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Abstract

Tools for Creating Audio Stories

by

Steven Surmacz Rubin

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Maneesh Agrawala, Chair

Audio stories are an engaging form of communication that combines speech and music into com-
pelling narratives. One common production pipeline for creating audio stories involves three main
steps: recording speech, editing speech, and editing music. Existing audio recording and editing
tools force the story producer to manipulate speech and music tracks via tedious, low-level wave-
form editing. In contrast, we present tools for each phase of the production pipeline that analyze
the audio content of speech and music and thereby allow the producer to work a higher semantic
level.

Well-performed audio narrations are a hallmark of captivating podcasts, explainer videos, radio
stories, and movie trailers. To record these narrations, professional voiceover actors follow guide-
lines that describe how to use low-level vocal components—volume, pitch, timbre, and tempo—to
deliver performances that emphasize important words while maintaining variety, �ow, and diction.
Yet, these techniques are not well known outside the professional voiceover community, especially
among hobbyist producers looking to create their own narrations. We present Narration Coach, an
interface that assists novice users in recording scripted narrations. As a user records her narration,
our system synchronizes the takes to her script, provides text feedback about how well she is meet-
ing the expert voiceover guidelines, and resynthesizes her recordings to help her hear how she can
speak better. In a pilot study, users recorded higher quality narrations using Narration Coach than
using Adobe Audition, a traditional digital audio workstation (DAW).

Once the producer has captured speech content by recording narrations or interviews, she faces
challenges in logging, navigating, and editing the speech. We present a speech editing interface
that addresses these challenges. Key features include a transcript-based speech editing tool that
automatically propagates edits in the transcript text to the corresponding speech track, and tools
that help the producer maintain natural speech cadences by manipulating breaths and pauses. We
used this interface to create audio stories from a variety of raw speech sources, including scripted
narratives, interviews, and political speeches. Informal feedback from �rst-time users suggests that
our tool is easy to learn and greatly facilitates the process of editing raw speech footage into a story.
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A er the producer edits the speech, she o en adds a musical score to the story. We develop
an algorithmic framework based on music analysis and dynamic programming optimization that
enables automated methods for adding music to audio stories: looping, musical underlays, and
emotionally relevant scores. ¿e producermay have a short clip ofmusic that she wants to use in the
score; our looping tool allows her to seamlessly extend the clip to her desired length. ¿e producer
o en uses musical underlays to emphasize key moments in spoken content and give listeners time
to re�ect on the speech. In a musical underlay, the music fades in to full volume at an emphasis
point in the speech. ¿en the music plays solo for several seconds while the speech pauses. Finally,
the music fades out as the speech resumes. At the beginning of the solo, the music o en changes
in some signi�cant way (e.g. a melody enters or the tempo quickens). Our musical underlay tool
automatically �nds good candidates for underlays in music tracks, aligns them with the speech,
and adjusts their dynamics. Full musical scores o en re�ect the emotions of the speech throughout
the story. We present a system for re-sequencing music tracks to generate emotionally relevant
music scores for audio stories. ¿e producer provides a speech track and music tracks and our
system gathers emotion labels on the speech through hand-labeling, crowdsourcing, and automatic
methods. Evaluations of our looping, underlay, and score generation tools suggest that they can
produce high-quality musical scores.

Combined, our tools augment the traditional audio story production pipeline by allowing the
producer to create stories using high-level rather than low-level operations on audio clips. Ulti-
mately, we hope that our tools enable the producer to devote more time to storytelling and less time
to tedious audio recording and editing.
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Chapter 1

Introduction

Audio stories—ranging from audio books to radio stories and podcasts—combine speech andmusic
into compelling, engaging narratives. New technology is continually simplifying the process of cap-
turing and distributing multimedia content. With the increased �delity and quantity of this media,
a question arises: how can everyday users produce high-quality media? Users tell others about their
lives by sharing raw, unedited media, but these exchanges are not structured as stories, and they
are not edited to resemble the high-quality productions we hear on the radio or highly produced
podcasts.

Although social sharing buttons in smartphones and desktop applications encourage an un�l-
tered share-it-all mentality, users have more structured stories to tell. But how can they turn their
recordings into a story that could appear on ¿is American Life? Expert-created content is o en
more enticing—the stories arewell-paced, thoughtfully structured, and augmentedwith emotionally-
�tting transitions and musical scores—but the editing required in its creation is both challenging
and time-consuming. While existing content creation tools provide expert users near-unlimited
�exibility and power, they remain daunting and di�cult to learn for the average user [46].

Our goal is to improve the audio storytelling process by creating media-speci�c algorithms for
new recording and editing user interfaces. We aim to amplify creativity by giving users of all skill-
levels powerful and �exible tools while avoiding creating complicated interfaces. Yet we also want
to avoid interfaces that are too simplistic and may sti�e creativity. Our tools allow users to record
and edit audio at a high level instead of with low-level waveforms. ¿e coupling of algorithms and
insights from the audio/music information retrieval communities, along with an understanding of
design guidelines for audio storytelling result in tools that both expert and amateur content-creators
can use to produce compelling, high-quality stories.

1.1 Audio story production
In order to create a compelling audio story, a producer �rst needs to have a good story to tell. ¿is
stage of the production process involves brainstorming, researching, writing, and potentially inter-
viewing people related to the story. Even if its underlying story is new and interesting, an audio story
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Figure 1.1: In our research, we develop tools to assist producers in creating high-quality audio stories. ¿ese
tools address problems in recording speech, editing speech, and editing musical scores for audio stories. ¿is
is an iterative pipeline, e.g., the producer may decide to re-record narration a er working on an initial music
edit.

may fail to capture a listener’s attention if the story is poorly produced. Our research focuses on the
production process that occurs a er this initial ideation phase. Figure 1.1 shows one characteristic
pipeline for this production process. ¿is iterative pipeline breaks the production process into three
main challenges: recording speech, editing speech, and editing music.

1.1.1 Recording speech
In high-quality narrations, professional voiceover actors adjust the volume, pitch, timbre, and tempo
of their voices to follow a set of best practices. ¿ey emphasize important words, vary the tempo
and pitch of the delivery, control the speed of the delivery, and articulate words clearly. How can a
novice user follow these guidelines to record a high-quality narration?

1.1.2 Editing speech
¿e producer needs to take a potentially large collection of raw speech narrations and interviews
and edit them to form her story. How can the producer navigate and edit raw speech recordings
without having to tediously annotate the recordings or manipulate them as low-level signals? How
can she perform more advanced speech editing techniques like maintaining breaths and pauses at
appropriate locations?

1.1.3 Editing music
Most audio stories include musical scores that add texture and meaning to the speech. How can
the producer e�ectively incorporate music into a story? How can she adjust the positioning and
dynamics of the speech andmusic to best emphasize parts of the story? How can she create amusical
score thatmatches and highlights the emotions of the speech? Some audio story producers compose
and record their own music; however, we focus our research on the challenges in editing existing
music to �t stories.
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1.2 New production tools
In our research we design and build tools that address these challenges, thus creating an improved
pipeline for amateur and expert producers to create audio stories. In developing new audio produc-
tion tools, we follow the approach of Agrawala et al. [7] and �rst identify a set of design guidelines
for each task. We study publications that describe how to record e�ective narrations [45] and edit
them together withmusic [2, 4, 5, 12, 44] to create high-quality audio stories. In addition, we listen to
and analyze hours of highly produced radio programs to further understand how expert producers
apply these guidelines in practice. As a guiding principle, our tools aim to provide functionality at
a higher semantic level than traditional recording and editing tools. For example, our research en-
ables the producer to record narration, edit speech, and construct musical scores without requiring
her to directly manipulate waveforms.

We present background information and research related to our new tools in Chapter 2 (Related
work). In Chapter 3 (Recording speech) we describe a tool [78] that helps amateur voiceover actors
record higher quality narrations by providing them feedback about how well they are adhering to
high-level narration guidelines. Chapter 4 (Editing speech) details our editing interface [77] that al-
lows the producer to edit speech audio using text rather than waveforms, and helps them �ne-tune
breaths and pauses in speech. In Chapter 5 (Editing music) we de�ne an algorithmic framework for
simplifying the creation of compelling musical scores for audio stories [75, 76, 77]. ¿is includes
tools for looping music, emphasizing key moments, and automatically creating full-length, emo-
tionally relevant musical scores that highlight the emotions of the speech. Finally, in Chapter 6
(Integrity of manipulated audio) we discuss the implications of tools designed to manipulate media
like speech and music. We outline the ways that our recording and editing tools help the producer
understand and track her changes to the source material.

¿is dissertation is based on papers published in ACM conference proceedings with coauthors Maneesh Agrawala,
Floraine Berthouzoz, GauthamMysore, andWilmot Li. I am the primary author on all of these publications. ¿e work
on recording speech in Chapter 3 was published in UIST 2015 [78]; the speech editing and music editing interface and
algorithms inChapters 4 and 5were published inUIST 2013 [77]; our investigation ofmusical underlays and emotionally
relevant musical scores in Chapter 5 were published in UIST 2012 [76] and 2014 [75], respectively.
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Chapter 2

Related work

Related research on improving the audio story creation process is sparse. Our research takes inspi-
ration from work on active capture user interfaces, audio/speech signal processing, text-to-speech
systems, music information retrieval, and concatenative synthesis.

2.1 Recording speech
Our work on recording speech builds on research in active capture systems and audio resynthesis
methods.

2.1.1 Active capture
Narration Coach follows in a line of research on active capture [26], a media-production paradigm
that combines capture, interaction, and processing. Chang and Davis [24] present an active cap-
ture system to direct users performing and recording a video introduction. Heer et al. [47] describe
strategies for active capture systems to deliver feedback to users. Our system di�ers from these
projects by providing an end-to-end system for the broad task of recording narration rather than
scene-speci�c directions like “turn your head” and “scream louder.” Carter et al.’s NudgeCam [21]
helps users record video that follows capture heuristics such as interview guidelines. Narration
Coach similarly helps users follow capture heuristics, but for audio narration instead of video. Hin-
denburg Audio Book Creator [48] is a digital audio workstation speci�cally designed for recording
audiobook narration. It allows users to manually link recordings to a script, but unlike Narration
Coach, it does provide feedback and resynthesis tools.

¿e research most similar to our work on speech recording is Kurihara et al.’s Presentation Sen-
sei [57], a tool that uses speech and image processing to give a speaker feedback on speed, pitch,
and eye contact while he rehearses a slide-based presentation. Like our system, Presentation Sensei
provides capture-time feedback about speech performance. However, our system focuses on the
iterative narration recording process. It organizes recorded audio based on an input script, and it
provides automatic, word-level feedback and resynthesis tools.
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2.1.2 Resynthesizing audio recordings
Existing digital audio workstations (DAWs) like Avid ProTools and Adobe Audition allow users to
record audio and improve its quality using low-level signal processing e�ects. However, theseDAWs
target professional audio producers and unlike our system, they do not provide high-level tools
to help novices record narrations, like associating recordings with lines in a script and providing
automated feedback and resynthesis.

Our work draws on techniques from digital signal processing research to analyze and manipu-
late speech. Researchers have developed speech prosodymanipulation techniques such as the phase
vocoder [31], which enables audio adjustments by modifying components in the frequency domain,
PSOLA [93], which reconstructs audio by adding, removing, and shi ing small windows in the au-
dio, and TANDEM-STRAIGHT [54], a vocoder that allows manipulations by decomposing speech
into a smooth spectrogram, pitch contour, and periodicity map. Black and Taylor describe the Fes-
tival system [14, 92]—a complete text-to-speech system—which include concepts relevant to our
work such as prosody prediction from text, prosody synthesis, and speech signal analysis.

2.2 Editing speech

2.2.1 Traditional tools
Just as traditional DAWs provide users precise tools to record audio, they also allow users to edit
andmanipulate audio at the signal level. ¿ey are general-purpose audio production systems whose
features are not directly targeted at creating audio stories. In addition to Audio Book Creator, Hin-
denburg Systems [1] develops tools speci�cally for producing audio stories, stripping away much
of the complexity of full-�edged DAWs while simplifying common tasks in audio journalism like
managing the relative volume levels of the speech and music tracks. Despite these usability im-
provements, Hindenburg still adheres to the standard waveform-based metaphor of audio editing
and forces producers to directly edit speech waveforms.

2.2.2 Alternatives to waveform navigation and editing
Researchers have investigated alternatives to direct waveform-based navigation and editing. Bar-
thet et al. [9] segment podcasts into speech and music so that listeners can jump to the di�erent
sections. Fazekas et al. [37] split songs into verse and chorus to similarly enable quick navigation. In
the context of video editing, researchers have developed tools that leverage higher-level structural
annotations. Davis [27] proposes video editing tools that make extensive use of metadata (e.g. cam-
era settings and semantic annotations) to describe the content of the raw footage. Users can then
browse and rearrange the footage through an iconic representation of the metadata. Li et al. [60]
enable faster browsing of video clips by automatically marking shot boundaries and enabling pitch-
preserving rapid audio playback. Likewise, Girgensohn et al. [42] present a system that automat-
ically �lters out unsuitable video clips based on an analysis of the camera motion. Unlike these
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systems, our speech editing interface focuses on using a transcript of the speech track to navigate
and edit audio stories.

2.2.3 Text-based speech editing
We build on previous techniques for text-based navigation and editing. Whittaker and Amento [98]
show that users strongly prefer editing voicemail through a transcript instead of a waveform, even
when automatic speech recognition produces signi�cant errors in the transcript. However, because
they focus on voicemail recordings, their work did not investigate how to produce high-quality
edited output. Casares et al. [22] and more recently, Berthouzoz et al. [11] present video editing sys-
tems that include speech-aligned transcript editors to enablemore e�cient navigation and editing of
video. We extend this approach to the domain of audio editing and provide a number of additional
transcript-based editing tools (e.g. grouping similar sentences and editing breaths).

2.3 Editing music

2.3.1 Automatically scoring stories
Automatically scoring audio and video stories is a longstanding problem in multimedia research.
Foote et al. [41] automatically create music videos by editing video clips to match a piece of mu-
sic. ¿eir method �nds suitable locations to cut video and then splices video to match points in
music where audio features change. Our work on scoring stories instead edits the music to create
a soundtrack tailored to the speech by matching emotions and speech emphasis points rather than
low-level audio/video features. Monteith et al. [67, 66] generate new music MIDIs to match auto-
matically labeled emotions in stories. ¿ey learn generative models of di�erent music emotions and
then sample new music from these models. However, because their algorithm only considers local
matching of speech and music, the soundtracks they generate may not contain story-level structure
or cohesion. Our full score retargeting algorithm uses the emotion labels across an entire story to
generate a globally coherent musical score. We generate musical underlays and emotionally rele-
vant musical scores by re-sequencing existing, high quality music tracks instead of MIDIs, and we
provide more options for emotion labeling.

2.3.2 Concatenative synthesis
Example-based music synthesis and retargeting is an active area of research [51]. Lu et al. [62]
describe a method for generating audio textures that takes an audio track as input and reshu�es
its frames to generate a similar-sounding track. Zils and Pachet’s [105] Musical Mosaicing system
synthesizes a target waveform by sequencing snippets from a database of music. ¿e EchoNest, a
subsidiary of Spotify that provides a robust API for music analysis, has demonstrated tools for ex-
tracting the structure of a song and then retargeting it to play inde�nitely [52, 97]. In concurrent
work,Wenner et al. [96] have developed amusic retargeting algorithm that preserves user-speci�ed
constraints. Our music retargeting tools similarly consider the structure of a music track to extend
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or shorten it in a natural sounding manner. However, unlike previous techniques we also impose
retargeting constraints based on combined features of the music and speech tracks.

Dynamic programming is a common strategy for concatenative music synthesis, where short
music clips are re-sequenced from a database to create new music that mimics existing music, or to
create music that follows certain note patterns [86, 85] Our work on music retargeting follows this
general approach, but we o�er constraints that generate musical underlays and emotionally relevant
music scores rather thanmusic that imitates othermusic. Other work applies belief propagation [91]
and genetic algorithms [95] to music re-sequencing, but we use dynamic programming instead to
e�ciently �nd optimal solutions. Algorithms for video synthesis o en apply dynamic programming
techniques as well, as in Schödl et al.’s [84] video textures, and Arikan et al.’s [8] annotation-based
character motion synthesis.

