s threshold, set to achieve high recall), we set its features φ(xi) = 0
(zero vector).

4.3 Experiments

In this section, we present a comparative performance evaluation of our proposed method.
Specifically, we conduct experiments on the widely-used fine-grained benchmark Caltech-
UCSD birds dataset [108] (CUB200-2011). The classification task is to discriminate among
200 species of birds, and is challenging for computer vision systems due to the high degree of
similarity between categories. It contains 11,788 images of 200 bird species. Each image is
annotated with its bounding box and the image coordinates of fifteen keypoints: the beak,
back, breast, belly, forehead, crown, left eye, left leg, left wing, right eye, right leg, right
wing, tail, nape and throat. We train and test on the splits included with the dataset, which
contain around 30 training samples for each species. Following the protocol of [119], we use
two semantic parts for the bird dataset: head and body.

We use the open-source package Caffe [52] to extract deep features and fine-tune our
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CNNs. For object and part detections, we use the Caffe reference model, which is almost
identical to the model used by Krizhevsky et al. in [55]. We refer deep features from each
layer as convn, pooln, or fcn for the nth layer of the CNN, which is the output of a
convolutional, pooling, or fully connected layer respectively. We use fc6 to train R-CNN
object and part detectors as well as image representation for classification. For δNP , nearest
neighbors are computed using pool5 and cosine distance metric.

4.3.1 Fine-grained categorization

We first present results on the standard fine-grained categorization task associated with the
Caltech-UCSD birds dataset. The first set of results in Table 4.1 are achieved in the setting
where the ground truth bounding box for the entire bird is known at test time, as most state-
of-art methods assume, making the categorization task somewhat easier. In this setting, our
part-based method with the local non-parametric geometric constraint δNP works the best
without fine-tuning, achieving 68.1% classification accuracy without fine-tuning. Fine-tuning
improves this result by a large margin, to over 76%. We compare our results against three
state-of-the-art baseline approaches with results assuming the ground truth bounding box
at test time. We use deep convolutional features as the authors of [26], but they use a HOG-
based DPM as their part localization method. The increase in performance is likely due to
better part localization (see Table 4.4). Oracle method uses the ground truth bounding box
and part annotations for both training and test time.

The second set of results is in the less artificial setting where the bird bounding box is
unknown at test time. Most of the literature on this dataset doesn’t report performance
in this more difficult, but more realistic setting. As Table 4.1 shows, in this setting our
part-based method works much better than the baseline DPD model. We achieve 66.0%
classification accuracy without finetuning , almost as good as the accuracy we can achieve
when the ground truth bounding box is given. This means there is no need to annotate any
box during test time to classify the bird species. With finetuned CNN models, our method
achieves 73.89% classification accuracy. We are unaware of any other published results in
this more difficult setting, but we note that our method outperforms previous state-of-the-art
even without knowledge of the ground truth bounding box.

Another interesting experiment we did is to remove the part descriptors by only looking
at the image descriptors inside the predicted bounding box. By having geometric constraints
over part locations relative to object location, our method is able to help localize the object.
As Table 4.2 shows, our method outperforms a single object detector using R-CNN, which
means the geometric constraints helps our method better localize the object window. The
detection of strong DPM is not as accurate as our method, which explains the performance
drop. The “oracle” method uses the ground truth bounding box and achieves 57.94% accu-
racy, which is still much lower than the method in Table 4.1 of using both image descriptors
inside object and parts.
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Table 4.1: Fine-grained categorization results on CUB200-2011 bird dataset. -ft means
extracting deep features from finetuned CNN models using each semantic part. Oracle
method uses the ground truth bounding box and part annotations for both training and test
time.

Bounding Box Given
DPD [119] 50.98%
DPD+DeCAF feature [26] 64.96%
POOF [9] 56.78%
Symbiotic Segmentation [19] 59.40%
Alignment [40] 62.70%
Oracle 72.83%
Oracle-ft 82.02%
Ours (∆box) 67.55%
Ours (∆geometric with δMG) 67.98%
Ours (∆geometric with δNP ) 68.07%
Ours-ft (∆box) 75.34%
Ours-ft (∆geometric with δMG) 76.37%
Ours-ft (∆geometric with δNP ) 76.34%

Bounding Box Unknown
DPD+DeCAF [26] with no bounding box 44.94%
Ours (∆null) 64.57%
Ours (∆box) 65.22%
Ours (∆geometric with δMG) 65.98%
Ours (∆geometric with δNP ) 65.96%
Ours-ft (∆box) 72.73%
Ours-ft (∆geometric with δMG) 72.95%
Ours-ft (∆geometric with δNP ) 73.89%

4.3.2 Part localization

We now present results evaluating in isolation the ability of our system to accurately localize
parts. Our results in Table 4.4 are given in terms of the Percentage of Correctly Localized
Parts (PCP) metric. For the first set of results, the whole object bounding box is given
and the task is simply to correctly localize the parts inside of this bounding box, with parts
having ≥ 0.5 overlap with ground truth counted as correct.

For the second set of results, the PCP metric is computed on top-ranked parts predictions
using the objective function described in Sec. 3.2. Note that in this more realistic setting
we do not assume knowledge of the ground truth bounding box at test time – despite this
limitation, our system produces accurate part localizations.

