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Abstract

Short�Term Tra�c Forecasting: Modeling and Learning Spatio�Temporal Relations in
Transportation Networks Using Graph Neural Networks

by

Behrooz Shahsavari

Master of Science in Computer Sciences

University of California, Berkeley

Professor Pieter Abbeel, Chair

This report addresses the problem of tra�c conditions forecasting based on big data with a
novel arti�cial intelligence approach. We propose an empirical data�driven graph�oriented
model that can process spatio�temporal measurements. The proposed intelligent model not
only incorporates observations from multiple locations, but also, explicitly takes into account
the spatial interrelations (between the sensor locations) that are forced by the tra�c network
topology. We abstract the data collected in a transportation network by a graph that has
a set of �nodes� corresponding to the sensor locations and a set of �edges� representing the
spatial interrelations governed by the network topology. Both entities are associated with
real valued feature vectors. For instance, a history of tra�c �ow, occupancy and speed
measured by a sensor form the feature vector associated with the corresponding node. On
the other hand, the road characteristics such as length, capacity and direction constitute the
edge feature vectors. A Graph Neural Network is trained in a supervised fashion to predict
future tra�c conditions based on the stated graph�structured data.

This model combines the advantages of methods like Cell Transmission Model that ben-
e�ts from knowing causalities enforced by tra�c network topology, and advantages of neural
network models that can extract very complex and nonlinear relations after being trained
on big data. Moreover, the proposed model is �robust� to sample missing.

A comprehensive empirical study is conducted on tra�c data obtained from PeMS
database. A method is proposed to constitute the spatial interrelations (i.e. graph edges)
between the sensor locations by deploying Google Maps (Directions) API. We evaluate the ef-
fectiveness of the proposed prediction method in locations with simple and complex dynamics
(e.g. the intersection of several highways with multitude on� and o��ramps) individually.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Intelligent Transportation Systems (ITSs) aim to enhance the operational e�ciency of
current transportation infrastructures by bene�ting from the well established and/or emerg-
ing advanced algorithms, computers with ever increasing computing power, and distributed
sensors that collect an abundant amount of information from tra�c networks. Among these
three crucial components of an ITS, the last two have been growing rapidly in recent years.
Many countries around the world have started embedding sensors, such as inductive�loop
detectors, magnetometers, video image processors, microwave and laser radar sensors in their
tra�c networks Tewolde (2012). Beside the data from these sensory domains, web�based and
mobile technologies provide accurate data about the road states and even details regarding
individual cars. The overwhelming data collected by these emerging sensory technologies has
introduced the notion of Big Data in the �eld of tra�c management and control by making
large and rich datasets available to the researchers and tra�c engineers. It is expected that
in the future not only the data volume will increase rapidly, but also data from variety of
new domains will be available as the Internet of Things (IoT) manifests in transportation
systems Vlahogianni (2015). In addition to aboundness of data, researchers now have access
to more computing power than ever before thanks to hardware developments and emergence
of cloud�computing that provides easy and cheap access to powerful computers.

This availability of data and computation power has created unique opportunities for
researchers to develop data�driven models and advanced algorithms to transform raw da-
ta to some informative knowledge that can be utilized for management and control of a
transportation system. The success of many ITSs strongly depends on a tra�c estimation
and prediction system (TrEPS) that uses advanced tra�c models to obtain timely and ac-
curate estimates of emerging tra�c states such as tra�c �ow, occupancy and speed. These
predictions can be utilized to select proactive strategies for meeting various tra�c control,
management, and operation objectives Lieu (2000). For instance, TrEPS plays a crucial role
in advanced traveler information systems and advanced tra�c management systems that
attempt to optimize tra�c signals timing and driving routing to relieve tra�c congestion
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and travel time problems facing commuters. Since the late 1970's (Ahmed & Cook (1979))
a great deal of research has been focused on this matter, especially on Short�term Tra�c
Forecasting, by incorporating an extensive variety of mathematical models and apparatuses
from di�erent �elds such as statistics, signal processing, and control theory. However, in re-
cent years, the inimitable data availability and rapid processing facilities has directed many
researchers toward novel data driven empirical algorithms, that have been systematically
growing in parallel to the well�founded mathematical models that are based on macroscopic
and microscopic theories Yuan et al. (2012); Wang & Papageorgiou (2005). This migration
from analytical to data driven modeling has been marked by a signi�cant increase of compu-
tational intelligence (CI) and data mining approaches to analyzing the data. In this work,
we revisit the problem of short�term tra�c forecasting with a novel CI approach and pro-
pose an empirical data�driven graph�oriented model that can process measurements from
multitude sources to accurately predict tra�c states in �relatively� long horizons.

In a general framework, the problem of tra�c forecasting can be formalized as follows.
Let Xi(t) be a real valued vector that contains tra�c measurements at time step t obtained
from a point of tra�c network that is indexed by i. For instance, the state X can have
components representing the tra�c �ow, occupancy and speed measured by a particular
inductive�loop detector that is indexed by i. It may also include other types of information
that are not necessarily measured by a tra�c sensor. For instance, weather conditions or the
existence of special events can be mapped to the set of real numbers and then be included in
X. In the simplest case, univariate tra�c forecasting attempts to infer temporal correlation
between scalar measurements obtained at one location to predict the future values at the
same location. That is, given nt past values of the states {Xi(t), Xi(t−1), ..., Xi(t−nt+1)},
where X.(.) ∈ <, one wants to �nd an accurate map M ∗ from these observations to the
tra�c state at δ steps ahead Xi(t+ δ)

M ∗ := arg min
M
‖Xi(t+ δ)−M (t, i,Xi(t), Xi(t− 1), ..., Xi(t− nt + 1))‖d

where ‖.‖d denotes a distance metric that is desired to be as small as possible. The prediction
horizon δ, the number of past observed values nt and the error metric ‖.‖ are important
components of this formalism and will be discussed in detail throughout this work. Another
approach is multivariate prediction which is, in general, more accurate and more complex
since it deploys multi�dimensional data that has information about the target location as
well as a set of other spatially correlated locations. In this case, the problem is inferring
an estimate of Xi1(t + δ) ∈ <m given the history of observations at location i1 and other
correlated locations, say {Xi2(t), Xi2(t− 1), ...},..., {Xin(t), Xin(t− 1), ...}

M ∗ : = arg min
M
‖CT [Xi (t+ δ)−M (t, i1, Xi1 (t) , ..., Xi1 (t− nt + 1) ,

..., Xin (t) , ..., Xin (t− nt + 1))] ‖d.
(1.1)

The vector C represents the weights on each element of prediction error. For instance, when
the states contain weather conditions information, the corresponding component(s) in C
should be zero since we are not interested in predicting these quantities in the future.
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As we will see in our literature review in the next two sections, it has been found that
prediction accuracy can be increased, especially in longer horizons, when in addition to
the temporal correlations between the observations, spatial interrelations between di�erent
sensors are taken into account. Statistical models that consider spatio�temporal correlations
of data are limited and most of the work has been outlined in a CI framework, especially
by deploying neural networks. These data�driven methods in the literature do not explicitly
consider the transportation network dynamics; rather, they rely on a learning process in
order to extract the underlying spatial relationships between the unstructured input data
and the future tra�c conditions. For instance, in related work that deploys neural network
models the spatial relationships between observations are removed from the input data and
it is left to the neural network to extract the causality and hierarchical relationships in
the learning process. These methods have the drawback that the input vector dimension
increases by taking into account the observations from more locations. Furthermore, these
models operate as static pattern regressors and cannot manipulate dynamic information
appropriately.

Our objective is to overcome these shortcomings by developing an empirical data�driven
tra�c model that can analyze graph structured data that not only presents temporal ob-
servations, but also preserves full information about the spatial interrelations between the
observations collected from di�erent locations. It has been shown that models with learn-
ing capabilities can extract general rules from the available examples more e�ectively when
data representation faithfully preserves the environment properties Bianchini & Maggini
(2013). For a tra�c network, a graph can describe precisely the network dynamics by mod-
eling it through a set of nodes that correspond to road segments equipped with sensors
(e.g. inductive�loop detectors) and edges that correspond to the roads between the nodes.
Both entities are associated with observation vectors which in our application correspond
to the measurements obtained by the sensors (e.g. �ow, occupancy and speed) and road
characteristics (e.g. direction and length). An example of these graph structures is shown
in Fig. 1.1. Each node in this graph corresponds to a vehicle detector station (VDS) (in
California, U.S.A.), and the edges are created based on the road network topology. â�ª Our
work will be based on the Graph Neural Network (GNN) model Scarselli et al. (2009b) which
is a multi�layer perceptron (MLP) that can process input data encoded as general undirect-
ed/directed labeled graphs. GNN exploits an information di�usion mechanism in which a
set of entities representing the graph nodes are linked to each other based on the graph
connectivity. The notion of information associated with nodes is represented by adaptable
�state� vectors. In this framework, the prediction obtained for each node is determined based
on the observations associated with that particular node in conjunction with the states that
encode information di�used to the target node from all other nodes via network topological
dependencies. For instance, a GNN predicts the tra�c condition at VDS 715944 in Fig. 1.1,
by processing the entire graph. Note that for this example, a univariate model only looks at
VDS 715944 observations and ignores the other nodes. On the other hand, existing multi-
variate approaches can consider all nodes observations, but they ignore the edges. Moreover,
these models cannot handle the case when the underlying topology varies due to missing
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Figure 1.1: A graph representation of spatially interconnected vehicle detector stations in a
transport network.

measurements.
The remainder of this report is organized as follows. In sections 1.2 and 1.3 in the current

chapter, we will brie�y review the literature on short�term tra�c prediction and especially
the methodologies that deploy spatio�temporal correlations systematically for this purpose.
In chapter 2 we will present fundamentals of the graph neural network including the model
architecture and a learning paradigm. The process of modeling a tra�c network as a GNN
is also presented in that chapter. Chapter 3 is devoted to a comprehensive empirical study
on tra�c data obtained from Caltrans Performance Measurement System (PeMS) database.
We have considered data of �district 7� that includes Los Angeles and Ventura counties
in the U.S. and proposed a systematic way of sampling VDSs such that the results can
be generalized to the whole network. Most of the tra�c databases, including PeMS, only
provide sensor measurements and do not furnish spatial relations between the sensors. For
instance, we can only obtain node observations in Fig. 1.1 via PeMS and constructing the
edges is not a trivial task. We will propose a mechanism that can retrieve these relations by
deploying Google Maps (Directions) APIs e�ciently. In section 3.3 di�erent GNN models
are trained for various case studies and the results are compared to other statistical and CI
methods that are known as the baselines and state of the art for the problem of short�term
tra�c forecasting. Lastly, conclusions are drawn and possible research directions for future
work are outlined in chapter 4.

1.2 Literature on Short�term Tra�c Forecasting

Short�term tra�c forecasting is most commonly analyzed by two approaches, namely
classical statistical perspectives and computational intelligence. In general, the prediction
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models considered by these two approaches can be categorized to parametric and non�
parametric models. However, as we will see throughout this section most of the parametric
models deploy statistical methodologies, whereas the non�parametric models are mostly
treated in a CI framework. Comprehensive studies of the existing literature on these ap-
proaches from 1980's to 2014 can be found in four survey articles. Adeli Adeli (2001) reviewed
neural network articles related to civil engineering, including tra�c forecasting, that were
published in archival research journals from 1989 to 2000. Van Lint and Van Hinsbergen
Van Lint & Van Hinsbergen (2012) reviewed Arti�cial Intelligence (AI) techniques for short�
term tra�c forecasting and provided a taxonomy of the many di�erent approaches reported
in the literature. Vlahogianni provided a comprehensive critical review of the literature up
to 2003 Vlahogianni et al. (2004), and recently published another survey paper that focuses
on emerging challenges and opportunities arose by recent developments in technological and
analytical aspects of intelligent transpiration systems Vlahogianni et al. (2014). We brie�y
review the literature on both approaches in this section. The next section is devoted to
discussing, in more detail, the existing multivariate methods that consider spatio�temporal
dependencies rather than relying only on temporal relations.

Most, if not all, of the early work on tra�c forecasting employed parametric models and
statistical analysis on time�series to infer the tra�c characteristics, such as �ow, in the fu-
ture based on statistics extracted from historical data. Ahmed's work in 1979 (Ahmed &
Cook (1979)) can be noted as one of the earliest literature that introduces this approach. He
investigated the application of Box�Jenkins method Box & Jenkins (1976) to predict freeway
tra�c volume and occupancy time series. Ahmed reported that the Auto�Regressive Inte-
grated Moving�Average (ARIMA) methods were found to be more accurate in representing
freeway time�series data compared to moving�average, double�exponential smoothing, and
Trigg and Leach adaptive models Trigg & Leach (1967). ARIMA models are one of the most
general class of models for forecasting a time series which can be made to be �stationary�.
An ARIMA model is de�ned by three non�negative integer numbers, commonly speci�ed by
the notation ARIMA(p, d, n) where

• p is the number of autoregressive terms,

• d is the number of nonseasonal di�erences needed for stationarity,

• n is the number of lagged forecast errors in the prediction equation.