2.3.3 Music editing interfaces
Previous research has investigated user interfaces and interaction techniques that simplify music
editing work�ows. Much of this research focuses on the task of creating music and proposes graph-
ical representations [36, 101] and tangible multitouch interfaces [10, 13, 19, 73] that support music
composition and live performance. Other researchers have developed tools that leverage musical
structure andmetadata to enable users to edit music at a semantically meaningful level such as mix-
ing andmatchingmultiple takes from amusic recording session [25, 37] rather thanworking directly
with waveforms or spectrograms. ¿ere has also been previous work that supports vocalized user
input for selecting speci�c sounds in audio mixtures [90] and for creating musical accompaniments
to vocal melodies [89]. Most of this research adopts the general strategy of identifying the require-
ments and constraints of speci�c music editing tasks in order to design user interfaces that expose
only the most relevant parameters or interaction methods to the user. We follow a similar strategy
for the task of creating and retargeting musical scores.

2.3.4 A�ect prediction
A�ect prediction is a well-studied problem for speech [34], text [18], and music [56]. We draw on
these techniques to provide automatic emotion labeling tools in our system. Our work concentrates
on the application of a�ect labeling and understanding rather than on its prediction.
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Chapter 3

Recording speech

From podcasts and radio stories to explainer videos to commercials and movie trailers, audio nar-
ration pervades modern media. High-quality narrations captivate listeners and shape their percep-
tions of stories. But producing an e�ective narration requires good delivery. Professional voiceover
actors continuously adjust four primary voice components—volume, pitch, timbre, and tempo—
to follow a set of best practices for high-quality audio narrations. ¿ese best practices cover four
high-level guidelines [45]:

● Emphasis: Emphasize important words by adjusting the voice’s pitch contour, volume and
tempo.

● Variety: Vary the tempo and pitch of the delivery to avoid sounding monotonic.

● Flow: Control the speed of the narration and avoid pauses between words to allow sentences
to �ow naturally.

● Diction: Articulate words clearly; do not mumble.

Hobbyist content creators also record narrations, but are not always aware of these professional
voiceover guidelines. As a result, their voiceovers o en sound less captivating, coherent, and pol-
ished. Even a novice creator who knows that she should, for example, emphasize the important
words in a sentence, may struggle in manipulating the pitch of her voice to achieve that emphasis.

In this paper we presentNarration Coach, an interface that assists novice users while they record
scripted narrations by providing immediate feedback on how well the user emphasizes important
words and maintains variety, natural �ow and good diction. ¿e user enters her desired script and
underlines words that she wants to emphasize. As the user records herself speaking the script, our
system segments and aligns the recordings to the corresponding lines in the script. A er the user
records a set of lines, Narration Coach detects the spoken emphasis in those lines, and checks for
vocal variety, good �ow, and clear diction in the recording. Our system uses these detections in two
ways. First, it provides feedback to the user about how successfully she spoke the line and what she
can improve. Second, it provides methods for resynthesizing versions of the recording that improve
the emphasis and �ow. ¿e user can construct her �nal narration either by re-recording lines with
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Figure 3.1: In two spoken versions of the same phrase, the pitch contour for the word “tension” features a steep
pitch increase when the speaker emphasizes the word (top) versus when she does not (bottom).

the feedback in mind, or by using one of the resynthesized options as an improved version of the
take. ¿is record–feedback–resynthesis pipeline allows users to iteratively improve their narration.

In a pilot study, �rst-time users of our system successfully created audio narrations that they pre-
ferred over narrations they made without Narration Coach. Additionally, impartial listeners rated
narrations created with our system as higher quality than the narration made without it.

3.1 Guidelines for high-quality narration
We designed Narration Coach to address common problems in recording narration [28, 32, 45, 71].
Voiceover actors use four high-level guidelines to improve the quality of their delivery [45, 72].
¿ey emphasize words that help users follow the story (e.g. descriptive words, proper nouns, action
verbs), add vocal variations to the delivery, adjust the speed of the narration and the location of
pauses to control the �ow of the speech, and enunciate words clearly. To achieve these high-level
goals, voiceover actors continuously adjust four components of their voice, i.e. the volume, pitch,
timbre, and tempo.

3.1.1 Emphasis
When speaking, voiceover actors adjust their pitch, tempo and volume to emphasize or hit a word.
Emphasizing a word makes it stand out or signals the end of a thought; it helps the listener follow
the story and identify the most important messages. ¿e speaker needs to understand the intended
emotion and meaning of the narration to determine which words to emphasize. However, general-
purpose voiceover guidelines suggest: emphasizing one of the �rst two words in a sentence can help
listeners focus attention on the remainder of the sentence; emphasizing the end of a sentence signals
the end of a thought; emphasizing action words and descriptive words helps listeners focus on the
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action and the subject; and emphasizing reference words (e.g. subject names) helps listeners focus
on the subject, location and objects in the story [45].

Voiceover acting books further suggest that the most common way to emphasize a word is to
increase the pitch on the stressed syllable of the word while slightly increasing the volume and du-
ration of the word [15, 45, 99]. A common emphasis pitch contour of a word starts at a low pitch,
rises to a greater pitch at the stressed syllable in the word, and then falls back down to a lower pitch
by the end of the word (Figure 3.1). We can provide feedback on whether the speaker emphasized
each word by analyzing its pitch contour, volume, and duration. To resynthesize a sentence to em-
phasize a non-emphasized word, our system adjusts the pitch contour of the word to mimic a target
emphasis contour, and increases the duration and volume to draw further attention to the word.

3.1.2 Variety
If a speaker uses a small range of pitches and always speaks at the same tempo, the resulting speech
can sound robotic and listeners may lose focus. Instead, to keep the voiceover interesting, speakers
add variety to their delivery. ¿ey use pitch variation to expand their range, and elongate words to
change the tempo of the sentence. We analyze the pitch and tempo to provide feedback about the
variety in the recording. Our system focuses on helping users speak with more variety. Although
some speakers have too much vocal variety, novice speakers are less likely to have this issue.

3.1.3 Flow
To control the �ow of a sentence, voice actors continuously adjust the tempo of the narration, so as
not to speak too fast or too slow. ¿ey are also careful about where they insert pauses to avoid un-
necessarily disrupting a sentence. Less experienced speakers o en read in a disconnected way; they
insert extraneous pauses between words or speak so fast that they forget to pause entirely. Speakers
can improve the �ow of a narration by speaking at a natural tempo and minimizing unintentional
pauses. We provide feedback about the �ow by analyzing the speed of the narration, i.e. by compar-
ing the duration of each spoken word to the typical duration of that word (learned from data). We
also analyze the duration and location of pauses within a sentence. To resynthesize the recording
with improved �ow, we can slow down or speed up the tempo, as well as insert or remove pauses as
necessary.

3.1.4 Diction
To make voiceovers easy to understand and follow, speakers must articulate their words clearly.
Clear enunciation correlates with exaggerated mouth movements [72]. We thus provide feedback
about the quality of the diction by using a face tracker to analyze the speaker’s mouth movements
throughout a recording session. We do not resynthesize speech to correct for poor diction. Increas-
ing or decreasing enunciation in recorded speech is an open problem for future research.
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Figure 3.2: A user records part of a narration script in our system. A er she records part of the script, our
system displays text-based feedback and provides audio resyntheses that correct problems in the narration.
¿is text and audio feedback helps her understand how to iterate and improve the recording.

3.2 Interface
¿is section describes our system’s interface, while Section 3.3 explains the techniques that enable
these interactions. At a high-level, the user records part of the script and Narration Coach contin-
uously time-aligns the recording with the script (Figure 3.2). When the user stops recording, the
interface provides feedback for each recorded take based on the four high-level narration guide-
lines. Narration Coach also resynthesizes the recorded speech to automatically improve it. ¿e user
can incorporate the resynthesized version in their �nal narration, or use it as a suggestion of how
to improve their narration. In our system, we call a sentence in the script text a line, and we call an
audio recording of one line a take of that line.

3.2.1 Transcript-guided recording
¿euser launchesNarration Coach a er she writes her script. She imports the script text �le and our
interface shows a line-by-line view of the script in the main window (Figure 3.3, le ), where each
line corresponds to a sentence. She can edit, add, and remove lines from the script in this window.
She can also select words and mark them as targets for emphasis ( +U). Our interface underlines
such emphasis words.

If the user is unsure about which words to emphasize, she can select a line and click on the
“Annotate line” button in the toolbar, which underlines suggested words to emphasize. Narration
Coach does not annotate the entire script automatically by default because desired emphasis can be
context-dependent; a speakermay emphasize the same sentence in di�erent ways to convey di�erent
meanings. Nevertheless, if the user does not have a speci�c interpretation in mind, our system
applies a general set of rules as described in Section 3.1 to pick words to emphasize.

To begin recording the script, the user clicks the “Record” button on the toolbar and starts read-
ing the script line by line (Figure 3.3a). She does not need to read the lines exactly as they appear in
the script; the speaker can modify lines, e.g., by re-wording phrases.

When the user presses the “stop recording” button,Narration Coach analyzes the speech. It �rst
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Figure 3.3: ¿e main window of our interface shows the narration script (le ). ¿e user (a) underlines words
that she intends to emphasize and records part of the script. ¿e script window (b) uses font color to show
which lines the user has not recorded yet, which lines have problematic recordings, and which lines have
good recordings. When the user clicks on a blue line in the script, our system displays the take inspector
(right) for recordings of that line. ¿e take inspector (c) shows the user words she correctly emphasized and
words she failed to emphasize. By selecting a speci�c take of the line, she can (d) see feedback about that
take’s emphasis, �ow, variety, and diction. Our system also shows (e) global tempo variety. She can (f) listen
to resynthesized versions of the recording that address emphasis and �ow issues and replace the take with a
resynthesized version.
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transcribes the speech and then automatically segments and aligns the speech transcription to the
best matching set of consecutive lines in the script. ¿e main script view displays these recorded
lines in a light blue font to indicate to the user that those lines have recorded takes associated with
them (Figure 3.3b). If a er the speech analysis, our system determines that a recorded line follows
all four high-level narration guidelines, the script view instead colors the line in dark blue. ¿e font
colors let the user quickly see which parts of the script she has yet to record (black lines), and which
parts to record again to improve the quality of the narration (light blue lines). When the user clicks
a blue-colored line in the script, the take inspector appears and shows all of the recorded takes for
that line (Figure 3.3, right). ¿e take inspector also provides feedback about the delivery and allows
the user to resynthesize takes.

3.2.2 Speech feedback
In the take inspector (Figure 3.3, right),Narration Coach provides feedback about the four high-level
guidelines: emphasis, variety, �ow, and diction. Narration Coach detects the emphasized words in
each recorded take. As in the script view, the take inspector underlines each word that the user
intended to emphasize. For each of these words, the take inspector renders the word in green if the
user successfully emphasized the word and red if the user did not emphasize the word (Figure 3.3c).
¿is visual encoding allows the user to see where she needs to place more emphasis in subsequent
recordings. If the user disagrees with the detected emphasis, she can select words in the recorded
take and add or remove the emphasis ( +B).

For other guidelines, we aim to give the user actionable advice rather than have her focus on
speci�c quantitative properties of her speech. To do this, we provide text-based feedback rather
than solely giving numerical or visualization-based feedback.

Narration Coach provides textual feedback describing the variety of the performance. Feedback
lines indicate the variety in the pitch and tempo of the speech and suggest that the user add more
or less variety in further recordings if needed. Our system reports pitch variety feedback for each
recorded take (Figure 3.3d). While excessive tempo variety within a single line sounds unnatural,
tempo variety over multiple sentences helps to hold the listener’s attention. Our system gives tempo
variety feedback about the full narration in the script window (Figure 3.3e).

To provide feedback about the �ow of the speech, our system displays the speech tempo and
the number of mid-sentence silences. ¿ese displays suggest that the user slows down or speeds
up, and reduces unnecessary mid-sentence pauses. Narration Coach renders awkward pauses as red
boxes in the text of the take. We also use text to provide feedback about the quality of the diction,
suggesting that a user open her mouth more to improve mumbled speech (see Section 3.3 for details
on text feedback).

3.2.3 Speech resynthesis
Resynthesizing audio—splicing multiple takes together or manipulating the underlying pitch, vol-
ume, and duration contours (time-varying functions) of individual takes—allows the user to create
and hear modi�ed versions of her performance. Our system automatically generates resynthesized
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takes to address problems with emphasis and �ow. As our system resynthesizes audio with contours
further from the original take’s contours, the resulting audio becomes more audibly di�erent from
the original recording, but also gains more audio artifacts. ¿e user can use these resynthesized
takes to replace her original take, or she can use them as audio feedback to guide her performance
next time she records a take of that line.

Narration Coach provides two forms of speech resynthesis: emphasis and �ow (Figure 3.3f).
When the user selects a sentence in the take inspector, our system automatically generates these
two resynthesized versions of the sentence. If the user fails to emphasize words that she underlined
in the script, our system generates a version of the sentence that adds emphasis to those words. ¿e
user can click on the “plus” button to replace the original take with the resynthesized take.

If the user spoke too quickly or too slowly in the recording, Narration Coach resynthesizes a
slower or faster version of the take, respectively. ¿is resynthesized take adjusts the speed while
preserving the other characteristics of the recording. Our system also automatically adds pauses
between sentences and reduces unnecessary pauses within a sentence.

3.2.4 Constructing the �nal narration
As the user records and re-records the lines in her script, Narration Coach captures a complete
recording of the script. ¿e user can listen to this recording at any point by clicking the “play narra-
tion” button in the main script window. Our system analyzes the problems in each line to automat-
ically select and play the best take of each line for the �nal version of the voiceover. ¿e user can
override this default “best-take” selection behavior by clicking the “star” button on her favorite take
in the take inspector. When the user �nishes recording the narration, she selects “Export” from the
�le menu to export her full narration as a high quality, uncompressed WAV �le.

3.3 Algorithmic methods
¿e features in Narration Coach rely on text and audio processing algorithms.

3.3.1 Script Analysis
Narration Coach provides suggestions for words in the script to emphasize by applying rules pro-
posed by voiceover experts [45]. Our system suggests users emphasize: descriptive words (adjec-
tives), proper nouns, action verbs, and words at the beginnings and ends of sentences. Narration
Coachuses theMacOSXbuilt-in NSLinguisticTaggerAPI to tag the part-of-speech of eachword,
and then applies the rules listed in Section 3.1 to label emphasis. ¿e tagger does not di�erentiate
between action verbs and non-action verbs, so we supply a list of non-action verbs to ignore during
annotation.
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Hello, there!
Why is the sky blue?
I don’t know.

Script:
Is the sky so blue? We don’t know.
Recorded speech transcript:

Lowest global alignment cost between script lines/transcript
Why is the sky blue? I don’t know.
Is the sky so blue? We don’t know.

Transcription segmentation from global alignment
WHY IS THE SKY ---BLUE I- DONT KNOW
----IS THE SKY SO BLUE WE DONT KNOW

Word-to-word exact alignment
WHY IS THE SKY ---BLUE   I- DONT KNOW
----IS THE SKY SO BLUE   WE DONT KNOW

Line/Take alignment:

Line–Word/Take–Word alignment:

Take–Word/Audio alignment:

Is    the    sky    so    blue?              We    don’t    know.
Viterbi algorithm in HTK

.06 .16  .40 .71  .94        .05  .21    .42

a

b

c

script:
transcript:

script:
transcript:

script:
transcript:

transcript:
audio time:

Figure 3.4: Narration Coach aligns recorded speech with the script. First, (a) it �nds the set of script lines that
correspond to the recording. ¿en, it segments the transcript based on a global alignment with the script
lines. It (b) �nds word matches between the script lines and the transcript. Finally, (c) it aligns the words in
the take to the speech audio.

3.3.2 Transcript-guided recording
While the user is speaking, our system records the audio and runs Mac OSX’s Enhanced Dictation
tool in the background to compute a text transcript. In order for our interface to organize, analyze,
and manipulate the recorded audio, it requires alignment metadata (Figure 3.4). When the user
stops recording, our system performs a multi-staged alignment process to generate the following
metadata:

● ¿e line/take alignment is the link between each recorded take and a line in the original
script, so our system can show users all takes of a given script line.

● ¿e line-word/take-word alignment links words in each recorded take and words in the line
corresponding to that take. If the user did not read the script verbatim, some words in the
recorded take may not have links to the original line, and some words in the original line may
not have links to the recorded take. We need this metadata to determine if the take includes
the words that the user intended to emphasize.
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● Finally, the take-word/audio alignment is a set of timestamps in a take’s recorded audio for
the beginning and end of each word and phoneme, so our system can analyze andmanipulate
the vocal components of the recording at the word and phoneme levels.

