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Abstract 

 
In this work, I present a CMOS implementation of a neuromorphic system that aims to mimic the 

behavior of biological neurons and synapses in the human brain.  The synapse is modeled with a 

memristor-resistor voltage divider, while the neuron-emulating circuit (“CMOS Neuron”) 

comprises transistors and capacitors.  The input aggregation and output firing characteristics of a 

CMOS Neuron are based on observations from studies in neuroscience, and achieved using both 

analog and digital circuit design principles.  The important Spike Timing Dependent Plasticity 

(STDP) learning scheme is explored in detail, and a simple adaptive learning experiment is 

performed to demonstrate the CMOS Neuron’s potential for future artificial intelligence 

applications. 
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Chapter 1. Introduction 
 

Improvements in integrated circuit (IC) performance, cost and energy efficiency have driven 

semiconductor manufacturing technology advancement to enable ever more functional electronic 

devices.  Due to fundamental limitations in the energy efficiency of conventional complementary 

metal-oxide-semiconductor (CMOS) digital logic circuits [1], however, alternative computer 

architectures (i.e. other than the von Neumann architecture) eventually will be needed.  Among 

these, a promising candidate is the artificial neural network and associated neuromorphic 

computing principles.  The motivation for developing neuromorphic systems is that the human 

brain is capable of processing information and performing a wide variety of functions while 

consuming only ~20 W of power [2].  Particularly for noise reduction, pattern recognition and 

image detection applications, neuromorphic computing can be superior in performance [3]-[5].  

Therefore, there is tremendous interest to develop information processing systems that embody 

analogues of the physical processes of neural computation [6]. 

 

A human brain comprises ~1011 neurons interconnected with ~1015 synapses [7]; the neurons 

function as signal-processing units, while the synapses act as signal transmission units and also 

store information.  Each neuron communicates with ~104 other neurons via action potentials, 

allowing the brain to excel at computations that are parallel in nature.  Previous attempts at 

developing neuromorphic systems exhibiting such characteristics have relied on analog CMOS 

circuits to implement neuron behavior, and SRAM cells to implement the synapses [8]-[10]. 

With the recent development of the memristor [11], which is also known as resistive random-

access memory (RRAM), more compact implementations of a synaptic connection have been 

proposed for reductions in power consumption and area, as compared against CMOS transistor 

implementations [12]. 

 

This report outlines the essential characteristics of biological neurons and proposes a novel 

circuit design comprising CMOS transistors and memristors for electronic implementation of a 

neuromorphic system.  Each neuron-emulating circuit (“CMOS neuron”) aggregates input 

signals from sensory receptors or other neurons, and generates action potentials based on “leaky 

integrate-and-fire” (LIF) principles. A two-step neuron-to-neuron interaction scheme is 

proposed: firstly, the action potential output is converted to a post-synaptic input signal for the 

next layer of neurons; secondly, during the refractory period where a second action potential 

cannot be fired, the value of the synaptic memristor element is modified according to Spike 

Timing Dependent Plasticity (STDP) learning rules, i.e. a decrease in resistance corresponds to 

long-term synaptic potentiation (LTP) whereas an increase in resistance corresponds to long-

term synaptic depression (LTD).  Finally, this report demonstrates the capability of the proposed 

neuromorphic circuit for adaptive learning.  

  



 

Chapter 2. Neuromorphic Computing Principles  
 

The concept of neuromorphic computing was developed in the late 1980s by Carver Mead, who 

described the use of very-large-scale integrated (VLSI) systems to process analog signals in 

order to mimic neuro-biological processes [6].  This chapter outlines neuromorphic computing 

principles based on observations from studies in neuroscience.  It then briefly mentions previous 

work by other research groups to develop and implement computational models of the human 

brain at various levels of abstraction.  

  

2.1 Characteristics of Biological Neurons  
 

The majority of neurons in the human brain are multipolar neurons, which have a single axon 

that acts as an output terminal and multiple dendrites that behave as input terminals.  Axons can 

be connected to multiple dendrites, and each axon-dendrite interface comprises a synapse that 

facilitates electrochemical interactions between neurons.  Dendrites also can be connected to 

receptor cells which respond to external stimulus.  Almost all neural network implementations 

(hardware and software) are modeled after a system of multipolar neurons (Figure 1).  

 

 
Figure 1: Computational model of a biological multipolar neuron [13]. 

