
Machine Learning and Optimization for Neural Circuit

Reconstruction

Jeremy Maitin-Shepard

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-239

http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-239.html

December 16, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Machine Learning and Optimization for Neural Circuit Reconstruction

by

Jeremy Bertram Maitin-Shepard

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Associate Professor Pieter Abbeel, Chair
Professor Jitendra Malik

Professor Bruno Olshausen

Fall 2015

Machine Learning and Optimization for Neural Circuit Reconstruction

Copyright 2015
by

Jeremy Bertram Maitin-Shepard

1

Abstract

Machine Learning and Optimization for Neural Circuit Reconstruction

by

Jeremy Bertram Maitin-Shepard

Doctor of Philosophy in Computer Science

University of California, Berkeley

Associate Professor Pieter Abbeel, Chair

Mapping neuroanatomy, in the pursuit of linking hypothesized computational models
consistent with observed functions to the actual physical structures, has been a long-standing
fundamental problem in neuroscience. One primary interest is in mapping the network
structure of neural circuits by identifying the morphology of each neuron and the locations
of synaptic connections between neurons, a field of study called connectomics. Currently,
the most promising approach for obtaining such maps of neural circuit structure is volume
electron microscopy of a stained and fixed block of tissue.

While recent advances in volume electron microscopy make feasible the imaging of very
large circuits at sufficient resolution to discern even the smallest neuronal processes, image
analysis remains a key challenge limiting the rate of discovery. Existing fully-automated algo-
rithms offer inadequate accuracy to replace human annotators, and semi-automated methods
offer only limited speedup. Towards addressing this image analysis problem, we designed,
implemented, and evaluated novel methods based on machine learning and optimization
related to three different sub-problems:

Detection of cell boundaries at the per-voxel level is a key analysis step, given that cell
boundaries serve as the primary indication of cell morphology, We propose a highly-scalable,
layered architecture for classification on 3-D volumes: unlike conventional dense deep learn-
ing approaches, this architecture relies on simple, parallelizable clustering algorithms and
convex optimization to learn wide, sparse models. By exploiting rotational invariance of
the data distribution and a highly-efficient distributed GPU implementation, we achieved
performance comparable to or better than deep convolutional networks trained for weeks
with only several hours of training, enabling much faster iteration on model design.

Certain promising high-throughput microscopy techniques result in significant disconti-
nuities between section images even after alignment, due to variations in imaging conditions
and section thickness, among other artifacts. These artifacts impede truly 3-D analysis
of these volumes. We propose an iterative coarse-to-fine procedure that optimizes the pa-
rameters of spatially vary linear transformations of the intensity data in order to minimize
discontinuities along the section axis, subject to detail-preserving regularization. Testing

2

showed this technique to yield significant quantitative improvement in image quality, and
qualitatively corrected essentially all visible discontinuities without any noticeable loss of
detail; it also significantly improved 3-D segmentation accuracy.

To integrate higher-level prior information about shape, we introduce a new machine
learning approach for image segmentation, based on a joint energy model over image features
and novel local binary shape descriptors. These descriptors compactly represent rich shape
information at multiple scales, including interactions between multiple objects. Our approach
reflects the inherent combinatorial nature of dense image segmentation problems. We propose
efficient algorithms for learning deep neural networks to model the joint energy, and for local
optimization of this energy in the space of supervoxel agglomerations. This architecture
yields state-of-the-art performance on several challenging electron microscopy datasets.

These advances constitute critical progress towards fully-automated reconstruction of
circuits of hundreds of thousands of neurons.

i

To Sister Theresa Munger, who through her kindness, generosity, dedication and humor
made the world a better place.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

List of Algorithms vii

Glossary viii

1 Introduction 1

2 Volume Electron Microscopy Methods 3
2.1 Serial section imaging . 3
2.2 Block face imaging . 5

3 Prior work 7
3.1 Rotational invariance and covariance . 8
3.2 Slice-to-slice contour tracking . 13
3.3 Boundary classification . 14
3.4 Region formation . 18
3.5 Agglomeration . 19

4 Error Metrics for Segmentation 23
4.1 Per-voxel error . 24
4.2 Rand Index . 24
4.3 Variation of Information . 25

5 Scalable Wide Sparse Learning 28
5.1 Methods . 28
5.2 Experiments . 33
5.3 Discussion . 36

iii

6 Correction of Inter-Section Discontinuities 38
6.1 Introduction . 38
6.2 Artifact correction algorithm . 40
6.3 Evaluation on electron microscopy data . 44
6.4 Electron microscopy results . 46
6.5 Lighting correction of time-lapse photography 51
6.6 Discussion . 52

7 Combinatorial Energy Learning 53
7.1 Representing 3-D shape configurations with local binary descriptors 55
7.2 Connectivity regions . 57
7.3 Conditional energy modeling of segmentations given images 62
7.4 Energy model learning . 65
7.5 Efficient energy minimization . 66
7.6 Implementation . 77
7.7 Experiments . 87
7.8 Results . 93
7.9 Discussion . 94

8 Conclusion 97

Bibliography 100

iv

List of Figures

2.1 Volume electron microscopy methods. 4

3.1 Architecture of prior methods based on boundary classification. 7
3.2 Architecture of prior agglomeration methods. 8
3.3 Cross-sectional views comparing rotational covariance of data. 9
3.4 Approaches for handling rotational covariance and invariance. 11
3.5 Comparison of on-voxel and between-voxel boundary representations. 15
3.6 On-voxel boundary labeling as denoising. 16
3.7 Distinction between local and global connectivity. 21

4.1 Comparison between Rand Index and per-voxel boundary similarity 26
4.2 Comparison between Rand Index and Variation of Information 27

5.1 Full architecture for segmentation based on sparse/wide boundary classification. 29
5.2 Effect of training data size and number of primary feature channels on validation

performance. 35

6.1 Representative cross-sectional views of a 6×6×30 nm ATUM-SEM image volume
of mouse cortex. 39

6.2 Artifact correction architecture. 41
6.3 Coarse-to-fine formulation of local contrast/brightness adjustment. 42
6.4 Plot of average NIQE score versus EMISAC running time. 46
6.5 Histogram of NIQE scores for the SNEMI3D volume. 47
6.6 Visual comparison of artifact correction results. 48
6.7 Plot of segmentation accuracy with and without artifact correction. 50
6.8 Qualitative improvement in segmentation accuracy from EMISAC. 51

7.1 Examples of cases where local boundary classification alone leads to false splits
of neurites. 54

7.2 Examples of cases where independent neurite shape modeling breaks down. . . . 55
7.3 Illustration of shape descriptors. 56
7.4 Advantage of voxel graph representation. 58
7.5 Connectivity region tiling. 60

v

7.6 General architecture of local energy models. 63
7.7 Illustration of computation of global energy. 64
7.8 High-level CELIS agglomeration procedure. 78
7.9 Data structures for implementing CELIS agglomeration. 79
7.10 Pipeline for updating CELIS action ∆+e

StE(St; I) scores. 82
7.11 Architecture of the specific local energy models used for experiments. 92
7.12 Effect of pruning on number of shape descriptors computed. 95

vi

List of Tables

5.1 Results on Drosophila larva FIBSEM test set using optimal threshold. 35
5.2 Results on Rabbit retina SBEM test set. 36

6.1 NIQE score reduction percentage due to artifact correction. 49
6.2 Effect of artifact correction on segmentation accuracy (n = 4) 50

7.1 Network architecture used for oversegmentation and image features. 89
7.2 Accuracy of segmentations obtained by agglomeration. 93

vii

List of Algorithms

7.1 Optimized membership test for approximate component visibility sets. 74
7.2 Computation of a single shape descriptor. 88
7.3 Computation of shape descriptor changes (non-incremental case). 89
7.4 Computation of shape descriptor changes (incremental case). 90
7.5 Alternative computation of shape descriptor changes (incremental case). 91

viii

Glossary

At[C] the active set of actions at step t that are supervoxel merges in St[C]. 70

AtZ [C] the set of actions at step t that are active in zone Z of St[C]. 76

At the set of remaining merge actions after t steps of agglomeration. 67

G/T the contraction of G by each set of vertices in T , where T is a partition of vertices(G).

G[V ′] the subgraph of G induced by the vertex subset V ′. 61

K the set of vertices that make up a connected component of an undirected graph.

S + e the segmentation that results from adding the edge set e to the voxel graph S. 63

St the segmentation after t steps of agglomeration. 65

S a segmentation, represented as an undirected graph over voxels. 58

Z>0 the set of strictly positive integers.

Z the set of integers.

V̂s(x;S) the approximate component visibility set, the set of connected components at po-
sitions within a bounding box of size Bs around x. 73

|X| the cardinality of the set X.

K(G) the set of connected components of the undirected graph G. 61

Cs(x) the connectivity region used for computing the type s shape descriptor at position x.
61

Xs
C the set of (type s) shape descriptor center positions for which the descriptor bounding

box is contained within C. 59

B̄s the maximum dimensions, as a vector in Z3
>0, of a connectivity region used for computing

shape descriptors of type s. 59

ix

Cs the set of connectivity regions obtained as regular overlapping tiles of size B̄s and stride
strides. 59

strides the stride, as a vector in Z3
>0, at which overlapping connectivity regions are placed

for computing shape descriptors of type s. 59

rs(x;S) the type s local binary shape descriptor centered at position x in the segmentation
S. 61

edges(G) the edge set of the graph G.

∆+e,+e′

S f(S) the forward second-order discrete derivative of f with respect to S. 64

∆+e
S f(S) the forward discrete derivative of f with respect to S. 64

φ(x; I) a feature representation of the image context centered around position x. 62

E(S; I) the global energy representing the compatibility between a segmentation S and
corresponding image I. 62

1[x] indicator variable equal to 1 if condition x holds, or 0 otherwise.

[X]k the set of k-subsets of X, i.e. [X]k := {Y ⊆ X | |Y | = k}.

Es(x;S; I) the type s local energy term representing the compatibility at position x between
a segmentation S and corresponding image I. 62

Ês (r; v) the local energy as a function of the type s shape descriptor r and corresponding
image feature vector v. 62

N (x) the von Neumann neighborhood of x. 59

� the pointwise product. 73

2X the power set of X, i.e. the set of all subsets of X.

R
~b
~a the hyperrectangle of points x satisfying ~a ≤ x < b. 73

Bs shape descriptor bounding box dimensions vector in Z3. 55

vertices(G) the vertex set of the graph G.

Vs(x;S) component visibility set, the set of connected components at positions sampled
around x by the shape descriptor s. 61

Ws(Z;S) component visibility set for a zone Z, the set of connected components at positions
sampled around any position x ∈ Z by the shape descriptor s. 75

W−1
s (K;C) zone visibility set. 75

x

Zs,C the set of zones that partition Xs
C . 75

e[C] the subset of edge set e restricted to vertices in the vertex set C. 67

e[S] the subset of edge set e restricted to vertices of graph S. 67

eK,K′ the set of edges between neighboring voxels between components K and K ′. 67

r binary shape descriptor vector. 57

s binary shape descriptor specification. 55

neurite an axon or dendrite projecting from the cell body of a neuron.

redundant merge a set of edges that all correspond to a self edge in the graph obtained
by contracting connected components. 68

spanning subgraph a subgraph with the same vertex set.

supervoxel merge a set of edges that all correspond to a single edge in the graph obtained
by contracting connected components. 68

1

Chapter 1

Introduction

Mapping neuroanatomy, in the pursuit of linking hypothesized computational models con-
sistent with observed functions to the actual physical structures, has been a long-standing
fundamental problem in neuroscience. One primary interest is in mapping the network
structure of neural circuits by identifying the morphology of each neuron and the locations
of synaptic connections between neurons, a field of study called connectomics. Currently,
the most promising approach for obtaining such maps of neural circuit structure is volume
electron microscopy of a stained and fixed block of tissue. [17, 42, 43, 31] This technique
was first used successfully decades ago in mapping the structure of the complete nervous
system of the 302-neuron Caenorhabditis elegans ; due to the need to manually cut, image,
align and trace all neuronal processes in about 8000 50 nm serial sections, even this small
circuit required over 10 years of labor, much of it spent on image analysis. [86] At the time,
scaling this approach to larger circuits did not appear practical.

Recent advances in volume electron microscopy [32, 59, 40] make feasible the imaging of
large circuits, potentially containing hundreds of thousands of neurons, at sufficient resolution
to discern even the smallest neuronal processes. [17, 42, 43, 31] The high image quality and
near-isotropic resolution achievable with these methods enables the resultant data to be
treated as a true 3-D volume, which significantly aids reconstruction of processes that do
not run parallel to the sectioning axis, and is potentially more amenable to automated image
processing.

Image analysis remains a key challenge, however. The primary bottleneck is in segmenting
the full volume, which is filled almost entirely by heavily intertwined neurons, into the
volumes occupied by each individual neuron. While the cell boundaries shown by the stain
provide a strong visual cue in most cases, neurons can extend for tens of centimeters in path
length while in some places becoming as narrow as 40 nm; a single mistake anywhere along
the path can render connectivity information for the neuron largely inaccurate. Existing
automated and semi-automated segmentation methods do not sufficiently reduce the amount
of human labor required. A recent reconstruction of 950 neurons in the mouse retina required
over 20000 hours of human labor, even with an efficient method of tracing just a skeleton of
each neuron [44]; a recent reconstruction of 379 neurons in the Drosophila medulla column

CHAPTER 1. INTRODUCTION 2

(part of the visual pathway) required 12940 hours of manual proof-reading/correction of an
automated segmentation [79].

This thesis gives an overview of the field and addresses several key aspects of this image
analysis problem:

As background, in chapter 2, we give an overview of volume electron microscopy imaging
techniques. In chapter 3, we discuss rotational invariance/covariance, boundary representa-
tion, and prior work related to automated circuit reconstruction from electron microscopy
volumes. In chapter 4, we discuss metrics for measuring segmentation accuracy.

Summary of Contributions

In chapter 5, we propose an alternative to deep neural networks for boundary classification
based instead on highly-parallel sparse, wide networks. These models matched or exceeded
the accuracy of deep neural network-based boundary classifiers, with only a fraction of the
training time.

In chapter 6, we address the problem that certain promising high-throughput microscopy
techniques result in significant discontinuities between section images even after alignment,
due to variations in imaging conditions and section thickness, among other artifacts. These
artifacts impede truly 3-D analysis of these volumes. We propose an iterative coarse-to-
fine procedure that optimizes the parameters of spatially vary linear transformations of the
intensity data in order to minimize discontinuities along the section axis, subject to detail-
preserving regularization. As we previously published [6], testing showed this technique
to yield significant quantitative improvement in image quality, and qualitatively corrected
essentially all visible discontinuities without any noticeable loss of detail; it also significantly
improved 3-D segmentation accuracy.

In chapter 7, we describe a new approach for image segmentation based on a learned
joint energy model representing the compatibility between the image and a candidate seg-
mentation, using a novel binary shape descriptor for representing local configurations of 3-D
objects. These descriptors compactly represent rich shape information at multiple scales,
including interactions between multiple objects. Our approach reflects the inherent combi-
natorial nature of dense image segmentation problems. We propose efficient algorithms for
learning deep neural networks to model the joint energy, and for local optimization of this
energy in the space of supervoxel agglomerations. We demonstrate state-of-the-art perfor-
mance on several challenging electron microscopy datasets.

3

Chapter 2

Volume Electron Microscopy Methods

Because electrons cannot penetrate tissue more than a few tens of nanometers, volume
electron microscopy is based on one of two approaches: serial section imaging, in which
physical sections are cut using an ultramicrotome prior to imaging, or block face imaging,
based an alternating process of imaging the top surface of a block of tissue, then scraping or
ablating the top surface to expose a lower layer, as shown in fig. 2.1. Significant advances in
these methods have been made in recent years, but there are still important trade-offs that
must be made. We briefly describe these methods and trade-offs here; refer to the review
by Briggman and Bock [16] for a more comprehensive discussion. The sample preparation,
another active area of research, is not discussed here, but critically affects contrast in the
images, and also can determine such factors as the extent to which extracellular space is
expanded or compressed.

2.1 Serial section imaging

Serial Section Transmission Electron Microscopy (ssTEM)

Serial section imaging is the basis for the earliest approach to volume electron microscopy,
serial section Transmission Electron Microscopy (ssTEM), which was used to reconstruct
the nervous system of Caenorhabditis elegans. Sections as thin as 40 nm are cut using an
ultramicrotome, manually placed on a support grid, and imaged using transmission electron
microscopy, which offers high imaging throughput. The cut sections can be imaged inde-
pendently, such that the overall acquisition speed is not limited by the speed of a single
microscope. They can also be preserved, in order to be reimaged if an imaging problem is
discovered later, and can also potentially be imaged using optical microscopy as well, and
subjected to multiple cycles of staining and rinsing, in order to obtain additional informa-
tion. The thinness of the sections is limited, however, by the fragility of the tissue, which is
supported only by the mesh support grid, and there is a risk of tissue distortion and damage.

The depth resolution can be improved by the use of electron tomography techniques,

CHAPTER 2. VOLUME ELECTRON MICROSCOPY METHODS 4

Figure 2.1: Volume electron microscopy methods. The two serial section imaging methods
are shown on the left: (a) Serial section Transmission Electron Microscopy (ssTEM) and (b)
Automated Tape-collection Ultramicrotome Scanning Electron Microscopy (ATUM-SEM).
The two blockface imaging are shown on the right: (c) Serial Block Face Scanning Electron
Microscopy (SBEM) and (d) Focused Ion Beam Scanning Electron Microscopy (FIB-SEM).
Figure by Kevin Briggman and Davi Bock, 2012, reprinted with permission from Elsevier. [16]

CHAPTER 2. VOLUME ELECTRON MICROSCOPY METHODS 5

in which sections are imaged at many angles in order to obtain a computed 3-D view.
Acquisition rate is severely limited, however, by the requirement to take many images per
section. There has been work, however, on using machine learning to approximate a high
resolution 3-D result using fewer images.

Distortion and the independent imaging of sections does limit the ability to accurately
align sections at full resolution in order to obtain what can be considered a true 3-D volume
(rather than a 2.5D stack of sections).

Automated Tape-collection Ultramicrotome Scanning Electron
Microscopy (ATUM-SEM)

The recent technique of Automated Tape-collection Ultramicrotome Scanning Electron Mi-
croscopy (ATUM-SEM) [75] replaces the manual section handling with a support tape that
picks up sections automatically as they are cut. The automated section cutting saves labor
and improves reliability, and the backing tape allows sections as thin as 25 nm to be used
reliably. The backing tape preserves the sections well, and as with ssTEM the acquisition
speed is not limited by the speed of a single microscope.

Because the backing tape is electron opaque, Scanning Electron Microscopy (SEM) in
backscatter or secondary electron detection mode must be used. While previously this slowed
throughput relative to Transmission Electron Microscopy, recently developed multi-beam
scanning electron microscopes have largely closed this gap.

The backing tape prevents the use of traditional electron tomography techniques, but
a recently developed deconvolution technique based on Scanning Electron Microscopy at
multiple energies can be used instead to obtain higher effective depth resolution.

2.2 Block face imaging

Serial Block Face Scanning Electron Microscopy (SBEM)

Serial Block Face Scanning Electron Microscopy (SBEM) [32] dispenses with preserved sec-
tions and instead uses a repeated process of:

1. imaging the top surface of a block of tissue using Scanning Electron Microscopy;

2. advancing the stage upwards;

3. scraping off a thin layer of tissue using a diamond knife.

No longer constrained by the need to maintain the physical integrity of sections, the tissue
depth scraped off between consecutive images can be thin as 20 nm. The entire process of
cutting an imaging of a block of tissue occurs inside the hard vacuum of the microscope.
This process naturally leads to excellent alignment between section images, and minimizes
tissue distortion and damage. Acquisition speed is limited, however, by the speed of a single

CHAPTER 2. VOLUME ELECTRON MICROSCOPY METHODS 6

microscope, and because it is a destructive process, there is no possibility of re-imaging a
section if a problem is discovered later.

Multi-energy imaging-based deconvolution can be used in conjunction with this method
to further improve the depth resolution.

Focused Ion Beam Scanning Electron Microscopy (FIB-SEM)

Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) [59] is variant of this method
that replaces the diamond knife with a focused beam of ions that ablate the top surface of
the tissue. This allows depth resolution as low as 2 nm. The lateral field of view possible
with current FIB-SEM microscopes is severely limited, however.

A recently demonstrated “hot knife” technique [39] potentially both mitigates the limits
on field of view and also allows parallel imaging using multiple microscopes, for both diamond
knife and Focused Ion Beam-based block face imaging.

7

Chapter 3

Prior work

Existing work has addressed the computational problem of automated object reconstruction
from electron microscopy volumes in diverse ways, including slice-to-slice contour tracking,
boundary classification based on various machine learning methods, and agglomeration based
on various global consistency constraints and various learned policies. Aside from slice-to-
slice contour tracking, these methods are variants of a common pipeline shown in figs. 3.1
and 3.2.

While this reconstruction problem is in principle quite related to the conventional com-
puter vision problems of image segmentation and edge detection for natural scenes, in prac-
tice the challenges are fundamentally quite different. Segmentation of natural scenes is
complicated by 2-D projection, occlusion and lighting effects, but is made easier by strong
local appearance cues for distinguishing segments, and more rigid geometry. Neural circuit
reconstruction also requires very high accuracy, due to the tendency for false merge errors to
propagate over the extremely large volumes that these circuits span, but the variation in the
data is fairly low. In contrast, natural scenes tend to have significant inherent ambiguity,

gE
M

V
ol

u
m

eg

B
ou

n
d
ar

y
cl

as
si

fi
ca

ti
on

S
eg

m
en

ta
ti

on

W
at

er
sh

ed
/

G
ra

p
h

cu
ts

Figure 3.1: Architecture of prior methods based on boundary classification. A boundary
detection step establishes local hypotheses of object boundaries, typically by applying a
learned classifier in a sliding window fashion, as described in section 3.3. A region formation
algorithm, like watershed or min-cut, is then used to produce a segmentation from the local
boundary information, as described in section 3.4.

CHAPTER 3. PRIOR WORK 8

gE
M

V
ol

u
m

eg

B
ou

n
d
ar

y
cl

a
ss

ifi
ca

ti
on

S
u
p

er
vo

x
el

s

F
in

a
l

se
gm

en
ta

ti
on

Supervoxel Graph

Features computed
over pairs of
supervoxels /

agglomerated regions

W
at

er
sh

ed
/

G
ra

p
h

cu
ts

Agglomeration

Figure 3.2: Architecture of prior agglomeration methods. As an extension of the boundary
classification pipeline shown in fig. 3.1, the initial segmentation produced by the region
formation algorithm is biased towards undersegmentation in order to produce 3D supervoxels
or 2D superpixels. These serve as input to a region agglomeration procedure that merges
adjacent regions based on image and object features. The region agglomeration approaches
differ in how they perform agglomeration, and whether they compute static features over
pairs of original supervoxels, or whether they compute features over agglomerated regions
that change as these agglomerated regions grow, as described in section 3.5.

and there is a need to generalize over wide variation in appearance, but the expectations
on accuracy are correspondingly much lower. Indeed, in comparisons against the specialized
methods designed for electron microscopy, described in this chapter, state-of-the-art meth-
ods for natural scenes have not proven competitive, and in fact in some cases the methods
designed for electron microscopy have achieved state-of-the-art performance even on natural
scene computer vision benchmarks.

3.1 Rotational invariance and covariance

Many regions of the brain containing circuits of interest, such as the Mammalian cortex,
have essentially no preferred orientation. More generally, as the scale is reduced, the extent
to which there may be a preferred orientation is also reduced. There are notable excep-
tions, such as regions of the retina containing bundles of parallel axons, but even in such
bundles, within the cross-sectional plane there may be no preferred orientation. Ideally,

CHAPTER 3. PRIOR WORK 9

x
y

x
z

y

z

(a) Drosophila larva, 10× 10× 10 nm FIB-SEM [68]

x
y

x
z

y

z

(b) Songbird, 15× 15× 25 nm SBEM (J0126 dataset)

x
y

x
z

y

z

(c) Mouse S1 cortex, 3× 3× 30 nm ATUM-SEM [55]

Figure 3.3: Cross-sectional views comparing rotational covariance of data obtained from
different microscopy techniques. FIB-SEM (fig. 3.3a) is nearly perfectly covariant with axis-
aligned rotations. SBEM (fig. 3.3b) and ATUM-SEM (fig. 3.3c) display strong covariance
within the imaging plane, and covariance to reflection along the section axis z. At down-
sampled resolution, SBEM is additionally somewhat covariant with respect to arbitrary
rotations.

CHAPTER 3. PRIOR WORK 10

therefore, the results of automated reconstruction would be covariant with arbitrary orthog-
onal transformations of the data, meaning that transforming the input data by an arbitrary
translation, rotation and/or reflection should have the effect of transforming the output
in the same way. This corresponds to an assumption that the joint distribution over image
data and corresponding reconstructions is invariant to arbitrary orthogonal transformations.
The distinction between covariance and invariance is important: properties such as the to-
tal number of neurons or synapses are invariant to orthogonal transformations, while the
morphology of all the neurons is covariant but not invariant to these transformations.

In practice, invariance and covariance properties of the data are limited by the rotational
covariance of the imaging method, meaning the extent to which rotating the tissue prior
to imaging yields the same result as digitally rotating the data after imaging.1 Figure 3.3
shows cross-sectional views comparing the covariance properties of FIB-SEM, SBEM, and
ATUM-SEM imaging.

FIB-SEM, which allows volumes to be imaged at isotropic resolution with pixels as small
as 2 nm on a side, has nearly perfect covariance. For isotropic FIB-SEM data, it is therefore
reasonable to assume covariance over the full octahedral symmetry group Oh, of order 48.
Elements of this group correspond to an arbitrary permutation of the x, y, and z axes
combined with arbitrary reflections of each of the x, y, and z axes. We can derive the order
of the group as

|Oh| = 3!︸︷︷︸
permutations

of x, y, z

· 23

︸︷︷︸
reflections
of x, y, z

= 48.

Due to the anisotropic resolution of ssTEM (with typical resolution of 3× 3× 50 nm) and
ATUM-SEM (with typical resolution of 3× 3× 30 nm), for those imaging methods we cannot
assume covariance over the full ocahedral symmetry group, but we can reasonably assume
covariance over 2-D rotations and reflections in x-y, and reflections in z; this corresponds to
the D4h symmetry group of order 16:

|D4h| = 2!︸︷︷︸
permutations

of x and y

· 23

︸︷︷︸
reflections
of x, y, z

= 16.

Because labeled training data is expensive to obtain (requiring tedious work by human
annotators), it is advantageous for machine learning methods to take advantage of these
covariance properties. There are three main approaches for doing this: rotationally-invariant
features, explicit covariance, and data augmentation, as illustrated in fig. 3.4.

Rotationally-invariant features

Under the approach of using rotationally invariant features, the responses for each individual
image feature are fully invariant to some set of rotations and reflections of the input image

1To avoid interpolation issues, we will consider only translations by whole-voxel amounts and axis-aligned
rotations and reflections.

CHAPTER 3. PRIOR WORK 11

(a) Rotationally-invariant features

(b) Explicit covariance

(c) Data augmentation

Figure 3.4: Approaches for handling rotational covariance and invariance. We compare a
single rotationally invariant image feature (fig. 3.4a), a single rotationally covariant image
feature (fig. 3.4b), and a single image feature under training data augmentation (fig. 3.4c).
For illustration purposes we show only 2-D transformations, but in actual implementations
3-D transformations may be used as well. In the case of rotational invariance, each feature
results in a single feature response that is invariant to rotations and reflections of the input
about the center point. In the case of rotational covariance, each feature results in a sep-
arate feature response for each permitted transformation, shown left to right; transforming
the input is equivalent to permuting the order of the feature responses. In the case of data
augmentation, each feature results in a single feature response, as shown in the first row.
To detect similar image features at a different orientation requires a completely indepen-
dent feature, with no rotation-related parameter sharing, as shown in the second row. At
training time, all features are trained and tested on each transformed version of the input,
corresponding to the different columns. In practice this tends to result in there being, for
each learned feature, approximately corresponding transformed versions. At test time, no
data augmentation is performed.

CHAPTER 3. PRIOR WORK 12

about the center of the context region. When sampled at the center of the context region, the
image intensity, gradient magnitude, structure tensor eigenvalues, and Hessian eigenvalues
are examples of invariant features.

Forcing invariance in the image feature responses is highly advantageous in terms of com-
putational efficiency and implementation simplicity: subsequent pipeline steps that depend
only on the image features (but not the raw image) are automatically invariant to transfor-
mations of the image without any added complexity, and invariant representations tend to be
relatively low dimensional. Forcing invariance at the level of the image features themselves
does, however, severely limit representational power: for example, it is impossible to deter-
mine the direction of a boundary from rotationally-invariant image features, and therefore
low-level invariant features are not suitable for computing higher-level information related
to boundary continuity or shape.