Our alignment process makes no assumption about where the user starts speaking within the
script, but does assume that she speaks lines sequentially from the starting point. ¿e user also does
not have to speak lines exactly as written— she can change wordings while she is recording. Because
the user can record multiple script lines at once, our system �rst segments the transcript t into its
associated script lines. ¿e transcript corresponds to a consecutive interval [i , j] of script lines s.
Our system �nds the interval with the best match to the transcript, as measured by the minimum
cost global alignment c(t, s[i , j]) between the transcript and the concatenated script lines s[i , j] =
si + ⋯ + s j. We �nd this interval by �rst applying Needleman-Wunsch [68] to compute the global
alignment between the transcript t and each script line si . ¿e cost of this alignment corresponds
to a score for interval [i , i]. ¿en, our system repeatedly extends each of these intervals by one line
as long as the alignment cost decreases, i.e., c(t, s[i , j+1]) < c(t, s[i , j]). From these �nal intervals,
our system selects the one with the smallest cost. Our system then segments t into j − i sentences
according to this minimum cost alignment, which gives us the line/take alignment (Figure 3.4a).

Our system�nds the line-word/take-word alignment by searching the global alignment from the
previous step for words in the transcript that are exactly aligned to words in the script (Figure 3.4b).
Finally,Narration Coach computes word and phoneme timestamps for the recorded audio using the
HVite component of HTK, a hidden Markov model toolkit [102] (Figure 3.4c).

3.3.3 Speech feedback
To detect emphasized words, Narration Coach takes a two-phased approach. AuToBI [74]—a tool
for predicting prosodic annotations in speech—reliably detects words that have pitch accents, which
are pitch “con�gurations that lend prominence to their associated word” [88]. While pitch accents
are necessary for emphasis, they are not su�cient. For example, a word preceding a pitch accented
word may contain a much larger pitch accent, overpowering any emphasis that a listener may oth-
erwise hear in the second word. We apply the AuToBI pitch accent detector to �nd a subset of
words that have pitch accents. In order to �nd the pitch-accented words that sound emphasized,
our system searches for typical emphasis contours (Figure 3.1): our system runs a second pass over
the pitch-accented words, �nding those that are louder (> 1.25 decibels) or higher pitched (> 1.25
times) than the preceding word, or those that have more pitch variation (> 1 standard deviation)
than the sentence as whole. We set these thresholds by analyzing contours before, during, and a er
emphasized words in speech recordings. Narration Coach underlines the user’s target emphasized
words, rendering successfully hit target words in green and missed target words in red.

Our system�nds pitch variety by �rst applyingMauch andDixon’s [63] probabilistic YIN smooth
pitch estimation algorithm and computing the standard deviation of the log of the pitch in the take.
Narration Coach displays this standard deviation in the take inspector, mapping the value to a level
of text feedback— [0, .2): “Monotone. Addmore pitch variety,” [.2, .3): “Somewhat monotone, Add
a bit of pitch variety,” [.3, .4): “Good pitch variety,” and [.4,∞): “Excellent pitch variety.” We set
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these mappings empirically by listening to and qualitatively rating narration audio clips. If the user
�nds the mapping to be inaccurate, she can adjust the mapping through our system’s preferences
window.

We provide feedback on tempo variety for the narration as a whole. Narration Coach computes
the words per minute (WPM) and the standard deviation of a moving average of WPM of the full
narration and displays these values below the script in the main script window.

Our system uses a di�erent tempo metric to provide �ow feedback at the take-level. Sentences
have large di�erences in word length distribution, so WPM is less useful as a metric for take-level
speed analysis. Instead, our system computes the speed of each take by comparing the duration
of each spoken word to the expected duration of that word. We use the transition probabilities in
a monophonic hidden Markov model [104] to model the duration of each English phoneme. ¿e
expected duration of a word is the sum of the expected durations of the phonemes in that word. Our
system computes the cumulative distribution function (CDF) for the duration of the words in each
take to report a value between zero—the speaker said the sentence as quickly as possible—and 1—
the speaker said the sentence as slowly as possible. Narration Coachmaps the probability to di�erent
levels of text feedback— [0, .25): “Very slow! Speed up,” [.25, .3): “Somewhat slow. Speed up,” [.3,
.4): “Good speed,” [.4, .45): “Somewhat fast. Slow down,” and [.45, 1]: “Very fast! Slow down.” As
with the pitch variety mappings, we set these empirically and they are user-customizable.

When people articulate clearly, they open their mouths wider than when they mumble [72]. In
addition to recording audio, Narration Coach captures video from the computer’s webcam as the
user speaks. Our system detects mumbling by analyzing the speaker’s facial movement. Narration
Coach runs Saragih’s face tracker [81] on the captured video and records four points for each cap-
tured frame: the topmost mouth point, the bottommost mouth point, the topmost eye point, and
the bottommost nose point (see Figure 3.5). Our system computes the ratio mouthtop−mouthbottom

eyestop−nosebottom
for

each frame and then computes the standard deviation of these ratios. ¿e higher the variance of the
mouthtop−mouthbottom di�erence, the wider the speaker is opening her mouth while speaking. ¿e
denominator acts as a normalizing term to preserve scale-invariance in this ratio. Narration Coach
maps the standard deviation of these ratios to text feedback in the take inspector— [0, .02): “Very
mumbly! Open your mouth more,” [.02, .04): “Somewhat mumbly. Open your mouth more,” and
[.04,∞): “Well-articulated.” Before the user starts recording, we calibrate these mappings based on
the size of the user’s closed mouth and the size of the user’s wide-open mouth.

3.3.4 Speech resynthesis
Narration Coach provides automatic speech resynthesis methods for emphasis and for �ow. If the
user fails to emphasize words she underlined in the script, Narration Coach resynthesizes the take
with emphasis added to those words in a two-phased procedure. First, for each missed target word,
our system checks if the user properly emphasized the word in another take of the same script line.
If she did, Narration Coach creates a new version of the current take with the target words replaced
with the audio of the properly emphasized words. Second, if the user did not emphasize the target
word in another take, our system applies a parameter-based resynthesis method. ¿is method uses
PSOLA [16, 93], a speech processing technique that modi�es the pitch and duration of speech by
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Figure 3.5: Narration Coach determines how much the speaker is mumbling by analyzing variance in
the speaker’s mouth size. ¿e system uses the speaker’s face size to normalize the mouth movement
measurements.
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Figure 3.6: Our system adds emphasis to aword bymodifying its vocal parameter contours (red: before; green:
a er) and creating resynthesized audio using PSOLA.

manipulating small pitch-aligned overlapping windows of the audio signal— moving them closer
together or further apart to adjust pitch, and repeating or eliminating windows to adjust duration.
Our system constructs new pitch, volume, and duration contours to match typical emphasis con-
tours:

Pitch. Every word contains a stressed vowel phoneme. Our system creates the new pitch contour
by setting a pitch peak at the start of that phoneme. ¿e new pitch peak is the maximum pitch of the
word plus a parameter p octaves. We construct the contour according to the TILT [33] pitch contour
generation model. In this model, the contour follows a piecewise quadratic function ascending
from the word’s original starting pitch to the new maximum pitch, followed by another piecewise
quadratic function descending to the word’s original ending pitch (Figure 3.6, le ).

Volume. Our system manipulates the volume of the target word by setting a volume multiplier
of v from the start of the stressed vowel phoneme through the end of the stressed vowel phoneme.
It sets the volume multiplier to 1.0 elsewhere and adds linear transitions to and from the stressed
vowel phoneme, so that the volume variations are not perceived as too abrupt (Figure 3.6, center).
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Duration. Speakers can extend the typical duration of a word to give it more weight. Our system
sets the new duration contour akin to the volume contour, substituting a duration multiplier d for
v (Figure 3.6, right). ¿is extends and adds emphasis to the vowel phonemes, which sounds more
natural than extending all of the word’s phonemes.

Our system parameterizes the contours by the values p, v, and d. We set these defaults to .25
octaves, 1.25, and 1.1 respectively, which represents an audible but not extreme increase in these
parameters. If the user wants more control, she can modify the defaults for p, v, and d and �ne-
tune the synthesized emphasis for each word.

¿e �rst phase of emphasis resynthesis has the advantage of using emphasized words that the
user said in same context as the target words, and avoids adding artifacts that the parameter-based
resynthesis method may introduce; however, it requires that she emphasized the target word in
another take and it can introduce artifacts if the speaker had di�erent tones between the takes.

We can apply similar techniques to remove emphasis fromwords that the speaker over-emphasizes.
However, our system focuses on �xing non-emphasized words because novice speakers tend to for-
get to emphasize words.

Narration Coach modi�es the �ow of a sentence by creating a faster or slower version of the
sentence as needed. It lengthens or shortens the durations of words using PSOLA time-stretching.
Narration Coach also removes unneeded and awkward pauses in the take, i.e., pauses over a quarter
of a second long that do not occur directly a er commas or other punctuation.

3.3.5 Constructing the �nal narration
Narration Coach creates a �nal narration by playing the best take of each line in succession. Our
system de�nes the best line as the line that follows the most guidelines. A take follows the emphasis
guideline if the speaker emphasized each target word. A take follows the variety, �ow, and diction
guidelines if the respective computed feedback values fall within the “good” range according to the
text feedback mappings. If multiple takes follow the same number of guidelines, our system favors
the most recent take, and if the user clicks the “star” to mark a take of a line as a favorite, our system
uses that take instead. Narration Coachmixes room tone into the �nal narration to prevent audible,
unnatural dips to silence in the transitions between sentences.

3.4 Results
We conducted a pilot study where we introduced Narration Coach to �ve users (3 female, 2 male),
none of whomhas had formal voiceover or audio recording/editing training. We began each session
by providing the user with a script and asking her to read it out loud to learn its words and phras-
ing. We then had her record a narration of that script using Adobe Audition, a traditional audio
recording and editing tool. We allowed the user to record additional takes—of the entire script or of
speci�c lines—until she was satis�ed with the narration, and we helped her edit the takes together
so she did not have to learn how to use the so ware. A er they �nished recording the narration
with Audition, we loaded the script inNarration Coach. We then gave the user a 10-minute demon-
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Recording comparison Narration Coach usage

Name
Script
lines

Takes
per line
(Aud.)

Takes
per line
(NC)

Final
dur.
(Aud.)

Final
dur.
(NC)

Start
rec.

Open
take
insp.

Edit
dict.

Edit
detected
emph.

Play
take

Play
emph.
resynth.

Play
�ow

resynth.
Favorite
take

Play
full
narr.

ballotsel�es 8 1.375 2 0:56 0:54 10 14 9 2 17 4 3 8 1
blue 8 1 2.125 0:42 0:48 7 32 10 1 26 14 10 8 2
coloradosv 8 2 3.125 0:47 0:57 14 25 4 0 14 2 0 9 1
mosquitos 10 1.8 1.6 0:46 0:55 17 38 14 1 15 2 11 6 3
voting 11 1.36 2 0:58 0:59 12 26 0 1 13 1 3 4 4

Table 3.1: Five participants each recorded two narrations for a script—one using a traditional DAW (Adobe
Audition) and one using Narration Coach. Users recorded more takes per line and produced slower-paced
narrations using our system. We instrumented Narration Coach to record usage statistics. “Start rec.” is the
number of times the user initiated a recording session, and “open take insp.” is the count of times the user
clicked a line in the script to view the take inspector. “Edit dict.” refers to the number of times the user
corrected the speech-to-text dictation, and “edit detected emph.” tallies times when the user disagreed with
and changed the emphasis detection. “Play take,” “play emph. resynth.,” and “play �ow resynth.” refer to the
user playing di�erent versions of the take within the take inspector. “Star take” tracks the user selecting a
favorite take, while “play full narr.” tracks when the user listened to the entire narration.

stration of our system’s recording, feedback, and resynthesis tools, and asked her to use Narration
Coach to create a narration. At the end of each session, we solicited the user’s feedback on our
system’s features, and asked her to select whether she preferred her �rst narration or her narration
created in Narration Coach. In total, each pilot study session lasted one hour and we compensated
each participant with a $15 gi card.

We had the participants record their narrations in Audition before using our system to prevent
them from transferring speci�c feedback from Narration Coach to Audition. However, a di�erent
type of learning e�ect is possible in our non-counterbalanced pilot: users may get better at the
narration task over time, which could lead to users always producing better narrations in the second
task. We tried to avoid this bias by having our users read the script out loud before recording, and by
allowing them to re-record the script in Audition asmany times as they wanted in order to construct
a narration that they liked.

Overall, the users were enthusiastic about our narration tool. Each of the �ve users preferred the
narration they created withNarration Coach to the narration they created with Audition, and every
user noted that they would use our tool to record narrations. Table 3.1 summarizes the participants’
usage of Audition andNarration Coach in the recording session. ¿e supplemental material1 for this
research includes the �nal audio from these sessions. Users demonstrated di�erent usage patterns in
Narration Coach; for example, some perfected one line at a time while others listened to all available
resyntheses for the entire script. ¿ey spent more time recording narrations using our system than
with Audition, noting that this was because they tried to improve on their takes based onNarration
Coach’s feedback. ¿ey recorded more takes per line in our system than when using Audition.

¿e recording tools in Narration Coach excited the users. Notably, they liked how it organized
audio by script line into di�erent takes, how they could start recording from anywhere in the script,

1http://vis.berkeley.edu/papers/narrationcoach/

http://vis.berkeley.edu/papers/narrationcoach/
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ballotsel�es
blue
coloradosv
mosquitos
voting

picked NC audio

12/16
18/19
12/16
14/14
13/17

Name Picked NC/Total picked Audition audio

75%

95%

75%

100%

76%

Figure 3.7: Listeners on Mechanical Turk thought the narrations made with Narration Coach were higher
quality than the narrations made without it for all �ve of the audio pairs created by participants in our pilot
study.

and how they could star a favorite take to play in the �nal narration instead of manually splicing in
the best take as in a timeline-based editor. One participant noted that “Organizing audio line by line
into takes was super helpful because it didn’t invalidate an entire recording session if I stumbled over
one word.” Another appreciated the “star” feature, as it enabled “[re-recording] several times without
the hassle of splicing the new takes in.” Our system functions well even if the speech transcription
has minor errors (e.g., with one or two errors in a take, Narration Coach can still compute accu-
rate alignment metadata and thus provide take feedback and resyntheses). However, the automatic
speech-to-text transcription was highly inaccurate for one user who had an accent. ¿at user had
to manually correct each automatically generated transcript. We expect that o�-the-shelf dictation
tools will improve as speech recognition research progresses.

Users found the feedback tools useful, as well, with the feedback on speed and awkward pauses
being the most useful. One user described that speed detection was useful because “I usually speak
very fast without realizing it,” and added that emphasis detection was useful because it “allowed me
to make a mental note of whether or not I emphasized certain words.” ¿e participants referenced the
pitch variety and diction feedback less o en, in part because users did not trust the feedback: “I...
didn’t feel like I was very monotone.” Even if the user was being monotone or mumbling, our system
needs to better communicate feedback that users may �nd incorrect or even insulting. Narration
Coach addresses this problem with emphasis detection by allowing users to toggle the feedback if
they disagree with the analysis.

Our participants repeatedly used and complimented the automatic �ow resynthesis feature that
altered a take’s speed and removed awkward pauses. However, they found the automatic emphasis
resynthesis tool to be less useful. Instead of using the tool as a way to hear what proper emphasis
might sound like to guide their future takes, the users treated the emphasis resynthesis as a candi-
date for a �nal recording. As such, the users found audio artifacts caused by the parameter-based
resynthesis to be o�-putting. In a longer recording session, users would likely record more takes
of each line, so the emphasis resyntheses would be more likely to use replacement-based emphasis
rather than contour-based emphasis, which tends to produce fewer audio artifacts.

Listening evaluation.While all of our participants preferred their narration created withNarra-



3.5. CONCLUSION 22

tionCoach to their narration createdwithAudition, we sought additional input from crowdworkers.
For each script, 20 US workers with over 95% approval rates on Amazon Mechanical Turk listened
to both versions of the narration. We asked them to select which clip had the higher overall narra-
tion quality. We rejected workers that did not spend enough time on the task to listen to both clips
in their entirety, which le an average of 16 workers per narration pair. Figure 3.7 shows the pro-
portion of listeners that selected each narration. For each narration pair, we performed a binomial
test to see if the proportion of listeners that selected theNarration Coach recording was greater than
chance (50%). In all �ve cases, more listeners preferred the Narration Coach audio clip to the other
clip (p < .05).

