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Abstrat

E�ient Multi-Level Modeling and Monitoring of End-use Energy Pro�le in

Commerial Buildings

by

Zhaoyi Kang

Dotor of Philosophy in Engineering - Eletrial Engineering and Computer

Sienes

University of California, Berkeley

Professor Costas J Spanos, Chair

In this work, modeling and monitoring of end-use power onsumption in ommer-

ial buildings are investigated through both Top-Down and Bottom-Up approahes.

In the Top-Down approah, an adaptive support vetor regression (ASVR) model is

developed to aommodate the nonlinearity and nonstationarity of the maro-level

time series, thus providing a framework for the modeling and diagnosis of end-use

power onsumption. In the Bottom-Up approah, an appliane-data-driven stohas-

ti model is built to predit eah end-use setor of a ommerial building. Power dis-

aggregation is studied as a tehnique to failitate Bottom-Up predition. In Bottom-

Up monitoring and diagnosti detetion, a new dimensionality redution tehnique is

explored to failitate the analysis of multivariate binary behavioral signals in building

end-uses.
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Chapter 1

Introdution

1.1 Motivation

In the United States, buildings, both in ommerial and residential setors

1

aount

for around 40% of the total energy onsumption (Figure 1.1), 73% of the total ele-

triity onsumption, and 47% of the total natural gas onsumption, as illustrated in

the EIA's annual energy outlook [23℄. Buildings indeed play inreasingly important

roles in addressing the urrent energy and limate issues [11℄. Signi�ant researh &

development e�orts have been invested in this �eld of study, suh as in the area of

ontrol, monitoring, diagnosis, demand response, and more [39℄[45℄[73℄[55℄[56℄[40℄.

Reently, ommerial buildings

2

, in partiular, are drawing more attentions. On

one hand, they are usually the dominant onsumers of energy and other utilities while

being major ontributors to inreasing energy demands [23℄; on the other hand, they

employ sophistiated power supply and distribution systems, whih enables e�etive

demand side management [79℄[66℄[77℄.

In studying these buildings, it is important to understand their end-use pro�les.

A building end-use pro�le aims to evaluate the power onsumption of eah end-

use ategory in an entire building, for example, spae heating, spae/room lighting,

misellaneous plug-in loads, shared loads, gas onsumption, et.

Among the many reasons to study the building end-use pro�le, the �rst and

foremost is the need to better estimate and detet the building's power load and its

1

industry buildings onsume approximately 32% of the total energy onsumption, but are not

usually inluded in building energy analysis beause of their strong dependene on the related

industry ativities.

2

Commerial buildings are de�ned as buildings with more than half of its �oor spae alloated

for ommerial ativities, e.g. o�es, malls, retail stores, eduational failities, hotels, hospitals,

restaurants, et.
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Figure 1.1: Buildings, inluding ommerial and residential setors, are major on-

tributor to US energy onsumption. (soure: Quadrennial Tehnology Review 2011,

US Department of Energy [19℄)

variability, so as to better de�ne future requirements in terms of the power plants

and the whole power distribution network. The oupant-related load is of speial

importane in onsidering the design and evaluation of the smart power demand

system [67℄[75℄[77℄[62℄.

Seond reason is the requirement of demand side regulation and management.

As in the EIA annual energy outlook report [23℄, to have a 0.6% annual growth

in energy onsumption (as ompared to a residential setor growth of 0.2%), while

average �oor spae inreases at a rate of only 1.0% annually. To respond to this rising

demand, new demand-response strategies are implemented and Renewable Energy

Resoures (RERs) are deployed [67℄[29℄[79℄. Reasonable estimation and diagnosis of

the performane in eah end-use setor will be required.

The two ore omponents in studying the building end-use pro�les are Modeling

and Monitoring. The former involves reasonable predition or modeling of the end-

use onsumption, while the latter deals with monitoring and diagnosis of eah end-use

system. Most of the e�ort in understanding building end-use pro�les will be put into
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these two omponents, as we will show in the next few hapters.

