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Abstract

On the Power of Lasserre SDP Hierarchy

by

Ning Tan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Prasad Raghavendra, Chair

Constraint Satisfaction Problems (CSPs) are a class of fundamental combi-
natorial optimization problems that have been extensively studied in the field of
approximation algorithms and hardness of approximation. In a ground break-
ing result, Raghavendra showed that assuming Unique Games Conjecture, the
best polynomial time approximation algorithm for all Max CSPs are given by
a family of basic standard SDP relaxations. With Unique Games Conjecture
remains as one of the most important open question in the field of Theoretical
Computer Science, it is natural to ask whether hypothetically stronger SDP re-
laxations would be able to achieve better approximation ratio for Max CSPs and
their variants.

In this work, we study the power of Lasserre/Sum-of-Squares SDP Hierar-
chy. First part of this work focuses on using Lasserre/Sum-of-Squares SDP Hi-
erarchy to achieve better approximation ratio for certain CSPs with global cardi-
nality constraints. We present a general framework to obtain Sum-of-Squares
SDP relaxation, round SDP solution and analyze the rounding algorithm for
CSPs with global cardinality constraints. To demonstrate the approach, we show
that one could use Sum-of-Squares SDP to achieve a 0.85-approximation algo-
rithm for Max Bisection problem, improving on the previously best known 0.70
ratio.

In the second part of this work, we study the computational power of gen-
eral symmetric relaxations. Specifically, we show that Lasserre/Sum-of-Squares
SDP solution achieves the best possible approximation ratio for all Max CSPs
among all symmetric SDP relaxations of similar size. This result gives the first
lower bounds for symmetric SDP relaxations of Max CSPs, and indicates that
the Sum-of-Squares SDP is indeed the "right" SDP relaxation for this class of
problems.
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Chapter 1

Introduction

Many important computational tasks can be modeled as combinatorial optimiza-
tion problems, where the goal is to find a solution that maximizes or minimizes
a certain objective function (value) on a certain discrete set of feasible solu-
tions. Combinatorial optimization problems have been extensively studied with
an tremendous progress in the past few decades. To give the readers a flavor of
the problems studied in this dissertation, we present a few examples below.

Problem 1.0.1 (Max Cut). Given an unweighted graph G = (V, E), find a parti-
tion of the vertices V = (S , S̄ ) such that the number of edges between S and S̄ is
maximized.

Problem 1.0.2 (Max 3-Sat). Given a set of 3-CNF clauses of the form `i∧` j∧`k

where `i,` j and `k are literals (variables or their negations) over a set of variables
V , find an assignment to the variables that satisfies the maximum number of
clauses.

These two problems belong to the class of Constraint Satisfaction Problems
(CSPs) that have numerous applications, from artificial intelligence and planning
to VLSI chip design.

Problem 1.0.3 (Max Bisection). Given an unweighted graph G = (V, E), where
|V | is even, find a partition of the vertices V = (S , S̄ ) such that |S | = |S̄ | and the
number of edges between S and S̄ is maximized.

This problem is a close variant of the Max Cut problem and belongs to the
class of Constraint Satisfaction Problems with Global Cardinality Constraints.

Problem 1.0.4 (Traveling Salesman Problem). Given a list of cities and the
distances between each pair of cities, find the shortest possible route i.e., the one
with minimum total distance that visits each city exactly once and return to the
original city.
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Problem 1.0.5 (Vertex Cover). Given an undirected graph, find the smallest set
of vertices such that each edge of the graph is incident to at least one vertex in
the set.

The reader may refer to Section 2.3 where more combinatorial problems
(specifically CSPs) are defined.

Unfortunately, overwhelming majority of the combinatorial optimization
problem are computationally intractable (NP-hard). Therefore, unless P = NP,
one would not be able to solve these problems optimally efficiently.

One popular and extensively studied way to cope with this intractability is to
compute solutions that are (provably) approximately optimal. For example, one
might settle for an algorithm that always returns a solution that is guaranteed to
be at least half as good as the optimal solution. We will formally introduce the
notion of approximation ratio in Chapter 2.

1.1 The Relaxation and Rounding Paradigm for
Designing Approximation Algorithms

Convex relaxations and rounding schemes play an extremely important role in
designing approximation algorithms. In fact, a vast majority of approximation
algorithms follow a two step approach consisting of relaxation and rounding.
A significant portion of this thesis is devoted to exploring the effectiveness and
limitations of convex relaxations. In this section, we will provide a rudimentary
introduction to this powerful framework. The readers may refer to the book of
Vazirani [71] for more detailed explanations and proofs.

Relaxation
By definition, the feasible space of combinatorial problem is discrete and finite.
Therefore, one can always reformulate a combinatorial problem into an opti-
mization problem over a finite set of binary variables that are required to satisfy
some constraints.

Of course, this reformulation does not make the problem any easier, as inte-
ger program is NP-hard to solve. However, in terms of designing approximation
algorithms, this approach enables us to look at the problem from a different
angle. One could hope that looking from an integer program perspective, one
would be able to gain more insight into the problem and thus be able to find
better approximation algorithms. In particular, as the intractability of the integer
program stems from the non-convexity of the space of solutions. Therefore, one
could relax the constraints of the integer programs in order to make it tractable.
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Specifically we can relax the condition that the variables are to be assigned val-
ues 0 or 1 only, and permit them to be assigned real numbers or even vectors.
For example, a simple relaxation would be to allow variables to take any real
numbers in [0, 1] instead of {0, 1}. By doing this, if the objective function and
other constraints in the integer program were also linear, we would get an linear
program which is efficiently solvable in polynomial time [34].

However this does not solve the problem entirely. By relaxing the integral
constraints, we’re effectively permitting more solutions than the original inte-
ger program does. Therefore it immediately follows that the optimum of the
relaxation is at least as good as the optimum of the integer program.

Formally, let I be an instance of a minimization problem. Let opt(I) denotes
the value of the optimum solution to the instance I, and Conv(I) denotes the
optimal value of the corresponding relaxation, then

Conv(I) 6 opt(I) (1.1.1)

Rounding
Not every solution for the convex relaxation has a corresponding solution in the
original problem. Therefore, when using convex relaxations to design approx-
imation algorithms, there is usually a rounding step to convert the relaxation
solution to a feasible solution of the original problem. This procedure is called
"rounding" because in the linear programming relaxation setting, one usually
gets a non-integer solution as the optimal solution to the linear program therefore
the goal is often to "round" the fractional assignments to the variables to integral
values. However, when using other relaxation techniques such as semidefinite
programs, one may have to convert vector-valued variables to integral values.

Formally, a rounding scheme is an algorithm that takes the problem instance
I and the optimal solution x∗ to the convex relaxation as input, and outputs
a feasible solution x to the original combinatorial optimization problem. Let
val(x∗) denote the value of x∗ of the convex relaxation and val(x) denote the
value of the objective function on the rounded solution x. Let opt(I) denote the
value of the optimal solution to the instance. If one could show that the following
holds (for a minimization problem)

val(x) 6 αopt(I) (1.1.2)

for every instance I, then we effectively obtained an α-approximation algorithm
by first solving the convex relaxation and then performing the rounding scheme.
However, directly proving the 1.1.2 is usually quite difficult as computing opt(I)
itself is already NP-hard. Therefore, alternative one usually turns to prove

val(x) > α val(x∗) (1.1.3)



CHAPTER 1. INTRODUCTION 4

instead. Observe that 1.1.3 together with 1.1.1 directly implies 1.1.2.

Integrality Gap of Convex Relaxations
As we mentioned earlier, one usually compares the performance between the
rounded solution and the optimum of the relaxation when proving the approx-
imation guarantee of an algorithm. However, this approach inherently intro-
duced some inaccuracy when calculating the approximation ratio. This inaccu-
racy stems from the relaxation itself. For example, given some combinatorial
optimization problem (let’s say it’s a minimization problem) and an instance I,
it’s entirely possible that the optimal solution of I has value 1 while the relax-
ation has optimum 0.5. In this case, irrespective of which rounding algorithm
we use, we cannot hope to achieve an approximation guarantee better than 2, as
no integral solution achieves value better than 1.

Formally, we define integrality gap of a relaxation R to be the worst case
ratio between opt(I) and R(I), taking over all possible instances I, denoted by
gap(R).

gap(R) def
= sup

I

opt(I)
R(I)

> 1

Similarly for maximization problem we can define also define the integrality
gap of a relaxation R.

gap(R) def
= inf

I

opt(I)
R(I)

6 1

Integrality gap serves as a measure of the quality of the relaxation R. In
most cases it also serves as a limit of approximation ratio of the approximation
algorithms obtained via this relaxation. Therefore a great effort has been going
into designing relaxations with small integrality gap in the past few decades.

On the other hand, rounding algorithms serve as a concrete proof for inte-
grality gap as integrality gap serves as a lower bound for approximation ratio
(for minimization problems), therefore an approximation ratio of 2 would imply
that the integrality gap of the relaxation is at most 2.

1.2 Relaxation Techniques and Hierarchies
A large number of approximation algorithms use a specific type of convex relax-
ation - linear programming (LP). A linear program consists of an objective func-
tion that is ether maximizing or minimizing a linear function over real-valued
variables while satisfying certain linear constraints among them. While linear
programs can be solved in polynomial time using interior point methods [1, 57],
the simplex method is used extensively in practice. We refer the reader to the
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book by Vazirani [71] for more details and examples on using linear program to
obtain approximation algorithms.

Another relaxation technique that has been extensively used in the design
of approximation algorithm is semidefinite programing (SDP). A semidefinite
program consists of vector-valued variables, with linear constraints on their inner
products. The objective function is a linear function of the inner products of the
variables. Semidefinite programs can be solved in polynomial time using the
ellipsoid method [34] or interior point methods [1, 57]. More precisely, these
algorithms output a solution with the value which differs from the optimum by
at most an additive error ε in time that is polynomial in the program description
size and log 1

ε
.

SDP was first introduced to the field of combinatorial optimization by the
classic work of Lovász [53]. The Lovász Theta function, as it is referred to
today, is a semidefinite programming relaxation for the Maximum Independent
Set problem.

Semidefinite program was popularized in the field of approximation algo-
rithms thanks to the seminal work of Goemans and Williamson in 1994[31].
In their work they used a simple semidefinite programming relaxation and
an elegant rounding scheme called halfspace rounding to obtain a 0.878-
approximation algorithm for Max Cut problem. Together with the work of Pol-
jak [60], their algorithm implied that SDP is strictly stronger when designing
approximation algorithms.

Ever since then SDP has been the main driving force in advancing of approxi-
mation algorithms. It has found application in problems ranging from Constraint
Satisfaction Problems [14, 15, 17, 19, 24, 27, 29, 37, 38, 45, 52, 55, 74, 76, 75]
to Vertex Cover [3, 18, 20, 43], Vertex Ordering [16, 22] to Graph decomposition
and Discrete optimization[2, 48, 56].

Raghavendra’s Result. With every approximation devised, the question arises
as to whether one could find an even better approximation algorithm. Similarly,
even though SDP has shown that its extremely powerful when designing approx-
imation algorithms, one could still ask if there exists some better methodologies
that could achieve better approximation ratio than SDPs. A groundbreaking re-
sult of Raghavendra [61] indicates that the answer might be NO, at least for a
large portion of combinatorial problems.

In particular, Raghavendra showed that assuming Unique Games Conjecture,
the optimal approximation algorithms for every CSP can be obtained by a rela-
tively simple SDP relaxation. He also gave an algorithm that optimally rounds
every SDP of this form. Also, he showed that the best approximation ratio for
every CSP is given by the integrality gap of this SDP.

Recall that the integrality gap is the worst possible ratio between the opti-
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mum of the relaxation and the optimal solution to the instance. Therefore its a
measurement of the quality of a specific convex relaxation. Hence, Raghaven-
dra’s result seems to indicate that SDPs are indeed the "correct" approach in
obtaining approximation algorithms.

LP/SDP Hierarchies
As we mentioned earlier, integrality gap of the relaxation poses as a natural bar-
rier toward obtaining better approximation algorithms. Therefore, in order to
achieve improved approximation algorithms, one of the most important step is
to find a relaxation with integrality gap as close to 1 as possible. While in some
cases the most natural and simple LP/SDP relaxation of the integer program al-
ready yields the best possible approximation algorithm [31, 39, 49], there are
also cases where a cleverly formulated relaxation could lead to improved ap-
proximation algorithms[4, 76].

One natural way to strengthen the algorithmic power of a relaxation is by
adding additional constraints, so that the result relaxation is tighter and gives
better approximation guarantee. One notable example is the work by Arora,
Rao and Vazirani [4] in which they used the so-called "`2

2-triangle inequalities"
in addition to the basic SDP relaxation and improved the approximation ration
from Θ(log n) to O(

√
log n) for Sparsest Cut problem.

While analysis of the convex relaxations with such extra constraints are usu-
ally very problem specific, there are several systematic ways to add additional
constraints without even looking at the problem – so called "relaxation hierar-
chies". These hierarchies provide systematic procedures which work round-by-
round: At each round, they produce a stronger convex relaxation at the cost of
larger problem size. First such hierarchy was given by Sherali and Adams [68],
then followed by Lovász and Schrijver [54], both based on linear programming.
The strongest hierarchy among known hierarchies is based on semidefinite re-
laxation given by Lasserre [51], which will be the focus of study in this thesis.

These hierarchies are known to converge to an integral 0/1 solution, i.e., have
an integrality gap of 1 as the number of rounds gets closer to n. However, at k
rounds, these hierarchies usually takes time O(nO(k)) to solve. Therefore such
convergence result does not provide too much value when we restrict on poly-
nomial time regime. The interesting question is to characterize the problems
for which a small number of rounds of these hierarchies yields a better approx-
imation algorithm for. On the other hand, lower bound results showing that the
integrality gap of the program obtained after many levels of a hierarchy remains
large would be a strong indication that the problem might be hard to tackle.

For Sum-of-Squares SDP hierarchy, it is known that even few rounds of Sum-
of-Squares SDP is already as strong as many state of the art approximation al-
gorithms for a large set of combinatorial optimization problems. For example, 3
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rounds of Sum-of-Squares SDP is enough to capture the ARV SDP relaxation for
Sparsest Cut [4]. Arguably, Sum-of-Squares SDP poses the currently strongest
known threat to the famous Unique Games Conjecture. In fact, to the best of our
knowledge, it is entirely possible that 4th level of Sum-of-Squares SDP could
improve upon the Goemans-Williamson algorithm for Max Cut and therefore
refute the Unique Games Conjecture.

While for weaker hierarchies, many strong algorithmic results as well as
integrality gaps were known[67, 66, 70], our understanding of Lasserre SDP
hierarchy seems to be lacking behind. On the algorithmic front, to the best of our
knowledge, only two results existed prior to our work: Chalmatc and Singh [21]
used O(1/γ2) rounds of Sum-of-Squares SDP hierarchy to find an independent
set of size Ω(nγ

2/8) in 3-uniform hypergraphs with an independent set of size γn.
Also Karlin et al. [44] showed that 1/ε rounds of Sum-of-Squares SDP gives a
(1 + ε) approximation to the Knapsack problem.

Part of the reason in our lack of understanding of Sum-of-Squares SDP is
due to its complexity. While additional the variables and constraints provides
better approximation guarantee over the basic SDP, they also make analyzing
the solution much harder. Therefore it would be beneficial to have some generic
framework to round and analyze the Sum-of-Squares SDP solutions.

1.3 Contribution of the Thesis
In the first part of our thesis we will try to address this problem. We present a
general framework to obtain Sum-of-Squares SDP relaxation, round SDP so-
lution and analyze the rounding algorithm for CSPs with global cardinality
constraints. To demonstrate the approach, we show that one could use Sum-
of-Squares SDP to achieve a 0.85-approximation algorithm for Max Bisection
problem, improving on the previously best known 0.70 ratio.

While Sum-of-Squares SDP hierarchy is extremely powerful, one could still
ask the question: is there an SDP relaxation (hierarchy) that is even stronger
than Sum-of-Squares? If so, what is the strongest SDP possible? We will try to
address this question in the second part of the thesis. Specifically, we show that
Sum-of-Squares SDP solution achieves best possible approximation ratio for all
Max CSPs among all symmetric SDP relaxations of similar size. This result
gives the first lower bounds for symmetric SDP relaxations of Max CSPs, and
indicates that the sum-of-squares method provides the "right" SDP relaxation for
this class of problems.

Sum-of-Squares SDP hierarchy is sometimes referred to as Parrilo-Lasserre
SDP Hierarchy or Lasserre SDP Hierarchy. In this thesis we will use these names
interchangeably.
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Chapter 2

Preliminary and Organization of
Thesis

In this chapter, we will first introduce the basic concepts that are involved in this
dissertation.

2.1 Definitions and Terminologies
To start off this section, we first formally define approximation algorithms and
approximation ratio.

Definition 2.1.1. An algorithm A is said to be an α-approximation algorithm
for a maximization problem Λ, if for every instance I of Λ, we have

A(I)
opt(I)

> α

Similarly we can define approximation ratios for minimization problem as
well.

Definition 2.1.2. An algorithm A is said to be an α-approximation algorithm
for a minimization problem Λ, if for every instance I of Λ, we have

A(I)
opt(I)

6 α

We note that for minimization problems, the approximation ratio α is usually
greater than 1.

The notion of approximation ratio can be generalized to randomized algo-
rithms as well.
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Definition 2.1.3. A randomized algorithm A is said to be an α-approximation
algorithm for a maximization problem Λ, if for every instance I of Λ, we have

�(
A(I)
opt(I)

) > α

To illustrate the notion of approximation algorithms and approximation ratio,
we give two simple 1/2-approximation algorithms for Max Cut problem, one
deterministic, one randomized.

Two simple 1/2-approximation algorithms for Max Cut. Recall that in Max
Cut problem we’re given an unweighted graph G = (V, E) and want to find a cut
(S , S̄ ) such that the number of edges crossing the cut is maximized.

Firstly we present a simple greedy algorithm.

Algorithm 2.1.4. Greedy algorithm for Max Cut.
Input: An unweighted graph G = (V, E)
Output: A cut (S , S̄ ) of size at least |E|/2.

– Step 1. Start with an empty set S .

– Step 2. For every vertex v ∈ V , check if switching side (from S to S̄ or S̄
to S ) will increase the cut size.

– Step 3. Repeat step 2 until no such vertex found, then output S .

Proposition 2.1.5. The Algorithm 2.1.4 is a 1/2-approximation algorithm for
Max Cut.

Proof. First we have to show that the algorithm terminates. To see that, ob-
serve that the size of the cut strictly increases after every switch, therefore the
algorithm will terminate within |E| switches.

Now we want to show the approximation ratio. In order to show this state-
ment, we only have to show that the output cut contains at least half of the edges
in the graph, as the optimal solution is trivially upper bounded by the total num-
ber of edges in the graph.

To see this, observe that for every vertex at least half of its neighbor is in
the cut, otherwise switching this vertex to the other side of the cut would strictly
increase the size of the cut. Hence the statement follows. �

Secondly we present a simple randomized algorithm that also achieves 1/2
approximation ratio in expectation.
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Algorithm 2.1.6. Randomized algorithm for Max Cut.
For each vertex v ∈ V , randomly put it in S or S̄ with 1/2 probability each.

Proposition 2.1.7. The Algorithm 2.1.6 is a 1/2-approximation algorithm for
Max Cut.