 

 

The cell body of a neuron is known as the soma, and it produces the necessary proteins for a 

neuron to function.  From a computational standpoint, the soma integrates information received 

from the dendrites, and outputs an action potential (i.e. it “fires”) if the soma’s membrane 

potential exceeds a threshold.  Dendritic inputs from other neurons are categorized as either 

excitatory postsynaptic potentials (EPSPs) or inhibitory postsynaptic potentials (IPSPs).  EPSPs 

increase a neuron’s likelihood of firing by increasing the soma’s membrane potential, while 

IPSPs decrease a neuron’s likelihood of firing.  The postsynaptic input potentials are aggregated 

by the soma via spatial summation and temporal summation (Figure 2).  



 

 
Figure 2: Biological neurons generate action potentials (spikes in electric potential vs. time, denoted by the vertical arrows) based 

on spatial and temporal summation [14]. 

 

 

Spatial summation refers to the addition of input signals from different dendrites at a specific 

point in time.  Most software artificial neural network (ANN) models implement spatial 

summation to determine whether an action potential should be fired and transmitted to the next 

layer of neurons.  Traditionally, synaptic inputs have been summed linearly:   

 

𝐴𝑜𝑢𝑡 = 𝑠𝑡𝑒𝑝 (∑ 𝑤𝑖𝐴𝑖

𝑁

𝑖=1

− 𝜃) 

 

 

where Ai is an action potential from a previous layer of neurons, w is the synaptic weight, and θ 

is the threshold potential.  However, recent studies in neuroscience suggest that the integration of 

EPSPs and IPSPs may contain nonlinear terms proportional to the product of EPSPs and IPSPs 

[15].  It remains unclear whether simple arithmetic rules are applicable for the spatial summation 

of inputs from a dendritic tree [15]. 

 

Temporal summation refers to the addition of successive input signals over time from a single 

dendrite.  The capacitive nature of a neuron’s cell membrane prevents abrupt changes to the 

membrane potential.  Successive weak EPSPs (below the threshold potential) from a single 

dendritic input may still generate an action potential if they arrive within a short period of time.  

 

 

2.2 Action Potentials and Signal Propagation 

 

An action potential is a spiking of the membrane potential when a threshold is reached.  It is 

characterized as having steep depolarization and repolarization phases, followed by a refractory 

period where the membrane potential undershoots before reaching back to its resting potential 

(Figure 3).  

 

 

 

 



 

 
Figure 3: Generic features of an action potential in biological neurons [16].  

 

 

Action potentials are sometimes referred to as a train of pulses.  They follow two important 

principles that should be considered in neuromorphic systems [17]: 

1) All-or-none principle: All action potentials fired from the same neuron are identical, 

in the sense that stronger inputs do not generate larger action potentials.  As long as 

the sum of input signals causes the membrane potential to exceed the threshold, the 

exact same action potential will be fired.  

2) Absolute refractory period: After an action potential is fired, there is a period of time 

when a second action potential is prohibited from firing, regardless of the strength of 

the sum of input signals.  

 

The firing frequencies of biological neurons can range from ~1 Hz to ~100 Hz, depending on the 

type of neuron and the intensity of the input stimulus [18].  Stronger inputs cause action 

potentials to be fired at faster rates.  Due to the refractory period, there exists an upper limit for 

the firing frequency.  Neuromorphic systems can be designed to operate at ~GHz frequencies 

[12], since CMOS device capacitances (~fF) and memristor switching delays (~ns) naturally 

allow CMOS neurons to operate faster than biological neurons.  

 

 

2.3 Spike Timing Dependent Plasticity (STDP) 

 
The ultimate goal of neuromorphic computing is to achieve a system that is capable of 

unsupervised learning.  Over time, neuroscientists have discovered that human cognition and 

memory are attributable to a network of synapses in the brain with tunable strengths.  Hebb’s 

postulate is a well-known learning rule, which states that when “Cell A” repeatedly contributes 

to the firing of “Cell B,” a metabolic change occurs such that “Cell A” becomes more efficient in 

contributing to the firing of “Cell B” [19].  The strengthening and weakening of synaptic 

connections are known respectively as long-term potentiation (LTP) and long-term depression 

(LTD).  A stronger synaptic connection between two neurons increases the likelihood of the pre-

neuron inducing the post-neuron to fire, consistent with Hebb’s postulate of learning.  

 

 



 

 
Figure 4: Spike timing dependent plasticity (STDP) [20]. 