As shown in Table 4.4, for both settings of given bounding box and unknown bounding
box, our methods outperform the strong DPM [4] method. Adding a geometric constraint
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Table 4.2: Fine-grained categorization results on CUB200-2011 bird dataset with no parts.
We trained a linear SVM using deep features on all the methods. Therefore only the bounding
box prediction is the factor of difference. -ft is the result of extracting deep features from
fine-tuned CNN model on bounding box patches.

Oracle (ground truth bounding box) 57.94%
Oracle-ft 68.29%
Strong DPM [4] 38.02%
R-CNN [41] 51.05%

Ours (∆box) 50.17%
Ours (∆geometric with δMG) 51.83%
Ours (∆geometric with δNP ) 52.38%
Ours-ft (∆box) 62.13%
Ours-ft (∆geometric with δMG) 62.06%
Ours-ft (∆geometric with δNP ) 62.75%

Table 4.3: Recall of region proposals produced by selective search methods on CUB200-2011
bird dataset. We use ground truth part annotations to compute the recall, as defined by the
proportion of ground truth boxes for which there exists a region proposal with overlap at
least 0.5, 0.6 and 0.7 respectively.

Overlap 0.50 0.60 0.70
Bounding box 96.70% 97.68% 89.50%

Head 93.34% 73.87% 37.57%
Body 96.70% 85.97% 54.68%

δNP improves our results (79.82% for body localization compared to 65.42%). In the fully
automatic setting, the top ranked detection and part localization performance on head is 65%
better than the baseline method. ∆null = 1 is the appearance-only case with no geometric
constraints applied. Although the fine-grained classification results don’t show a big gap
between ∆geometric and ∆box, we can see the performance gap for part localization. The
reason for the small performance gap might be that deep convolutional features are invariant
to small translations and rotations, limiting the impact of small localization errors on our
end-to-end accuracy.

We also evaluate the recall performance of selective search region proposals [105] for
bounding box and semantic parts. The results of recall given different overlapping thresholds
are shown in Table 4.3. Recall for the bird head and body parts is high when the overlap
requirement is 0.5, which provides the foundation for localizing these parts given the region
proposals. However, we also observe that the recall for head is below 40% when the overlap
threshold is 0.7, indicating the bottom-up region proposals could be a bottleneck for precise
part localization.

Other visualizations are shown in Figure 4.4. We show three detection and part localiza-
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Table 4.4: Part localization accuracy in terms of PCP (Percentage of Correctly Localized
Parts) on the CUB200-2011 bird dataset. There are two different settings: with given
bounding box and without bounding box.

Bounding Box Given
Head Body

Strong DPM [4] 43.49% 75.15%
Ours (∆box) 61.40% 65.42%
Ours (∆geometric with δMG) 66.03% 76.62%
Ours (∆geometric with δNP ) 68.19% 79.82%

Bounding Box Unknown
Head Body

Strong DPM [4] 37.44% 47.08%
Ours (∆null ) 60.50% 64.43%
Ours (∆box) 60.56% 65.31%
Ours (∆geometric with δMG) 61.94% 70.16%
Ours (∆geometric with δNP ) 61.42% 70.68%
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Figure 4.3: Cross-validation results on fine-grained accuracy for different values of α (left)
and K (right). We split the training data into 5 folds and use cross-validate each hyperpa-
rameter setting.

tion for each image, the first column is the output from strong DPM, the second column is
our methods with individual part predictions and the last column is our method with local
prior. We used the model pretrained from [4] to get the results. We also show some failure
cases of our method in Figure 4.5.
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4.3.3 Component Analysis

To examine the effect of different values of α and K used in ∆geometric, we conduct cross-
validation experiments. Results are shown in Figure 4.3. We fix K = 20 in Figure 4.3, left
and fix α = 0.1 in Figure 4.3, right. All the experiments on conducted on training data in a
cross-validation fashion and we split the training data into 5 folds. As the results show, the
end-to-end fine-grained classification results are sensitive to the choice of α and α = 0 is the
case of ∆box predictions without any geometric constraints. The reason why we have to pick
a small α is the pdf of the Gaussian is large compared to the logistic score function output
from our part detectors. On the other hand, the choice of K cannot be too small and it is
not very sensitive when K is larger than 10.

4.4 Bilinear CNN model and compact bilinear

pooling

Bilinear models were first introduced in Tenenbaum and Freeman [101] to separate style and
content. Second order pooling have since been considered for semantic segmentation and fine
grained recognition respectively, both using hand-tuned features [18], and CNN features [68].
The recent work of Lin et al. [68] used bilinear pooling to encode the activations of a deep
convolutional network for fine-grained visual recognition and achieved state-of-art results on
CUB200-2011 dataset. The details of bilinear CNN model can be found in [68].