Proof. It’s easy to see that for every edge e ∈ E, �(e ∈ (S , S̄ )) = 1/2. By
linearity of expectation, �(|(S , S̄ )|) = |E|/2. �

2.2 Relaxation and Rounding of Combinatorial
Optimization Problems

A vast majority of approximation algorithms follow a two step approach con-
sisting of relaxation and rounding. In this section we will give an overview of
this approach and use Vertex Cover and Max Cut to illustrate the usage of lin-
ear programming (LP) and semidefinite programming (SDP) in approximation
algorithms.

Representing Combinatorial Optimization Problems as
Integer Program
Recall that for a graph G = (V, E) a vertex cover S of G is a subset of vertices
such that for every edge e = (u, v) ∈ E, at least one of u ∈ S or v ∈ S is true. In
Vertex Cover problem, we’re given a graph G and want to find the vertex cover
of minimum cardinality.

In order to formulate it as an integer program, we can introduce an integer
variable Xv for every vertex v in the graph G. This variable Xv indicates whether
the vertex v belongs to the vertex cover. Specifically, Xv is a {0, 1}-variable de-
fined as follows:

Xv =

0, if v is not in S
1, if v is in S

Consider an edge (u, v) in the graph G. In a valid vertex cover, at least one
endpoint of the edge (u, v) must belong to the vertex cover. Hence, the variables
Xu, Xv corresponding to u and v must satisfy Xu + Xv > 1. Also notice that this is
a sufficient condition, since Xu + Xv > 1 guarantees that at least one of Xu or Xv

is 1. Also, the size of the vertex cover can be represented as
∑
v∈V Xv. With these

observations one can write the integer program for Vertex Cover as:
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Integer program for Vertex Cover

minimize
∑
v∈V

Xv

subject to Xu + Xv > 1 for every edge e = (u, v)
Xv ∈ {0, 1} for every vertex v ∈ V

For Max Cut problem, we’re given a graph G = (V, E) and the goal is to
find a cut V = (S , S̄ ) such that the total number of edges crossing the cut is
maximized. Similar to the Vertex Cover problem, we can also define a random
variable Xv for each v ∈ V as follows:

Xv =

0, if v is in S̄
1, if v is in S

An edge e = (u, v) is cut if and only if |Xu − Xv| = 1. Hence the integer
program for Max Cut can be written as the following:

Integer program for Max Cut

maximize
∑

e=(u,v)∈E

|Xu − Xv|

subject to Xv ∈ {0, 1} for every vertex v ∈ V

Approximation Algorithm for Vertex Cover via Linear
Program
While the optimum of the integer program gives exact solution to Vertex Cover
problem, it doesn’t reduce the complexity. In order to make the problem
tractable, we will reduce the constraints in the integer program. Specifically,
we will relax the condition that every variable needs to be assigned as either 0 or
1 – instead we will allow the variables Xu to take real values in the range [0, 1].
The resulting relaxation is what is referred to as a linear program, and can be
solved efficiently.
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Linear program for Vertex Cover

minimize
∑
v∈V

Xv

subject to Xu + Xv > 1 for every edge e = (u, v)
0 6 Xv 6 1 for every vertex v ∈ V

Clearly, any solution to the integer program is also a valid solution to the
linear programming relaxation. In other words, the relaxation permits more so-
lutions than the original integer program. Hence, it immediately follows that the
optimum of the linear program is at most the optimum of the integer program.

Formally, let opt(G) denote the size of the optimal vertex cover of graph G,
let IP(G) denote the optimum of the integer program of G, let LP(G) denote the
optimum of the linear program of G, we have

LP(G) 6 IP(G) = opt(G)

Since linear program can be solved in polynomial time, one could use LP(G)
as an (efficiently computable) approximation to the optimum of Vertex Cover
problem, although it is unclear how good of an approximation it is.

For example, on a complete graph Kn, one of the possible solution to the
linear program could be Xv = 1/2 for every vertex v in the graph. This solution
clearly satisfies all the linear constraints in the LP. Hence we have that LP(Kn) 6
n/2. However on the other hand, it’s easy to see that in order for a subset of
vertices to cover the complete graph, at least n − 1 vertices needs to be chosen,
therefore opt(Kn) > n − 2. As n goes to infinity, the ratio between LP(Kn) and
opt(Kn) goes to 2.

The worst case ratio among all possible instances is known as the integrality
gap of an linear program. It can be thought of a rough measure of the quality
of approximation. The instances where the gap is achieved are known as gap
instances.

Rounding algorithm for Vertex Cover. Recall that our original goal is to
find a minimum vertex cover given a graph G. Instead, we have now relaxed the
integer program into a linear program and obtained its solution. Therefore we
will need some procedure to transform an LP solution back to a feasible solution
of the original Vertex Cover problem. This process is referred as a rounding
algorithm. Formally, given an LP solution, a rounding algorithm takes it as the
input and produces an integral solution to the integer program that satisfies all the
constrains(hence also a feasible solution to the original combinatorial problem).

After a brief thinking one would realize that the rounded solution will most
likely not be as good as the LP solution itself. In fact, take the complete graph
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for example, the LP solution only uses n/2 vertices while the best vertex cover
requires at least n − 1 vertices. Therefore no matter how good the rounding
algorithm is, the produced solution will be almost twice as worse as the LP
solution.

Below we will give a rounding algorithm and analyze its performance.

Algorithm 2.2.1. Rounding algorithm for Vertex Cover.
Input: The optimum solution of linear program 2.2.
Output: A feasible vertex cover to the graph G.
For every vertex v ∈ V , pick v to be in the vertex cover if and only if Xv > 1/2.

Proposition 2.2.2. This rounding algorithm outputs a feasible solution S to the
Vertex Cover problem with |S | 6 LP(G) ∗ 2.

Proof. Firstly we prove that the solution S is a feasible solution. In order to show
this, we only need to show that for every edge e = (u, v) ∈ E, either Xu > 1/2 or
Xv > 1/2. Since the LP solution is a feasible solution, it satisfies Xu + Xv > 1 and
0 6 Xu, Xv 6 1, the statement follows.

Secondly we want to show that the size of S is at most twice the LP value.
This is also fairly obvious as we only took the vertices with Xv > 1/2. �

There are two important corollaries that immediately follows from this
proposition.

Corollary 2.2.3. The linear program 2.2 together with rounding algorithm 2.2.1
gives a 2-approxiamtion algorithm for Vertex Cover problem.

Proof. This follows directly from Proposition 2.2.2 and the fact that the linear
program is a relaxation(hence LP(G) 6 opt(G)). �

Corollary 2.2.4. The integrality gap of linear program 2.2 is 2.

Proof. Using the rounding algorithm above, we showed that LP(G) > opt(G)/2,
thus implying that the integrality gap is at most 2. Using the complete graph we
mentioned before, we know that the integrality gap of this LP is at least 2. The
statement follows. �

We remark that we actually used the rounding algorithm as a proof for the
integrality gap of the LP.
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Approximation Algorithm for Max Cut via Semidefinite
Program
In this section we will give a high level overview of the Goemans-Williamson
algorithm for Max Cut [31].

Recall that we constructed an integer program 2.2 for Max Cut problem in
the previous section. In the first step, we would take this IP and reformulate it
into a new integer quadratic program (IQP). Instead of using {0, 1} variables to
denote the vertices, we will use {−1, 1} variables instead.

Integer quadratic program for Max Cut

maximize
∑

e=(u,v)∈E

(Xu − Xv)2/4

subject to X2
v = 1 for every vertex v ∈ V

It’s easy to verify that the IQP above is equivalent to the integer program we
have for Max Cut.

Goemans-Williamson SDP relaxation for Max Cut. Just as what we did for
Vertex Cover in the previous section, we will relax the intractable problem into
a polynomial time solvable problem.

Recall that the variables Xi are equal to ±1, or equivalently each Xi is a one-
dimensional vector of length 1. Relaxing this constraint, we will require the
variables Xi to be unit vectors in a high dimensional space. More precisely, we
will now associate an n-dimensional unit vector Xv to each vertex v ∈ V . This
yields the following semidefinite program(SDP) relaxation:

Goemans-Williamson SDP relaxation for Max Cut.

maximize
∑

e=(u,v)∈E

(Xu − Xv)2/4

subject to X2
v = 1 for every vertex v ∈ V

It’s easy to see that every integer solution to the original IQP can be eas-
ily translate to a corresponding SDP with the same value – for every xi = ±1,
we will construct an n-dimensional vector with the first dimension equals to xi

and the other dimensions being 0. Therefore the Goemans-Williamson SDP is
an relaxation of the original IQP, henceforth also a relaxation of the Max Cut
problem.
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Rounding Goemans-Williamson SDP
On solving the Goemans-Williamson SDP relaxation, we obtain a set of unit
vectors {vi} on the n-dimensional space�n. Recall that the vector vi corresponds
to the vertex vi in the graph G. Hence, the optimum solution yields an embedding
of the graph G on to the n-dimensional unit sphere.

We will present a randomized rounding algorithm that takes n unit vectors as
input, output a cut in the graph G.

Algorithm 2.2.5. Rounding algorithm for Goemans-Williamson SDP.
Input: A feasible solution to the Goemans-Williamson SDP, which consisits of
a set of unit vectors {vi}

Output: A cut of the original graph G.

– Sample a random hyperplaneH that passes through the origin.
This plane naturally induces a partition of the n-dimensional space as
well as the n-dimensional unit sphere, say S + and S −.

– Take the embedding of the graph on S n, output the cut induced by the
partition.

This simple rounding scheme turns out to be extremely powerful. Below we
will prove that it achieves 0.878-approximation for Max Cut.

In order to prove the effectiveness of the rounding scheme, first we need a
fact.

Fact 2.2.6. For any x ∈ [−1, 1], the following inequality holds:

arccos(x)
2π

> αGW ×
1 − x

2

where αGW > 0.878 is an absolute constant.

Now we will calculate the expected cut value of the rounding algorithm.
Consider an edge e = (u, v) in the graph G. Let θ be the angle between the vectors
u and v hence we have θ = arccos(u · v). Also observe that a random hyperplane
projects as a random line passing through the origin in the 2 dimensional space
spanned by u and v, therefore the chance of u and v ended up on different side
of the cut is

�(e = (u, v) is in the cut) =
θ

π
=

arccos(u · v)
π

Also notice that by fact 2.2.6, we have

�(e = (u, v) is in the cut) > αGW ×
(u − v)2

4
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Note that here we used the fact that u and v are unit vectors.
Observe that on the LHS we have the probability of an edge being cut,i.e.,

the expected contribution of this edge to the final cut. On the RHS we have the
contribution of the same edge to the SDP value. Summing this over all the edges
in the graph, we have

�(number of edges cut) > αGWSDP(G)

Therefore the SDP together with the rounding algorithm achieves 0.878-
approxiamtion of the Max Cut problem.

The two examples showed previously highlighted a generic way of obtaining
approximation algorithm for combinatorial optimization problem. In particular,
given an instance I of a combinatorial optimization problem, it is first refor-
mulated as an integer program, then relaxed to a convex program that affords
efficient solver(usually linear program or semidefinite program).

The optimum of the LP or SDP consists of a set of variables, either real num-
bers or vectors. In the rounding step, an algorithm takes the LP/SDP solution as
input, and "round" them into an integral solution to the original combinatorial
optimization problem, usually losing in objective value. The analysis of the al-
gorithm usually compares the performance of the rounded solution against the
LP/SDP value and use that as an upper bound of the approximation ratio of the
algorithm.

By definition, performance of this approach is naturally limited by the inte-
grality gap of the relaxation, as on the gap instances there is simply no integral
solution performs better than the integrality gap. However, as it turns out, the
integrality gaps of some natural SDP/LP relaxations actually perfectly captures
the appproximability of a large set of combinatorial problems (namely general
CSPs) under Unique Games Conjecture[61].

2.3 Constraint Satisfaction Problems
This thesis will heavily focus on the approximability of Constraint Satisfaction
Problems (CSPs) as well as CSPs with global cardinality constraints. In this
section, we will define these problems and also give a few examples.

Definition 2.3.1 (Constraint Satisfaction Problems). A constraint satisfaction
problem is specified by Λ = ([q],�, k) where [q] = {0, . . . , q − 1} is a finite
domain, � = {P : [q]t 7→ [0, 1]|t 6 k} is a set of payoff functions. The maximum
number of inputs to a payoff function is denoted by k.

Every instance of the CSP Λ consists of a set of variablesV, along with a set
of constraints P on them. Each constraint in P consists of a predicate from the
family Λ applied to a subset of variables. The objective is to find an assignment
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to the variables that satisfies the maximum number of constraints. The arity k of
the CSP Λ is the maximum number of inputs to a predicate in the family Λ.

Below we give a few examples of Constraint Satisfaction Problems.

Example 2.3.2 (Max Cut). Given a graph G = (V, E) with vertices V =

{v1, · · · , vn} and edges E, find a partition S ∪ S ′ = V of the set of vertices that
maximizes the number of edges cut by the partition. An edge e = (vi, v j) is cut,
if vi ∈ S and v j ∈ S ′ or vice versa.

In the Max Cut example, the domain is the binary domain [2] = {0, 1}, with
a single payoff function P given by:

P(x, y) =

0, x = y

1, x , y

Example 2.3.3 (Max 2-Sat). Given a set of 2-CNF clauses of the form `i ∧ ` j

where `i and ` j are literals (variables or their negations) over a set of variables
V , find an assignment to the variables that satisfies the maximum number of
clauses.

Similarly one can define Max 3-Sat and Max k-Sat where the number of
variables in a clause have 3 and k literals.

Example 2.3.4 (Label Cover). An instance of Label Cover is given by (W ∪

V, E, [R],Π) consists of a bipartite graph over vertex setrsW andV with edges
E between them where all the vertices in V are of the same degree. Also part of
the instance is a set of labels [R] and a set of mappings Π = {πw7→v : [R] 7→ [R]}
for each edge e ∈ E. An assignment A of labels to vertices is said to satisfy an
edge e = (w, v) if πw7→v(A(w)) = A(v). The objective is find an assignment that
satisfies as many edges as possible.

Example 2.3.5 (Unique Games). Given a variable set V and a list of constraints
of the form xu = πv7→ux(u) where u, v ∈ V are two variables and πv 7→u is a per-
mutation of [R], the goal is to find an [R]-assignment to V so as to maximize the
number of satisfied constraints.

Below we define CSPs with global cardinality constraints.

Definition 2.3.6 (Constraint Satisfaction Problems with Global Cardinality Con-
straints). A constraint satisfaction problem with global cardinality constraints is
specified by Λ = ([q],�, k, c) where [q] = {0, . . . , q − 1} is a finite domain,
� = {P : [q]t 7→ [0, 1]|t 6 k} is a set of payoff functions. The maximum number
of inputs to a payoff function is denoted by k. The map c : [q] 7→ [0, 1] is the
cardinality function which satisfies

∑
i ci = 1. For any 0 6 i 6 q− 1, the solution

should contain ci fraction of the variables with value i.
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Definition 2.3.7. An instance Φ of constraint satisfaction problems with global
cardinality constraints Λ = ([q],�, k, c) is given by Φ = (V,�V,W) where

– V = {x1, . . . , xn}: variables taking values over [q]

– �V consists of the payoffs applied to subsets S of size at most k

– Nonnegative weights W = {wS } satisfying
∑
|S |6k wS = 1. Thus we may

interpret W as a probability distribution on the subsets. By S ∼ W, we
denote a set S chosen according to the probability distribution W

– An assignment should satisfy that the number of variables with value i is
cin (we may assume this is an integer).

Here we also give a few examples of CSPs with global cardinality con-
straints.

Example 2.3.8 (Max(Min) Bisection). Given a (weighted) graph G = (V, E)
with |V | even, the goal is to partition the vertices into two equal pieces such that
the number (total weights) of edges that cross the cut is maximized (minimized).

More generally, one could define α-Max Cut problem, where the goal is to
find a partition having α|V | vertices on one side, while cutting the maximum
number of edges. Furthermore, one could allow weights on the vertices of the
graph, and look for cuts with exactly α-fraction of the weight on one side.

Definition 2.3.9 (Edge Expansion). Given a graph (w.l.o.g, we may assume it is
a unweighted regular graph) G = (V, E), and δ ∈ (0, 1/2), the goal is to find a
set S ⊆ V such that |S | = δ|V | and the edge expansion of S : Φ(S ) =

E(S ,S̄ )
d|S | is

minimized.

Remark 2.3.10. Although some problems (e.g., Balanced Separator) do not fix
the cardinality to be some specific quantities, they can easily be reduced to the
case above.

2.4 Results and Organization
In Chapter 2 and Chapter 3, we present some basic definitions, set up nota-
tions and recall some mathematical preliminaries. In Chapter 4, we give an
overview of SDP/LP relaxations for constraint satisfaction problems, define sev-
eral LP/SDP hierarchies and also define general SDP/LP relaxations for combi-
natorial problem. The rest of the thesis is divided into two parts: in Chapter 5,
we present a general framework to obtain Sum-of-Squares SDP relaxation, round
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SDP solution and analyze the rounding algorithm for CSPs with global cardinal-
ity constraints. To demonstrate the approach, we show that one could use Sum-
of-Squares SDP to achieve a 0.85-approximation algorithm for Max Bisection
problem, improving on the previously best known 0.70 ratio. In Chapter 6 , we
study the computational power of general symmetric relaxations. Specifically,
we show that Sum-of-Squares SDP solution achieves the best possible approxi-
mation ratio for all Max CSPs among all symmetric SDP relaxations of similar
size. This result gives the first lower bounds for symmetric SDP relaxations of
Max CSPs, and indicates that the sum-of-squares method provides the "right"
SDP relaxation for this class of problems. We will wrap up the thesis with future
directions and some open questions in Chapter 7.
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Chapter 3

Mathematical Notations and Tools

In this chapter we set up basic notations and tools that will be used throughout
this thesis.

3.1 Sets and Families
For any positive integer n, we will use [n] to denote the set {1, 2, ..., n}. We will
use ∅ to denote empty set. Given set S , we use 2S to denote its power set, i.e.,
set of all subsets of S , also we say F is a family over S if F ⊆ 2S .

For two sets A and B, we use AB denote the set of mappings from A to B.
For notational convenience, if B = [n] then we will write An instead of A[n]. An
element x ∈ An is an vector x = (x1, ..., xn) where xi ∈ A. We will always use
boldface to denote multidimensional objects.

3.2 Linear Algebra
We will use �, �, � and � to denote the set of real number, rational number,
integers and natural numbers respectively.

Given finite sets A, B and a subset of reals R ⊆ �, we will use RA and RA,B

to denote the set of vectors and matrices over R whose rows and columns are
identified with elements of A and B respectively.

Given two vectors x and y, we will use 〈x · y〉 to denote their inner product.
We will use S denote the set of real symmetric matrices and Sn to denote the

set of real n by nsymmetric matrices.

Definition 3.2.1 (Positive Semidefiniteness of Matrices). A matrix M ∈ Sn is
said to be positive semidefinite if xT Mx > 0 for all x ∈ �n, denoted by M � 0.
The set of positive semidefinite matrices is denoted as Sn

+.
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We state some well known properties regarding positive semidefinite matri-
ces.

Theorem 3.2.2. The following statements are equivalent:

– The symmetric matrix A is positive semidefinite.

– All eigenvalues of A are nonnegative.

– All the principal minors of A are nonnegative.

– Tr(A · B) > 0 for all B � 0.

There is another well-known characterization of a matrix being PSD, as it is
very important for us, we single it out as a theorem.