 

 

In 1998, Bi and Poo discovered that LTP occurs when presynaptic spikes lead postsynaptic 

firing, while LTD occurs when postsynaptic firing leads presynaptic spikes [20].  Moreover, 

pairs of action potentials fired at close points in time affected the synaptic strength much more 

than those fired far apart (Figure 4).  This biological process is now known as spike timing 

dependent plasticity (STDP).  While STDP is only one of several factors that contribute to 

synaptic weight changes, it has now almost become a universal kernel for associative learning 

due to its simplicity and occurrence among >20 different types of mammals and insects [21].  

Designing a neuromorphic system capable of exhibiting STDP may be the key to future 

advancements in artificial intelligence.   

 

 

2.4 Previous Work on Electronic Neuromorphic Systems 
 

Neuromorphic computing was originally postulated as a computational alternative to digital 

computers.  In 1995, Mead noticed that when CMOS devices operated in their subthreshold 

regime, transistor gate voltages controlled the energy barriers over which charge carriers flowed 

across the channel in similar ways as neurons regulated charge movements across their 

membranes [6].  He argued that human brains exceled at localizing computations and being 

accurate in the presence of noise.  Digital systems require precision from individual bits, whereas 

neural systems rely on feedback so that multiple signals combine to collectively achieve 

precision [6].  Early neuromorphic circuits were mostly analog, and included attempts of 

developing artificial vision [5] as well as studies on neuron interactions in the spinal cord [37].   

 

 
Figure 5: Common neuromorphic crossbar array for high-density synaptic storage [8].  



 

The emergence of digital computers and the electronic industry’s efforts on related research 

decelerated neuromorphic computing advancements until recent years.  Focus was shifted to 

developing efficient pattern recognition algorithms, including software implementations like 

artificial neural networks [38].  Due to the increasing need for energy efficient computing 

systems and the discovery of scalable memristive devices, neuromorphic computing has 

resurfaced, with an emphasis on the development of hardware that mimics the human brain.  

Modern neuromorphic systems can be application-based or biology-based; designs driven by 

applications tend to be digital and compatible with gate-level logic, while designs focused on 

modeling the electrochemical interactions between neurons incorporated analog principles [12].  

As device engineers develop reliable devices compatible with neuromorphic circuits, circuit 

designers have begun exploring novel architectures to implement neuromorphic systems.  

 

In 2011, Seo et al. at IBM Research designed a digital neuromorphic chip for pattern 

classification using 45nm CMOS technology and transposable crossbar 8T SRAM arrays as 

binary synaptic weights [8].  Recently, this crossbar configuration (Figure 5) has been extended 

by other research groups to incorporate memristors as the synaptic storage element for better 

scaling and efficiency [27], [35]-[36].  Kim et al. at the University of Michigan designed and 

fabricated a fully operational high-density hybrid crossbar/CMOS storage system with multilevel 

memristors and CMOS decoders [36].  Research has also been conducted on the design of 

CMOS circuits that can produce action potential firings using capacitors and transistors [31].  

Studies suggest that while digital implementations at the 10nm node can consume less power, 

analog circuits and scaled memristive devices provide an advantage in overall system area [12].  

 

This work incorporates both analog and digital principles from previous research to design a 

neural system that interacts via action potential firings.  Dendritic input aggregation and neural 

spiking are achieved using CMOS amplifier circuits, while synaptic plasticity is implemented 

with memristive technologies.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3. The Memristor as an Artificial Synapse  
 
The memristor is a passive two-terminal electrical component postulated by Chua in 1971 [22], 

and realized recently by Williams et al. in 2008 [11].  Due to the analogous relationships 

between voltage and current, charge and flux, the memristor has been regarded as the fourth 

fundamental circuit element along with the resistor, capacitor and inductor (Figure 6). 

 

 
Figure 6: Circuit elements relating fundamental electrical quantities [11]. 

 

The memristance M describes a flux and charge relation: 

  

𝑀(𝑞) =
𝑑𝜑

𝑑𝑞
 

 

If charge changes as a function of time, this relation can be rewritten as [11], [22]: 

 

𝑀(𝑞(𝑡)) =
𝑑𝜑/𝑑𝑡

𝑑𝑞/𝑑𝑡
=

𝑉(𝑡)

𝐼(𝑡)
 

 

Hence, the memristor can be described as a device whose resistance varies based on changes in 

its charge profile over time.  It has been proposed that this property can effectively model 

synaptic behavior for neuromorphic computing applications [23].  