Let q−1 be the one step lag operator. The di�erence equation for an AIRMA model is(
1−

p∑
i=1

biq
−i

)(
1− q−1

)d
Y (t) = µ+

(
1−

n∑
i=1

aiq
−i

)
X(t), (1.2)

where Y (t) is the output of system. The coe�cients ai, bi and µ should be determined
based on historical data or in an adaptive and online fashion. Many well known time�series
models are special cases of ARIMA model. For instance, Random Walk model that employs
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Y (t) = Y (t− 1) is ARIMA(0, 1, 0) with µ = 0. Since Ahmed's work, the time�series models,
especially ARIMA, have been the basis of numerous other methods for tra�c prediction
Moorthy & Ratcli�e (1988). The KARIMA method Van Der Voort et al. (1996) uses a
hybrid architecture that deploys a Kohonen self�organizing map Kohonen (1998) as an initial
classi�er and an individually tuned ARIMA model associated with each determined class.
It was illustrated that the explicit separation of the tasks of classi�cation and functional
approximation could improve the forecasting performance compared to a single ARIMA
model.

The Seasonal ARIMA (SARIMA) model is another variant that explicitly considers the
seasonality of tra�c time�series in the analysis Williams et al. (1998); Williams & Hoel
(1999). The SARIMA method is motivated by the fact that a general tra�c time�series
does not meet stationarity conditions due to the existence of periodic patterns in the series.
For instance, a weekly pattern tied to working days, and a daily pattern tied to working
hours can be observed in tra�c �ow. Given these patterns, it follows that creating a series
composed of the di�erences between tra�c observations and the observations one �season�
prior should remove the predominant time dependencies in the statistics and provide a
transformed process that is more �stationary� Williams & Hoel (2003). More formally, a
SARIMA model denoted by SARIMA(p, d, n)(P,D,N)(s) has a di�erence equation in form
of (

1−
p∑
i=1

biq
−i

)(
1−

P∑
i=1

Biq
−i×s

)(
1− q−1

)d (
1− q−s

)D
Y (t) =

µ+

(
1−

n∑
i=1

aiq
−i

)(
1−

N∑
i=1

Aiq
−i×s

)
X(t),

(1.3)

where s is denotes the �season� interval. For instance, when the notion of season refers to
weekly patterns, the value of s is equal to 7×M where M is the number of samples per day.
The parameters P , N and D, respectively, represent the seasonal autoregressive polynomial
order, the seasonal moving average polynomial order, and the order of seasonal di�erences.
More recently, an Auto�Regressive Moving Average with an eXogenous input (ARMAX)
model with an optimal multiple�step�ahead predictor of tra�c demand was proposed by
Wu et al. Wu et al. (2014b,a). The technique is based on combining the most recent
measured �ow data with a nominal historical �ow pro�le where the predictor parameters are
estimated with an ARMAX model.

The vast majority of time�series techniques are univariate, meaning that the observations
are scalar�valued and each model can only estimate the future of one quantity at one target
point in the network. On the opposite side, there are multivariate models that attempt
to �t a single model from vector-valued observations to the underlying tra�c dynamics at
multiple locations (e.g. at multiple loop detectors). These methods are mostly inherited from
univariate models and have been generalized to cope with multiple time-series. The Vector
Auto�Regressive Moving Average (VARMA) model and Space�Time AIRMA (STARIMA)
model are such generalizations Kamarianakis & Prastacos (2003). The VARMA model
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considers N time�series and describes a set of N × N autoregressive and moving average
parameter matrices to represent all autocorrelations and cross�correlations among them. The
STARIMA model can be viewed as a special case of VARMA model where a set of constraints
are posed to mimic the topology of a spatial network and result in a drastic reduction in the
number of estimated parameters. This model was �rst introduced by Pfeifer and Deutsch
in a series of papers in 1980's Pfeifer & Deutrch (1980); Pfeifer & Deutsch (1980), and later
was applied to tra�c �ow time�series by Kamarianakis Kamarianakis & Prastacos (2005).
The Structural Time�series Model (STM) is a parsimonious and computationally simple
multivariate algorithm that is not based on a generalization of a univariate model Ghosh
et al. (2009). Non�parametric models that have been applied to the problem of short-term
tra�c forecasting deploy variety of statistical methods such as Gaussian maximum likelihood
Lin (2001), Markov chain Yu et al. (2003); Sun et al. (2004), Bayesian networks Sun et al.
(2006), and Kalman Filtering Xie et al. (2007); Wang & Papageorgiou (2005).

Statistical methods are based on solid mathematical foundations. As Karlaftis and Vla-
hogianni suggest Karlaftis & Vlahogianni (2011), these methods are most e�ective when
a priori knowledge about the functional relationship of tra�c variables is available. Fur-
thermore, these methodologies provide interpretable results and causalities, and verify the
statistical properties of the underlying mechanism. However, the statistical methods rely
on a set of constraining assumptions that may fail when dealing with complex and highly
nonlinear data. For instance, it was realized in 1990's that tra�c �ow exhibits discontinu-
ities in its temporal evolution Newell (1993); Hall et al. (1992) which makes formalizing the
prediction as a simple time series problem questionable. Moreover, varying statistical behav-
ior, strongly nonlinear features near boundary conditions, and highly transitional behavior
in tra�c �ow that was indicated by Kerner (Kerner (2004)) and Vlahogianni (Vlahogianni
et al. (2006)) are di�cult to be modeled by a single statistical prediction approach.

These di�culties with the statistical (mostly parametric) models, and on the other side,
the recent technological advances in rapid processing and overwhelming tra�c data gath-
ered from di�erent domains have brought unprecedented opportunities for data�driven non�
parametric methods. A great deal of research has been focused on deploying computational
intelligence and non�parametric models to predict tra�c conditions Karlaftis & Vlahogianni
(2011). From an analytical point of view, the k�Nearest Neighbors (kNN) algorithms is one
of the simplest non�parametric models. The exact kNN algorithm and an approximation
to that, which is computationally more e�cient, have been applied to tra�c conditions pre-
diction Kim et al. (2005); Oswald et al. (2000). However, it has been shown that kNN�like
methods can outperform only naïve algorithms such as random walk Smith et al. (2002).
Chang et al. proposed a multi�interval tra�c volume prediction based on the kNN algorith-
m and illustrated a higher performance than ARIMA and SARIMA methods by empirical
study Chang et al. (2010). Nevertheless, the algorithm su�ers from the curse of dimension-
ality and has high time complexity of query when the number of locations (sensors) and
samples are large. Non parametric regression Davis & Nihan (1991) and local linear regres-
sion models Sun et al. (2003) are other machine learning methods that have been applied to
tra�c time�series prediction.
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The Support Vector Regression (SVR) algorithm is a non�parametric method that is
based on statistical learning theory Vapnik & Vapnik (1998); Smola & Schölkopf (2004).
The original form of SVR and numerous variants of it have been deployed for the purpose of
tra�c prediction by the researchers. Ding et al. used the SVR for tra�c �ow prediction Ding
et al. (2002) and Wu et al. applied it for travel time estimation and compared the results
to naïve algorithms Wu et al. (2004). Attempts on developing an online version of SVR can
also be found in the literature Su et al. (2007); Castro-Neto et al. (2009); Jeong et al. (2013).
Lippi et al. proposed two SVR models based on an idea to bene�t from prediction accuracy
of SARIMA model and computational e�ciency of SVR algorithm Lippi et al. (2013). The
models used RBF and linear seasonal kernels and were compared to the original form of SVR
(with RBF kernel) and many other forecasting methods. The comparison illustrated that
these new methods outperform the simple SVR model thanks to explicitly incorporating
the seasonality of data into the kernels. The successfulness of these methods raises the
question if there are other useful features, especially in a multivariate framework, that can
be considered in the kernel. Even for considering the seasonal e�ects, it is still not clear that
what seasonal period, e.g. one week or one day, should be considered; or, whether it is better
to rely on most recent seasons or it is more bene�cial to use all previous seasons. These types
of ambiguities in creating hand�engineered features motivates the use of Neural Networks
(NN) as the algorithms that can extract informative features from raw data. NNs do not
require determining speci�c structures in the data and, indeed, are �intelligent� in the sense
that during the learning process the structure emerges from an unstructured beginning.

A great deal of successful work on tra�c modeling and conditions prediction, especially
in multivariate frameworks, is based on neural networks. The multivariate models are of high
importance since they are not subjected to two shortcomings that are common among many
univariate models: (1) the tra�c evolution is inherently a temporal and spatial phenomenon,
and accordingly, the univariate methods based solely on previous observations at the location
of interest miss potential information embedded in observations attained at other locations
Williams (2001). (2) in a univariate paradigm, a model should be incorporated for each
individual location which requires signi�cant memory, computation and time to develop. In
other words, the �rst matter is in regard to the dimension of input domain of the prediction
model, whereas the latter concerns the output domain dimensionality. As was mentioned
earlier, there are article on statistical based methods (e.g. Stathopoulos & Karlaftis (2003);
Kamarianakis & Prastacos (2003, 2005); Williams (2001)) for tra�c conditions prediction
in a multivariate framework. However, this topic of research is mostly dominated by NN
based methods due to: (1) the underlying dynamics governed by both temporal and spatial
dependencies between observations in time and space is complex and can be strongly non-
linear. Neural networks are powerful models that can capture very complex relations. (2)
crafting hand�engineered features that extract all information from data spread in time and
space is laborious. Neural networks are data�driven and adaptive models that can extract
the features without the need of a priori assumptions. (3) from a methodological point of
view, these models are very �exible in that generalization from univariate to multivariate,
or more generally, changing the number of locations incorporated in the input or output of
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the model, requires insigni�cant e�ort.
In early 1990's (Clark et al. (1993)) these advantages motivated researchers to deploy

neural networks for tra�c condition prediction. NN models can be categorized into two
groups, namely the static and dynamic models, based on their architectures. The majority
of early work including Clark et al. (1993); Dougherty & Cobbett (1997); Dougherty et al.
(1994) deployed static networks such as simple feedforward Multi�Layer Perceptrons (MLP).
The temporal and spatial relationships between data samples in this approach should be aug-
mented in the input data during a preprocessing phase. For instance, the input vector when
the current sample Xi1(t) and the previous one Xi1(t − 1) at location i1 are considered in
accordance with the corresponding values at location i2, the input vector can be in the form
of
[
XT
i1

(t) XT
i1

(t− 1) XT
i2

(t) XT
i2

(t− 1)
]T

or any other permutation of these components.
In addition to the aforementioned papers, static models are deployed for exit demand pre-
diction by feedforward neural networks (FNN) Kwon & Stephanedes (1994), forecasting of
tra�c conditions in urban road networks Vythoulkas (1993), modeling complex nature of
intersection queue dynamics Chang & Su (1995), and urban tra�c congestion prediction
Gilmore & Abe (1995). A comprehensive study on the e�ect of various factors on the results
of the short�time tra�c �ow and speed prediction on motorways can be found in Innamaa
(2000). Besides this classical approach to determining the proper structure and parameters
of a NN based on a sensitivity analysis, more involved methodologies based on optimization
techniques have been deployed by the researchers for this purpose Vlahogianni et al. (2005).

The second approach uses dynamic neural network models to capture temporal patterns
in time�series of tra�c data. Tra�c conditions predictors have been developed based on
the Time Delay NNs (TDNN) and in some work they were optimized by genetic algorithms
Lingras & Mountford (2001); Abdulhai et al. (2002). Other variants of TDNN such as a
recursive model Zhang (2000) and a comparison among them can be found in Yun et al.
(1998). The use of Recurrent NNs (RNN) have also been investigated for tra�c prediction.
Dia and his collaborators used a Time�Lag RNN for speed prediction Dia (2001) and Van
Lint attempted to model state space dynamics for travel time prediction by RNNs Van Lint
et al. (2002). Numerous other neural network models applied to similar problems in the
domain of tra�c prediction can be traced in the literature. The radial basis MLPs Park
et al. (1998), Fuzzy NNs Yin et al. (2002); Ishak & Alecsandru (2004), Bayesian combined
NN Zheng et al. (2006), echo state NNs Yisheng et al. (2011), wavelet�based NN Jiang &
Adeli (2005); Xie & Zhang (2006) are such models. Researchers have also considered hybrid
models that combine static and dynamic neural networks. For instance, Alecsandru et al.
deployed a hybrid model that integrates a model�based approach (to improve prediction
performance under non�recurrent conditions) with a memory�based approach (to cope with
recurrent phenomena) Alecsandru & Ishak (2004).