4.4.1 Compact Bilinear Pooling

Inspired by the bilinear CNN models, we want to deploy bilinear pooling features into our
part-based RCNN model as the feature representations for each part. However, due to
the high dimensionality of the bilinear pooling features (more than 250, 000 dimensions
in [68]), it is impractical to replace deep feature with the bilinear pooling features in our
model. Gao et al. propose compact bilinear representations in [38]. The goal is to project
the large bilinear pooling features to a lower dimensional space (∼ 5k dimension) with the
same discriminative power. It also allows back-propagation of classification errors, enabling
an end-to-end optimized model. The method relies on the low dimensional feature maps
for kernel functions, specifically the Random Maclaurin Projection [86] and Tensor Sketch
Projection [84].

4.4.2 Results using Compact Bilinear Pooling

We now show the results of part-based RCNN model using compact bilinear pooling features.
We use the same part detections as in Section 4.2. However, for the feature representations,
we use compact bilinear models to finetune the CNN models for each part and use the last
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Strong DPM Ours (∆box) Ours (δNP )

Figure 4.4: Examples of bird detection and part localization from strong DPM [4] (left);
our method using ∆box part predictions (middle); and our method using δNP (right). All
detection and localization results without any assumption of bounding box.
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Figure 4.5: Failure cases of our part localization using δNP .

layer features to replace the original deep features. The classification results on CUB200-
2011 dataset are shown in Table 4.5. Ours-fc6 is the result using the setting of bounding
box unknown and parts predicted by non-parametric geometric prior, the ∆geometric with
δNP entry in Table 4.1. By using the same predicted parts but the compact bilinear rep-
resentations, we improve the classification accuracy to 85.31% from 73.89%. We also show
the oracle result by using the groundtruth part detections at test time. The gap between
85.31% to the oracle 86.34% comes from the errors made in part detections. We also show
the results of using bilinear CNN model without any parts. It demonstrates that even with
the power bilinear CNN features, it is still beneficial to model the object’s pose by means of
parts for this challenge task.

4.5 Dense window sampling for keypoint localization

During the experiments in Section 4.3, we observe that the recall of using selective search
on small parts is very low, which limits us using RCNN to localize small parts. In this
section, we propose a dense window sampling method for keypoint localization. We use the
pretrained AlexNet [55] on ImageNet ILSVRC 2012 and report keypoint localization results
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Method Classification accuracy
Ours-fc6 73.89%

Bilinear CNN Model [68] 84.1%
Ours-compact bilinear 85.31%

Oracle-compact bilinear 86.33%

Table 4.5: Fine-grained categorization results using our model and compact bilinear repre-
sentations.

layer rf size stride
conv1 11× 11 4× 4
conv2 51× 51 8× 8
conv3 99× 99 16× 16
conv4 131× 131 16× 16
conv5 163× 163 16× 16
pool5 195× 195 32× 32

Table 4.6: Convnet receptive field sizes and strides of AlexNet [55], for an input of size
227× 227.

on PASCAL VOC 2011 dataset and assume groundtruth bounding box at test time.
Inspired by our part-based RCNN method and [90, 50], we propose dense sample slid-

ing window part detectors to predict keypoint locations independently. To do so, we first
compute all features at a particular layer ( conv5 in our experiment), resulting in an 2d
grid of feature vectors. We associate each feature vector with a patch in the original image
at the center of the corresponding receptive field and with size equal to the receptive field
stride. (Note that the strides of the receptive fields are much smaller than the receptive
fields themselves, which overlap. Refer to Table 4.6 above for specific numbers.)

We rescale each bounding box to 500 × 500 and compute conv5 (with a stride of 16
pixels). Each cell of conv5 contains one 256-dimensional descriptor. We concatenate conv5
descriptors from a local region of 3×3 cells, giving an overall receptive field size of 195×195
and feature dimension of 2304. For each keypoint, we train a linear SVM with hard negative
mining. We consider the ten closest features to each ground truth keypoint as positive
examples, and all the features whose rfs do not contain the keypoint as negative examples.
We also train using dense SIFT descriptors for comparison. We compute SIFT on a grid of
stride eight and bin size of eight using VLFeat [106]. For SIFT, we consider features within
twice the bin size from the ground truth keypoint to be positives, while samples that are at
least four times the bin size away are negatives.

We augment our SVM detectors with a diagonal Gaussian prior over candidate locations
constructed by nearest neighbor matching. The mean of each Gaussian is taken to be
the location of the keypoint in the nearest neighbor in the training set found using cosine
similarity on pool5 features, and we use a fixed standard deviation of 22 pixels. Let s(Xi)



CHAPTER 4. PART-BASED RCNN MODEL 49

aero bike bird boat bttl bus car cat chair cow
SIFT 12.3 13.6 12.8 7.8 20.6 19.1 16.8 12.9 13.6 6.0

SIFT+prior 21.7 29.2 18.5 12.0 33.6 36.4 29.6 23.7 17.4 17.8
conv5 31.3 31.9 25.0 14.2 42.6 45.6 23.6 38.4 9.5 27.0

conv5+prior 37.8 40.1 29.6 17.7 51.0 55.0 34.9 39.3 19.2 33.5
table dog horse mbike prsn plant sheep sofa train tv mean
7.1 12.3 15.9 11.9 11.9 17.2 13.6 13.4 6.9 27.1 13.6
11.6 19.8 26.2 25.0 20.9 23.3 21.3 21.2 17.4 47.6 23.7
22.5 28.8 33.4 22.7 30.2 32.5 27.3 22.3 28.4 54.1 29.5
25.5 31.3 40.5 34.3 35.7 34.9 32.5 32.7 37.6 59.5 36.2

Table 4.7: Keypoint prediction results on PASCAL VOC 2011. The numbers give average
accuracy of keypoint prediction using α = 0.1.

be the output score of our local detector for keypoint Xi, and let p(Xi) be the prior score.
We combine these to yield a final score f(Xi) = s(Xi)

1−ηp(Xi)
η, where η ∈ [0, 1] is a tradeoff

parameter. In our experiments, we set η = 0.1 by cross validation. At test time, we predict
the keypoint location as the highest scoring candidate over all feature locations.