 

 

3.1 RRAM as Memristor: Modeling and Simulations  

 

Researchers around the world have been investigating Resistive random-access memory 

(RRAM) devices for high-density non-volatile memory applications due to their scalability 

(down to ~10 nm cell size), reliability (~1012 SET/RESET cycles), short programming time (~ns) 

and low energy consumption (~0.1 pJ/bit) [24]-[26].  

 



 

 
Figure 7: a) schematic illustration of an RRAM cell showing the various material choices [24] b) representative current vs. 

voltage (I-V) characteristics for unipolar and bipolar switching mechanisms. c) I-V curve for analog and digital programming of 

an RRAM cell. 
 

 

An RRAM cell typically consists of a transition metal oxide layer sandwiched between two 

electrodes (Figure 7a).  The resistive switching behavior is attributed to the formation and 

rupture of conductive filaments that facilitate current flow through the oxide layer.  If a threshold 

electric field or/and current is achieved, the RRAM cell can transition from a high-resistance 

state (HRS) to a low-resistance state (LRS) during the SET process, or from the LRS to HRS 

during the RESET process.  For a unipolar RRAM cell, both SET and RESET operations can be 

achieved with the same polarity of applied voltage; for a bipolar RRAM cell, SET and RESET 

operations require opposite polarities of applied voltage (Figure 7b).  The resistance of an 

RRAM cell can be switched abruptly between two states, or gradually between multiple 

resistance states.  (Some RRAM devices exhibit mixed analog-digital switching behavior, such 

as the HfOx-based device fabricated by Yu et al. which undergoes abrupt SET, but gradual 

RESET operations [27].)  In the latter case, the RRAM cell behaves as a memristor.  Therefore, 

in this chapter, a bipolar RRAM device with analog programming behavior is investigated as a 

synaptic device for neuromorphic circuits.  

 

Using a compact model for RRAM devices developed by the University of Michigan [28], 

SPICE simulations were performed to study the analog behavior of a bipolar RRAM device with 

~ns programming time and ~1.2 V threshold voltage (Figure 8).  A 10 ns potentiation pulse was 

applied across the RRAM device to SET it from HRS to LRS, followed by a 10 ns depression 

pulse to RESET it back to its original HRS.  For voltages below 1.0 V, no change in resistance 

state occurs, as there are insufficient charge carriers created to increase current flow; however, 

for a peak voltage (Vp) of 1.2 V, a 10 ns pulse causes the RRAM device to change its resistance 

by an order of magnitude (Figure 7c).  Devices designed to mimic synaptic behavior should 

output voltage signals of similar magnitude to take advantage of the analog behavior of the 

RRAM device.  For Vp = 1.4 V, the RRAM device undergoes binary switching. 

  



 

 
Figure 8: SPICE simulations of an RRAM cell, using the compact model from [28]: a) Pulse voltage signal applied across a 

RRAM cell. b) Simulated current flowing through the RRAM cell for Vp = 1.0 V. c) Simulated current flowing through the 

RRAM cell for Vp = 1.2 V. d) Simulated current flowing through the RRAM cell for Vp = 1.4 V. 

 

Similarly, DC voltage sweeps were simulated using LTSpice to illustrate the I-V characteristics 

of the RRAM device (Figure 9).  For sweeps below the threshold voltage, there is no change in 

the resistance of the RRAM.  The device can be SET or RESET (depending on the polarity) by 

applying a voltage of 1.2 V; the application of higher voltages results in abrupt changes in 

resistance.  To further demonstrate its suitability as a synaptic device, a series of 1 ns pulses was 

applied across the RRAM every 10 ns to mimic action potential firings (Figure 10).  Depending 

on the polarity of the bias voltage, the RRAM can be gradually switched between LRS and HRS 

states with a series of short pulses.  Most RRAM devices can reliably change their resistances 

continuously across a range of two orders of magnitude [25]-[27]; this characteristic is verified 

by the simulation results herein. 

 

 
Figure 9: Simulated I-V characteristics of a RRAM device operating in different regimes: a) Sub-threshold voltage operation (no 

resistive switching); b) Analog switching for intermediate applied voltage. c) Digital switching for high applied voltage.   



 

 
Figure 10: Simulations showing Long Term Potentiation (LTP) and Long Term Depression (LTD) behavior of an RRAM device. 