3.5 Conclusion
High-quality narrations are integral to creating captivating digital content, but novice users are not
aware of the guidelines necessary to produce such voiceovers. We have presented Narration Coach,
an interface to help users create narrations by providing text and audio feedback throughout the
recording process. Using our system, novice users can better create high-quality narrations that
more closely adhere to professional voiceover guidelines.
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Chapter 4

Editing speech

In the second stage of the iterative production pipeline, the producer edits her recorded speech
to assemble her story. ¿e recorded speech includes both narration and interview footage. An
experienced producer selects and combines the most salient content and then re�nes individual
sentences to improve the phrasing and rhythms of the speech.

4.1 Challenges in editing speech
Traditionally, the producer maintains a log of her footage in order to �nd speci�c content. ¿is
log contains notes and quotes and their associated �lenames and timestamps. ¿e producer creates
this log manually, and if she wants to �nd a particular line in unlogged footage, she needs to scrub
through the audio by hand.

Current audio editing tools force the producer to sequence and manipulate the speech at the
level of the audio waveform. As a result, the producer must map her high-level story editing and
design goals onto a sequence of low-level editing operations—e.g., selecting, trimming, cutting,
and moving sections of a waveform. Manually applying each of these low-level edits is tedious and
time-consuming.

As she edits speech, the producer also tries to maintain natural patterns of speech, i.e., speech
with appropriate pauses and breaths. For example, without pauses and breaths between sentences,
speech sounds rushed and robotic. ¿e producer inserts and edits these breaths and pauses where
necessary, again using low-level waveform operations.

We have developed a speech editing interface to help the producer edit raw speech tracks into
audio stories. Our interface analyzes the content of the speech in order to allow the producer to
work at a much higher level. To help the producer navigate and edit raw speech recordings, our
interface includes a transcript view of each speech track. As in previous transcript-based speech
editing systems [11, 22, 98], the producer can directly modify the transcript text, and our system
propagates the corresponding edits to the speech waveform. However, unlike previous systems, our
interface groups similar sentences, so that the producer can quickly listen to di�erent versions of
a line and insert the best one into the story. ¿e transcript view also marks pauses and breaths in
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Interviewer Waveform

Interviewee WaveformMusic Waveform

Interviewer Transcript Interviewee Transcript Local Music Library

Transcript View

Timeline View

Figure 4.1: Our editing interface features two views of each speech track: a traditional waveform view, and a
text-based transcript view.

the speech to help the producer re�ne phrasings while maintaining a natural sounding rhythm. We
�rst describe our speech editing interface, and then present the content-based analysis algorithms
that enable the interface’s tools.

4.2 Transcript-based speech editing interface
¿e producer starts by loading raw speech tracks into the editing interface. In Figure 4.1, the pro-
ducer is editing the two tracks of an interview between Ben Manilla and recording artist Bettye
Lavette. Our system displays two di�erent views of each track: the timeline view shows the audio
waveform, and the transcript view shows the corresponding text. Each speaker’s transcript appears
in a separate column of the transcript view and the text alternates between the columns as the speak-
ers talk back and forth.

Each transcript is time-aligned with the corresponding waveform, so that selections and edits
made to the text are re�ected in thewaveform and vice versa. All edit operations (i.e. cut, copy, paste,
delete) in the transcript view occur at the word level (Figure 4.2). Our system snaps selections to the
nearest word boundary to prevent the producer from breaking words into fragments. ¿e transcript
view helps the producer quickly navigate to speci�c parts of a speech track and edit the content of
the story.

With interviews it is essential for the speech tracks to stay in sync with one another as the pro-
ducer makes edits. Our system provides a linked editing mode that automatically maintains such
synchronization. If the producer deletes part of a track for one speaker, our system deletes the cor-
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Similar
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Repeated Words

Cuts
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Breaths

Figure 4.2: ¿e transcript view allows the producer to edit the story at the word level. ¿is view marks cuts,
breaths, pauses, repeated and unnecessary words, and similar sentences, all of which enable the producer to
quickly edit the speech.

responding region from the waveform and transcript of all linked tracks. Similarly if the producer
inserts text into the transcript of one speaker, our system inserts background room tone into the
corresponding regions for the linked speakers. A producer usually captures room tone at the start
of a recording session and our system automatically treats near-silent segments from the beginning
of the track as room tone.

Speakers o en record multiple versions (or takes) of the same sentence to try variations in voic-
ing or wording. ¿e producer must then choose the most appropriate take for the story. Our system
analyzes the transcript to identify retakes and underlines sentences in the transcript view for which
similar alternatives are available. Clicking on the underline opens a drop-down showing the similar
alternatives (Figure 4.2). ¿e producer can listen to any of these takes and select her favorite without
having to search for retakes through the entire raw recording.

A er editing together a rough cut of the raw tracks, the producer next focuses on re�ning indi-
vidual sentences to improve the �ow of the speech. Our system identi�es ‘uhs’, ‘ums’ and repeated
words and highlights them in red so that the producer can easily delete them (Figure 4.2).

¿e transcript view also explicitly marks the breaths and pauses that occur in each speech track
(Figure 4.2). ¿ese tokens help the producer maintain the natural patterns of speech as she edits the
story. For example, speakers typically take a breath and pause for a moment before uttering each
new sentence [4]. A er rearranging sentences in the transcript view the producer can immediately
check that the breath-pause combination occurs between sentences. ¿e producer can also split a
long sentence into two sentences by typing a period (‘ . ’) in the transcript view, and our system
automatically inserts the breath-pause combination before the next sentence. Finally, the producer
can manually add or remove breaths and pauses as necessary. Pauses o en serve to emphasize the
preceding speech and give the listener time to re�ect on what the speaker just said. ¿us, the pro-
ducermay choose to insert pauses at di�erent points in the speech, to emphasize particular thoughts
that the speaker may have originally rushed through. ¿e default pause length is 250 ms, and the
producer can manually adjust its length as necessary. Our system �lls the pause with background
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room tone.

4.3 Algorithmic methods for speech editing
Our audio editing tools all rely on algorithms that analyze the content of the raw speech footage.

4.3.1 Obtaining the transcript
Our editor requires a text transcript for all of the speech footage. Speech footage recorded in Nar-
ration Coach already has an associated transcript. However, other narration footage and interview
footage does not have this metadata. We obtain a transcript of the raw speech tracks using the
crowdsourced transcription service, CastingWords.com [23]. It costs $1.00–$2.50 per minute of au-
dio, depending on the desired turnaround time. By default the service produces sanitized transcripts
that excludes words like ‘uh’, ‘um’, ‘so’ etc. However, we designed our audio editor to highlight such
words in the transcript and let the producer decide whether or not to remove them. ¿erefore we
specify that the transcription service should produce verbatim transcripts. While automatic speech
recognition so ware is continually improving, we have found that they cannot match the quality of
crowdsourced transcription.

4.3.2 Aligning the transcript to the speech track
Once we have obtained the verbatim transcript of the speech track, we align it to the audio using
the Penn Phonetics Lab Forced Aligner (P2FA) [104], a tool built using HTK (HMM toolkit), a
speech recognition library [103]. ¿is aligner computes perceptual linear prediction (PLP) features
to model each phoneme in the speech audio and applies a dictionary of word-to-phoneme trans-
lations on the text. It then uses the Viterbi algorithm for hidden Markov models to compute the
maximum likelihood alignment between the speech and transcript. ¿e aligner also inserts “pause”
tokens into the transcript when there is a silent gap in the speech.

In practice we have found that transcripts frequently contain some words that are not in the
P2FA word-to-phoneme dictionary (e.g. proper names, jargon, etc.). ¿erefore, we have extended
the P2FA algorithm so that whenever it encounters such an unknownword, it uses the CMU Sphinx
Knowledge Base Tool [79] to algorithmically determine the word’s pronunciation. Although the
resulting phonemes may be incorrect, we have found that the aligner is far more accurate when it
has phonemes for every word in the transcript than when it is missing phonemes for some words.

4.3.3 Detecting breaths
Audible breaths are subtle but important elements in the natural rhythm of speech. ¿e P2FA tool
contains a model of breaths and can successfully align transcripts that contain explicit tokens indi-
cating breaths. However, our crowdsourced transcripts do not indicate breaths because it is di�cult
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for human transcribers to detect them reliably. Nevertheless we have developed an automated pro-
cedure that uses the initial transcript alignment and P2FA to detect breaths.

We assume that breaths can only occur in the segments already labeled as pauses in the initial
alignment. Using P2FA we align each pause with a transcript containing a single breath token. ¿e
aligner returns a score indicating its con�dence that the alignment is correct. If the score is greater
than an empirically chosen threshold and the detected breath is longer than 100 ms then we accept
the alignment and insert the breath token into the transcript.

If the producer manually adds a breath to the transcript we randomly select one of the detected
breaths and insert the corresponding breath waveform into the timeline.

4.3.4 Detecting multiple takes of a sentence
Speakers sometimes recordmultiple takes of a sentence one a er another. At other times they revisit
lines later in a recording session. While Narration Coach groups these multiple takes while the
speaker records a narration, our editing interface �nds these repeated takes in all forms of speech
footage. To identify such re-takes we cluster all of the sentences in the transcript so that each cluster
contains all variations of a given sentence in the raw recording.

To build these clusters we �rst compute the similarity between each pair of sentences in the
transcript using the Levenshtein string edit distance. If the edit distance is less than a threshold α
we mark the pair as similar. Because the edit distance depends on the length of the strings, we have
found that setting α to half the length of the longer sentence works well in practice. Intuitively, this
threshold allows sentencesmarked as similar, to di�er in about half of their characters. We then treat
each sentence as a node in a graph and add an edge between each pair of similar sentences. Each
connected component of this graph forms a cluster of similar sentences. When a producer clicks
on an underlined sentence in the transcript view we show all of the sentences in the corresponding
similarity cluster as the alternate takes.

4.3.5 Rendering edited speech audio
When rendering edited speech, we insert a short crossfade (5 ms long) at each cut to ensure that the
cut remains inaudible. Without such crossfades it is sometimes possible to hear faint pops or clicks
at a cut. To further improve audio quality we snap edits to zero-crossing points [21], which are the
least likely points to cause a click in the generated audio.

4.4 Informal evaluation of the speech editor
We conducted an informal user evaluation to gauge the utility of our editing interface. We recruited
four participants with a range of experience using existing audio editing so ware: two experts, one
casual user, and one novice. We started each session with a 10-minute demonstration of all our edit-
ing tools and then asked the participant to create a short audio story from a raw interview recording.



4.5. LIMITATIONS 28

At the end of the session, we solicited written qualitative feedback on the features of our interface.
In total, each session lasted 50 minutes.

Overall, the results from the study were encouraging. Each participant was able to successfully
produce a high-quality audio story that contained signi�cant edits to the speech. All of the par-
ticipants also o�ered strong positive feedback about the content-based editing capabilities of our
interface. One participant wrote, “¿is is what narration audio editing should be — it’s hard to imag-
ine why I’d want to do it any other way.”

¿ey felt that the speech editor would greatly facilitate the process of editing raw footage into a
�nal story. In particular, they liked the two-column transcript view for linked interview tracks and
the ability to quickly modify pauses, breaths, and unnecessary words. One participant said that he
thought two-column interview editing was great because “It made it very easy to see which person’s
audio I was working on. It’s critical to be able to see which speaker is saying what, and I wouldn’t get
this from a waveform editor (without the tedium/time cost of re-listening to the audio).”

In addition to performing this informal evaluation, we used our tool to create fully edited audio
stories. See Section 5.8.2 for details.

4.5 Limitations
We found that the main limitation in our editing tool is that errors in transcription or in align-
ment sometimes lead to our system generating audible artifacts (e.g., clicks, noise, etc.) in the
edited speech. ¿e producer can solve these problems by correcting transcription errors in Nar-
ration Coach before using our speech editor. We could also provide an interface that allows users to
correct inaccuracies in the speech/text alignment.

4.6 Conclusion
Our speech editing interface helps the producer to create high-quality audio stories. A key aspect
of this interface is that it analyzes the content of the raw speech to provide higher-level editing
capabilities than a general-purpose DAW like Avid Pro Tools. With our editor, the producer can
focus on building the narrative arc and setting the emotional tone of the story while our system
handles the low-level details of editing the audio waveform.
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Chapter 5

Editing music

In the �nal stage of the iterative audio production pipeline, the producer adds and edits music.
Professional producers add music to audio stories to add ambience, emphasize important moments
in the speech, and heighten the emotions of the speech.

5.1 Challenges in music editing
¿eproducermay add amusic track to provide ambience for an audio story. A er the producer �nds
a segment of music that provides her ideal ambience for part of the story, she may �nd that segment
is too short to score the target speech segment. In this case, she can either try to �nd a longer music
track that provides the desired ambience, or she can extend the original music segment by looping
it. To manually loop a music segment, the producer listens carefully to �nd two initial cut points for
the beginning and end of the loop. ¿en, while listening to the loop, she �nely adjusts the cut point
forward or backwards until the looping sounds seamless. ¿is time-consuming manual operation
requires sample-level audio manipulations.

In order to emphasize an important moment in the speech, the producer may use a technique
called a musical underlay (Figure 5.1). In a musical underlay, the music track contains three seg-
ments: (1) a music pre-solo that fades in before the emphasis point, (2) a music solo that starts at the
emphasis point and plays at full volume while the speech is paused, and (3) a music post-solo that
fades down as the speech resumes. At the beginning of the solo, the music o en changes in some
signi�cant way (e.g. a melody enters, the tempo quickens, etc.). Aligning this change point in the
music with a pause in speech and a rapid increase in the music volume further draws attention to
the emphasis point in the story. To create an e�ective musical underlay, the producer must take the
time to listen to the desired music track multiple times to �nd the best music change points, and
then �ne-tune the music’s position and dynamics with respect to the speech.

While the two above techniques involve editing and addingmusic for local sections of themusic,
an overarching goal of a musical score in audio stories is o en to globally highlight and heighten
the emotions of the speech. To achieve this, the producer cra s her musical score so the emotions
in the music match the emotions in the speech. She also ensures that the music meets other design



5.2. OVERVIEW OF STRUCTURE-BASEDMUSIC RETARGETING 30

...they were nice grand words to say.                                   Presently she began again: ‘I wonder...
change point

emphasis point
sp
ee

ch
m
us
ic

music solo music post-solomusic pre-solo

volume

Figure 5.1: An example of a musical underlay.

principles of e�ective musical scores, e.g., adding musical underlays and not playing music for too
long at once. ¿is process for creating a completemusical score for an audio story is time-consuming
and challenging for expert producers, while novice producers are unaware of the intricacies and
design guidelines that comprise a well-constructed score.

5.2 Overview of structure-based music retargeting
Wehave built tools that address each of thesemethods for integratingmusic into audio stories. ¿ese
tools rely on re-arranging (“retargeting”) the music’s beats to create a new version of the music
track that better �ts with the speech. To perform retargeting, we translate target constraints into
numeric costs. ¿e two primary costs are matching costs—costs of how well the music aligns with
the speech—and transition costs—costs for beat-to-beat transitions in the music

We specify our optimization and constraints on beats, which are short, structural units of time
in music. Formally, we consider a piece of music as a set of n beats B = {b1, b2, . . . , bn} where
b1, b2, . . . , bn is the natural order of beats in the music. To detect beats in a piece of music we apply
Ellis’s beat tracking algorithm [35]. ¿is algorithm �rst estimates the music tempo. ¿en, it applies
dynamic programming to �nd optimal beat times that roughlymaintain the estimated tempo. Beats
lengths within a song vary because tempo o en shi s within a music track, so we use the average
beat length as our unit of time throughout our music retargeting algorithms.

We store the transition costs in tableT , with size n×n (Figure 5.2). EntryTi , j is the cost formoving
from beat bi to beat b j and is independent of the location in the output score. ¿e transition cost
encodes whether the music could make a seamless-sounding jump from bi to b j.

A transition from beat bi to another beat b j sounds natural when the timbre, pitch, and volume
of b j are similar to the timbre, pitch, and volume of bi+1, the next beat in the original beat sequence.
We compute the transition cost table T by combining timbre, pitch, and volume distances (Dt , Dp,
and Dv) for each pair of beats:

Ti , j = wtDt(i + 1, j) +wpDp(i + 1, j) +wvDv(i + 1, j).
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Figure 5.2: ¿e matching cost table M (le ) has lower cost when music beat bi and speech beat k have the
same emotion, or when bi is a music change point and k is a speech emphasis point. ¿e transition cost table
T (right) gives the cost of moving between beat bi and beat b j. ¿ese examples show transition andmatching
cost tables with only the transition and matching constraints. Darker colors imply cheaper costs.