Explicit covariance

Under the explicit covariance approach, covariance with respect to some group H of rotations
and reflections is explicitly represented in the model, which we will describe very generally
as consisting of a set of variables V , and a set of relationships R defined over ordered subsets
of the variables. Variables correspond to inputs W ⊂ V (including the raw image intensity
values), any intermediate values, and outputs Y ⊂ V (for example, a representation of a
segmentation of the image). For v ∈ V , we will denote by v(I) the realization of v for
the input I. For each relationship r ∈ R, there is an ordered set P (r) (possibly empty)
of parameters. To specify the key covariance property, we will rely on the group-theoretic
concept of group actions:

Definition 3.1 (Left group action [35, p. 41]). A left group action of a group G on a set A
is a map ϕ : G × A → A (written as g · a for all g ∈ G and a ∈ A) satisfying the following
properties:

(1) g1 · (g2 · a) = (g1g2) · a for all g1, g2 ∈ G, a ∈ A; and

(1) e · a = a for all a ∈ A, where e denotes the identity element of G.

We denote by X ⊂ Z3 the coordinate space of the input and output. We denote by
T = {tx |x ∈ Z3} the group of translations by integer offsets. There is a natural group
action of the product group HT on X, where htx′ ·x is defined as the rotation/reflection h of
x+x′ about the origin ~0 ∈ Z3, and a natural group action of HT on the input I. Regardless
of how rotational covariance is handled, we make the assumption of translation covariance,
which can be formally stated as there being a group action of T on V , satisfying

v(t · I) = t · v(I) for all t ∈ T , v ∈ V .

Explicit covariance in the model corresponds to the following properties:

CHAPTER 3. PRIOR WORK 13

1. there is a group action of the full product group HT on the set V of variables, satisfying

v(g · I) = g · v(I) for all g ∈ HT , v ∈ V ;

2. there is a group action of HT on the set R of relationships satisfying

g · 〈v1, v2, . . .〉 = 〈g · v1, g · v2, . . .〉 for 〈v1, v2, . . .〉 = r ∈ R.

3. the set of parameters P (r) associated with each relationship r ∈ R is invariant to the
group action:

P (r) = P (g · r) for all g ∈ HT , r ∈ R.

The special case of requiring rotationally-invariant features corresponds to the property
that rotations of the input only spatially transform intermediate and output variables:

∀g ∈ HT : ∀v ∈ V −W : ∃x ∈ Z3 : v(g · I) = tx · v(I).

Explicitly encoding rotational covariance in the model effectively reduces the number of
parameters to be learned by a factor of |H|, which may be as high as 48 in 3-D. This tends
to significantly reduce training time. In contrast to rotationally-invariant features, there
is no loss of representational power, though there is considerable added implementation
complexity. Because covariance structure must be explicitly specified, however, there is
some possibility of redundancy in the model, due to learned parts of the learned model that
are coincidentally rotationally invariant (but not specified as such).

Data augmentation

Under the data augmentation approach, the model does not include any explicit handling
of rotation, but is trained on an augmented training set that includes all permitted trans-
formations of the original data. This approach is most general (in particular, it can equally
well handle any type of transformation, including transformations that are not axis-aligned
or non-rigid), simplest to implement, and unsurprisingly has been most widely used by prior
work.

Compared to explicit covariance built into the model, however, data augmentation does
increase computational and memory requirements during training by a factor roughly equal
to the order of the transformation group, which can be as high as 48 in 3-D. This can make
training of large models quite difficult in practice.

3.2 Slice-to-slice contour tracking

One of the earliest approaches considers the object reconstruction problem as a slice-to-
slice contour tracking problem [52], closely mirroring the basic workflow of a human tracer.

CHAPTER 3. PRIOR WORK 14

Under this approach, it is assumed that all objects to be reconstructed are tube-shaped
and that the volume is oriented such they all run approximately parallel to a particular
axis (typically the depth/sectioning axis); this assumption is mostly reasonable for image
volumes corresponding to bundles of parallel axons with cross sections perpendicular to the
sectioning axis, for which the approach was designed.

Following the active contour model paradigm [53], an energy function is defined that
assigns costs to 2-D closed contours. The energy is a combination of an internal energy
term, equal to the weighted sum of the squared magnitudes of the first and second derivatives
of the contour position as a function of arc length, which encourages smoothness, and an
image-dependent term, based on edge and intensity information in the image. The energy
is invariant to rotations and reflections in 2-D.

Starting from a user-specified seed point in the interior of an object in one slice, the
algorithm repeatedly samples a set of contour points along rays originating at the seed
point; these contour points define a simple closed curve. The sampled contour points are
restricted to lie within a fixed distance range from the seed point, based on the assumed
diameter of the object. The sampled contour that minimizes the energy function is chosen
as the initial contour.

A procedure based on Kalman filtering [12] is used to propagate the contour from one slice
to the next. The state and measurement vectors consist of 2-D positions and “velocities” for
each contour point. The “measurement” for each subsequent slice is initialized by applying
the 2-D velocities determined by optical flow [63, 19] to the contour state positions from the
previous slice, and then refined by sampling to minimize the contour energy. The Kalman
filtering makes the contour tracking more robust to poor contour fitting in a single slice due
to e.g. poor image contrast.

A key strength of this approach is that it relies on only a very small number of parameters
that can be tuned by hand without the need for any training data. Its usability is severely
limited, however, by the need to manually specify seed points, the inability to handle objects
that branch, terminate, or do not run parallel to the sectioning, and the fact that all objects
are tracked independently without any mutual exclusion.

3.3 Boundary classification

Given that cell membranes, which are specifically targeted by the heavy-metal stains used to
provide contrast in electron microscopy, are a very direct and primary indication of neuron
shape, it is natural to treat detection of boundaries as at least a key sub-problem. A wide
variety of machine learning-based methods have been employed for this purpose. These
methods all classify whether there is a boundary at some individual center position based
on some fixed-size surrounding image context. To predict boundaries at all positions within
the volume, the classifier is applied in a sliding window fashion. Depending on the structure
of the classification model, in particular whether it involves some form of weight sharing
such as convolutional filtering, it is in some cases possible to densely predict boundaries at

CHAPTER 3. PRIOR WORK 15

Boundaries must be at
least 1 voxel wide

Single-voxel
component

(a) On-voxel representation

Zero-width
boundaries

(b) Between-voxel representation

Figure 3.5: Comparison of on-voxel and between-voxel boundary representations. Colors
indicate the connected components implicitly defined by the boundary representation. In
the on-voxel representation (fig. 3.5a), boundary/background voxels are shown in gray. In
the between-voxel representation (fig. 3.5b), the presence of a boundary between neighbor-
ing voxels is indicated by a dark gray line, while the lack of a boundary is indicated by
a white line. Voxels not connected to any neighbors are indicated in gray. With the on-
voxel representation, boundaries must be at least one voxel thick, while the between-voxel
representation allows zero-width boundaries. The between-voxel representation cannot dis-
tinguish between background voxels and single-voxel foreground components, and therefore
such cases are always treated as background voxels.

all positions within an entire volume at a computational cost significantly lower than the
number of boundary positions times the cost to predict at a single position.

Boundary representation: voxels vs. adjacent voxel pairs

One important representational choice that has been identified in prior work [82, 81] is
whether boundaries are on individual voxels, i.e. a boundary takes up a voxel, or are between
neighboring voxels, as shown in fig. 3.5. The former case, placing boundaries on voxels,
can be seen as labeling voxels as either corresponding to foreground or background, with
separate foreground objects necessarily separated by at least one background voxel. In the
case of neuron segmentation, foreground voxels can be seen as corresponding to intracellular
space, with background voxels corresponding to extracellular space.

In the latter case, placing boundaries between voxels, boundaries correspond to edges in
a graph over voxels. Foreground/intraceullar space and background/extracellular space are
not explicitly represented; instead, voxels not connected to any neighbors are assumed to be

CHAPTER 3. PRIOR WORK 16

(a) Raw image (b) On-voxel boundaries

Figure 3.6: On-voxel boundary labeling as denoising. The image on the left is a 1002 voxel
region of a single section from the rabbit retina dataset E1088 [43], imaged using Serial Block
Face Scanning Electron Microscopy (SBEM) at a resolution of 22× 22× 30 nm. The tissue
was prepared using a horseradish peroxidase (HRP) solution [18] to enhance cell outlines.

background space. As a consequence, it is impossible to represent single-voxel foreground
components using the between-voxel boundary representation. For neuron segmentation
from electron microscopy, this is not an issue in practice because a single-voxel neuron is not
physically possible.

As has been noted in prior work [50], the on-voxel representation can be seen as a denoised
version of the original image. This relationship is particularly clear in the case of volumes
stained to enhance cellular outlines and hide intracellular structures, as shown in fig. 3.6.
For objects near the limit of the image resolution, i.e. only several voxels wide, the ability
of the between-voxel representation to specify zero-width boundaries can be important.

Prediction of on-voxel boundaries requires just a single classifier that predicts whether
there is a boundary at the center voxel of some context region. In contrast, prediction
of between-voxel boundaries requires, in principle, a separate classifier for each boundary
direction. For example, in the case of 6-connectivity, in which boundaries are considered
between adjacent voxels in the x, y, and z directions, but not diagonally, a total of 3 classifiers
are needed to predict given some context region whether the center voxel is connected to
the neighboring voxel in the positive x, y, and z directions. In practice, these classifiers may,
however, share much of their computation.

It has been observed that using the between-voxel representation for machine-learning-
based boundary classification yields better segmentation accuracy compared to using the

CHAPTER 3. PRIOR WORK 17

on-voxel representation. [82, 81] One possible explanation is that the between-voxel repre-
sentation may simply be more capable of representing the actual boundary structure, due
to zero-width boundary issues. Another possible explanation is that the single on-voxel
boundary classifier must learn to recognize boundaries in any direction. Because image cues
relevant to detecting a boundary in one direction may not be very relevant for detecting a
boundary in a completely different direction, the task may amount to learning a mixture of
classifiers for several different directions. In contrast, for between-voxel boundary predic-
tion, the separate per-direction models are explicit, which effectively amounts to a form of
additional supervision during training.

Machine learning architectures

The training of classifiers to predict either on-voxel or between-voxel boundaries depends on
image data with associated boundary information labeled manually by human tracers either
densely or sparsely.

Random forest classification using hand-designed features

One approach to boundary classification that has been taken is to train a random forest
classifier [15] on some vector of hand-designed image features computed over the context
patch. Several different combinations of features have been used:

• One method [5] combines the original center intensity value, difference of smoothed in-
tensity at center under two different Gaussian filters, gradient magnitude, sorted eigen-
values of the 3-D structure tensor computed over several different 3-D neighborhood
sizes, sorted eigenvalues of the Hessian, and statistics of the distribution of intensity
values and gradient magnitude within several different 3-D neighborhood sizes. This
method also served as the basis for local image classification in the open-source tool
ilastik. [78]

• Another method [83] uses an Adapted Zernlike feature vector obtained by keeping only
a fixed number of low-frequency bands of the Discrete Zernlike Transform (DZT) [67]
computed over a 2-D circular disk, and normalizing for rotation (but not reflection)
based on the most prominent orientation within the disk.

Both methods rely on image features that are fully rotation invariant (though in the case of
the DZT-derived features, only in 2-D), and consequently are used only to predict on-voxel
boundaries. Because the feature vector dimensionality is kept low, these methods achieve
reasonable results with only a small amount of training data; because the model capacity
is correspondingly limited, however, the improvement in accuracy from larger amounts of
training data is also quite limited.

In addition to detecting boundaries, these same classification architectures have also been
employed for other types of classification in electron microscopy images, such as detection
of mitochondria and glial cells.

CHAPTER 3. PRIOR WORK 18

Neural networks

Convolutional neural networks have been widely used for boundary classification, using either
on-voxel [50, 48, 23] or between-voxel boundary representations. [82, 81] There has been
significant focus on the loss function used for training: in addition to a simple independent
loss per boundary classification (i.e. pixel error) [50, 23], loss functions based on differentiable
relaxations of the Rand Index [82] and warping error [48], as well as a weighting based on
“local error density” [47] have also been employed.

Sequential networks in which successive networks are trained to correct the output of the
previous network have also been employed with some success. [76, 47] In addition to networks
operating directly on the raw image intensity values, other derived features have also been
employed, including sparse coding representations of patches [47] and a rotation-invariant
Radon-like feature representation [61, 76].

When a large amount of training data is available, neural networks have generally yielded
the best accuracy for boundary classification, though the performance is highly dependent on
the specific network architecture and the time required to train the networks is considerable
(on the order of weeks). While building explicit covariance into these models is possible in
principle, it has not yet been done; prior work involving neural networks has so far relied
only on the simpler approach to covariance of data augmentation.

3.4 Region formation

Boundary predictions are only one part of a pipeline for reconstructing neural circuits. To
convert the real-valued boundary prediction scores to a discrete segmentation, a region for-
mation procedure is required. The simplest such procedure is to compute connected compo-
nents based on thresholding of the boundary predictions. [50, 82, 48] One argument in favor
of an extremely simple region formation procedure is that it better matches the loss function
used to train the boundary classifier; it is difficult to directly account for more sophisticated
procedures in the training objective. A critical disadvantage, however, to pure connected
components is that it tends to result in many tiny, undesired components in certain areas,
and at the same time is also susceptible to falsely merging two components based on a single
boundary prediction false negative.

Variants of the watershed transform [11, 10] have been employed [83, 4] as a somewhat
more sophisticated alternative to connected components. The main benefit is the consol-
idation of tiny components, though marker-based watershed, using heuristics to place the
marker points, does serve to limit undersegmentation (at the cost of introducing much greater
undersegmentation).

Another approach [64, 37] uses a min-cut/max-flow algorithm [14] to partition 2-D slices
into intracellular and extracellular space, i.e. on-voxel boundary labeling. The connected
components of the intracellular space define the segments.

CHAPTER 3. PRIOR WORK 19

3.5 Agglomeration

While the segmentations produced by the region formation algorithms have in some cases
been used directly as the final output, this is obviously insufficient in the case of 2-D region
formation, and even for 3-D region formation the accuracy obtained using local boundary
information alone tends to be rather poor. To improve accuracy, a variety of agglomeration
methods have been proposed. The initial region formation is biased towards undersegmenta-
tion in order to produce 3-D supervoxels or 2-D superpixels. These serve as input to a region
agglomeration procedure that merges adjacent regions based on image and object features.

There are several key advantages to operating on supervoxels, rather than individual
voxels:

• poor local optima are less likely to be a problem;

• features can readily be computed over larger areas;

• computational efficiency due to the smaller number of decisions that must be consid-
ered.

Three main approaches to agglomeration have been used by prior work: independently
predicting whether to merge each pair of adjacent supervoxels, globally optimizing the set
of supervoxel merges to perform based on certain constraints, and applying a learned policy
to incrementally merge adjacent regions.

Independent agglomeration

The simplest approach to agglomeration is to treat whether to merge each pair of adjacent
supervoxels as independent decisions to be predicted by a trained binary classifier.

One prior method [5] relies on a random forest classifier using a collection of hand-
designed features computed over pairs of adjacent supervoxels:

• values derived from the number of voxels in each supervoxel and the length of the
boundary between them;

• statistics of the raw image intensity within each of the two supervoxels; and

• statistics along the boundary between the two supervoxels of the raw image intensity
values, gradient magnitude, largest eigenvalue of Hessian, and boundary prediction
scores.

Another prior method [64] (intended for the simpler task of segmenting individual mi-
tochondria rather than whole neurons) relies on a Support Vector Machine (SVM) classifier
using a different collection of features, computed independently for each supervoxel:

• a vector of ray descriptors [77] computed based on supervoxel shape and boundary
predictions, normalized for rotation (but not reflection);

CHAPTER 3. PRIOR WORK 20

• the vector of responses from oriented edge filters at the supervoxel center, normalized
for rotation; and

• statistics of the raw image intensity within the supervoxels.

The SVM classifies whether to merge two supervoxels based on the combination of both of
their feature vectors.

Because all merge decisions are made independently, training and testing are quite
straightforward for these two methods, but the improvement in accuracy is also limited.

Global optimization

One approach to improve the accuracy of independent agglomeration is to optimize a global
objective over all merge decisions subject to certain consistency constraints. A trained
or heuristically-defined classifier is still used to score pairs of adjacent supervoxels, but
instead of using these scores directly to determine which merges to include, as in independent
agglomeration, the score is treated as an additive per-pair cost/reward that is added over all
merge decisions to define the global objective.

One prior method [4] formulates this optimization as a correlation clustering problem [7],
which enforces transitive consistency of merge decisions: if a supervoxel a is connected to a
supervoxel b to which it is also adjacent, then a and b must be merged. While correlation
clustering is NP-complete, an approach based on iteratively solving an integer linear pro-
gram (ILP) to which violated constraints are successively added proved highly effective in
practice. Transitive consistency is a very powerful constraint for limiting undersegmenta-
tion, particularly in the case of large objects between which there are many pairs of adjacent
supervoxels. It does, however, have the disadvantage of being potentially too restrictive, in
that a neuron touching back on itself, as shown in fig. 3.7, violates this constraint.

Another prior method, called segmentation fusion [83], uses a different formulation de-
signed specifically for anisotropic-resolution volumes (such as may be obtained using ssTEM
or ATUM-SEM):

• sets of possibly overlapping 2-D superpixels, at multiple scales, are found for each 2-D
section, by computing watershed segmentations at multiple thresholds based on bound-
ary classification scores (in highly anisotropic volumes, performing 3-D segmentation
directly based on boundary scores may not yield reasonable results);

• an ILP is used to select

1. a non-overlapping subset of the superpixels in each section; and

2. a consistent set of edges linking superpixels that overlap between adjacent sec-
tions.

Within each 2-D section, only a non-overlapping subset of the candidate superpixels for that
section may be chosen. Edges link superpixels between adjacent 2-D sections, but not within

CHAPTER 3. PRIOR WORK 21

Figure 3.7: Distinction between local and global connectivity. In the cross-section of raw
data on the left, there is clear evidence that the two points indicated within the yellow
bounding box are separated by cell membrane. From the manual annotation overlaid on
the right, it is clear, however, that they are nonetheless part of the same cell, highlighted
in red. Thus, within a sufficiently local area the two points are disconnected, but globally
they are connected. Distinguishing the connectivity of points at multiple scales is critical for
accurate shape modeling. If connectivity is represented only globally, as in prior agglomera-
tion work [4, 68], it may be impossible to reconcile strong local evidence of a cell boundary
between two parts of the same sell in cases of self-contact, leading to poor learning and
incorrect predictions for these cases.

sections; larger segments within each 2-D section are possible only to the extent that there
are larger superpixels in the candidate set. The optimization objective is to maximize the
sum of heuristically-defined non-negative rewards corresponding to each selected superpixel
and each selected edge. The key consistency constraint is that each superpixel is linked to
at most one superpixel above and at most one superpixel below, with the result that the
resultant 3-D components are effectively limited to being tubes. A superpixel linked in only
one direction corresponds to an end of such a tube.

This constraint strongly limits the propagation of false merge errors, and is readily sup-
ported by standard ILP solvers without the need for any special constraint sampling. There
is the key limitation, however, that branching structures of neurons are simply not handled
at all by this approach.

A variant of this approach, called SOPNET [37], attempts to handle branching by relaxing
the consistency constraint to allow linking a superpixel in one section to at most 2 different
superpixels in the section above, and at most two different superpixels in the section below.
Rewards, computed as a function of various hand-designed features of the segments, are
learned for:

• regular one-to-one links;

• split/merge links between two superpixels in one section and a single superpixel in an

CHAPTER 3. PRIOR WORK 22

adjacent section.

• terminations, corresponding to a superpixel without any link in a given direction.

Learned-policy agglomeration

An alternative to the optimization view is to consider agglomeration as a sequential decision
problem for which a policy must be learned. [49, 68, 13] Starting from an initial overseg-
mentation (consisting of 2-D superpixels or 3-D supervoxels), a learned policy sequentially
chooses to merge a pair of nearby regions (or to stop agglomeration); the policy simply pre-
dicts a score for each pair of nearby regions based on some set of features, and chooses the
best scoring pair, or terminates if the best score does not exceed some threshold. Notably,
under this approach there is no global objective defined over segmentations that is being
optimized.

A key strength of this approach is that features (and consequently the pairwise merge
scores) are recomputed with respect to the larger agglomerated regions as agglomeration
proceeds; scores computed with respect to larger regions are potentially more reliable. In
contrast, the methods based on integer linear programming rely on fixed scores defined based
on the original superpixels/supervoxels, just like independent pairwise agglomeration.

Features computed over pairs of regions by these methods include:

• the number of voxels in each of the two regions; [49, 68, 13]

• distance between the centroids or closest points of the two regions; [49]

• statistics of the boundary classification scores (and other classification scores, like pres-
ence of mitochondria) within each region or along the boundary between the two re-
gions; [49, 68, 13]

• measures of the primary orientation of each region; [49, 68, 13]

• shape representations of the two segments based on ray descriptors or log-polar binned
histograms of boundary locations; [13]

• the raw image data, the mask for each of the two regions, and/or local image/joint
image and region mask features pooled over the segments or along their boundaries. [13]

23

Chapter 4

Error Metrics for Segmentation

Error metrics for evaluating the accuracy of segmentations are critical for:

• determining whether the segmentation is of sufficient accuracy for use in deriving sci-
entific results;

• comparing the effectiveness of different methods or variants (i.e. for human learning);

• defining optimization objectives for machine learning.

Prior work has investigated the accuracy of humans at segmenting neurons in electron
microscopy volumes. [43, 41, 44] Despite the frequent occurrence of both attention-related
and difficulty-related errors by human annotators, particularly non-expert ones, consensus
results obtained from multiple annotators appear to be highly reliable. While it is impos-
sible to rule out correlated errors between multiple human annotators, existing automated
methods are in any case significantly less accurate, and therefore it is reasonable to evaluate
accuracy in terms of an assumed ground truth segmentation obtained by manual annotation.
These ground truth segmentations may be in the form of dense reconstructions that precisely
mark all voxels belonging to each neuron, or skeleton reconstructions that specify just the
approximate center line of each neuronal process by a set of 3-D line segments.

Even with a ground truth segmentation, determining a reasonable error metric for evalu-
ating an automated segmentation is a non-trivial problem. Many scientific questions depend
on the reconstructed circuit graph specifying the synaptic connections between neurons. The
accuracy of this connectivity information is directly related to the chance that there is a path
from a synapse to the correct soma (cell body), and no additional paths to other somas. In
principle such a metric could be computed based on ground truth skeletons or dense seg-
mentations, but because the distance from a synapse to the soma may be extremely large,
this metric has several disadvantages of in practice:

• fully tracing many such synapse to soma paths manually would be very expensive;

• it is not suitable for evaluating accuracy on small volumes;

CHAPTER 4. ERROR METRICS FOR SEGMENTATION 24

• it is meaningful only if the overall accuracy is sufficiently high that a reasonable fraction
of synapse to soma paths are correct.

The latter two disadvantages in particular make this metric unsuitable for defining a training
objective function, as a not-fully-trained model can be expected to have low accuracy.

For evaluation using smaller volumes and for machine learning, prior work has therefore
considered a number of alternative error metrics.

4.1 Per-voxel error

One very straightforward approach to evaluating segmentation accuracy is based on the
boundary representation of a segmentation (section 3.3): predictions for the presence of a
boundary at each voxel position (for an on-voxel representation) or between each pair of
neighboring voxels (for a between-voxel representation) are treated as independent classifi-
cation problems.

This approach has the advantage of being simple to implement and entirely local, such
that it can reasonably be used with small volumes, or even just a sparse set of locations
with boundary labels. It cannot, however, be used with ground truth specified by skeleton
reconstructions, since skeletons do not actually specify boundary locations.

For actually validating the accuracy of a segmentation, per-voxel boundary accuracy is
problematic, because it is highly sensitive to the precise boundary position, but relatively
insensitive to holes in boundaries, which can result in false mergers. Specifically, shifting
the position of a long boundary by a single voxel may result in a large change in boundary
accuracy, while adding a single-voxel hole in a boundary will result in a very small change
in boundary accuracy. Despite these shortcomings, it has been used quite successfully for
defining a training objective for boundary classifiers, particularly when combined with ap-
propriate balancing of the boundary and non-boundary class weights. [50, 5, 23]

4.2 Rand Index

Rand Index [70] is a similarity measure between two arbitrary clusterings (i.e. partitions) of
a common set of points.

Definition 4.1. Given partitions X, Y of a set A, the Rand Index of X and Y is defined as

1(|A|
2

)
∣∣{{a, a′} ∈ [A]2

∣∣ (a ≡X a′ ∧ a ≡Y a′) ∨ (a 6≡X a′ ∧ a 6≡Y a′)
}∣∣ ,

where a ≡X a′ denotes whether a and a′ are contained in the same subset in X.

When applied to segmentations of 2-D or 3-D images, with the points A corresponding
to voxels and the clusters corresponding to regions, the Rand Index is the fraction of pairs

CHAPTER 4. ERROR METRICS FOR SEGMENTATION 25

of voxels that are either connected (i.e. part of the same region) or disconnected (i.e. part of
different regions) in both segmentations.

Because the Rand Index is constrained to the interval [0, 1], a Rand error can be defined
as 1 minus Rand Index, equal to

1(|A|
2

)
∣∣{{a, a′} ∈ [A]2

∣∣ (a 6≡X a′ ∧ a ≡Y a′) ∨ (a ≡X a′ ∧ a 6≡Y a′)
}∣∣ ,

where {{a, a′} ∈ [A]2 | a 6≡X a′ ∧ a ≡Y a′} is the set of falsely merged (connected) pairs in Y
relative to a ground truth segmentation X, and {{a, a′} ∈ [A]2 | a ≡X a′ ∧ a 6≡Y a′} is the set
of falsely split (disconnected) pairs in Y relative to X.

Compared to the per-voxel boundary mask error, Rand Index has the advantage of being
much less sensitive to the precise boundary position, and much more sensitive to holes in
boundaries, as shown in fig. 4.1. It also does not require a dense ground truth segmentation;
it can be evaluated on ground truth skeleton reconstructions, although if the skeletons are
sparse the extent to which the Rand Index metric detects false merges may be limited.

A key result shown in prior work [82] is that a subdifferentiable structured classification
loss can be defined based on the Rand Index, and that neural network boundary classifiers
can be trained to minimize this loss. Compared to a per-voxel boundary loss, this inherits
the advantages of Rand Index, but has the disadvantage of making the objective much less
stable, which in practice makes training significantly more difficult.

4.3 Variation of Information

Variation of Information [65] is an alternative information-theoretic distance metric between
two clusterings.

Definition 4.2. Given partitions X = {X1, X2, . . .} and Y = {Y1, Y2, . . .} of a set A, the
Variation of Information between X and Y is defined as

VI(X, Y) := −
∑

Xi∈X

∑

Yj∈Y

|Xi ∩ Yj|
|A|

[
log2

(|Xi ∩ Yj|
|Xi|

)
+ log2

(|Xi ∩ Yj|
|Yj|

)]
.

Given a uniform distribution over a ∈ A, if we define random variables i and j corre-
sponding to the events a ∈ Xi and a ∈ Yi, respectively, then

VI(X, Y) = H(i|j) +H(j|i),

where

H(i|j) = −
∑

Xi∈X

∑

Yj∈Y

|Xi ∩ Yj|
|A| log2

(|Xi ∩ Yj|
|Yj|

)
.

CHAPTER 4. ERROR METRICS FOR SEGMENTATION 26

d = 0

Original

d = 1

RI = 0.81
B = 0.94

d = 3

RI = 0.57
B = 0.94

0 1 2 3 4

Displacement d

0.5

1.0

S
im

il
ar

it
y

Rand Index (RI)

Boundary similarity (B)

(a) Sensitivity to boundary displacement. We compare the effect on Rand Index (RI) and boundary
similarity (B) of displacing a boundary by d pixels (out of a total height of 10), without affecting
the topology. The Rand Index decreases gradually as the displacement increases, while even a
single pixel displacement causes the boundary similarity to jump to its minimum value.

g = 0

Original

g = 1

RI = 0.5
B = 0.99

g = 3

RI = 0.5
B = 0.98

0 1 2 3 4 5 6 7 8 9

Gap g

0.5

1.0

S
im

il
ar

it
y

(b) Sensitivity to boundary gap. We compare the effect on Rand Index and boundary similarity
of introducing a g-pixel gap in 10-pixel wide boundary. Any non-zero gap drastically changes
the topology and number of connected components. Consistent with this, the Rand index jumps
immediately to the minimum value with any gap; in contrast, the boundary similarity decreases
very gradually.

Figure 4.1: Comparison between Rand Index and per-voxel boundary similarity, equal to the
fraction of boundary locations that match, on several simple 10 × 10 pixel examples using
a between-voxel boundary representation. We compare the sensitivity of the two metrics to
displacement of the boundary (fig. 4.1a) and introduction of a gap in the boundary (fig. 4.1b).