The RRAM resistance can be decreased or increased by a series of 1 ns pulses, depending on the polarity of the applied voltage. 

 

 

3.2 Synapse Configuration  

 

A voltage divider comprising a memristor (analog bipolar RRAM device) connected in series 

with a resistor can emulate the behavior of a synapse (Figure 11).  In the biological process, an 

action potential may cause neurotransmitters to electrochemically transmit strong or weak 

postsynaptic input potentials to the next layer of neurons, depending on the synaptic strength.  

With the artificial synapse configuration shown, the strength of the postsynaptic potential varies 

in a similar fashion depending on the resistance of the memristor.  For an analog RRAM device 

with two orders of magnitude difference in resistance between HRS and LRS, the resistance R 

should be selected such that the resistance of the memristor can vary between 0.1R to 10R.  

Under such conditions, the strength of the postsynaptic potential can vary from ~10% to ~90% of 

the action potential (Figure 12).  This potential acts as the input signal to the next layer of 

neurons.  
 



 

 
Figure 11: Synapse implementation using memristor-resistor voltage divider configuration. 

 

 Figure 12: Synaptic strength based on RRAM resistance value. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 4. CMOS Neuron Design 
 

 

Figure 13: Block diagram of the CMOS Neuron. 

 

The CMOS neuron design presented in this chapter accounts for the anatomy of biological 

neurons, the way neurons communicate with each other, and synaptic behavior that supports 

memory and learning.   

 

To satisfy the neuromorphic computing principles described in Chapter 2, a CMOS Neuron 

should consist of multiple stages, each implementing a function corresponding to a behavioral 

component of a biological neuron.  As shown in the block diagram of Figure 13, input signals are 

spatially and temporally summed via a source follower aggregation circuit [29] that outputs a 

signal to a leaky integrate and fire (LIF) stage [12] which generates action potentials with 

absolute refractory periods.  The postsynaptic action potential is weighted by the memristor-

resistor synapse circuit as it is transmitted to a neuron in the next layer.  A control circuit takes 

action potentials from both the pre-neuron and the post-neuron to modify the synaptic strength 

between the pre-neuron and post-neuron, according to STDP rules.  The strength of the synapse 

is updated during the refractory period, after the action potential output of the pre-neuron passes 

through to the dendrite of the post-neuron.  

 

 

4.1 Aggregation of Input Stage  

 
A series of source followers connected in parallel can be used to implement the dendrites for the 

CMOS neuron design (Figure 14).  The source follower has high input impedance with an output 

voltage given by 

 

𝑉𝑜𝑢𝑡 ≈
∑ 𝐺𝑖𝑉𝑖

𝑛
𝑖=1

∑ 𝐺𝑖
𝑛
𝑖=1

 

 

where Gi is the transconductance of the operational transconductance amplifier (OTA) and Vi is 

the input signal.  A transistor level schematic of each OTA is shown in Figure 15. For input 

voltages that deviate significantly from the average, the OTA current saturates, limiting the 



 

contributions of extreme input voltage signals [29].  The individual source followers can be 

tuned to have greater transconductances so that different types of inputs contribute differently to 

the likelihood of the neuron’s firing.  For example, larger transconductances can model dendrites 

connected to receptor cells that offer strong stimulus, while smaller transconductances can model 

minor excitations from pre-neuron firings.   

 

 

 
Figure 14:  Source Follower Aggregation Circuit [29]. 

 

 
Figure 15:  Operational Transconductance Amplifier (OTA) [29]. 

 

 

Using the Predictive Technology Model (PTM) for 90 nm-generation CMOS technology [30], 

SPICE simulations were performed on a follower aggregation circuit with three inputs (Figure 

16).  In this experiment, a neuron first receives an input signal from a single dendrite 10 ns 

before receiving subsequent stimulus from the other two dendrites. As the number of inputs 

increases, the follower aggregation output increases accordingly to account for the spatial 

summation capabilities of biological dendrites. This weighted average is converted into a current 

via a transconductance amplifier, and the output current is transmitted to a LIF circuit to mimic 

action potential firings from the axon hillock.   

 



 

 
Figure 16:  Aggregation of Input Simulation. 