... ... ... ...

Lengthening music Shortening music

Figure 5.3: For simple music retargeting, we lengthen music by �nding low cost transitions to earlier beats in
the music. ¿e producer can click a button to repeat such loops in the track. To shorten music, we �nd low
cost transitions to later beats. ¿e producer can then choose to delete the in-between beats.

Our algorithm estimates timbre di�erences by computing MFCCs [61] for each beat, and then
computing the cosine distance Dt(i , j) for all pairs of beats bi and b j. We similarly estimate pitch
di�erences by computing chroma features [35] for each beat, and then computing the pairwise co-
sine distances Dp(i , j). Additionally, a large volume di�erence between beats can create a jarring
listening experience. We compute the RMS energy, a measure of volume, of each beat and then take
the absolute energy di�erence between all beat pairs (bi , b j) to get Dv(i , j). ¿ese transition cost
constraints ensure that the original beat progression—a natural sounding progression—has zero
transition cost (i.e., Ti ,i+1 = 0 for all i).

5.3 Simple music retargeting (looping)
In simple music retargeting, the producer wants to extend a section of music. We enable this by
automatically �nding seamless loops within that section. As shown in Figure 5.3, given a music
segment from beat bx to by, we look for beats bi and b j where x ≤ i < j ≤ y and the transition
cost Tj,i is low. ¿is ensures that playing the music from beat bi to beat b j and then looping back
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to bi sounds natural. Likewise, if the producer wants to shorten a section of music, we can look for
lost-cost forward transitions in the segment (Figure 5.3, right).

If b j is a small number of beats a er beat bi , the resulting loopmay sound unnaturally repetitive.
To avoid creating such loops, we can restrict our search to beats where bi and b j are at least, for
example, 8 beats apart.

5.4 Constrained music retargeting (musical underlays)
¿e simplest form of constrained music retargeting is a musical underlay. A musical underlay has
two main parameters: the speech emphasis point and the music change point.

5.4.1 Composition of a musical underlay
Wedrawon publications describing the best practices of radio production [2, 4, 5, 12, 44] and analyze
high-quality radio programs [3, 6, 43] in order to extract guidelines for each step of the underlay
creation process.

Marking speech emphasis points

Speech emphasis points occur a er important moments in speech that present the central ideas,
introduce new characters, or set the mood. ¿e producer o en emphasizes these points with an
underlay. A short break in the speech allows listeners to process the content of the story and can
separate long passages into shorter chunks that are easier to understand [4].

Selecting music

Music serves multiple functions in an underlay. It augments the emotional content of the story and
o en builds tension leading up to the emphasis point in the speech [5]. ¿e music usually exhibits
a signi�cant change at the emphasis point to further draw the listener’s attention. ¿is change point
can correspond to a melody entering, the tempo quickening, new instrumentation beginning, or a
strong downbeat [4].

Given a speech emphasis point and a music change point, the producer creates an underlay by
aligning the audio tracks and setting their dynamics.

Aligning music and speech

Aligning music to speech requires choosing the entry and exit points of the music, positioning the
change point in the music with respect to the emphasis point in the speech and determining the
length of the music solo. ¿e entry point of the music pre-solo o en corresponds with a rising
action or change of tone in the speech. Abel and Glass [4] suggest that the pre-solo should start 12
seconds before the emphasis point in the speech. ¿e change point in the music usually appears
slightly a er the emphasis point in the speech. ¿is gap ensures that the change in music does not
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(A) Coarse pass over music track

(B) Fine pass over music track 12.5x

RMS feature max, 4s windows
RMS feature max, 250ms windows

Figure 5.4: To (A) generate rough music change point estimations, our system �nds the maxima of the RMS
energy feature using 4-second subwindows that overlap by 50% and span the entire music track. To (B) re�ne
a change point, our system applies the same approach but with 250 ms subwindows that span an 8 second
window about the coarse point. ¿is two-step process �rst �nds large scale changes in volume and then �nd
the strongest downbeat at the local scale.

interfere with the speech and can add to the dramatic e�ect of the change in music. Finally, Abel
and Glass suggest that the music solo should last about 6 seconds before the speech resumes. ¿e
length of the music post-solo is less consistent. In some cases the end of the music signals another
emphasis point in the speech.

Adjusting dynamics

¿e goal of adjusting the underlay dynamics is to further heighten the impact of the change point
in the music while ensuring that the speech is audible. During the pre-solo the music plays so ly,
gradually increasing in volume. Near the emphasis point the volume quickly increases and reaches
its maximum at the change point in the music to create a strong auditory transition. Finally, just
before the speech resumes the music quickly fades down for the post-solo.

5.4.2 Automatic underlay creation
We designed a music retargeting algorithm to automate parts of the musical underlay creation pro-
cess. ¿e producer provides a speech emphasis point and a music track. We then automatically �nd
a music change point in that track, align the music and speech, and adjust the dynamics.

We investigate two methods for �nding music change points. ¿e �rst method involves a two-
phased coarse-to-�ne pass over the music track [76]. We break the music track into 4 second win-
dows with 50% overlap. We then compute RMS energy, MFCCs, and chroma features on each win-
dow, and compute the distance between adjacent windows for all three features (signed di�erence
for RMS energy, and Euclidean distance for bothMFCCs and chroma). For each feature, we identify
the consecutive pair of windows yielding the maximum distance, which gives us an 8-second long
combined window with a large musical change (Figure 5.4A). ¿en, to �nd the exact change point,
we repeat the same procedure on the 8-second segment with 250 ms windows instead of 4-second
windows. We set the music change point to the start of the second window in the consecutive pair
with the largest distance (Figure 5.4B). We can �nd multiple music change points for each feature
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RMS energy change 
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Figure 5.5: In the music track “Scrapping and Yelling” by Mark Mothersbaugh, the maximum of the RMS
energy change feature does not correspond to a strongly perceptible change in music. However, the maxima
of both MFCCs and chroma distance features give a strong sense of change and lead to an e�ective underlay.

by �nding the top n distances instead of just the top distance in the �rst part of the procedure. ¿is
algorithm gives us potential music change points for each of the three types of features.

We have found that RMS energy o en works well for �nding music change points because it
identi�es large changes in volume at the coarse level and strong downbeats at the �ne level (Fig-
ure 5.5). We use it as our default feature, but we have found that MFCCs and chroma are useful for
music whose variation is primarily in timbre or harmonics rather than in volume. We also investi-
gated Foote’s algorithm [40] for �nding “novel” points in a music track. ¿is algorithm is similar to
our two-pass algorithm, but incorporates coarse- and �ne-grained searching into a single pass.

Once we �nd a music change point, we align the music so the change point plays 500 ms a er
the speech emphasis point, where we add a 6 second pause in the speech. We adjust the dynamics
so the music slowly fades in, steeply crescendos to full volume at the music change point, steeply
decrescendos to a so volume a er the music solo, and �nally fades back out. By default, we set the
lengths of these fades to match producer guidelines (12-second fade-in, 6-second solo, 12-second
fade-out) but these parameters are user-customizable.

5.4.3 Underlays for multiple speech emphasis points
Our technique for creating musical underlays emphasizes one point in the speech with a point in
the music. However, in some cases, a producer may hope to use a single, continuously playing piece
of music to emphasizemultiple speech emphasis points. ¿e original progression of themusic likely
does not feature two music change points that occur with exactly the duration di�erence of the two
speech emphasis points.

In order to retarget music to �t these constraints, we extend the retargeting approach we set up
earlier for simple, loop-based retargeting. We introduce the matching cost tableM with size n ×m.
Here, m is the number of music beats required to score the speech. We set m to the length of the
speech we want to score divided by the average beat length of the selected music track. We call each
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of thesem intervals in the speech a “speech beat.” EntryMi ,k is the cost for playing beat bi at speech
beat k in the output score. Most of these costs are a constant—we have no particular preference for
playing a music beat bi at any speech beat k in the story. If bi is a music change point and speech
beat k is a speech emphasis point, we increaseM j,k by a constant for all j ≠ i.

Our algorithm searches for a sequence s ofm beats that minimizes the matching and transition
costs; it then generates the output musical score by re-sequencing the original beats according to s.

More speci�cally, we search for the sequence of beat indices s = [s1, . . . , sm ∣ si ∈ {1, . . . , n}] ofm
beats that minimizes

cost(s) =
m

∑
k=1
Msk ,k +

m−1

∑
k=1

Tsk ,sk+1 (5.1)

where k is the speech beat index in the output score. A recursive form of this equation enables us
to apply dynamic programming to �nd the optimal beat sequence. So, the recursive minimum cost
of a length-m sequence s ending with beat b j is

c( j,m) = min
i∈{1,...,n}

(c(i ,m − 1) +M j,m + Ti , j) .

¿e right-hand side is a minimum over three terms. ¿e �rst term, c(i ,m − 1) is the minimum
cost (m − 1)-length sequence that ends in beat bi . ¿e second and third terms, M j,m + Ti , j are the
matching and transition costs for the last beat b j. ¿e optimal sequence s with any ending beat then
has cost

min
j∈{1,...,n}

c( j,m).

Because we have expressed the minimum cost sequence recursively, in terms of its subproblems, we
can apply dynamic programming to �nd the optimal beat sequence.

So far, we encode constraints on natural music transitions in T and constraints for playingmusic
change points at speech emphasis points in M. ¿erefore, the optimal cost output beat sequence is
a musical score with natural music transitions, and tends to align music change points with speech
emphasis points. As desired, these musical scores use a single music track to highlight multiple
speech emphasis points with music change points. We adjust the dynamics around each music
change point as we did with a single underlay.

5.5 Emotionally relevant musical scores
Loops and musical underlays are both techniques for matching music to a small section of speech.
However, in highly produced audio stories, the entire musical score emphasizes and adds nuance
to the emotions of the speech. Cra ing a full, emotionally relevant musical score involves smoothly
re-sequencing, looping, and timing the music to match the emotions in the story as they change
over the course of the narrative. ¿is process requires signi�cant audio production expertise and
is challenging even for expert producers. As a result, most of the recorded stories available today
focus on providing the speech track and do not contain a musical score.
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Figure 5.6: Our algorithm re-sequences the beats (circles) of the input music (bottom row) to match the
emotions of the speech (top row). Our algorithm inserts pauses in speech and music, and makes musical
transitions that were not in the original music in order to meet these constraints.

We developed a system to allow users with no audio editing expertise to generate high-quality,
emotionally relevantmusic scores for audio stories. To generate a score, our system requires a speech
track with associated emotion labels, and one or more music tracks with associated emotion labels.
Our system extends our music retargeting dynamic programming algorithm to re-sequence input
music tracks so that the emotions of the output score match those of the speech (Figure 5.6). We
studied how expert producers usemusic in audio stories and incorporate additional constraints into
the optimization that correspond to structural and stylistic design decisions in their scores.

We demonstrate the e�ectiveness of our score generation tools by generating a total of 20 musi-
cal scores including examples using each of our three labeling methods. We ask listeners to rank the
overall quality of these results. Listeners rank the results generated with our crowd-labeling tech-
nique as high or higher than the hand-labeled results, which are in turn better than results using our
automatic approach and no music. Our system generates scores that are preferable to no musical
score for all of the speech tracks. We also investigate the inter-labeler reliability of agreement and
�nd that human-produced labelings tend to agree more with each other than with our automatic
labelings.

5.5.1 Labeling emotions
Figure 5.7 shows our pipeline for generating emotionally relevant musical scores. A user begins by
selecting a speech track such as an audiobook, and one or more instrumental music tracks (i.e.,
music without lyrics). Our system then gathers emotion labels for each of the speech and music
tracks. A er collecting these labels, our system constructs a musical score by re-sequencing the
inputmusic tracks so the emotion labels of the outputmusicmatch the emotion labels of the speech.

Our system o�ers three methods for obtaining the required emotion labels: hand-labeling,
crowd-labeling, and automatic labeling. ¿ese three methods o�er trade-o�s in time, e�ort, and
personalization. Hand-labeling produces emotions that re�ect the user’s emotions and may result
in the most personal musical score, but it takes the most time for the user. ¿e crowd-labeling
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Figure 5.7: Our automated musical score generation system requires a speech track and music tracks, and
emotion labels on those tracks. Our algorithm re-sequences the music tracks to create an output musical
score that matches the emotions of the speech. ¿e green boxes denote the sources—user, crowd, and fully
automatic—that our system provides for obtaining each input. Our system also requires a speech transcript
so users and crowd workers can more quickly label the emotions by reading the text instead of listening to
the speech.

method requires no extra work on the user’s part and incorporates human ratings. However, this
method takes more time than hand-labeling to acquire emotion labels. Finally, the fully automatic
method produces labels immediately, but they may not accurately re�ect the personal emotions
that the user—or any human—feels about the story and the music. All of these methods require a
speech transcript, which may cost money to obtain. ¿e crowd-labeling method has the added cost
of paying workers.

A�ect researchers have found Russell’s circumplex model [80] of quantifying emotion with ‘va-
lence’ and ‘arousal’ to be highly consistent with behavioral and cognitive neuroscience study re-
sults [70]. ¿e valence dimension indicates whether an emotion is positive or negative, whereas
arousal indicates the intensity of the emotion. In our systems, users do not need to learn the cir-
cumplex model. Instead, we focus on four emotions, happy, nervous, sad, and calm, because they
almost evenly span the circumplex [80]. As shown in Figure 5.8, we set their coordinates to (.95, .31),
(−.31, .95), (−.95,−.31), and (−.95, .31), respectively, an equal distribution near their original loca-
tions [70]. ¿e circumplex and other emotion models likely do not generalize across cultures. Even
within a culture, people may disagree on emotion de�nitions. Despite these possible di�erences,
we use the four contrasting emotions as a starting point to explore emotion-based constraints for
generating scores.

Speech emotion labels

Our goal is to break the speech into segments of similar emotions. Segmenting a speech track into
emotionally similar segments based solely on the rawwaveform requires careful listening and can be
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Figure 5.8: ¿e valence/arousal circumplex (le ) parameterizes emotions into two dimensions: valence, a
measure of positivity, and arousal, a measure of intensity. In our system, we used four emotions that were
nearly evenly spaced on the circumplex (right).

Music labeling interfaceSpeech labeling interface

Figure 5.9: Our interface for labeling speech emotion (le ) asks the labeler to annotate each paragraph with
an emotion. Our interface for labeling music emotion (right) asks the labeler to label each music segment
with an emotion.

di�cult. In text, however, paragraphs usually represent topically coherent segments that convey one
predominant emotion. ¿erefore, we use the paragraph boundaries in the speech’s text transcript
to segment the speech. ¿e user chooses one of the three labeling methods to get emotion labels for
each speech segment.

Hand-labeling the speech. If users wish to personalize the emotion labels of the speech, they
can label the emotion of each paragraph of the text transcript by hand (Figure 5.9).

Crowd-labeling the speech. To crowd-label the emotions of the speech, our system posts tasks
to Amazon’s Mechanical Turk. ¿ese tasks are identical to the hand-labeling interface (Figure 5.9).

Crowd workers o en try to complete tasks as quickly as possible so they can maximize their
wages. Such workers may not fully engage with the speech or its emotions and produce inaccurate
emotion labels. Yet, emotions labels can be subjective, and there is no way to test the accuracy of a
worker’s labeling. Our approach is to obtain emotion labels from multiple workers and then select
the labeling of a single worker that best represents all of the workers.

We interpret eachworker’s complete speech labeling as a sample from the distribution of possible
speech labelings, �rst assigning each paragraph i a distribution pi where pi(l) is the probability that
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a worker labeled paragraph i with emotion l in all of the labelings we have collected. For example,
if we have ten workers total and 7 of them label paragraph 1 as ‘sad’ and 3 label it as ‘calm’—then
p1(sad) = 7/10, p1(calm) = 3/10, and p1(happy) and p1(nervous) are both zero. We then �nd the
worker that gave the most probable labeling according to this distribution. Suppose ℓ = {l1, . . . , lk}
is a worker’s labeling of the sequence of paragraphs in the speech. We compute the probability of
this labeling as

P(ℓ) =
k

∏
i=1
pi(li).