The most, if not all, of the literature prior to 2013 on the application of neural networks
in tra�c forecasting deploys �shallow� structures, meaning that the network has at most one
hidden layer. This is probably due to the prevailing interpretation of universal approximation
theorem which claims that, �in principle�, one large enough hidden layer is adequate for
approximating any function. However, in recent years, the researchers have proved that in



1.3. TRAFFIC PREDICTION METHODS THAT CONSIDER SPATIAL

DEPENDENCIES 10

many practical applications, coping with real�world data, a �deep architecture� is much more
e�ective than a shallow one when an appropriate training algorithm is utilized Bengio et al.
(2015). This has emerged a new area of machine learning research known as Deep Learning.
To the best of our knowledge, deep learning was �rst applied to tra�c (�ow) forecasting by
Huang and collaborators in 2013 Huang et al. (2013). They used a hierarchical structure
that had a Deep Belief Network (DBN) in the bottom and a (multi�task) regression layer
on the top. The DBN was for unsupervised feature extraction and the regression layer was
trained to predict the tra�c �ow based on these extracted features. More recently, Lv et
al. used a deep stacked autoencoder model for tra�c �ow prediction Lv et al. (2015). Both
papers used California Performance Measurement System (PeMS) (PeMS (n.d.)) database
for a comparison study.

As mentioned earlier, our proposed method is multivariate and based on a special dynamic
neural network model. Hence, this method can potentially bene�t from advantages that
were mentioned for data�driven non�parametric multivariate models. Moreover, our method
considers spatio�temporal relations presented by graph structured data since this type of data
structure can preserve topological dependencies. This is the main distinction with other
NN models in the literature since they all use unstructured data and rely on the learning
process to extract topological and hierarchical relationships. We will review literature that
systematically takes into account the spatial dependencies and compare them to our proposed
model in the following section.

1.3 Tra�c Prediction Methods that Consider Spatial De-

pendencies

Tra�c conditions at any time and location are correlated with the past observations at
the same location as well as neighboring places. This spatio�temporal interrelation is the
basis of some methods such as the well known Cell Transmission Model (CTM) Daganzo
(1994) that explicitly takes spatial and temporal relationships into account to mimic the net-
work dynamics. Chandra and Al�Deek studied the e�ect of upstream as well as downstream
locations on the tra�c at a speci�c location Chandra & Al-Deek (2008). The speeds from
a station at the center of this location were checked for cross�correlations with stations at
upstream and downstream. It was formalized in this study that the past values of upstream
as well as downstream stations in�uence the future values at a station and therefore can be
used for prediction. Head (1995) indicated that incorporating far away observations from the
location of interest can increase the accuracy in longer prediction horizons. Cheng at al. ex-
amined the spatio�temporal autocorrelation structure of road networks and assessed that the
autocorrelation is heterogeneous in space and dynamic in time Cheng et al. (2012). Kamar-
ianakis compared ARMA�based multivariate approaches, such as STARIMA and VARMA,
with univariate ARIMA model and concluded that the multivariate time�series methods
can outperform the classical univariate models in certain cases Kamarianakis & Prastacos
(2003). Tebaldi et al. used downstream �ows in a hierarchical statistical modeling frame-
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work and reported that the improvements in very short time (1 minute) prediction can be
radically high in cases of very marked breakdown of freeway �ows on some links Tebaldi
et al. (2002). Stathopoulos and Karlaftis developed time�series state space models that were
fed with upstream detectors data to improve on the predictions of downstream locations
Stathopoulos & Karlaftis (2003). Kamarianakis et al. in another work split tra�c regimes
based on the data nonlinearity and for each regime and measurement location, implemented
a LASSO estimator to perform model selection and coe�cient estimation simultaneously
Kamarianakis et al. (2012). Du and collaborators proposed an adaptive information fusion
model to predict the link travel time distribution by iteratively combining past information
with the real�time information available at discrete time points Du et al. (2012). Bayen and
collaborators in a series of articles studied arterial tra�c estimation from GPS probe vehicle
data by modeling the evolution of tra�c states by probabilistic graphical models Herring
et al. (2010a,b); Hunter et al. (2009); Ho�eitner et al. (2012). However, the majority of volu-
minous literature that uses statistical approaches, especially the time�series�based methods,
ignores the spatial relationships, probably because it requires multivariate analysis which
can make inference very complex in statistical based approaches.

Non�parametric models have been used for this purpose too. Haworth and Cheng devel-
oped a non�parametric spatio�temporal kernel regression model that used the current tra�c
patterns of the upstream and downstream neighboring links to forecast travel time values
of road links under the assumption of sensor malfunction Haworth & Cheng (2012). Sun et
al. investigated the combination of multi�link models with Multi Task Learning (MTL) Sun
et al. (2012). They also used graphical LASSO to extract the most informative historical
�ows from all of the links in the whole transportation system, and then constructed a neural
network with the extracted data to predict tra�c �ows.

All the aforementioned literature emphasizes that spatial characteristics of tra�c network
play a crucial role in accurate prediction of tra�c conditions, especially in longer horizons.
The existing literature can be divided into two categories: (1) methods like CTM that uses
an exact spatial representation in modeling the tra�c dynamics. The advantage of these
methods is that the system evolution obeys the exact network dynamics governed by the
network topology. However, these models have two de�ciencies. First, they are not robust to
sample missing and unmodeled dynamics (e.g. on� and o��ramps with no sensors). Second,
they are constrained by a set of assumptions such as piecewise a�ne relation of �ow and
density as in CTM. (2) data�driven methods that do not explicitly consider the network
dynamics; rather, they rely on the learning process to extract the underlying relationship-
s between the unstructured input data and the future tra�c conditions. For instance, in
neural network models for multivariate prediction, the input data is constructed by con-
catenating the observations from di�erent sensors into one single large vector Clark et al.
(1993); Huang et al. (2013, 2014); Lv et al. (2015). In this case, the spatial relationships
between observations is removed from the input data and the data is fed in an unstructured
form. Note that this is analogous to the static nerual networks for time�series where the
causality sequence of measurements is ignored. In both cases, it is left to the neural network
to learn the causality and hierarchical relationships in the learning process. These have the
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drawback that the input vector dimension increases by taking into account observations from
more locations. Furthermore, these models operate as static pattern regressors and cannot
manipulate dynamic information appropriately. As Vlahogianni (2015) remarked in a recent
paper, research on incorporating network dynamics in tra�c forecasting is not mature yet.
Methodologies aimed to capture spatial tra�c features accurately have not received enough
attention, and especially, at a network level, limited research has been conducted Cheng
et al. (2012).

One of our objectives is to overcome these shortcomings by developing a tra�c model
that can analyze a graph structured data that not only presents temporal observations,
but also preserves full information about the spatial interrelations between the observations
collected from di�erent locations. We believe that the ability of graph structured data to
represent tra�c network topology is of high importance since input data encoding is a crucial
step in the design of a data mining model. It has been shown that models with learning
capabilities can extract general rules from the available examples more e�ectively when data
representation faithfully preserves the environment properties Bianchini & Maggini (2013).
Determining the structure for input data to gain this characteristic strongly depends on the
problem domain. In the simplest form, the decision taken by the agent relies only on a single
event that is described by a certain number of measurements that can be encoded as a vector
of real numbers. Indeed, this is the approach taken by all work on tra�c prediction that
uses CI. However, for more complex tasks or a better decision making, a successful approach
may require to exploit structured data, that provide a more balanced split of the intrinsic
complexity between the task of data representation and that of data processing Bianchini &
Maggini (2013).

For a tra�c network, a graph can describe the network dynamics by modeling it through
a set of nodes that correspond to the sensors (e.g. loop detectors) and edges that corre-
spond to the roads between the nodes. Both entities are associated with observation vectors
which in our application correspond to the measurements obtained by the sensors and road
characteristics. Even if it is possible to obtain simpler representations from complex data
structures, this process always implies the loss of information, an inaccurate modeling of
the problem at hand or a higher complexity in the input data distribution. For instance,
when the input data to a multivariate tra�c model is a real valued vector, the size of input
vector increases by taking more locations into account. Moreover, this representation is not
capable of dealing with missing data since the vector size will be changing, unless a maxi-
mum number of sensors is assumed and a padding technique is used to encode the missing
sensor measurements. It is worth noting that in such a data representation, the relationships
among the sensors in the network would be encoded by their position in the vector, making
it more di�cult to exploit the structural regularities by an algorithm designed to process
generic vectors.

In the next chapter we will focus on graph�structured data and present the graph neural
network model which is able to process this type of data structure and cope with time�
varying topologies. The fundamental of GNN model including its architecture and a learning
paradigm for optimizing weights will be discussed and the process of modeling a tra�c
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network as a GNN will be presented.



14

Chapter 2

Proposed Methodology

2.1 Processing Structured Data

It is crucial to utilize an appropriate method of encoding when the input data to a
machine learning technique is obtained from a structured domain. An encoding method
should ideally preserve data and any information embedded in its structure properties to
facilitate the extraction of useful rules (e.g. features) from training dataset. For instance,
when data is attained from scattered sensors, the topological dependency of information on
each sensor may be lost if an appropriate encoding stage is not exploited.

Di�erent encoding methods can be adopted based on the input domain structure. In
general, for simple tasks and data structures, the input data can be represented by a vector
and be e�ectively used as long as the resulting data is not subjected to the curse of dimen-
sionality Bellman et al. (1961). For instance, time series methods commonly rely on a �nite
horizon of past values of measurements that can be represented by linked lists � in which the
nodes and links abstract the measurement values and timing sequences. Whether the time
series algorithm is univariate or multivariate, the input data can be naturally represented
by a vector containing the measurement values in a �xed (but arbitrary) order. However,
a natural mapping from structured data to Euclidean space (vector form) is not necessarily
possible for all domains/tasks and encoding phase can cause loss of information (e.g. when
structure is ignored), modeling inaccuracy or high complexity in the input data distribution.

For complex tasks, the intensive data processing required for digesting data in vector
form can be reduced by exploiting more complex data structures. In this research, we do not
discuss a general framework for addressing this issue. Rather, we focus on graph structured
data since a road network can be modeled by a graph precisely. Tra�c state measurements,
such as �ow and occupancy, are obtained from a set of distributed sensors. This data can be
represented by a graph structure in which the nodes and links (edges) represent the �sensors�
and �relationships� between them, respectively. The measurements at each sensor form the
observation vector associated with the corresponding node. Di�erent notions can be adopted
to de�ne the �relationships� between the nodes. The spatial relationships that delineate the
network topology are such concepts. We will return to this topic and provide a detailed
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discussion later.
A traditional approach to apply machine learning techniques to graph structured data

is to map the input data to Euclidean space in a preprocessing phase Haykin & Network
(2004). For instance, the mapped data can be represented by a long vector with two sets
of elements. The �rst set should contain the node observations and the second set should
encode the graph connectivity. As an example, for a directed graph with m nodes, a natural
way of encoding the connectivity matrix is to stack all elements in a vector with m2 binary
values. However, such an encoding method would not be appropriate when m is large, or
when it is time�varying. Moreover, an algorithm designed to process generic vectors might
not be successful in extracting structural regularities that are now encoded in the vector by
exploiting the vector element indices in order to model the positional relationships among
the graph nodes. Similar phenomenon might arise when the aforementioned binary string of
length m2 is replaced by a shorter string that encodes the graph connectivity in a numeral
system with a larger base.

2.1.1 Machine Learning Techniques for Graph Structured Input

Data

A great deal of research e�ort has been focused on developing machine learning techniques
that can preserve topological dependencies among graph nodes and incorporate full infor-
mation in the data processing phase. Early work include Elman's recurrent neural networks
Elman (1990), Pollack's recurrent auto�associative memory Pollack (1990) and Sperduti's
neural networks Sperduti & Starita (1997) for classi�cation. Recursive neural networks Fras-
coni et al. (1998); Sperduti & Starita (1997); Hagenbuchner et al. (2003); Bianchini et al.
(2005), and Markov chains Brin & Page (2012); Kleinberg (1999) are the main methodologies
applied to this data domain.

Recursive neural networks can cope with directed acyclic graphs in graph�focused tasks
by estimating the parameters of a mapping entity that transforms graph structured input
data to Euclidean space. This type of neural networks has attracted researchers in the �eld
of drug design Schmitt & Goller (1998), inductive learning in symbolic domains Küchler &
Goller (1996), face spotting Bianchini et al. (2003) and logo recognition Francesconi et al.
(1998). On the other hand, Markov chain models can emulate processes where the causal
connections among events are represented by graphs.