 

4.2  Leaky Integrate and Fire Stage  

 

The LIF model is commonly used to emulate the behavior of the neuron cell body.  The 

membrane potential of the CMOS neuron can be described with differential equation [12],   

 

𝐼𝐼𝑛(𝑡) = 𝐶𝑀𝑒𝑚

𝑑𝑉𝑀𝑒𝑚(𝑡)

𝑑𝑡
+

𝑉𝑀𝑒𝑚(𝑡)

𝑅𝑀𝑒𝑚
+ 𝐶𝐹𝑏

𝑑(𝑉𝑀𝑒𝑚(𝑡) − 𝑉𝑆𝑝𝑘(𝑡))

𝑑𝑡
 

 

where CMem is the membrane capacitance, VMem is the membrane potential, RMem is the 

membrane resistance, IIn is the input current, and VSpk is the output spike.  Based on LIF 

principles described by Indiveri et al. [31], the axon hillock circuit can be implemented using a 

combination of capacitors, inverters, and differential amplifiers (Figure 17).  First, the membrane 

capacitance (CMem) is charged by the incoming current (IIn) from the dendritic input aggregation 

stage.  If the membrane potential (VMem) exceeds the threshold potential (VTH), VSpk rapidly 

changes from 0 V to VDD. When VSpk goes high, a reset transistor (NRst) is switched on, activating 

positive feedback through capacitor CFb.  Once the membrane capacitor is discharged, VSpk 

swings back to 0 V, switching the reset transistor off before repeating the integration cycle.  The 

rate of firing can be tuned by adjusting the ratio between the capacitances of CFb and CMem, while 

the pulse width of the output spike can be controlled by the bias voltage VC.   

 

 



 

 
Figure 17:  Axon Hillock LIF circuit design.  

 

 

A three-input neuron can be implemented by connecting the axon hillock circuit in series with 

the aggregation of input stage to demonstrate the CMOS neuron’s capabilities of performing 

spatial and temporal summation (Figure 18).  When the CMOS neuron receives a signal from 

one dendrite, the stimulus is insufficient to cause action potentials to be fired.  When all three 

dendrites receive signals simultaneously, the membrane potential exceeds the threshold potential 

and firing occurs.  Similarly, an action potential is generated when a single dendrite receives 

three successive input signals, upon the third input. 

 

 

 

 

 
Figure 18:  SPICE simulation showing temporal and spatial summation for axon hillock circuit design.   

 



 

In addition, the rate of firing of the axon hillock circuit is dependent on the strength of the input 

stimulus such that strong inputs cause action potentials to be fired at faster rates than weaker 

inputs (Figure 19).  Simulation results also demonstrate that regardless of the strength of the 

input stimulus, the magnitude of the action potential is the same, and the strength of transmission 

to the next layer of neurons is entirely dependent on the synaptic weight of the memristor.  Due 

to the discharging of the membrane capacitor, there is always a refractory period between action 

potential firings.  These results are consistent with the important features observed in biological 

neurons as described in Chapter 2. 

 

 

 
Figure 19:  SPICE simulations of CMOS neuron with absolute refractory period and stimulus dependent firing rates.   

 

4.3 Synaptic Strength Update Stage 

In order to update the resistance of the memristor during the refractory period, potentiating and 

depressing pulses must be applied across the memristor according to STDP learning rules.  One 

possible way of achieving STDP is to design circuitry that control the currents flowing across the 

memristor as seen in Figure 20.  Here, the memristor synapse configuration as described in 

Chapter 3.2 is connected to three sets of complementary pass gates.  When an action potential is 

fired from the pre-neuron (Vpre), VFire goes high and the action potential is converted to a 

postsynaptic input potential (Vout).  In this case, Vpre is below the threshold voltage and resistive 

switching does not occur.  

 
Figure 20:  Synaptic weight update circuit for memristor. 



 

If post-neuron firing precedes pre-neuron firing, VDep is switched high during the refractory 

period to apply a strong depressing pulse (VD) across the memristor to update its resistance.  

Here, VFire is switched low so that the depressing pulse is not transmitted to the next layer of 

neurons.  When post-neuron firing follows pre-neuron firing, a similar scheme occurs with VPot 

switching high, applying VP across the memristor.  

 

The control signals can be generated using logic and memory circuits similar to the ones shown 

in Figure 21.  It is assumed that the CMOS neuron is configured such that all action potentials 

have comparable pulse widths and that the pulse widths are much shorter than the refractory 

period of the neuron.  According to STDP, the memristor synapse should only update its 

resistance when action potential firings from pre- and post-neurons occur at close points in time.  