Our system computes this probability for each worker’s labeling and assigns the labeling with the
highest probability to the speech. An alternative to our most probable worker labeling approach is
to choose the most frequently labeled emotion for each paragraph independently. However, such a
voting scheme can yield emotion transitions between paragraphs that did not appear in any of the
individual worker’s labelings. In contrast, our approach yields a labeling guaranteed to be consistent
with at least one worker’s labeling. ¿is strategy of picking one representative rather than averaging
or aggregating worker results appears in other recent work to ensure self-consistent results [58, 100].

Automatically labeling the speech. To automatically label the speech, our system estimates the
emotion of each paragraph based on the emotion conveyed by each word. Warriner et al. [94] have
collected a corpus of crowdsourced valence and arousal ratings for nearly 14,000 English words.
We normalize these scores by the global valence/arousal mean and standard deviation. We then
compute the average of the normalized valence/arousal scores of all words in a paragraph. Our
system projects those averages to the nearest of our four labels to obtain an emotion label for each
paragraph.

Music emotion labels

Our system provides techniques for music emotion labeling similar to our speech labelingmethods.
As in speech labeling, we �rst break the music into segments. Structural segments of music o en
contain one predominant emotion because the features that di�erentiate structure—timbre, pitch,
volume, and self-similarity—are also indicative of music emotion. Following McFee and Ellis [64],
our system segments music by computing a hierarchical clustering of self-similarities in a track
and �nding an optimal pruning of the cluster tree. ¿en, the user selects one of the three labeling
methods to get emotion labels for each music segment.

Hand-labeling the music. If users wish to personalize the emotion labels of the speech, they can
listen to and assign labels for each music segment (Figure 5.9). As in hand-labeling the speech, this
method is preferable for users that have time and desire a personalized musical score.

Crowd-labeling the music. To crowd-label the emotions of the music, our system asks workers
on Mechanical Turk to listen to and label the emotions of the music segments for an entire track
(Figure 5.9). Our system then selects a �nal emotion labeling by �nding the worker’s labeling that
best represents all of the worker labelings (see earlier section on Crowd-labeling the speech).

Automatically labeling the music. Schmidt et al. [82, 83] have developed methods for auto-
matically predicting the valence and arousal of music. ¿eir MoodSwings Turk dataset consists of
a large set of crowd-generated, per-second valence/arousal labels and accompanying audio signal
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processing features (MFCCs [61], spectral contrast [53], and chroma [35]). Our goal is to automati-
cally predict the emotion of each music segment, but the dataset contains per-second labels and no
notion of segments. We follow Schmidt et al. [82] and train a multiple linear regression model on
the MoodSwings Turk dataset to predict per-second emotions.

Emotion in music has a time dependency. ¿at is, emotions at times before time t in�uence the
emotion at time t. To account for this dependency, ourmodel uses ten seconds (times t−9, . . . , t) of
per-secondMFCC features to predict the valence and arousal at time t [82]. Our system predicts the
valence/arousal at each second of each music segment and then �nds the average of the predictions.
Because of a limited corpus of music in the training set, this model o en reports that all segments of
a track have the same emotion whereas human labelers give more varied labelings. We subtract the
overall segment average from each music segment’s average to get a new, more varied prediction.
¿en, we project each prediction to the nearest of our four emotion labels to get a label for each
segment.

5.5.2 Generating the musical scores
We designed our score generation algorithm to generate musical scores that match the emotion of
the speech while also following other characteristics of high quality musical scores. We identi�ed
these characteristics by listening to hours of expertly produced audio stories, noting structural and
stylistic patterns in their musical scores. We further studied books and online sources on audio
story production to re�ne these characteristics. Figure 5.6 shows an example of how our algorithm
re-sequences input music to match the emotions of the speech. To generate an emotionally relevant
score, we extend ourmusic retargeting algorithmwith emotionmatching and other constraints that
modify the transition cost and matching cost tables.

Emotion matching costs

¿emain purpose of our system is to create music that matches the emotions of the accompanying
speech. ¿e speech and music contain emotion tags (happy, nervous, sad, and calm) and their re-
spective numerical values in valence/arousal space. We set matching costs in tableM so the valence
and arousal of the optimal output score matches the valence and arousal of the speech as closely as
possible.

To encode this constraint in our optimization, we compute the ℓ2 distance Dva(i , k) between
speech valence/arousal and music valence/arousal at each music beat bi and speech beat k. We set
matching cost Mi ,k = wvaDva(i , k), where wva is a constant that controls the importance of the
matching cost in our optimization.

Structural constraints

Our algorithm can generate musical scores that match the emotions of speech using only the ba-
sic matching cost and transition cost constraints. However, high-quality scores contain additional
structure by using pauses and limiting music segment lengths.
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Figure 5.10: Our algorithm enables pauses in the musical score by extending the transition cost table T with
pause beats.

Pauses. In most high-quality audio stories, the music is not constantly playing. Instead, music
occasionally fades in and out to create sections of the story without music. ¿ese pauses call at-
tention to the fact that the musical score exists, forcing listeners to think about the music and its
emotions.

Figure 5.10 shows howwe adjust our transition cost table T to accommodate pauses in a musical
score. We �rst de�ne πmin and πmax , the minimum and maximum beat lengths of pauses, respec-
tively. We concatenate πmax rows and columns to the original T (the blue block in Figure 5.10 is the
original T). ¿e πmax new beats are pause beats. Each of these added beats pi represents the ith
beat of a pause.

Every pause in music starts at the �rst pause beat; any beat in music can transition to beat p1 but
no other pause beats (green rectangle in Figure 5.10). To maintain the invariant that pi is the ith
beat of a pause, we only allow pi to transition to pi+1 (purple squares). Any pause beat at or above
the minimum pause length πmin has a free cost transition back to any music beat (red rectangle).
In practice, we assign a cost κstart to entering a pause (green rectangle) that is greater than the cost
of a natural-sounding music transition (see Setting Parameters, below). ¿is cost ensures that our
score does not add pauses when it can play good-sounding music. We also add a small cost of
κintra to transitions between pi and pi+1 if i > πmin. Without this cost, most pauses have length πmax
because the intra-pause transitions are free while optimal sequences inmusic o en contain non-free
transitions.

Music segments. High-quality audio stories tend not to play overly short or long segments of
music. Short segments do not give the music time to integrate with the speech and its emotions,
while overly long segments can cause the listener to “tune out,” or ignore the music. Our algorithm
constrains the length of music segments in the output score.

Figure 5.11 shows how we constrain the length of a music segment to at least δmin beats and at
most δmax beats. In order to keep track of the lengths of music segments, we create a new transi-
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Figure 5.11: We provide constraints on the length of music segments by creating a newmatching cost tableM′

and transition cost table T ′. ¿e indices of the new tables are (beat, segment-length) pairs rather than just
beats. We build the M′ table from δmax copies of M, except that the music must start at beat-length d1 and
end at beat-length greater than δmin. We copy blocks of table T in Figure 5.10, indicated by colors, to create
table T ′.

tion cost table T ′. Each index in the table represents a (beat, segment-length) pair (bi , dk) where
segment length dk represents the kth beat in the current music segment. We construct this new
table by copying blocks from the existing transition cost table (the colored blocks from Figure 5.10
correspond to the colored blocks in T ′ in Figure 5.11).

To maintain the invariant that a beat a segment length dk is the kth beat of the music segment,
we only allow (bi , dk) to transition to (b j, dk+1) for any beats bi and b j (blue squares in Figure 5.11).
Once the music has been playing for δmin beats, a pause can begin. Any (beat, segment-length)
pair that is at or above the minimum segment length δmin can transition to the �rst pause beat p1
(green rectangles). We copy the intra-pause transitions directly from T (purple squares). Finally, a
pause must transition back to a (beat, segment-length) pair at segment length d1, because all music
segments start with length 1 (red rectangle).

We also create a new M′ with constraints for music segment lengths. ¿e �rst (beat, segment-
length) pair of the output score must be at music segment length 1. Otherwise, we could not enforce
the minimum length on the �rst music segment in the output score. ¿e last (beat, segment-length)
pair of the output score must be at music segment length at least δmin, so the last segment of the
score is longer than the minimum segment length. We set the matching costs to in�nity where
these conditions do not hold (seeM′ in Figure 5.11).
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Figure 5.12: Our algorithm generates scores composed of multiple music tracks. It �rst computes tables M
(le ) and T (right) for each music track using a consistent speech beat unit, and then combines the tables
to form the �nal M and T . ¿is construction of T does not allow inter-song transitions, but does allow for
e�cient optimization.

Stylistic constraints

Expertly created scores employ speci�c stylistic techniques in order to improve the overall score
quality. We have designed constraints to imitate these techniques.

Minimum loop constraint. High-quality musical scores o en contain loops to allow a short
section of music to score a longer section of speech, but if these loops are too short, the music can
sound unnaturally repetitive. We introduce a minimum loop constraint to prevent the score from
looping sections of music that are less than eight beats long by setting Ti , j =∞ if i − 8 < j ≤ i.

Musical underlays.While we discussed a method for adding musical underlays locally, we also
enable musical underlays in our global score optimization. We �rst preprocess the input speech,
adding 6-second pauses at all emotion changes—emphasis points o en occur at emotional changes
in the speech, so these are the candidate locations for musical underlays.

We then modify the matching table M to align music change points with the speech emphasis
pointswe added in the preprocessing step. To do this, our algorithm�rst �nds the set of change point
beats in the music using a novelty-based change point detection algorithm [40, 77]. We examine
the music segment on either side of each change point to identify change points that correspond
with transitions in emotion labels. Our transition cost table gives a large preference to playingmusic
change points in the output score when emotion changes inmusicmatch emotion changes at speech
emphasis points. If bi is a change point whose emotion change matches the emotion change at
speech beat k, we increase M j,k by constant κchangepoint for all j ≠ i. ¿is e�ectively penalizes all
other music beats when a change point music beat matches the speech emotion change.

Another strategy expert producers use to emphasize points in the speech is to start or stop the
music at those points. To apply this strategy, we penalize music stopping and starting at points other
than emotion change boundaries. If speech beat k is not an emotion change boundary, we add cost
κexit toMp1 ,k and κenter toMp i ,k for i ≥ πmin. ¿is approach lowers the relative cost for starting and
stopping music at emotion changes in the story.

A er the algorithm has generated the optimal score, some of the 6 second speech pauses we
added in preprocessing may align with pauses in the musical score. Rather than playing six seconds
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of silence, our algorithm contracts the �nal audio, deleting regions where a pause in speech aligns
with a pause in the music.

Multiple music tracks. Musical scores o en contain segments from multiple music tracks, es-
pecially for longer stories. Moreover, most music tracks do not contain every emotion, so using
multiple tracks increases the likelihood of matching the output score to the speech emotions.

Figure 5.12 shows how our algorithm combines transition and matching cost tables from two
songs. We insert the music beat transition costs from each music track’s T along the diagonal (blue
squares in Figure 5.12. Music beats can only transition to other beats within the same music track
or to pause beats.

A er a pause ends, either music track can play (red rectangle, Figure 5.12). We stack the two
matching cost tables to create a newmatching cost table that covers all possible beats in the musical
score (orange rectangles, Figure 5.12). ¿e running time of our algorithm increases linearly in the
duration of music added, instead of quadratically, because it does not need to consider inter-music-
track transitions.

Setting parameters

We set the main structural parameters based on listening to audio stories: πmin of 20 seconds, πmax
of 35 seconds, δmin of 20 seconds, and δmax of 90 seconds.

Next, we set the distance weights in our optimization empirically, based on the importance of
the constraints. We set the acoustic distance parameters wt = 1.5,wp = 1.5, and wv = 5—volume dif-
ferences are small in magnitude relative to timbre and chroma cosine distance. We set the emotion
matching distance parameter wva = 1.

Finally, we set the cost parameters: the cost for entering a pause κpause = 1.4, empirically less than
an audibly “bad” music transition; the intrapause penalty κintra = .05, cheaper than all but perfect
music transitions; the music start and stop costs—which penalize otherwise free transitions—to
small κenter = κexit = .125. Lastly, κchangepoint = 1, which strongly favors inserting musical underlays
whenever possible.

Score synthesis

¿e dynamic programming returns a sequence s of beat and pause indices. We then synthesize
the �nal output score from s by concatenating the audio data for each beat and pause. We ensure
smooth-sounding music transitions by inserting crossfades between beats si and si+1 if they are not
consecutive beats in the original music. In some cases, the musical score becomes out of alignment
with the speech because music beats have variable length and we assume a �xed beat length on the
speech. Our system corrects this problem every time the music pauses. If a pause segment ends
at speech beat k, we start the music again exactly at speech beat k times the average beat duration
regardless of the current time in the output. ¿is re-aligns the score with the speech a er every
pause.

Our system adjusts the volume of the musical score so it is always audible but never overpowers
the speech. We control the volume of the output score in two steps. First, we add volume curves



5.6. INTERFACES FORMUSIC EDITING 45

for the score to follow: music fades in for three seconds a er music pauses to a low level, increases
exponentially to a high-level at speech emphasis points, decreases rapidly to a low level a er music
solos, and fades out for three seconds as music pauses begin. ¿e second step adjusts these volumes
relative to the speech volume. For every segment of the �nal output where both speech and music
are playing, we adjust the decibel level of the music to be 12 dB below the decibel level of the speech.
Finally, we notch the 2.76 kHz and 5.63 kHz music frequencies by 6 dB because those frequencies
contain important acoustic information for decoding consonants and vowels in speech [65].

E�cient optimization

Because our m and n are small (roughly n = 500 beats in a song, and roughly m = 1000 beats in
the desired output), the entire table can �t in memory and we can use a dynamic programming
algorithm to e�ciently �nd this sequence of beats. However, music segment length constraints
increase the size of this search space.

If we apply music segment length constraints, our goal is to �nd the lowest cost sequence of
(beat, segment-length) pairs s′, using T ′ and M′ in place of T and M in Equation 5.1. ¿e search
space at each step has grown from size (n + πmax)m to size (nδmax + πmax)m because we need to
consider the state space of all (beat, segment-length) pairs. ¿e running time of a normal dynamic
programming algorithm increases quadratically with δmax . However, most of the entries in T ′ are
in�nity and are never in an optimal sequence of beats.

We take advantage of these hard constraints to implement an e�cient version of this dynamic
programming optimization whose runtime increases linearly with δmax . We never explicitly com-
pute T ′, which can grow prohibitively large. We de�ne our new table T ′ in terms of blocks from T
(see Figure 5.11), so we only store T . We then take advantage of the block structure of T ′ to limit our
search space. For example, if the previous (beat, segment-length) pair in a path is (bi , d j), and seg-
ment length d j is less than δmin, our algorithm only needs to minimize over (beat, segment-length)
pairs at length d j+1 instead of all possible (beat, segment-length) pairs.

Likewise, we do not construct the full table M′. Instead, we have a condition in our algorithm
to check if speech bear t = 1, which forces the output beat/length pair to have length 1. In other
cases, we tile δmax copies of a column inM when our algorithm requires a column ofM′ during the
optimization.

5.6 Interfaces for music editing
We integratedmusic editing tools in our speech editing interface [77]. ¿e interface contains amusic
library where the producer can import music tracks that she wants to use in the musical score. We
provide standardwaveform-based editing tools that allow the producer to add a song to the timeline,
trim and reposition it as necessary, and specify a spline to control the volume. However, we also
provide interfaces for the simple and constrained music retargeting methods.

To lengthen a shortmusic segment, the producer clicks the ‘↻’ button that appears on themusic
waveform. Our system automatically extends the music by adding a seamless loop to the selected
subsegment. ¿e producer can click this button repeatedly as necessary to bring the music to the
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Figure 5.13: A musical segment before and a er simple retargeting. Our tool �nds a loop in the original
segment (before) and in this case the producer repeats the loop three times in the �nal segment (a er).
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Figure 5.14: In constrainedmusic retargeting, the producer selectsmultiple speech emphasis points (redmark-
ers) and a piece of music (before). Our system automatically identi�es music change points (green markers)
and aligns themwith the emphasis points, by extending or shrinking themusic as necessary, while preserving
the local beat-level structure of the music (a er).

desired length (Figure 5.13). Likewise, if the music is too long, the producer can click the ‘↺’ button
to remove audio from the selected subsegment.

Our system also includes functionality to add musical underlays. ¿e producer marks an em-
phasis point in the speech transcript, selects a song, and then our system automatically produces an
underlay. Our system can also produce underlays with multiple change points to emphasize mul-
tiple points in speech. ¿e producer initiates this feature by selecting all points in speech that she
wants to emphasize (Figure 5.14).