Recently, a more general model denoted as �the Graph Neural Network� was proposed
Scarselli et al. (2009b) which can be considered as an extension of both recursive neural net-
works and Markov chain models. The GNN extends recursive neural networks since it can
process a more general class of graphs including cyclic, directed, and undirected graphs, and
it can deal with node�focused applications without any preprocessing steps. The approach
extends Markov models by the introduction of a learning algorithm and by enlarging the
class of processes that can be modeled. GNNs are also related to support vector machines
that exploit special kernels � e.g. Kondor & La�erty (2002) � to process graphs Hammer
& Jain (2004); Gärtner et al. (2004) since they both encode the input graph into an inter-
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402580 402578 402576 402574402582402584

Figure 2.1: A section of U.S. Highway 101 (South) that contains eleven VDSs. The
inductive�loops are shown by the blue squares. The numbers on the bottom and top of
the road show the station IDs and the absolute postmiles1respectively. (Reprinted from
PeMS website.)

nal representation. However, the GNN is a more general model since the internal encoding
is learned, while in support vector machine, it is designed by the user Kondor & La�erty
(2002); Kashima et al. (2003); Collins & Du�y (2001). The computational capability of
GNNs is theoretically proved in Scarselli et al. (2009a) by showing a type of universal ap-
proximation property, and it is successfully applied to di�erent �elds including large�scale
recommender systems Pucci et al. (2006), web spam detection Di Noi et al. (2010); Scarselli
et al. (2013); Belahcen et al. (2015) relational learning Uwents et al. (2011), text structure
mining Chau et al. (2009); Muratore et al. (2010), image classi�cation Quek et al. (2011);
Jothi & Rani (2013), long term dependencies learning Bandinelli et al. (2010), sub�graph
matching Baskararaja & Manickavasagam (2012) and chemical compound classi�cation Bar-
cz & Jankowski (2014).

GNNs exploit an information di�usion mechanism in which a set of entities representing
the graph nodes are linked to each other based on the graph connectivity. The notion of
information associated with nodes is represented by adaptable �state� vectors. The output
of each node is then determined based on the observations of that particular node in con-
junction with the stationary states that encode information gathered from all other nodes
and topological dependencies. This scheme is similar to cellular neural networks Chua &
Yang (1988) and Hop�eld's neural networks Hop�eld (1982). However, it di�ers from both
models in that it can cope with more general classes of graphs, and it adopts a more general
di�usion mechanism. The technical aspects of GNN models are discussed after the following
section that provides required notations.

2.2 The GNN Model

A graph G is de�ned by a pair (N,E), where N and E denote the set of nodes and
the edges among them respectively. We model a tra�c network by a graph in which the
nodes correspond to the locations that are equipped with vehicle detection stations (VDSs)

1The postmile is the means by which California tracks highway mileage. The postmile starts at zero at
the western or southern end of the route or at the western or southern boundary of the county through which
the route is traveling.
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(402582)

Node 2
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Figure 2.2: A graph that represents three VDSs in U.S. Highway 101 (South) and their
spatial dependencies.

and the edges abstract the roads between these locations. For instance, consider a section
of U.S. Highway 101 (South) that is shown in Fig. 2.1, and assume that the tra�c �ow
at VDS 402580 is supposed to be predicted based on the past measurements obtained from
the same station and VDS 402582 (upstream), as well as VDS 402578 (downstream). These
three VDSs in accordance with the spatial dependencies between them can be represented
by the 3�node graph shown in Fig. 2.2. The edges show the dependencies between the
tra�c conditions at node locations. For instance, the edge from Node 1 to Node 2 implies
that the tra�c condition at Node 2 is a�ected by the tra�c condition at Node 1 (which
is associated with its downstream VDS). On the other hand, the edge (1, 2) implies that
tra�c conditions at Node 1 depend on the upstream tra�c. We use this graph as a running
example throughout this chapter to illustrate the GNN model.

Observations: Each node and edge in the graph is associated with a real vector�valued
observation. We denote the observation vectors assigned to node n and edge (n,m) by
ln ∈ <dN and l(n,m) ∈ <dE respectively, where dN and dE refer to the dimension of these
vectors. The observations are known and form a part of the input data to the predictor
which will be discussed later. We refer to the observation instances at (discrete) time step
t by ln(t) and l(n,m)(t). In the tra�c prediction application, ln(t) can include any tra�c
related quantity � such as �ow, occupancy, speed, etc. � that is associated with VDS n at
time step t and a �nite horizon of past measurements. Throughout this work we denote the
number of past measurements included in such a horizon as nt. Let flwn(t), occn(t) and
spdn(t) be the �ow, occupancy and speed measured by VDS n at time step t respectively.
In our running example, we assume that these measurements at time t and the last 3 steps
form each node's observation vector

l1(t) :=



flw1(t)
occ1(t)
spd1(t)

...
flw1(t− 3)
occ1(t− 3)
spd1(t− 3)


, l2(t) :=



flw2(t)
occ2(t)
spd2(t)

...
flw2(t− 3)
occ2(t− 3)
spd2(t− 3)


, l3(t) :=



flw3(t)
occ3(t)
spd3(t)

...
flw3(t− 3)
occ3(t− 3)
spd3(t− 3)


·
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Di�erent measures that (partially) characterize the network dynamics and are related to
the roads can be adopted for de�ning the (observation) vectors associated with the edges.
For instance, one can use the distance between two connected locations for the corresponding
edge if the edge direction is aligned with the road direction; otherwise, the negative of this
value can be used. In our running example, since the distance between subsequent VDSs is
0.5 miles (see the postmiles in Fig. 2.1) this de�nition yields to

l(1,2) = 0.5 l(2,1) = −0.5 l(2,3) = 0.5 l(3,2) = −0.5 ·

Note that this de�nition yields to a set of time�invariant values that are not actual �observa-
tions�. However, the GNN model is not constrained to this case and can parse graphs with
edges that have time�varying values.

Targets: Each node of a graph is associated with a known target vector. Let tn(t) be the
target vector of node n at time t and suppose that our objective is to predict the tra�c �ow
in 2 steps ahead. The target values associated with the nodes of our graph example are

t1(t) = flw1(t+ 2) t2(t) = flw2(t+ 2) t3(t) = flw3(t+ 2).

These targets are related to the aforementioned observations and the graph topology
through an unknown function g∗. The intuitive idea underlying the GNN model is that this
information for a node n is split into two parts: (1) the node observation vector ln, and (2)
the information gathered from other nodes, edges and the graph topology. It is assumed
that the latter form of information is encoded to an unobservable adaptable state denoted
by xan ∈ <s

tn = g∗(xan, ln). (2.1)

A graphical model that illustrates this type of causalities for our running example is
shown in Fig. 2.3. The colored nodes in the �gure correspond to the known values. The
�states� and causalities depicted by solid arrows are explained in the following part. The
dotted arrows show that each target depends on the observation and the �state� associated
with the same node (analogous to (2.1)). Note that both g∗ and the states are unknown in
(2.1).

States: The state of each node is aimed to collect related data (about the target) from the
neighboring nodes' observations, arriving edges and the states of other nodes. Returning to
Fig. 2.3, we note that the solid arrows are outlined based on this structure which is, indeed,
governed by the network topology. For instance, in our running example, the state of node
1 presents the contribution of the tra�c conditions at other nodes in changing the �ow at
node 1 in the future. This contribution is related to node 2 and edge (1, 2) directly (note the
arrows from l2 and l(1,2) to xa2) and to the other nodes and edges indirectly (through xa2).

The GNN model considers a mapping called the transition function, which is denoted
by f ∗, to model the dependencies that are illustrated by the solid arrows in Fig. 2.3. More
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Figure 2.3: A graphical model that illustrates the causalities considered by the GNN model
for our running example.

explicitly, for each node n, the transition function encodes the observations of adjacent nodes
lne[n], arriving edges lco[n] and neighbors' states xane[n] into the current state x

a
n

xan = f ∗(lne[n], lco[n], x
a
ne[n]). (2.2)

For instance, in our running example we have xa1 = f ∗({l1, l2}, {l(1,2)}, {xa2}). Similar to g∗,
the transition function f ∗ is unknown. Based on (2.2), learning the states is equivalent to
learning the transition function f ∗ and solving (2.2).

Objective: The GNN model receives a graph augmented with the aforementioned obser-
vations and generates an output vector for each node. These outputs are desired to be as
close as possible to the targets. We denote the output node n at time t by on(t). The outputs
for the example under our study are of the form

o1(t) = f̂ lw1(t+ 2) o2(t) = f̂ lw2(t+ 2) o3(t) = f̂ lw3(t+ 2).

where f̂ lwn(t+ 2) is the �ow of node n at t+ 2 predicted at time step t.
The GNNmodel exploits a parametric function fw to mimic the dynamics of the transition

function f ∗ (2.2) and estimate the sates

xn = fw(lne[n], lco[n], xne[n]). (2.3)

where xn is the estimate of the actual state xan. Furthermore, it deploys another parametric
function, gw, that aims to mimic the mapping from the states and observations to the outputs
(c.f. the dotted arrows in Fig. 2.3 and (2.1))

on = gw(xn, ln). (2.4)
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Figure 2.4: Succinct representation of the transition (Fw) and output (Gw) functions in the
GNN model.

Di�erent models can be adopted to structure the two functions fw and gw. The GNN
model uses a special type of recursive neural networks as fw and a feedforward fully connected
NN as gw. We refer the reader to Scarselli et al. (2009b) for the details of fw. A supervised
learning algorithm for training the weights of these two NNs is given in the sequel.

Let x, o and l denote the sets of all states, outputs and observations respectively. The
GNN model de�ned by (2.3) and (2.4) in a succinct form can be presented by

x = Fw(x, l) (2.5a)

o = Gw(x, l) (2.5b)

which is illustrated by two block diagrams in Fig. 2.4.
The GNN dynamics presented in (2.3)�(2.4) implies that a successful implementation

requires

1. Parametric functions for fw and gw. For instance, gw can be a multi layer neural
network and fw can be either a linear or nonlinear function as long as (2.3) has solution.

2. A method to solve (2.3). Note that for a given fw, the states appear in both the input
and the output.

3. An algorithm that can learn the parameters of fw and gw based on an example set that
includes pairs of the form (targets ; observations and graph topology).

The next three subsections brie�y discuss these requirements.

2.2.1 Method for State Computation

The uniqueness and existence of a solution to (2.5a) is guaranteed by Banach's theorem
Khamsi & Kirk (2011) when Fw is a contraction map with respect to (w.r.t.) the state.
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Figure 2.5: Schematic of an unfolded network that approximates the GNN for the 3�node
graph shown in Fig. 2.2. All units of unfolded transition function use an identical fw.
Connections between layers follow the graph topology (c.f. (2.3)).

Moreover, the solution is equal to the convergence point of the following iteration

xn(i+ 1) = fw
(
lne[n], lco[n], xne[n] (i)

)
(2.6)

initialized from an arbitrary state xn(1). Suppose that this update rule after T iterations
yields to a set of states that satisfy some convergence criteria. For our running example, this
iteration is equivalent to unfolding the transition function Fw as is illustrated in Fig. 2.5. The
next subsection discusses parametric functions for fw that yield to Fw's that are contraction
maps.

2.2.2 Parametric Models for Transition and Output Functions

The output function gw can be any general parametric function as long as it can be trained
in a supervise paradigm, and the gradient of its output w.r.t. its input can be calculated.
The original model proposed by Scarselli et al. (2009b) that is also deployed in this work is
a multilayer feedforward neural network.