Theorem 3.2.3 (Gram Decomposition of PSD Matrices). Given Y ∈ Sn
+, y � 0

if and only if there exists a set of vectors {vecxi}i∈[n] ∈ �
m for some m 6 n such

that Y = XXT where X is an n ×m matrix composite of xi as rows. We refer to Y
as the Gram matrix of {x} and {xi} as the Gram decomposition of Y.

If X − Y � 0 then we write X � Y .

Definition 3.2.4 (Convex Set). Given X ⊆ �n, we say X is convex if for any
y, z ∈ X and θ ∈ [0, 1], θy + (1 − θ)x ∈ X.

Definition 3.2.5 (Convex Hull). Given X ⊆ �n, the convex hull of X is defined
as:

convex(X) def
=

⋂
Cconvext and X⊆C

C

3.3 Convex Optimization and Semidefinite
Programming

Definition 3.3.1. Given a convex set K ⊆ �n and a convex function f : �n 7→ �,
consider the following optimization problem

inf f (x) subject to x ∈ K

We call problems of this natural convex optimization problems. Here f is the
objective function and K is called feasible region. For any x ∈ �n and x ∈ K
we call x a feasible solution. If k = ∅ we say the convex optimization problem
is infeasible. We call the infimum of the problem the optimum. If there exists a
point x ∈ K achieving this value, we call x the optimal solution.
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Definition 3.3.2 (Semidefinite Programming). Convex optimization of the fol-
lowing form is called a semidefinite program(SDP):

inf〈C,M〉
subject to BM = D

M � 0

Remark 3.3.3. While convex optimization problems always concentrate on
computing the infimum of the objective function, SDP supports supremum as
well. This is because the objective in SDP is an linear function.

Definition 3.3.4 (Vector Form SDPs). Most of the time we will use an alternate
form of SDP where the variables in SDP are vectors with linear constraints and
objective function on inner products between these vectors. Vector formed SDP
usually looks like the following:

inf
∑

i, j∈[n]×[m]

Ci, jvi · v j

subject to
∑
j∈[m]

B1, jv1 · v j = d1

...∑
j∈[m]

Bn, jvn · v j = dn

One could easily show that the matrix form and vector form are equivalent.

Proposition 3.3.5 (Equivalence between matrix form and vector form). The SDP
3.3.2 and 3.3.4 are equivalent, i.e., given a feasible solution to one SDP one
could construct a solution to the other SDP with the same objective function.

Proof. Given a feasible solution to the matrix form SDP, we can take its Gram
decomposition and obtain a set of vectors as the solution to the vector form
SDP. On the other hand, given a feasible solution to the vector form SDP we
can obtain a matrix as the solution to the matrix form SDP by taking its Gram
decomposition. �

3.4 Information Theory, Entropy and Mutual
Information

In this section we give some basic definitions from information theory.
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Definition 3.4.1 (Entropy). Let X be a random variable taking values over [q].
The entropy of X is defined as

H(X) def
= −

∑
i∈[q]

�(X = i) log�(X = i)

Definition 3.4.2 (Mutual Information). Let X and Y be two jointly distributed
variables taking values over [q]. The mutual information of X and Y is defined
as

I(X; Y) def
=

∑
i, j∈[q]

�(X = i,Y = j) log
�(X = i,Y = j)
�(X = i)�(Y = j)

Definition 3.4.3 (Conditional Entropy). Let X and Y be two jointly distributed
variables taking values over [q]. The conditional entropy of X conditioned on Y
is defined as

H(X|Y) = �
i∈[q]

[H(X|Y = i)]

We also give two well-known theorems in information theory below.

Theorem 3.4.4. Let X and Y be two jointly distributed variables taking value on
[q], then

I(X; Y) = H(X) − H(X|Y)

Theorem 3.4.5. (Data Processing Inequality) Let X,Y,Z,W be random vari-
ables such that H(X|W) = 0 and H(Y |Z) = 0, i.e., X is fully determined by W
and Y is fully determined by Z, then

I(X; Y) 6 I(W; Z)

Mutual Information, Statistical Distance and Independence
Intuitively, when two random variables have low mutual information, they
should be close to being independent. In this section we formalize this intu-
ition by giving an explicit bound on the statistical distance between the joint
distribution and the independent distribution. We stress that all the results here
are sufficient for our use in this work, but we believe the parameters could be
further optimized.

We start by defining a few notions that measures the correlation of two ran-
dom variables.

Definition 3.4.6. Let Ω be a finite sample space, P and Q be two probability
distributions on Ω. The square Hellinger distance of P and Q is defined as

H2(P,Q) =
1
2

∑
x∈Ω

(
√

P(x) −
√

Q(x))2
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Definition 3.4.7. Let Ω be a finite sample space, P and Q be two probability
distributions on Ω. The Kullback-Leibler divergence of P and Q is defined as

DKL(P‖Q) =
∑
x∈Ω

P(x) log
P(x)
Q(x)

Now we give a few facts regarding mutual information, Hellinger distance
and Kullback-Leibler divergence without proving them.

Fact 3.4.8. Let X and Y be two jointly distributed random variables taking value
in [q], then

I(X; Y) = DKL(p(x, y)‖p(x) × p(y)).

where p(x, y) is the joint distribution of X and Y on [q]2 and p(x) × p(y) is the
product distribution of the marginal distributions of X and Y.

Fact 3.4.9. Let Ω be a finite sample space, P and Q be two probability distribu-
tion on Ω, then

DKL(Q‖P) >
2

ln 2
H2(P,Q)

Combining the facts mentioned above, we get the following relation between
mutual information and statistical distance.

Fact 3.4.10. Let X and Y be two jointly distributed random variables on [q] then,

I(X; Y) >
1

2 ln 2

∑
i, j∈[q]

(�(X = i,Y = j) − �(X = i)�(Y = j))2 ,

in particular for all i, j ∈ [q]

|�(X = i,Y = j) − �(X = i)�(Y = j)| 6
√

2I(X; Y)

As a consequence, if X and Y are two random variables defined on {−1, 1},
Cov(X,Y) 6 O(

√
I(X; Y))

Lemma 3.4.11. Let X and Y be two jointly distributed random variables on [q],
we have

I(X; Y) >
1

2 ln 2

∑
i, j∈[q]

(�(X = i,Y = j) − �(X = i)�(Y = j))2

Proof.

I(X; Y) = DKL(p(x, y)‖p(x) × p(y))

>
2

ln 2
H2(p(x, y), p(x) × p(y))
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=
2

ln 2

∑
i, j∈[q]

( √
�(X = i,Y = j) −

√
�(X = i)�(Y = j)

)2

=
2

ln 2

∑
i, j∈[q]

 �(X = i,Y = j) − �(X = i)�(Y = j)√
�(X = i,Y = j) +

√
�(X = i)�(Y = j)

2

>
1

2 ln 2

∑
i, j∈[q]

(�(X = i,Y = j) − �(X = i)�(Y = j))2

Upper bounding ln2 by 1 finishes the proof. �
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Chapter 4

LP and SDP Relaxations

4.1 Introduction
Given a combinatorial optimization problem Λ, there are numerous ways of writ-
ing a relaxation in order to obtain approximation algorithms for Λ. Due to the
sheer diversity of combinatorial optimization problems, it’s practically impossi-
ble to find a canonical way to write the "correct" relaxation for every problem
as different problems warrant very different constraints in the relaxation. Com-
ing up with the best relaxation has been a major part of the effort in designing
approximation algorithms in the past few decades.

Of course the ultimate question to ask would be: given a combinatorial opti-
mization problem Λ, what is the "best" relaxation one could write for Λ? How-
ever, before even attempting to answer this question, we need to first clarify two
questions:

– Given a problem Λ, what is considered as a valid relaxation? For example,
given an instance I of Λ, one could use brute-force algorithm to compute
the optimum of I then construct an LP/SDP such that the optimum is ex-
actly this value. Of course this kind of LPs/SDPs should not be considered
valid. Therefore we need a clear definition of what kind of LPs/SDPs are
considered as valid relaxation.

– As one can always add valid constraints to an (non-tight) LP/SDP to make
it tighter, it’s hard to define "best" relaxation under the polynomial solv-
able regime. Henceforth it would be preferable to have a clear measure-
ment of the size of an LP/SDP and the question would become: given a
combinatorial optimization problem Λ and size k, what is the "best" relax-
ation one could write for Λ of size at most k?

We will formally define generic LP/SDP relaxation of a combinatorial opti-
mization problem and the size of an LP/SDP in the next section.
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Just like the duality between approximation algorithms and hardness of ap-
proximation results, there are also two lines of work trying to answer this ques-
tion. On one hand, people have been trying to develop different relaxations in
order to better approximate a combinatorial problem, this is usually done by
adding constraints which are satisfied by an integer solution. In particular, one
could add constraints that involves at most k variables and let k increase. This
process of generating stronger relaxations by adding larger but local constraints
is captured by various hierarchies of LP/SDP relaxations such as the one defined
by Lovász and Schrijver [54], Sherali and Adams [68] and Lasserre [51]. Start
from a basic relaxations, these hierarchies define various levels of convex relax-
ations for a problem, with the relaxation at a high level being more powerful
then the relaxations at lower levels. These hierarchies are known to capture the
LP/SDP used in the best known algorithms for many problems, such as the SDP
relaxation for Sparsest Cut by Arora, Rao and Vazirani [4] and the θ-function
of Lovász for Maximum Independent Set [53], within a constant number of lev-
els. It is also known that for an integer program with n variables taking values
in {0, 1}, the n-levels of the hierarchies mentioned above all have integrality gap
1, i.e., it produces the exact solution. However, writing/solving t-levels of the
hierarchies takes time O(nO(t)) time which is exponential when t = Σ(n). We will
briefly define these hierarchies and give some examples in this chapter. In Chap-
ter 5, we will give a generic framework to round Sum-of-Squares Hierarchy for
CSPs as well as CSPs with global cardinality constraints.

On the other hand, people have also been trying to prove lower bound for
LP/SDP, i.e., showing that there doesn’t exist any LP/SDP within certain size
that achieves some approximation guarantee. This long line of work all started
with the groundbreaking work of Yannakakis [72]. He proved that the TSP and
matching polytopes do not admit symmetric linear programming formulations of
size 2o(n) , where n is the number of vertices in the underlying graph. In the pro-
cess, he laid the structural framework (in terms of non-negative factorizations)
that would underlie all future work in the subject. In Chapter 6, we will survey
recent breakthroughs for symmetric and general LP/SDP relaxations for various
combinatorial optimization problems, also show that for constraint satisfaction
problems (CSPs), Sum-of-Squares SDP gives the best possible approximation
ratio among symmetric SDPs of similar size.

4.2 Generic LP and SDP Relaxation For
Max-CSPs

In this section we formally define the computation model of linear/semidefinite
relaxations for combinatorial optimization problems (more specifically Max
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CSPs) that we consider in this thesis. In Chapter 6, we will prove symmetric
SDP relaxation lower bound using this model.

Let us take Max Cut as an example. Given a graph G = (V, E) with |V | = n.
For any S ⊂ V , let us define the cut value of (S , S̄ ) as

G(S ) =
|E(S , S̄ )|
|E|

which represents the fraction of edges crossing the cut (S , S̄ ). Therefore the max
cut of the graph is opt(G) = maxS⊂V G(S ).

An attempt to write an LP relaxation for Max Cut. Recall that the integer
program for Max Cut is as follows:

Integer program for Max Cut

maximize
∑

e=(u,v)∈E

|Xu − Xv|

subject to Xv ∈ {0, 1} for every vertex v ∈ V

In order to relax the integer program above into an linear program, we need
to resolve two issues: First of all, the constraint Xv ∈ {0, 1} is not a linear con-
straint, in fact it’s not even a convex constraint as the underlying feasible space
is discrete. Secondly the objective function

∑
e=(u,v)∈E |Xu − Xv| is also non-linear.

As for the first issue, one natural solution would be to relax the condition
Xv ∈ {0, 1} into a linear constraints 0 6 Xv 6 1.

The second issue is slightly trickier, as the function |Xu − Xv| cannot be nat-
urally expressed as a linear function of Xu and Xv. A common trick to deal with
situation like this is to introduce auxiliary variables. For example, in order to
express a nonlinear constraint that looks like |x| 6 c, one can introduce a new
variable y that represents |x|. In order to enforce that, one need to add two new
constraints y > x as well as y > −x. These two constraints together with con-
straint y 6 c will create a polytope on variables x and y such that its projection
onto variable x gives us exactly the polytope |x| 6 c that we wanted. The new
polytope of x and y we constructed is called an extended formulation of the orig-
inal polytope.

Back to Max Cut problem, using the similar idea, we could introduce new
variables Yu,v that is intended to represent the value of |Xu−Xv|. However, simply
adding constraints Yu,v > Xu − Xv and Yu,v > Xv − Xu no longer works, as in this
case Yu,v would simply be unbounded since we’re dealing with a maximization
problem.
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Therefore, in order to enforce Yu,v behaves exactly like |Xu − Xv|, we need to
add more constraints. One possible way to do so is the following: we want to
make sure that there exists some local distribution µu,v on the variables Xu and Xv

such that Yu,v = �µu,v |Xu−Xv|. To do so, we can introduce 4 new variables Pu=0,v=0,
Pu=0,v=1, Pu=1,v=0 and Pu=1,v=1 that represents the probability of each event in the
distribution, and add constraint Yu,v = Yu,v = �µu,v |Xu − Xv| = Pu=0,v=1 + Pu=1,v=0.
Note that we can easily add linear constraints to ensure that they indeed form
a probability distribution. Now we have a reasonable despite cumbersome LP
relaxation for Max Cut problem as follows:

An linear program for Max Cut

maximize
∑

e=(u,v)∈E

Yu,v

subject to 0 6 Xv 6 1 for every vertex v ∈ V
Yu,v = Pu=0,v=1 + Pu=1,v=0 for every pair (u, v)
Pu,v ∈ 4{0,1}2 for every u, v ∈ V

Here 4{0,1}2 denotes the convex hull of all the distribution on {0, 1}2.
In fact, the linear program above is exactly the second level of Sherali-Adams

relaxation for Max Cut problem.

Generic LP/SDP Relaxation. Of course, the LP relaxation we showed above
is only one possible way of writing LP relaxation for Max Cut problem. We
need a way to characterize all possible relaxation for this problem.

First off, a seemingly trivial property about our LP relaxation is that, given
any cut S ⊂ V , one can construct a feasible solution to the LP {X,Y, P}S (in the
most obvious way) such that the objective function is exactly the cut value.

Second thing to observe is that the linear constraints in the LP above does
not depend on the actual graph, except the size of the graph |V |. In fact, all
the information of the graph is encoded in the objective function – this is called
linearization of the graph.

In fact, the properties above are all we need from a relaxation. Formally, we
require the a relaxation to satisfy the following condition: For every n ∈ �, there
exists a number D(n) ∈ � and two mappings:

– First mapping is from an arbitrary graph G of size n to a feasible vector
vG ∈ �

D(n) for the LP

– Second mapping is from an arbitrary cut S ⊆ [n] (note that S does not
depend on G) to a vector vyS ∈ �

D(n)
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such that for all graphs G and cut S , we have

G(S ) = 〈vG, yS 〉

Moreover, the objective function of the relaxation should be the following:

max〈vG, yS 〉

Given a feasible relaxation of this form, we say that D(n) is the size of the
relaxation.

Notice that the definition above didn’t touch upon the fact that the relaxation
is a linear program. The only requirement is that the cuts of the graph has to be
able to be embedded into the feasible region of the relaxation in a way such that
the inner products between these vectors and the graph specific vectors (vG gives
exactly the cut value). Hence, this definition handily carries over to SDP as well.
We will give a more detailed definition for SDP case in Chapter 6.

4.3 Sum-of-Squares SDP Hierarchy
We devote this section to Sum-of-Squares SDP hierarchy, where we will give a
relatively detailed description of Sum-of-Squares SDP hierarchy for Max-CSPs,
as well as some properties that we will be using in this thesis. Sum-of-Squares
SDP hierarchy, also known as Lasserre or Lasserre-Parrilo SDP hierarchy, is
an extremely powerful tool for obtaining approximation algorithms. In fact, a
few rounds of Sum-of-Squares SDP hierarchy already capture the best known
algorithms for many problems including Sparsest Cut, Vertex Cover, and all
Max-CSPs.

To motivate Sum-of-Squares SDP hierarchy for Max-CSPs, we will again
start with Max Cut problem.

Recall that in the previous section we derived a linear program for Max Cut
as follows:

A linear program for Max Cut

maximize
∑

e=(u,v)∈E

Yu,v

subject to 0 6 Xv 6 1 for every vertex v ∈ V
Yu,v = Pu=0,v=1 + Pu=1,v=0 for every pair (u, v)
Pu,v ∈ 4{0,1}2 for every u, v ∈ V

We will start by trying to write an analogue SDP version of this LP. To do
so, we will introduce two new variables wv,0 and wv,1. In the intended solution,
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one of them is equal to some constant unit vector I and the other one is equal to
0, depending on whether Xu is 0 or 1. Hence we can add the following (valid)
constraint:

wv,0 · wv,1 = 0

(wv,0 + wv,0 − I)2 = 0

Note that the first constraint implies the orthogonality between wv,0 and wv,1.
Also observe that in the intended integral solution, the inner product

〈wv,α,wu,β〉 exactly captures the probability of the event Xv = α∧Xu = β happen-
ing, this constraint alone already captures all the constraints we wrote above.

Combining the observations above, we obtain the following SDP relaxation:

A simple SDP for Max Cut

maximize
∑

e=(u,v)∈E

Pu=1,v=0 + Pu=0,v=1

subject to wu,α · wv,α = Pu=α,v=β for every u, v ∈ V and possibly u = v

Pu,v ∈ 4{0,1}2 for every u, v ∈ V

In fact this SDP looks quite similar to the LP we had before – the only dif-
ference is that in the local distributions the probabilities are no longer some
arbitrary distribution on {0, 1}2, but instead has to come from inner product of
some vectors, hence more restricted.

On first glance this small restriction does not seem too significant. However,
as it turns out, this additional constraint significantly improves the approxima-
tion power of the relaxation. While it is well known the the simple LP (and
its improved versions) does not achieve anything beyond the somewhat trivial
1/2-approximation for Max Cut problem[59], this simple SDP actually achieves
0.878-approximation for Max Cut algorithm, which is optimal under Unique
Games Conjecture. Below we prove it by comparing this SDP to the Goemans-
Williamson SDP relaxation 2.2. Recall that the Goemans-Williamson SDP is as
follows:

Goemans-Williamson SDP relaxation for Max Cut.

maximize
∑

e=(u,v)∈E

(Xu − Xv)2/4

subject to X2
v = 1 for every vertex v ∈ V
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Lemma 4.3.1. The SDP 4.3 is at least as good as the Goemans-Williamson SDP.

Proof. In order to show the lemma, all we need to show is that given an SDP
solution to the simple SDP 4.3, we can convert it into a Goemans-Williamson
SDP solution on the same graph with the same objective value.

In fact, the conversion is quite simple: for each vertex v ∈ V , define Xv =

wv,0 − wv,0.
First we show that Xv is an unit vector.
To see this, observe that

X2
v =wv,0 · wv,0 + wv,0 · wv,1 + wv,1 · wv,0 + wv,1 · wv,1

=Pv=0 + 0 + 0 + Pv=1

=1

We also have to show that the objective function does not suffer from this
conversion. To this end observe that for each edge e = (u, v), the following
holds:
(Xu − Xv)2

4
=

(wu,0 − wu,1 − wv,0 + wv,1)2

4

=
Pu=0 + Pu=1 + Pv=0 + Pv=1 − Pu=0,v=0 − Pu=1,v=1 + Pu=0,v=1 + Pu=1,v=0

4
= Pu=0,v=1 + Pu=1,v=0

Hence the SDP value does not change, and the lemma follows. �

Now we have a simple SDP to start with, we can try to strengthen it by adding
more constraints. Recall that we achieved better approximation ratio by enforc-
ing the underlying local distribution to be consistent with inner product of some
vectors. There are several natural ways that one could add more constraints:

– Current SDP only enforces local distribution on every subset of 2 vari-
ables, we could extend this to local distribution on subset of k variables
for some constant k while maintaining polynomial size.