We have yet to integrate emotionally relevant score generation into our speech editing interface.
An interface for this integration could be simple, because the algorithm does not require much user
input. We can enable the producer to annotate the speech and music emotions (Figure 5.9) within
the editing interface, and we can add a new retargeting dialog for full score generation.

5.7 Informal evaluation of the music editor
In our informal user evaluation of our speech editing tools, we also evaluated the usefulness of our
music editing tools. ¿ese tools impressed the participants, who felt that our simple and constrained
retargeting features allow them to rapidly experiment with musical scoring ideas that are otherwise
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prohibitively time-consuming to try out. One participant wrote that constrained music retargeting
was “such a great way to experiment with what might work. Great for trial and error creation.”

5.8 Results
We used our algorithms and editing tools to create edited and scored audio stories. ¿ese results
include automatically generatedmusical underlays, stories with edited speech and locally retargeted
music, and full-length emotionally relevant musical scores.

5.8.1 Automatic musical underlay evaluation
Wecreated a number of underlays for 3 di�erent audiobook speech clips (“Alice inWonderland” [20]
by Lewis Carroll, “Great Expectations” [29] by Charles Dickens and “Me Talk Pretty One Day” [87]
by David Sedaris) representing both male and female voices and a range of emotional tones. We
selected themusic from tracks commonly heard on the radio documentary program“¿isAmerican
Life” [43]. We have posted these resulting underlays on the website for this research1.

To evaluate our system’s automatically generated underlays, we used a speech clip from David
Sedaris’s “Me Talk Pretty One Day” audiobook [87] and selected 26 songs that are commonly used
on the radio documentary program “¿is American Life.” [43]. For each combination, we found the
3 strongest music change points in each music track using RMS energy features, and automatically
generated underlays corresponding to those change points. We asked 3 independent experts who
are familiar with “¿is American Life” to rate the timing, dynamics, and overall quality of each
underlay on a 5-point Likert scale (Figure 5.15).

¿e ratings for the underlays created with the strongest change point correspond to the blue
bars in Figure 5.15. With respect to the timing of the change point, the experts gave a rating of
3 (appropriate timing) in 60% of the responses, they rated 89% between 2 (change point arrived
slightly too early) and 4 (slightly too late), and 11% as either 1 (far too early) or 5 (far too late). For
the dynamics of the music, they rated 59% as 3 (appropriate volume), 94% between 2 (slightly too
so ) and 4 (slightly too loud), and 6% as either 1 (far too so ) or 5 (far too loud). Tomeasure overall
quality, we asked the experts to evaluate the statement “I am satis�ed with the overall quality of the
underlay” on a scale from 1 (strongly disagree) to 5 (strongly agree); 50% of the responses were 4
(agree) or higher, 86% were 3 (neutral) or higher, and 14% were 2 (disagree) or lower. On the whole,
these ratings suggest that our tool produces high quality underlays with good timing and dynamics.

¿e ratings for underlays using the second and third strongest musical change points for each
song (red and green bars in Figure 5.15, respectively) are similar to the ratings for underlays using the
strongest change point. However, the scores for timing and overall quality do decline somewhat as
we move from the �rst to the third strongest change points. ¿is trend suggests that our algorithm
for �nding a range of change points produces a useful ordering. For dynamics, there is no clear
decline in ratings across the three change points. Our tools produce underlays with the appropriate
relative dynamics between music and speech regardless of the strength of the change point.

1http://vis.berkeley.edu/papers/underscore/

http://vis.berkeley.edu/papers/underscore/
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Figure 5.15: ¿ree experts judged the quality of underlays automatically generated with the 3 strongest change
points for each of 26 songs. ¿e percentages are the ratios of given ratings to all ratings for each change point
strength. While the strongest change point results in the best ratings, the second and third change points also
perform well.

5.8.2 Edited stories
We have used our speech and music editing interface to compose seven audio stories from a variety
of raw speech sources including scripted narratives, interviews and political speeches. Table 5.1
describes the content of each story. All seven �nal results as well as the original raw recordings are
on our supplemental website2 for this research.

We edited each of the raw recordings to focus the �nal story on themost important content. ¿e
�nal edited length is usually much shorter than the raw recording length and the total number of
cuts indicates the amount of editing we performed. It took us about a half hour to edit each story
using our tools. We instrumented our speech and music editing tools to log their usage during each

2http://vis.berkeley.edu/papers/audiostories

http://vis.berkeley.edu/papers/audiostories
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Transcript editing usage Music retargeting usage

Name Description Raw
length

Edited
length

Total
cuts

Text
delete

Text
copy/paste

View
re-takes

Breath
insertion

Simple
loops

Constrained
retargets

Elwood Scripted blues show narration 17:11 1:51 14 43 20 5 6 0 1
Bullwinkle Scripted story about TV show 8:24 1:24 29 29 9 17 6 0 1
Photoshop Interview about imaging technology 12:22 3:17 64 195 24 2 9 8 3
Obama Inaugural speech 18:22 2:42 21 61 1 2 0 7 7
Rickard Interview with math professor 1:07 :54 19 28 1 0 1 0 3
LaVette Interview with blues singer 8:47 1:45 30 60 18 0 7 19 1
Phone Lower-quality clip from LaVette :47 :19 11 41 4 0 7 0 0

Table 5.1: We constructed seven audio stories using our system and instrumented each of our tools to record
usage statistics. “Total cuts” refers to the number of crossfades added by our system when rendering the �nal
audio story. “Text delete” and “text copy/paste” refer to usage of basic transcript-based editing tools. “View
re-takes” indicates the number of times we previewed di�erent takes of a sentence using similar sentence
dropdowns. “Breath insertion” is the number of times we either added breaths directly or by typing a (‘.’).
Finally, we counted both the number of loops added tomusic, and the number of constrainedmusic retargets
we used in each editing session.

editing session as shown in the table.
As re�ected in the usage numbers, wemade extensive use of the transcript editor to clean up and

reorganize the speech. Althoughwe used the text delete toolmost o en, we also used text copy/paste
to move words, phrases and sentences. ¿e raw speech recordings for scripted narratives (Elwood
and Bullwinkle) o en included a large number of re-takes, while interviews and political speeches
contained fewer such alternates. When such alternates were available we usually previewed them
and selected the best version for the �nal story. We occasionally had to insert breaths a er such
rearrangements to maintain the natural rhythm of the speakers.

We added a musical score to all of the stories except for Phone. We used the constrained music
retargeting tool to emphasize key moments in the speech for the six other stories. In three of the
stories (Photoshop, Obama, LaVette) we also extended some of the music segments by adding loops
using our simple retargeting tool.

5.8.3 Generated emotionally relevant scores
We have generated 20 musical scores spanning seven music tracks and �ve speech tracks. We used
all three of our emotion labeling techniques: hand-labeling, crowd-labeling, and automatic labeling.
Table 5.2 shows our input speech tracks and summarizes the results we have generated, and Table 5.3
details our music tracks. Our supplemental material3 includes all of these audio results. We labeled
the emotions of each story by hand and we had an average of 17.5 crowd workers label each story at
an average cost of $4.38 per story. We hand-labeled the music segments for all tracks, and we had
an average of 18.5 crowd workers label the segments ($4.63 per track). Our algorithm computes the
music track distance tables as a preprocess. On a 2.7 GHz Intel Core i7 processor with 8 GB of RAM,
our system takes less than 1 second to �nd and generate the optimal musical score for a threeminute

3http://vis.berkeley.edu/papers/emotionscores

http://vis.berkeley.edu/papers/emotionscores
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Speech tracks Generated musical scores

Speech name Author Narrator Dur. Source Hand labeled Crowd Labeled Auto Labeled

Damon and Pythias Ella Lyman Cabot Ginger Cuculo 1:38 LibriVox alice alice, 2815ad, highschool, tub, learn alice
Not¿at I Care Molly Reid James Wood 2:38 NPR 2815ad 2815ad, alice+timemachine 2815ad
Roosts Zach Brockhouse Michael Cunningham 3:12 NPR tub+highschool tub+highschool, intriguing+alice tub+highschool
Goldilocks LearnEnglish Kids 2:10 YouTube learn learn, timemachine learn
¿e Story of an Hour Kate Chopin Matt Bohnho� 7:20 LibriVox intriguing+learn

Table 5.2: We generated 20 scores spanning �ve di�erent audio stories. ¿e short names on the right corre-
spond to music in Table 5.3. Crowd listeners evaluated the musical scores in bold. A ‘+’ represents a musical
score generated with two tracks using our multiple tracks constraint.

Short name Music track Artist

alice Alice Returns Danny Elfman
2815ad 2815 A.D. ¿omas Newman
highschool Highschool Lover Air
learn You Learn Jon Brion
tub ¿e Bathtub Dan Romer
timemachine Time Machine Ryan Miller
intriguing Intriguing Possibilities Trent Reznor & Atticus Ross

Table 5.3: We used seven di�erent instrumental music tracks in the musical scores we generated.

story and two three minute music tracks. If we add music segment length constraints with dmin of
20 seconds and dmax of 90 seconds, the optimization takes 3 minutes. We generated all of our results
with dmin of 20 seconds and dmax of 90 seconds except for “¿e Story of an Hour” musical score,
which we use to demonstrate a longer story with a higher dmin (see supplemental material). We also
include a basic example of a musical score that we generated for a children’s book video.

Figure 5.16 shows a visualization of the twelve of our results—four speech/music combinations
with each of the three labeling methods—that correspond to the bold-faced results in Table 5.2. ¿e
emotions in the speech andmusic consistentlymatch in the hand- and crowd-labeled results. In two
instances (“Roosts”/crowd and “Not ¿at I Care”/crowd), an incorrect emotion plays in the music
for a small number of beats, but neither is audibly noticeable. ¿e automatic results do not match
emotions as strongly. In “Not ¿at I Care”/auto and “Goldilocks”/auto, the automatic approach
matches large sections of “happy” speech with other music emotions. ¿is happened because the
automaticmusic labeling did not predict any “happy” segments ofmusic, while the automatic speech
labeling predicted spans of “happy” that are longer than the maximum length pause πmax .

Listening evaluation

To evaluate our generated emotionally relevant scores for stories, we asked crowd workers to listen
to and rank four versions of a story—hand-labeled, crowd-labeled, automatically labeled, and no
music—in terms of overall quality. For each story, twelve US workers, each with over 95% approval
rates on Mechanical Turk, evaluated the results. We rejected evaluation tasks if a worker did not
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spend enough time on the task to listen to all of the audio stories; we removed 24.6% of the ratings
based on this test. Figure 5.16 shows the average ranking for each of the four versions for each
speech track. Listeners ranked the results generated using crowd labels (average rank over the four
stories of 2.21) as high as hand-labels (average of 2.3). Bothmethods generated higher quality results
than automatic labels (average of 2.52) and the stories with no music (average of 2.95). We �nd the
di�erences in rankings to be signi�cant (χ2(3) = 9.02, p < .05) using Friedman’s nonparameteric
test for di�erences in ranks. Subsequent pairwise comparisons using theWilcoxon signed rank test
�nd a signi�cant preference for crowd results over no music (p < .005) and hand-labeled results
over no music (p < .05). ¿is result suggests that the “wisdom of crowds” might apply to a�ective
tasks. Our results also show that for all of the speech tracks, our system generates musical scores
that improve in overall quality versus the speech without music.

To evaluate the consistency of the emotion labels, we compute Fleiss’ and Cohen’s kappa values.
¿e average Fleiss’ kappa is 0.271 between workers for the speech labels and 0.2 for the music labels.
¿e average Cohen’s kappa between our hand-labeled emotions and the most probable crowd la-
beling is 0.189 for speech and 0.437 for music, which suggests a large di�erence between the typical
crowd-labeling and our expert hand-labeling. Finally, the reliability between our hand-labels and
the automatic labels is nearly zero, at kappa of 0.0484 for speech and 0.136 for music. ¿is discrep-
ancy between human and automatic labels is a likely cause of the automatic method’s low ranking
in our listening evaluation.

5.9 Conclusion
Expertly cra ed musical scores can improve the quality and engagement of an audio story, but they
are challenging and time-consuming to produce. We have presented algorithms for retargeting mu-
sic to �t constraints like matching exciting moments in music to emphasis points in speech, and
matching emotions in speech to emotions in music. Our music editing interfaces allow producers
to specify these high-level goals without manipulatingmusic waveforms and without needing audio
editing or music composition expertise.

We found that in some cases our system was unable to segment a music track into beats (e.g.,
ambient music with an ambiguous tempo). Poor beat segmentation led to failures in constrained
music retargeting. It may be possible to mitigate this problem by adding a music retargeting option
that uses constant-sized windows instead of beat-sized windows.

While we successfully generated emotionally relevant musical scores, labeling emotions is a dif-
�cult and ill-de�ned task. We focused on four emotions that may not be universally understandable
or applicable. Our results may more closely map to how listeners experience emotions if instead of
focusing on labeling individual emotions in isolation, we focus on understanding emotional tran-
sitions. For instance, how does a listener’s emotional understanding of a piece of music change
throughout the song, and can we match that to a story arc? ¿is approach is reminiscent of Luke
Howard’s idea to classify the transitional forms of clouds [49].
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Mean rank of
overall quality

Damon and Pythias by Ella Lyman Cabot Not That I Care by Molly Reid

Roosts by Zach Brockhouse Goldilocks

hand-labeled
crowd-labeled

automatically labeled
no music

Alice Returns - Danny Elfman 2815 A.D. - Thomas Newman

The Bathtub - Dan Romer, Highschool Lover - Air You Learn - Jon Brion

Story:
Reader:
Music:

Ginger Cuculo [librivox.org] James Wood [NPR]

Michael Cunningham [NPR] LearnEnglish Kids [YouTube]
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Figure 5.16: We visualize twelve of our generated results above. We generated each speech/music pair using all
three of our labeling methods. Evaluators on Mechanical Turk listened to three di�erent scores for a speech
track and the original speech without music. ¿ese charts show the average ranking in overall quality of the
four clips among the evaluators.
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Chapter 6

Integrity of manipulated audio

¿e goal throughout our research is to improve the process of creating audio stories by allowing
producers to work with audio at a higher semantic level. Our interfaces and algorithms, like most
media-editing tools, enable producers to make edits that fail to preserve the original meaning or
intent of the media. While these manipulations are an integral part of our tools, we acknowledge
that they allow producers to lie and misrepresent the original sources.

6.1 Integrity in audio story production
In non-�ction audio production, like any reporting, there are competing goals that the producer
tries to meet.

6.1.1 Content stakeholders
Each of the individual pieces of media used in an audio story has stakeholders: people invested in
or concerned with the original intent of the content. Using media editing tools, the producer has
the power to allow or deny stakeholders their desired outcomes. ¿e stakeholders include:

● ¿e people involved in a story—whether interviewed directly or referenced by other people
or narrators in a story—have a stake in their lives, thoughts, and feelings being faithfully
represented. ¿e producer could censor the interviewees or take their quotes out of context,
thus stripping them of their rights to free speech and fair representation.

● ¿e storytellers, narrators, and producers of a story have stakes in how the listeners perceive
the story, wanting to convey a certain set of ideas, facts, and opinions. ¿e producers may
have artistic visions for the story that may be in con�ict with the other stakeholders in the
story. In the case that these ideas and opinions are not supported by the collected facts and
interviews, the producers could misrepresent the truth.
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● ¿e artists of music used in a story have a stake in how listeners perceive their music, both
structurally (e.g., their songs should play in their entirety) and emotionally (e.g., the songs
should evoke a certain emotion).

● Finally, the media rightsholders want the producer to use their media in accordance with
applicable licenses and copyrights. ¿e producer could use and remix/retarget sampled audio
footage without obtaining permission from its authors.

While non-�ction audio stories involve all of these stakeholders, �ctional audio stories (e.g.,
radio dramas or �ctional audio books) must still consider the desires of the musicians and rightsh-
olders. In the case of an audio book, the narrator is o en not the book’s author. ¿e author has a
stake in how the narrator portrays the book.

6.1.2 Goals for audio integrity
Regardless of the editing tools used, the producer should strive to maintain the desires of the stake-
holders. At a basic level, the producer should preserve digital rights management and copyright of
any media used, and respect fair use where applicable. As a person creating a widely disseminated
record of a person, place, or event, the producer should also strive for truth in reporting.

In trying to maintain the desires of stakeholders and the ideals of truth in reporting and proper
rights management, the producermay �nd that, for example, the stakeholders have unaligned inter-
ests, or that their interests are in �ux, changing over time. ¿e producer should, asmuch as possible,
disclose these con�icts in the �nished production. All stakeholders have the right to question the
integrity of the �nal auditory experience.