As for the transition function fw, the choices are limited to the parametric functions that
de�ne a contraction map with respect to the states. Linear and nonlinear models that satisfy
this constraint are discussed by Scarselli et al. (2009b). The nonlinear form that is adopted
here is realized by a multilayer feedforward neural network that is guaranteed to produce a
contraction map Fw when a penalized quadratic cost function in the from of

ew :=

p∑
j=1

∑
i∈N

(ti,j − oi,j)2 + βLµ

(∥∥∥∥∂Fw∂x
∥∥∥∥) (2.7)

is used. Here, p denotes the number of example graphs in the train set, and ti,j stands for
the �target� value at node i of graph j. The penalty function Lµ is equal to (y−µ)2 if y ≥ µ;
otherwise, it equals 0. The two parameters β and µ ∈ (0, 1) determine the penalty weight
and the desired contraction intensity of Fw. The linear model for Fw and the proof for the
contraction property can be found in Scarselli et al. (2009b).
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2.2.3 Multiple Encoders

The transition network Fw implements an information di�usion mechanism that generates
the states. The original form of GNN exploits one block of this encoding mechanism. The
states are in general multidimensional, i.e. in <s where s ≥ 1, and it is shown by Scarselli
et al. (2009b) that the computational complexity of the most expensive instructions of the
GNN training algorithm is related to s2. Therefore, learning complex patterns through
encoding layers that output high dimensional states is computationally intensive. Here,
we propose an alternative that is inspired by the use of multiple �lters in convolutional
neural networks (CNN) LeCun & Bengio (1995). The architecture of a CNN is designed
to bene�t from the grid structure of the input domain, which is indeed a special form of
graph structure. A convolutional layer in a CNN exploits several �lters to provide di�erent
feature maps. The input to the �lters is common among them and each �lter attempts
to extract a special feature from the input domain. Here, we adopt the same idea and
propose using multiple transition functions that are aimed to extract di�erent features of
the spatio�temporal dependencies between the graph nodes.

Let nf be the number of transition functions. These functions all receive the same graph
as the input, but, attempt to reach individual states (equilibrium points). Analogous to
(2.3), the states are computed by

xin = fwi
(lne[n], lco[n], x

i
ne[n]) i ∈ {1, 2, · · · , nf} (2.8)

on = gw({x1n, x2n, · · · , x
nf
n }, ln) (2.9)

where xin denotes the state outputted by encoding block fwi
. Note that in (2.8) the transition

functions perform independently and no information is interchanged between fwi
and fwj

when i 6= j. The states that contribute in shaping xin are generated by the same transition
function. A succinct form of this mapping can be written as

xi = Fwi
(xi, l), i ∈ {1, 2, · · · , nf} (2.10a)

o = Gw({x1, x2, · · · , xnf}, l) (2.10b)

where xi := {xi1, xi2, · · · , xi|N |}. An abstract form of this interconnection for a GNN with
nf = 3 is shown in Fig. 2.6. We will show by experimental results that such an architecture
with multiple transition functions and smaller states � at least in the application under our
study � outperforms in both accuracy and training speed the original GNN model with one
larger transition network that generates higher dimensional states.

2.2.4 Learning Algorithm

The learning objective is to �nd a set of parameters that form the functions Fwi
's and

Gw in (2.10) such that the cost function (2.7) is minimized. For simplicity, we only consider
one transition function Fw. The algorithm can be extended to the case of multiple transition
functions easily. A gradient�descent based algorithm is proposed by Scarselli et al. (2009b)
that consists of the following three steps in each iteration t:
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Figure 2.6: The porposed GNN model with three individual transition functions.

1. Let wf and wg denote the weights of fw and gw respectively. These weights are initial-
ized randomly at iteration 0. For given values of wf and wg, the states are iteratively
calculated by (2.6). Then, the outputs are computed based on the states and the
observations using (2.4).

2. The gradients of cost function with respect to the parameters, ∂ew
∂wf

and ∂ew
∂wg

, are com-
puted by the method explained in the sequel.

3. Let w be a vector that contains both wf and wg. This vector is updated by

w(t+ 1) = w(t) +
∂ew
∂w
|w=w(t),ew=ew(t)

where α(t) is the learning rate.

The �rst step was discussed in section 2.2.1 and the last step is straightforward. As
for step 2, the gradient of cost function with respect to the weights in gw, i.e. ∂ew

∂wg
, is

calculated by backpropagation method for multilayer feedforward neural networks. The
gradient computation with respect to the transition function (fw) weights, i.e. ∂ew

∂wf
, is adopted

from backpropagation�through�time algorithm that is used for recurrent neural networks
Frasconi et al. (1998); Miller et al. (1995). The key idea is that the transition network is
unfolded from time T back to an initial time t0 similar to the schematic that was earlier
shown in Fig. 2.5 for the forward path. This unfolding process creates T − t0 + 1 layers that
contains copies of fw that are connected to each other based on the topological relations
between the graph nodes (see Fig. 2.5).

Carrying out the unfolding procedure provides a network that consists of a set of (i-
dentical) feedforward neural networks. Therefore, the backpropagation through time is the
same as traditional backpropagation on the unfolded network. The only di�erence is that
all unfolded layers use the same weight vector wf . This implies that the gradient of cost
function w.r.t. wf should be obtained by summing the gradient of the cost function w.r.t.
the weights of all layers. In fact, backward unfolding is continued till this sum converges.

Backpropagation through time requires all values of states (c.f. 2.5) generated by the
layers of unfolded network during the forward path. A more memory e�cient approach
based on the algorithms for backpropagation in recurrent neural networks Almeida (1990);
Pineda (1987) is proposed in Scarselli et al. (2009b). The key idea is that, for large T , the
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states in the deep layers converge to a stable equilibrium point and the states generated by
the shallow layers have negligible e�ects in the gradient calculation. Accordingly, the states
in all layers are approximated by the �nal state x(T ). Based on this unfolding process, the
gradient of cost w.r.t. w can be calculated by

∂ew
∂w

=
∂ew
∂o

∂Gw

∂w
(x, lN) + z

∂Fw
∂w

(x, l)

where z stands for the partial derivative of the cost function w.r.t. the states and can be
iteratively calculated by

z(t) = z(t+ 1)
∂Fw
∂x

(x, l) +
∂ew
∂o

∂Gw

∂x
(x, lN).

The sequence z(t) converges to the �xed point z as t→ −∞ (refer to Theorem 2 in Scarselli
et al. (2009b) for the proof of this claim).

2.2.5 Putting It All Together

The update rule in (2.6) for calculating the equilibrium point of (2.5a) along with the
traditional backpropagation through Gw and the backpropagation through time for Fw pro-
vides the machinery to de�ne an explicit supervised learning algorithm for the GNN model.
Algorithm 1 illustrates the details of the training procedure. Note that the states are passed
as an input to Forward(.,.) procedure even though the states converge to the equilibrium
point from any arbitrary initial value. The reason behind this is that the new equilibrium
point is close to the last one when the learning factor is small. Therefore, the state calculated
in the last forward path is a good point for initializing the iterations of the current forward
path.
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Algorithm 1 Supervised Learning Algorithm for the GNN Model

1: procedure TRAIN

2: Initialize w, x
3: t← 0
4: while (stopping criterion not satis�ed) do
5: [ x, o ]← Forward(w, x)
6: ∂ew

∂w
← Backward(w, x, o)

7: w ← w − α(t)∂ew
∂w

8: t← t+ 1
9: update learning factor α(t)

10: end while

11: end procedure

1: procedure Forward(w, x)
2: xnew ← Fw(x, l)
3: while (convergence criterion not satis�ed) do
4: x← xnew
5: xnew ← Fw(x, l)
6: end while

7: x← xnew
8: o← Gw(x, lN)
9: return [ x, o ]

10: end procedure

1: procedure Backward(w, x, o)
2: A← ∂Fw

∂x
(x, l)

3: B ← ∂ew
∂o

∂Gw

∂x
(x, lN)

4: initialize z (arbitrarily)
5: znew ← zA+B
6: while (convergence criterion not satis�ed) do
7: z ← znew
8: znew ← zA+B
9: end while

10: z ← znew
11: return z ∂Fw

∂w
(x, l) + ∂ew

∂o
∂Gw

∂w
(x, lN)

12: end procedure
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Chapter 3

Empirical Study

3.1 Dataset

The tra�c dataset we have used in this research is obtained from California Department of
Transportation (Caltrans) Performance Measurement System (PeMS) that measures tra�c
states by over 41'000 detectors (as of Aug, 2015). PeMS project started in 1999 as a university
research project, was introduced in 2001 by Chen et al. (2001) and rapidly attracted many
researchers in the following years Choe et al. (2002); Varaiya (2002); Chen (2003); Shekhar
(2004); Lippi et al. (2010); Guo & Williams (2010); Lippi et al. (2013); Pan et al. (2013);
Huang et al. (2014); Lv et al. (2015). This measurement system provides access to real�
time and historical performance data in many formats to help engineers and researchers
understand transportation performance, identify problems, and formulate solutions. PeMS
utilizes a web�based interface PeMS (n.d.) to provide free and public access to the tra�c
dataset. The system covers more than 30'000 miles directional distance and incorporates
more than 6'800 controllers, 41'000 detectors and 16'000 tra�c census stations � all reported
in Aug, 2015.

PeMS collects data from various types of vehicle detector stations, including inductive
loops, side��re radar, and magnetometers. Inductive�loop, the most common type of detec-
tion device currently used by Caltrans, records data from loops installed at speci�c locations
on the freeway. The machine senses when vehicles travel over the loops by reading the
number of times (�ow) and for how long the inductance of the loops changes (occupancy).
The controller sends this information to the District TMC via modem every 30 seconds. A
schematic for PeMS data collection, analysis and publication work �ow is shown in Fig. 3.1.

The state of California tra�c network is divided into 11 districts in PeMS. We selected
data of district 7 that includes Los Angeles and Ventura counties � which incorporate ap-
proximately 100 cities. This district has attracted many researchers Chen et al. (2003); Rice
& Van Zwet (2004); Chen et al. (2005); Lippi et al. (2013); Pan et al. (2013) since it has
the largest number of detectors (∼ 10′000) and most complex freeway network (consisted of
over 40 highways). The smallest data samples, in terms of temporal aggregation, from VDSs
are individual 5�minute lane points. We have aggregated data to 15�min disjoint intervals
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 Figure 3.1: PeMS data collection and analysis infrastructure. (Reprinted from PeMS manual
available on Caltrans (2014))

in order to increase the signal to noise ratio as many researchers have suggested Smith &
Demetsky (1997); Smith et al. (2002); Shekhar & Williams (2008). Holidays in 2015 listed in
Table 3.1 are removed from the dataset since the tra�c trend in these days is considerably
di�erent than the regular days.

Performing experiments on this overwhelming amount of data and obtaining experimental
results that can represent the prediction performance over the whole district either relies
on time consuming computations, or requires careful considerations in sampling the data
and monitoring its quality. Unfortunately, these two factors are ignored in many short�
term tra�c forecasting studies on this dataset. Many researchers have chosen a number
of stations without any justi�cation for their particular selection. Since the number of
considered stations in research experiments, e.g. 20, is considerably smaller than the total
number of available stations, i.e. over 3'600, the results may not generalize to the whole
network. A tra�c network may have a relatively small number of locations that are of
utmost importance and have complex dynamics. In this case, uniform sampling of locations
and focusing on the average behavior which is governed by the majority of locations with
simple dynamics may overestimate the prediction algorithm e�ectiveness. Similar to spatial
aggregation, high level of aggregation in temporal domain (e.g. in Lv et al. (2015) that
aggregates the data of all detectors along a freeway to represent the whole freeway by a
single aggregated value) has direct implications on the temporal structure of a time series
because it eliminates variation in the data and alters most properties Chen et al. (2012);
Dunne & Ghosh (2011).

The other important aspect in sampling the stations is �data quality�, which has not re-
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Table 3.1: 2014 Holidays in the United States that are removed from the dataset.

Date Description Day of Week

01/01/2014 New Year's Day Wednesday
01/20/2014 Martin Luther King, Jr. Day Monday
02/17/2014 Washington's Birthday Monday
05/26/2014 Memorial Day Monday
07/04/2014 Independence Day Friday
09/01/2014 Labor Day Monday
10/13/2014 Columbus Day Monday
11/11/2014 Veterans Day Tuesday
11/27/2014 Thanksgiving Day Thursday
12/25/2014 Christmas Day Thursday

ceived enough attention in experiments relying on PeMS datasets. Vehicle detectors provide
the best source of real�time tra�c data available to Caltrans. However, the data stream can
contain missing or incorrect values that require careful analysis to produce reliable results.
Therefore, the data used in an experiment could be �original� (obtained from a detector) or be
�imputed�. In the latter case, spatial correlation between detectors and temporal correlation
with the past measurements are used by numerous imputation algorithms Chen et al. (2003)
to correct the data. When imputed values are used in data driven prediction methods, the
results are questionable since the input and target data are not necessarily original. More-
over, the input data may contain information about the future if the imputation method was
not following time causality. PeMS reports a reliable measure of data quality, called percent
observed, that represents the ratio of actual measurements to the total reported data.