CHAPTER 4. ERROR METRICS FOR SEGMENTATION 27

α = 0.2

RI = 0.98
VI = 0.2

α = 0.5

RI = 0.875
VI = 0.5

α = 0.8

RI = 0.68
VI = 0.8

0.0 0.2 0.4 0.6 0.8 1.0

Segment size fraction α

0.0

0.2

0.4

0.6

0.8

1.0

Rand Index (RI)

Variation of Information (VI)

Figure 4.2: Comparison between Rand Index and Variation of Information of segment scaling
behavior. In the top row the blue segment is an α ∈ {0.2, 0.5, 0.8} fraction of the total area;
the red segment takes up the remaining 1−α fraction. In the bottom row, the blue segment
is split into two equal parts, while the red segment remains unchanged. We show the Rand
Index (RI) and Variation of Information (VI) between each segmentation in the top row and
the corresponding segmentation in the bottom row. The Variation of Information VI = α is
exactly equal to the fraction α of the area that was split, while the Rand Index RI = 1−α2/2
decreases as a quadratic function of α.

If we consider X to be the ground truth segmentation and Y to be the predicted seg-
mentation, then H(X|Y) corresponds to the false mergers in Y of components of X, and
H(Y |X) corresponds to false splits in Y of components of X.

Both Rand Index and Variation of Information have been used by prior work for eval-
uating segmentations of neural tissue. [3, 68] A key advantage of Variation of Information
over Rand Index, recognized by prior work [68], is that it effectively weights each segment
linearly in its size, while Rand Index effectively weights each segment quadratically in its
size, as shown in fig. 4.2. Because neuronal processes within the same volume can vary
greatly in size, the quadratic weighting of Rand Index can be undesirable, particularly when
evaluating large volumes.

28

Chapter 5

Scalable Wide Sparse Learning

In this chapter, we introduce a highly-scalable, layered architecture for classification on
3-D volumes: unlike conventional dense deep learning approaches, we rely on simple, paral-
lelizable clustering algorithms and convex optimization to learn wide, sparse models. This
architecture addresses a key limitation of prior work: lack of sufficiently large and expressive
models. We avoid the largely unparallelizable bottleneck of stochastic gradient descent that
has limited approaches to this problem based on dense convolutional neural networks to a
small number of filters. We exploit rotational invariance of the data distribution by explicitly
representing rotational covariance in the model, which reduces computational and memory
requirements during training by 48 fold. This, in combination with a highly-optimized GPU
implementation of certain sparse convolution-like operations, enables our approach to easily
scale to models with 10000 or more (convolution-like) channels at each layer.

5.1 Methods

Our full architecture for the electron microscopy segmentation task is shown in Figure 5.1.
Each node (corresponding to a box in the diagram) has a set of channels, and has a value
for each channel and position within the data volume. Depending on the type of node, the
position domain may be the set of voxel positions, the set of edges (using 6-connectivity)
between two adjacent voxels, or the set of corners between voxels. Our approach consists of
three main components: k-means-based quantization of all overlapping patches of the image
data for use as classification features; supervised feature pooling based on sparse multiclass
classification; classification of edges between voxels, using the k-means quantization features
directly as well as the output of the pooling layer. The final segmentation is produced by
connected components applied to the thresholded edge scores. The structure is similar to a
convolutional network, but some of the “filters” are not linear, and due to the sparsity, an
implementation of the linear parts using regular convolutions would be extremely inefficient.

We argue against the commonly state belief that training time is not an important
consideration. Under the assumption that a model will be trained once and then applied to

CHAPTER 5. SCALABLE WIDE SPARSE LEARNING 29

Microscopy data Training labels

Image patch
k-means

Image and
label patch
k-means

Sparse
multiclass
logistic

regression

Boundary
predictions

(logistic regression)

Segmentation

Figure 5.1: Full architecture for the electron microscopy segmentation task represented as a
computation graph. Blue lines indicate that each position in the output depends on a patch
of the input centered at that position, while black lines indicate that each position in the
output depends on only a single input position. Dashed lines indicate information used only
for training the model. 2-D slices are shown as illustrations, but all nodes actually operate
on 3-D patches. The final classifier actually predicts boundaries between adjacent voxels,
and only an approximation can be shown.

a very large amount of test data, training time is indeed not very significant. However, this
assumption rarely holds in practice: machine learning approaches generally have to be tuned
carefully to each particular setting. In some cases, the choice of hyperparameters can even be
more important than the training itself.[69] When the training of each particular variant takes
days, weeks, or even months, this tuning becomes impractical. For the particular application
of mapping neuroanatomy in electron microscopy volumes, the microscopy techniques are
still in a state of flux, and it may also be desirable to quickly retrain a model when more
labeled data is produced or existing labeled data is corrected.

For this reason, our architecture does not rely on conceptually complicated algorithms;
rather, it is designed to use only components that can scale to large model sizes and can be
effectively parallelized on a cluster of machines, at test time, and also during training.

k-means clustering of the image data

Recent results[26, 24, 25] have demonstrated the effectiveness of k-means for computing
feature representations. On natural images, it has been found to be important to use it
in conjunction with whitening and contrast normalization. On the neuroanatomy electron
microscopy datasets, this does not appear to be the case: whitening methods only seem
to amplify noise, possibly because the fine intracellular structures too small to be modeled

CHAPTER 5. SCALABLE WIDE SPARSE LEARNING 30

explicitly are nonetheless poorly modeled as Gaussian noise. Lighting and the unreliability
of shading information in natural images are also not relevant considerations for microscopy.
Provided that microscopy conditions are carefully controlled, the absolute intensity at a voxel
can be highly informative. In cases where some correction is needed, it is likely better to
do it explicitly and globally as a preprocessing step rather than implicitly as part of feature
extraction.

Based on initial experimentation and these intuitions, to compute our primary feature
representation, we used k-means with the L1 distance metric applied to all overlapping
fixed-size (8× 8× 8 in our experiments) patches of the raw data, using very large numbers
of clusters (up to 20000). This process is completely unsupervised. Although soft k-means
is often reported to work somewhat better than hard k-means, we nonetheless used hard
k-means, as having a very sparse representation is critical to the efficiency of our approach.
It is patches of these quantization identifiers, which we refer to as primary features, that
serve as input to subsequent layers of the network.

The bottleneck in both learning the clusters and computing the quantization of all patches
once the clusters have been learned is the computation of the distance between each over-
lapping patch and each cluster. Unfortunately this cannot be computed efficiently for L1

distance using the Fast Fourier Transform as it can for L2 distance. Instead, direct compu-
tation is needed, a task that requires an extremely high number of arithmetic operations (for
20000 clusters and 8 × 8 × 8 patches, over 10 million sum of absolute difference operations
per voxel). It is also a task ideally suited to GPU computation due to its SIMD (single
instruction multiple data) structure and the extremely high ratio of computation to memory
access. As this is not precisely a standard linear algebra operation, and we are unaware
of an existing optimized implementation 1, we used a code generation approach to produce
our own implementation that could be adjusted for different blocking strategies in order
to maximize performance for each patch size. Due to the data sharing from overlapping
patches, by having each GPU core operate on a small 3-D block of data points and a block
of (around 8) consecutive clusters at a time, and by operating on one row (the last dimen-
sion of the 3-d array that is contiguous in memory) at a time using an unrolled loop, we
achieved an extremely high arithmetic to memory access density, such that performance was
limited only by the peak GPU performance of the underlying element-wise operation, i.e.
sum-of-absolute-differences in the case of L1 distance (≈ 225 billion elements/s per GPU),
on the NVIDIA Tesla M2050 GPUs on which we ran the experiments.

A tree-based or hashing-based approximate nearest neighbor method could in principle
be used as an alternative to the brute-force computation we use, but given the relatively
small number of clusters (up to 20000 in our experiments), and the near impossibility of fully
exploiting GPU parallelism with such methods, we do not think it likely that such methods
would improve performance.

1Vector quantization, and the underlying vector distance computation are such basic operations that
there are no doubt countless public and private GPU implementations in some form or another, we are
not aware of prior work specifically relating to 3-D overlapping patches, for which our implementation is
optimized.

CHAPTER 5. SCALABLE WIDE SPARSE LEARNING 31

Supervised feature pooling

The primary features described in the previous section are inherently limited to providing
information about a very local region of the data, and it is not practical to try to increase
the size of this region increasing the patch size much beyond 8× 8× 8, due to the curse of
dimensionality. Furthermore, it is desirable to focus any representation of large regions of
the data on precisely what is most relevant for distinguishing the different structures in the
data relevant to our learning task. Therefore, we propose a simple supervised feature pooling
approach in which we first jointly cluster patches of the training data with their labels using
a combined distance metric on both the data and the labels, and then train a multiclass
classifier to predict the joint class at each position from just the primary features.

For the microscopy data, we used a weighted combination of L1 distance on the image
patch and Hamming distance on the label patch (which specifies the connectivity of all
pairs of adjacent voxels within the patch), with the relative weighting chosen so that the
contribution to the average distance from each of the two parts is approximately equal at
convergence. The motivation for jointly clustering both the image and label data, rather than
the label data alone, is that the labels only specify neuron boundaries, and some structures
may correspond to the same label pattern but have very different appearances. For instance,
mitochondria are labeled as just intracellular space, but appear as very dark structures with
a characteristic shape and appearance in the data.

To predict the joint class from the primary features, we train a multiclass logistic regres-
sion model, allowing each class to depend on only the n (up to 10000 in our experiments)
most-correlated features, where each selected feature corresponds to given a image-only clus-
ter and an offset from the center of the joint patch being predicted. Without this feature
selection, the model would be unreasonably expensive to train and due to the extremely
high number of parameters, likely to overfit. We use a sparse representation that explicitly
lists which joint class/feature pairs are present at each position in the training data, which
requires a large amount of memory but enables very efficient evaluation of the likelihood
objective and gradient. To optimize the model, we use L-BFGS and distribute the data
over a cluster of machines. Our pooled feature representation simply specifies the maximum
probability class under the learned model at each position. Computing the maximum proba-
bility class at each position can be done very efficiently and does not require a large amount
of memory.

Boundary classification

Patches of both the primary and pooling features serve as input to a final singleclass logistic
regression classifier for predicting the segmentation boundaries of neurons. Because this is
a singleclass classifier, we can afford to use dense weights at this stage. We optimized the
logistic regression model using L-BFGS and used a combination of L1-regularization, L2-
regularization, and early stopping for regularization. Computing classification scores and
gradients are essentially sparse convolution operations. We are not aware of any publicly-

CHAPTER 5. SCALABLE WIDE SPARSE LEARNING 32

available optimized implementation of these operations, so we implemented our own opti-
mized GPU implementations. Sparse operations are inherently limited by memory band-
width, which makes them unable to take full advantage of the processing power of a GPU,
but a GPU implementation can still be advantageous due to the typically several times
higher memory bandwidth of a GPU compared to a CPU.

For forward computation of the logistic regression classifications, we precompute a sparse
array representation of the feature values such that each GPU core could efficiently operate
on disjoint 3-d blocks of the output, eliminating the need for slow atomic operations. Fur-
thermore, the precomputed sparse representation divides each block of feature values into
independent sets such that only a single synchronization barrier between GPU threads is
needed after each independent set, rather than after each element. Performance was pri-
marily limited by GPU memory bandwidth in loading the model weights (≈ 150GB/s per
GPU).

For computation of the feature weight gradients from the classification score gradients,
we precomputed a different sparse array representation of the feature values such that each
GPU core could operate on a block of model weights (stored in registers). Performance was
primarily limited by GPU memory bandwidth in loading the classification score gradients
(≈ 150GB/s per GPU).

Classification objective

As described in section 3.3, the choice of boundary representation is a key modeling decision.
Prior work[81] that has concluded that classifying between-voxel boundaries rather than on-
voxel boundaries yields better performance, and we have confirmed this to be the case as
well empirically in initial experiments, and believe one reason is that it allows each of the
three classifiers to specialize on a particular direction of boundary edge, and the “average”
appearance of boundary edges at different orientations is not necessarily a likely boundary.
We therefore chose to use a between-voxel representation that (in principle) requires training
three separate classifiers for boundaries in the x, y, and z directions, though due to rotational
invariance of the data, these may not be independent.

Another key modeling choice is the objective function for the classifier. As discussed in
chapter 4, trying directly maximizing the per-boundary label likelihood is a simple choice,
but has the key disadvantages of sensitivity to precise boundary location and insensitivity
to gaps in boundaries. Prior work has suggested a relaxation of the Rand Index [82] and
an approximation of a topology-based warping error [48] as better choices for defining an
objective. However, neither metric allows for a convex objective, which eliminates any
convergence guarantees, and we found in practice both metrics make learning much less
stable and much more sensitive to optimization parameters.

Both of these error metrics can be seen as dynamically reweighting the boundary loca-
tions. We take the simpler approach of defining a static reweighting of boundary locations,
based on similar intuition to warping error. Specifically, the true boundary edges between
an intracellular voxel and an extracellular voxel or a voxel in a different segment are given

CHAPTER 5. SCALABLE WIDE SPARSE LEARNING 33

the weight wb. Edges between two extracellular voxels are given 0 weight. To compute the
weights for intracellular edges, we dilate the boundaries by up to 2 voxels under the con-
straint that the boundary topology does not change. Edges between two intracellular voxels
where at least one of them is not within the dilated region are given weight wi. Remaining
intracellular edges are given 0 weight. The weights wi and wb are chosen such that the total
weight for boundary and non-boundary edges is equal. This simpler approach has the key
advantage of retaining convexity of the objective.

Rotational invariance/covariance

As described in section 3.1, taking advantage of rotational invariance and covariance proper-
ties of the data has the potential to significantly reduce the amount of training data required
as well as computational costs. We took the approach of enforcing directly that the model
is fully rotationally covariant, without enforcing rotational invariance of the features.

We explicitly specify the orbit structure of each channel set C (corresponding to the set
of k-means clusters). Each orbit is isomorphic to a subgroup of G. Applying a transform
g ∈ G to the model rotates a value in channel c at position x to position g · x in channel
g · c, where · denotes the group rotation action. Based on the orbit structure, we can infer
the reduced non-redundant space of weights. This does not restrict the expressivity of the
model, and by optimizing each part of the model in its reduced non-redundant parameter
space, we avoid the need to include rotated version of the data. The primary downside to
this approach is greater implementation difficulty. There is an additional minor downside,
which is the need to explicitly specify the orbit structure. In practice, for our experiments we
always require all orbits to be isomorphic to the full invariance group G, which is guaranteed
to impose no additional assumptions on the model but may skip some opportunities for
removing redundant weights.

5.2 Experiments

We evaluated our approach on two datasets: a Drosophila melanogaster larval neuropil
dataset collected using Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) at a
resolution of 10× 10× 10 nm voxels [68], and a rabbit retina dataset (referred to as E1088)
collected using Serial Block Face Scanning Electron Microscopy (SBEM) at 22× 22× 25 nm
voxel resolution [43].

Drosophila larva FIB-SEM dataset

On this dataset, we compared our approach against what was, at the time of our experiments,
the state-of-the-art approach for segmentation of FIB-SEM datasets: [4]

1. A random forest classifier (RF1) is trained to detect boundaries using a small set of
rotationally-invariant features computed using standard image processing operations,

CHAPTER 5. SCALABLE WIDE SPARSE LEARNING 34

such as gradient magnitude, Hessian eigenvalues, bilateral filtering, and structure ten-
sor.

2. A seeded-watershed algorithm is used to obtain a supervoxel segmentation using the
boundary predictions. A second random forest classifier (RF2) is trained to predict
which adjacent supervoxels should be merged, using several size features as well as
statistics collected along the face of some of the original features for RF1 as well as
the output of RF1.

3. Finally, the algorithm computes the globally optimal segmentation that maximizes the
product of face probabilities (based on RF2) subject to the multicut constraint (MC),
which ensures consistency between merged faces.

Our comparison is based on source code posted by the author for the multicut-constrained
optimization; the first two steps were reimplemented exactly according to the description in
the paper.

This dataset consists of a single 5003 voxel volume. For both approaches, we fixed one
quarter of the volume as training data, one quarter of the volume as validation data, and
the remaining half as test data.

The volume was manually annotated with a dense segmentation by human tracers, spec-
ified by on-voxel boundary labels with a uniform single-voxel thickness. [68] Because the
precise voxel-level placement of boundaries is insignificant to intended uses of automatic
segmentation, we dilated the ground-truth boundary up to 1 additional voxel in all direc-
tions (according to 26 connectivity) subject to topology preservation and only computed the
error metrics outside of the dilated boundary.

For our sparse/wide approach, we used the complete symmetry group of all 48 axis-
aligned rotations and reflections. We used 416 · 48 = 19968 8× 8× 8 clusters for the image
patch k-means, 208 · 48 = 9984 8 × 8 × 8 clusters for the joint image and label patch k-
means (which serve as the classes for the pooling features), and used 9 × 9 × 9 patches of
the primary features as input to the pooling layer. The final classifier used 16 × 16 × 16
patches of both the primary and pooling features. We also evaluated a final classifier that
uses only 16×16×16 patches of the primary features, and does not use the pooling features.
We performed a grid search over regularization parameters on the validation set. The best
performing model (with and without the pooling features) was then evaluated on the test
set. The segmentation accuracy on the test set, measured using Variation of Information and
Rand Index, are shown in table 5.1. We also evaluated the effect of the amount of training
data and number of first-layer k-means clusters on segmentation accuracy; the results are
shown in fig. 5.2.

Rabbit retina SBEM dataset

This dataset consists of a 2143 labeled voxel training volume, a 963 labeled voxel validation
volume, and a 1003 labeled voxel test volume. On this dataset, we compared our sparse/wide

CHAPTER 5. SCALABLE WIDE SPARSE LEARNING 35

Table 5.1: Results on the Drosophila larva FIBSEM test set using the optimal threshold.
Both the Variation of Information (VI) and Rand Index (RI) are shown.

Approach VI Rand index

RF1 1.74201 0.975867
RF1+RF2 0.57070 0.995318
RF1+RF2+MC 0.45770 0.995620

Ours (Primary) 0.33565 0.999042
Ours (Primary+Pooling) 0.32485 0.999134

Figure 5.2: Effect of training data size and number of primary feature channels (k-means
clusters) on validation performance, measured using Variation of Information (VI). Increasing
the dimensionality of the primary feature representation significantly improve performance
provided that there is sufficient training data, and even the largest feature dimensionality
tested may not saturate performance. Increasing the amount of training data uniformly
improves performance, and performance also does not appear to saturate even with the full
amount of training data.

CHAPTER 5. SCALABLE WIDE SPARSE LEARNING 36

Table 5.2: Results on Rabbit retina SBEM test set. (22× 22× 25nm3) 214× 214× 214 voxel
training set, 100 × 100 × 100 voxel test set. The Rand Error, equal to 1 minus the Rand
Index, is shown.

Method Rand Error

Baseline .0499

Boundary classification methods
CN [50] .0084
ilastik [78] .0064
BLOTC CN [48] .0056
MALIS CN [82] .0055
Ours (Primary) .0036

Agglomeration methods
Single Linkage [49] .0049
LASH [49] .0029

approach to results for both pure boundary classification, as well as agglomeration applied
on top of boundary classification, given in prior work for the same train/test split. [49]

For our sparse/wide approach, because of the anisotropic resolution of this dataset, in-
stead of the full order 48 symmetry group used for the FIB-SEM dataset, we used the
symmetry group of order 16 consisting of all 8 axis-aligned rotations and reflections in the
x-y plane, combined with optional reflection in the z direction. We used 1248 · 16 = 19968
8×8×8 clusters for the image patch k-means, from which we computed the primary features.
The final classifier used 16× 16× 16 patches of the primary features. As for the FIB-SEM
dataset, we performed a grid search over regularization parameters on the validation set.

The segmentation accuracy on the test set for each method is shown in table 5.2. In
order to compare against the results given in prior work, we measured the accuracy of our
method using Rand Error, equal to 1 minus the Rand index.

5.3 Discussion

On the Drosophila FIB-SEM dataset, our pure boundary classification approach, using just
thresholding and connected components to compute the segmentation, significantly outper-
forms both the random forest-based boundary classification as well as the segmentation
obtained by the state-of-the-art multicut-based agglomeration algorithm. Our pooling algo-
rithm provides a small additional improvement. The very large number of parameters due
to the very wide architecture of our model might seem to pose a risk of overfitting, but as

CHAPTER 5. SCALABLE WIDE SPARSE LEARNING 37

shown in fig. 5.2, this does not seem to occur in practice; in fact, even with the smallest
training subset, the largest model still performs best, and the improvement becomes larger
as the amount of training data is increased.

On the SBEM dataset, our pure boundary classification approach outperforms all prior
boundary classification approaches, including ones based on deep convolutional neural net-
works. It also exceeds the performance of the single linkage agglomeration, but does not
quite match the performance of the LASH agglomeration method, which layers a sophis-
ticated agglomeration approach on top of boundary classification. Although not tested in
our experiments, methods like LASH could equally well be used on top of our boundary
prediction.

A key advantage of our approach is that the training, based on clustering and batch
optimization, is highly parallelizable, and can be completed in a matter of hours. In contrast,
the deep neural network boundary classification methods to which we compared our method
required weeks of training.

Because of the sparsity structure of our architecture, increasing the number of first-layer
k-means clusters increases the computational cost of the feature computation, and increases
the number of parameters, but the computational cost of the remainder of the approach does
not increase. It is therefore quite feasible to increase the number of clusters even beyond
what we used in our experiments.

38

Chapter 6

Correction of Inter-Section
Discontinuities

6.1 Introduction

Recent technological developments in automated volume electron microscopy (EM) enable
the acquisition of multi-terravoxel volumes at near isotropic resolution in the range of 3–
30 nm [33, 40, 59, 74, 62]. These high-resolution image volumes are critical to fields such
as connectomics, which aims to comprehensively map neuronal circuits by densely recon-
structing neuron morphology and identifying synaptic connections between neurons [43, 41,
16].

All methods for volume electron microscopy, aside from tomography, which is only suit-
able for samples less than 1 micron in thickness, assemble the volume by spatially aligning a
stack of two-dimensional images. Consequently, there can be substantial artifacts in the im-
age volume, most notably serious discontinuities along the section axis. These are the result
of variations in section thickness, sample deformations, and variations in imaging conditions.
These artifacts are particularly a problem with ATUM-based SEM (Automated Tape Col-
lecting Ultramicrotome-based Scanning Electron Microscopy) [74], a method that currently
achieves the highest throughput and also has the advantage of preserving tissue sections,
in contrast to the one-shot destructive imaging process of Serial Block Electron Microscopy
(SBEM) [33] and Focused Ion Beam Scanning Electron Microscopy (FIBSEM) [59].

Figure 6.1 shows the artifacts typical in ATUM-based SEM volumes. In other imag-
ing domains, improved imaging techniques and mathematical corrections have been devised
for reducing artifacts in MRI and echo-planar images [38, 2, 1, 28], and in 2-D electron
microscopy images [56], but there has been less focus on three-dimensional EM volumes. [58]

When present, these artifacts prevent automated and manual analysis of volumes except
as a series of 2-D images along the original sectioning axis, preventing in particular the
extraction of truly 3-D image features. Given that structures, such as neurites in cortex,
may have arbitrary 3-D orientations relative to the original sectioning axis, this limitation is

CHAPTER 6. CORRECTION OF INTER-SECTION DISCONTINUITIES 39

Figure 6.1: Representative cross-sectional views of a 6× 6× 30 nm ATUM-based SEM [74]
image volume of mouse cortex. First row: The original, registered dataset clearly showing
discontinuities along the Z (section) axis. Second row: Corrected data using our EMISAC
algorithm.

a serious impediment. On SBEM and FIBSEM volumes without these artifacts, the ability
to view cross sections along arbitrary axes has aided humans tasked with manually tracing
neurites and detecting synapses [43, 41], and automated algorithms for reconstructing neurite
morphology (via segmentation) have depended on 3-D features. [50, 81, 48, 49, 5, 4]

To eliminate these artifacts and enable truly 3-D analysis of such image volumes, we
propose a coarse-to-fine optimization-based procedure EMISAC (EM Image Stack Artifact
Correction). We note that a single per-section brightness and contrast adjustment (i.e. linear
transform of intensity values) is inadequate on typical datasets for correcting discontinuities
except very locally. EMISAC optimizes the parameters of spatially varying linear transfor-
mations of the data in order to minimize the squared norm of the gradient along the section
axis, subject to detail-preserving regularization, as described in section 6.2.

We applied EMISAC to a publicly available ATUM-based SEM volume of mouse cortex as
well as to a serial section Transmission Electron Microscopy (ssTEM) volume of Drosophila
larva ventral nerve cord. Figure 6.1 shows several cross-sectional views of the output of

CHAPTER 6. CORRECTION OF INTER-SECTION DISCONTINUITIES 40

our algorithm. Qualitatively, EMISAC appears to completely eliminate all discontinuity
artifacts while preserving all of the original detail.1 (We did not attempt to address the
problem of lower Z resolution than X-Y resolution.) Quantitatively, an evaluation based on
the NIQE blind image quality metric [66] confirms the qualitative results. More importantly,
we evaluated the effect of EMISAC as a preprocessing step on the accuracy of automated
segmentation of neurites, a key challenge for this type of data; consistent with the NIQE
scores, EMISAC dramatically improved segmentation accuracy.

After developing our approach independently, we became aware of a recent method [58]
for addressing the same problem. Like our approach, this alternative method involves a
quadratic optimization to minimize the squared norm of the gradient along the section
axis, but uses a different parameterization and a different form of regularization and post-
processing to preserve the intra-slice detail. We included this alternate method in our eval-
uations, and found EMISAC matches or outperforms it. In addition, we evaluated sev-
eral other generic correction methods on the raw datasets including histogram equalization,
contrast-limited adaptive histogram equalization [90], and local normalization, and found
that EMISAC significantly outperforms all of them.

Furthermore, while designed primarily for electron microscopy image stacks, EMISAC
is also applicable to lighting correction in time-lapse photography. Raw time-lapse image
sequences typically have serious inter-frame lighting discontinuities. Although a few tools
such as LRTimelapse2 are designed to edit time-lapse sequences and correct these artifacts,
our method does not require manual editing and can make local corrections to lighting
as well. We evaluated EMISAC on several time-lapse videos exhibiting lighting problems;
compared to the original videos, EMISAC produced a large qualitative improvement, and
eliminated essentially all lighting discontinuities

This work was previously published. [6]

6.2 Artifact correction algorithm

In order to maximize the applicability of our approach, and avoid introducing a model bias3

that could harm the accuracy of later stages of processing, we designed our approach to
make as few and as simple assumptions as possible:

1. the true (undistorted) image volume is mostly continuous along the section axis;

2. the distortions in the volume can be expressed as local linear transformations of the
intensity values, where the parameters of the linear transforms vary smoothly within
each section (but are not smooth between sections).

1Our qualitative assessment was based on only a random subset of the cross-sections; we did not scrutinize
every single cross-sectional view. Our quantitative assessment is more comprehensive.

2http://lrtimelapse.com
3A denoising method based on a learned sparse-coding dictionary, for instance, could potentially intro-

duce patterns that were not present in the original data.

http://lrtimelapse.com

CHAPTER 6. CORRECTION OF INTER-SECTION DISCONTINUITIES 41

(B)

Partitioning the

x-y slices

(A)

Input Image Stack

(C)

Coarse to Fine Estimation

(E)

Normalized Image

(D)

Smoothing

Figure 6.2: Schematic of our artifact correction approach. (A) An aligned EM image stack
of 2-D slices. (B) The volume is optionally partitioned into a grid, which can be distributed
across multiple processors; only limited communication is required between neighboring pro-
cessors. (C) A coarse-to-fine procedure, in which both the data as well as the parameters are
initially downsampled, speeds up the optimization of the objective in eq. (6.3). From right
to left: downsampled x-y slices and downsampled parameters (larger block size); downsam-
pled parameters only; full parameters (small block size). (D) The parameters are spatially
smoothed within each x-y slice to remove the blocking effect. Four blocks are shown for
illustration purposes, but in practice there are many more blocks. (E) Corrected output
image.

The detailed formulation of our method is explained in the following sections. A summary
of our approach is illustrated in fig. 6.2.

Problem Formulation

As shown in fig. 6.3, we partition each slice of the 3-D EM volume into small fixed-size two-
dimensional blocks. Voxel intensity values are corrected by a linear transformation given
by:

I ′x,y,z = βbx/wxc,by/wyc,z · Ix,y,z + αbx/wxc,by/wyc,z (6.1)

where I(x, y, z) refers to the scalar intensity value at position (x, y, z) of the volume, and
(wx, wy) is the block size. The smaller the block size, the larger the number of parameters.

CHAPTER 6. CORRECTION OF INTER-SECTION DISCONTINUITIES 42

β
2,1,s

, α
2,1,s

β
r,1,s

, α
r,1,s

β
1,c,s

, α
1,c,s

β
r,c,s

, α
r,c,s

β
r,1,2

, α
r,1,2

β
r,c,2

, α
r,c,2

β
1,1,1

, α
1,1,1

β
1,2,1

, α
1,2,1

β
2,1,1

, α
2,1,1

β
r,1,1

, α
r,1,1

β
1,c,1

, α
1,c,1

β
r,c,1

, α
r,c,1

Figure 6.3: EM image stack as a set of smaller blocks. The total number of blocks in the
x-direction, y-direction, and z-direction are given by r, c, and s, respectively, resulting in a
total of r · c · s blocks. We have unique β and α parameters for each block.