A memory circuit should be used to determine whether potentiation or depression pulses should 

be generated.  In this work, a simple capacitor is used to store information regarding the order of 

the pre- and post-neuron firings.  For the potentiation circuit, the capacitor is charged whenever a 

pre-neuron fires in the absence of a post-neuron.  The capacitor always operates in its “write” 

mode, and only changes to its “read” mode when the pre- and post-neurons both fire at the same 

time.  This configuration constantly resets the capacitor so that the AND gate (Figure 21) goes 

high only when there is a pre-before-post firing followed immediately by a pre-AND-post firing.  

When firing conditions are met, a chain of inverters can be used to delay the overlap of the two 

signals in order to generate the appropriate control signal (VPot or VDep) during the refractory 

period.  Another chain of inverters with high gate capacitances is used to generate the actual 

potentiating and depressing signals (VP and VD).  The gate capacitances serve to convert the pulse 

width of the overlap between pre- and post-neurons into a difference in strength of voltage 

applied across the memristor.  SPICE simulation results for the synaptic strength update stage 

with are shown in Figure 22.  Principles described in this chapter serve as general guidelines, and 

can be further optimized for power, area and reliability.    

 

 
Figure 21:  Control circuit that generates potentiating and depressing pulses for STDP. 

 

 

 



 

 
Figure 22:  SPICE simulation results for synaptic strength update circuit. A resistor is used in place of a memristor as synapse to 

avoid convergence issues in SPICE. Simulation only aims to show how voltages with different duration, polarity, and magnitude 

can be applied across a synapse during the refractory period depending on spike-timing between pre and post-neurons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 5. CMOS Neuron Applications 
 

At present, neuromorphic systems provide performance advantages over traditional computers in 

certain noise reduction [3], pattern recognition [4], and image detection applications [5].  There 

have also been efforts among the semiconductor community to explore systems that are capable 

of mimicking the human brain’s ability to learn and adapt to complex environments [32], [33].  

The CMOS neuron designed in this report integrates computation and memory with high 

parallelism, and also possesses capacity for adaptive learning.  

 

 

5.1 Associative Learning 

During the 1890s, Russian physiologist Ivan Pavlov noticed that after feeding his dogs for a long 

period of time, his dogs would salivate upon seeing him without food [34].  This led to his initial 

experiments, where Pavlov repeatedly rang a bell before giving his dog food and discovered that 

his dog eventually salivated in response to the bell even in absence of food.  This is known as 

classical conditioning, and has helped shape modern-day understanding of associative learning. 

 

In classical conditioning and in context of Pavlov’s dog, food is an unconditioned stimulus that 

always triggers an unconditioned response (salivation), while the bell is normally a neutral 

stimulus that doesn’t cause any physical reactions [34].  After a few repetitions of ringing the 

bell and feeding the dog simultaneously, the bell became a conditioned stimulus that is able to 

initiate a conditioned response by itself.  Pavlov also observed that the shorter the time interval 

between the ringing of the bell and the appearance of food, the quicker his dog became 

conditioned [34].  

 

 
Figure 23:  CMOS neuron simulation based on Pavlov’s experiments [34]: a) Neutral stimulus triggers no response. b) 

Unconditioned stimulus triggers unconditioned response. c) Synaptic strengthening due to STDP. d) Conditioned stimulus 
triggers conditioned response.  



 

To demonstrate the adaptive learning capabilities of the CMOS neuron, Pavlov’s experiment was 

simulated in SPICE with three CMOS neurons (Figure 23) and Stanford’s compact model for 

HfOx-based memristors [39].  In this simplified model, it is assumed that the sound of the bell 

and the scent of the food act as inputs for two independent single-input sensory neurons, and that 

the two sensory neurons are synaptically connected to a single motor neuron that outputs the 

salivation response.  Initially, the synaptic connection between the sound sensory neuron and the 

motor neuron is weak so that input to the sound sensory neuron is unable to trigger a response 

from the motor neuron (Figure 23a).   Due to the strong synaptic connection between the scent 

sensory neuron and the motor neuron, food acts as an unconditioned stimulus and is able to 

trigger an unconditioned response (Figure 23b).  When both sensory neurons receive stimulus 

simultaneously, the scent sensory neuron causes the motor neuron to fire, and STDP from the 

sound sensory neuron firing before the motor neuron strengthens the synaptic connection 

between the two neurons (Figure 23c).  When the strength of the synaptic connection between 

the sound sensory neuron and the motor neuron exceeds a certain threshold, the sound of the bell 

becomes a conditioned stimulus that triggers a conditioned response (Figure 23d).  The SPICE 

simulation shown in Figure 24 demonstrates the associative learning ability of the CMOS 

neuron. 