Recent work by Jain et al. [50] proposes a convolutional network architecture for human
pose estimation. They train multiple small convnets on 64 × 64 patches from scratch for
independent binary body-part detection and apply a chain model on top to enforce pose
consistency while we use the pretrained ImageNet reference model and share mid-level feature
representations among all parts. We also use a simpler nonparametric prior to filter out
outliers.

We consider a ground truth keypoint to be correctly predicted if the prediction lies within
a Euclidean distance of α times the bounding box width. We compute the overall accuracy
across keypoints on each instance, and average over all instances for a final score. We do
not penalize predicted keypoints that are invisible in the target image. In our evaluation, we
take α = 0.1. The results of 20 PASCAL classes using conv5 and SIFT with and without the
prior are shown in Table 4.7. From the table, we can see that local part detectors trained
on the conv5 feature outperform SIFT by a large margin and that the prior information
is helpful in both cases. To our knowledge, these are the first keypoint prediction results
reported on this dataset. We show example results from five different categories in Figure 4.6.
Each set consists of rescaled bounding box images with ground truth keypoint annotations
and predicted keypoints using SIFT and conv5 features, where each color corresponds to
one keypoint. As the figure shows, conv5 outperforms SIFT, often managing satisfactory
outputs despite the challenge of this task. A small offset can be noticed for some keypoints
like eyes and noses. We believe this is caused by the limited stride of our scanning windows.
A final regression or finer stride could mitigate this issue.
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Groundtruth SIFT+prior conv5+prior Groundtruth SIFT+prior conv5+prior

Figure 4.6: Examples of keypoint prediction on five classes of the PASCAL dataset: aero-
plane, cat, cow, potted plant, and horse. Each keypoint is associated with one color. The
first column is the ground truth annotation, the second column is the prediction result of
SIFT+prior and the third column is conv5+prior. (Best viewed in color).

4.6 Summary

In this chapter, we have proposed a system for joint object detection and part localization
capable of state-of-the-art fine-grained object recognition. Our method learns detectors
and part models and enforces learned geometric constraints between parts and with the
object frame. We also show the results of using the recent state-of-art compact bilinear
representations. It shows even with the power feature representations, our idea of using pose-
normalization still can improve upon the model without any knowledge of pose. Furthermore,
we show how to relax the use of selective search for smaller parts and employing dense window
sampling for keypoint localization. We are first to report keypoint localization results on
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PASCAL dataset. We still see the accuracy gap between predicted parts and groundtruth
parts. As an extension of this work, we will show a fully convolutional part modelthat learns
more accurate part locations and object category in the next chapter.
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Chapter 5

Fully Convolution Part Model

Part-based RCNN model shown in the last chapter relies on bottom-up region proposals from
hand-engineered features for part detection and the localization model is not an end-to-end
trainable network. We also show that identifying parts to find correspondence discounts
pose variation can improve the fine-grained classification performance even with powerful
deep features. In this chapter, we propose an end-to-end trainable network supervised by
keypoint locations and class labels that localizes parts by a fully convolutional network to
focus on the learning of feature representations for the fine-grained classification task.

Pose variation and subtle differences in appearance are key challenges to fine-grained
classification. While deep networks have markedly improved general recognition, many ap-
proaches to fine-grained recognition rely on anchoring networks to parts for better accuracy.
Identifying parts to find correspondence discounts pose variation so that features can be
tuned to appearance. To identify these correspondences, previous work [116, 14] has fo-
cused on using strong supervisions for part localizations and feature transformations that
can discount the nuisance variables of pose and viewpoint.While recent work [49, 68, 54]
has made impressive progress without strong supervision, we show that the correspondence
gained from end-to-end keypoint and classification training improves fine-grained recognition
accuracy.

Deep learning has made dramatic progress on not only image classification, but detection
[90, 41], keypoint prediction [102], and semantic segmentation [71]. These tasks require not
only recognition but localization. Whether or not a deep network can effectively learn all
necessary invariances to pose is an open question. We believe it is still critical to model
parts and pool features into a pose-independent representation to best distinguish between
similar subordinate classes. This makes good use of limited training data by reserving model
capacity for appearance given the discounting of pose.