Note that β and α correspond to correction of contrast and brightness, respectively. This
block-based scheme effectively captures the local similarities within each slice and reduces
the computational complexity.

We express our assumption of continuity in I ′ along z as a penalty on the squared norm
of the gradient with respect to z. Likewise, the smoothness assumption on the the affine
transforms is expressed as a penalty on the squared norms of the gradients of α and β with
respect to the in-slice block positions. Thus, we formulate the optimization problem as
follows:

min
β,α

∑

x

∑

y

∑

z

(I ′x,y,z+1 − I ′x,y,z)2

+ γ
∑

i

∑

j

∑

z

[
(βi+1,j,z − βi,j,z)2 + (βi,j+1,z − βi,j,z)2 (6.2)

+ (αi+1,j,z − αi,j,z)2 + (αi,j+1,z − αi,j,z)2
]

s.t. βi,j,z ≥ 1, ∀i, j, z.

The β parameters must be bounded to avoid the trivial null solution.
We reformulate the optimization problem given in eq. (6.2) as the convex quadratic

problem

min
X
‖DzX‖2

2 + γ(‖DxX‖2
2 + ‖DyX‖2

2) s.t. β ≥ 1, (6.3)

where X=[β, α], Dz = GzA, Dx = Gx, Dy = Gy, A is a matrix that maps the parameters
X to a vector expressing I ′, and Ga is a matrix that maps a vectorized volume to a vector
containing the finite-differences approximation of its gradient along axis a.

We use L-BFGS-B [87] to solve the optimization problem in eq. (6.3). The optimization is
stopped when the fractional decrease in objective between consecutive iterations falls below

CHAPTER 6. CORRECTION OF INTER-SECTION DISCONTINUITIES 43

ε · f , where ε = 2−52 is the machine precision. To speed up the optimization process, we
employ a coarse to fine estimation procedure detailed below.

Coarse-to-Fine Procedure

Rather than solving eq. (6.3) with the final desired block size directly, we solve a sequence
of optimization problems of the form shown in eq. (6.3) with increasing image resolution in
the x-y plane and/or decreasing block size. Each optimization after the first is initialized
with the (appropriately upsampled) parameters that solved the previous optimization. In
practice, we used (a single succession of) the following three steps:

1. The image resolution is reduced by a factor of 2 in x and y (using 2× 2 averaging), as
are the number of blocks.

2. The full image resolution is used, but the number of blocks remains reduced by a factor
2 in x and y.

3. The number of blocks is increased by a factor of 2 in x and y to its final size.

As the optimization is convex, the final solution obtained is unaffected by this procedure,
but typically the running time is greatly reduced.

Removing the Blocking Effects

Ideally, the coarse-to-fine procedure is continued all the way down to a block size of (1, 1).
However, to reduce running time, it may be desirable to stop the procedure at a non-
trivial block size. To avoid introducing artifacts from the blocking, after performing the
final optimization, we upsample the α and β parameters to a block size of 1 using linear
interpolation (rather than nearest neighbor interpolation).

Parallelization

For large image volumes, we can partition the volume into a grid along the x and y axes,
which can be distributed across multiple processors or machines. For simplicity, the grid cell
boundaries should be aligned to block boundaries. Only the parameter gradients for blocks
on the border of each grid cell must be communicated, at each iteration of the optimization,
to the processors responsible for neighboring grid cells, which is in general a very small
amount of data relative to the size of the image volume. As a simplifying approximation, we
could even ignore the regularization term between neighboring grid cells and thereby require
no communication between machines. In practice this may not significantly affect the result
provided that the grid cells are large enough. In our experiments, we observed no loss of
accuracy (in NIQE score) from using no communication between blocks, except for the final
upsampling step.

CHAPTER 6. CORRECTION OF INTER-SECTION DISCONTINUITIES 44

6.3 Evaluation on electron microscopy data

We tested EMISAC on a publicly available ATUM-based SEM volume of mouse cortex
released by Kasthuri et al. [54] For a 1024 × 1024 × 100 voxel portion of this dataset, a
dense segmentation of neurites traced by a human expert is also publicly available as part of
the SNEMI3D neurite segmentation challenge [9], which enabled us to evaluate the effect of
EMISAC on segmentation accuracy. The dataset was acquired at a resolution of 3×3×30 nm,
but as the human-traced segmentation is provided only at the downsampled resolution of 6×
6×30 nm, we used the same downsampled resolution for all of our experiments. In addition,
we tested EMISAC on another publicly available dataset, Cardona et al. 2010, collecting
using a different imaging technique, ssTEM rather than ATUM-SEM, and of Drosophila
larva ventral nerve cord rather than mouse cortex, with a resolution of 4 × 4 × 50 nm [20,
21].

We compared EMISAC against the original aligned but uncorrected image volume. We
are aware of only one other method designed to address this same problem (of which we
only became aware after independently developing our own algorithm), which we refer to
as Kazhdan2013 [58]. As the authors of that method made publicly available their out-
put [57] on the same mouse cortex volume on which we tested EMISAC, we were able to
include the Kazhdan2013 algorithm in our evaluations without having to reimplement it. We
also compared EMISAC against histogram equalization, contrast-limited adaptive histogram
equalization (CLAHE) [90], and local normalization [73].

For EMISAC, we set the affine transform regularization parameter γ = 0.4wxwy

dxdy
for all

electron microscopy datasets, where dx and dy are the image downsampling factors in x and y
respectively (relative to the 6×6×30 and 4×4×30 nm resolution data). The coefficient was
selected to minimize NIQE score, which does not depend on any labeled data. Furthermore,
results were fairly insensitive to several orders of magnitude change in γ.

Image quality evaluation

Although any corrected version of the data is only useful in so far as it aids an image analysis
task of interest, such as neurite segmentation, it is convenient to be able to directly quantify
the image quality independent of any particular later analysis step. A visual assessment
by humans would be inherently subjective (and also inconvenient), and it is impossible to
obtain a “ground truth” version of the data without any imaging artifacts, against which
the corrected version might be compared. Furthermore, we have no way of knowing the
true distortion model. We therefore rely on the “completely blind” Natural Image Quality
Evaluator (NIQE) [66], which requires neither a model of expected distortions nor human
assessments of distorted images as training data, but merely a set of high quality images from
which to estimate a model of natural image statistics. On natural image benchmarks, this
method is comparable to the best methods that do rely on human assessments as training
data.

CHAPTER 6. CORRECTION OF INTER-SECTION DISCONTINUITIES 45

We trained a NIQE model on a random set of x-y sections from the dataset that were
not part of any of the volumes on which we tested our approach. Thus, the NIQE score of
a y-z or x-z cross section represents the statistical similarity of the orthogonal cross sections
to the original image sections, a very reasonable metric given that the ultimate goal is to be
able to analyze the 3-D volume without regard to a preferred orientation.

Segmentation accuracy evaluation

As one of the primary goals of our work on the artifact correction is the improvement of
automated segmentation results for neural circuit reconstruction, we directly evaluated the
impact of EMISAC on 3-D segmentation accuracy. The training of our machine-learning-
based segmentation algorithm, as well as the evaluation of segmentation accuracy, were based
on the SNEMI3D human expert-traced segmentation, which we treated as “ground truth.”

We used a three-step segmentation procedure, based on the sparse wide boundary clas-
sification approach described in chapter 5:

1. We use an unsupervised procedure to transform each position in the image volume
into a 1-of-k binary feature vector, with k = 624 · 16. We cluster 16× 16× 4 patches
of the image volume using k-means based on L1 distance; the binary feature vector
for each position is obtained by vector quantizing the image patch centered at that
location. We take advantage of the assumed rotational covariance of the data (namely
transposition and reflection in the x-y plane, and reflection along the z axis), which
reduces the effective number of parameters by a factor of 16.

2. To predict the presence of a cell boundary between two adjacent voxels along the x,
y, or z axes, we train a logistic regression classifier for each of the 3 axes. The feature
vector for classification is obtained by concatenating all of the 1-of-k binary feature
vectors within a 16 × 16 × 16 window around the boundary (producing a very high-
dimensional feature vector). We extracted boundary information for training examples
directly from the human-provided ground-truth segmentation, and ensured that equal
total weight was given to positive and negative training examples. We optimized the
classification model using L-BFGS, using a quadratic approximation to dropout [84]
(with p = 0.5) for regularization. As for the unsupervised feature learning, we take
advantage of the assumed rotational covariance to reduce the number of parameters to
be learned by a factor of 16.

3. To produce a segmentation, we employ Gala [68], a state-of-the-art electron microscopy
image segmentation algorithm, based on agglomeration of supervoxels, for which we
use the cell boundary predictions as input.

We use half of the ground truth segmentation to train the boundary classifier, half of the
remaining portion to train Gala, and the remainder for evaluation. The same training/testing

CHAPTER 6. CORRECTION OF INTER-SECTION DISCONTINUITIES 46

0 1000 2000 3000 4000 5000 6000
24

26

28

30

32

34

36

38

40

w=4

w=8

w=16

w=32

w=64

Different Choices of Block Size

Run Time (s)

N
IQ

E
S
co

re

Figure 6.4: Plot of average NIQE score versus EMISAC running time on the 1024×1024×100
voxel SNEMI3D portion of the mouse cortex volume. The NIQE scores for all x-y, x-z, and
y-z cross sections within the volume are averaged. w stands for the block size of (w,w). A
lower NIQE score corresponds to higher image quality. The optimization was run in all cases
with a stopping threshold of f = 1010. These NIQE scores are consistent with the higher
rate of visually apparent artifacts present when larger block sizes are used, which provides
some confirmation of the validity of the NIQE score.

procedures were used for the original data, the EMISAC output, and the Kazhdan2013
output. The results are averaged over 4 splits.

6.4 Electron microscopy results

To guide later experiments, we initially evaluated the effect of varying the block size on
running time and image quality (measured by NIQE score); the results are shown in fig. 6.4.
The running times reported for this and later experiments are based on our Python imple-
mentation running on an 8-core Intel Xeon X5570 2.93 GHz system, which consumed about
15 GB memory for each 1024× 1024× 100 volume. Based on the observed trade-off between
image quality and running time, we used a final block size of (16, 16) for later experiments.
We found that the NIQE score typically converged before reaching the threshold of f = 1010.

CHAPTER 6. CORRECTION OF INTER-SECTION DISCONTINUITIES 47

0 50 100 150 200
0

50

100

150

200

250

300
X-Z cross-sections quality

NIQE score

C
o
u
n
t

Raw data
Kazhdan2013
EMISAC
Local-Norm
Adapt-HistEq
HistEq

0 50 100 150 200
0

50

100

150

200

250
Y-Z cross-sections quality

NIQE score
C

o
u
n
t

Raw data
Kazhdan2013
EMISAC
Local-Norm
Adapt-HistEq
HistEq

5 10 15 20
0

10

20

30

40

50

60
X-Y slices quality

NIQE score

C
o
u
n
t

Raw data
Kazhdan2013
EMISAC
Local-Norm
Adapt-HistEq
HistEq

Figure 6.5: Histogram of NIQE scores for the SNEMI3D volume. EMISAC uses a block size
of (16, 16) and stopping criteria of f = 1010. Lower scores are better.

Comparison of NIQE scores

Using these parameters, we evaluated the improvement in NIQE score relative to the original
data of EMISAC, Kazhdan2013, histogram equalization, contrast-limited adaptive histogram
equalization [90], and local normalization. Figure 6.5 shows the distribution of NIQE scores
for the SNEMI3D volume. Table 6.1 shows the improvement in NIQE score on both datasets.
Under Welch’s t-test, EMISAC attains a large and highly statistically significant improve-
ment in both x-z (p < 0.0001) and y-z (p < 0.0001) NIQE score relative to Kazhdan2013 on
the ATUM-SEM volume, without any considerable loss in x-y NIQE score. The preservation
of detail is confirmed by the very high structural similarity (SS) [85] between the original
and corrected x-y cross-sections. See fig. 6.6 for a visual comparison.

Comparison of Segmentation Accuracy

For the original data and each correction method, we evaluate the segmentation accuracy on
each of the 4 boundary training/agglomeration training/test splits of the SNEMI3D volume.
The Gala segmentation algorithm has a threshold parameter that trades off between false
merges and false splits, as shown in fig. 6.7; the optimal trade-off depends on the particular
application, but in order to summarize results, we simply compute the minimum VI score
(which gives equal weight to false splits and merges) over all thresholds.4 For each correction
method on each split, we compute the percent decrease in minimum VI score relative to the
original data. To compare methods, we compute the mean and standard deviations of these
decrease percentages. The results are shown in table 6.2.

The nearly exact match in x-y NIQE scores between the original data and Kazhdan2013,
as shown in fig. 6.5 and table 6.1, can be explained by the fact that Kazhdan2013 essentially

4In actual use, we would have to pick the threshold based on cross-validation, as there would be no
way to determine the true VI score for each threshold. However, this added complexity is irrelevant to our
evaluation of artifact correction methods.

CHAPTER 6. CORRECTION OF INTER-SECTION DISCONTINUITIES 48

Figure 6.6:]
Visual comparison of (a) the original data, and the corrected versions using (b)

Kazhdan2013 and (c) our method EMISAC. From left to right we have the (1) x-y cross
section, (2) x-z cross section, and (3) y-z cross-section. The two correction algorithms

produce visually very similar results.

CHAPTER 6. CORRECTION OF INTER-SECTION DISCONTINUITIES 49

Table 6.1: NIQE score reduction (improvement) percentage, averaged over all x-y, x-z, and
y-z cross-sections in the two EM datasets. The average structural similarity index (SS) [85]
(as a percentage) between the original and corrected x-y cross-sections is also shown. Higher
percentages are better. First column: Six 1024 × 1024 × 100 voxel volumes of the mouse
cortex ATUM-SEM volume [54] (five randomly sampled volumes plus the SNEMI3D volume).
Second column: 512× 512× 30 Drosophila larva ventral nerve cord ssTEM volume [21].

Mouse cortex volume Drosophila larva ventral
nerve cord volume

x-y x-z y-z SS x-y x-z y-z SS

EMISAC 6.59 41.21 39.56 96.4 -1.15 11.04 11.82 97.4
±6.86 ±19.25 ±19.82 ±2.20 ±2.83 ±25.05 ±23.27 ±1.06

Kazhdan2013 -1.85 35.24 35.06 98.3 - - - -
±0.82 ±20.28 ±20.02 ±1.69

Histogram -4.53 -35.80 -42.31 69.5 -21.16 -68.54 -67.92 81.0
Equalization ±6.02 ±86.31 ±95.04 ±6.47 ±17.79 ±88.76 ±84.56 ±3.64

CLAHE -7.59 -39.77 -40.46 70.3 -14.02 -127 -133 80.1
±6.19 ±95.09 ±96.56 ±3.73 ±9.43 ±150 ±154 ±3.76

Local 2.51 13.04 13.79 93.3 3.05 -6.38 -8.51 97.4
Normalization ±4.91 ±27.14 ±27.20 ±3.52 ±1.93 ±26.72 ±28.85 ±1.58

copies the high-frequency content of the original x-y slices in its final step, and NIQE scores
depend only on local (high-frequency) information.

While the NIQE scores were relatively insensitive to the stopping threshold f , we observed
that the segmentation accuracy was highly sensitive, and therefore computed results for f ∈
{1010, 109, 107, 106}, corresponding to increasing segmentation accuracy. Both Kazhdan2013
and EMISAC (for f ≤ 109) achieve a similarly large improvement in accuracy over the
original data. The difference between the two methods is not statistically significant (p =
0.87).

Figure 6.4 suggests that better results may be possible by using a block size smaller than
w = (16, 16), which was chosen for convenience in running experiments given the speed of
our implementation.

We report running times of our Python implementation for comparison purposes, but
by no means expect them to be comparable to those of a highly-optimized CPU or GPU
implementation. Furthermore, L-BFGS-B is by no means the most effective algorithm for
optimizing eq. (6.3). The focus of our work was in evaluating correction models, rather than
implementation speed.

CHAPTER 6. CORRECTION OF INTER-SECTION DISCONTINUITIES 50

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

false merges (bits)

fa
ls
e

sp
li
ts

(b
it
s)

Raw data
Kazhdan2013
EMISAC:1e6
EMISAC:1e7
EMISAC:1e9
EMISAC:1e10

Figure 6.7: Plot of the H(S|U) (false split) vs. H(U |S) (false merge) trade-off for segmen-
tations based on the original image volume, Kazhdan2013, and EMISAC with several values
of the stopping criteria f . Lower scores are better. Results are shown just for a single
split, but results on other splits are similar. Note that the variation of information is simply
H(S|U) +H(U |S).

Table 6.2: Effect of artifact correction on segmentation accuracy (n = 4)

Kazhdan2013 EMISAC
1e10 1e9 1e7 1e6

VI improvement(%) 29.19 19.83 26.43 27.23 27.97
±13.12 ±11.24 ±10.03 ±2.79 ±1.88

Run Time (s) - 828 1847 3963 4874

Convolutional neural networks have shown good performance for neurite boundary de-
tection [82, 48, 23], and may well perform better than the boundary classification method
we used for our segmentation evaluation. Our choice was motivated by the fact that the
state-of-the-art 3-D convolutional neural network approach for this problem is currently far
from a settled matter, and we believe our method to be similar in performance; furthermore,
it would have been highly impractical to spend the several weeks to months5 of GPU time
required to the train the network for each variant and data split that we tested.

5State-of-the-art 2-D networks often require several weeks of GPU training [23, 60]; a comparable 3-D
network can be expected to take at least as long, and possibly several times longer due to the larger number

CHAPTER 6. CORRECTION OF INTER-SECTION DISCONTINUITIES 51

Figure 6.8: Qualitative improvement in segmentation accuracy from EMISAC.

6.5 Lighting correction of time-lapse photography

Raw time-lapse photography sequences typically exhibit substantial flickering due to varia-
tions in lighting and exposure between frames [22]. Due to scene geometry, these variations
are often local, such that a global brightness and contrast adjustment per frame is insuffi-
cient. We can directly apply EMISAC to the problem of correcting such lighting issues by
treating time as the z-axis (taking the place of the section axis for the EM data); a separate
set of α and β parameters are used for the red, green, and blue channels.

Quantitative evaluation of these time-lapse sequences cannot be done in the same way
as for electron microscopy stacks, since the data distribution is obviously not invariant to
transpositions between time and the x or y axis, as would be implied by comparing x-z and
y-z cross-sections to the original x-y frames. In fact, we are unaware of any established
method for quantitatively measuring lighting discontinuity in time-lapse sequences; while
EMISAC’s own objective function does measure this in some sense, it cannot reasonably be
used for comparison to other methods nor can it be aggregated across datasets. Therefore,
we are limited to qualitative assessment.

of parameters.

CHAPTER 6. CORRECTION OF INTER-SECTION DISCONTINUITIES 52

For all time-lapse sequences, we used a final block size of (wx = 4, wy = 4) and manually

set γ in the range of [39×102wxwy

dxdy
, 39×104wxwy

dxdy
]; γ trades off preservation of detail and temporal

smoothness, and is fundamentally a matter of user preference.
For evaluation, we used 8 publicly available time-lapse sequences that exhibited light-

ing discontinuities between frames. For several of these sequences, a demonstration result
obtained by manual editing using the commercial LRTimeLapse software was also avail-
able. The corresponding video files can be found at http://rll.berkeley.edu/2014_ECCV_
EMISAC. Qualitatively, EMISAC essentially eliminates all flickering without reducing the ap-
parent quality of individual frames. It appears to give a very similar quality result, in terms
of correcting lighting discontinuities, to that obtained by manual editing with the specialized
LRTimeLapse software.

6.6 Discussion

Imaging artifacts, most notably discontinuities along the section (z) axis, have so far limited
the use of image volumes acquired by ATUM-based SEM, one of the most promising high-
throughput volume electron microscopy techniques, to essentially 2.5-D analysis [83, 23].
Our limited assumptions about the data and distortion process lead naturally to a simple
but highly effective optimization-based procedure: our method EMISAC appears to elimi-
nate all visible discontinuities, without any loss of intra-section detail. On the key task of
neurite segmentation, EMISAC substantially improves accuracy relative to the original data
by about 28%, matching the improvement achieved by the recent independently-developed
alternative method Kazhdan2013 [58]. In terms of NIQE score [66], our method signifi-
cantly outperforms Kazhdan2013. Furthermore, the significant qualitative improvement in
the video results demonstrates the applicability of EMISAC to time-lapse photography.

One explanation for the superior NIQE scores attained by EMISAC compared to Kazh-
dan2013 may be that EMISAC supports both local brightness as well as local contrast
correction. Kazhdan2013 solves two sequential optimization problems, both of which apply
an additive correction term to the original data, and penalize deviations in intra-slice gra-
dients of the correction term. This implicitly allows smooth changes in brightness, as the
gradient of the correction term is only affected by the gradient of the brightness factor. Even
constant changes in contrast, however, are penalized heavily, as they have a multiplicative
effect on the gradient of the correction term. While the lower NIQE scores of EMISAC
relative to Kazhdan2013 did not correspond to better segmentation accuracy in our exper-
iments, the segmentation performance may have been limited by the quality of the feature
representation, and a future segmentation algorithm may indeed show improvement.

http://rll.berkeley.edu/2014_ECCV_EMISAC
http://rll.berkeley.edu/2014_ECCV_EMISAC

53

Chapter 7

Combinatorial Energy Learning

As discussed in chapter 3, algorithmic approaches to image segmentation are often formu-
lated as a variation of the following pipeline: a boundary detection step that establishes
local hypotheses of object boundaries, a region formation step that integrates boundary ev-
idence into local regions (i.e. superpixels or supervoxels), and a region agglomeration step
that merges adjacent regions based on image and object features. [5, 49, 83, 4] Although
extensive integration of machine learning into such pipelines has begun to yield promising
segmentation results [13, 37, 68], we argue that such pipelines, as previously formulated, fun-
damentally neglect two potentially important aspects of achieving accurate segmentation:
(i) the combinatorial nature of reasoning about dense image segmentation structure,1 and
(ii) the fundamental importance of shape as a criterion for segmentation quality.

Contributions: We propose a method that attempts to overcome these deficiencies. In
particular, we propose an energy-based model that scores segmentation quality using a deep
neural network that flexibly integrates shape and image information: Combinatorial Energy
Learning for Image Segmentation (CELIS). In pursuit of such a model this paper makes
several specific contributions:

• a novel connectivity region data structure for efficiently computing the energy of con-
figurations of 3-D objects.

• a binary shape descriptor for efficient representation of 3-D shape configurations.

• a neural network architecture that splices the intermediate unit output from a trained
convolutional network as input to a deep fully-connected neural network architecture
that scores a segmentation and 3-D image.

• a training procedure that uses pairwise object relations within a segmentation to learn
the energy-based model.

1While prior work [5] has recognized the importance of combinatorial reasoning, the method proposed
only addressed it to a limited extent.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 54

Figure 7.1: Examples of cases where local boundary classification alone leads to false splits
of neurites. A cross-section of the raw data is shown on the left; the correct segmentation
(determined by careful human annotators) of the central neurite is overlayed on the right.
Neuronal processes often narrow to nearly the limit of the image resolution, and when this
is coupled with a loss of contrast, it appears to be impossible to determine the correct
segmentation from local boundary information alone. These examples are from a Drosophila
larval neuropil dataset [68] imaged using Focused Ion Beam Scanning Electron Microscopy
(FIBSEM) [68].

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 55

Figure 7.2: Examples of cases where independent neurite shape modeling breaks down. At
these synapse sites, the pre-synaptic and post-synaptic neurons each have characteristic
shapes that are highly unlikely to occur independently but are jointly very likely. Due to
the close contact between the two neurons, local boundary classification at these sites often
results in false mergers, making correct shape modeling particularly critical. A cross-section
of the raw data is shown on the left; the correct segmentation (determined by careful human
annotators) is overlayed on the right. These examples are from a Drosophila larval neuropil
dataset [68] imaged using Focused Ion Beam Scanning Electron Microscopy (FIBSEM) [68].

On two challenging datasets of 3-D connectomics data, we show the proposed approach
can be learned from data, and can be used to improve topological reconstruction quality by
scoring a sequence of manipulations applied to a segmentation.

7.1 Representing 3-D shape configurations with local

binary descriptors

We propose a binary shape descriptor based on subsampled pairwise connectivity informa-
tion.

Definition 7.1. A k-bit binary shape descriptor specification s is a set of k distinct pairs

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 56

r = 1 . . . r = 100000000110 . . . r = 10000000011000000110100000101001

(a) Sequence showing computation of a shape descriptor.

r = 00001000001011100111100100001000 r = 00000000000101110000010000110010 r = 10001001101100010100000010000111

(b) Shape descriptors are computed at multiple scales. Pairwise descriptors (shown left and center)
consider arbitrary pairwise connectivity, while center-based shape descriptors (shown right) restrict
one position of each pair to be the center point.

r = 10000001110010100110100001011001 r = 11000011110011100100100011011011 r = 10000011100111100100110011011111

(c) Shape descriptors are computed densely at every position within the volume.

Figure 7.3: Illustration of shape descriptors. The connected components of the bounding
box U for which the descriptor is computed are shown in distinct colors. The pairwise
connectivity relationships that define the descriptor are indicated by dashed lines; connected
pairs are shown in white, while disconnected pairs are shown in black. Connectivity is
determined based on the connected components of the underlying segmentation, not the
geometry of the line itself. While this illustration is 2-D, shape descriptors are in general
computed in 3-D.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 57

of position offsets {{a1, b1}, . . . , {ak, bk}} relative to the center of a bounding box of some
fixed-size Bs (specified as a 3-D vector of integers).

For simplicity, we will require that all components of Bs are odd, to allow shape descrip-
tors to be exactly centered on single voxels.

Definition 7.2. Given a binary shape descriptor specification s = {{a1, b1}, . . . , {ak, bk}},
the corresponding k-bit binary shape descriptor r of a segmentation U (of size Bs) is defined
by

ri(S) :=

{
1 if ai is connected to bi in U ;

0 otherwise.
for i ∈ [1, k].

As shown in fig. 7.3a, each bit of the descriptor specifies whether a particular pair of
positions are part of the same segment. By using a suitable data structure that maintains
connected component information, each bit can be computed in constant time. Note that
the ordering of the bits is arbitrary, and conceptually we can consider each bit to be indexed
by the pair {a, b} of position offsets to which it corresponds.

In the limit case, if we use the set of all k =
(
n
2

)
pairs of positions within an n-voxel

bounding box, no information is lost and the Hamming distance between two descriptors is
precisely equal to the Rand index. [70] In general we can sample a subset of only k pairs
out of the

(
n
2

)
possible; if we sample uniformly at random, we retain the property that

the expected Hamming distance between two descriptors is equal to the Rand index. The
representation is therefore highly sensitive to topological changes that affect connectivity,
but is fairly insensitive to small perturbations that do not change the topology, which is
exactly what is desired for a robust representation.

We found that picking k = 512 bits provides a reasonable trade-off between fidelity and
representation size. While the pairs may be randomly sampled initially, to obtain consistent
results when training models based on these descriptors we must use the same fixed list of
positions for defining the descriptor at both training and test time.

Note that this descriptor serves in general as a type of sketch of a full segmentation of
a given bounding box. By restricting one of the two positions of each pair to be the center
position of the bounding box, we instead obtain a sketch of just the single segment containing
the center position. We refer to the descriptor in this case as center-based, and to the general
case as pairwise, as shown in fig. 7.3b. We will use these shape descriptors to represent only
local sub-regions of a segmentation. To represent shape information throughout a large
volume, we compute shape descriptors densely at all positions in a sliding window fashion,
as shown in fig. 7.3c.