6.2 Integrity in our tools
¿e above considerations apply to non-�ction audio story production in general. In this section, we
investigate how our tools do and do not support these integrity guidelines.

6.2.1 Audio manipulation
Our recording and editing tools enable di�erent kinds ofmanipulation. Each of thesemanipulations
has the potential to alter the original meaning of the content.

● Narration Coach allows the user to resynthesize speech, changing its speed and its emphasized
words. ¿is can change themeaning of the speech (e.g., changing the emphasized word in the
sentence, “I never said she stole my money” results in a di�erent meaning).

● Our speech editor allows the producer to copy, paste, and delete speech at the word level. ¿e
producer can create new sentences and change the meaning or context of existing sentences.
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● More subtly, our speech editor allows the producer to change the cadence of speech by adding
and removing breaths and pauses. A long pause can, for example, suggest tension or uncer-
tainty that was not present in the original speech recording.

● Our music editing tools can retarget songs, changing their structure. ¿e resulting “remixed”
music may not resemble the original track.

● Using music to score speech can change the perceived meaning of the music and the speech,
even if the music and speech themselves are not edited.

¿esemanipulations are similar to the kinds of edits that designers, producers, andDJs currently
perform using so ware like Adobe Photoshop, Avid Pro Tools, and Ableton Live. Existing work on
“remix culture” explores the legal and ethical rami�cations of the products of these editing tools [38,
59], and helps creators decide whether their creations qualify as fair use or require licensing [50].

6.2.2 Automation and delegation
Most of the tools in our research aim to speed up production by automating parts of the recording
and editing pipeline. Narration Coach helps producers organize recordings while automatically an-
alyzing recorded takes to help create better recordings. ¿e speech editor replaces the traditional
low-level waveform edits in DAWs with quicker, word- or sentence-level edits. Our music editing
algorithms automatically analyze and re-sequence music to meet the producer’s constraints.

A er using these new automated tools, the producer may become reluctant to perform these
tasks using older, time-consuming methods. Instead, the producer may delegate to the automation,
reverting to the manual methods only when the automation fails. ¿is delegation can be advan-
tageous, allowing a better use of human e�ort: the producer can deal with media faster at a more
semantically meaningful level (e.g., words, rather than waveforms). However, excessive automation
can lead to a loss of agency and control in the recording and editing process.

Parasuraman et al. [69] propose a model for designers to determine the appropriate level of au-
tomation in a system. ¿is model describes four stages that a system can automate: information
acquisition, information analysis, decision selection, and action implementation. ¿e primary cri-
teria for selecting the desirable level of automation in these stages is that of human performance
consequences. ¿at is, how will the automation impact the user’s mental workload, situation aware-
ness, complacency, and skill degradation. Our audio production tools provide automation mainly
in the information analysis (e.g., predicting emphasized words; �nding music change points; align-
ing text and speech) and decision selection (e.g., �nding an optimal retargeting of music to �t the
speech’s emotions). In our tools, the users are responsible for information acquisition (e.g., pro-
viding the input speech and music footage) and action implementation (e.g., determining whether
to use and publish a proposed underlay or musical score). None of our tools provide complete
automation where the system executes irreversible actions on the user’s behalf. In this sense, our
tools give users the opportunity to stay in the loop and maintain agency throughout the audio story
production process.
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Transparency in automation

Ultimately, the producermakes these decisions about automation and agency; our tools do not force
or prohibit certain forms or automation. Our tools can, however, make automation transparent so
the producer fully understands the edits and manipulations she is making.

Edit log: Our tools perform nondestructive edits and maintain their current state as internal
metadata. ¿is metadata, a kind of EDL (edit decision list), fully describes how to recreate the �nal
audio from the original sources. Because our edits are nondestructive, we also retain provenance of
the original sources in their individual metadata (e.g., the date and time of recording).

Visual cues:While the producer can inspect the internal metadata, our tools also provide static
visual cues to help her track the changes she makes. Our speech editor displays red bars in the text
transcript between non-contiguous audio segments. Ourmusic editing tools likewise show red bars
in the music waveforms where the music di�ers from its original progression. ¿ese cues are static,
but we could also show a step-by-step, animated history of editing sessions.

Injurious automation

Evenwith these techniques for adding transparency in automation, the producermay create content
that proves harmful to some or all of the stakeholders. In the event of this harm, who is responsible:
the producer, or the designers and engineers of the automation tools? Furthermore, suppose that
the producer provides constraints to the automation such that the system can create multiple valid
outputs, each of which causes harm to a subset of the stakeholders. Which of the injurious output
options should the system choose to produce?

¿ese kinds of ethical question are central in the ongoing debate on regulating autonomous
vehicles (AVs, i.e., “self-driving cars”). AVs promise to automate transportation, and travelers will
delegate to this automation. If an autonomous vehicle hits a pedestrian, who is responsible for the
damages: the vehicle’s passengers, its owner, its manufacturer, or another party? ¿at responsible
party may di�er depending on what type of vehicle it is (e.g., a passenger car versus a bus versus
a police car). AVs may have no choice but to injure people in certain situations, like in the ethical
“Trolley problem” thought experiment [39]. In these cases, how should the vehicles decide whom
to injure [17]?

While this example is extreme in that media editing tools will likely not cause physical damage,
these tools can, however, cause psychological, social, economic, and legal harm. ¿e ethical ques-
tions about responsibility and harm are not yet codi�ed in laws and regulations for autonomous
vehicles or for algorithmic automation in general. As a society, we need to �nd satisfactory answers
to these ethical questions as we move further into an automated world.

6.3 Conclusion
Every piece of media used in a composing a non-�ction audio story has rightsholders and stake-
holders. A producer can intentionally manipulate media in ways that violate its rights or con�ict
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with the ideals of its stakeholders. ¿e producer must be cognizant of these rights and stakes as she
records and edits her story.

Our speech and music recording and editing tools do not prohibit the producer from violating
the rights and desires of the media stakeholders. However, the tools recordmetadata that enable the
producer to share the exact nature of her edits. If a stakeholder takes issue with the integrity of the
auditory experience, the producer and the stakeholder can use the metadata to discuss whether the
edits are acceptable. Rather than trying to take a de�nitive stance on what is and what is not allowed
in media editing, our tools give stakeholders the resources required to argue their side. However,
even with these tools, the producer must understand that our automated systems have the potential
to cause harm.
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Chapter 7

Future work

In our research, we provide tools for the recording and editing phases of audio story production.
We believe there are interesting challenges in helping producers brainstorm and plan stories, creat-
ing alternative versions of stories for di�erent audiences, and producing other kinds of multimedia
content like videos.

7.1 Audio story ideation
None of our tools address the ideation phase of storytelling, where the producer brainstorms, re-
searches, and writes a story, and when she conducts interviews. Research systems like Motif [55]
and mobile applications like Directr [30] help novices construct video stories using storyboards
and templates. We could extend our pipeline with tools like these. By analyzing a large collection
of audio stories, we could create templates for common, engaging stories that the producer could
use while constructing her story. We could also extend Narration Coach, our active capture speech
recording tool, to provide useful feedback for producers as they record interviews.

For example, a template for introducing a character could provide audio examples from high
quality stories, suggest a set of questions for the producer to ask the interviewee in the �eld, and
show the producer di�erent patterns for splicing narration in with interview footage. We could also
ensure that the producer includes a good balance of narration and interview footage, rather than
leaning too heavily on one or the other. In building these tools, we would need to make sure that
they are �exible and customizable to prevent producers from creating stories that are too similar to
each other.

7.2 Adaptive content
Podcasts are o en long, unedited conversations. At the time of writing, the average length of the
top ten podcast episodes on iTunes was over 90 minutes. While these may appeal to people with
long chunks of time to �ll, some listeners do not have as much listening time and struggle to keep
up with a backlog of long episodes. Some listeners may also be more interested in certain segments
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of long podcasts and less interested in other parts. We could design tools and algorithms to create
shorter versions of the story that maintain the semantic meaning and key moments of the story and
interviews. We could also create versions that focus on speci�c topics of interest to the listener while
removing information about a less interesting topic.

One way we could create these adaptive stories is by having the user annotate semantic depen-
dencies in the story, from which we can induce a directed acyclic graph on small content segments.
Wewould topologically sort the graph based on the original progression of the story. ¿en, we could
compose a shorter version of the story by selecting a subset of the nodes such that for every node
in the subset, the node’s ancestors are also in the subset. ¿e user could also provide content tags
on the nodes, which we could use to compose stories that covered certain topics. To speed up this
composition process, we could apply machine learning and natural language processing techniques
to predict the semantic dependency graph and the content tags. While users may prefer these cus-
tomized audio stories, we may be removing an important social aspect of the stories, i.e., listeners
who have consumed the same content can discuss it.

7.3 Video production
Our work focuses on creating audio stories. However, more people share video than audio. We
could extend the techniques that we developed in our research to video capture and editing. Some
of our techniques have natural extensions to video. For example, we could generate musical scores
for video without any changes to our algorithm. However, musical scores in video follow di�erent
design guidelines than in audio stories, so we would need to study these di�erences in order to
modify our structural and stylistic constraints.

Other techniques would require less trivial extensions for video. Our narration recording tool
would need to incorporate additional timing constraints in order to be useful for video narrations
(e.g., “talking head” video footage). If the producer wanted to use the tool to guide video capture
instead of just narration, we would need to incorporate computer vision techniques to detect vi-
sual issues like bad lighting and poor composition. ¿e resulting application might behave like a
combination of Narration Coach and Carter et al.’s [21] NudgeCam. First, an expert producer trains
the system how to capture a certain type of shot. ¿e system would analyze the training data to
determine the characteristic audio/visual properties of the shot. Finally, while the user records, the
system analyzes the footage and suggest ways to �x problems.
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Chapter 8

Conclusion

In this work, we have presented algorithms and interfaces that address three phases of the audio
story production pipeline.

In Chapter 3 (Recording speech) we developed Narration Coach, a system for helping novice
voiceover actors record and improve narrations. To create Narration Coach, we studied voiceover
performance guidelines. NarrationCoachorganizes a recording session by aligning the user’s record-
ings to a script. Our tool then analyzes the user’s speech to provide text-based feedback on common
narration problems, and also provides resyntheses for problems in emphasis and �ow.

In a pilot study, we found that novice voiceover actors created better narrations when usingNar-
ration Coach than when using Adobe Audition, a traditional DAW. One limitation of our approach
is its reliance on automatic speech recognition, which can be inaccurate with some speakers. An-
other limitation ofNarration Coach is that by pushing all speakers to conform to certain guidelines,
the resulting audio may lose the individualism of unaided narrations.

Next, in Chapter 4 (Editing speech) we designed and built an interface for editing speech at a
high semantic level, using words rather than waveforms. Our speech editor allows the producer to
edit speech using word-level cut, copy, paste, and delete operations, as in a word processor. ¿e
editor also provides tools to add, remove, and adjust breaths and pauses, which help maintain a
natural cadence in the edited speech. ¿e producer can importmulti-tracked interview footage, and
our tool automatically keeps the tracks in sync as the producer makes edits. We found promising
results from an informal evaluation of our speech editing system. Producers preferred this text-
based method of editing to the traditional waveform-based method. ¿e main limitation of the
speech editor is that it requires verbatim transcripts of the speech tracks. Inaccurate transcripts
lead to alignment errors, reducing the e�ectiveness of the word-level editing tools.

In Chapter 5 (Editing music) we developed an e�cient framework for retargeting music for au-
dio stories. With this framework, we could create looped musical segments, add musical underlays
to emphasize key moments in speech, and generate full-length, emotionally relevant scores that sat-
isfy stylistic and structural constraints. We integrated the looping and musical underlay tools into
our speech editing interface. In an informal evaluation, we found that producers appreciated the
music editing tools in the speech editor, as they allowed the producers to quickly iterate on scoring
ideas. Impartial listeners found our emotionally relevant scores to be of high quality. One limitation
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of our retargeting framework is that it requires that the music have detectable beats. We designed
our framework for instrumental music; it is agnostic to lyrics. ¿is can result in confusing or mean-
ingless lyrics in retargeted music.

Finally, in Chapter 6 (Integrity of manipulated audio) we outlined the stakeholders involved in
the production and distribution of audio stories and discussed how our recording and editing tools
can manipulate original sources. We described how our tools record edits as metadata, allowing the
producer to understand and argue for how she is modifying the original audio.

All of these algorithms and interfaces aim to improve audio story production. ¿e central ap-
proach in our research is to �rst understand how experts perform production tasks, then to use that
information to inform algorithms and interfaces that automate those procedures. Our tools pro-
vide the producer a means of recording and editing audio stories at a higher semantic level than in
DAWs like Audition or Pro Tools. While our tools automate low-level procedures, they all require
human input. For example, the producer selects the speech emphasis point and music track when
adding musical underlays, and she can select the emotion labels and music tracks for generating
emotionally relevant scores. By adding the user-in-the-loop, we believe that our tools o�er the pro-
ducer stylistic control while speeding up tedious and di�cult operations in audio story production,
ultimately leading to a better audio story production experience.
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Appendix A

Co�ee

In addition to learning about conducting research, writing papers, and giving presentations, I learned
the wonders of co�ee. ¿ese Americanos, Gibraltars, and pourovers are a welcome departure from
the Mountain-Dew-centric ca�eination techniques of my younger self.

A.1 Cafe log, May—December 2015
As an homage to co�ee and its ever-positive impact on my work, here are the specialty co�ee shops
at which I worked on my dissertation. Within cities, I roughly sort these frommost-visited to least-
visited.

Berkeley: Babette, Artis, Allegro Co�ee Roasters, and Philz.

Seattle: Milstead & Co., Vif Wine|Co�ee, Slate Co�ee, Trabant Co�ee & Chai, Neptune Co�ee,
Ballard Co�ee Works, Fremont Co�ee, Elm Co�ee Roasters, Cafe Ladro (Fremont), Cafe Ladro
(Downtown), Victrola Co�ee and Art, Porchlight Co�ee and Records, Espresso Vivace (Alley 24),
and Zoka Co�ee (University Village).

San Francisco:Workshop Cafe.

¿e following are the other shops I visited during the time span ofwritingmydissertation. While
I didn’t work on my dissertation at these shops, sometimes you have to stop and smell the espresso.

Berkeley: Alchemy Collective Cafe, Highwire (née Local 123, San Pablo), and Equator.

Albany, CA:Highwire (née Local 123, Flowerland).

Emeryville, CA: Scarlet City Espresso Bar.
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Oakland, CA: Trouble Co�ee Co.

Mill Valley, CA: Equator.

San Francisco: Ritual (Hayes Valley), Jane (Fillmore), Artis (Hayes Valley), Special Xtra, Blue Bottle
(Hayes Valley), Wrecking Ball Co�ee Roasters, Mazarine Co�ee, Red Door Co�ee, Stanza Co�ee,
Co�ee Cultures, Four Barrel (Valencia), ¿eMill, ¿e Rich�eld, Blue Bottle (Mint Plaza), Blue Bot-
tle (Ferry Building), and Paramo Co�ee.

Seattle: Ca�e Vita (Airport), Tougo Co�ee Co., Tin Umbrella Co�ee, and Analog Co�ee.

Portland, OR: Good Co�ee (SE Division), Good Co�ee (SE Salmon), Barista (Nob Hill), Stump-
town (SE Division), Courier Co�ee, and Heart Co�ee (Westside).

Vancouver, WA: Torque Co�ee.

Eugene, OR: Tailored Co�ee Roasters.

Houston: Blacksmith, ¿e Honeymoon Cafe and Bar, Boomtown Co�ee, and Southside Espresso.

Matagalpa, Nicaragua: Selección Nicaragüense.

Jersey City, NJ: Dame Espresso Bar.

A.2 Recommendations
I make no claim to my co�ee knowledge, but my hope is that the listing of cafes I’ve visited provides
a context for my recommendations.

For the best overall co�ee experience, go to the Ballard location of Slate Co�ee in Seattle and
order the tasting menu. You will drink four or �ve courses of the best co�ee, espresso, and milk
you have ever tasted. Vif Wine|Co�ee in Seattle and Babette in Berkeley are the best places to
work. ¿ey are beautiful cafes with friendly baristas, delicious co�ee, and ample seating. For other
outstanding cups of co�ee and espresso drinks, I recommend Ritual in San Francisco,Milstead &
Co. in Seattle, and the aptly named Good Co�ee in Portland, Oregon.
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