– Right now the vectors are indexed by a variable and an assignment of the
variable, we can extend this to a subset of k variables and an assignment
of the subset, for some constant k.

– We can also add constraint to enforce consistency across local distribu-
tions, i.e.,, for two subset S and T such that S ∩ T , ∅, the marginal
distribution of PS and PT restricted onto S ∩ T should be consistent.

In fact, this is exactly what k-rounds of Sum-of-Squares SDP hierarchy does!
For concreteness, we write down the Laserre SDP relaxation for Max Cut prob-
lem below.
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Sum-of-Squares SDP hierarchy for Max Cut. In k-rounds of Sum-of-
Squares SDP consists of the following variables:

– An unit constant vector I

– For every subset S ⊆ V , |S | 6 k and an assignment of the variables in S α,
a vector vS ,α

– For every subset S ⊆ V , |S | 6 k, a local distribution µS ∈ 4({0, 1}S )

The SDP is as follows:

k-rounds of Sum-of-Squares SDP relaxation for Max Cut.

maximize
∑

e=(u,v)∈E

�µ{u,v}(Xu , Xv)

subject to
∑

α∈{0,1}S
vS ,α = I for every subset |S | 6 k

〈vS ,α, vT,β〉 = �µS∪T (XS = α, XT = β) for every subset S , T such that |S ∪ T | 6 k

µS ∈ 4({0, 1}S ) for subset |S | 6 k

Remark 4.3.2. This SDP has O(nk × 2k) variables therefore can be solved in
polynomial time for any constant k.

Remark 4.3.3. The variables µS are not necessary in the SDP as they can be re-
placed by the inner product of the vectors. We only write them down to increase
readability of the relaxation.
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Chapter 5

An Improved Approximation
Algorithm for Max Bisection

In this chapter we will give an example on how to utilize the power of Sum-
of-Squares SDP hierarchy in the context of Max-CSPs with global cardinality
constraints. In particular, we will give a simple yet powerful framework to round
Sum-of-Squares SDP solutions. To illustrate this framework, we will present an
improved algorithm for the Max Bisection problem.

5.1 Introduction
As we mentioned in the previous chapters, Constraint Satisfaction Problems
(CSP) are a class of fundamental optimization problems that have been ex-
tensively studied in approximation algorithms and hardness of approximation.
Recall that in a constraint satisfaction problem, the input consists of a set of
variables taking values over a fixed finite domain (say {0, 1}) and a set of local
constraints on them. The constraints are local in that each of them depends on
at most k variables for some fixed constant k. The goal is to find an assignment
to the variables that satisfies the maximum number of constraints.

Over the last two decades, there has been much progress in understanding the
approximability of CSPs. On the algorithmic front, semidefinite programming
(SDP) has been used with great success in approximating several well-known
CSPs such as Max Cut [31], Max 2-Sat [13] and Max 3-Sat [46]. More re-
cently, these algorithmic results have been unified and generalized to the entire
class of constraint satisfaction problems [64]. With the development of PCPs and
long code based reductions, tight hardness results matching the SDP based algo-
rithms have been shown for some CSPs such as Max-3-SAT [40]. In a surprising
development under the Unique Games Conjecture, semidefinite programming
based algorithms have been shown to be optimal for Max Cut [49], Max 2-Sat
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[5] and more generally every constraint satisfaction problem [61].
Unfortunately, neither SDP based algorithms nor the hardness results ex-

tend satisfactorily to optimization problems with non-local constraints. Part of
the reason is that the nice framework of SDP based approximation algorithms
and matching hardness results crucially rely on the locality of the constraints
involved. Perhaps the simplest non-local constraint would be to restrict the car-
dinality of the assignment, i.e., the number of ones in the assignment. Variants
of CSPs with even a single cardinality constraint are not well-understood. Op-
timization problems of this nature, namely constraint satisfaction problems with
global cardinality constraints are the primary focus of this work. Several impor-
tant problems such as Max Bisection, Min Bisection, Small-Set Expansion can
be formulated as CSPs with a single global cardinality constraint.

As an illustrative example, let us consider the Max Bisection problem which
is also part of the focus of this chapter. The Max Bisection problem is a variant
of the much well-studied Max Cut problem [31, 49]. In the Max Cut problem
the goal is to partition the vertices of the input graph in to two sets while maxi-
mizing the number of crossing edges. The Max Bisection problem includes an
additional cardinality constraint that both sides of the partition have exactly half
the vertices of the graph. The seemingly mild cardinality constraint appears to
change the nature of the problem. While Max Cut admits a factor 0.878 approx-
imation algorithm [31], the best known approximation factor for Max Bisection
equals 0.7027 [25], improving on previous bounds of 0.6514 [28], 0.699 [73],
and 0.7016 [36]. These algorithms proceed by rounding the natural semidefinite
programming relaxation analogous to the Goemans-Williamson SDP for Max
Cut. In a recent work, Guruswami et al. [35] showed that this natural SDP re-
laxation has a large integrality gap: the SDP optimum could be 1 whereas every
bisection might only cut less than 0.95 fraction of the edges! In particular, this
implies that none of these algorithms guarantee a solution with value close to 1
even if there exists a perfect bisection in the graph. More recently, using a com-
bination of graph-decomposition, bruteforce enumeration and SDP rounding,
Guruswami et al. [35] obtained an algorithm that outputs a 1 − O(ε1/3 log(1/ε))
bisection on a graph that has a bisection of value 1 − ε.

A simple approximation preserving reduction from MaxCut shows that Max
Bisection is no easier to approximate than Max Cut (the reduction is simply to
take two disjoint copies of the Max Cut instance). Therefore, the factor 16/17
NP-hardness [40, 69] and the factor 0.878 Unique-Games hardness for Max
Cut [49] also applies to the Max Bisection problem. In fact, a stronger hard-
ness result of factor 15/16 was shown in [41] assuming NP *

⋂
γ>0 TIME(2nγ).

Yet, these hardness results for Max Bisection are far from matching the best
known approximation algorithm that only achieves a 0.702 factor.



CHAPTER 5. AN IMPROVED APPROXIMATION ALGORITHM FOR
MAX BISECTION 36

5.2 Statement of Results
In this chapter, we develop a general approach to approximate CSPs with global
cardinality constraints using the Sum-of-Squares SDP hierarchy.

We illustrate the approach with an improved approximation algorithm for
the Max Bisection and balanced Max 2-Sat problems. For the Max Bisection
problem, we show the following result.

Theorem 5.2.1. For every δ > 0, there exists an algorithm for Max Bisection
that runs in time O(npoly(1/δ)) and obtains the following approximation guaran-
tees,

– The output bisection has value at least 0.85 − δ times the optimal max
bisection.

– For every ε > 0, given an instance G with a bisection of value 1 − ε, the
algorithm outputs a bisection of value at least 1 − O(

√
ε) − δ.

Note that the approximation guarantee of 1 −O(
√
ε) on instances with 1 − ε

is nearly optimal (up to constant factors in the O()) under the Unique Games
Conjecture. This follows from the corresponding hardness of Max Cut and the
reduction from Max Cut to Max Bisection.

Our approach is robust in that it also yields similar approximation guarantees
to the more general α-Max Cut problem where the goal is to find a cut with ex-
actly α-fraction of vertices on one side of the cut. More generally, the algorithm
also generalizes to a weighted version of Max Bisection, where the vertices have
weights and the cut has approximately half the weight on each side. 1

The same algorithm also yields an approximation to the complementary
problem of Min Bisection. Formally, we obtain the following approximation
algorithm for Min Bisection and α-Balanced Separator.

Theorem 5.2.2. For every δ > 0, there exists an algorithm running in time
O(nO(poly(1/δ))), which given a graph with a bisection (α-balanced separator) cut-
ting ε-fraction of the edges, finds a bisection (α-balanced separator) cutting at
most O(

√
ε) + δ-fraction of edges.

5.3 Overview of Techniques
In this section, we outline our approach of approximating the Max Bisection
problem. The techniques are fairly general and can be applied to other CSPs
with global cardinality constraints as well.

1Note that in the weighted case, finding any exact bisection is at least as hard as subset-sum
problem.
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Global Correlation. For the sake of exposition, let us recall the Goemans and
Williamson algorithm for Max Cut. For more detailed description and analysis,
please refer to Chapter 2. Given a graph G = (V, E), the Goemans-Williamson
SDP relaxation for Max Cut assigns a unit vector vi for every vertex i ∈ V , so as
to maximize the average squared length Ei, j∈E‖vi − v j‖

2 of the edges. Formally,
the SDP relaxation is given by,

maximize �
i, j∈E
‖vi − v j‖

2 subject to ‖v‖2i = 1 ∀i ∈ V

The rounding scheme picks a random halfspace passing through the origin and
outputs the partition of the vertices induced by the halfspace. The value of the
cut returned is guaranteed to be within a 0.878-factor of the SDP value.

The same algorithm would be an approximation for Max Bisection if the
cut returned by the algorithm was near-balanced, i.e., |S | ≈ |V |/2. Indeed, the
expected number of vertices on either side of the partition is |V |/2, since each
vertex i ∈ V falls on a given side of a random halfspace with probability 1

2 .
If the balance of the partition returned is concentrated around its expectation

then the Goemans and Williamson algorithm would yield a 0.878-approximation
for Max Bisection. However, the balance of the partition need not be concen-
trated, simply because the values taken by vertices could be highly correlated
with each other!

SDP Relaxation. As we mentioned earlier, the reason that the Goemans-
Williamson algorithm does not work well for Max Bisection is because the
rounded solution might be highly correlated, therefore the balance of the cut
might not be concentrated around the expected value. Due to the special formu-
lation of Goemans-Williamson SDP, it is quite difficult to bound the correlation
between the vertices, as every unit vector is a feasible solution to Goemans-
Williamson SDP. The situation turns out to be quite different for Sum-of-Squares
SDP hierarchy - as the Sum-of-Squares SDP solution gives us local distribution
among small subsets of vertices, therefore gives us more room to exploit the
correlations between the vertices.

For more detailed explanation of Sum-of-Squares SDP hierarchy we refer
the reader to Chapter 4. Here we will recall some basic properties about Sum-
of-Squares SDP. On a high level, the solutions to a Sum-of-Squares SDP hier-
archy are vectors that locally behave like a distribution over integral solutions.
The k-round Sum-of-Squares SDP has the following properties similar to a true
distribution over integral solutions.

– Marginal Distributions For any subset S of vertices with |S | 6 k, the SDP
will yield a distribution µS on partial assignments to the vertices ({−1, 1}S ).
The marginals of µS , µT for a pair of subsets S and T are consistent on their
intersection S ∩ T .
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– Conditioning Analogous to a true distribution over integral solutions, for
any subset S ⊆ V with |S | 6 k and a partial assignment α ∈ {−1, 1}S , the
SDP solution can be conditioned on the event that S is assigned α.

A detailed description of the Sum-of-Squares SDP hierarchy applied specifically
to Max Bisection will be given in section 5.4.

Measuring Correlations. Throughout this chapter we will use mutual infor-
mation as a measure of correlation between two random variables. We refer
the reader to Chapter 2 for the definitions of Shannon entropy and mutual in-
formation. Recall that the correlation(mutual information) between two random
variables X and Y is given by

I(X; Y) = H(X) − H(X|Y) ,

The crucial observation is that the definition only depends on local distribution
between X and Y , therefore it is also well defined in a Sum-of-Squares SDP
solution. Specifically, given two vertices i and j, the mutual information between
them is defined as i and j is given by

Iµi, j(Xi; X j) = H(Xi) − H(Xi|X j) ,

where the random variables Xi, X j are sampled using the local distribution µi, j

associated with the Sum-of-Squares SDP solution. An SDP solution will be
termed α-independent if the average mutual information between random pairs
of vertices is at most α, i.e., �i, j∈V[I(Xi; X j)] 6 α.

For most natural rounding schemes such as the halfspace-rounding, the vari-
ance of the balance of the cut returned is directly related to the average cor-
relation between random pairs of vertices in the graph. In other words, if the
rounding scheme is applied to an α-independent SDP solution then the variance
of the balance of the cut is at most poly(α).

Obtaining Uncorrelated SDP Solutions. Intuitively, if it is the case that glob-
ally all the vertices are highly correlated, then conditioning on the value of a
vertex should reveal information about the remaining vertices, therefore reduc-
ing the total entropy of all the vertices.

Formally, let us suppose the k-rounds Sum-of-Squares SDP solution is not α-
independent, i.e., �i, j∈V[I(Xi; X j)] > α. In this case, if we randomly pick a vertex
i ∈ V , sample its value b ∈ {−1, 1} and condition the SDP solution to the event
Xi = b, this would result in the average entropy vertices (� j∈V[H(X j)]) by at
least α in expectation. We can keep repeating this process until α-independence
is achieved.
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To see that this proces will eventually terminate, observe that the initial av-
erage entropy � j∈V[H(X j)] is at most 1 (since these are binary variables), and
the quantity always remains non-negative. Therefore, within 1

α
conditionings,

the SDP solution will be α-independent with high probability. Starting with a
k-round Sum-of-Squares SDP solution, this process produces a k − t round α-
independent Sum-of-Squares SDP solution for some t > 1

α
.

Rounding Uncorrelated SDP Solutions. Given an α-independent SDP solu-
tion, for many natural rounding schemes the balance of the output cut is con-
centrated around its expectation. That is quite convenient since when designing
rounding algorithms we do not have worry about the concentration anymore.
Hence we need to ensure that: 1) the rounding scheme should output a balanced
cut in expectation and 2) The expected cut value should be good when compared
to the SDP value. We exhibit a simple rounding scheme that preserves the bias
of each vertex individually, thereby preserving the global balance property. The
details of the rounding algorithm will be described in section 5.6.

5.4 Preliminaries
Constraint Satisfaction Problem with Global Cardinality Constraints. In
this section we recall some definitions of CSPs with global constraints from
Chapter 2 as well as some information theory notions form Chapter 3.

Definition 5.4.1 (Constraint Satisfaction Problems with Global Cardinality Con-
straints). A constraint satisfaction problem with global cardinality constraints is
specified by Λ = ([q],�, k, c) where [q] = {0, . . . , q − 1} is a finite domain,
� = {P : [q]t 7→ [0, 1]|t 6 k} is a set of payoff functions. The maximum number
of inputs to a payoff function is denoted by k. The map c : [q] 7→ [0, 1] is the
cardinality function which satisfies

∑
i ci = 1. For any 0 6 i 6 q− 1, the solution

should contain ci fraction of the variables with value i.

Remark 5.4.2. Although some problems (e.g., Balanced Separator) do not fix
the cardinalities to be some specific quantities, they can be easily reduced to the
above case.

Definition 5.4.3. An instance Φ of constraint satisfaction problems with global
cardinality constraints Λ = ([q],�, k, c) is given by Φ = (V,�V,W) where

– V = {x1, . . . , xn}: variables taking values over [q]

– �V consists of the payoffs applied to subsets S of size at most k
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– Nonnegative weights W = {wS } satisfying
∑
|S |6k wS = 1. Thus we may

interpret W as a probability distribution on the subsets. By S ∼ W, we
denote a set S chosen according to the probability distribution W

– An assignment should satisfy that the number of variables with value i is
cin (we may assume this is an integer).

Here we give a few examples of CSPs with global cardinality constraints.

Definition 5.4.4 (Max(Min) Bisection). Given a (weighted) graph G = (V, E)
with |V | even, the goal is to partition the vertices into two equal pieces such that
the number (total weights) of edges that cross the cut is maximized (minimized).

More generally, in an α-Max Cut problem, the goal is to find a partition
having αn vertices on one side, while cutting the maximum number of edges.
Furthermore, one could allow weights on the vertices of the graph, and look for
cuts with exactly α-fraction of the weight on one side. Most of our techniques
generalize to this setting.

Throughout this work, we will have a weighted graph G with weights W
on the vertices. The weights on the vertices are assumed to form a probability
distribution. Hence the notation i ∼ W refers to a random vertex sampled from
the distribution W.

Definition 5.4.5 (Edge Expansion). Given a graph (w.l.o.g, we may assume it is
a unweighted regular graph) G = (V, E), and δ ∈ (0, 1/2), the goal is to find a
set S ⊆ V such that |S | = δ|V | and the edge expansion of S : Φ(S ) =

E(S ,S̄ )
d|S | is

minimized.

First we recall some information theoretical notions we mentioned in Chap-
ter 3.

Information Theoretic Notions
Definition 5.4.6. Let X be a random variable taking values over [q]. The entropy
of X is defined as

H(X) def
= −

∑
i∈[q]

�(X = i) log�(X = i)

Definition 5.4.7. Let X and Y be two jointly distributed variables taking values
over [q]. The mutual information of X and Y is defined as

I(X; Y) def
=

∑
i, j∈[q]

�(X = i,Y = j) log
�(X = i,Y = j)
�(X = i)�(Y = j)
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Definition 5.4.8. Let X and Y be two jointly distributed variables taking values
over [q]. The conditional entropy of X conditioned on Y is defined as

H(X|Y) = �
i∈[q]

[H(X|Y = i)]

We also give two well-known theorems in information theory below.

Theorem 5.4.9. Let X and Y be two jointly distributed variables taking value on
[q], then

I(X; Y) = H(X) − H(X|Y)

Theorem 5.4.10. (Data Processing Inequality) Let X,Y,Z,W be random vari-
ables such that H(X|W) = 0 and H(Y |Z) = 0, i.e., X is fully determined by W
and Y is fully determined by Z, then

I(X; Y) 6 I(W; Z)

Mutual Information, Statistical Distance and Independence
Intuitively, when two random variables have low mutual information, they
should be close to being independent. In this section we formalize this intu-
ition by giving an explicit bound on the statistical distance between the joint
distribution and the independent distribution. We stress that all the results here
are sufficient for our use in this work, but we believe the parameters could be
further optimized.

We start by defining a few notions that measures the correlation of two ran-
dom variables.

Definition 5.4.11. Let Ω be a finite sample space, P and Q be two probability
distributions on Ω. The square Hellinger distance of P and Q is defined as

H2(P,Q) =
1
2

∑
x∈Ω

(
√

P(x) −
√

Q(x))2

Definition 5.4.12. Let Ω be a finite sample space, P and Q be two probability
distributions on Ω. The Kullback-Leibler divergence of P and Q is defined as

DKL(P‖Q) =
∑
x∈Ω

P(x) log
P(x)
Q(x)

Now we give a few facts regarding mutual information, Hellinger distance
and Kullback-Leibler divergence without proving them.
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Fact 5.4.13. Let X and Y be two jointly distributed random variables taking
value in [q], then

I(X; Y) = DKL(p(x, y)‖p(x) × p(y)).

where p(x, y) is the joint distribution of X and Y on [q]2 and p(x) × p(y) is the
product distribution of the marginal distributions of X and Y.

Fact 5.4.14. Let Ω be a finite sample space, P and Q be two probability distri-
bution on Ω, then

DKL(Q‖P) >
2

ln 2
H2(P,Q)

Combining the facts mentioned above, we get the following relation between
mutual information and statistical distance.