7.2 Connectivity regions

As defined, a single shape descriptor represents the segmentation within its fixed-size bound-
ing box; by shifting the position of the bounding box we can obtain descriptors corresponding

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 58

(a) Graph representation

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
1
1
0
0
0

0
0
0
1
1
0
0
1
1
1
1
1
0
0

0
0
1
1
1
1
0
1
1
1
1
1
1
0

0
1
1
1
1
1
1
1
1
1
1
1
1
0

0
1
1
1
1
1
1
1
1
1
1
1
1
0

0
1
1
1
1
0
0
1
1
1
1
1
1
0

0
0
1
1
0
0
0
0
1
1
1
1
0
0

0
0
1
1
0
0
0
0
0
1
1
1
0
0

0
0
1
1
0
0
0
0
0
1
1
0
0
0

0
0
1
1
0
0
0
0
1
1
1
0
0
0

0
0
1
1
1
0
0
0
1
1
0
0
0
0

0
0
0
1
1
0
0
1
1
1
0
0
0
0

0
0
0
1
1
1
1
1
1
0
0
0
0
0

0
0
0
1
1
1
1
1
1
0
0
0
0
0

0
0
1
1
1
1
1
1
0
0
0
0
0
0

0
0
1
1
1
1
1
0
0
0
0
0
0
0

0
1
1
1
1
1
1
0
0
0
0
0
0
0

1
1
1
1
1
1
1
0
0
0
0
0
0
0

1
1
1
1
1
1
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
1
1
0
0
0

0
0
0
1
1
0
0
1
1
1
1
1
0
0

0
0
1
1
1
1
0
1
1
1
1
1
1
0

0
1
1
1
1
1
1
1
1
1
1
1
1
0

0
1
1
1
1
1
1
1
1
1
1
1
1
0

0
1
1
1
1
0
0
1
1
1
1
1
1
0

0
0
1
1
0
0
0
0
1
1
1
1
0
0

0
0
1
1
0
0
0
0
0
1
1
1
0
0

0
0
1
1
0
0
0
0
0
1
1
0
0
0

0
0
1
1
0
0
0
0
1
1
1
0
0
0

0
0
1
1
1
0
0
0
1
1
0
0
0
0

(b) Component representation

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
1
1
0
0
0

0
0
0
1
1
0
0
1
1
1
1
1
0
0

0
0
1
1
1
1
0
1
1
1
1
1
1
0

0
1
1
1
1
1
0
1
1
1
1
1
1
0

0
1
1
1
1
1
0
1
1
1
1
1
1
0

0
1
1
1
1
0
0
1
1
1
1
1
1
0

0
0
1
1
0
0
0
0
1
1
1
1
0
0

0
0
1
1
0
0
0
0
0
1
1
1
0
0

0
0
1
1
0
0
0
0
0
1
1
0
0
0

0
0
1
1
0
0
0
0
1
1
1
0
0
0

0
0
1
1
1
0
0
0
1
1
0
0
0
0

0
0
0
1
1
0
0
1
1
1
0
0
0
0

0
0
0
1
1
1
1
1
1
0
0
0
0
0

0
0
0
1
1
1
1
1
1
0
0
0
0
0

0
0
1
1
1
1
1
1
0
0
0
0
0
0

0
0
1
1
1
1
1
0
0
0
0
0
0
0

0
1
1
1
1
1
1
0
0
0
0
0
0
0

1
1
1
1
1
1
1
0
0
0
0
0
0
0

1
1
1
1
1
1
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
1
1
0
0
0

0
0
0
1
1
0
0
1
1
1
1
1
0
0

0
0
1
1
1
1
0
1
1
1
1
1
1
0

0
1
1
1
1
1
0
1
1
1
1
1
1
0

0
1
1
1
1
1
0
1
1
1
1
1
1
0

0
1
1
1
1
0
0
1
1
1
1
1
1
0

0
0
1
1
0
0
0
0
1
1
1
1
0
0

0
0
1
1
0
0
0
0
0
1
1
1
0
0

0
0
1
1
0
0
0
0
0
1
1
0
0
0

0
0
1
1
0
0
0
0
1
1
1
0
0
0

0
0
1
1
1
0
0
0
1
1
0
0
0
0

(c) Component representation

Figure 7.4: Advantage of voxel graph representation. The top row shows a representation of
a segmentation as either a voxel graph or a component labeling. The bottom row shows the
effect of restricting the segmentation to a sub-region. Each square corresponds to a voxel.
In the graph representation, a white line between two voxels indicates an edge, while a black
line indicates the lack of an edge. In the component representation, each voxel is labeled
by a component identifier (0 or 1). The different colors (red, blue, and grey) correspond
to different connected components. The graph representation, shown on the left, correctly
disconnects the two parts when restricted to the sub-region. The component labeling repre-
sentation, shown in the middle, is unable to represent the presence of a boundary between
the two parts, and therefore incorrectly results in a single connected component even when
restricted to the sub-region. It is possible to emulate a voxel graph using a component rep-
resentation by indicating boundaries with a 1-voxel wide background component, as shown
on the right, but this tends to be cumbersome.

to different local regions of some larger segmentation. The size of the bounding box deter-
mines the scale of the local representation. This raises the question of how connectivity
should be defined within these local regions. Two voxels may be connected only by a long
path well outside the descriptor bounding box, as shown in fig. 3.7. As we would like the
shape descriptors to be consistent with the local topology, such pairs should be considered
disconnected.

To reliably distinguish between local and global connectivity, we represent segmentations
globally as an undirected graph over voxels. The vertices of this graph correspond to positions
in Z3, and edges are typically limited to occur between neighboring voxel positions, for some
definition of neighboring.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 59

Definition 7.3. The von Neumann neighborhood of x ∈ Z3 is the set {x′ | ‖x− x′‖1 = 1} of
points at a Manhattan distance of 1 from x.

Remark. The von Neumann neighborhood is also called the 6-connectivity neighborhood in
3-D because it has cardinality 6.

Definition 7.4. The Moore neighborhood (or 26-connectivity neighborhood) of x ∈ Z3 is
the set {x′ | ‖x− x′‖∞ = 1} of points at a L∞ distance of 1 from x.

We will define our neighborhoodN (x) to be the von Neumann neighborhood (6-connectivity),
though the Moore neighborhood or any other (symmetric) neighborhood could equally well
be used.

The segments themselves are implicitly defined by the connected components of this
graph, in contrast to a representation defined by an explicit labeling of voxels by the com-
ponent to which they belong. The advantage of this representation is illustrated in fig. 7.4.

In order for shape descriptors to represent local connectivity within some larger segmenta-
tion S, we will compute each descriptor with respect to connectivity within some connectivity
region C, a rectangular sub-region of the full bounds of S which necessarily contains one or
more shape descriptor bounding boxes but may in general be significantly smaller than the
full segmentation S; conceptually, the shape descriptor bounding box slides around to all
possible positions contained within the connectivity region. (This sliding necessarily results
in some minor inconsistency in context between different positions, but reduces computa-
tional and memory costs.) To obtain shape descriptors at all positions in S, we simply tile
the space with overlapping rectangular connectivity regions of appropriate uniform size and
stride, as shown in fig. 7.5. The connectivity region size determines the degree of locality of
the connectivity information captured by the shape descriptor (independent of the descriptor
bounding box size). It also affects computational costs, as described in section 7.5.

Definition 7.5. Given a shape descriptor specification s and connectivity region C, we
denote by Xs

C the set of (type s) shape descriptor center positions for which the descriptor
bounding box is contained within C.

Remark. Note that Xs
C is a rectangular region obtained by simply shrinking the rectangular

region C by (Bs − 1)/2 on all sides.

We may wish to represent shape information at multiple scales, and to represent both
the joint shape of nearby objects as well as the shape of individual objects. Therefore, rather
than using a single shape descriptor specification s and a single connectivity region tiling,
we use a set of shape descriptor specifications s, each implicitly associated with a particular
choice of connectivity region size B̄s and stride strides (specified by 3-D vectors of integers)
that define a overlapped tiling of the full segmentation space.

Definition 7.6. Let Cs be the set of connectivity regions obtained as regular overlapping
tiles of size B̄s and stride strides.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 60

(a) Small-scale (b) Large-scale

Figure 7.5: Connectivity region tiling. The connected components of the segmentation
within each connectivity region C (shown in distinct colors) are maintained independently.
The yellow rectangle within each connectivity region indicates the bounds of Xs

C , the set
of (type s) shape descriptor center positions computed using C, which is simply the set of
center positions for which the shape descriptor bounding box is contained within C. The
white rectangle (of size Bs) indicates the bounding box of the shape descriptor (necessarily
contained within C).

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 61

If we did not restrict the choice of strides, the bounding box for a shape descriptor at
a given position might be fully contained within zero, one, or multiple connectivity regions,
each of which would potentially result in a different binary descriptor. To avoid this com-
plexity, we constrain B̄s and strides as follows:

Bs ≤ B̄s;

Bs = B̄s − strides + 1.

These constraints ensure that Cs exactly partitions the set of shape descriptor center
positions, which allows us to make the following definition:

Definition 7.7. We denote by Cs(x) the single C ∈ Cs such that x ∈ Xs
C .

For convenience, we will also introduce some notation that applies to general undirected
graphs that is relevant to our discussion:

Definition 7.8 (Connected components). Given an undirected graph G, we denote by K(G)
the partition of the vertex set of G into connected components, and denote by K(v;G) the
connected component G containing the vertex v.

Definition 7.9 (Induced subgraph). Given an undirected graph G and a subset V ′ of its
vertices, we denote by G[V ′] the subgraph of G induced by V ′.

While globally we will represent a segmentation S as a voxel graph, within a given
connectivity region C we are concerned only with the connected components K(S[C]) in the
subgraph of S induced by C. Note that because the vertices of S correspond to voxels, i.e.
positions in Z3, K(S[C]) ⊂ 2Z3

. Based on these definition, we can more precisely state how
local shape descriptors are defined.

Definition 7.10. Given a full segmentation S, for each shape descriptor specification s, we
define the |s|-bit local binary shape descriptor rs(x;S) at position x by

r{a,b}s (x;S) := 1[K(x+ a;S[C]) = K(x+ b;S[C])] for {a, b} ∈ s,

where C = Cs(x).

Definition 7.11. Given a segmentation S, we define the component visibility set Vs(x;S) ⊆
K(S[C]) of a position x to be the set of connected components at positions sampled by the
shape descriptor s:

Vs(x;S) := {K(x+ c;S[C]) | c ∈ {a, b} ∈ s},

where C = Cs(x).

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 62

Lemma 7.1. Let a shape descriptor specification s, a position x, and segmentations S and S ′

be given. Let C = Cs(x). If Vs(x;S) = Vs(x;S ′) (in particular if K(S[C]) = K(S ′[C])), then
rs(x;S) = rs(x;S ′). Furthermore, in the case that s is center-based, then if K(x;S[C]) =
K(x;S ′[C]), then rs(x;S) = rs(x;S ′).

Proof. The first statement follows directly from definition 7.10.
To prove the second statement, suppose that s is center-based. Note that for all {a, b} ∈ s,

{a, b} = {~0, c} for c ∈ {a, b}. Thus, we have

r{a,b}s (x;S) = r{
~0,c}
s (x;S)

= 1[K(x;S[C]) = K(x+ c;S[C])]

= 1[(x+ c) ∈ K(x;S[C])] for {~0, c} = {a, b} ∈ s.

The result follows.

Remark. For general shape descriptor specifications s, rs(x;S) depends on S only by way
of the subset of K(S[Cs(x)]) that are sampled, and for center-based shape descriptor specifi-
cations, rs(x;S) depends on S only by way of K(x;S[Cs(x)]), the single component in S[C]
that contains x.

7.3 Conditional energy modeling of segmentations

given images

Based on these binary shape descriptors, we define a global, translation-invariant energy
model for predicting the cost of a complete segmentation S given a corresponding image I.
This cost can be seen as analogous to the negative log-likelihood of the segmentation given
the image, but we do not actually treat it probabilistically. Our goal is to define a model such
that the true segmentation corresponding to a given image can be found by minimizing the
cost; the energy can reflect both a prior over shape descriptors alone, as well as compatibility
between shape descriptors and the image.

Definition 7.12. We denote by Ês (r; v) the local energy term that predicts the cost of a
single shape descriptor r of type s given a corresponding image feature vector v.

As shown in fig. 7.7, we then define the global energy as

Es(x;S; I) := Ês (rs(x;S);φ(x; I)) ,

E(S; I) :=
∑

s

∑

x

Es(x;S; I),

where φ(x; I) denotes some feature representation of the image context centered around x.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 63

Im
ag

e
(I
)

C
a
n
d
id
at
e

se
gm

en
ta
ti
o
n
(S

)

n = 512

rs(x;S) Local energy model
Es(x;S; I)

Figure 7.6: General architecture of local energy models.

Remark. It is a key property that the local energy terms may depend on any arbitrary
representation of the local image context, but depend on the segmentation only by way of
the binary shape descriptor representation.

To find (locally) minimal-cost segmentations under this model, we use local search over
the space of agglomerations starting from some initial supervoxel segmentation. Using a
simple greedy policy, at each step we consider all possible agglomeration actions, i.e. merges
between any two adjacent supervoxels, and pick the action that results in the lowest energy.
In terms of our undirected voxel graph representation, each merge action corresponds to a
set of edges between adjacent voxels that will be added to the segmentation. By definition,
agglomeration never results in the removal of voxel edges.

Definition 7.13. Given a segmentation S and a merge action e, we denote by S + e the
segmentation that results from merging e in S.

Remark. This binary + operator over segmentations has the effect of taking the union of the
edge sets, and is commutative.

To simplify the presentation, we will define the following notation for the forward discrete
derivative:

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 64

Image (I)Initial over-
segmentation

Candidate
segmentation (S)

r1

r2

r3

Fully-connected layer

Convolutional
neural network

E(S; I)

E1

E2

E3

Boundary
classification

Agglomeration

∑
all voxel positions x

S
h
ap

e
d
es

cr
ip

to
rs

Local energy

Global energy

Figure 7.7: Illustration of computation of global energy for a single candidate segmentation
S, using two pairwise and one center-based shape descriptor types. Connected and discon-
nected pairs within the shape descriptor are indicated by solid and dashed lines, respectively.
The local energy Es(x;S; I) ∈ [0, 1], computed by a deep neural network, is summed over
all shape descriptor types s and voxel positions x. Connectivity regions are not shown.

Definition 7.14 (Forward discrete derivative). We define ∆+e
S f(S) := f(S + e)− f(S) to

be the forward discrete derivative of f with respect to S. Furthermore, we define

∆+e,+e′

S f(S) := ∆+e
S ∆+e′

S f(S)

to be the second-order discrete derivative.

Note that

∆+e,+e′

S f(S) = ∆+e
S [f(S + e′)− f(S)]

= [f(S + e′ + e)− f(S + e)]− [f(S + e)− f(S)] ,

and in the case that + is commutative, as will always be the case in our use of this notation,

∆+e,+e′

S f(S) = ∆+e′,+e
S .

Based on this notation, we have the discrete derivative of the energy function

∆+e
S E(S; I) = E(S + e; I)− E(S; I).

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 65

The greedy policy simply chooses at step t the action e that minimizes ∆+e
StE(St; I), where

St denotes the current segmentation at step t.

7.4 Energy model learning

We define the local energy model Ês (r; v) for each shape descriptor type/scale s by a learned
neural network model that computes a real-valued score in [0, 1] from a shape descriptor
r and image feature vector v. Recall that the agglomeration decisions are based on the
∆+e
StE(St; I) terms, which simply sum the energies from each position and descriptor type s.

As in prior work [68], we treat this as a classification problem, with the goal of matching the
sign of ∆+e

StE(St; I) to ∆+e
St error(St, S∗), the corresponding change in segmentation error with

respect to a ground truth segmentation S∗, measured using Variation of Information [65].
We tested two alternative training procedures: a simpler local training procedure that

seeks to optimize the local Ês (r; v) scores independently, and a global training procedure
that takes into account the contribution of these local scores to the overall E(S; I) scores.

Local training procedure

We optimize the parameters of the energy model Ês (r; v) independently for each shape
descriptor specification s. We seek to minimize the expectation

Ei
[
`(∆+ei

Si
error(Si, S

∗), Ês (rs(xi;Si + e);φ(xi; I)))+ (7.1)

`(−∆+ei
Si

error(Si, S
∗), Ês (rs(x;Si);φ(xi; I)))

]
, (7.2)

where i indexes over training examples that correspond to a particular sampled position xi
and a merge action ei applied to a segmentation Si. `(y, a) denotes a binary classification
loss function, where a ∈ [0, 1] is the predicted probability that y > 0, weighted by |y|. Note
that if ∆+ei

Si
error(Si, S

∗) < 0, then action e improved the score and therefore we want a low
predicted score for the post-merge descriptor rs(xi;Si + e) and a high predicted score for the
pre-merge descriptor rs(xi;Si); if ∆+ei

Si
error(Si, S

∗) > 0 the opposite applies. We tested the
standard log loss `(y, a) := |y| · [1[y > 0] log(a) + 1[y < 0] log(1− a)], as well as the signed
linear loss `(y, a) := y · a, which more closely matches how the Es(x;Si; I) terms contribute
to the overall ∆+e

S E(S; I) scores. We use stochastic gradient descent (SGD) to perform the
optimization.

We obtain training examples by agglomerating using the expert policy that greedily opti-
mizes error(St, S∗). At each segmentation state St during an agglomeration step (including
the initial state), for each possible agglomeration action e, and each position x within the
volume, we compute the shape descriptor pair rs(x;St) and rs(x;St + e) reflecting the pre-
merge and post-merge states, respectively. If rs(x;St) 6= rs(x;St + e), we emit a training

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 66

example corresponding to this descriptor pair. We thereby obtain a conceptual stream of
examples 〈e,∆+e

St error(St, S∗), φ(x; I), rs(x;St), rs(x;St + e)〉.
This stream of examples may contain billions of examples (and many highly correlated),

far more than required to learn the parameters of Es. To reduce resource requirements, we
use priority sampling [34], based on |∆+e

S error(S, S∗)|, to obtain a fixed number of weighted
samples without replacement for each descriptor type s. We equalize the total weight of true
merge examples (∆+e

S error(S, S∗) < 0) and false merge examples (∆+e
S error(S, S∗) > 0) in

order to avoid learning degenerate models.2

Global Training

For the global training, we jointly optimize the parameters of the energy models Es in order
to minimize the expectation

Ei
[
`(∆+ei

Si
error(Si, S

∗), logistic(∆+ei
Si
E(Si; I)))

]
.

We are able to do this with the same local training procedure through the use of a reweighting
scheme: instead of applying SGD to the local objective with a fixed set of examples, we apply
it to the reweighted objective (simultaneously for all shape descriptor types/scales s)

Ei
[
`(|gi| ·∆+ei

Si
error(Si, S

∗), Ês(rs(xi;Si + e);φ(xi; I)))+

`(−|gi| ·∆ei error(Si, S
∗), Ês(rs(x;Si);φ(xi; I)))

]
,

where gi is the gradient of the global loss with respect to ∆+ei
Si
E(Si; I). We use a continuously

resampled set of examples based on the current model parameters, obtained by priority
sampling weighted by |gi ·∆+ei

Si
error(Si, S

∗)|.

7.5 Efficient energy minimization

Näıvely, computing the energy for just a single segmentation requires computing shape de-
scriptors and then evaluating the energy model at every voxel position with the volume; a
small volume may have tens or hundreds of millions of voxels. At each stage of the agglomer-
ation, there may be thousands, or tens of thousands, of potential next agglomeration steps,
each of which results in a unique segmentation. In order to choose the best next step, we
must know the energy of all of these potential next segmentations. The computational cost
to perform these computations directly would be tremendous.

We will discuss several computational tricks that allow us to efficiently compute these
energy terms incrementally. Because the cost of evaluating the local energy model for a

2For example, if most of the weight is on false merge examples, as would often occur without balancing,
the model can simply learn to assign a score that increases with the number of 1 bits in the shape descriptor.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 67

single shape descriptor is many times more expensive than computing the shape descriptor,
we structure our computation such that we only recompute a local energy term if the shape
descriptor on which it depends has changed. This ensures that the total cost of evaluating
the local energy terms is minimized, but even computing just the shape descriptors at each
position within the volume for each potential agglomeration action at each step would still
be prohibitively expensive. We therefore rely on geometric and region graph information to
prune out the vast majority of this computation as well. Collectively, these tricks reduce the
computational cost by several orders of magnitude; the effectiveness of these techniques is
ultimately data-dependent, however.

Action representation

Recall that each agglomeration action e corresponds to a set of additional voxel edges to
be added to the current segmentation state St. While in principle agglomeration could be
defined with respect to arbitrary sets of voxel edges, we will carefully choose the set of actions
to be considered in order to preserve the distinction between local and global connectivity
while also allowing for a computationally-efficient implementation.

We will define actions in terms of adjacent supervoxels K,K ′ ∈ K(S0) in the initial
segmentation:

Definition 7.15. For any two distinct connected components K,K ′ ∈ K(S0), let

eK,K′ := {{x, x′} |x′ ∈ N (x) ∧ (x, x′) ∈ K ×K ′}.

Remark. If K and K ′ are not adjacent, then eK,K′ = ∅.

Note that we represent edges in the undirected voxel graph simply as two-element sets
of voxel positions.

Definition 7.16. We define the supervoxel merge action set

AS := {eK,K′ 6= ∅ |K,K ′ ∈ K(S) ∧K 6= K ′}.

We will use A0 := AS0 as our set of actions for agglomeration. Note that each action
corresponds to a set of voxel graph edges. At each step t of agglomeration, we choose an
action et ∈ At. The set of remaining actions At after step t is simply the subset of actions
in A that have not yet been performed, i.e. At+1 = At − {et}. The segmentation state
St+1 := St + et.

Definition 7.17. If e is a set of edges and C is a set of vertices, we denote by e[C] the
restriction of e to vertices in C, i.e. the subset of edges in e that are incident to two vertices
in C. If S is a graph, we define e[S] := e[vertices(S)] to be the restriction of e to vertices in
S.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 68

Definition 7.18. Given a graph S and a partition T of vertices(S), we denote by G/T the
contraction of G by T , i.e. vertices(G/T) = T and

edges(G/T) = {{t1, t2} ⊆ T | ∃e ∈ edgesG : e ∩ t1 6= ∅ ∧ e ∩ t2 6= ∅}.

Definition 7.19. A set e of voxel edges is said to be a supervoxel merge in a voxel graph
S of components K,K ′ ∈ K(S) if e[S] is a non-empty set of edges between components K
and K ′, or equivalently, that every edge in e[S] corresponds to the edge {K,K ′} in S/K(S).

Definition 7.20. A set e of voxel edges is said to be a redundant merge in a voxel graph
S, corresponding to the component K ∈ K(S), if e[S] is a non-empty set of edges within
component K, i.e. {{K(a;S), K(b;S)} | {a, b} ∈ e} = {{K}}, or equivalently, that every
edge in e corresponds to a self edge {K} in S/K(S).

Lemma 7.2. If e is a redundant merge in S, then K(S + e) = K(S).

Proof. This follows from the fact that adding an edge between two vertices already part of
the same connected component does not change set of connected components.

Definition 7.21. Let e, e′ be supervoxel merges in S. We say that e is incident to a connected
component K ∈ K(S) in S if every edge in e is incident to a voxel in K, i.e. e is incident to
K in S/K(S). We say that e is incident to e′ in S if there exists K ∈ componentsS to which
both e and e′ are incident, i.e. e is incident to e′ in S/K(S).

Lemma 7.3. If e is a supervoxel merge in S and S is a spanning subgraph of S ′, then e is
a supervoxel merge or redundant merge in S ′. If e is a redundant merge in S, then e is a
redundant merge in S ′.

Proof. Suppose e is a supervoxel merge in S, corresponding to K,K ′ ∈ K(S). There must
exist a components J, J ′ ∈ K(S ′) with K ⊆ J and K ′ ⊆ J ′. If J = J ′, then e is a redundant
merge in S ′; otherwise e is a supervoxel merge of {J, J ′}.

Suppose e is a redundant merge in S corresponding to K ∈ K(S). There must exist a
component J ∈ K(S ′) with K ⊆ J . Hence, e is a redundant merge in S ′ corresponding to
J .

Remark. S is necessarily a spanning subgraph of S + e for any merge action e.

Lemma 7.4. At all steps t, all e ∈ A are either supervoxel merges or redundant merges in
St.

Proof. This follows from lemma 7.3 and the fact that all e ∈ A are supervoxel merges in
S0.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 69

The consequence of this lemma is that globally each merge action corresponds to a pair
of connected components. Within the induced subgraph St[C] of St restricted to a given
connectivity region C, however, this lemma does not necessarily hold, even for S0[C], because
a connected component of S0 may correspond to more than one connected component of
S0[C]. For computational reasons that will be made apparent in section 7.5, we would like
to ensure that it does hold, so that each merge action also corresponds to a pair of connected
components within each connectivity region C (or is redundant within C).

To do this, we will assume that each connected component of S0 is a clique. Our as-
sumption sacrifices any distinction between local and global connectivity within the original
supervoxels of S0, but this is a small sacrifice given that they are expected to be small.

Lemma 7.5. Given a connectivity region C, if e is a supervoxel merge in S0 and e[C] is
non-empty, then e is either a supervoxel merge or a redundant merge in St[C] for all t.

Proof. Suppose e is a supervoxel merge in S0 of components K1, K2 ∈ K(S0). For all
{a, b} ∈ e[C], without loss of generality we can assume a ∈ K1 and b ∈ K2. By our
assumption that K1 and K2 are cliques in S0, K1 ∩C,K2 ∩C ∈ K(S0[C]). By the definition
of e[C], we have a ∈ K1 ∩ C and b ∈ K2 ∩ C. Hence, e is a supervoxel merge in S0[C]. The
result follows from lemma 7.3.

∆ representation

To efficiently implement a local search over agglomerations, at each step t of agglomer-
ation, for each possible next agglomeration action e, we maintain the discrete derivative
∆+e
StE(St; I), where St denotes the current segmentation at step t. Although our energy

model is defined without any reference to supervoxels or merges, we prove a number of key
properties that enable us to very efficiently compute and update these discrete derivative
terms.

To maintain ∆+e
StE(St; I), conceptually we must initially compute ∆+e

S0Es(x;S0; I) for
each position x and action e, and then at each subsequent step t, agglomeration action at is
taken and we update

∆+e
St+1E(St+1; I) = ∆+e

StE(St; I) +
∑

s

∑

x

∆+e,+et

St Es(x;St; I) for all e ∈ At+1.

Theorem 7.1 (Descriptor-based pruning). Let a position x and image I be given. Let
r̄(S ′) := rs(x;S ′) and Ē(S ′) := Es(x;S ′; I). Given a segmentation S, and merge e, if r̄(S) =
r̄(S + e), then ∆+e

S Ē(S) = 0. Furthermore, for any merge e′,

d := ∆+e,+e′

S Ē(S) =

+Ē(S) −Ē(S + e)
−Ē(S + e′) +Ē(S + e′ + e),

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 70

where some or all of the 4 terms can be canceled based on whether r̄(S) = r̄(S + e), r̄(S) =
r̄(S + e′), r̄(S + e) = r̄(S + e′ + e), and/or r̄(S + e′) = r̄(S + e′ + e). In particular,

r̄(S)= r̄(S + e) ∧ r̄(S + e′)= r̄(S + e′ + e) =⇒ d = 0;

r̄(S)6= r̄(S + e) ∧ r̄(S + e′)= r̄(S + e′ + e) =⇒ d = Ē(S)− Ē(S + e);

r̄(S)= r̄(S + e) ∧ r̄(S + e′)6= r̄(S + e′ + e) =⇒ d = Ē(S + e′ + e)− Ē(S + e′).

By symmetry of the theorem with respect to e and e′ we also have:

r̄(S)= r̄(S + e′) ∧ r̄(S + e)= r̄(S + e′ + e) =⇒ d = 0;

r̄(S)= r̄(S + e′) ∧ r̄(S + e)6= r̄(S + e′ + e) =⇒ d = Ē(S + e′ + e)− Ē(S + e);

r̄(S) 6= r̄(S + e′) ∧ r̄(S + e)= r̄(S + e′ + e) =⇒ d = Ē(S)− Ē(S + e′).

Proof. For the first statement, if r̄(S) = r̄(S + e), we have

Ē(S) = Ês (r̄(S);φ(x; I))

= Ês (r̄(S + e);φ(x; I))

= Ē(S + e).

The result follows.
The second statement is a straightforward result of the same cancellation principle.

Remark. This theorem allows us to skip a large fraction of evaluations of the local energy
model, which is in general significantly more expensive than just computing the shape de-
scriptors (which must still be done in order to check the conditions of this theorem). If a
packed bitvector representation is used, the cost of the descriptor comparisons is negligible.

Connectivity region-based pruning

Recall that for every merge action e exactly one of the following is true:

1. e is a supervoxel merge in St[C];

2. e is a redundant merge in St[C];

3. e[C] = ∅.

Definition 7.22. For each connectivity region C, we define the active action set At[C] ⊆ At

to be the subset of actions at step t that are supervoxel merges in St[C].

Lemma 7.6. Given a connectivity region C, if e 6∈ At[C], then e 6∈ At′ [C] for all t′ > t.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 71

Proof. Suppose e 6∈ At[C]. Then either e[C] = ∅ or e is a redundant merge in St[C]. If
e[C] = ∅, then e 6∈ At

′
[C] for any t′. Alternatively, if e is a redundant merge in St[C],

then since St[C] is a spanning subgraph of St
′
[C], by lemma 7.3 e is a redundant merge in

St
′
[C].

Theorem 7.2 (Connectivity region-based pruning). Given a position x, time step t, and
merge e ∈ At, let C = Cs(x) and let A′ = At[C]. If e 6∈ A′, then ∆+e

StEs(x;St; I) = 0.

Furthermore, if {e, e′} 6⊆ A′, then ∆+e,+e′

St Es(x;St; I) = 0.

Proof. We will begin by proving the first statement. Suppose e 6∈ A′. By definition of A′, it
follows that e is a redundant edge in St[C], i.e. K(St[C]) = K((St + e)[C]). By lemma 7.1,
we have rs(x;St) = rs(x;St + e) = r. The result follows from the first part of theorem 7.1.