The station candidates in our experiments are chosen based on the data variance and
quality in order to achieve generality and accuracy. The notion of variance is quanti�ed
based on the deviation of �ow from its seasonal (periodic) mean obtained by averaging on
the same days of the past weeks. Suppose that the train set includes NT seasons of length
T . For instance, when seasonality corresponds to weekly periodicity and data is aggregated
to 15�min intervals, the period T is 96 × 7. The deviation of the state X(t) from seasonal
mean is then

Xd(t) := X(t)− X̄(mod(t, T ))

where the seasonal mean X̄(k) is

X̄(k) :=
1

NT

NT−1∑
m=0

X(mT + k) 0 ≤ k ≤ T − 1.
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Figure 3.2: RMS of �ow deviation from seasonal mean for all VDSs in District 7 (LA/Ventura
counties). The axes represent longitude and latitude in a geographic coordinate system.

Then, the data variance can be related to the root mean square of deviation by

V :=
1

NTT

NTT−1∑
t=0

|Xd(t)|2. (3.1)

Similarly, the relative deviation can be quanti�ed by

Vr :=
1

NTT

NTT−1∑
t=0

|Xd(t)

X(t)
|2. (3.2)

In general, larger V or Vr means larger variation from intra�day trends. Note that (3.1) is
similar to the mean variance of a cyclo�stationary process. We can also think of V or Vr
as the prediction performance when the seasonal mean is used as the predictor. Therefore,
small V or Vr implies that prediction methods as simple as historical means are competent
to obtain high levels of accuracy. The Vr value for �ow of all mainline (ML) and freeway�
to�freeway (FF) stations in district 7 are color coded and shown in Fig. 3.2. The light blue
nodes correspond to the stations with simple behavior and the light red ones depict the
highly non�stationary nodes. Figure 3.3 shows a closer view of the stations deviation in the
LA area.

We have divided the stations into three categories based on relative variance Vr. These
groups are called low, mid and high variance and are de�ned by three intervals on Vr, namely
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Figure 3.3: RMS of relative �ow deviation after removing seasonal mean in LA and its
neighborhood. The axes represent longitude and latitude in a geographic coordinate system.
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Figure 3.4: Historical values of �%Observed� for �FF� and �ML� stations in district 7. The
stations are indexed from 1 to 2049 and the Wednesdays (Jan 08�Nov 30, 2014) are indexed
from 1 to 47. The sub��gure on top shows a closer view of a portion of the main plot.

Vr ≤ 9% for low variance (light blue circles), 9% < Vr ≤ 15% for mid variance (purple circles)
and 15% ≤ Vr for high variance stations (light red circles).

As mentioned earlier, we incorporate the data quality in addition to the stationarity of
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Figure 3.5: Location of stations selected based on seasonality variance and �%Observer�
value for the empirical study.

data in sampling the stations for experiments. The data quality, in term of %Observed is
shown in Fig. 3.4 for the same stations. The �gure only shows the Wednesdays in 2014,
starting from Jan 08 (Jan 01 was a holiday) until Nov 30. As shown in the �gure, especially
in the subplot on top, numerous measurements are missed (red cells). Among the stations
that are categorized based on their variances, we only consider the ones that have at least
50% observation and select 12 stations from each category. These stations are shown in
Fig. 3.5 and are listed in Table. 3.2.
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Table 3.2: The set of stations used in our experiments. These stations have high quality
data and they are categorized based on their �ow deviation from seasonal mean.

Deviation ID Name Freeway Type Lanes Longitude Latitude

L
O
W

716956 FLETCHER 5�N ML 5 �118.259 34.108
717264 LORENA 60�E ML 5 �118.199 34.03
717599 SAN RAFAEL 134�W ML 4 �118.172 34.143
717848 FM 105 EB 605�S ML 4 �118.105 33.907
718277 INGLEWOOD 2 405�S ML 4 �118.362 33.891
737292 WESTWOOD 10�W ML 5 �118.421 34.032
761492 CENTURY 2 405�N ML 6 �118.369 33.952
763237 PASADENA 5�N ML 4 �118.219 34.077
765182 N OF 110 101�N ML 5 �118.251 34.065
769444 HAZELTINE 101�S ML 5 �118.438 34.156
773023 BROADWAY 101�N ML 4 �118.242 34.057
773281 EUCLID 60�E ML 5 �118.208 34.028

M
ID

716670 VAN NESS 405�N ML 4 �118.318 33.862
716810 ROSEHEDGE 605�S ML 4 �118.072 33.986
716946 AVE 26 5�S ML 3 �118.222 34.081
717490 VINELAND 101�S ML 5 �118.371 34.147
717582 CENTRAL 134�W ML 4 �118.262 34.156
717816 VENTURA 405�S ML 5 �118.469 34.155
717942 PECK 2 605�S ML 4 �118.036 34.028
717962 DEL AMO 2 710�N ML 4 �118.205 33.849
718141 MOORPARK 101�N ML 3 �118.375 34.151
764425 FIGUEROA 91�W ML 3 �118.281 33.873
767053 BURBANK 2 405�S ML 4 �118.468 34.169
772610 CORBIN 101�S ML 5 �118.561 34.173

H
IG

H

715944 FERRIS 5�N ML 4 �118.166 34.014
716456 FACADE 105�E ML 5 �118.164 33.911
716573 ROSCOE 2 170�S ML 3 �118.411 34.223
717742 NORMANDIE1 405�N ML 4 �118.298 33.86
717795 PICO 405�S ML 6 �118.439 34.038
717816 VENTURA 405�S ML 5 �118.469 34.155
737158 OLYMPIC 2 10�E ML 5 �118.235 34.026
763325 OVERLAND 10�W ML 4 �118.416 34.032
764115 VICTORY 1 170�N ML 4 �118.401 34.185
764435 TRIGGS 5�N ML 4 �118.161 34.011
769806 FOOTHILL 210�E ML 4 �118.185 34.197
772858 S.G. RIVER 210�W ML 4 �117.946 34.131
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3.2 Retrieving Spatial Interconnections

The graph structures that abstract the spatial correlation between tra�c stations can be
constructed based on the freeway network anatomy that governs the tra�c stream. Let n
be the station under study and Nn be the set of stations that are supposed to collaborate in
predicting tra�c state at n. Note Nn includes n since the n's measurements are usually very
informative about the future of its tra�c state Chandra & Al-Deek (2008). A natural way
of de�ning the tra�c network in a graph structured framework is to associate nodes to n
and Nn. We will abuse notation and use the same symbols for referring to the actual tra�c
monitoring stations as well as their node representatives in a graph domain. Therefore, n
refers to the actual station as well as the node considered in the corresponding graph(s). For
each processed station n at time t, we de�ne a graph Gn(t) by the pair (Nn(t), En(t)) where
Nn(t) is a discrete set of size sn(t) and En(t) is an sn(t)×sn(t) square matrix representing the
connections between the nodes (stations). Construction of these two crucial graph elements
is discussed in the following two sections.

3.2.1 Graph Edges

The edges are aimed to sketch how information di�uses throughout the graph. This can
be abstracted by considering a set of connections between the nodes that are realized by the
graph edges. The notion of connection between two nodes of the graph Gn has a counterpart
in the actual tra�c network. That is, one node is connected to another node only if the tra�c
stream can di�use from the �rst node to the second one � a dependency that is inherently
governed by the tra�c network anatomy. These connections are easy to retrieve from the
physical location of nodes when they are in a road section with no injection or leakage �
e.g. no on�ramp and o��ramp in a highway section. Indeed, it is obvious that the cars at
the current point are coming from an upstream region and will pass the downstream station
shortly. Therefore, each node should be simply connected to its upstream and downstream
neighbors. This type of simple dependency has been studied by Chandra & Al-Deek (2008,
2009); Vlahogianni et al. (2005). The mainline VDS with ID 402580 considered in Li et al.
(n.d.) is such an example. Figure. 2.1 shows this station and its neighbors that are all located
in U.S. 101 (south) highway in district 4 of PeMS. The �upstream� and �downstream� stations
with respect to this station can be easily determined based on their geographic location and
highway direction. For instance, the Euclidean distance between station 402578 and other
stations in U.S. 101�south highway as in Fig. 2.1 determines the two neighbors of this station,
and by comparing the latitude of these stations the upstream (norther) and downstream
(souther) stations will be distinguished.

However, when it comes to a complicated network such as an intersection of multiple
freeways, freeway sections with on�ramps/o��ramps and more complex structures as in
arterial road networks, inferring connections is a more involved process. In this case, de�ning
the upstream and downstream neighbors is not an easy task and the dependencies cannot
be determined only based on sensor locations. The Euclidean distance will not be a good
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Figure 3.6: U.S. Route 110 and 10 intersection. The Euclidean distance between the VDS
locations cannot retrieve the correct spatial interrelations in this case.

measure of dependency in that case because sensors from di�erent roads might be close to
each other in Euclidean space while no short road exists between them. Figure 3.6 shows
a typical intersection (highways 10 and 110). The two stations 718165 and 718419 are very
close in Euclidean space, but in fact the tra�c stream does not �ow from 718165 to 718419
directly since the �rst station is located after the exit from 110�N and 718419 is located
before the entrance to 10�E. Indeed, in this particular case the two stations 764032 and
763453 are the ones that characterize the tra�c stream from 110�N to 10�E even though
the direct distance between them is not the smallest one.

An alternative measure for determining dependencies is the �road distance� between
stations. It lacks the aforementioned shortcoming since it is an implicit function of tra�c
network topology. For instance, suppose n1 is a station in 110�N and n2 denotes any station
in 10�E. It can be shown that among all pairs of (n1, n2) the smallest road distance, which is
1.7 miles, is achieved when n1 and n2 correspond to stations 764032 and 763453 respectively.
The road paths between these two stations and the other pair of stations mentioned above
are illustrated in Fig. 3.7.

The main obstacle in using road distances to retrieve spatial dependencies is that ob-
taining such a measure requires a profound database about the road networks. We use �The
Google Directions API�1 � a service that calculates directions between locations using an
HTTP request � in order to obtain road distances between two locations � recall that PeMS
provide latitude/longitude geographic coordinates for stations. Calculating directions is a

1https://developers.google.com/maps/documentation/directions/intro
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Map data ©2015 Google 1000 ft 

3.9 miles

 via CA-110 7 - 9 min

Details

Drive 3.9 miles, 7 - 9 min Harbor Frwy and Transit Way, Los Angeles, CA 90015 to 34.0378, -118.2728

(a)

Map data ©2015 Google 1000 ft 

1.7 miles

 via I-110 N and I-10 E typically 3 min

Details

Drive 1.7 miles, 3 min Harbor Frwy and Transit Way, Los Angeles, CA 90007 to 1664-1698 Maple Ave S, Los
Angeles, CA 90015

(b)

Figure 3.7: U.S. Route 110 and 10 intersection. (a) Shows the two stations in 110�N
and 10�E that have the smallest Euclidean distance. The road distance between these two
stations, reported by Google Maps, is 3.9 miles. (b) Illustrates the two stations that have
the smallest road distance (1.7 miles). These stations characterize the tra�c stream from
110�N to 10�E. (images from Google map)

time and resource intensive task and Google limits the number of requests per day (2500 free
requests per day as of Aug 2015). Since there are numerous stations installed in the free-
way network, calculating the direction for each possible pair of stations is a time consuming
process. We categorize the graph edges to two groups, namely the edges that connect two
stations on the same freeway (including the direction) and the ones that connect stations
that belong to two freeways (i.e. at intersections). Constructing the �rst group of edges is
straight forward as discussed above. As for the second group, we can consider any possi-
ble pair of stations that do not share the same freeway and ignore the ones that have the
Euclidean distance greater than a threshold. This is motivated by the fact that the road
distance between two locations is bounded below by the Euclidean distance. Therefore, for a
suitably chosen threshold it can be guaranteed that the two stations with a larger Euclidean
distance do not characterize the intersection of two roads. This heuristic considerably de-
creases the need of acquiring driving directions from the API. The pair of stations that are
not �ltered out by this criterion will be evaluated by calling the Google Directions API and
the pair providing the minimum distance is chosen as the one modeling interconnection of
two roads. When no pair passes the �st �ltering phase, we conclude that the two roads do
not intersect. Note that there is other information reported by the API such as the driving
duration (in minutes) and also the number of steps (e.g. turning, merging, etc.) required to
reach the destination. This information can also be utilized to de�ne some sort of distance
metrics between two locations, especially in this particular case that deals only with rela-
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Figure 3.8: Stations spatial interrelations represented by a graph structure. The nodes,
shown by blue circles, represent the stations and the graph edges, shown by red lines, denote
station dependencies enforced by the network topology. Edge directions are not shown.

tive distances. For instance, we can determine the intersection by looking for the minimum
driving duration from one station to another one and de�ne the threshold on the number of
steps required to take the path. Our experiments show that both approaches will result in
the same connectivity set when the thresholds are set correctly. Figure 3.8 shows the graph
edges created by following the aforementioned procedure. The edges are indeed directed
from each node (station) toward its downstream neighbors. However, the directions are not
shown in the �gure due the space limitation.