 

 

 
Figure 24:  SPICE simulation for associative learning experiment using Stanford’s compact model for HfOx memristors [39].   

 

 



 

5.2 Future Prospects 

This report provides design principles for a CMOS neuron using 90nm technology that closely 

mimics key characteristics observed in biological neurons.  The present design requires ~25 

transistors for each CMOS neuron, 5 transistors for each dendritic input, and ~70 transistors + 1 

memristor for each synapse.  While CMOS neurons (~GHz) can operate faster than the human 

brain (~Hz), it remains important to decrease the number of transistors per synapse to increase 

the feasibility of developing more complex neuromorphic systems (i.e. human brain with 1011 

neurons interconnected with ~1015 synapses).  As the switching voltage of memristors continue 

to decrease, it is also worth revisiting Mead’s original idea of utilizing transistors operating in the 

sub-threshold regime in designing CMOS neurons to facilitate further reductions in power 

consumption [6].  Emerging technologies with zero off-state current (i.e. nanoelectromechanical 

relays) may address some of the scaling challenges faced by analog neuromorphic systems, as 

the number of synapses an axon can drive is presently limited by sub-threshold leakage. 

 

It is also particularly important for circuit designers to develop simple and reliable means of 

achieving STDP in artificial neurons, as STDP is the distinguishing feature of neuromorphic 

systems that are capable of unsupervised adaptive learning. At present, a popular way of 

achieving STDP is to design a neuron circuit that converts the spike timing between two action 

potentials (Δt) into a pulse voltage via time-division multiplexing (TDM), such that longer pulses 

are applied across the memristor at smaller Δt [40].  The synaptic strength update stage described 

in Chapter 4.3 of this report implements a variation by converting smaller Δt to longer pulses 

with higher voltages applied across the memristor.  Figure 25 shows a mapping scheme that can 

theoretically be achieved by refining the synaptic strength update circuit described in this report.  

SPICE simulations using University of Michigan’s memristive compact model [28] were 

performed by applying pulses with different magnitudes and durations across the memristor and 

observing the resulting resistance change. To parallel LTD and LTP in biological synapses, the 

change in the synaptic weight of the Memristor-resistor synapse is defined as:  

 

𝛥𝐺 =
𝐺𝑀𝑒𝑚𝑟𝑖𝑠𝑡𝑜𝑟 𝐹𝑖𝑛𝑎𝑙 − 𝐺𝑀𝑒𝑚𝑟𝑖𝑠𝑡𝑜𝑟 𝐼𝑛𝑖𝑡𝑖𝑎𝑙

𝐺𝑀𝑒𝑚𝑟𝑖𝑠𝑡𝑜𝑟 𝐼𝑛𝑖𝑡𝑖𝑎𝑙
 

   

Figure 26 shows STDP achieved with University of Michigan’s compact model and the Δt to 

pulse mapping scheme described in Figure 25.  

 

 

 

Figure 25:  STDP spike mapping scheme. Different spike timings generate pulses with different magnitudes and durations. 
 



 

 
Figure 26:  ΔG vs. Δt curve derived from SPICE simulations of the  

pulse mapping scheme shown in Figure 25.    
 

 

The use of antisymmetric exponential spikes as artificial action potentials has been proposed by 

circuit designers and device engineers [12], [41].  Under such configuration (Figure 27), the 

effective voltage across the memristor varies according to the timing of the presynaptic and 

postsynaptic potentials.  It remains a challenge to design reliable spike generation circuits with 

low output impedance to drive antisymmetric action potentials across the memristor.  A 

neuromorphic system that interacts with spikes mimicking biological action potentials can 

eliminate the need for a separate synaptic update circuit, as the action potentials themselves are 

sufficient to cause STDP. This type of design can reduce the number of transistors per neuron 

significantly, paving way for future developments in large scale neural network systems.   

 

Figure 27:  Future neuromorphic systems incorporating action potential-like waveforms [41]. The effective voltage across the 

memristor will have similar characteristics as mapping scheme described in Figure 25. This type of implementation can reduce 

the number of transistors per neuron/synapse, and mimics biological neural behavior more closely.  
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