Next we will consider the second statement. Since ∆+e,+e′

St Es(x;St; I) = ∆+e′,+e
St Es(x;St; I),

the second statement is symmetric with respect to e and e′. It is sufficient, therefore to again
consider the case that e 6∈ A′. By the first statement, ∆+e

StEs(x;St; I) = 0. Since St is a
spanning subgraph of St+e′, it is likewise the case that e is a redundant merge in (St+e′)[C],
which implies that rs(x;St + e′) = rs(x;St + e′+ e). The result follows from the second part
of theorem 7.1.

Remark. Because each action is typically active in only a tiny fraction of the connectivity
regions, this theorem allows us to dramatically limit our computation.

Graph-based pruning

Lemma 7.7. Let a segmentation S and a supervoxel merge e in S be given. Let K ∈ K(S)
be a connected component of S. If e is not incident in S to K, then K ∈ K(S + e), i.e.
merging e in S does not affect K.

Proof. This follows from the fact that by definition of incidence of a supervoxel merge, no
edge in e is incident to any voxel in K.

Theorem 7.3 (Graph-based pruning). Suppose s defines a center-based descriptor. Let a
segmentation S, position x, and supervoxel merges e and e′ in S be given. Let C = Cs(x). If
e is not incident in S[C] to K(x;S[C]), then rs(x;S) = rs(x;S + e) and ∆+e

S Es(x;S; I) = 0.
Furthermore, if e is not incident in (S + e′)[C] to K(x; (S + e′)[C]), or e′ is not incident to

e in S[C], then ∆+e,+e′

S Es(x;S; I) = 0.

Proof. We will being by proving the first statement. Suppose e is not incident in S[C] to
K := K(x;S[C]). By lemma 7.7, we have K = K(x; (S + e)[C]). By lemma 7.1 this implies
that rs(x;S) = rs(x;S + e). The result follows from the first part of theorem 7.1.

Next we will consider the second statement. Note that the condition that e is incident
in (S+ e′)[C] to K(x; (S + e′)[C]) is equivalent to the condition that e is incident in S[C] to
K := K(x;S[C]), or e′ is a supervoxel merge of K and K ′ in S[C] (i.e. incident to e in S[C])
and e is incident to K ′ in S[C].

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 72

There are two cases to consider: suppose e is not incident in (S+e′)[C] toK(x; (S + e′)[C]).
Then since S is a spanning subgraph of S + e′, it follows that e is also not incident in S[C]
to K(x;S[C]). The result follows from applying the first statement of the theorem to both
S and S + e′ and then using theorem 7.1.

Alternatively, suppose e′ is not incident to e in S[C]. This implies that K(x;S[C]) is
incident to at most one of {e, e′} in S[C]. By the symmetry of the theorem with respect to e
and e′, we will assume without loss of generality that e is not incident to K(x;S[C]) in S[C].
By our note above, we can infer that the condition for our first case, that e is not incident
to K(x; (S + e′)[C]) in (S + e′)[C], holds.

Remark. This theorem demonstrates that for center-based descriptors, we can significantly
limit computation based on the agglomeration graph structure. The cost of maintaining the
incidence information is negligible.

Visibility-based pruning

Lemma 7.8. Let a position x, segmentation S and supervoxel merge e of components K1 and
K2 in S[C], where C = Cs(x), be given. If e is incident in S[C] to at most one component
in Vs(x;S), then rs(x;S) = rs(x;S + e).

Proof. There are two cases to consider. If e is not incident in S[C] to any component in
Vs(x;S), then by lemma 7.7, Vs(x;S) = Vs(x;S + e). The result follows from lemma 7.1.
If e is incident in S[C] to exactly one component K1 ∈ Vs(x;S), then Vs(x;S + e′) =
Vs(x;S) + {K ′1 ∪ K ′2} − {K1}, i.e. merging e′ in S adds additional voxels (not part of any
visible component) to one visible component. Since these additional voxels are, by definition,
not sampled by the shape descriptor, it follows that rs(x;S) = rs(x;S + e).

Theorem 7.4 (Visibility-based pruning). Given a position x, and segmentation S, let C =
Cs(x) Let e′ be a supervoxel merge of components K1 and K2 in S[C]. If e′ is not incident in

S[C] to any component K1 ∈ Vs(x;S), then ∆+e
S Es(x;S; I) = 0, and ∆+e,+e′

S Es(x;S; I) = 0
for all supervoxel merges e in S[C]. If e′ is incident in S[C] to exactly one component
K1 ∈ Vs(x;S), then for all supervoxel merges e of K ′1, K

′
2 in S[C] not incident to K2 in

S[C], i.e. K2 6∈ {K ′1, K ′2}, ∆+e,+e′

S Es(x;S; I) = 0.

Proof. To prove the first statement, suppose e′ is not incident in S[C] to any component
in Vs(x;S). For any supervoxel merge e in S[C], it must be the case that e′ is incident in
(S + e)[C] to at most one component in Vs(x;S + e). By applying lemma 7.8 to both S[C]
and S[C + e], we have rs(x;S) = rs(x;S + e′) and rs(x;S + e) = rs(x;S + e+ e′). The result
follows from theorem 7.1.

To prove the second statement, suppose e′ is incident in S[C] to exactly one component
K1 ∈ Vs(x;S). As for the first statement, by lemma 7.8 we have rs(x;S) = rs(x;S + e′).
Let e be a supervoxel merge of K ′1, K

′
2 in S[C] not incident to K2 in S[C]. If e is incident

to K1, then e′ is incident in (S + e)[C] to exactly one component (K ′1 + K ′2) ⊇ K1. If e

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 73

is not incident to K1, then e′ is incident in (S + e)[C] to exactly the one component K1.
Therefore, by lemma 7.8 we have rs(x;S + e) = rs(x;S + e+ e′) and the result follows from
theorem 7.1.

Determining whether a given component K ∈ S[C] is a member of the exact visibility set
Vs(x;S) for all positions x ∈ Xs

C is computationally expensive, i.e. Θ(|Xs
C | · |s|). However,

to satisfy the conditions of theorem 7.4, it is sufficient to check membership in any superset
of the visibility set; this restricts the conditions under which pruning is done, but we can
choose a superset in which membership can be checked much more efficiently.

Definition 7.23. For d-dimensional vectors ~a,~b ∈ Zd, we denote by R
~b
~a the hyperrectangle

R
~b
~a := {~x ∈ Zd |~a ≤ ~x <~b}.

Definition 7.24. Given a segmentation S, we define the approximate component visibility
set V̂s(x;S) ⊆ K(S[C]) of a position x to be the set of connected components at positions
within a bounding box of size Bs centered at x:

V̂s(x;S) :=
{
K(x+ c;S[C])

∣∣∣ c ∈ R(Bs−~1)/2

−(Bs−~1)/2

}
,

where C = Cs(x).

Lemma 7.9. Given a segmentation S, V̂s(x;S) ⊆ Vs(x;S).

Proof. This follows from the fact that {a, b} ⊂ R
(Bs−~1)/2

−(Bs−~1)/2
for all {a, b} ∈ s.

Definition 7.25. For two coordinate vectors a and b, a�b denotes the element-wise product.

For a given component K ∈ S[C], by first computing a summed area table [29], we
can efficiently determine whether K ∈ V̂s(x;S[C]) for all positions x ∈ Xs

C , as described in
algorithm 7.1. The computational cost is Θ(|C|). To check the conditions of theorem 7.4 for
a given supervoxel merge e′ of K1, K2 ∈ S[C], we simply apply algorithm 7.1 to both K1 and
K2. Alternatively, to check only the (more limited) first condition that {K1, K2}∩Vs(x;S) =
∅, then it is sufficient to apply algorithm 7.1 just once to K1 ∪K2.

At agglomeration steps t > 0, we can apply theorem 7.4 with e′ = at−1 and e ∈ At[C]
in order to limit the set of positions x and edges e for which the change in local energy

∆+e,+et

St Es(x;St; I) must be computed. In principle, we could apply theorem 7.4 to all can-
didate actions e′ ∈ At[C] at a given agglomeration step t, but this would require computing
separate summed area tables for all components K ∈ K(St[C]) incident to a candidate ac-
tion, which would involve considerable overhead. Therefore in practice the theorem is only
applicable for t > 0.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 74

Algorithm 7.1 Optimized membership test for approximate component visibility sets.

Require: (G,+) is a commutative group with identity 0G.
1: function ComputeSummedAreaTable(A : Rb

a → G, Rb
a)

2: Declare array T : Rb+~1
a → G

3: for x ∈ Rb+~1
a : ‖x− a‖0 < d do

4: T (x)← 0G
5: end for
6: for x ∈ Rb

a+~1
do . Iteration over x must respect the usual partial ordering on Zd.

7: T (x)← A(x−~1) +
∑

z∈{0,1}d−{~0}

(−1)1+‖z‖1 · T (x− z)

8: end for
9: return T

10: end function
11: function SummedAreaTableLookup(T : Rb+~1

a → G, Rb′

a′ ⊆ Rb
a)

12: return
∑

z∈{0,1}d
(−1)‖z‖1 · T (b+ (a− b)� z)

13: end function
14: function ComputePositionsWithVisibility(s, S, C, K ∈ S[C])
15: Define A(x) := 1[K = K(x;S[C])]
16: T ← ComputeSummedAreaTable(A,C)
17: X ← ∅
18: for x ∈ Xs

C do

19: if SummedAreaTableLookup(T,R
x+(Bs−~1)/2

x−(Bs−~1)/2
) > 0 then

20: X ← X ∪ {x}
21: end if
22: end for
23: return X
24: end function

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 75

Zone-based pruning

In the case of a pairwise shape descriptor specification s, we cannot apply theorem 7.3,
and consequently based only on theorem 7.2, for each position x we must compute shape
descriptors for all actions e ∈ At[Cs(x)]. Theorem 7.4 primarily allows us to prune positions
x but not actions e, and is not applicable at the initial state t = 0.

At t = 0, the number of positions that must be considered within a given connectivity
region C is exactly |Xs

C |; at later steps t > 0 the number of positions may be reduced due
to theorem 7.4 but nonetheless tends to grow linearly with |Xs

C |. The size of the active
set At[C] tends to grow superlinearly in |C|. Hence, the computational cost of shape de-
scriptor computation based only on the pruning theorems we’ve introduced thus far grows
superquadratically in |C|.

To mitigate this effect, we could of course simply ensure that connectivity regions are
very small. A larger number of small connectivity regions does, however, introduce additional
overhead, as explained in section 7.6, and therefore may actually increase the computational
cost. Furthermore, reducing the connectivity region size also affects the extent to which
shape descriptors reflect local or global connectivity, and we would like to be able to choose
that independently of computational concerns.

We therefore introduce a subdivision of connectivity regions into zones.

Definition 7.26. For each connectivity region C ∈ Cs, the zone set Zs,C is a partition of
Xs
C .

We can extend our definition of component visibility sets, previously defined only for
individual positions in definition 7.11, to sets of positions:

Definition 7.27. The component visibility set Ws(Z;S) for a zone Z is defined by

Ws(Z;S) := ∪x∈ZVs(x;S).

Definition 7.28. The zone visibility set W−1
s (K;C) is the set of zones whose component

visibility set contains K:

W−1
s (K;C) := {Z ∈ Zs,C |K ∈ Ws(Z;S)},

where S is some segmentation for which K ∈ K(S[C]).

Remark. The zone visibility set does not depend on the segmentation S beyond the fact that
K ∈ K(S[C]). By definition, a merge that does not affect a connected component K ′ does
not affect its zone visibility set W−1

s (K ′;C).

Theorem 7.5. Given a supervoxel merge e of K1, K2 in S[C], merging e in S has the effect
of merging the zone visibility sets of K1 and K2:

W−1
s (K1 ∪K2;C) = W−1

s (K1;C) ∪W−1
s (K2;C).

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 76

Proof. To show that the W−1
s (K1;C) ∪ W−1

s (K2;C) contains W−1
s (K1 ∪ K2;C), let Z ∈

W−1
s (K1 ∪ K2;C) be given. Then ∃x ∈ Z, c ∈ {a, b} ∈ s such that K(x+ c;S ′[C]) =

(K1 ∪ K2), where S ′ is the segmentation that results from the merge of K1 and K2 in S.
Hence, K(x+ c;S[C]) ⊂ {K1, K2}, and it follows that Z ∈ W−1

s (K1;C) ∪W−1
s (K2;C).

To show that W−1
s (K1∪K2;C) contains W−1

s (K1;C)∪W−1
s (K2;C), let Z ∈ W−1

s (K1;C)
be given. Then ∃x ∈ Z, c ∈ {a, b} ∈ s such that K(x+ c;S[C]) = K1. It follows that
K(x+ c;S ′[C]) = (K1 ∪K2), and therefore Z ∈ W−1

s (K1 ∪K2;C).

Definition 7.29. A supervoxel merge e of K1, K2 in S[C] is said to be active in zone Z of
S[C] if Z ∈ W−1

s (K1;C) ∩W−1
s (K2;C).

Definition 7.30. We denote by AtZ [C] the active action set of zone Z of connectivity region
C at time t, the set of actions e in At[C] that are active in zone Z of St[C].

Theorem 7.6. If a supervoxel merge e in S[C] is not active in zone Z, then for all positions
x ∈ Z we have rs(x;S) = rs(x;S + e), ∆+e

S Es(x;S; I) = 0. Furthermore, given a supervoxel
merge e′ in S[C], if a supervoxel merge e in (S + e′)[C] is not active in zone Z, then for all

positions x ∈ Z, ∆+e,+e′

S Es(x;S; I) = 0.

Proof. To prove the first statement, suppose the supervoxel merge e in S[C] of components
K,K ′ is not active in zone Z, and x ∈ Z. Then by definition 7.29, {K,K ′} 6⊆ Vs(x;S).
Hence, by lemma 7.8 rs(x;S) = rs(x;S + e), and the result follows from theorem 7.1.

To prove the second statement, suppose the supervoxel merge e of components K1, K2

in (S + e′)[C] is not active in zone Z of (S + e′)[C]. By the first statement of the theorem,
this implies that rs(x;S + e′) = rs(x;S + e′ + e) for all x ∈ Z. It remains to be shown that
e is also not active in zone Z of S[C]. By definition 7.29,

Z 6∈ W−1
s (K1;C) ∩W−1

s (K2;C). (7.3)

There are two cases to consider:

1. If e is not incident to e′ in S[C], then {K1, K2} ⊂ K(S[C]) and it follows from eq. (7.3)
and definition 7.29 that e is also not active in zone Z of S[C].

2. Alternatively, if e is incident to e′ in S[C], then without loss of generality we can assume
that K2 ⊂ K(S[C]) and K1 = K ′1 ∪ K ′2, where e′ is a supervoxel merge of K ′1, K

′
2 in

S[C], and e is a supervoxel merge of K ′1, K2 in S[C]. Then by theorem 7.5,

W−1
s (K1;C) = W−1

s (K ′1 ∪K ′2;C)

= W−1
s (K ′1;C) ∪W−1

s (K ′1;C).

It follows that Z 6∈ W−1
s (K ′1;C) ∩W−1

s (K2;C), which by definition 7.29 implies that
e is not active in zone Z of S[C]. By the first statement of the theorem, we have
rs(x;S) = rs(x;S + e) for all x ∈ Z. The result follows from theorem 7.1.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 77

If we ensure that the total number of zones, |Zs,C |, is limited to a small constant, e.g.
64, then we can efficiently represent the zone visibility set W−1

s (K;C) for each component
K as a bit vector. Maintaining these visibility sets over the course of agglomeration, per
theorem 7.5, requires only bitwise disjunction operations; determining whether a supervoxel
merge e is active in a zone Z, per definition 7.29, requires only bitwise conjunction.

Based on theorem 7.6, the cost of computing all unpruned shape descriptors within a
connectivity region C can be formulated as

∑

Z∈Zs,C

[
(|Z|+ α) · |AtZ [C]|

]
+ β(|Zs,C |),

where α represents the overhead per action active in a zone, and β is a non-decreasing
function that specifies an additional overhead for a given number of zones; α and β may
represent either computational or memory costs.

Minimizing this cost exactly is in general a hard integer programming problem. We find
a locally-optimal solution using an approach that mirrors our approach for minimizing the
global energy E(S; I): we start with an initial set of zones, either single-voxel zones or a
regular grid, and greedily merging zones in order to reduce the cost.

7.6 Implementation

A high-performance implementation of our agglomeration procedure is critical for testing and
applying it to the large datasets inherent to neuronal reconstruction. The implementation
challenges are, however, considerable:

• Conceptually the local search over the space of agglomerations depends on the value
of an enormous number of distinct local energy terms.

• The pruning tricks described in section 7.5 greatly reduce the number of shape descrip-
tor and local energy model computations, but at the cost of significant algorithmic
complexity.

• We wish to be able to use a high-dimensional image feature representation φ(x; I).
Storing the precomputed 512-dimensional image features over just as a small 2563 voxel
volume in 32-bit floating point format requires 34 GB of memory. While in absolute
terms this is not a large amount of memory, it limits the number of independent
volumes that may be agglomerated in parallel on a single machine, and for reasonable
cost-effectiveness it is necessary, therefore, that a single agglomeration be able to take
advantage of multiple cores.

• The computational steps required are not primarily standard operations like convolu-
tions, Fourier transforms, matrix multiplications, or other linear algebra operations for
which there has already been extensive study of efficient implementation techniques

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 78

if E(St + et; I) > E(St; I) + τ

For each agglomeration step t

2. Initialize action scores
∆+e

S0E(S0 + e; I) ∀e ∈ A0

Image features
x 7→ φ(x; I)

1. Precompute image features

Image I

Initial supervoxels S0

3. Pick action et to
minimize E(St + et; I)

5. Stop agglomeration

4. Update action scores ∀e ∈ At+1

∆+e
St+1E(St+1 + e; I)
← ∆+e

St E(St + e; I)

+ ∆+e,+et

St E(St + e; I)

t← 0

if E(St + et; I) ≤ E(St; I) + τ
t← t+ 1

Figure 7.8: High-level CELIS agglomeration procedure. Arrows show the flow of data (in-
dicated by rectangles) and control (indicated by rounded rectangles). At a high-level, ag-
glomeration proceeds in a sequential manner. At each agglomeration step t, the next action
et if selected to greedily minimize the global energy E(St + et; I). If the best et decreases
the energy by more than τ , i.e. ∆+et

St E(St; I) < τ , then agglomeration continues. Otherwise,
agglomeration terminates. To save computation at the cost of greater memory use, the image
feature vector φ(x; I) for all positions x are precomputed prior to the start of agglomeration.
The parallel pipeline used to initialize and update the action scores (steps 2 and 4) is shown
in detail in fig. 7.10; the details of the data structures that are updated by these steps are
shown in fig. 7.9.

and for which high-performance implementations (for single and multiple CPU cores,
as well as for GPU platforms) are already available.

To address these challenges, we designed a parallel pipeline that, at agglomeration step t,
determines which shape descriptors and local energy terms need to be computed, performs
those computations, and updates ∆+e

StE(St; I) for candidate actions e, in order that the
action e that greedily minimizes E(St + e; I) may be chosen.

Data structures maintained during agglomeration

This pipeline is based around several interlinked data structures, as shown in fig. 7.9:

• The initial segmentation S0 serves to define the agglomeration space over which our
local search will operate. While conceptually we represent segmentations as an undi-

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 79

C
on

n
ec

ti
v
it

y
re

gi
on

C

...

...

C
on

n
ec

ti
v
it

y
re

gi
on

ti
li
n
gs
∪ s
C s

Supervoxel disjoint sets
{u ∈ K(S0) |u ⊂ C} → K(St[C])

· · · · · · · · ·

Multigraph over (K(St[C]), At[C])

K

...

· · · · · ·

Active set At[C]

· · · · · · · · ·

∀s : C ∈ Cs

Action set At

...

...

...

Action priority queue

...

...

...

u v

{u, u′} {v, v′}

{u, u′} {v, v′}

Zone bounding boxes Zs,C

Zone visibility sets: K(St[C])→ 2Zs,C

{u, u′}

{v, v′}

∆
+ev,v′
St E(St; I)

∆
+eu,u′
St E(St; I)

Initial segmentation S0

(Supervoxels)

Image feature map
x 7→ φ(x; I)

Figure 7.9: Data structures for implementing CELIS agglomeration. Arrows indicate the
links that make up the data structures.
For each connectivity region C, we maintain a disjoint sets data structure that maps super-
voxels u ∈ K(S0) to connected components of K ∈ K(St[C]). For each connected component
K, we maintain a list of incident supervoxel merge actions e ∈ At to allow for efficient appli-
cation of theorem 7.3. This represents the multigraph obtained by contracting the connected
components of St[C]. For each shape descriptor specification s for the connectivity region
is used, we also maintain the zone information and zone visibility sets (represented as bit
vectors) for each connected component K.
For each action e ∈ At, we store ∆+e

StE(St; I), which serves as the ordering key for a priority
queue over actions used for greedy agglomeration. We also maintain for each action e the
set of connectivity regions for which e ∈ At[C], for efficient application of theorem 7.2.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 80

rected graph over voxels (as described in section 7.2), we assume for simplicity that
each initial supervoxel, i.e. connected component u ∈ K(S0), is a clique, as described
in section 7.5. This allows us to unambiguously represent S0 by labeling each voxel
with an integer that uniquely identifies the supervoxel that contains it. Note that it is
not in general the case that the connected components of St at steps t > 0 are cliques,
meaning that we cannot unambiguously represent St by a component labeling. In fact
we do not explicitly represent the segmentation St at later steps; instead it is repre-
sented implicitly by the initial segmentation S0 and the sequence of actions a1, . . . , at

that have been performed.

• The global set of actions At. As described in section 7.5, each action e ∈ At corresponds
to a pair {u, v} ⊂ K(S0), i.e. e = eu,v. We represent each action eu,v by the pair of
integer identifiers corresponding to the supervoxels u and v. The action set at any step
t > 0 is simply A0 − {et′ | t′ < t}. For each action e ∈ At, we also maintain the set of
connectivity regions C in which it is active, i.e. e ∈ At[C]. This allows theorem 7.2
to be applied efficiently. Recall that by lemma 7.6, actions are removed from At[C]
during the course of agglomeration, but are never added. Thus, once an action e is no
longer active in any connectivity region, it ceases to affect the global energy.

• The key information that the pipeline serves to maintain is the change in global energy,
∆+e
StE(St; I), that would result from merging each action e. This change in energy is

essentially a score associated with the action. Our agglomeration procedure follows the
greedy policy of choosing at each step the action with the lowest (i.e. most negative)
score. Therefore, for each active set e we store the associated score, and we also
maintain a priority queue over the scores, to allow for efficiently finding the edge with
the lowest score.

• Another major component is a data structure representing the set of connectivity re-
gions, i.e. the union of the connectivity region tilings Cs for each shape descriptor
specification s.3 The set of connectivity regions remains fixed throughout agglomera-
tion. For each connectivity region, we maintain the following information:

– A mapping from global supervoxels u ∈ K(S0) (represented by unique integer
identifiers) to connected components K ∈ K(St[C]) within the connectivity re-
gion (also represented by unique integer identifiers within each connectivity region,
separate from the global supervoxel identifiers). We handle the mapping of global

3In the typical case that different tile sizes B̄s and strides strides are used for each specification s,
these tilings Cs will be disjoint (but certainly overlapping, as they cover the same space), meaning that
each connectivity region C is associated with only one specification s. In general, though, there may be
multiple shape descriptor specifications s for which C is used, i.e. C ∈ Cs. Sharing a connectivity region
for multiple shape descriptor specifications slightly reduces memory and computational overhead, because
the per-connectivity region data structures, namely the connected components K(K) and active action sets
At[C], only have to be stored and maintained once.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 81

supervoxel identifiers using a hash table, and we maintain the connected compo-
nents using a standard disjoint sets data structure based on union by rank and
path compression. [27, p. 505]

– The active set At[C] of actions that affect connectivity within C.

– For each component K ∈ K(St[C]), the set of incident actions e ∈ At[C]. Each
incident action corresponds to a supervoxel merge of K and some other component
K ′ ∈ K(St[C]) in St[C]. There may, however, be two distinct actions e, e′ ∈
At[C] that are both supervoxel merges of the same two components K and K ′.
These sets of incident actions therefore correspond to the adjacency lists of the
multigraph St[C]/K(St[C]).

– For each shape descriptor specification s for which C ∈ Cs (typically there may
only be one such s), we additionally maintain:

∗ The partition Zs,C of Xs
C . We represent each zone compactly as the union of

disjoint rectangular regions.

∗ For each component K ∈ K(St[C]), the zone visibility set W−1
s (K;C) repre-

sented as a bit vector.

• Because the image feature representation φ(x; I) is typically expensive to compute,
and the same feature is used for computing Es(x;S; I) for many different candidate
segmentations S, we precompute the image features for all positions x and store the
feature vectors in a giant 4-D array. In practice the maximum volume size that can be
agglomerated is limited by the available memory for storing the precomputed image
feature array.

Parallel pipeline for updating action scores

The pipeline for updating action scores is shown in fig. 7.10. The same overall flow of control
and data is used both (a) to compute the initial ∆+e

S0E(S0; I) scores for all actions e ∈ A0

prior to agglomeration, and (b) to incrementally update the ∆+e
StE(St; I) scores from the

prior agglomeration step by adding ∆+e,+et

St E(St; I) to reflect the agglomeration action et

chosen. At a high level, it consists of the following operations:

• Steps 2–6: Preprocessing to determine the set of (x, e) position/action pairs for which
we must compute shape descriptors rs(x;St), rs(x;St + e), and in the incremental case
rs(x;St+et) and rs(x;St+et+e). This preprocessing is where connectivity region-based
pruning (theorem 7.2), graph-based pruning (theorem 7.3), visibility-based pruning
(theorem 7.4), and zone-based pruning (theorem 7.6) applies.

• Step 7: Computation of shape descriptors rs(x;St), rs(x;St + e), and in the incre-
mental case rs(x;St + et) and rs(x;St + et + e) for the necessary (x, e) position/action
pairs. According to descriptor-based pruning (theorem 7.1), we determine which local
energy terms must be computed.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 82

8. For each batch of type s shape descriptors

5. For each zone Z ∈ Zs,C

3. For each connectivity region C and s : C ∈ Cs to update

4. Determine the set
of actions to update

Merges to
update MC

s

K ′1,K
′
2 ∈ St[C]

merged by et

Zone visibility sets K 7→W−1s (K;C)

Visibility summed
area table

Merge to action map
{K1,K2} 7→
{eu1,u2 ∈ At |u1 ∈ K1 ∧ u2 ∈ K2}

6. Determine set of merge/position
pairs to update in zone Z

Merge set
MZ

s

Positions Xs
Z

to update

Component to
merge set
mapMZ

s

7. Compute shape descriptors
Component

label map LC
s :

Xs
C → K(St[C])

Shape
descriptors

Shape
descriptor
positions

Action
score

adjustments

13. Update connected components

9. Extract
image features

Image feature
vectors

10. Compute
local energy

Local
energy terms

11. Update
action scores

Action scores

12. Update
action

priority queue

Action
priority
queue

1b. Pick
action et to
minimize

E(St + et; I)

et ∈ At

2. Determine
connectivity

regions
to update

1a. Before
agglomeration

t← t+1

Figure 7.10: Pipeline for updating CELIS action ∆+e
StE(St; I) scores. Arrows show the flow

of data (indicated by rectangles) and control (indicated by rounded rectangles). The same
pipeline is used both to compute the ∆+e

S0E(S0; I) scores non-incrementally (starting at 1a)
at the start of agglomeration, and to incrementally (starting at 1b) update the ∆+e

StE(St; I)

scores from the previous step by adding ∆+e,+et

St E(St; I). Dashed lines indicate steps and
dependencies that apply only to the incremental case. Green or red lines indicate steps and
dependencies that apply only to pairwise or center-based shape descriptor specifications s,
respectively. To limit the complexity of the diagram, the dependencies on the persistent
data structures shown in fig. 7.9 are omitted. In the non-incremental case (1a), the set of
connectivity regions to update will be the full set ∪sCs and the set of merges to update
(determined by step 2) will be the full active set A0[C]. In the incremental case (1b), the
zone visibility sets are updated in step 4 per theorem 7.5 to reflect the merge of K ′1 and K ′2,
prior to computing shape descriptors, to allow the conditions of theorem 7.6 to be checked
conveniently; the connected components (represented as disjoint sets of initial supervoxels
K(S0)), which affect the component label map Xs

C → K(St[C]), are updated in step 13 only
after computing shape descriptors, because the incremental update depends on computing
shape descriptors rs(x;St) and rs(x;St+1) based on both the existing and next segmentation
state.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 83

• Steps 9–10: Computation of local energy terms needed to compute non-zero ∆+e
StEs(x;St; I)

terms or, in the incremental case, non-zero ∆+e,+et

St Es(x;St; I) terms.

• Steps 11–12: Updating the global action scores based on the local energy changes.