Fact 5.4.15. (Restatement of Fact 5.5.3) Let X and Y be two jointly distributed
random variables on [q] then,

I(X; Y) >
1

2 ln 2

∑
i, j∈[q]

(�(X = i,Y = j) − �(X = i)�(Y = j))2 ,

in particular for all i, j ∈ [q]

|�(X = i,Y = j) − �(X = i)�(Y = j)| 6
√

2I(X; Y)

As a consequence, if X and Y are two random variables defined on {−1, 1},
Cov(X,Y) 6 O(

√
I(X; Y))

Lemma 5.4.16. Let X and Y be two jointly distributed random variables on [q],
we have

I(X; Y) >
1

2 ln 2

∑
i, j∈[q]

(�(X = i,Y = j) − �(X = i)�(Y = j))2

Proof.

I(X; Y) = DKL(p(x, y)‖p(x) × p(y))

>
2

ln 2
H2(p(x, y), p(x) × p(y))

=
2

ln 2

∑
i, j∈[q]

( √
�(X = i,Y = j) −

√
�(X = i)�(Y = j)

)2

=
2

ln 2

∑
i, j∈[q]

 �(X = i,Y = j) − �(X = i)�(Y = j)√
�(X = i,Y = j) +

√
�(X = i)�(Y = j)

2

>
1

2 ln 2

∑
i, j∈[q]

(�(X = i,Y = j) − �(X = i)�(Y = j))2

Upper bounding ln2 by 1 finishes the proof. �
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Sum-of-Squares SDP hierarchy for Globally Constrained CSPs. Below we
will give a detailed description of Sum-of-Squares SDP relaxation for CSPs with
global cardinality constraints. The relaxation is quite similar to the Sum-of-
Squares SDP relaxation we presented in Chapter 4 for Max Cut problem. The
only difference is that we add extra constraints to enforce the global cardinality
property.

Formally, let Λ = ([q],�, k, c) be a CSP with global constraints and Φ =

(V,�V,W) be an instance of Λ on variables X = {x1, ..., xn}. A solution to the k-
round Sum-of-Squares SDP consists of vectors vS ,α for all vertex sets S ⊆ V with
|S | 6 k and local assignments α ∈ [q]S . Also for each subset S ⊆ V with |S | 6 k,
there is a distribution µS on [q]S . For two subsets S ,T such that |S |, |T | 6 k,
we require that the corresponding distributions µS and µT are consistant when
restricted to S ∩ T . A Sum-of-Squares solution is feasible if for any |S ∪ T | 6 k,
α ∈ [q]S , β ∈ [q]T , we have

〈vS ,α, vT,β〉 = �µS∪T {XS = α, XT = β}

The SDP also has a vector I that denotes the constant 1. The global cardinality
constraints can be written in terms of the marginals of each variable. Specifically,
for every S with |S | 6 k − 1 and α ∈ [q]S , we have

� j�µS∪{x j}
(x j = i|XS = α) = ci

The objective of the SDP is to maximize

�S∈W

 ∑
β∈[q]S

PS (β(S ))�µS (S , β)


While the complete description of the Sum-of-Squares SDP hierarchy is

somewhat complicated, there are few properties of the hierarchy that we need.
The most important property is the existence of consistent local marginal dis-
tributions {µS }S⊆V,|S |6k whose first two moments match the inner products of the
vectors. We stress that even though the local distributions are consistent, there
might not exist a global distribution that agrees with all of them. The second
property of the k-round Sum-of-Squares SDP solution is that although the vari-
ables are not jointly distributed, one can still condition on the assignment to any
given variable to obtain a solution to the k − 1 round Sum-of-Squares SDP that
corresponds to the conditioned distribution.

5.5 Globally Uncorrelated SDP Solutions
As remarked earlier, it is easy to round SDP solutions to a CSP with cardinality
constraint if the variables behave like independent random variables. In this sec-
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tion, we show a very simple procedure that starts with a solution to the (k + l)-
rounds Sum-of-Squares SDP and produces a solution to the l-rounds Sum-of-
Squares SDP with the additional property that globally the variables are some-
what "uncorrelated". To this end, we define the notion of α-independence for
SDP solutions below. Roughly speaking, if a distribution is α-independent, then
the "average correlation" among the variables is low. We remark that all the
definitions and results in this section can be applied to all CSPs.

Definition 5.5.1. Given a solution to the k-round Sum-of-Squares SDP relax-
ation, it is said to be α-independent if �i, j∼W[Iµ{i, j}(Xi; X j)] 6 α where µ{i, j} is the
local distribution associated with the pair of vertices {i, j}.

Remark 5.5.2. We stress again that the variables in the SDP solution are not
jointly distributed. However, the notion is still well-defined here because of the
locality of mutual information: it only depends on the joint distribution of two
variables, which is guaranteed to exist by the SDP. Also, µ{i, j} in the expression
can be replaced with µS for arbitrary S with i, j ∈ S and |S | 6 k because of the
consistency of local distributions.

The notion of α-independence of random variables using mutual information
easily translates into more familiar notion of statistical distance. Specifically, we
have the following relation as we showed in For the sake of completeness, we
include the proof of this observation in section 5.4.

Fact 5.5.3. Let X and Y be two jointly distributed random variables on [q] then,

I(X; Y) >
1

2 ln 2

∑
i, j∈[q]

(�(X = i,Y = j) − �(X = i)�(Y = j))2 ,

in particular for all i, j ∈ [q]

|�(X = i,Y = j) − �(X = i)�(Y = j)| 6
√

2I(X; Y)

As a consequence, if X and Y are two random variables defined on {−1, 1},
Cov(X,Y) 6 O(

√
I(X; Y))

Now we describe the procedure of getting an α-independent l-rounds Sum-
of-Squares solution. A similar argument was concurrently discovered in [7].
Here we reproduce the argument in information theoretic terms, while [7]
present the argument in terms of covariance. The information theoretic argu-
ment is somewhat robust and cleaner in that it is independent of the sample
space involved.
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Algorithm 5.5.4. Input: A feasible solution to the (k + l) round Sum-of-
Squares SDP relaxation as described in section 5.4 for k = 1/

√
α.

Output: An α-independent solution to the l round Sum-of-Squares SDP
relaxation.

Sample indices i1, . . . , ik ⊆ V independently according to W. Set t = 1.
Until the SDP solution is α-independent repeat

– Sample the variable Xit from its marginal distribution after the first t − 1
fixings, and condition the SDP solution on the outcome.

– t = t + 1.

The following lemma shows that there exists t such that the resulting solution
is α-independent after t-conditionings with high probability.

Lemma 5.5.5. There exists t 6 k such that

�
i1,...,it∼W

�
i, j∼W

[I(Xi, X j|Xi1 , . . . , Xit)] 6
log q
k − 1

Proof. By linearity of expectation, we have that for any t 6 k − 2

�
i,i1,...,it∼W

[H(Xi|Xi1 , . . . , Xit)]

= �
i,i1,...,it∼W

[H(Xi|Xi1 , . . . , Xit−1)] − �
i1,...,it−1∼W

�
i,it∼W

[I(Xi, Xit |Xi1 , . . . , Xit−1)]

adding the equalities from t = 1 to t = k − 2, we get

�
i∼W

[H(Xi)]− �
i1,...,ik−2∼W

[H(Xi|Xi1 , . . . , Xik−2)] =
∑

16t6k−1

�
i, j,i1,...,it−1∼W

[I(Xi, X j|Xi1 , . . . , Xit−1)]

The lemma follows from the fact that for each i, H(Xi) 6 log q. �

Theorem 5.5.6. For every α > 0 and positive integer `, there exists an algorithm
running in time O(npoly(1/α)+`) that finds an α-independent solution to the `-round
Sum-of-Squares SDP, with an SDP objective value of at least OPT−α, where
OPT denotes the optimum value of the `-round Sum-of-Squares SDP relaxation.

Proof. Pick k =
4 log q
α2 . Solve the k + ` round Sum-of-Squares SDP solution, and

use it as input to the conditioning algorithm described earlier. Notice that the
algorithm respects the marginal distributions provided by the SDP while sam-
pling the values to variables. Therefore, the expected objective value of the SDP
solution after conditioning is exactly equal to the SDP objective value before
conditioning. Also notice that the SDP value is at most 1. Therefore, the prob-
ability of the SDP value dropping by at least α due to conditioning is at most
1/(1 + α).
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Also, by Lemma 5.5.5 and Markov Inequality, the probability of the algo-

rithm failing to find a
√

log q
k -independent soluton is at most

√
log q

k . Therefore,
by union bound, there exists a fixing such that the SDP value is maintained up to
α, and the solution after conditioning is α-independent. Moreover, this particular
fixing can be found using brute-force search.

�

5.6 Rounding Scheme for Max Bisection
In this section, we present and analyze a natural rounding scheme for Max Bisec-
tion. Given an globally uncorrelated SDP solution to a 2-round Sum-of-Squares
SDP relaxation of Max Bisection, the rounding scheme will output a cut with
the approximation guarantees outlined in Theorem 5.2.1. The same rounding
scheme also yields a 0.92-approximation algorithm for arbitrary globally con-
strained Max 2-Sat problem.

Constructing Goemans-Williamson type SDP solution. In the 2-round Sum-
of-Squares SDP for Max Bisection, there are two orthogonal vectors vi0 and vi1

for each variable xi. This can be used to obtain a solution to the Goemans-
Williamson SDP solution by simply defining vi

def
= vi0−vi1. The following propo-

sition is an easy consequence,

Proposition 5.6.1. Let vi = vi0− vi1 = (2pi−1)I +wi where pi = �(xi = 0). Then,
for each edge e = (i, j) ∈ E, �µe(xi , x j) = ‖vi − v j‖

2/4.

Proof.

‖vi−v j‖
2 = 2−2〈vi0−vi1, v j0−v j1〉 = 2−2(�µe(xi = x j)−�µe(xi , x j)) = 4�µe(xi , x j)

�

Let wi be the component of vi orthogonal to the I vector, i.e., wi
def
= (vi −

〈vi, I〉I) . Using vi0 + vi1 = I and 〈vi0, vi1〉 = 0, we get vi0 = 〈vi0, I〉I + wi/2 and
vi1 = 〈vi1, I〉I − wi/2.

We remark that wi is the crucial component that captures the correlation
between xi and other variables. To formalize this, we show the following lemma.

Lemma 5.6.2. Let vi and v j be the unit vectors constructed above, wi and w j be
the components of vi and v j that orthogonal to I. Then |〈wi, w j〉| 6 4

√
2I(xi, x j)

Proof. Let pi
def
= �(xi = 0) = 〈vi0, I〉 and p j

def
= �(x j = 0) = 〈v j0, I〉. Notice that

|�(xi = 0, x j = 0)−�(xi = 0)�(x j = 0)| = ‖〈piI+wi/2, p jI+w j/2〉−pi p j‖ = |〈wi, w j〉|/4

By applying fact 5.5.3, we get |〈wi, w j〉| 6 4
√

2I(xi; x j) �
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Henceforth we will switch from the alphabet {0, 1} to {−1, 1} 2. After this
transformation, we can interpret the inner product µi = 〈vi, I〉 = pi − (1 − pi) as
the bias of vertex i.

Rounding Scheme
Roughly speaking, the algorithm applies a hyperplane rounding on the vectors
wi = vi − 〈vi, I〉I associated with the vertices i ∈ V . However, for each vertex
i ∈ V , the algorithm shifts the hyperplane according to the bias of that vertex.

Algorithm 5.6.3. Given: A set of unit vectors {v1, . . . , vn} where vi = µiI + wi,
where wi is the component of vi orthogonal to I.
Pick a random Gaussian vector g orthogonal to I with coordinates distributed
as N(0, 1). For every i,

1. Project g on the direction of wi, i.e., ξi = 〈g, w̄i〉, where w̄i = wi√
1−µ2

i

is the

normalized vector or wi. Note that ξi is also a standard Gaussian variable.

2. Pick threshold ti as follows:

ti = Φ−1(µi/2 + 1/2)

3. If ξi 6 ti, set xi = 1, otherwise set xi = −1.

Notice that, the threshold ti is chosen so that individually the bias of xi is
exactly µi. Therefore, the expected balance of the rounded solution matches the
intended value. The analysis of the rounding algorithm consists of two parts:
first we show that the cut returned by the rounding algorithm has high expected
value, then we show the that the balance of the cut is concentrated around its
expectation.

Analysis of the Cut Value
Analyzing the cut value of the rounding scheme is fairly standard albeit a bit
technical. The analysis is local as in the case of other algorithms for CSPs, and
reduces to bounding the probability that a given edge is cut. The probability that
a given edge u, v is cut corresponds to a probability of an event related to two
correlated Gaussians.

By using numerical techniques, we were able to show that the cut value is at
least 0.85 times the SDP optimum. Analytically, we show the following asymp-
totic relation.

2The mapping is given by 0→ 1 and 1→ −1
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Lemma 5.6.4. Let u = µ1I + w1,v = µ2I + w2 be two unit vectors satisfying
‖u − v‖2/4 6 ε, then the probability of them being separated by Algorithm 5.6.3
is at most O(

√
ε).

The proof of this lemma is fairly technical and is deferred to section 5.7.

Analysis of the Balance
In this section we show that the balance of the rounded solution will be highly
concentrated. We prove this fact by bounding the variance of the balance.
Specifically, we show that if the SDP solution is α-independent, then the vari-
ance of the balance can be bounded above by a function of α.

The proof in this section is information theoretical – although this approach
gives sub-optimal bound, but the proof itself is very simple and clean.

Lemma 5.6.5. Let vi = µiI + wi and v j = µ jI + w j be two vectors in the SDP
solution that satisfy |〈wi, w j〉| 6 ζ. Let yi and y j be the rounded solution of vi and
v j, then I(yi; y j) 6 O(ζ1/3)

Proof. Since

|〈wi, w j〉| =

√
1 − µ2

i

√
1 − µ2

j |〈w̄i, w̄ j〉| 6 ζ

It implies that one of the three quantities in the equation above is at most ζ1/3.

If it is the case that
√

1 − µ2
i 6 ζ

1/3 or
√

1 − µ2
j 6 ζ

1/3 (w.l.o.g we can assume
it’s the first case), then we have

min(|1 − µi|, |1 + µi|) 6 O(ζ2/3)

We may assume µi > 0, therefore 1 − µi < O(ζ2/3). Notice that our rounding
scheme preserves the bias individually, which implies yi is a highly biased binary
variable, hence

I(yi, y j) 6 H(yi) = O(−(1 − µi) log(1 − µi)) 6 O(ζ1/3)

Now let’s assume it’s the case that |〈w̄i, w̄ j〉| 6 ζ1/3. Let g1 = g · w̄1 and g2 =

g · w̄2 as described in the rounding scheme, and ρ = 〈w̄i, w̄ j〉. Hence g1 and g2

are two jointly distributed standard Gaussian variables with covariance matrix

Σ =

(
1 ρ
ρ 1

)
.

The mutual information of g1 and g2 is

I(g1, g2) = −
1
2

log(det Σ) 6 O(− log(1 − ζ2/3)) 6 O(ζ1/3)

Notice that yi is fully dependent on gi, therefore by the data processing in-
equality (5.4.10), we have I(y1, y2) 6 I(g1, g2) 6 O(ζ1/3) �
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Theorem 5.6.6. Given an α-independent solution to 2-rounds Sum-of-Squares
SDP hierarchy. Let {yi} be the rounded solution after applying Algorithm 5.6.3.
Define S = �i∼W yi, then

Var(S ) 6 O(α1/12)

Proof.

Var(S ) = �
i, j∼W

[Cov(yi, y j)]

6 �
i, j∼W

[O(
√

I(yi; y j))] (by Fact 5.5.3)

6 �
i, j∼W

[O(
√
|wi, w j|

1/3)] (by Lemma 5.6.5)

6 �
i, j∼W

[O(
√

I(xi; x j)1/6)] (by Lemma 5.6.2)

6 O(( �
i, j∼W

[I(xi; x j)])1/12) (by concavity of the function x1/12)

6 O(α1/12)

�

Corollary 5.6.7. Given an α-independent solution to 2-rounds Sum-of-Squares
SDP hierarchy vi = µi + wi. The rounding algorithm will find an O(α1/24)-
balanced (that is, the balance of the cut differs from the expected value by at
most O(α1/24) fraction of the total weights) with probability at least 1−O(α1/24).

Wrapping Up
Here we present the proofs of the main theorems of this chapter.

Suppose we’re given a Min Bisection instance G = (V, E) with value at most
ε and constant δ > 0. By setting α = δ24 and applying Theorem 5.5.6, we will
get an α-independent solution with value at most ε + α. By Lemma 5.6.4 and
the concavity of the function

√
x, the expected size of the cut returned by Al-

gorithm 5.6.3 is at most O(
√
ε + α) = O(

√
ε +
√
α). Therefore, with constant

probability (say 1/2), the cut returned by the rounding algorithm has size at most
O(
√
ε+
√
α). Also, by Corollary 5.6.7, the cut will be O(δ)-balanced with prob-

ability at least 1 − O(δ). Therefore, by union bound, the algorithm will return
an O(δ)-balanced cut with value at most O(

√
ε +
√
α) with constant probability.

Notice that this probability can be amplified to 1 − ε by running the algorithm
O(log(1/ε)) times. Given such a cut, we can simply move O(δ) fraction of the
vertices with least degree from the larger side to the smaller side to get an exact
bisection – this process will increase the value of the cut by at most O(δ). There-
fore, in this case, we get a bisection of value at most O(

√
ε+
√
α+δ) = O(

√
ε+δ).
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Hence, the expected value of the bisection returned by the rounding algorithm is
at most (1 − ε)O(

√
ε + δ) + ε = O(

√
ε + δ).

Proof of Theorem 5.2.1. The proof is similar in the case of Max Bisection.
The only difference is that we have to use the fact that the rounding scheme is
balanced, i.e., �(F(v) , F(−v)) = 1. Hence, by Lemma 5.6.4, for any edge
(u, v) with value 1 − ε in the SDP solution, the algorithm separates them with
probability at least 1 − O(

√
ε). The rest of the proof is identical.

Using a computer-assisted proof, we can show that the approximation ratio
of this algorithm for Max Bisection is between 0.85 and 0.86. Thus further nar-
rowing down the gap between approximation and inapproximability of Max Bi-
section. Using the same algorithm, we obtain a 0.92-approximation for globally
constrained Max 2-Sat. It is known that under the Unique Games Conjecture,
Max 2-Sat is NP-Hard to approximate within 0.9401.

5.7 Analysis of Cut Value
We analyze the rounding algorithm in an indirect way – first we show that under
certain conditions, Algorithm 5.6.3 returns a better cut compared to Goemans-
Williamson algorithm (in expectation). Then we use an union-bound type argu-
ment to give the proof for general cases.

First, we present a bound on the tail of the standard gaussian distribution.

Lemma 5.7.1. For t > 0,

Φc(t) = 1 − Φ(t) 6
√

2/πe−t2/2

t +
√

t2 + 8/π

Proof. We apply the following bound on the error function given in [50]

ex2
∫ ∞

x
e−y

2
dy 6

1

x +
√

x2 + 4/π

by replacing x with
√

2t
2 , we get the desired bound.

�

From now on, let µ0 =
√

1 − 4/π2 ≈ 0.7712 and t0 = Φ−1(µ0/2 + 1/2) ≈
1.2034.