In this chapter, we propose an end-to-end trainable deep network to simultaneously
localize parts using a spatially fine-grained detection model, form descriptors over inferred
part locations, and classify a categorically fine-grained label space. The network goes directly
from pixels to parts via fully convolutional keypoint localization network. We design a
semantic pooling layer—which we call the coordinate transfer layer—to pool feature maps
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Figure 5.1: Overview of our model. The network consists of two main modules: 1) a
localization network for learning where to look and 2) a classification network which uses a
coordinate transfer layer to semantically pool part features; these are jointly used to learn
the fine-grained classifier.

using predicted keypoints. The fine-grained classification is then decided from the combined
representations. Classification errors are back-propagated to the selected parts to drive the
learning of discriminative, pose-normalized features. To our knowledge, ours is the first
approach to incorporate pose prediction and normalization in a unified deep fine-grained
model. Our end-to-end model achieves state-of-the-art results on the standard CUB200-
2011 bird benchmark [108] for fine-grained recognition.

5.1 Background

The literature on fine-grained classification methods and on recent successes of deep neural
networks have been covered in the previous chapters. While most of the approaches use
strong supervisions, weakening supervision is an exciting direction for fine-grained recogni-
tion. The spatial transformer network of [49] strives for spatial invariance by end-to-end
learning transformations and is shown to be effective for fine-grained categorization.

Our method is also related to attention models. Olshausen et al. proposed a neural
model of visual attention which is based on dynamic gating of information flow at stage of
representation within a deep network [79]. Recent attention models [75, 5] use sequential
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deep learning models, such as recurrent neural network or LSTM to learn glimpse location
based on last glimpse. In [89], the authors use attention models to learn where to look for as
glimpses for fine-grained classification. Compared with attention models, our method is not
restricted to sequential and can directly exploit available strong supervision. While appealing
in generality, these attention-based approaches do not exceed performance of recent direct
vision approaches.

5.1.1 Fully convolutional networks

The fully convolutional networks (FCNs) of Long et al. [71] are designed for pixelwise
prediction. Every layer in an FCN computes a local operation on relative spatial coordinates.
There are no fully connected layers to restrict dimensions. In this way, an FCN can take an
input of any size and produce an output of corresponding dimensions.

Inference and learning are done on whole images at a time. The dense forward pass and
backpropagation are highly efficient since intermediate features and gradients are effectively
cached. This makes it possible to take advantage of the complete ground truth in training
pixel-to-pixel tasks such as semantic segmentation or in our case keypoint prediction.

Tompson et al. [102] learn an end-to-end fully convolutional network for human pose.
However, this model predicts keypoints alone and does not explore their role in recogni-
tion. In this work, the keypoints guide the fine-grained classification model by pooling deep
features into a pose-normalized form that is learned end-to-end.

Shubham et al. [103] combine convolutional score maps with inferred viewpoint priors to
regress to keypoint locations. Their viewpoint and keypoint prediction depend on detections
from R-CNN. Joint learning is prevented by the independent proposal and bounding box
recognition stages. The fully convolutional keypoints to fine-grained classification network
proposed in this work does not rely on separate detections or bounding box knowledge.

5.2 Fully convolutional part model for fine-grained

categorization

The overview architecture of our model is shown in Figure 5.1. The goal is to define a unified
deep network to simultaneously learn to localize parts and semantically pool the feature
representations accordingly. The network consists of two main modules: 1) localization net
learning where to look and 2) classification net which has semantic pooling to learn the
fine-grained classifier.

We initialize our network from the VGG-16 network [94] as pretraining. With its further
parameters and layers of nonlinearity, the VGG net was a winner of the ILSVRC 2014
challenge. It has since proven useful through transfer learning to other vision tasks [46,
71] like semantic segmentation that require both recognition and localization. We use the
publicly available pretained VGG-16 weights and implement our model with the Caffe [52]
framework.
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Figure 5.2: The coordinate transfer layer takes two inputs: the keypoint heatmap and the
feature representation activations. For each part, the layer pools the feature based on the
small surrounding neighborhood around the argmax point of the heatmap, as shown in white
rectangle. For P different parts, the layer pools P semantic features and stacks them together
as the output.

5.2.1 Keypoint prediction

First, we cast the VGG network into fully convolutional form following [71]. This equips the
network for dense feature extraction on any input image size. Although the original input
size of VGG net is 224× 224 pixels, the last layer receptive field size is actually 404× 404.
This is the size of the spatial context for each keypoint prediction. For finer part resolution,
we upsample the input image (which we note can be composed with the filters of the first
layer) to 500 × 500 for an ultimate feature map of dimensions 10 × 10 × 4096. We score
keypoints by a 1× 1 convolution layer.

The keypoint location scoring is learned through end-to-end training from a pixelwise
sigmoid cross-entropy loss function. The ground truth keypoint locations are coded as a
binary map over output locations. The output centered at closest point to the true keypoint
is coded as a positive while all other outputs are negatives. A keypoint may not be visible
in all inputs; these missing keypoints are coded as negatives at every location.