The pipeline executes using all available processors on a single machine, through the use of
a thread pool. The low-level details of the pipeline steps are as follows:

1. (a) Before agglomeration/(b) Pick action et to minimize E(St + et; I).

2. Determine connectivity regions to update. In the non-incremental case, all con-
nectivity regions C ∈ ∪sCs must be processed. In the incremental case, per theorem 7.2,
only connectivity regions in C ∈ {C ∈ ∪sCs | et ∈ At[C]} must be processed. Because
we maintain this set of connectivity regions for each action e ∈ At, there is only con-
stant (low) overhead for each connectivity region processed, and no cost for connectivity
regions not processed.

3. Per-connectivity region processing: The connectivity regions that must be up-
dated are processed in parallel. While most processing is actually done at the finer
per-zone granularity, certain information is computed per-connectivity-region and per
associated shape descriptor s : C ∈ Cs:

• Component label map: a 3-D array that maps positions in the space Xs
C to

components in K(St[C]), represented by integer identifiers. This is computed by
mapping the supervoxel identifier for each position x ∈ Xs

C , which is precisely
what is stored to represent S0, to the corresponding component based on the
map from global supervoxels K(S0) to connected components K(St[C]) in C that
we maintain.

• K ′1, K ′2 ∈ K(St[C]) merged by et (incremental only): We also use the global
supervoxel to local connected component map to translate the action et to the
pair of components K ′1, K

′
2 ∈ K(St[C]) for which it is a supervoxel merge. Note

that it is guaranteed that et is a supervoxel merge in C because in the incremental
case we only process connectivity regions C for which et ∈ At[C].

• Visibility summed area table (incremental only): We compute a single
summed area table for K ′1 ∪K ′2 based on the component label map according to
algorithm 7.1.

4. Determine the set of actions to update. In this step, for a given connectivity
region, we determine the set of actions e ∈ At[C] for which me may potentially need to
compute shape descriptors rs(x;St), rs(x;St+e), and in the incremental case rs(x;St+
et + e), according to theorem 7.2. Note that these actions will additionally be filtered
in step 6 on a per-zone basis. In the non-incremental case, and also in the incremental
case for pairwise s, all actions e ∈ At[C]−{et} must be (potentially) processed. In the

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 84

incremental case for center-based s, only actions e 6= et incident to et in St[C] must be
processed, per theorem 7.3. Because we maintain the set of actions incident to each
component in K(St[C]), computing this set requires only constant time per action to
be processed.

Outputs:

• Merges to update: the set MC of merges, i.e. pairs of components {K1, K2} ⊂
K(St[C]) (represented as pairs of integer component identifiers) merged by the
actions to be processed. Note that the same pair of components may correspond
to more than one action e ∈ At, but computation of shape descriptors depends
only on the pair of components merged by the action. We therefore use the
component representation to avoid redundant computations.

• Merges to action map: a mapping from each component pair in MC to the set
of one or more corresponding actions:

{K1, K2} ∈MC 7→
{
eu1,u2 ∈ At

∣∣u1 ∈ K1 ∧ u2 ∈ K2

}
.

This is implemented as a hash table mapping pairs of component identifiers to lists
of actions. Because energy terms will be locally computed per component pair
rather than per action, but globally we maintain per-action scores, this mapping
is used to efficiently update all corresponding global per-action scores according
to each local per-component-merge score.

• Zone visibility sets (incremental only): The zone visibility sets, which are
represented as a mapping from integer component identifiers to bit vectors, are
updated in this step per theorem 7.5 to reflect the merge of K ′1 and K ′2 in (St +
et)[C]. This simply involves taking the bit-wise OR of the bit vectors.

5. Per-zone processing: It is at the granularity of zones that shape descriptor compu-
tation actually happens. All zones are processed independently, and in parallel (zones
of separate connectivity regions are also processed in parallel) to the extent that there
are available cores. Zone processing does, however, depend on certain read-only data
structures that are computed per-connectivity region and shared by all zones, including
the component label map LCs , the set of merges MC

s to potentially update, and in the
incremental case, the visibility summed area table.

6. Determine set of merge/position pairs to update in zone Z. The purpose of
this step is to finish preprocessing in order to finalize the set of (x, e) position/merge
pairs for which we will compute shape descriptor changes. Per theorem 7.6 and defi-
nition 7.29, we filter the set of per-connectivity-region merges to update MC

s based on
the zone visibility sets:

MZ
s :=

{
{K1, K2} ∈MC

s

∣∣Z ∈ W−1
s (K∗1 ;C) ∩W−1

s (K∗2 ;C)
}
,

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 85

where in the non-incremental case K∗ := K but in the incremental case K∗ is the
component K ∈ K((St + et)[C]) that contains K. Note that in the implementation
this happens transparently because the zone visibility bit vectors that are maintained
for each component identifier are updated in the incremental case in step 4 to reflect
St+1 = St + et. We output either this flat merge set directly or a table of merges
incident to each component in (St + et)[C], depending on whether s is pairwise or
center-based.

Outputs:

• Positions Xs
Z to update: In the non-incremental case, the set of positions to

update is simply Xs
Z := Z. In the incremental case, we apply algorithm 7.1 to

the visibility summed area table precomputed in step 3 in order to determine
the subset of positions Xs

Z ⊆ Z that must be updated. The time complexity is
linear in |Z|. To limit preprocessing overhead, we only use the first condition of
theorem 7.4 and do not test the more complicated second condition.

• Merge set MZ
s (pairwise s only): In the case of a pairwise shape descriptor

specification s, we can perform no further merge pruning, and must process all
merges in MZ

s .

• Component to merge set map MZ
s (center-based s only): In the case

of a center-based shape descriptor specification s, the subset of merges in MZ
s

that must be processed for a given position x depends on K(x;St[C]) in the
non-incremental case, or K(x; (St + et)[C]) in the incremental case. We therefore
compute a table MZ

s : K(St[C])→ 2M
Z
s that maps

K ∈ K(St[C]) 7→
{
{K1, K2} ∈MZ

s

∣∣K∗ ∈ {K∗1 , K∗2}
}
,

where K∗ is defined as above. In the non-incremental case, each merge in MZ
s will

occur exactly twice in the table. In the incremental case, each merge will occur
exactly 3 times in the table, because every merge in MZ

s is necessarily incident in
St[C] to (K ′1, K

′
2).

7. Compute shape descriptors: computation of shape descriptors rs(x;St), rs(x;St +
e), and in the incremental case rs(x;St + et) and rs(x;St + et + e) for all (x, e) po-
sition/merge pairs determined in step 6. To abstract the difference between pairwise
and center-based descriptors, in the case of pairwise s, we define MZ

s : K(St[C]) →
2M

Z
s as the constant function K 7→ MZ

s . In the non-incremental case, we invoke
ComputeDescriptorChanges(s,Xs

Z , L
C
s ,MZ

s) defined in algorithm 7.3. In the in-
cremental case, we invoke ComputeDescriptorChangesIncremental(s, {K ′1, K ′2}, Xs

Z , L
C
s ,MZ

s)
defined in algorithm 7.4.4

Outputs:

4We also give the pseudocode for an alternative, more restrictive form, of descriptor-based prun-
ing in algorithm 7.5, that ensures all action score adjustments for a supervoxel merge e correspond to

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 86

• Action score adjustments: the list of 〈{K1, K2}, x, r−, r+〉 tuples specifying
updates to the global action scores, implicitly associated with a particular shape
descriptor specification s. Each update in the list applies to the one or more global
actions that are supervoxel merges of K1 and K2 in St[C], and corresponds to sub-
traction of Ês (r−;φ(x; I)) and addition of Ês (r+;φ(x; I)). Specifically, if we let
U denote the aggregate set of all action score adjustments 〈s, {K1, K2}, x, r−, r+〉,
then we have

∆
+eu1,u2
St+1 E(St+1; I) = ∆

+eu1,u2
St E(St; I) (7.4)

+
∑

〈s,{K1,K2},x,r−,r+〉∈U :u1∈K1∧u2∈K2

[
Ês
(
r+;φ(x; I)

)
− Ês

(
r−;φ(x; I)

)]
. (7.5)

We represent the connected components K1 and K2 by their corresponding integer
identifiers. The same shape descriptors r− and/or r+ may occur in multiple action
score adjustments, e.g. if they are equal to rs(x;St) or rs(x;St + et). To avoid
redundant storage in memory and redundant evaluation of the local energy model,
we do not directly specify x, r−, and r+ in our representation of the action score
adjustments list. Instead, we specify r− and r+ as integer offsets i− and i+ into
the list of shape descriptors and shape descriptor positions also output by
this step.

• Shape descriptors/Shape descriptor positions: equal length lists specifying
the non-redundant shape descriptors/position pairs required by at least one action
score adjustment. The lists are constructed in such a way that the 〈r, x〉 pairs are
guaranteed to be unique. The entries are grouped by position x, meaning that if
all 〈r, x〉 pairs for a given position x are contiguous.

8. Per-batch processing of shape descriptors: Evaluation of the local energy model
on single shape descriptor/image feature pairs may be significantly more expensive
than batch evaluation on multiple such pairs. For example, the matrix-vector multi-
plication required for typical fully-connected neural network activation can be much
more efficiently implemented batch-wise as a matrix-matrix multiplication. We there-
fore collect the shape descriptor/position pairs output from step 7 into batches up to
some maximum batch size, e.g. 256. Because different local energy models are used for
each shape descriptor specification s, batches are segregated by specification s. We

9. Extract image features. We simply copy the image feature vectors φ(x; I) for each
position x in the list of shape descriptor positions for the current batch from the in-
memory precomputed image feature array.

Output:

(rs(x;St), rs(x;St + e)) descriptor pairs, rather than possibly (rs(x;St), rs(x;St + et)). While this restric-
tion is not necessary for the energy model that we describe in this chapter, it allows our same framework to
also be used to compute scores defined over actions directly, i.e. pairs of segmentations, rather than individual
segmentations.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 87

• Image feature vectors: temporary array holding the copied image feature vec-
tors contiguous in memory.

10. Compute local energy. We evaluate in local energy terms Ês (r; v) for the current
batch of shape descriptors r and image feature vectors v.

Output:

• Local energy terms: the list of local energy scores corresponding to the list of
shape descriptors in the current batch.

11. Update action scores. In this step, we update the global action scores according
to eq. (7.4), using the local energy terms computed in step 10 that are referenced by
the action score adjustments computed in step 7. To determine the set of (global)
actions that correspond to each pair of local connected components specified in the
action score adjustments, we we use the merge to action map computed in step 4 for
the connectivity region.

12. Update action priority queue. After all updates to global action scores are com-
plete, we must correct the ordering of the action priority queue. When performing
the initial action score computation prior to agglomeration, we can simply construct
the heap in linear time. In the incremental case, we correct the placement of just the
action for which the score was updated.

13. Update connected components (incremental only). In the incremental case,
after computing the update action scores, we update within each affected connectivity
region the disjoint sets data structure over supervoxels and the multigraph over con-
nected components to reflect the merge et. We do not perform this update until after
updating the action scores because in step 7 we need to compute shape descriptors for
the segmentation states St and St + e, which would not be possible after merging et.

7.7 Experiments

Datasets

We tested our approach on two challenging electron microscopy datasets of neuropil:
FIB25: A Drosophila melangaster medulla neuropil dataset [47, 13] at 8× 8× 8 nm

resolution collected using Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) [59].
The use of Focused Ion Beam milling to access successive layers of tissue allows extremely
fine depth resolution, which can be important in reconstructing the finest neurites, as found
in organisms like Drosophila. 101 793, 42 513, a 2503 and a 5003 voxel volumes were manually
annotated with dense neurite segmentations. The 2503 voxel volume was used for testing;
all others were used for training.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 88

Algorithm 7.2 Computation of a single shape descriptor.

Require: s is a shape descriptor specification.
Require: K is a set of components, represented by integers.
Require: F : Z3 → K maps shape descriptor offsets to components.

1: function ComputeDescriptor(s, F)
2: Declare |s|-bit vector r
3: if s is pairwise then
4: for {a, b} ∈ s do
5: r{a,b} ← 1[F (a) = F (b)]
6: end for
7: else
8: K ← F (~0)
9: for {a,~0} ∈ s do

10: r{a,
~0} ← 1[F (a) = K]

11: end for
12: end if
13: return r
14: end function

J0126: A Songbird neuropil dataset at 15× 15× 25 nm resolution collected using Serial
Block Face Scanning Electron Microscopy (SBEM) [32]. The use of a diamond knife, rather
than a Focused Ion Beam, to access succesive layers of tissue allows larger blocks of tissue to
be imaged at higher speed. Out of the complete 500 gigavoxel dataset, six 256× 256× 128
voxel spatially-separated volumes were manually annotated with dense neurite segmenta-
tions. Four of these volumes were used for training, and two for testing agglomeration.

These datasets reflect state-of-the-art techniques in sample preparation and imaging for
large-scale neuron reconstruction. We assume that the data distribution is invariant with
respect to axis-aligned rotation and reflection in the x-y imaging plane and with respect
to reflection about the section axis z. We therefore obtained a factor of 16 increase in
the amount of training data by augmenting the original data with all possible transformed
versions.

Boundary classification and oversegmentation

To obtain image features and an oversegmentation to use as input for agglomeration, we
trained a convolutional neural network to predict, based on a 35 × 35 × 9 voxel image
context region, whether the center voxel is part of the same neurite as the adjacent voxel in
each of the x, y, and z directions, as in prior work. [81] The network architecture is shown in
table 7.1. We trained the network using stochastic gradient descent with log loss. Using these
connection affinities, we applied a watershed algorithm [88, 89] to obtain an (approximate)
oversegmentation. On J0126, we used parameters Tl = 0.9999, Th = 0.99, and Te = 0.03; on

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 89

Algorithm 7.3 Computation of shape descriptor changes (non-incremental case).
The result is (a) a stream of position/shape descriptors pairs produced by calls to
EmitDescriptor(x, r), which returns the stream position; (b) a separate stream of score
adjustments produced by calls to EmitScoreAdjustment(m, i−, i+) that associate a merge
m = {K1, K2} with a negative and positive energy contribution corresponding to previously
emitted shape descriptors at stream positions i− and i+, respectively. The computation of
individual shape descriptors is shown in algorithm 7.2.

Require: X ⊂ Z3 is a set of positions.
Require: L : X → K maps positions in X to components in K.
Require: M : K → 2[K]2 maps components in K to sets of merges.

1: function ComputeDescriptorChanges(s, X, L, M)
2: Declare array ψ : K → K
3: for K ∈ K do
4: ψ(K)← K . Initialize ψ to the identity map.
5: end for
6: for x ∈ X do
7: r ← ComputeDescriptor(s, c 7→ L(x+ c))
8: i← −1 . −1 represents an invalid index
9: for {K1, K2} ∈ M(L(x)) do

10: ψ(K2)← K1

11: re ← ComputeDescriptor(s, c 7→ ψ(L(x+ c)))
12: ψ(K2)← K2 . Restore ψ to identity map.
13: if r 6= re then
14: if i = −1 then i← EmitDescriptor(x, r)
15: ie ← EmitDescriptor(x, re)
16: EmitScoreAdjustment({K1, K2}, i, ie)
17: end if
18: end for
19: end for
20: end function

Table 7.1: Network architecture used for oversegmentation and image features.

Layer Input Transform Output # parameters Dropout (p)

1 1× 35× 35× 9 5× 5× 1 convolution, ReLU 64× 31× 31× 9 64 · (52 + 1) 0.9
2 64× 31× 31× 9 5× 5× 5 convolution, ReLU 64× 27× 27× 5 64 · (64 · 53 + 1) 0.9
3 64× 27× 27× 5 2× 2× 1 max pooling 64× 14× 14× 5 0.9
4 64× 14× 14× 5 5× 5× 5 convolution, ReLU 64× 10× 10× 1 64 · (64 · 53 + 1) 0.9
5 64× 10× 10× 1 2× 2× 1 max pooling 64× 5× 5× 1 0.9
6 64× 5× 5× 1 Fully-connected ReLU 512 512 · (64 · 52 + 1) 0.5
7 512 Fully-connected logistic 3 3 · (512 + 1)

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 90

Algorithm 7.4 Computation of shape descriptor changes (incremental case).

Require: {K ′1, K ′2} ⊆ K is a merge.
1: function ComputeDescriptorChangesIncremental(s, {K ′1, K ′2}, X, L, M)
2: Declare arrays ψ, ψ′ : K → K
3: for K ∈ K do
4: ψ(K), ψ′(K)← K . Initialize ψ and ψ′ to the identity map.
5: end for
6: ψ′(K ′2)← K ′1
7: for x ∈ X do
8: r ← ComputeDescriptor(s, c 7→ L(x+ c))
9: re′ ← ComputeDescriptor(s, c 7→ φ′(L(x+ c)))

10: i, ie′ ← −1 . −1 represents an invalid index
11: for {K1, K2} ∈ M(L(x)) do
12: ψ(K2)← K1

13: J ′1 ← ψ′(K ′1), J ′2 ← ψ′(K ′2)
14: if K2 ∈ {K ′1, K ′2} then
15: ψ′(K1)← ψ′(K2)
16: else
17: ψ′(K2)← ψ′(K1)
18: end if
19: re ← ComputeDescriptor(s, c 7→ ψ(L(x+ c)))
20: re,e′ ← ComputeDescriptor(s, c 7→ ψ′(L(x+ c)))
21: ψ(K2)← K2 . Restore ψ to identity map.
22: ψ′(K1)← J ′1, ψ′(K2)← J ′2 . Restore ψ′ to initial value.
23: if re 6= re,e′ then
24: if re′ 6= re,e′ then
25: if ie′ = −1 then ie′ ← EmitDescriptor(x, re′)
26: ie,e′ ← EmitDescriptor(x, re,e′)
27: EmitScoreAdjustment({K1, K2}, ie′ , ie,e′)
28: end if
29: if r 6= re then
30: if i = −1 then i← EmitDescriptor(x, r)
31: ie ← EmitDescriptor(x, re)
32: EmitScoreAdjustment({K1, K2}, ie, i) . Note the order of ie and i.
33: end if
34: else if r 6= re′ then
35: if i = −1 then i← EmitDescriptor(x, r)
36: if ie′ = −1 then ie′ ← EmitDescriptor(x, re′)
37: EmitScoreAdjustment({K1, K2}, ie′ , i) . Note the order of ie′ and i.
38: end if
39: end for
40: end for
41: end function

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 91

Algorithm 7.5 Alternative computation of shape descriptor changes (incremental case). In
order to support a alternative discriminative model Ẽs (rs(x;S), rs(x;S + e);φ(x; I)) that
explicitly scores shape descriptor changes due to candidate actions e rather than individual
shape descriptors, we must ensure that all score adjustments correspond to such a pair. This
requires that in algorithm 7.3 we use the following more restrictive form of pruning in place
of lines 23 to 38.

1: if r 6= re′ ∨ re 6= re,e′ then
2: if re′ 6= re,e′ then
3: if ie′ = −1 then ie′ ← EmitDescriptor(x, re′)
4: ie,e′ ← EmitDescriptor(x, re,e′)
5: EmitScoreAdjustment({K1, K2}, ie′ , ie,e′)
6: end if
7: if r 6= re then
8: if i = −1 then i← EmitDescriptor(x, r)
9: ie ← EmitDescriptor(x, re)

10: EmitScoreAdjustment({K1, K2}, ie, i) . Note the order of ie and i.
11: end if
12: end if

FIB25, we used parameters Tl = 0.94, Th = 0.94, and Te = 0.01. On both datasets we used
the minimum segment size threshold Ts = 1000 voxels.

Energy model architecture

We used five types of 512-dimensional shape descriptors: three pairwise descriptor types
with 93, 173, and 333 bounding boxes, and two center-based descriptor types with 173 and
333 bounding boxes, respectively. The connectivity positions within the bounding boxes for
each descriptor type were sampled uniformly at random.

We used the 512-dimensional fully-connected penultimate layer output of the low-level
classification convolutional neural network as the image feature vector φ(x; I). For each shape
descriptor type s, we used the following architecture for the local energy model Es(r; f), as
shown in fig. 7.11: we concatenated the shape descriptor vector and the image feature
vector to obtain a 1024-dimensional input vector. We used two 512- or 1024-dimensional
fully-connected rectified linear hidden layers, followed by a logistic output unit, and applied
dropout (with p = 0.5) after the last hidden layer. While this effectively computes a score
from a raw image patch and a shape descriptor, by segregating expensive convolutional
image processing that does not depend on the shape descriptor, this architecture allows us
to benefit from pre-training and precomputation of the intermediate image feature vector
φ(x; I) for each position x. Training for both the energy models and the boundary classifier
was performed using asynchronous SGD using a distributed architecture. [30]

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 92

Im
ag

e
(I
)

C
a
n
d
id
a
te

se
g
m
en
ta
ti
on

(S
)

n = 512

rs(x;S) Local energy model
Es(x;S; I)

Fully-connected
layer (n = 512)

Convolutional
neural network

ReLU
n = 1024

ReLU
n = 1024

Logistic
n = 1

φ(x; I)

Figure 7.11: Architecture of the specific local energy models used for experiments. For each
shape descriptor type/scale s, an identical architecture is used to define the corresponding
local energy model Es, but the learned parameters are distinct.

Evaluation

We compared our method to the state-of-the-art agglomeration method GALA [68], which is
designed to use as image features voxel-wise predicted probabilities of boundary vs. cell inte-
rior. 5 To obtain such probabilities from our low-level convolutional neural network classifier,
which predicts edge affinities between adjacent voxels rather than per-voxel predictions, we
compute for each voxel the minimum connection probability to any voxel in its 6-connectivity
neighborhood, and treat this as the probability/score of it being cell interior.

For each of the two datasets, we trained and tested both GALA and CELIS, using
the same initial oversegmentations. Consistent with prior work [82, 23, 68], we evaluated
the agglomeration results on each test volume by computing two measures of segmentation
consistency relative to the ground truth: Variation of Information [65] and Rand F1 score,
defined as the F1 classification score over connectivity between all voxel pairs within the
volume. The former has the advantage of weighing segments linearly in their size rather
than quadratically.

Because any agglomeration method is ultimately limited by the quality of the initial
oversegmentation, we also computed the accuracy of an oracle agglomeration policy that
greedily optimizes the error metric directly. (Computing the true globally-optimal agglom-
eration under either metric is intractable.) This serves as an (approximate) upper bound

5GALA also supports multi-channel image features, potentially representing predicted probabilities of
additional classes, such as mitochondria, but we did not make use of this functionality as we did not have
training data for additional classes for both datasets.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 93

Table 7.2: Accuracy of segmentations obtained by agglomeration, measured by Variation of
Information (lower is better) and Rand F1 score (higher is better). Both GALA and our
method CELIS depend on a single threshold parameter that trades off false merges against
false splits; to simplify the presentation we report for each metric just the best possible score
over all thresholds. Because both methods rely on randomness during training (random
forest learning in the case of GALA, sampling of connectivity pairs for shape descriptors and
random initialization of energy model weights in the case of CELIS), we report the mean and
standard deviation over multiple independently-trained agglomeration policies. For CELIS,
we show results based on either just the pairwise 93 shape descriptor type, or all five shape
descriptor types. 512-d or 1024-d indicates the dimensionality of the two hidden layers in
each energy model.

J0126 (Volume 1) J0126 (Volume 2) FIB25

VI Rand F1 VI Rand F1 VI Rand F1

Initial oversegmentation 1.063972 0.918597 1.434858 0.803590 4.046593 0.233730
GALA 0.339979 0.974334 0.439647 0.948633 1.295051 0.915477
n = 10 ± 0.003048 ± 0.000034 ± 0.003618 ± 0.000336 ± 0.012717 ± 0.003607
CELIS (512-d, 93 only) 0.330849 0.975285 0.415100 0.964628 1.301229 0.910730
n = 3 ± 0.000326 ± 0.000001 ± 0.001779 ± 0.000000 ± 0.001541 ± 0.000001
CELIS (1024-d, 93 only) 0.330741 0.975286 0.414740 0.964628 1.299110 0.910901
n = 3 ± 0.000175 ± 0.000001 ± 0.001587 ± 0.000000 ± 0.000306 ± 0.000243
CELIS (512-d, all descriptors) 0.330263 0.975287 0.392324 0.966862 1.279776 0.911253
n = 3 ± 0.000029 ± 0.000000 ± 0.000001 ± 0.000000 ± 0.001954 ± 0.000007
CELIS (1024-d, all descriptors) 0.330220 0.975287 0.392335 0.966862 1.277726 0.911223
n = 3 ± 0.000032 ± 0.000001 ± 0.000018 ± 0.000000 ± 0.001029 ± 0.000043
Oracle 0.278919 0.979529 0.338502 0.973650 0.959395 0.954735

that is useful separating the error due to agglomeration from the error due to the initial
oversegmentation.

7.8 Results

Table 7.2 shows the segmentation accuracy results. As measured by Variation of Informa-
tion, the metric that both GALA and CELIS are trained to optimize, CELIS consistently
outperformed GALA on all 3 test volumes, reducing the remaining error of GALA relative
to the oracle agglomeration by 23% on average.6 The Rand F1 scores show a similar pattern,
except on the FIB25 volume, where GALA outperforms CELIS. The addition of multiple
shape descriptor scales provided a moderate but consistent improvement in performance.
The size of the hidden layers used for the local energy models did not significantly affect

6We also evaluated several other recent methods, including deep CNN boundary classification alone [23],
segmentation fusion [83] (which we found to outperform the similar method SOPNET [37]), and globally-
optimal multicut [4], but none were competitive with GALA or CELIS.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 94

performance. Global training turned out not to provide any significant improvement over
local training.

We also measured the effectiveness of each of the computational pruning tricks described
in section 7.5. Essentially the entire computational cost of CELIS is in computing shape
descriptors and evaluating the local energy models; the cost of performing the pruning and
other preprocessing turns out to be negligible (less than 1%). Therefore the savings in
descriptors processed correspond directly to savings in overall runtime. With pruning, com-
putation of shape descriptors accounted for about 20% of the cost; the remainder was spent
evaluating the energy model. Without it, the cost would be several orders of magnitude
higher. The results are shown in fig. 7.12.

7.9 Discussion

CELIS is a flexible framework for learning to segment images based on optimization of
a learned global energy model. It achieves state-of-the-art performance on two challenging
connectomics datasets. Using the novel binary shape descriptor representation, it can capture
rich prior information about shape configurations. The cost of this rich representation is that
we must forgo exact global optimization, but we do define an efficient local search procedure.
Unlike prior agglomeration methods [83, 4, 37, 49, 13], including GALA [68], that are limited
to reasoning about region pairs, our energy model reflects the full combinatorial nature of
optimizing dense segmentation. End-to-end training of the complete pipeline, including the
convolutional neural network for computing image features, is a promising future direction.

The key property of the binary shape descriptor is that it is very stable with respect to
small perturbations of segment boundaries, compared to a simple boundary mask. Com-
pared to existing log-polar histogram-based descriptors like 2-D shape context [8] and 3-D
variants thereof [13], a center-based binary shape descriptor represents essentially the same
information with some added noise due to sampling. The advantage is a significant reduction
in computational cost, particularly at large scales, since we need only access the (relatively
few) sampled positions. We know of no obvious way to define a histogram-based analogue
of a pairwise binary shape descriptor.

While conceptually very similar, segmentation of natural scenes is fundamentally quite
different from neurite segmentation: it is complicated by 2-D projection, occlusion and light-
ing effects, but is made easier by strong local appearance cues for distinguishing segments,
and more rigid geometry.

Our work complements prior work on translation-invariant energy models, such as Field of
Experts [72] (not conditional, and limited to linear+activation function local potentials) and
Regression Tree Fields [51], which are limited to unary and pairwise interactions. Multiscale
Fields of Patterns [36] is designed to model a binary pixel-wise labeling rather than a general
segmentation, and uses a direct table representation of local potentials, rather than the
neural network-based function approximation used in our work in order to support much
higher-dimensional patterns.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 95

0 200 400 600 800
106

107

108

109

1010

1011

1012

1013

D
es

cr
ip

to
rs

co
m

pu
te

d

9×9×9 pairwise

Non-incremental
CR
CR+Visibility
CR+Zone+Visibility
Lower bound

0 200 400 600 800
106

107

108

109

1010

1011

1012 17×17×17 center-based

Non-incremental
CR
CR+Visibility
CR+Graph+Visibility
Lower bound

0 200 400 600 800
Agglomeration step

105

106

107

108

109

1010

1011

D
es

cr
ip

to
rs

co
m

pu
te

d

33×33×33 pairwise

Non-incremental
CR
CR+Visibility
CR+Zone+Visibility
Lower bound

0 200 400 600 800
Agglomeration step

105

106

107

108

109

1010

1011 33×33×33 center-based

Non-incremental
CR
CR+Visibility
CR+Graph+Visibility
Lower bound

Figure 7.12: Effect of pruning on number of shape descriptors computed. The vertical axis
specifies the cumulative number of shape descriptors computed during the course of ag-
glomeration, using different combinations of pruning rules. The horizontal axis specifies the
agglomeration step t, with t = 0 indicating the computation required to initialize the energy
first derivative terms. Non-incremental corresponds a näıve implementation that does no
pruning or incremental computation whatsoever. The different combinations of CR, Visi-
bility, Zone, and Graph correspond to correspond to applying combinations of theorem 7.2,
theorem 7.4, theorem 7.6, and theorem 7.3, respectively. The actual number of descriptors
that changed is shown as the lower bound, since in the best case pruning would eliminate
the computation of all but these descriptors. This is also the number of evaluations of the
energy model performed. If the combination of pruning techniques were perfect, it would
exactly match this lower bound. Results are shown for a 1003 portion of the J0126 dataset.