Lemma 5.7.2. Let g(t) = et2/2(1−µ2(t)), where µ(t) = 2Φ(t)−1. g(t) is decreasing
when t > t0.
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Proof. By simple calculation, we get

g′(t) = 4
(
tet2/2(1 − Φ(t))Φ(t) +

1
√

2π
(1 − 2Φ(t))

)
we want to show

tet2/2(1 − Φ(t))Φ(t) +
1
√

2π
(1 − 2Φ(t)) < 0

by applying Lemma 5.7.1, we only need to show

tet2/2

√
2
π
e−t2/2

t +
√

t2 + 8/π
Φ(t) +

1
√

2π
(1 − 2Φ(t)) < 0

by simplification, we get

2Φ(t) − 1 >
t√

t2 + 8/π

By applying the lemma again and further simplification, we get

et2 − t2 >
8
π

This can easily be verified for t = t0. Also LHS is increasing when t > t0,
therefore the lemma follows.

�

Lemma 5.7.3. Let f1(x) and f2(x) be twice differentiable decreasing functions
defined on [0,∞) satisfying the following conditions

1. f1(0) = f2(0)

2. limx→∞ f1(x) = limx→∞ f2(x)

3. limx→0
f ′1(x)
f ′2(x) > 1

4. f ′1(x)
f ′2(x) = 1 has only one solution

then
f1(x) 6 f2(x), ∀x > 0

Proof. For the sake of contradiction we assume there exists x0 such that f1(x0) >
f2(x0). By the mean value theorem, there exists x1 < x0 such that f ′1(x1) >

f ′2(x1), which means f ′1(x1)
f ′2(x1) < 1 (since both f ′1 and f ′2 are negative). By the fourth

assumption, for any x > x0 > x1, f ′1(x) > f ′2(x), therefore f1(x) − f2(x) >
f1(x0) − f2(x0) > 0, contradicting the second assumption. �
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Now we show the key lemma in this section.

Lemma 5.7.4. Let u = µI + w1 and v = µI + w2 be two unit vectors with the
same projection on the direction of I. Also we assume that 〈w̄1, w̄2〉 = 1 − ρ > 0,
where w̄1 and w̄2 are the normalized vectors of w1 and w2. Then the probability
that these two vectors are separated by a random hyperplane is at least the
probability that these two vectors are cut by Algorithm 5.6.3.

Proof. First notice that since u and v have the same bias µ, they will be assigned
the same threshold t = Φ−1(2µ − 1) in Algorithm 5.6.3.

Henceforth, we fix 〈w̄1, w̄2〉 = 1 − ρ > 0, and express the probabilities as a
function of µ and t. We stress that µ and t are fully dependent on each other,
therefore the functions are only single variable functions. We use both µ and t
(and other notations that are about to be introduced) in the expression only for
simplicity.

Let ε = (1 − µ2)ρ, which characterizes 〈u, v〉 as a function of µ, i.e.,

〈u, v〉 = 〈µI +
√

1 − µ2w̄1), (µI +
√

1 − µ2w̄2)〉 = 1 − ε

Let H(t) be the probability of the two vectors being separated by a random hy-
perplane. It is well-known that [31]

H(t) = arccos(u · v)/π = arccos(1 − ε)/π

For Algorithm 5.6.3, notice that w̄1 · g and w̄2 · g are two jointly distributed

standard Gaussian variables with covariance matrix Σ =

(
1 1 − ρ
1 − ρ 1

)
. Thus the

probability of u and v being separated by Algorithm 5.6.3 is

B(t) = 2
∫ t

−∞

∫ ∞

t

1
2π|Σ|1/2

e−(x1 x2)Σ−1(x1 x2)T
dx1dx2

It’s easy to see that when µ = t = 0, these two rounding schemes are equivalent,
thus B(0) = H(0). Also limt→∞ B(t) = limt→∞ H(t) = 0. The derivatives of H(t)
and B(t) are as follows:

H′(t) = −
2
√

2ρ

π3/2
√

2ε − ε2
Φ̃(t)e−t2/2

and

B′(t) = −

√
2
π

Φ̃(at)e−t2/2

where a =
ρ√

2ρ−ρ2
6 1 when ρ 6 1, and Φ̃(t) is defined as

Φ̃(t) = Φ(t) − Φ(−t)
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Let f (t) =
B′(t)
H′(t) . Notice that f (0) = π/2 > 1, thus by Lemma 5.7.3, we only

have to show that f (t) = 1 has only one solution. Moreover, it suffices to show
that f ′(t) < 0 when f (t) 6 1.

Notice that when f (t) 6 1, we have
√

2ε − ε2√
2ρ − ρ2

Φ̃(at)
aΦ̃(t)

6
2
π

⇒
2ε − ε2

2ρ − ρ2 6
4
π2 (By convexity of Φ̃,

Φ̃(at)
aΦ̃(t)

> 1 when a 6 1)

⇒
ε

ρ

2 − ε
2 − ρ

6
4
π2

⇒ (1 − µ2)
2 − ρ
2 − ε

6
4
π2

(
ε

ρ
= 1 − µ2

)
⇒ µ >

√
1 − 4/π2 = µ0

(
2 − ρ
2 − ε

6 1
)

⇒ t > t0

By calculation, one can show that

f ′(t) =

√
2/πe−t2/2

√
2ε − ε2

Φ̃(t)

(
1 − ε

2ε − ε2 (−2µρ)Φ̃(at) + e(1−a2)t2/2a −
Φ̃(at)
Φ̃(t)

)
Now we show f ′(t) < 0 when t > t0. In order to show this, one only needs to

show that
1 − ε

2ε − ε2 (2µρ)Φ̃(at) +
Φ̃(at)
Φ̃(t)

> e(1−a2)t2/2a

By substituting ε = (1 − µ2)ρ and simplification, we get

Φ̃(at)
aΦ̃(t)

1
1 − µ2

(
1 − ε
2 − ε

2µ2 + 1 − µ2
)
> e(1−a2)t2/2

Since Φ̃(at)
aΦ̃(t) > 1 when a 6 1 and e(1−a2)t2/2 6 et2/2, it suffices to show(

2µ2 1 − ε
2 − ε

+ 1 − µ2
)
> et2/2(1 − µ2)

holds when t > t0.
By Lemma 5.7.2, we know that RHS is decreasing when t > t0. Now we

show LHS is increasing when µ > µ0. It can be shown that the derivative of LHS
is

2µρ(1 − µ2)µ2 − (2µ − 4µ3)(2 − ε) > −µ(2 − 4µ2)(2 − ε) > 0
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when µ > µ0.
Now we only have to verify the inequality when t = t0, and that can be done

numerically. The calculation shows that LHS(t0) ≈ 0.8489 while RHS(t0) ≈
0.836.

�

Finally, we show Lemma 5.6.4.

Lemma 5.7.5. (Restatement of Lemma 5.6.4) Let u = µ1I + w1,v = µ2I + w2 be
two unit vectors satisfying ‖u − v‖2/4 6 ε, then the probability of them being
separated by Algorithm 5.6.3 is at most O(

√
ε).

Proof. (Proof of Lemma 5.6.4)
First we prove the case when µ1 = µ2 = µ. Notice that when 〈w1, w2〉 > 0,

the lemma follows from Lemma 5.7.4 and the fact that Goemans-Williamson
algorithm will separate u and v with probability O(

√
ε)[31].

If 〈w1, w2〉 < 0, then ‖u − v‖2/4 = ‖w1 − w2‖
2/4 > (‖w1‖

2 + ‖w2‖
2)/4 =

(1 − µ2)/2. Hence |µ| > 1 − O(
√
ε). By union bound, the probability of the

algorithm separating u and v is at most O(
√
ε).

Now we consider the case when µ1 , µ2, w.l.o.g. we may assume |µ1| > |µ2|.

We construct an auxiliary vector v′ as follow: v′ = µ1I +

√
1 − µ2

1w̄2. It’s easy to
see that ‖u − v′‖ 6 ‖u − v‖. Let F denote the rounding function, we analyze the
probability of u and v being separated as follows:

�(F(u) , F(v))
= �(F(u) , F(v′), F(v′) = F(v)) + �(F(u) = F(v′), F(v′) , F(v))
6 �(F(u) , F(v′)) + �(F(v′) , F(v))

Since ‖u − v′‖ 6 ‖u − v‖ and 〈u, I〉 = 〈v′, I〉 = µ1, by the first part of the proof
�(F(u) , F(v′)) 6 O(

√
ε). Also,

�(F(v′) , F(v)) 6 |µ1 − µ2|/2 6 ‖u − v‖/2 6 O(
√
ε) .

Therefore the lemma follows. �

5.8 Dictatorship Tests from Globally Uncorrelated
SDP Solutions

A dictatorship test DICT for the Max Bisection problem consists of a graph on
the set of vertices {±1}R. By convention, the graph DICT is a weighted graph
where the edge weights form a probability distribution (sum up to 1). We will
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write (z, z′) ∈ DICT to denote an edge sampled from the graph DICT (here
z, z′ ∈ {±1}R).

A cut of the DICT graph can be thought of as a boolean functionF : {±1}R →
{±1}. The value of a cut F given by

DICT(F ) =
1
2

�
(z,z′)∈DICT

[
1 − F (z)F (z′)

]
,

is the probability that z,z′ are on different sides of the cut. It is also useful to
define DICT(F ) for non-boolean functions F : {±1}R → [−1, 1] that take values
in the interval [−1, 1]. To this end, we will interpret a value F (z) ∈ [−1, 1] as
a random variable that takes {±1} values. Specifically, we think of a number
a ∈ [−1, 1] as the following random variable

a =

−1 with probability 1−a
2

1 with probability 1+a
2

(5.8.1)

With this interpretation, the natural definition of DICT(F ) for such a function is
as follows:

DICT(F ) =
1
2

�
(z,z′)∈DICT

[
1 − F (z)F (z′)

]
.

Indeed, the above expression is equal to the expected value of the cut obtained
by randomly rounding the values of the function F : {±1}R → [−1, 1] to {±1} as
described in Equation (5.8.1).

We will construct a dictatorship test for the weighted version of Max Bisec-
tion. In particular, each vertex x ∈ {±1}R of DICTis associated a weight W(x),
and the weights W form a probability distribution over {±1}R (sum up to 1). The
balance condition on the cut can now be expressed as �z∼W[F (z)] = 0.

The dictatorship test DICT can be easily transformed in to a dictatorship
test DICT′ for unweighted Max Bisection. The idea is to replace each vertex
x ∈ {±1}R with a cluster Vx of bW(x) ·Mc vertices for some large integer M. For
every edge (x, y) in DICT, connect every pair of vertices in the corresponding
clusters Vx,Vy with edge of the same weight. Given any bisection F ′ : DICT′ →
{±1} of the graph DICT′ with value c, define F (z) = �v∈Vz F

′(v). By slightly
correcting the balance of F , it is easy to obtain a bisection F : {±1}R → [−1, 1]
satisfying

DICT(F ) > c − oM(1) �
z
F (z) = 0 .

Conversely, given a bisection F : {±1}R → [−1, 1] of DICT, assign (1 +F (z))/2
fraction of vertices of Vz to be 1 and the rest to −1. The resulting partition of
DICT′ is very close to balanced (up to rounding errors), and can be modified in
to a bisection with value DICT(F ) − oM(1).

The dictator cuts are given by the functions F (z) = z(`) for some ` ∈ [R].
The dictatorship test graph is so constructed that each dictator cut will yield a
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bisection and the Completeness of the test DICT is the minimum value of a
dictator cut, i.e.,

Completeness(DICT) = min
`∈[R]

DICT(z(`))

The soundness of the dictatorship test is the value of bisections of DICT that are
f ar from every dictator. We will formalize the notion of being f ar from every
dictator using the notion of influences.

Influences and Noise Operators. To this end, we recall the definitions of in-
fluences and noise operators. Let Ω = ({±1}, µ) denote the probability space
with atoms {±1} and a distribution µ on them. Then, the influences and noise
operators for functions over the product space ΩR are defined as follows.

Definition 5.8.1 (Influences). The influence of the `th coordinate on a func-
tion F : {±1}R → � under a distribution µ over {±1} is given by Infµ` (F ) =

�x(−`)
[
�x(`)[F (x)]

]
=

∑
S3` F̂

2
S .

Definition 5.8.2. For 0 6 ε 6 1, define the operator T1−ε on L2(ΩR) as,

T1−εF (z) = �[F ( z̃) | z]

where each coordinate z̃(i) of z̃ is equal to z(i) with probability 1−ε and a random
element from Ω with probability ε.

Invariance Principle. The following invariance principle is an immediate con-
sequence of Theorem 3.6 in the work of Isaksson and Mossel [42].

Theorem 5.8.3. (Invariance Principle [42]) Let Ω be a finite probability space
with the least non-zero probability of an atom at least α 6 1/2. Let L = {`1, `2}

be an ensemble of random variables over Ω. Let G = {g1, g2} be an ensemble of
Gaussian random variables satisfying the following conditions:

�[`i] = �[gi] �[`2
i ] = �[g2

i ] �[`i` j] = �[gig j] ∀i, j ∈ {1, 2}

Let K = log(1/α). Let F denote a multilinear polynomial and let H = (T1−εF).
Let the variance of H, �[H] be bounded by 1 and all the influences are smaller
than τ, i.e., Infi(H) 6 τ for all i.

If Ψ : �2 → � is a Lipschitz-continous function with Lipschitz constant C0

(with respect to the L2 norm) then∣∣∣∣� [
Ψ(H(LR))

]
− �

[
Ψ(H(GR))

]∣∣∣∣ 6 C ·C0 · τ
ε/18K = oτ(1)

for some constant C.
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Construction. Let G = (V, E) be an arbitrary instance of Max Bisection. Let
V = {vi,0, vi,1}i∈V denote a globally uncorrelated feasible SDP solution for two
rounds of the Sum-of-Squares hierarchy. Specifically, for every pair of vertices
i, j ∈ V , there exists a distribution µi j over {±1} assignments that match the SDP
inner products. In other words, there exists {±1} valued random variables zi, z j

such that
〈vi, v j〉 = �[zi · z j] .

Furthermore, the correlation between random pair of vertices is at most δ, i.e.,

�
i, j∈V

[I(zi, z j)] 6 δ .

Starting from G = (V, E) along with the SDP solution V and a parameter ε
we construct a dictatorship test DICTε

V. The dictatorship test gadget is exactly
the same as the construction by Raghavendra [61] for the Max Cut problem. For
the sake of completeness, we include the details below.

DICTε
V (Max Bisection) The set of vertices of DICTε

V consists of the R-
dimensional hypercube {±1}R. The distribution of edges in DICTε

V is the one
induced by the following sampling procedure:

– Sample an edge e = (vi, v j) ∈ E in the graph G.

– Sample R times independently from the distribution µe to obtain zR
i =

(z(1)
i , . . . , z(R)

i ) and zR
j = (z(1)

j , . . . , z
(R)
j ), both in {±1}R.

– Perturb each coordinate of zR
i and zR

j independently with probability ε to
obtain z̃R

i , z̃R
j respectively. Formally, for each ` ∈ [R],

z̃(`)
i =

z(`)
i with probability 1 − ε
random sample from distribution µi with probability ε

– Output the edge ( z̃R
i , z̃R

j ).

The weights on the vertices of DICTε
V is given by

W(x) = �
i∈V

[
�

z∈µR
i

[z = x]
]
.

We will show the following theorem about the completeness and soundness
of the dictatorship test.

Theorem 5.8.4. There exist absolute constants C,K such that for all ε, τ ∈ [0, 1]
there exists δ such that following holds. Given a graph G and a δ-independent



CHAPTER 5. AN IMPROVED APPROXIMATION ALGORITHM FOR
MAX BISECTION 58

SDP solution V = {vi,0, vi,1|i ∈ V} for the two round Sum-of-Squares SDP for
Max Bisection, the dictatorship test DICTε

V is such that

– The dictator cuts are bisections with value within 2ε of the SDP value, i.e.,
Completeness(DICTε

V) > val(V) − 2ε

– If F : {±1}R → [−1, 1] is a bisection of DICTε
V (�x∼W[F (x)] = 0) and all

its influences are at most τ, i.e.,

Infµi
` (F ) 6 τ ∀i ∈ V, ` ∈ [R] ,

then,
DICTε

V(F ) 6 opt(G) + CτKε .

Proof. The analysis of the dictatorship test is along the lines of the correspond-
ing proof for Max Cut in [61].

Completeness. First, the dictatorship test gadget is exactly the same as that
constructed for Max Cut in [61]. Therefore from [61], the fraction of edges cut
by the dictators is at least val(V) − 2ε. To finish the proof of completeness, we
need to show that the dictator cuts are indeed balanced. However, this is an easy
calculation since the balance of the jth dictator cut is given by,

�
x∈W

[x( j)] = �
i∈V
�

x∈µR
i

[x( j)] = �
i∈V
�

a∈µi
[a] = 0 ,

where the last equality uses the fact that the SDP solution satisfies the balance
condition.

Soundness. Let F : {±1}R → [−1, 1] be a balanced cut all of whose influences
are at most τ. As in [61], we will use the function F to round the SDP solution
V. The rounding algorithm is exactly the same as the one in [61]. For the sake
of completeness, we reproduce the rounding scheme below.
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RoundF Scheme

Truncation Function. Let f[−1,1] : � → [−1, 1] be a Lipschitz-continous
function such that for all x ∈ [−1, 1], f[−1,1](x) = x. Let C0 denote the Lipschitz
constant of the function f[−1,1].

Bias. For each vertex i ∈ V , let the bias of vertex i be θi = 〈vi,0, I〉 and let
wi = vi,0 − 〈vi,0, I〉vi,0 be the component of vi,0 orthogonal to the vector I.

Scheme. Sample R vectors ζ(1), . . . , ζ(R) with each coordinate being i.i.d nor-
mal random variable.
For each i ∈ V do

– For all 1 6 j 6 R, compute the projection g( j)
i of the vector wi as follows:

g
( j)
i = θi +

[
〈wi, ζ

( j)〉
]

and let gi = (g(1)
i , . . . , g(R)

i )

– Let Fi denote the multilinear polynomial corresponding to the function
F under the distribution µR

i and let Hi = T1−εFi. Evaluate Hi with g( j)
i as

inputs to obtain pi, i.e., pi = Hi(g
(1)
i , . . . , g(R)

i ).

– Round pi to p∗i ∈ [−1, 1] by using the Lipschitz-continous truncation
function f[−1,1] : �→ [−1, 1].

p∗i = f[−1,1](pi) .

– Assign the vertex i to be 1 with probability (1 + p∗i )/2 and −1 with the
remaining probability.

Let RoundF (V) denote the expected value of the cut returned by the rounding
scheme RoundF on the SDP solution V for the Max Bisection instance G.

Again, by appealing to the soundness analysis in [61], we conclude that the
fraction of edges cut by the resulting partition is lower bounded by

RoundF (V) > DICTε
V(F ) −C′τKε .

for an absolute constant C′. To finish the proof, we need to argue that if the SDP
solution V is δ-independent, then the resulting partition is close to balanced with
high probability.

First, note that the expected balance of the cut is given by,

�
ζ

[
�
i
[p∗i ]

]
= �

ζ

[
�
i
[ f[−1,1](H(gi))]

]
.
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Fix a vertex i ∈ V . By construction, the random variables z(`)
i ∼ µi and g(`)

i
have matching moments up to order two for each ` ∈ [R]. Therefore, by applying
the invariance principle of Isaksson and Mossel [42] with the smooth function
f[−1,1] and the multilinear polynomial Fi yields the following inequality,

�
ζ

[
f[−1,1](Hi(gi))

]
6 �

zR
i ∈µ

R
i

[
f[−1,1](Hi(zR

i ))
]

+ CτKε .