The pixelwise sigmoid cross entropy loss function is

l =
1

N

N∑
n=1

W∑
i=1

H∑
j=1

[pnijlogp̂
n
ij + (1− pnij)log(1− p̂nij)]

where pnij is the ground truth keypoint map of nth example at location (i, j) and p̂nij is the
sigmoid output at location (i, j) of nth example.
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5.2.2 Coordinate transfer layer

It is not enough to have keypoint locations: rich, part-tuned features are needed to capture
fine-grained differences. In order to direct feature learning to this purpose, we pool features
semantically by keypoint identity. This is carried out by our novel coordinate transfer layer.
It takes two inputs: the keypoint location map and the feature activations. In the forward
pass, the layer pools the features maps in a focused, surrounding neighborhood of the part,
as shown by the white rectangle in Figure 5.2 and then stack the pooled features together
as the pose-normalized part representation. During back-propagation, the layer propagates
the classification error to the corresponding part region in the lower feature representation.
During training the ground truth part locations are pooled whereas the predicted keypoint
locations are pooled at test time.

5.2.3 Joint representation

For fine-grained class recognition, we concatenate the pose-normalized part feature and the
holistic representation of the whole image together and add a fully connected layer on top
of the fused representation. The classification training is done by the softmax loss. At
testing neither the bounding box or part annotations are given; everything is inferred from
the image. For the holistic representation, we also optionally employ an additional layer
implementing the recent bilinear feature space of [68] and its compact extension [38].

5.2.4 Training

The whole network can be trained end-to-end for joint learning of all model parameters.
The architecture is a directed acyclic graph and the coordinate transfer layer gradient back-
propagates fine-grained recognition error while respecting localization.

Given the size of the network, we adopt a staged approach to learning before end-to-end
fine-tuning. This ensures reasonable accuracy of the keypoint and classification tasks before
complete feature learning to avoid divergence from the pre-training.

Our training proceeds as follows:

1. Keypoint localization is fine-tuned from the VGG net for fixed features and random
initialization of the last score layer.

2. Once converged, we fine-tune the localization network at a smaller learning rate.

3. Once localization network has converged, the classifiers are trained for fixed semantic
pooling on ground truth part annotations.

4. Once converged, we fine-tune all layers at a smaller learning rate.
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5.2.5 Compact bilinear representation

[68] have shown impressive results on fine-grained classification by using bilinear pooling
to encode the deep representation. However, those features are high dimensional (∼ 262k)
and impractical for spatial tasks like keypoints or segmentation. [38] propose compact rep-
resentations with same discriminative power which allow back-propagation and end-to-end
training. We use the ”Random Maclaurin Projection” of [38] to yield a deep representation
that of only 5k dimensions.

5.2.6 Finetuned part nets

The coordinate transfer layer provides a way to use the feature representation around each
keypoint and unify the whole pose-normalized representation into one network. However,
one disadvantage is that it lacks context due to the smaller corresponding receptive windows.
An alternative way of utilizing keypoints for pose-normalized representation is to crop part
images as [116]. Following [116], we crop two parts: head and body using the predicted
keypoints and finetuned part networks using the crop part images.

5.3 Experiments

In this section, we present a comparative performance evaluation of our proposed method.
Specifically, we conduct experiments on the widely-used fine-grained benchmark Caltech-
UCSD bird dataset [108] (CUB200-2011). The classification task is to discriminate among
200 species of birds, and is challenging for computer vision systems due to the high degree of
similarity between categories. It contains 11,788 images of 200 bird species. Each image is
annotated with its bounding box and the image coordinates of fifteen keypoints: the beak,
back, breast, belly, forehead, crown, left eye, left leg, left wing, right eye, right leg, right
wing, tail, nape and throat. We train and test on the splits included with the dataset, which
contain around 30 training samples for each species.

For both the localization net and classification net, we fine-tuned from the 16-layer VGG
network used in [94] pretrained on ImageNet data. Like [71], we change the last two fully
connected layer to convolutional layer and make the net fully convolutional. All of our
experiments are implemented in the open source Caffe framework [52] and we will make our
architecture and weights publicly available.

5.3.1 Fine-grained classification

We first present classification results on the standard CUB200-2011 dataset. The classifica-
tion accuracies of our method and other methods are reported in Table 5.1, along with the
different annotations required during the training and test phases. Our method with com-
pact bilinear pooling achieves 83.00% classification accuracy, and fine-tuning part networks
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Method Train phase Test phase Accuracy
BBox Parts BBox Parts

DPD+DeCAF feature [26] X X X 64.96%
POOF [9] X X X 56.78%
Symbiotic Segmentation [19] X X 59.40%
Alignment [40] X X 62.70%
Part-based RCNN with BBox[116] X X X 76.37%
Part-based RCNN[116] X X 73.89%
Pose normalized CNNs [14] X X 75.70%
Co-segmentation [54] X 82.0%
Two-level attention [110] 69.7%
Bilinear model [68] 84.0%
Spatial transformer networks [49] 84.1%
fc7 feature of VGG on whole image 58.34%
fc7 feature of VGG-ft on whole image 71.73%
Keypoint features baseline X 65.10%
Our model with fc7 feature X 75.04%
Our model with compact bilinear feature X 83.00%
Our model with compact bilinear feature
on ft-part

X 85.92%

Table 5.1: Comparison with other methods on fine-grained Classification results.

improves accuracy to 85.92%. This is state-of-the-art and improves over other methods
supervised by part annotations.