We refer to this graph, that consists of all nodes and edges in district 7, as the global
graph associated with the whole district 7. In the following parts, subgraph structures that
present local spatial correlations around a target station will be constructed based on the
global graph.

3.2.2 Local Receptive Fields

Prior work on utilizing spatial relations in tra�c forecasting has illustrated that a longer
prediction horizon can be achieved by broadening the set of stations considered in the fore-
casting analysis Head (1995); Stathopoulos & Karlaftis (2003); Vlahogianni et al. (2004).
On the other hand, it was also being remarked by the same line of research that the infor-
mation attained from far locations is subjected to distortion and non stationarity, especially
in complex road networks. Moreover, processing information from numerous far sensors is
not plausible from a computation point of view since it requires intensive calculation and
time. These two factors motivate us to consider local receptive �elds around the stations
under study, rather than processing the full global graph that contains data from over 2000
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stations spread in an approximately 40 miles × 40 miles region.
Di�erent notions of locality and neighborhood can be adopted for de�ning local receptive

�elds. Here, we de�ne a neighborhood of radius r around a target station n, say Nn,r, as the
set of all nodes that can be reached from the target after passing at most r edges without
respecting the edge directions. For instance, neighborhoods of radius 0 contains only the
target, i.e. Nn,0 = {n}, and as of radius 1 includes the target in addition to the nodes sharing
an edge with the target.

Suppose C is the connectivity matrix of the global graph in a logical format. More
formally, Ci,j = 1, if there exists an edge from node (station) i to node j and it is zero
otherwise. It is obvious that for any target n, the neighborhood of radius 1 contains only the
nodes with non�zero values in the nth row and nth column of C. The neighborhoods with
larger radius, r > 1, can be determined similarly based on the nth row of Cr and (CT )r. This
can be shown by induction. Assume that the claim is true for some r ≥ 1 and |N | denotes
the cardinality of the node set. We have

(Cr+1)i,j =

|N |∑
m=1

(Cr)i,mCm,j (3.3)

which implies that (Cr+1)i,j > 0 if there exists at least one m such that (Cr)i,m > 0 and
Cm,j > 0. This is equivalent to reaching m in at most r steps and then going to j by passing
another link. Therefore, there exists a path from i to j with at most r + 1 links if and only
if (Cr+1)i,j > 0. Since this is true for r = 1, it also holds for any integer r > 1. The same
argument can be made for �nding upstream nodes that are at most r edges far from n by
looking at (CT )r. A set of receptive �elds with di�erent radius r around station 715944 (a
high variance node) is shown in Fig. 3.9. For instance, Fig. 3.9a depicts the stations that
are located 1 link away from station 715944 on upstream (one node) and downstream (two
nodes). Figure 3.10 depicts the histogram of graph sizes when radius of receptive �eld is
10. The plot illustrates that the notions of �upstream� and �downstream� stations become
complex when the receptive �eld radius increases. When the node is located in a freeway
where no other road is close to it, it will have 10 stations in upstream and 10 stations in
downstream, which in total makes a graph of 21 nodes (including itself). This is the straight
forward case that was mentioned above. However, the histogram shows that only 12% (244
from 2049 stations) fall in this category. The remaining 88% of the graphs have a more
complex topology and can have a very wide range of node numbers.

Measurement at any node in Nn,r might be missed at any time instance t. Hence, it is
required to monitor the %Observed quantity of nodes to assure that the data is high quality.
We consider a threshold on the %Observed value for each node in Nn,r and include a node in
the dataset if its %Observed value is higher than the threshold. This set, denoted by Nn(t),
determines the nodes of the local graph Gn(t). The set of edges for Gn(t) can be extracted
from C by only considering the rows and column corresponding to the elements of Nn(t).
Note that the graph might become disconnected once the �unhealthy� nodes are removed.
In that case, we can remove the parts that do not contain n since the information from these
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Figure 3.9: Receptive �elds with di�erent radii around station 715944. (a) r = 1, (b) r = 2,
(c) r = 5, (d) r = 8, (e) r = 10, (f) r = 15.

nodes will not di�use to n. Another possibility is to connect the children of �unhealthy�
nodes to their grand parents and repeat this procedure till separated parts get attached to
the subgraph that contains n.

3.3 Results of Case Studies

The proposed prediction methodology is applied to the aforementioned dataset and the
results for �ow forecasting for di�erent GNN con�gurations are compared with various algo-
rithms from trivial predictors to methods known as the state of the art by the ITS community.
These methods include

1. Random Walk (RW): This is the simplest method which assumes that the state will
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Figure 3.10: Graph size histogram for receptive �eld of radius 10 around station 715944. 244
for graphs out of 2049 fall in a straightforward category which has 21 nodes (large bin at
21). The remaining graphs correspond to more complex cases.

not change in the future. Therefore, predicts the state at any future time as equal to
the current state.

2. Seasonal Mean (SM): The tra�c state at future time is predicted as equal to the average
of corresponding states at past �seasons�. As was noted by Williams & Hoel (2003)
and quanti�ed more recently by Chandra & Al-Deek (2009), the seasonality e�ect is
more apparent when measured over 1�day or 1�week time intervals. Here, we consider
weekly trends as the seasonal means. For instance, the SM used on a Wednesday is
obtained only from past Wednesdays.

3. Autoregressive integrated moving average (ARIMA) Moorthy & Ratcli�e (1988); Lee
& Fambro (1999): A grid search is carried over all admissible values of p, d and q which
are, respectively, less than pmax = 5, dmax = 2 and qmax = 5. See (1.2) for the details.

4. Seasonal autoregressive integrated moving average (SARIMA) Williams et al. (1998);
Williams & Hoel (2003): The parameters of SARIMAmodel in (1.3) are (1, 0, 1)(0, 1, 1)(7×
96). This model is similar to Lippi et al. (2013) and Williams & Hoel (2003).

5. Support vector regression models (SVR) with RBF kernel: We use the same model
parameters as SV RRBF in Table II of Lippi et al. (2013).

6. Vector auto regressive (VAR) model Chandra & Al-Deek (2009): The model used here
is VAR(6) with 2 upstream and downstream sensors. Details of this model can be
found in Chandra & Al-Deek (2009).
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7. Feedforward Neural Network (FNN) Vlahogianni et al. (2005); Lv et al. (2015): �Shal-
low� (2�layer) MLP and deep architectures are both considered and the system con-
�guration parameters are optimized by a grid search.

One of the biggest challenges in e�ective utilization of neural networks � despite what type
of MLP is being used � is �nding an optimal network structure. We use a grid search method,
due to the ease of parallelization, to �nd the (sub)optimal hyperparameters. The grid search
is carried out by a pool of 12 workers on a 3.40GHz Intel(R) Core(TM) i7�3770 processor.
The design hyperparameters that should be determined for the graph neural network model
are as follows:

1. Number of layers, number of neurons in each layer and type of activation functions in
the output network gw in (2.4).

2. Number of encoding blocks fwi
, nf , de�ned in (2.8).

3. States dimension s (recall that xi ∈ <s).

4. Number of layers, neurons in each layer and activation functions for fw,i.

5. Parameters of termination criterion.

The second type of hyperparameters correspond to the modeling phase

6. Input domain: any combination of �ow, occupancy and reported speed (i.e. speed that
is measured directly and not inferred).

7. Spatial extent: the neighborhood radius for de�ning receptive �elds (c.f. 3.2.2).

8. Temporal extent: number of past observations used in the input � i.e. nt in (1.1).

9. Edge labels: an edge (n1, n2) can be either unlabeled or labeled with a value that
encodes the distance between n1 and n2 as well as the direction of edge. In the latter
case, the labels are de�ned with respect to each node. For instance, when edge (n1, n2)
is used for xn1 in (2.3), it can have a label of +0.5 which means that the direction of
edge is toward n1 and the distance from n2 is 0.5 miles. The same edge, when it is
used in the processing of xn2 will have a label of −0.5 encoding that n1 is located 0.5
miles downstream from n2.

Performance Metrics: The prediction accuracy is commonly reported by the Mean
Relative Percent Error (MRPE) that is de�ned as

MRPE : =
1

m

m∑
i=1

|X
i − X̂ i

X i
| × 100 (3.4)
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where X i and X̂ i denote the actual and predicted values (e.g. for �ow) of data instance
i. However, this criterion is sensitive to the small values of X i. In practice, even a single
instance i can increase the MRPE of a �good� predictor. On the other hand, a model that
�ts to all data instances is not necessarily bene�cial since it might be over�tted. Here, we
evaluate the performance by a modi�ed MRPE metric that is called MRPE6σ. We consider
an interval of ±6σ around the MRPE and consider the values that fall outside the interval
as outliers. Then, MRPE is recalculate for the values that are located inside this interval

σ2 :=
1

m

m∑
i=1

(
|X

i − X̂ i

X i
| × 100−MRPE

)2

I := {i | MRPE− 6σ ≤ 100|X
i − X̂ i

X i
| ≤MRPE + 6σ}

MRPE6σ :=
1

|I|
∑
i∈I

|X
i − X̂ i

X i
| × 100.

We observed in our experiments that at most 0.2% of data (1 out of 500) corresponds to the
outliers. However, this small portion could increase the MRPE by 1% which is relatively a
large value.

Training and Termination Criterion: The MRPE can be used directly as the cost
function in training. However, expression (3.4) shows that the MRPE (with squared terms)
is related to a weighted MSE criterion when the error terms are scaled by 1/|X i|. Therefore,
minimizing MRPE may result in a predictor that is tailored for low pro�le regimes. We
use the mean squared error (MSE) as the training objective. Twenty percent of the data
is separated for validation and the same amount is speci�ed to the test set. The training
procedure stops when the MRPE6σ on validation set increases for 10 consecutive updates.
Moreover, the error on validation set is tracked to determine the best weights achieved during
training. After termination, this set of weights de�ne the predictor.

Selecting GNN Hyperparameters: We use a linear activation function in the output
layers of fwi

's and gw, and introduce nonlinearities by using tanh function in their hidden
layers. In our search grid, the number of hidden layers for both networks is varied from 0 to
3 with stride 1 and the number of neurons in each layer is chosen between 5 and 25 with a
stride of 5. The number of states, s, and encoding functions, nf , are both spanned from 1
to 5.

E�ects of the two types of hyperparameters (HPs), namely GNN parameters and model-
ing parameters on �ow prediction are studied in the following two sections. In all experiments
in these sections we only use �ow data to predict �ow. Other possibilities which incorporates
occupancy and speed are considered thereafter.
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(a) Prediction based on the 2 most recent obser-

vations, nt = 2.
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(b) Prediction based on the 10 most recent obser-

vations, nt = 10.

Figure 3.11: 30�minute �ow prediction MRPE6σ for the 20 best sets of GNN hyperparam-
eters. The hyperparameters are coded on top of each point in (3.5) format. The standard
deviation over 5 tests is shown below each point.

E�ects of GNN HPs: The �rst group of results corresponds to 30�minute �ow prediction
(i.e. 2 steps ahead) for di�erent GNN hyperparameters and �xed modeling parameters. The
graph depth, r, in this case was set to 2 and the number of past (�ow) observations, nt, was
chosen equal to 2 and 10. Edge labels were considered according to the paradigm mentioned
above. The best 20 sets of GNN hyperparameters � ordered by a grid search � when the last
two observations are considered in the input, nt = 2, are shown in Fig. 3.11a. Similar results
for nt = 10, i.e. considering the observations from the past 2.5 hours, are shown in Fig. 3.11b.
These hyperparameters achieve the minimum average of MRPE6σ over the stations listed in
Table. 3.2. Each point on the �gures corresponds to the set of hyperparameters that is coded
on top of it. The vertical axis shows the MRPE6σ associated with those parameters and the
horizontal axis shows its ranking among all sets of parameters evaluated in the grid search.
The number under each point shows the standard deviation of MRPE calculated on 5 tests.
The hyperparameters on top of the points are coded in the following format:

Hg number of neurons in the hidden layers of gw
|
Lg number of layers (hidden + output) in each gw
|

Hf number of neurons in each transition network fw
|
Lf number of layers (hidden + output) in each fw
|
ns number of states outputed by each fw
|
nf number of transition networks fw's

(3.5)
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For instance, 2− 3− 2− 5− 2− 15 represents a GNN with two transition blocks that each
outputs 3 states. Each transition layer has 1 hidden layer with 5 neurons. The output
network of this GNN is a neural network with 1 hidden layer and 15 neurons.