Since the cut F is balanced we can write,

�
i
�

zR
i ∈µ

R
i

[
f[−1,1](Hi(zR

i ))
]

= �
i
�

zR
i ∈µ

R
i

[
Hi(zR

i )
]

= �
i
�

zR
i ∈µ

R
i

[
Fi(zR

i )
]

= �
i
�

zR
i ∈µ

R
i

[
F (zR

i )
]

= 0 .

In the previous calculation, the first equality uses the fact that f[−1,1](x) = x
for x ∈ [−1, 1] while the second equality uses the fact that �z[T1−εHi(z)] =

�z[Fi(z)]. Therefore, we get the following bound on the expected value of the
balance of the cut, �ζ

[
f[−1,1](Hi(gi))

]
6 CτKε .

Finally, we will show that the balance of the cut is concentrated around its
expectation. To this end, we first show the following continuity of the rounding
algorithm.

Lemma 5.8.5. For each i ∈ V and any vector w′i satisfying ‖w′i‖2 = ‖wi‖2, if p′i
denotes the output of the rounding scheme RoundF with w′i instead of wi then,

‖�
ζ

[(p′i − p∗i )2‖ 6 C(R)‖wi − w′i‖
2
2 ,

for some function of R (C(R) = 22R suffices).

Proof. Let g′i = (g′(1)
i , . . . , g′(R)

i ) denote the projections of the vector w′i along the
directions ζ(1), ζ(2), . . . , ζ(R). The output of the rounding scheme on w′i is given
by p′i = f[−1,1](Hi(g′i)). Recall that the output of the rounding scheme is given by
p∗i = f[−1,1](Hi(gi)).

The result is a consequence of the fact that the function f[−1,1]◦Hi is Lipschitz
continous. Since the variance of F (zR

i ) is at most 1, the sum of squares of coeffi-
cients of Hi is at most 1. Therefore, all the 2R coefficients of Hi are bounded by
1 in absolute value.

The proof is a simple hybrid argument, where we replace g(`)
i by g′(`)i one by

one. The details of the proof are deferred to the full version. �

Lemma 5.8.6. For every i, j,

|�
ζ

[p∗i p∗j] − �
ζ

[p∗i ]�
ζ

[p∗j]| 6 C(R)|〈wi, w j〉|

for some function C(R) of R (C(R) = 10022R suffices).
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Proof. Set w′j = w j − 〈wi,w j〉
wi
‖wi‖

+ 〈wi,w j〉ū for a unit vector ū orthogonal to
wi and w j. Note that w′j is orthogonal to wi and satisfies ‖w j −w′j‖ 6 4|〈wi,w j〉|.
Let p′j denote the output of the rounding with w′j instead of w j. Since w′j is
orthogonal to wi all their projections are independent random variables, which
implies that,

�
ζ

[p′j p
∗
i ] = �

ζ
[p′j]�

ζ
[p∗i ] .

. Moreover, by Lemma 5.8.5 we have,

�
ζ

[(p′j − p∗j)
2] 6 C(R)‖w j − w′j‖

2
2 6 C(R) · 16|〈wi,w j〉|

2 .

. Combining these inequalities and using Cauchy-Schwartz, we finish the proof
as follows,

|�
ζ

[p∗i p∗j] − �
ζ

[p∗i ]�
ζ

[p∗j]| 6 |�
ζ

[p∗i (p∗j − p′j)]| + |�
ζ

[p∗i ]�
ζ

[p′j − p∗j]|

6 2
(
�
ζ

[(p′j − p∗j)
2]
) 1

2 (
�[(p∗i )2]

) 1
2

6 8C(R)|〈wi, w j〉|

�

To finish the proof, now we bound the variance of the balance of the cut
returned using Lemma 5.8.6. The variance of the balance of the cut returned is
given by,

�
ζ

(�
i
[p∗i ])2 − (�

ζ
�
i
[p∗i ])2 = �

i, j

[
�
ζ

[p∗i p∗j] − �
ζ

[p∗i ]�
ζ

[p∗j]
]
6 C(R)�

i, j
[|〈wi, w j〉|]

For a δ-independent SDP solution, the above quantity is at most C(R) poly(δ).
This gives the desired result. �
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Chapter 6

Optimal Symmetric SDP
Relaxation for Max-CSPs

6.1 Introduction
As mentioned earlier, the best known (approximation) algorithms for a vast
range of combinatorial optimization problems are based on (polynomial-size)
symmetric LP or SDP relaxations. In this chapter we will study the computa-
tional power of such relaxations and compares it to the power of explicit relax-
ation, e.g., obtained from hierarchies [51, 54, 68, 58]. The motivation for this
comparison is two fold: On the one hand, we can deduce new lower bounds for
general symmetric relaxations (from known lower bounds for hierarchies). On
the other hand, our comparison identifies the best symmetric relaxations of a
certain size. These relaxations are therefore a promising basis for new approxi-
mation results.

A groundbreaking work of Yannakakis [72] initiated the study of general
LP formulations and showed exponential lower bounds on the size of symmet-
ric LP formulations for traveling salesman and maximum matching. This work
also provided a framework for proving lower bounds on general LP formula-
tions (based on the notion of nonnegative rank of matrices). Recent break-
throughs [26, 65] extended Yannakakis’s lower bounds to the non-symmetric
case using techniques from communication complexity.

There has been some progress to extend these lower bounds on LP formu-
lations to the approximation setting [9, 10, 12], but so far only for clique1 and
Max CSPs. In the SDP setting, no lower bounds are known for explicit prob-
lems (neither exact nor approximate). This work gives the first lower bounds for
general symmetric SDP relaxations.

1In the case of clique, the LP relaxations considered in the lower bounds do not subsume all
LP relaxations for clique that appear in the literature.
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The ultimate goal of this line of research is to identify the “right” LP and SDP
relaxations (not necessarily symmetric) for classes of optimization problems.
We conjecture that Sherali–Adams and Sum-of-Squares(Lasserre) relaxations
of polynomial size indeed achieve the best possible approximation guarantees
among all polynomial-size LP and SDP relaxations for many problems. Some
of our proof techniques are tailored toward the symmetric case (especially the
group-theoretic arguments). However, our basic framework also works in the
non-symmetric case and could therefore form the basis of a proof for the non-
symmetric case, in the same way that Yannakakis’s framework was instrumental
in the lower bound results for general LP formulations.

Symmetric SDP Relaxations for Max-CSPs. Semidefinite programming
marries linear programming and spectral methods. Prominent examples like max
cut and sparsest cut show that semidefinite relaxations can achieve approxima-
tion guarantees that are not (known to be) achievable by linear relaxations or
spectral methods on their own [30, 4].

The Unique Games Conjecture [47] predicts that a particularly simple SDP
relaxation achieves best-possible approximation guarantees for every Max CSP
[62]. It’s an outstanding open question whether more complicated SDP relax-
ation can refute this conjecture (by providing better approximations than the
basic SDP relaxation). Indeed, recent works show that polynomial-size SDP
relaxations based on the Sum-of-Squares method / Lasserre hierarchy provide
better approximations on families of instances for which many other methods
fail [8].

Analogous to Yannakakis’s characterization of general LP relaxations, there
exists a characterization of general SDP relaxations (in terms of the notion of
positive-semidefinite rank of matrices) [26, 32], but no explicit lower bounds are
known. We provide an alternative characterization in terms of sums-of-squares
of linear subspaces, inspired by the viewpoint developed in previous work [12].
This characterization allows us to compare the power of general symmetric SDP
relaxation and the power of low-degree Sum-of-Squares relaxations [58, 51] for
Max-CSPs.

6.2 Statement of Results
In this section we present the main results of this chapter.

Theorem 6.2.1. For every Max-CSP Max-Π and k < n/4, degree-k Sum-of-
Squares relaxations achieve the best-possible approximation guarantee among
all symmetric SDP relaxations of size at most

(
n
k

)
.
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(This result also holds if k is a function of n, up to exponential-size relax-
ations.)

Moreover, we exhibit an augmented degree k Sum-of-Squares relaxation that
achieves the best approximation guarantees among all symmetric SDP relax-
ations on an instance-by-instance basis. Specifically, we show the following:

Theorem 6.2.2. For every Max-CSP Max-Π and k < n/4, there exists an aug-
mented degree-k Sum-of-Squares relaxation of size nk+10 that on every instance
I of the Max-Π, achieves the best-possible approximation guarantees among all
symmetric SDP relaxations of size at most

(
n
k

)
.

It is interesting that the guarantee of optimality holds on every instance, and
therefore would apply even when one is interested in special classes of instances
such as planar instances.

Combined with known lower bounds for Sum-of-Squares relaxations [33, 66,
70], this result implies the first explicit lower bounds for general symmetric SDP
relaxations of natural optimization problems. (A recent work shows that random
0/1 polytopes require exponential-size SDP relaxations [11], but these polytopes
do not correspond to natural combinatorial optimization problems.) A concrete
implication is that for every positive constant ε > 0, symmetric SDP relaxation
require exponential size to achieve approximation ratio 7/8 + ε for Max 3-Sat.

Symmetric LP Relaxations for Traveling Salesman Problem. Recent years
have seen a lot of progress on the approximability of constraint satisfaction prob-
lems (e.g., in the context of the Unique Games Conjecture). It is a very in-
teresting question whether these results could lead to new insights about other
notorious combinatorial optimization problems, e.g., traveling salesman.

Previous work showed that symmetric LP relaxations for Max-CSPs are ex-
actly as powerful as Sherali–Adams relaxations [12]. Here, we show an analo-
gous result for traveling salesman.

Theorem 6.2.3. For every k ∈ �, k < n/4, there exists an O(n2k)-size LP re-
laxation that can be generated in time O(n2k) for traveling salesman on n sites
such that the following holds: the relaxation achieves the best-possible approxi-
mation guarantees among all symmetric LP relaxations of size at most

(
n
k

)
, even

on a per-instance basis.

Related Work. In an independent effort, Fawzi et al. [23] show similar lower
bounds for symmetric semidefinite programs. The results of [23] are incompa-
rable to those presented in this work (See Section 6.4 for more details).
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6.3 Preliminaries
Constraint Satisfaction Problems. Constraint Satisfaction Problems (CSPs)
are a broad class of discrete optimization problems that include Max Cut and
Max 3-Sat. The main focus of this work is CSPs over a boolean domain; the
same ideas can be generalized to CSPs over general finite domains.

Fix some k ∈ �. A k-ary predicate is a mapping P : {−1, 1}k → {0, 1}.
For a given n ∈ � and a subset S ⊆ [n] with |S | = k, we use the notation
PS : {−1, 1}n → {0, 1} to denote the mapping

PS (x1, x2, . . . , xn) = P(xS ) ,

where xS ∈ {−1, 1}k denotes the projection of x ∈ {−1, 1}n to the coordinates in
S .

Let Π be a collection of k-ary predicates. We will often refer to such a collec-
tion as a k-ary CSP. An instance of I of Max-Π consists of n boolean variables
x1, x2, . . . , xn, m predicates P1, P2, ..., Pm ∈ Π, and m subsets S 1, S 2, . . . , S m ⊆

[n]. The constraints of the CSP are naturally of the form PS i
i (x) = 1. The associ-

ated optimization problem is to find an assignment x ∈ {−1, 1}n that satisfies as
many constraints as possible, i.e. that maximizes

valI(x) =
1
m

m∑
i=1

PS i
i (x) .

Given a CSP instance I, we denote its optimal value by optI =

maxx∈{−1,1}n valI(x). Finally, we will use Max-Πn to denote the set of Max-Π
instances on n variables.

Positive Semidefinite Matrices. We will use the notation S+
k to denote the

cone of k × k symmetric, positive semidefinite (PSD) matrices with real en-
tries. We equip S+

k with the Frobenius inner product 〈U,V〉 = Tr(UT V) =∑k
i=1

∑k
j=1 Ui jVi j.

One may naturally identify S+
k with a subset of �k(k+1)/2 so that the inner

product of two PSD matrices is equal to the inner product of the corresponding
vectors. We will use these two representations interchangeably when the context
is clear.

SDP Relaxations for CSPs. In Chapter 4 we defined generic LP relaxation for
Max-CSPs. Here we will similarly define generic SDP relaxation for Max-CSPs.

Let Π be a k-ary CSP and let n ∈ �. An SDP relaxation for Max-Πn consists
of two objects: A linearization and a spectrahedron. Fix a number R ∈ � called
the size of the relaxation.
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Linearization: A linearization associates to each assignment x ∈ {−1, 1}n an
element x̃ ∈ S+

R and to each instance I a vector Ĩ ∈ �R(R+1)/2 satisfying the
property that valI(x) = 〈Ĩ, x̃〉.

Spectrahedron: A spectrahedron S is the intersection of the PSD cone with an
affine linear subspace, i.e.

S = {y ∈ �R(R+1)/2 | Ay = b, y ∈ S+
R} ,

where A is an R(R+1)
2 ×

R(R+1)
2 matrix and b ∈ �R(R+1)/2. To be a valid relaxation, S

must contain all the integral points in its linearization, i.e. {x̃ : x ∈ {−1, 1}n} ⊆ S.
Thus the SDP associated with a Max-Πn instance I is given by

maximize 〈Ĩ, y〉
subject to Ay = b

y ∈ S+
R .

It is worth noting that the spectrahedron is independent of the instance I
(note also that one has a possibly different spectrahedron for every input size n).
The instance itself is entirely encoded by the objective function. This is the same
as the linear program case defined in Chapter 4/

We refer to R as the size of the SDP relaxation even though it has R(R+1)
2

variables and equality constraints. Finally, we say that an SDP relaxation is a
(c, s)-approximation for Max-Πn if, for every instance I, the following implica-
tion holds true:

opt(I) 6 s =⇒ max
y∈S
〈Ĩ, y〉 6 c.

Sum-of-Squares Hierarchy. We will briefly recall the Sum-of-Squares SDP
for Max-CSPs, in addition to a brief review of what we introduced in Chapter
4, we will also give an alternative point of view in terms of pseudo expectation
functionals.

A solution to the the d-round SoS hierarchy consists of vectors vS ,α for all sets
of variables S ⊆ [n] with |S | 6 d and assignments α ∈ {−1, 1}S . The constraints
are described as follows: for every subset S such that |S | 6 d, there should exist
a probability distribution µS on {−1, 1}S . Furthermore, these distributions should
be consistent in the sense that for any two subsets S and T with |S |, |T | 6 d,
the marginal distributions of µS and µT on S ∩ T should be identical. One then
requires that for any subsets S ,T ⊆ [n] with |S ∪ T | 6 d and any assignments
α ∈ {−1, 1}S , β ∈ {−1, 1}T , we have

〈vS ,α, vT,β〉 = �µS∪T {XS = α, XT = β} ,

where X denotes a random variable distributed according to µS∪T and XS and XT

denote the projections of X to the coordinates in S and T , respectively.
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Alternatively, one can think of the SoS SDP as optimizing an objective func-
tion over “local expectation” functionals. Consider a map �̃ that sends n-variate
polynomials of degree at most d (over �) to real numbers. We say that �̃ is a
level-d pseudo expectation functional if it satisfies the following properties:

– Linearity. For every pair of n-variate real polynomials P and Q with
deg(P), deg(Q) 6 d, and every pair of numbers a, b ∈ �, we have

�̃(aP + bQ) = a�̃(P) + b�̃(Q) .

– Positivity. For every polynomial P with deg(P) 6 d/2, we have �̃(P2) > 0

– Normalization. �̃(1) = 1.

For CSPs over the Boolean cube {−1, 1}n, we may assume the following ad-
ditional constraints on the functionals; this is because x2

i = 1 for xi ∈ {−1, 1}.

– Folding. For every monomial xα =
∏n

i=1(xi)αi of degree at most d, we
have �̃[xα] = �̃[xα mod 2], where xα mod 2 =

∏
i(xi)αi mod 2.

Consider now a k-ary CSP instance I. We may naturally consider the
functional valI : {−1, 1}n → [0, 1] as a multilinear polynomial of degree at
most k by expressing it in the Fourier basis: valI =

∑
S⊆[n]:|S |6k aSχS , where

χS (x) =
∏n

i=1 xi. By abuse of notation, we can consider valI also as a multilinear
polynomial over �n.

We can now express the degree-d SoS value of the the instance I by

SoSd(I) = max
{
�̃ [valI] : �̃ is a level-d pseudo expectation functional

}
.

6.4 Symmetric SDPs

Symmetry
Let Sn denote the set of permutations on n objects. Clearly Sn acts on �n by
permutation of the coordinates. We call a subset S ⊆ �n symmetric if it is invari-
ant under the action ofSn. In [72], an extended formulation of an n-dimensional
convex polytope P ⊆ �n is a convex polytope Q ⊆ �n+n′ such that P is the
projection of Q to the first n coordinates. Suppose P is symmetric. One says that
the extended formulation is symmetric if, for every σ ∈ Sn, there is a σ′ ∈ Sn′

such that the permutation (σ,σ′) ∈ Sn+n′ preserves Q, i.e. Q = (σ,σ′)Q.
A direct analog of this definition is unsuitable for SDPs. Consider again

the natural identification of S+
R with a subset of �R(R+1)/2. If σ ∈ SR(R+1)/2 and

Y ∈ �R(R+1)/2 is PSD, it is not necessarily the case that σY is PSD. It is more
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natural to define the action of SR on �R(R+1)/2 as that which permutes the rows
and columns simultaneously. Thus if σ ∈ SR and Y = (Yi j) ∈ �R(R+1)/2, we
define σ · Y = (Yσ(i)σ( j))i j ∈ �

R(R+1)/2. It is manifestly clear that S+
R ⊆ �

R(R+1)/2

is invariant under this action. If one thinks about an SDP as a vector program,
this corresponds naturally to permuting the underlying variables. It leads to the
following notion of symmetry.

Definition 6.4.1. An SDP relaxation of size R for Max-Πn is symmetric if, for
any σ ∈ Sn, there is a σ̃ ∈ SR, such that for every x ∈ {−1, 1}n,

σ̃(x) = σ̃ · x̃,

where x̃ is the linearization of x and σ̃(x) is the linearization of σ(x).

Remark 6.4.2. Fawzi et al. [23] use a more general notion of symmetry
wherein for any σ ∈ Sn there exists an invertible matrix ρ(σ) such that
σ̃(x) = ρ(σ)x̃ρ(σ)T . In our setup, the matrices ρ(σ) is restricted to being permu-
tation matrices.

Function families
We now present a necessary condition for there to exist a good SDP relax-
ation for Max-Πn in terms of families of functions on the discrete cube. This
is analogous to the characterization for LPs given in [12], and follows closely
the semidefinite generalization of Yannakakis’ factorization theorem presented
in [26]. In what follows, ‖ · ‖ denotes the Euclidean norm.

Theorem 6.4.3. Consider some boolean CSP Πn. Suppose that for some c >
s > 0, there exists an SDP relaxation of size R that (c, s)-approximates Max-Πn.
Then there exists a family of functions f1, f2, . . . , fR : {−1, 1}n → �R, such that
for each instance I with opt(I) 6 s, there are numbers {λi, j : 1 6 i, j 6 R} ⊆ �
and η > 0 satisfying: For all x ∈ {−1, 1}n,

c − valI(x) =

R∑
i=1

∥∥∥∥∥∥∥
R∑

j=1

λi, j f j(x)

∥∥∥∥∥∥∥
2

+ η .

Furthermore, if the SDP relaxation is symmetric, then the family { fi : 1 6 i 6 R}
is invariant under permutation of inputs, i.e. for all σ ∈ SR,

{σ fi : 1 6 i 6 R} = { fi : 1 6 i 6 R} .