CHAPTER 7. COMBINATORIAL ENERGY LEARNING 96

Our framework also falls within the “learning to search” paradigm, and is quite similar to
a single iteration of DAgger [71]. However, a notable property of our agglomeration search
space is that the order of actions (merges) does not affect the final result; consequently, we
expect that the benefit from more sophisticated reinforcement learning algorithms may be
small.

97

Chapter 8

Conclusion

Densely mapping neuroanatomy, in order to reconstruct circuits of tens or hundreds of thou-
sands of neurons, is a challenging problem at the intersection of neuroscience and computer
data processing. The reconstruction of the complete nervous system of C. elegans, [86] a
seminal work (mostly) completed in the 1980s, demonstrated that the problem was solvable
in principle by collecting electron microscopy image stacks using the Serial Section Transmis-
sion Electron Microscopy (ssTEM) , and impractical for the methods used to scale to larger
circuits, due to the enormous difficulties of data collection and manual tracing of neuronal
processes through the image volume.

Recent advances in volume electron microscopy have greatly reduced the difficulty of
data collection. The recent methods of Serial Block Face Scanning Electron Microscopy
(SBEM) [32], Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) [59], and Au-
tomated Tape-collection Ultramicrotome Scanning Electron Microscopy (ATUM-SEM) [75],
in combination with advances such as multi-beam scanning electron microscopy, greatly in-
crease image acquisition rate compared to manual ssTEM imaging, and also greatly improve
image quality, specifically by reducing damage to and loss of section, improving alignment,
and improving depth resolution. These advances have essentially solved the data collection
problem to a sufficient degree that it is no longer a key bottleneck.

The ability to collect large, high quality data volumes has spurred work on automated
image analysis methods for the problem, particularly segmentation. Prior work has focused
on both low-level boundary classification at the individual voxel level as well as higher-
level agglomeration methods that combine together smaller regions obtained from boundary
classification. Machine learning has proven crucial for both of these tasks, and significant
progress has been made. There has also been extensive prior work on determining appropriate
metrics for evaluating the accuracy of automated segmentations. Despite the progress made
by prior work, however, image analysis remains a key challenge, which this thesis aims to
address.

The sparse, wide architecture we introduced in chapter 5 provides an alternative to
conventional dense convolutional neural networks for boundary classification. By relying
on simple, parallelizable algorithms that are highly amenable to parallel training, we were

CHAPTER 8. CONCLUSION 98

able to train models with tens of thousands of convolutional feature maps per layer, several
orders of magnitude higher than existing dense convolutional neural networks. Using an
optimized GPU implementation based on filter size-specific automatic code generation, we
were able to execute the model using essentially the full computational and memory resources
of the hardware. By encoding rotational covariance properties directly into the model,
we reduced the memory and computational requirements for training by a factor of 48,
which dramatically improved scalability. These factors contributed to having a training time
measured in hours rather than weeks typical of neural network models; reducing the training
time for machine learning is crucial for efficient exploration of the space of hyper-parameters
and model architectures.

The EMISAC algorithm introduced in chapter 6 reduces the local discontinuities in im-
age intensity between sections using a coarse-to-fine convex optimization procedure. These
discontinuities are a significant issue in the image data obtained using the high-throughput
methods of ssTEM and ATUM-SEM: uncorrected, they essentially force the use of 2.5D
analysis, in which results are initially computed on a per-section basis and then later joined
together. For neuronal processes not running parallel to the sectioning axis, this leads to
poor results. We found EMISAC greatly improves statistical measures of isotropy without
any apparent loss of detail, and made possible the use of fully 3-D features and analysis,
which improved segmentation accuracy.

CELIS, introduced in chapter 7, achieved state-of-the-art accuracy for neurite segmenta-
tion. It is a powerful framework for image segmentation based on optimization of a learned
deep neural network-based global energy model over segmentations. Using the novel binary
shape descriptor representation, this approach captures rich prior information about shape
configurations, including interactions between multiple objects. It differs critically from prior
agglomeration methods in that it defines an energy over segmentations in a highly general
way, rather than modeling only pairwise merge decisions. This generality comes at the cost
of greater implementation complexity, but we also prove a collection of properties that al-
low for incremental evaluation of energy terms, with an overall several order of magnitude
reduction in computational cost.

Future Directions

The accuracy of boundary prediction appears to be limited currently by the capacity of
the convolutional models that can reasonably be trained. Incorporating the efficient sparse
convolutional operations introduced in chapter 5 into deep neural network architectures may
provide a way to train sparse models with many more convolutional filters (and parameters)
than can efficiently be supported in dense networks.

In our experiments, we reused the final hidden layer output of the convolutional network
trained for boundary classification as the image feature representation for CELIS. While this
simplified training, end-to-end training of the convolutional network as part of training the
local energy models may likely improve performance; the convolutional portion of the local

CHAPTER 8. CONCLUSION 99

energy model can still remain independent of the shape descriptor in order to allow the same
computational savings at test time.

Existing iterative agglomeration methods, including CELIS, are based on a merge-only
framework of starting from an initial oversegmentation and greedily performing merges. This
simplifies the implementation, but is more prone to getting stuck in local optima than a ran-
domized simulated annealing-type procedure that that can also perform splits (equivalent to
undoing a merge). Prior methods based on an arbitrary learned score over pairwise merge
decisions would have no guarantee of convergence if splits are permitted. Because the CELIS
agglomeration procedure optimizes a true global objective over segmentations, however, it
readily supports simulated annealing. Efficiently tracking the necessary connectivity infor-
mation within each connectivity region is more complicated when splits are permitted, but
it can be done using dynamic graph connectivity data structures. [45, 46, 80].

Significant challenges remain, however. In addition to greater accuracy, reliable measures
of confidence are crucial for effectively combining machine and human efforts, and this is
something that has so far proven difficult to obtain. Successful circuit reconstruction is also
just a first step towards understanding neural computation: analysis of the large-scale circuits
that are reconstructed may prove to be an even greater challenge than the reconstruction
itself.

100

Bibliography

[1] Andrew L Alexander, Jay S Tsuruda, and Dennis L Parker. “Elimination of eddy
current artifacts in diffusion-weighted echo-planar images: the use of bipolar gradients”.
In: Magnetic Resonance in Medicine 38.6 (1997), pp. 1016–1021.

[2] Jesper LR Andersson, Stefan Skare, and John Ashburner. “How to correct susceptibility
distortions in spin-echo echo-planar images: application to diffusion tensor imaging”.
In: Neuroimage 20.2 (2003), pp. 870–888.

[3] Bjoern Andres et al. “3D segmentation of SBFSEM images of neuropil by a graphical
model over supervoxel boundaries”. In: Medical image analysis 16.4 (2012), pp. 796–
805.

[4] Bjoern Andres et al. “Globally optimal closed-surface segmentation for connectomics”.
In: Computer Vision–ECCV 2012. Springer, 2012, pp. 778–791.

[5] B. Andres et al. “Segmentation of SBFSEM volume data of neural tissue by hierarchical
classification”. In: Pattern recognition (2008), pp. 142–152.

[6] Samaneh Azadi, Jeremy Maitin-Shepard, and Pieter Abbeel. “Optimization-Based Ar-
tifact Correction for Electron Microscopy Image Stacks”. In: Proceedings of the Euro-
pean Conference on Computer Vision (ECCV). 2014.

[7] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. “Correlation Clustering”. English.
In: Machine Learning 56.1-3 (2004), pp. 89–113. issn: 0885-6125.

[8] Serge Belongie, Jitendra Malik, and Jan Puzicha. “Shape matching and object recog-
nition using shape contexts”. In: Pattern Analysis and Machine Intelligence, IEEE
Transactions on 24.4 (2002), pp. 509–522.

[9] Daniel R. Berger et al. SNEMI3D challenge. http://brainiac2.mit.edu/SNEMI3D/
home. (Training volume).

[10] S. Beucher and F. Meyer. “The morphological approach to segmentation: the water-
shed transformation”. In: Mathematical morphology in image processing. Ed. by E. R.
Dougherty. Vol. 34. 1993, pp. 433–481.

[11] Serge Beucher and Christian Lantuéjoul. “Use of watersheds in contour detection”.
In: International workshop on image processing, real-time edge and motion detection.
1979.

http://brainiac2.mit.edu/SNEMI3D/home
http://brainiac2.mit.edu/SNEMI3D/home

BIBLIOGRAPHY 101

[12] Andrew Blake, Rupert Curwen, and Andrew Zisserman. “A Framework for Spatio-
Temporal Control in the Tracking of Visual Contours”. In: Real-time computer vision
4 (1994), p. 3.

[13] John A Bogovic, Gary B Huang, and Viren Jain. “Learned versus hand-designed feature
representations for 3d agglomeration”. In: arXiv preprint arXiv:1312.6159 (2013).

[14] Yuri Boykov and Vladimir Kolmogorov. “An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision”. In: Pattern Analysis and Machine
Intelligence, IEEE Transactions on 26.9 (2004), pp. 1124–1137.

[15] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

[16] Kevin L Briggman and Davi D Bock. “Volume electron microscopy for neuronal circuit
reconstruction”. In: Current opinion in neurobiology 22.1 (2012), pp. 154–161.

[17] Kevin L Briggman and Winfried Denk. “Towards neural circuit reconstruction with
volume electron microscopy techniques”. In: Current Opinion in Neurobiology 16.5
(2006). Neuronal and glial cell biology / New technologies, pp. 562–570. issn: 0959-
4388. doi: DOI:10.1016/j.conb.2006.08.010. url: http://www.sciencedirect.
com/science/article/B6VS3-4KV8T8F-1/2/0d423f67d75acb1f58510df3dfb1a61e.

[18] Kevin L Briggman, Moritz Helmstaedter, and Winfried Denk. “Wiring specificity in
the direction-selectivity circuit of the retina”. In: Nature 471.7337 (2011), pp. 183–188.

[19] Thomas Brox and Joachim Weickert. “Nonlinear matrix diffusion for optic flow esti-
mation”. In: Pattern Recognition. Springer, 2002, pp. 446–453.

[20] Albert Cardona et al. “An integrated micro-and macroarchitectural analysis of the
Drosophila brain by computer-assisted serial section electron microscopy”. In: PLoS
biology 8.10 (2010), e1000502.

[21] Albert Cardona et al. Segmented serial section Transmission Electron Microscopy
(ssTEM) data set of the Drosophila first instar larva ventral nerve cord (VNC). http:
//www.ini.uzh.ch/~acardona/data.html. 2010.

[22] R. Chylinski. Time-Lapse Photography: A Complete Guide to Shooting, Processing and
Rendering Time-Lapse Movies. Cedar Wings Creative, 2012. isbn: 9780985375720.
url: http://books.google.com/books?id=7fDaLPhJB5IC.

[23] Dan Claudiu Ciresan et al. “Deep Neural Networks Segment Neuronal Membranes in
Electron Microscopy Images”. In: NIPS. 2012, pp. 2852–2860.

[24] Adam Coates, Andrej Karpathy, and Andrew Ng. “Emergence of Object-Selective Fea-
tures in Unsupervised Feature Learning”. In: Advances in Neural Information Process-
ing Systems 25. 2012, pp. 2690–2698.

[25] Adam Coates and Andrew Y Ng. “Learning Feature Representations with k-means”.
In: Neural Networks: Tricks of the Trade. Springer, 2012, pp. 561–580.

http://dx.doi.org/DOI: 10.1016/j.conb.2006.08.010
http://www.sciencedirect.com/science/article/B6VS3-4KV8T8F-1/2/0d423f67d75acb1f58510df3dfb1a61e
http://www.sciencedirect.com/science/article/B6VS3-4KV8T8F-1/2/0d423f67d75acb1f58510df3dfb1a61e
http://www.ini.uzh.ch/~acardona/data.html
http://www.ini.uzh.ch/~acardona/data.html
http://books.google.com/books?id=7fDaLPhJB5IC

BIBLIOGRAPHY 102

[26] Adam Coates and Andrew Y Ng. “The importance of encoding versus training with
sparse coding and vector quantization”. In: International conference on machine learn-
ing. Vol. 8. 2011, p. 10.

[27] Thomas H. Cormen et al. Introduction to algorithms. Second. The MIT Press, 2001.
isbn: 0262032937.

[28] R Cameron Craddock et al. “Imaging human connectomes at the macroscale”. In:
Nature methods 10.6 (2013), pp. 524–539.

[29] Franklin C Crow. “Summed-area tables for texture mapping”. In: ACM SIGGRAPH
computer graphics 18.3 (1984), pp. 207–212.

[30] Jeffrey Dean et al. “Large Scale Distributed Deep Networks”. In: Advances in Neural
Information Processing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc.,
2012, pp. 1223–1231. url: http://papers.nips.cc/paper/4687-large-scale-
distributed-deep-networks.pdf.

[31] Winfried Denk, Kevin L Briggman, and Moritz Helmstaedter. “Structural neurobiol-
ogy: missing link to a mechanistic understanding of neural computation”. In: Nature
Reviews Neuroscience 13.5 (2012), pp. 351–358.

[32] Winfried Denk and Heinz Horstmann. “Serial Block-Face Scanning Electron Microscopy
to Reconstruct Three-Dimensional Tissue Nanostructure”. In: PLoS Biol 2.11 (Oct.
2004), e329. doi: 10.1371/journal.pbio.0020329.

[33] Winfried Denk and Heinz Horstmann. “Serial block-face scanning electron microscopy
to reconstruct three-dimensional tissue nanostructure”. In: PLoS biology 2.11 (2004),
e329.

[34] Nick Duffield, Carsten Lund, and Mikkel Thorup. “Priority sampling for estimation of
arbitrary subset sums”. In: Journal of the ACM (JACM) 54.6 (2007), p. 32.

[35] David S. Dummit and Richard M. Foote. Abstract Algebra. Third. John Wiley and
Sons, Inc., 2004. isbn: 0471433349. url: https://books.google.com/books?id=
znzJygAACAAJ.

[36] Pedro Felzenszwalb and John G Oberlin. “Multiscale fields of patterns”. In: Advances
in Neural Information Processing Systems. 2014, pp. 82–90.

[37] Jan Funke et al. “Efficient automatic 3D-reconstruction of branching neurons from EM
data”. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on. IEEE. 2012, pp. 1004–1011.

[38] John C Haselgrove and James R Moore. “Correction for distortion of echo-planar
images used to calculate the apparent diffusion coefficient”. In: Magnetic Resonance
in Medicine 36.6 (1996), pp. 960–964.

[39] Kenneth J Hayworth et al. “Ultrastructurally smooth thick partitioning and volume
stitching for large-scale connectomics”. In: Nature methods 12.4 (2015), pp. 319–322.

http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://dx.doi.org/10.1371/journal.pbio.0020329
https://books.google.com/books?id=znzJygAACAAJ
https://books.google.com/books?id=znzJygAACAAJ

BIBLIOGRAPHY 103

[40] KJ Hayworth et al. “Automating the Collection of Ultrathin Serial Sections for Large
Volume TEM Reconstructions”. In: Microscopy and Microanalysis 12.Supplement,S02
(2006), pp. 86–87. doi: 10.1017/S1431927606066268. eprint: http://journals.
cambridge.org/article_S1431927606066268. url: http://journals.cambridge.
org/action/displayAbstract?fromPage=online&aid=456486&fulltextType=PI&

fileId=S1431927606066268.

[41] Moritz Helmstaedter. “Cellular-resolution connectomics: challenges of dense neural cir-
cuit reconstruction”. In: Nature methods 10.6 (2013), pp. 501–507.

[42] Moritz Helmstaedter, Kevin L Briggman, and Winfried Denk. “3D structural imaging
of the brain with photons and electrons”. In: Current Opinion in Neurobiology 18.6
(2008), pp. 633–641. issn: 0959-4388. doi: DOI:10.1016/j.conb.2009.03.005.
url: http://www.sciencedirect.com/science/article/B6VS3-4W1R9S3-1/2/
a103d02b5597e15dc52e612b6f6c5cec.

[43] Moritz Helmstaedter, Kevin L Briggman, and Winfried Denk. “High-accuracy neu-
rite reconstruction for high-throughput neuroanatomy”. In: Nature neuroscience 14.8
(2011), pp. 1081–1088.

[44] Moritz Helmstaedter et al. “Connectomic reconstruction of the inner plexiform layer
in the mouse retina”. In: Nature 500.7461 (2013), pp. 168–174.

[45] Monika R Henzinger and Valerie King. “Randomized fully dynamic graph algorithms
with polylogarithmic time per operation”. In: Journal of the ACM (JACM) 46.4 (1999),
pp. 502–516.

[46] Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. “Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge,
and biconnectivity”. In: Journal of the ACM (JACM) 48.4 (2001), pp. 723–760.

[47] Gary B Huang and Viren Jain. “Deep and wide multiscale recursive networks for robust
image labeling”. In: arXiv preprint arXiv:1310.0354 (2013).

[48] Viren Jain et al. “Boundary learning by optimization with topological constraints”. In:
2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE.
2010, pp. 2488–2495.

[49] Viren Jain et al. “Learning to agglomerate superpixel hierarchies”. In: Advances in
Neural Information Processing Systems 2.5 (2011).

[50] Viren Jain et al. “Supervised Learning of Image Restoration with Convolutional Net-
works”. In: Computer Vision, IEEE International Conference on (2007), pp. 1–8. doi:
http://doi.ieeecomputersociety.org/10.1109/ICCV.2007.4408909.

[51] Jeremy Jancsary et al. “Regression Tree Fields—An efficient, non-parametric approach
to image labeling problems”. In: Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on. IEEE. 2012, pp. 2376–2383.

http://dx.doi.org/10.1017/S1431927606066268
http://journals.cambridge.org/article_S1431927606066268
http://journals.cambridge.org/article_S1431927606066268
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=456486&fulltextType=PI&fileId=S1431927606066268
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=456486&fulltextType=PI&fileId=S1431927606066268
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=456486&fulltextType=PI&fileId=S1431927606066268
http://dx.doi.org/DOI: 10.1016/j.conb.2009.03.005
http://www.sciencedirect.com/science/article/B6VS3-4W1R9S3-1/2/a103d02b5597e15dc52e612b6f6c5cec
http://www.sciencedirect.com/science/article/B6VS3-4W1R9S3-1/2/a103d02b5597e15dc52e612b6f6c5cec
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICCV.2007.4408909

BIBLIOGRAPHY 104

[52] E. Jurrus et al. “Axon tracking in serial block-face scanning electron microscopy”. In:
Medical image analysis 13.1 (2009), pp. 180–188. issn: 1361-8415.

[53] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. “Snakes: Active contour
models”. In: International journal of computer vision 1.4 (1988), pp. 321–331.

[54] Narayanan Kasthuri and Jeff W. Lichtman. Mouse S1 cortex Automatic Tape-Collecting
Ultra Microtome (ATUM)-based Scanning Electron Microscopy (SEM) volume. http:
//www.openconnectomeproject.org. 2011.

[55] Narayanan Kasthuri et al. “Saturated reconstruction of a volume of neocortex”. In:
Cell 162.3 (2015), pp. 648–661.

[56] Verena Kaynig et al. “Fully automatic stitching and distortion correction of trans-
mission electron microscope images”. In: Journal of structural biology 171.2 (2010),
pp. 163–173.

[57] Michael Kazhdan et al. Color corrected Mouse S1 cortex Automatic Tape-Collecting
Ultra Microtome (ATUM)-based Scanning Electron Microscopy (SEM) volume. http:
//www.openconnectomeproject.org. 2013.

[58] Michael Kazhdan et al. “Gradient-Domain Processing for Large EM Image Stacks”.
In: arXiv preprint arXiv:1310.0041 (2013).

[59] Graham Knott et al. “Serial section scanning electron microscopy of adult brain tis-
sue using focused ion beam milling”. In: The Journal of Neuroscience 28.12 (2008),
pp. 2959–2964.

[60] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with
Deep Convolutional Neural Networks”. In: Advances in Neural Information Processing
Systems. 2012, pp. 1106–1114.

[61] Ritwik Kumar, Amelio Vázquez-Reina, and Hanspeter Pfister. “Radon-like features
and their application to connectomics”. In: Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), 2010 IEEE Computer Society Conference on. IEEE. 2010,
pp. 186–193.

[62] Masaaki Kuwajima, John M Mendenhall, and Kristen M Harris. “Large-volume re-
construction of brain tissue from high-resolution serial section images acquired by
SEM-based scanning transmission electron microscopy”. In: Nanoimaging. Springer,
2013, pp. 253–273.

[63] Haiying Liu, Rama Chellappa, and Azriel Rosenfeld. “Accurate dense optical flow
estimation using adaptive structure tensors and a parametric model”. In: Image Pro-
cessing, IEEE Transactions on 12.10 (2003), pp. 1170–1180.

[64] Aurélien Lucchi et al. “A fully automated approach to segmentation of irregularly
shaped cellular structures in EM images”. In: Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2010. Springer, 2010, pp. 463–471.

http://www.openconnectomeproject.org
http://www.openconnectomeproject.org
http://www.openconnectomeproject.org
http://www.openconnectomeproject.org

BIBLIOGRAPHY 105

[65] Marina Meilă. “Comparing clusterings—an information based distance”. In: Journal
of Multivariate Analysis 98.5 (2007), pp. 873–895.

[66] Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. “Making a “completely blind”
image quality analyzer”. In: Signal Processing Letters, IEEE 20.3 (2013), pp. 209–212.

[67] Rafael Navarro, Justo Arines, and Ricardo Rivera. “Direct and inverse discrete Zernike
transform”. In: Optics express 17.26 (2009), pp. 24269–24281.

[68] Juan Nunez-Iglesias et al. “Machine Learning of Hierarchical Clustering to Segment
2D and 3D Images”. In: PloS one 8.8 (2013), e71715.

[69] N. Pinto et al. “A High-Throughput Screening Approach to Discovering Good Forms
of Biologically Inspired Visual Representation”. In: PLoS Computational Biology 5.11
(2009). url: http://www.rowland.harvard.edu/cox/pdfs/pinto_plos09.pdf.

[70] William M. Rand. “Objective Criteria for the Evaluation of Clustering Methods”.
In: Journal of the American Statistical Association 66.336 (1971), pp. 846–850. doi:
10.1080/01621459.1971.10482356. eprint: http://www.tandfonline.com/doi/
pdf/10.1080/01621459.1971.10482356. url: http://www.tandfonline.com/doi/
abs/10.1080/01621459.1971.10482356.

[71] Stéphane Ross, Geoffrey J Gordon, and J Andrew Bagnell. “No-regret reductions for
imitation learning and structured prediction”. In: 14th International Conference on
Artificial Intelligence and Statistics (AISTATS). 2011.

[72] Stefan Roth and Michael J Black. “Fields of experts: A framework for learning im-
age priors”. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on. Vol. 2. IEEE. 2005, pp. 860–867.

[73] Daniel Sage. Local normalization filter to reduce the effect of non-uniform illumination.
http://bigwww.epfl.ch/sage/soft/localnormalization/. Mar. 2011.

[74] R Schalek et al. “ATUM-based SEM for high-speed large-volume biological reconstruc-
tions”. In: Microscopy and Microanalysis 18.S2 (2012), pp. 572–573.

[75] R Schalek et al. “Development of high-throughput, high-resolution 3D reconstruc-
tion of large-volume biological tissue using automated tape collection ultramicrotomy
and scanning electron microscopy”. In: Microscopy and Microanalysis 17.S2 (2011),
pp. 966–967.

[76] Mojtaba Seyedhosseini et al. “Detection of neuron membranes in electron microscopy
images using multi-scale context and radon-like features”. In: Medical Image Comput-
ing and Computer-Assisted Intervention–MICCAI 2011. Springer, 2011, pp. 670–677.

[77] Kevin Smith, Alan Carleton, and Vincent Lepetit. “Fast ray features for learning ir-
regular shapes”. In: Computer Vision, 2009 IEEE 12th International Conference on.
IEEE. 2009, pp. 397–404.

http://www.rowland.harvard.edu/cox/pdfs/pinto_plos09.pdf
http://dx.doi.org/10.1080/01621459.1971.10482356
http://www.tandfonline.com/doi/pdf/10.1080/01621459.1971.10482356
http://www.tandfonline.com/doi/pdf/10.1080/01621459.1971.10482356
http://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356
http://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356
http://bigwww.epfl.ch/sage/soft/localnormalization/

BIBLIOGRAPHY 106

[78] Christoph Sommer et al. “ilastik: Interactive learning and segmentation toolkit”. In:
Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on.
IEEE. 2011, pp. 230–233.

[79] Shin-ya Takemura et al. “A visual motion detection circuit suggested by Drosophila
connectomics”. In: Nature 500.7461 (2013), pp. 175–181.

[80] Mikkel Thorup. “Near-optimal fully-dynamic graph connectivity”. In: Proceedings of
the thirty-second annual ACM symposium on Theory of computing. ACM. 2000, pp. 343–
350.

[81] Srinivas C. Turaga et al. “Convolutional networks can learn to generate affinity graphs
for image segmentation”. In: Neural Comput. 22.2 (2010), pp. 511–538. issn: 0899-7667.
doi: http://dx.doi.org/10.1162/neco.2009.10-08-881.

[82] Srinivas Turaga et al. “Maximin affinity learning of image segmentation”. In: Advances
in Neural Information Processing Systems 22. Ed. by Y. Bengio et al. Cambridge, MA:
MIT Press, 2009, pp. 1865–1873.

[83] Amelio Vazquez-Reina et al. “Segmentation fusion for connectomics”. In: Computer
Vision (ICCV), 2011 IEEE International Conference on. IEEE. 2011, pp. 177–184.

[84] Stefan Wager, Sida Wang, and Percy Liang. “Dropout training as adaptive regulariza-
tion”. In: Advances in Neural Information Processing Systems. 2013, pp. 351–359.

[85] Zhou Wang et al. “Image quality assessment: from error visibility to structural simi-
larity”. In: Image Processing, IEEE Transactions on 13.4 (2004), pp. 600–612.

[86] J. G. White et al. “The Structure of the Nervous System of the Nematode Caenorhabdi-
tis elegans”. In: Philosophical Transactions of the Royal Society of London. B, Biologi-
cal Sciences 314.1165 (1986), pp. 1–340. doi: 10.1098/rstb.1986.0056. eprint: http:
//rstb.royalsocietypublishing.org/content/314/1165/1.full.pdf+html. url:
http://rstb.royalsocietypublishing.org/content/314/1165/1.abstract.

[87] Ciyou Zhu et al. “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-
constrained optimization”. In: ACM Transactions on Mathematical Software (TOMS)
23.4 (1997), pp. 550–560.

[88] Aleksandar Zlateski. “A design and implementation of an efficient, parallel watershed
algorithm for affinity graphs”. PhD thesis. Massachusetts Institute of Technology, 2011.

[89] Aleksandar Zlateski and H. Sebastian Seung. “Image Segmentation by Size-Dependent
Single Linkage Clustering of a Watershed Basin Graph”. In: CoRR abs/1505.00249
(2015). url: http://arxiv.org/abs/1505.00249.

[90] Karel Zuiderveld. “Contrast limited adaptive histograph equalization”. In: Graphic
Gems (1994), pp. 474–485.

http://dx.doi.org/http://dx.doi.org/10.1162/neco.2009.10-08-881
http://dx.doi.org/10.1098/rstb.1986.0056
http://rstb.royalsocietypublishing.org/content/314/1165/1.full.pdf+html
http://rstb.royalsocietypublishing.org/content/314/1165/1.full.pdf+html
http://rstb.royalsocietypublishing.org/content/314/1165/1.abstract
http://arxiv.org/abs/1505.00249

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Introduction
	Volume Electron Microscopy Methods
	Serial section imaging
	Block face imaging

	Prior work
	Rotational invariance and covariance
	Slice-to-slice contour tracking
	Boundary classification
	Region formation
	Agglomeration

	Error Metrics for Segmentation
	Per-voxel error
	Rand Index
	Variation of Information

	Scalable Wide Sparse Learning
	Methods
	Experiments
	Discussion

	Correction of Inter-Section Discontinuities
	Introduction
	Artifact correction algorithm
	Evaluation on electron microscopy data
	Electron microscopy results
	Lighting correction of time-lapse photography
	Discussion

	Combinatorial Energy Learning
	Representing 3-D shape configurations with local binary descriptors
	Connectivity regions
	Conditional energy modeling of segmentations given images
	Energy model learning
	Efficient energy minimization
	Implementation
	Experiments
	Results
	Discussion

	Conclusion
	Bibliography