Note that the GNN model becomes a simple feedforward neural network when the tran-
sition blocks are removed (nf = 0). Although, we have considered nf = 0 in the grid, no
hyperparameter set with nf = 0 was among the best sets that are shown in �gures 3.11a
and 3.11b. This implies that all the GNN models listed in the �gure outperform all FNN
models in the grid. It can be drawn from the �gures that among the �rst 5 sets in the
two plots, 7 models out of 10 have 2 transition networks. Moreover, the �rst �low�variance�
model in both cases is a GNN with 2 transition blocks. We use GNN model denoted by
2 − 3 − 2 − 5 − 2 − 15 for the next set of results since it is a high accuracy�low variance
predictor in both cases.

E�ects of Modeling HPs: The second set of results illustrate the performance of a
given GNN model for di�erent �ow prediction horizons and modeling hyperparameters. More
explicitly, we vary the prediction horizon, number of past (�ow) observations available to the
predictor (nt) and the radius of receptive �eld (r) when the GNN model is 2−3−2−5−2−15.
Figures 3.12a and 3.12b illustrate the MRPE6σ in 15-min and 30-min prediction for 6 di�erent
receptive �eld radii and 4 past observation horizons. The �gures show that the �ow in 1
and 2 steps ahead has the highest temporal correlation with the past 5 observations. Less
number of past observations is less informative. On the other hand, more number of past
observations increases the number of model weights without providing a rich enough input
which can lead to �nding a worse local optimum. The �gures also show the importance of
considering spatial interrelations in the prediction process. Prediction solely based on the
target sensor results in an inferior performance compared to the all cases that information
from neighbors is also taken into account (r > 1).

The same set of parameters are evaluated in 45, 60, 75 and 90 minutes predictions and
the results are shown in Fig. 3.13a, 3.13b, 3.14a and 3.14b respectively. The e�ectiveness of
considering multiple spatially correlated sensors in the prediction performance is more clear
in these �gures. Comparing them demonstrates that neighboring sensors play a crucial role
when the prediction horizon is long, and indeed, the states of far sensors are more informative
than the observations obtained at the target.
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(a) GNN performance in 15�minute prediction.
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(b) GNN performance in 30�minute prediction.

Figure 3.12: Each group of bars corresponds to one value of nt which is the number of past
observations considered in the input of GNN. Each bar color correspons to one spacial extent
radius (r) that is indicated in the legend.
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(a) GNN performance in 45�minute prediction.
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(b) GNN performance in 60�minute prediction.

Figure 3.13: Each group of bars corresponds to one value of nt which is the number of past
observations considered in the input of GNN. Each bar color correspons to one spacial extent
radius (r) that is indicated in the legend.
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(a) GNN performance in 75�minute prediction.
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(b) GNN performance in 90�minute prediction.

Figure 3.14: Each group of bars corresponds to one value of nt which is the number of past
observations considered in the input of GNN. Each bar color correspons to one spacial extent
radius (r) that is indicated in the legend.

The optimal temporal and spatial extents for these 6 prediction horizons are listed in
Table 3.3. The results show that the optimal spatial extent increases by the prediction
horizon whereas the temporal extent does not follow this trend. This is probably because
the states at multiple steps ahead are weakly correlated with the states at multitude steps
before. As a result, increasing the number of model weights can lead to �nding a poor local
optimum when some elements of the input data are not informative. The error contribution
from each location for this optimal setting is depicted in Fig. 3.15

Table 3.3: Optimal length of past observations horizon and radius of receptive �eld in �ow
prediction.

Prediction
Horizon

Past Measurements
Horizon

Radius of Receptive
Field

MRPE6σ

15 5 2 8.31%
30 5 3 7.92%
45 15 3 8.07%
60 15 4 8.15%
75 10 5 7.56%

90Ã¬ 10 6 7.87%

The time�series of actual and predicted �ow for one of the high�variance VDSs are
shown in Fig. 3.16 and 3.17. As can be seen from the �gures, the GNN is able to keep the
forecasting error small even when the �ow pro�le deviates largely from the seasonal mean
and the prediction horizon is large. The histogram of of the absolute error is depicted in
Fig. 3.18.
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Figure 3.15: MRPE6σ for all 36 stations when optimal settings listed in Table 3.3 are applied.
(The input data only contains �ow.)
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Figure 3.16: Actual and predicted tra�c �ow at VDS 717742 in all Wednesdays of the test
set. The end of each day is indicated on the horizontal axes. The input data only contains
tra�c �ow.
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Figure 3.17: Actual and predicted tra�c �ow at VDS 717742 in four Wednesdays of the test
set. The end of each day is indicated on the horizontal axes. The input data only contains
tra�c �ow.
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Figure 3.18: Flow prediction error (Veh/Hr) histogram for 15 and 90 minutes ahead predic-
tion at VDS 717742. The input data only contains tra�c �ow.

Input Data: Flow was the only input quantity in the previous case studies. Occupancy
and speed are two other measurements that are obtained by VDSs. Accordingly, there
are three other possibilities of input data that can be used for prediction, namely ��ow
and occupancy�, ��ow and speed�, and ��ow and occupancy and speed�. The same type of
analysis as the last two sections is performed on these three alternatives. The optimal results
for �low�, �mid� and �high� variance sets (c.f. Table 3.2) and di�erent forecasting horizons
are illustrated in Fig. 3.19. The �gure shows that incorporating both �ow and occupancy in
the input results in a slightly better performance than solely relying on �ow. The average
over of MRPE6σ over all stations is shown in Fig. 3.20.
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Figure 3.19: Average MRPE6σ for �Low�, �Mid� and �High� variance station sets and di�erent
prediction horizons (indicated next to the variance type).
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Figure 3.20: Average MRPE6σ over all stations for di�erent input data types.

Comparison with Other Methods: The performance of GNN model 2 − 3 − 2 −
5 − 2 − 15 with the optimal settings given in Table 3.3 and the input data consisted of
�ow and occupancy is compared to the other methods that were listed in the beginning of
this section. Figures 3.21, 3.22 and 3.23 respectively illustrate the average MRPE6σ at the
locations that have pro�les with �low�, �mid� and �high� deviation from the seasonal mean.
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The �rst �gure shows that the GNN error is larger than most of other methods in 15, 30
and 45 minutes ahead prediction at locations that the �ow pro�le follows the seasonal mean
closely. The GNN performance stays roughly constant at higher forecasting horizons while
most of the other methods, especially the time�series based models, degrade. Although the
GNN error is slightly smaller than other methods, it may not be a suitable model for this
type of locations since this model is signi�cantly more complex than other methods such as
SARIMA which achieves approximately the same performance. Indeed, based on the �gure,
even the performance of naive SM predictor may be satisfactory in this case.
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Figure 3.21: Comparison of prediction performance for the locations that have �low� devia-
tion from seasonal mean. (For clearness, the error of RW method is not shown completely
since it quickly grows to 28%.)

As shown in Fig. 3.22, at locations with mid deviation from seasonal mean, the ARIMA�
like models (SARIMA, VAR and ARIMA) outperform the GNN in 15 and 30-min forecasting.
However, the error of these methods grow with the prediction horizon while the GNN perfor-
mance is more or less the same at longer forecasting. Accordingly, starting from 45-minute
prediction the GNN outperforms other models and in 90-minute prediction its performance
is signi�cantly higher than other methods. This behavior is more clear among locations that
have pro�les with high deviation from seasonal mean. Figure 3.23 shows that the GNN mod-
el outperforms all other models for 30-minute prediction and larger horizons. It is interesting
that in 15-minute forecasting the RW method is the second best predictor in this case. This
shows that the high frequency �ow variation is large and weakly correlated with the past
observations. As a result, the improvement gained by time�series methods such as ARIMA
and VAR is insigni�cant, and the methods that are based on the seasonality of data fail.
The exact value of error for each of these methods can be found in Table 3.4.
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Figure 3.22: Comparison of prediction performance in the locations that have �mid� deviation
from seasonal mean.
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Figure 3.23: Comparison of prediction performance in the locations that have �high� devia-
tion from seasonal mean.

In summary, the simple univariate models ARIMA or SARIMA can outperform the GNN
model in 1 or at most 2-step ahead prediction problems. However, the di�erence is slight.
On the other hand, when it comes to a longer forecasting horizons, the GNN performance is
larger than other methods and the improvement becomes very signi�cant at long horizons.
This is because the simple time�series models are more capable of learning local and short
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term temporal relations, while the GNN is more e�cient in extracting long term dependencies
and learning the network dynamics.
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Table 3.4: Average MRPE6σ for di�erent prediction methods, deviations from seasonal mean
and prediction horizons.

Deviation Delay
from SM Method 1 2 3 4 5 6

H
ig
h

RW 7.82 12.36 16.39 20.14 23.46 26.39
SM-1Week 19.62 19.62 19.62 19.62 19.62 19.62
ARIMA 7.41 10.81 13.84 17.37 20.44 22.31
SARIMA 11.79 14.35 15.76 16.21 17.94 18.47
SVR 10.67 11.92 14.01 14.98 14.99 15.54
VAR 7.62 10.52 12.36 16.24 17.59 19.67
FNN 10.42 11.59 12.75 12.33 13.20 12.97
GNN 9.10 9.16 8.56 8.56 8.72 8.96

M
id

RW 8.83 13.12 17.09 20.57 23.90 26.92
SM-1Week 13.85 13.85 13.85 13.85 13.85 13.85
ARIMA 7.45 8.09 9.14 11.07 12.89 15.68
SARIMA 6.35 7.28 8.64 10.57 12.47 14.21
SVR 8.34 10.22 10.58 12.04 12.54 13.13
VAR 7.24 7.89 8.67 10.02 12.68 14.23
FNN 8.23 10.56 9.98 11.17 12.09 11.76
GNN 8.01 8.28 7.77 7.99 8.19 8.22

L
ow

RW 7.79 11.74 15.41 18.73 21.65 24.36
SM-1Week 7.12 7.12 7.12 7.12 7.12 7.12
ARIMA 5.68 6.21 7.02 7.94 8.02 8.64
SARIMA 4.53 5.27 5.91 6.64 7.01 7.10
SVR 4.77 5.62 6.41 6.87 7.53 7.71
VAR 5.64 5.48 6.02 6.74 6.97 7.02
FNN 6.89 7.03 6.98 7.21 7.38 7.64
GNN 6.82 6.97 6.43 6.46 6.69 6.74
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Chapter 4

Conclusion

The availability of abundant tra�c data and computation power emerged in recent years
motivated us to revisit the problem of short�term tra�c forecasting by a computational
intelligence approach and propose a data�driven tra�c model and prediction algorithm.

The data�driven methods in the literature do not explicitly consider the transportation
network dynamics; rather, they rely on a learning process in order to extract the underlying
spatial relationships between the unstructured input data and the future tra�c conditions.
These methods have a few drawbacks: (1) they attempt to retrieve relational and hierarchi-
cal dependencies that was lost during converting structured data to an unstructured form
that can be processed by them. Indeed, this information that corresponds to the spatial
interrelations between di�erent sources of data is known and can be explicitly presented by
a structured data. (2) the input vector dimension increases by taking into account the obser-
vations from more locations (3) they cannot manipulate dynamic information appropriately.

Our objective was to overcome these shortcomings by developing an empirical data�
driven tra�c model that can analyze a graph structured data that not only presents temporal
observations, but also preserves full information about the spatial interrelations between the
observations collected from di�erent locations. The key idea was that in a tra�c network, a
graph can describe precisely the network dynamics by modeling it through a set of nodes that
correspond to road segments equipped with sensors (e.g. inductive�loop detectors) and edges
that correspond to the roads between the nodes. Both entities possess labels which in our
application correspond to the measurements obtained by the sensors (e.g. �ow, occupancy
and speed) and road characteristics (e.g. direction and length).

We showed that the Graph Neural Network (GNN) models which is can process such
graph�oriented models of tra�c network for tra�c state forecasting. Comprehensive case
studies on real�world data from PeMS database and comparison with state of the art meth-
ods illustrated that: (1) in very short prediction horizons (e.g. 15 or at most 30 minutes)
and regular tra�c regimes, the accuracy of proposed model is negligibly lower than the state
of art, (2) in longer prediction horizons (above 30 minutes) and complex regimes the GNN
performance is signi�cantly higher than other methods. This is because the GNN takes ad-
vantage of data from multiple sources and also information about their spatial dependencies.
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The empirical study in this work was focused on �ow prediction. We investigated the
e�ect of incorporating occupancy and speed in the input data. As a future work, one can
investigate whether predicting multiple quantities (e.g. �ow and occupancy) at the same
time, using a shared representation bene�ts from multi-task learning. Another future work
could be investigating deep architectures of GNNs that are consisted of multiple layers of
transition and output layers. Di�erent types of pretraining methods used in deep�learning
can be applied to these deep models.
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