Proof. Let S be the spectrahedron associated with an SDP relaxation of size R
that (c, s)-approximates Max-Πn and write

S = {y | Ay = b, y ∈ S+
R} .
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Suppose that opt(I) 6 s. Since the SDP relaxation (c, s)-approximates Max-Πn,
we have 〈Ĩ, y〉 6 c for all y ∈ S.

In particular, this implies that c − 〈Ĩ, y〉 > 0 is valid for all y ∈ S. Therefore,
by the strong separation theorem (and the fact that the SDP cone is self-dual),
there exists a PSD matrix Λ ∈ S+

R, a vector β ∈ �R(R+1)/2 and a number η > 0
such that for all y ∈ S,

c − 〈Ĩ, y〉 = 〈Λ, y〉 + 〈β, Ay − b〉 + η .

Specializing to y = x̃ for x ∈ {−1, 1}n, we have

c − valI(x) = c − 〈Ĩ, x̃〉 = 〈Λ, x̃〉 + 〈β, Ax̃ − b〉 + η

As x̃ ∈ S for x ∈ {−1, 1}n (by the definition of a valid relaxation), we will
have Ax̃ − b = 0, which implies that

c − valI(x) = 〈Λ, x̃〉 + η ∀x ∈ {±1}n .

Write Λ =
∑R

i=1 λiλ
T
i for a set of vectors {λi} ⊆ �

R. For each x ∈ {−1, 1}n, let
x̃ = LxLT

x be a Cholesky decomposition of x̃, and define the functions { fi} so that
f1(x), f2(x), . . . , fR(x) are the rows of Lx. In this case, we have

c−valI(x) =

〈∑
i

λiλ
T
i , x̃

〉
+η =

〈∑
i

λiλ
T
i ,

∑
i

fi(x) fi(x)T

〉
+η =

R∑
i=1

∥∥∥∥∥∥∥
R∑

j=1

λi, j f j(x)

∥∥∥∥∥∥∥
2

+η .

Suppose now that the SDP relaxation is symmetric. By definition, for each
permutation σ ∈ Sn, there exists a permutation σ̃ ∈ SR such that

σ̃(x) = σ̃ · x̃

for all x ∈ {±1}n.
Note that fi(x) is the ith row of the Cholesky decomposition of x̃. From the

above condition, it is clear that the ith row of the Cholesky decomposition of σ̃(x)
is the σ̃(i)th row of x̃. Hence we will have

fi(σ(x)) = fσ̃(i)(x)

for all x ∈ {±1}n and therefore the function family { fi : 1 6 i 6 R} is invariant
under the action of SR, as desired. �

Instance optimal symmetric SDPs
We now present an augmented version of the SoS hierarchy and show that the
approximation it achieves on every Max-Πn instance is at least as good as any
symmetric SDP of roughly the same size. Our starting point is a structural lemma
on symmetric families of functions.
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Definition 6.4.4. A function f : {−1, 1}n → � is a k-near-junta if
f (x1, x2, . . . , xn) depends on at most k variables and the value

∑n
i=1 xi. In other

words, there is a subset S ⊆ [n] with |S | = k such that if x and x′ have∑n
i=1 xi =

∑n
i=1 x′i and differ only on coordinates outside S , then f (x) = f (x′).

The proof of the following lemma is very similar to an analogous claim in
the work of Yannakakis [72].

Lemma 6.4.5 ([12], Lemma 4.3). Let F be a finite family of functions of the
form f : {−1, 1}n → � such that |F | 6

(
n
k

)
for some k < n/4. If F is invariant

under the action of Sn, then each f ∈ F is a k-near-junta.

Recall that a d-rounds SoS hierarchy is corresponding to a normalized
psuedo expectation functional over low degree polynomials. Specifically, the
psuedo expectation functional Ẽ is a linear functional that maps polynomials
of degree at most d to � and satisfies linearity and positivity. Note that this
functional can be represented by a table containing the psuedo expectations of
every monomial of degree at most d, the positivity constraint is equivalent to the
quadratic form P 7→ �̃P2 being positive semidefinite.

In the modified SoS hierarchy, we require a psuedo expectation functional on
a slightly larger class of polynomials than low-degree polynomials. In particular,
fix a positive integer d and consider the vector space of polynomials of the form

P =
∑

06i62n

Pi(x)

∑
j

x j


i

, (6.4.1)

where each Pi(x) is a polynomial of degree at most d. Note that the dimen-
sion of this vector space is at most 2n times the dimension of the vector space of
degree d polynomials.

In the modified SoS SDP we will maximize the objective function over
psuedo expectation functionals on this vector space of polynomials. Similar
to SoS hierarchy, we require the psuedo expectation functional �̃ to satisfy the
following properties:

– Linearity
�̃(P + Q) = �̃P + �̃Q for every polynomial P and Q of the form 6.4.1.
This is slightly more subtle compared to the usual SoS, since assigning
an arbitrary table of values of �̃m(x)(

∑
i xi)k for every monomial m(x) of

degree at most d and k 6 n no longer guarantees linearity, as they’re not
linearly independent. However we can specify a basis of the space spanned
by these polynomials and let SDP output the pseudo-moments of the basis.

Compared to SoS, the size of this SDP is at most 2n times bigger, as the
number of polynomials in the basis is at most 2n times bigger.
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– Positivity
We want that for P =

∑
06i6n Pi(x)(

∑
j x j)i, deg(Pi) 6 d/2, �̃P2 > 0. Once

we specify the basis, this is equivalent to the quadratic form being semidef-
inite.

– Normalization
�̃1 = 1

Finally as the CSP is over the boolean cube {±1}n, the following additional con-
straints on the functional arise from the fact that x2

i = 1.

– Folding For every monomial xα =
∏

i(xi)αi of degree 6 d, we will
have �̃[xα (

∑
i xi) j] = �̃[xα mod 2 (

∑
i xi) j] for all j ∈ {0, . . . , 2n} wherein

xα mod 2 =
∏

i(xi)αi mod 2.

Now we prove that this modified SoS is instance-wise optimal.

Theorem 6.4.6. Given an instance I of Max-CSP Πn, suppose 2d-rounds of the
modified SoS hierarchy does not achieve (c, s)-approximation, then no symmetric
SDP of size

(
n
d

)
can achieve (c, s)-approximation on I.

Proof. We prove the result by contradiction. Suppose there exists a symmetric
SDP that achieves (c, s)-approximation on I. By Theorem 6.4.3, there exists a
family of vector valued functions { fi} such that

c − valI(x) =
∑

i

∥∥∥∥∥∥∥∑j

λi, j f j(x))

∥∥∥∥∥∥∥
2

+ η , (6.4.2)

for some η > 0 and real numbers λi, j. Note that by Lemma 6.4.5, each fi is d
near-junta.

Let f j,k be the k-th coordinate of f j, it is easy to see that f j,k is also d near-
junta. Therefore,

f j,k =

n−1∑
l=0

∑
t

xt

l

P j,k,l , (6.4.3)

for some polynomials P j,k,l with degree at most d. Here we are also using the
fact that

∑
t xt takes at most n + 1 different values.

Let Ẽ denote the psuedo expectation functional obtained by solving the 2d-
rounds modified SoS hierarchy on the instance I. Clearly, Ẽ can be evaluated on
the LHS of (6.4.2) since valI is a low-degree polynomial. By (6.4.3), the psuedo
expectation can also be evaluated on the RHS of (6.4.2).
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On evaluating Ẽ on the RHS of (6.4.2),

�̃

∑
i

‖
∑

j

λi, j f j‖
2+η =

∑
i,k

�̃

∑
j

λi, j f j,k


2

+η =
∑
i,k

�̃

∑
j

λi, j,lP j,k,l(
∑

t

xt)l


2

+η > 0

However, on the LHS we will have

�̃(c − valI) = c − SoS(I) < 0 ,

a contradiction. �

Note that one can also modify the Sherali-Adam Hierarchy in the same man-
ner to obtain instance optimal LP for CSPs.

We remark that this modified SoS SDP is not stronger than the usual SoS
SDP in terms of general approximation guarantee (that is, the worst case ap-
proximation ratio over all possible instances), as we will show in the next sec-
tion. However, it is possible that this SDP performs better than SoS on some
specific instances.

Sum-of-Squares SDPs
In this section we prove that the Sum-of-Squares SDP achieves the best possible
approximation amongst symmetric SDPs of similar size (not per instance-wise).
Specifically we show that the approximation guarantee of SoS SDP on instances
with n variables is at least as good as the approximation guarantee of any sym-
metric SDP of similar size on 2n variables.

Lemma 6.4.7. Suppose that the conditions of Theorem 6.4.3 hold for N = 2n,
then there exists a family of k-juntas {gi} on n variables of size at most 2knk, such
that for every instance I on n variables, there exists λi, j, such that,

c′ − valI =
∑

i

‖(
∑

j

λi, jg j)‖2

Proof. Given a Max-CSP instance I, we construct another instance I′ of size 2n
by adding n extra dummy variables, while keeping the constraints the same on
first n variables. There are no constraints amongst the dummy variables. Since
the conditions of Theorem 6.4.3 hold, we have

c′ − valI′(y) =
∑

i

‖(
∑

j

λi, j f j(y))‖2

for every y ∈ {−1, 1}2n.
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In particular, we have

c′ − valI′(x,−x) =
∑

i

‖(
∑

j

λi, j f j(x,−x))‖2

Define g j(x) = f j(x,−x), since f j is k near-junta, g j is k-junta.
It’s easy to see that valI′(x,−x) = valI(x), hence we have

c′ − valI(x) = c′ − valI′(x,−x) =
∑

i

‖(
∑

j

λi, j f j(x,−x))‖2 =
∑

i

‖(
∑

j

λi, jg j)‖2

�

Now we prove the main theorem of this section.

Theorem 6.4.8. Given Max-CSP Π, suppose that 2k-rounds SoS relaxation can-
not achieve (c, s)-approximation on instances with n variables, then no symmet-
ric SDP of size

(
N
k

)
achieves (c, s)-approximation on instances with N variables,

with N = 2n.

Proof. We prove it by contradiction. Suppose there exists an SDP relaxation that
achieves (c, s)-approximation on instances with N variables, by Lemma 6.4.7,
there exists a family of k-juntas gi such that for every I on n variables,

c′ − valI(x) =
∑

i

‖(
∑

j

λi, jg j(x))‖2

In particular, the equation holds for the instance I0 where SoS fails to achieve
(c, s)-approximation.

Let �̃ be the psuedo expectation functional defined by the SoS solution on
I0, by linearity of �̃, we have

�̃P = �̃c′ − �̃valI = c′ − SoS(I) 6 c − SoS(I) < 0

However on the other hand, by positivity of �̃

�̃P =
∑

i

�̃‖(
∑

j

λi, jg j)‖2 > 0

Contradition. �
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6.5 Instance Optimal Symmetric LP for Traveling
Salesman Problem

In this section we show that for every constant k, there exists a symmetric LP
of size O(nk), such that on every instance of the Travelling Salesman Problem
problem, its integrality gap is no worse than that of every symmetric LP of size(

n
k

)
.
We say that an LP relaxation is a (c, s)-approximation for

Travelling Salesman Problem if, for every instance I, the following im-
plication holds true:

opt(I) > s =⇒ min
y∈S
〈Ĩ, y〉 > c.

To prove this result, we will need the following tailored version of Theorem
1 in [9] and Theorem 2.2 of [12]

Theorem 6.5.1. Let Sn denote the permutation group on n elements. For an
instance I of the TSP problem with n vertices, there exists a symmetric LP of size
nk that (c, s)-approximates I if and only if there exists a family of nk functions
{ fi : Sn 7→ �

>0} with the following properties:

– There exists non-negative constants λi such that for every σ ∈ Sn, val(σ)−
c =

∑
i λi fi(σ).

– The family { fi} is invariant under permutations of vertices.

We remark that in case of minimization problem, we have c 6 s.
Also we show an analogue to Lemma 6.4.5. Roughly speaking, if a family of

functions onSn is invariant under permutations, then each function only depends
on few locations of the tour, and possibly the parity of the tour.

To show that, we need a lemma from [72]

Lemma 6.5.2. ([72], Claim 2) Let H be a group of permutations whose index
in Sn is at most

(
n
k

)
for some k < n/4. Then there exists a set J of size at most k

such that H contains all even permutations that fix the elements of J.

Lemma 6.5.3. Suppose a family of
(

n
k

)
functions { fi : Sn 7→ �

>0} is invariant
under permutation of its inputs, then for each fi, there exists a set of indices
Ji such that fi only depends on the positions of Ji and the parity of the input
permutation.

Proof. Let Orb( f ) denote the orbit of a function f under permutation of its in-
puts. Therefore we have |Orb( fi)| 6

(
n
k

)
. Hence for each fi the automorphism

group that preserves fi is large. By Lemma 6.5.2, the automophism group Aut( fi)
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contains all even permutations that fix a subset of coordinates Ji with |Ji| 6 k.
Therefore the function only depends on the positions of the indices in J and the
parity of the permutation.

�

It is easy to see from Theorem 6.5.1 that the task of finding symmetric LP
of size m that approximates a TSP instance I optimally is equivalent to finding
a symmetric family of m functions fi : Sn 7→ �>0 such that the optimum of the
program

maxmize c
subject to valI − c ∈ cone( f1, ..., fm)

is maximized.
Given a family of functions { fi}, let cI({ fi}) denote the optimum to the pro-

gram above.
We show that we can explicitly construct a symmetric family {gi} of size

O(n2k), such that c({gi}) > c({ fi}) for any symmetric family { fi} of size at most(
n
k

)
.

Definition 6.5.4. Let S and T be ordered tuples of at most k vertices such
that |S | = |T |. Let IS ,T,odd : Sn 7→ {0, 1} be the indicator function such that
IS ,T,odd(σ) = 1 if and only if σ(S ) = T and σ is an odd permutation. Simi-
larly let IS ,T,even be the indicator function such that IS ,πS ,even(σ) = 1 if and only if
σ(S ) = T and σ is an even permutation.

Let {gi} be the family of functions that consists of IS ,T,odd and IS ,T,even for every
|S | = |T | 6 k. It’s easy to see that {gi} has size O(n2k).

Lemma 6.5.5. Let { fi} be a symmetric family of functions with size at most
(

n
k

)
,

then for any TSP instance I, cI({gi}) > cI({ fi})

Proof. By Lemma 6.5.3, each function in { fi} only depends on the positions of
at most k indices and the parity of the permutation, therefore the function can
be written as non-negative combination of the indicator functions in {gi}, which
implies cone({ fi}) ⊆ cone({gi}). �

Hence the following linear program of size n2k achieves at least as good an
approximation guarantee as all symmetric linear programs of size

(
n
k

)
,

maximize c
subject to valI − c ∈ cone(g1, ..., gM)

Notice that there are O(nk) variables, but n! equations. Now, we will show
how to find a succinct representation of the linear program with O(nk) variables
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and O(nk) constraints. To this end, let us write valI(σ) as a sum of the indicator
functions of pairwise events,

valI(σ) =

n∑
i=1

∑
a,b

D(a, b)1[σ(i) = a ∧ σ(i + 1 mod n) = b] ,

where D(a, b) is the cost of traversing the edge (a, b). Rewriting the above linear
program in terms of functions,

maximize c

subject to
n∑

i=1

∑
a,b

D(a, b)1[σ(i) = a ∧ σ(i + 1 mod n) = b] − c −
∑

i

λigi = 0

λi > 0

Note that the indicator functions in the objective function can also be written as
follows,

1[σ(i) = a ∧ σ(i + 1 mod n) = b] = I(i,i+1),(a,b),0 + I(i,i+1),(a,b),1 .

Hence in the above linear program there are O(n2k) functions over Sn and
we wish to find non-negative λi and c that ensures that

∑n
i=1

∑
a,b D(a, b)1[σ(i) =

a∧σ(i + 1 mod n) = b]− c−
∑

i λigi = 0 while maximizing c. We would like to
rewrite this linear program in an alternate basis, so as to reduce n! equations to
n2k equations. To achieve this, we begin by making the following observation:

Observation 6.5.6. The inner product 〈gi, g j〉 between any pair of indicator
functions can be computed in time O(n3).

Proof. Consequence of the simple combinatorial structure of the indicator func-
tions. In particular, there are explicit formulae for the inner products of the
indicator functions. �

Hence we can compute the matrix V whose i jth entry is 〈gi, g j〉 in time
O(nO(k)). Given V , for a vector Λ = (λ1, . . . , λM) we will have,∑

i

λigi = 0 ⇐⇒ VΛ = 0

Therefore, once matrix V is computed, it is straightforward to write down a linear
program of size n2k as follows:

maximize c
subject to V(w − Λ) = 0
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Λ > 0

wherein Λ, w are vectors indexed by functions gi. Here w(I(i,i+1 mod n),(a,b),0) =

w(I(i,i+1 mod n),(a,b),1) = −D(a, b) , w(1) = c and all the remaining coordinates of w
are zero.

This gives us the main theorem of this section.

Theorem 6.5.7. For any constant k, there exists a symmetric LP that can be
generated in time nO(k) and is of size O(n2k) such that the following holds: the
linear program gives an approximation to TSP problem that is at least as good
as any symmetric LP of size at most

(
n
k

)
on every instance of the problem.
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Chapter 7

Future Directions

Following this thesis several open questions in approximation algorithms and
hardness of approximation immediately arise.

Optimal Algorithm and Hardness Result for CSPs with Global Cardinality
Constraints. Toward the end of Chapter 5, we showed a construction of dic-
tatorship test using Sum-of-Squares gap instances. However, unlike Max-CSPs,
dictatorship tests no longer translate to hardness result. This is due to the non-
locality of the constraints. To see this, suppose we want to prove hardness result
for Min Bisection problem. If we did the usual gadget reduction as in [61], we
would end up with a graph of which the underlying structure is very similar to
the original Unique Game instance. In particular, if the original Unique Game
instance affords a bisection with no edges between them, so will the Max Bi-
section instance, irrespective of the Unique Game instance value! Thus, such
reductions would not work.

Therefore it would probably be more hopeful if instead of Unique Game,
we start the reduction from some instances with guaranteed expansion in the
underlying graph. One problem that might be a good place to start the reduction
with is the Small Set Expansion conjecture by Raghavendra and Steurer [63].

Another possible direction is to prove that CSPs with global cardinality con-
straints are exactly as hard as their counter part without global cardinality con-
straints. This would immediately imply optimal hardness results for all Max-
CSPs (under UGC). In fact, Austrin et al. conjectured that this is indeed the
case[6].

Sum-of-Squares SDP for Unique Games. As we showed in this thesis, Sum-
of-Squares SDP is an extremely powerful tool in designing approximation algo-
rithms. Therefore, the natural question to ask is whether Sum-of-Squares gives
delivers a better approximation guarantee for Unique Games. This has been an
important open question over the past few years. In fact, Barak et al. showed
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that 8-rounds of Sum-of-Squares SDP hierarchy solves all the gap instances that
we’re aware of for Unique Games. Therefore, it is entirely possible that a con-
stant rounds of Sum-of-Squares SDP hierarchy would be able to provide a better
approximation algorithm for Max Cut problem and therefore refute the Unique
Games Conjecture.

Optimality of Sum-of-Squares among General SDP relaxations. We
showed that among all the possible symmetric SDP relaxations for Max-CSPs
of the similar size, Sum-of-Squares achieves the best possible approximation
guarantee. Therefore a natural question is whether we can remove the symmetry
constraint.
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