VGG net pretrained on Imagenet alone can achieve 58.34% classification accuracy and
finetuning on our dataset can improve the performance to 71.73%. By adding pose-normalized
representation, our method can achieve 75.04% accuracy. We also tested the keypoint feature
baseline results, i.e. finetune the keypoint localization net using classification loss and the
accuracy dropped to 65.10%. It means it is necessary to split out the keypoint localization
network and the fine-grained classification network.

5.3.2 Part localization

We now present results of part localization using the localization net in our method. We
use PCK (Percentage of Correctly Localized Keypoints) as our evaluation metric and the
results are shown in Table 5.2. For each annotated instance, the keypoint is said to have been
predicted correctly if the corresponding prediction lies within α×max(h,w) of the annotated
keypoint with the corresponding object’s dimension being (h, w). For each keypoint, the
PCK is measured as the fraction of objects where it was found correctly.

As shown in the Table 5.2, although no bounding box information is used, our method
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Parts α = 0.02 α = 0.05 α = 0.08 α = 0.10
Back 9.4% 46.8% 74.8% 85.6%
Beak 12.7% 62.5% 89.1% 94.9%
Belly 8.2% 40.7% 70.3% 81.9%
Breast 9.8% 45.1% 74.2% 84.5%
Crown 12.2% 59.8% 87.7% 94.8%
Forehead 13.2% 63.7% 91.0% 96.0%
Left eye 11.3% 66.3% 91.0% 95.7%
Left leg 7.8% 33.7% 56.6% 64.6%
Left wing 6.7% 31.7% 56.7% 67.8%
Nape 11.5% 54.3% 82.9% 90.7%
Right eye 12.5% 63.8% 88.4% 93.8%
Right leg 7.3% 36.2% 56.4% 64.9%
Right wing 6.2% 33.3% 58.6% 69.3%
Tail 8.2% 39.6% 65.0% 74.7%
Throat 11.8% 56.9% 87.2% 94.5%

Table 5.2: Keypoint Localization results. We use PCK as our evaluation metric. The
prediction is correct if lies within α ×max(h,w) of the annotated keypoint with the corre-
sponding object’s dimension being (h, w). We show results on different α. No bounding box
information is used.

Head Body
RCNN [116] 61.42% 70.68%

Ours 63.82 % 89.06%

Table 5.3: Part localization accuracy in terms of PCP on the CUB200-2011 bird dataset.

can still have strong localization performances even when the requirement α is small. To
our knowledge, these are the first reported PCK numbers on this dataset. We also show
part localization visualizations in Figure 5.3. We show the ground truth annotation and our
prediction side-by-side. As you can see, almost all of the part predictions lie on the bird
body. Some errors are caused by the confusion of left and right, for example, localizing left
leg on the position of right leg. The small localization errors could be corrected by fusing
multiple feature layers [71, 46] or multi-scale modeling [102].

We also show the localization results on part box prediction in Table 5.3 in terms of PCP
(Percentage of correctly localized parts). The prediction is correct if the overlap between it
and grountruth part box is over 0.5. We compared with Chapter 4 and we outperform the
RCNN detection.
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Groundtruth Prediction Groudtruth Prediction

Figure 5.3: Visualizations of keypoint predictions. Ground truth annotations are shown in
the left and our prediction results are shown in the right. Each color map to one keypoint.
No bounding box information is used during training or test time. The images shown are
warped to align the visualizations.

5.4 Summary

We have presented an approach to classification that embodies fine-grained approaches to
part/keypoint localization, pose-normalized descriptor learning, and category learning in
this chapter. Our model is fine-grained in its spatial localization ability, and in its ability
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to distinguish closely related classes in a fine-grained recognition task. A fully convolutional
network can localize instance keypoints using a pixel-level map, and deep pose-normalized
descriptors can make distinctions across fine-grained category labels learned in a coordinate
space that is defined using the estimated keypoints. We unify these steps in an end-to-end
trainable network that estimates part locations, pose-normalized descriptor representations,
and fine-grained classifier weights using a joint loss on keypoint predictions and the classifi-
cation task.
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Chapter 6

Conclusion

In this thesis, I have proposed using pose-normalized representations for fine-grained clas-
sification task. To this end, I have demonstrated that the idea of pose-normalization can
be applied to two similar tasks: human attribute classification and person recognition be-
yond frontal face. I then move to the deep learning based localization method: part-based
RCNN for more accurate part predictions without bounding box. I also show the results
by combining part-based RCNN and recent compact bilinear pooling features and show the
dense window sampling method to overcome the limitation by region proposals. Lastly, I
present the end-to-end trainable fully convolutional network that simultaneously learn part
predictions and category prediction.

A careful comparison of strong keypoint supervision and weak class label supervision
is valuable future work to guide further improvements to fine-grained recognition. While
strong supervision aids with correspondence, weak supervision may learn from more data.
This comparison could take the form of a strongly supervised spatial transformer network
or an unsupervised variant of our network incorporating part discovery as in [93]. With end-
to-end multi-task learning it should be possible to unify these approaches in semi-supervised
models for fine-grained recognition.
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[10] Léon Bottou. “Stochastic Gradient Descent Tricks”. In: Neural Networks: Tricks of
the Trade. Vol. 7700. 2012.

[11] Lubomir Bourdev, Subhransu Maji, and Jitendra Malik. “Describing People: Poselet-
Based Approach to Attribute Classification”. In: International Conference on Com-
puter Vision (ICCV). 2011.



BIBLIOGRAPHY 64

[12] Lubomir Bourdev and Jitendra Malik. “Poselets: Body Part Detectors Trained Using
3D Human Pose Annotations”. In: International Conference on Computer Vision
(ICCV). 2009.

[13] Lubomir Bourdev et al. “Detecting People Using Mutually Consistent Poselet Acti-
vations”. In: European Conference on Computer Vision (ECCV). 2010.

[14] Steve Branson et al. “Bird Species Categorization Using Pose Normalized Deep Con-
volutional Nets”. In: British Machine Vision Conference (BMVC). 2014.

[15] Steve Branson et al. “Visual Recognition with Humans in the Loop”. In: European
Conference on Computer Vision (ECCV). 2010.

[16] Martin Bfffdfffduml, Makarand Tapaswi, and Rainer Stiefelhagen. “Semi-supervised
learning with constraints for person identification in multimedia data.” In: Conference
on Computer Vision and Pattern Recognition (CVPR). 2013.

[17] H.C. Burger, C.J. Schuler, and S. Harmeling. “Image denoising: Can plain Neural
Networks compete with BM3D?” In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2012.

[18] Joao Carreira et al. “Semantic segmentation with second-order pooling”. In: European
Conference on Computer Vision (ECCV). Springer, 2012, pp. 430–443.

[19] Yuning Chai, Victor Lempitsky, and Andrew Zisserman. “Symbiotic Segmentation
and Part Localization for Fine-Grained Categorization”. In: International Conference
on Computer Vision (ICCV). 2013.

[20] Yuning Chai et al. “TriCoS: A Tri-level Class-Discriminative Co-segmentation Method
for Image Classification”. In: European Conference on Computer Vision (ECCV).
2012.

[21] Junyoung Chung et al. “Deep Attribute Networks”. In: Deep Learning and Unsuper-
vised Feature Learning NIPS Workshop. 2012.

[22] Zhen Cui et al. “Fusing Robust Face Region Descriptors via Multiple Metric Learning
for Face Recognition in the Wild.” In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2013.

[23] Navneet Dalal and Bill Triggs. “Histograms of Oriented Gradients for Human Detec-
tion”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2005.

[24] Jia Deng, Jonathan Krause, and Li Fei-Fei. “Fine-Grained Crowdsourcing for Fine-
Grained Recognition”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2013.

[25] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: Conference
on Computer Vision and Pattern Recognition (CVPR). 2009.

[26] Jeff Donahue et al. “DeCAF: A Deep Convolutional Activation Feature for Generic Vi-
sual Recognition”. In: International Conference on Machine Learning (ICML). 2014.



BIBLIOGRAPHY 65

[27] Kun Duan et al. “Discovering Localized Attributes for Fine-grained Recognition”. In:
Conference on Computer Vision and Pattern Recognition (CVPR). 2012.

[28] M. Everingham, J. Sivic, and A. Zisserman. ““Hello! My name is... Buffy” – Automatic
Naming of Characters in TV Video”. In: Proceedings of the British Machine Vision
Conference. 2006.

[29] Mark Everingham, Josef Sivic, and Andrew Zisserman. “Taking the Bite out of Auto-
mated Naming of Characters in TV Video”. In: Image and Vision Computing. 2009.

[30] Michela Farenzena et al. “Person re-identification by symmetry-driven accumula-
tion of local features.” In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2010.

[31] Ali Farhadi et al. “Describing Objects by their Attributes”. In: Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2009.

[32] Ryan Farrell et al. “Birdlets: Subordinate Categorization using Volumetric Primitives
and Pose-normalized Appearance”. In: International Conference on Computer Vision
(ICCV). 2011. doi: 10.1109/ICCV.2011.6126238.

[33] P. F. Felzenszwalb et al. “Object Detection with Discriminatively Trained Part Based
Models”. In: vol. 32. 9. 2010, pp. 1627–1645.

[34] Pedro Felzenszwalb and Daniel Huttenlocher. “Efficient Matching of Pictorial Struc-
ture”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2000.

[35] Martin A. Fischler and Robert A. Elschlager. “The Representation and Matching of
Pictorial Structures”. In: IEEE Transactions on Computers. Jan. 1973.

[36] A. Gallagher and T. Chen. “Clothing Cosegmentation for Recognizing People”. In:
Conference on Computer Vision and Pattern Recognition (CVPR). 2008.

[37] Andrew C. Gallagher and Tsuhan Chen. “Understanding Images of Groups of Peo-
ple”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2009.

[38] Yang Gao et al. “Compact Bilinear Pooling”. In: CoRR abs/1511.06062 (2015).

[39] Rahul Garg et al. “Where’s Waldo: Matching People in Images of Crowds”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2011.

[40] E. Gavves et al. “Fine-Grained Categorization by Alignments”. In: International Con-
ference on Computer Vision (ICCV). 2013.

[41] Ross Girshick et al. “Rich feature hierarchies for accurate object detection and se-
mantic segmentation”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2014.
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