1.2 Two Approahes: Top-Down vs. Bottom-Up

Building end-use pro�les an be usually studied from two perspetives, either Top-

Down approahes and Bottom-Up approahes, distinguished by how the data interat

within the approahes [67℄[29℄, as illustrated in Figure 1.2:

…

…

User 1 User 2 User N

Macro-

Economic
Weather

Building 

structure
Building 

Power 

Profile

Building 

Power 

Profile

Bottom-Up Models Top-Down Models

Figure 1.2: Two types of approahes to study the building end-use pro�les: Top-

Down and Bottom-Up

• The Top-Down approah treats a building as a blak box and fouses on the

olletive demand of eah end-use setor. Usually, a statistial model is built to

desribe demand variability and used to evaluate the performane of a build-

ing's power system. The model would inludemaro-sale extraneous variables,

suh as maroeonomi indiators (gross domesti produt [GDP℄, inome, and

prie rate), limate, building onstrution, et. [29℄. Model parameters are es-

timated from a training set, and building end-use an be modeled or monitored

based upon those parameters.

• The Bottom-Up aapproah takes into aount the individual omponents in

eah end-use setor. From the modeling perspetive, individual behaviors
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an be haraterized as a stohasti model, and the whole power onsump-

tion an be estimated from Monte Carlo (MC) simulation. The parameters

of the stohasti model are estimated from Time-Of-Use (TOU) survey data,

whih reords daily personal usage patterns of eah appliane ategory. From

the monitoring perspetive, instead of whole-building power performane, we

are looking at a multivariate oupant-level signal, whih ontains behavioral

information of the building oupants.

Among these two types of approahes, Top-Down ones are less ompliated and

better studied, whereas Bottom-Up approahes are relatively new but more adaptive

to di�erent senarios, espeially in reent years when building end-use interats more

with oupant behavior through demand-side management. The oupant-dependent

�utuation in power onsumption is also diretly aptured by a Bottom-Up approah.

On the ontrary, Top-Down approahes do not typially have the �exibility to do

that. In addition, the Bottom-Up approah better adapts to hanges in the building

infrastruture, suh as new tehnologies and new poliies, whereas the Top-Down

approah relies mainly on historial data, as will be illustrated in Chapter 2.

Overall speaking, Bottom-Up approah will be more thoroughly studied in this

work, while a few issues about the Top-Down approah will also be addressed.

1.3 Current Challenges

Challenges in Top-Down approah

Statistial modeling is at the ore of any Top-Down approah for both monitoring

and modeling purposes. Most urrent models, however, espeially the linear Gaussian

random noise statistial models, have limited apability to handle deviations from

linearity or stationarity, whih is often observed in building end-use pro�les.

Challenges in Bottom-Up approah

Bottom-Up analysis of building energy has been a di�ult task, sine measuring eah

end-use ategory is ostly. In reent years, this problem is easier to takle, thanks to

the development of large-sale wireless sensor networks and distributed data storage

systems. Many existing works have demonstrated suh a development, suh as in[39℄,

[38℄, [45℄, et. However, several issues still need to be addressed.

From the modeling perspetive, behavior-dependent end-use setors, suh as plug-

in loads, oupant-ontrolled lighting, and oupant-adjusted HVAC, have a signi�-

ant amount of diversity and �utuation [39℄ while being the bottleneks to demand-
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side management [57℄. Better apture of this variane in a new model is highly

preferred.

From the monitoring perspetive, on one hand, measuring end-use bottom-level

power onsumption brings up several issues. More spei�ally, deploying sensors to

eah appliane in modern ommerial buildings will be ostly, while this method also

introdues privay issues. Therefore, a model objetive should inlude low density,

non-intrusive monitoring. On the other hand, monitoring, and even diagnosis or

ontrol, will be hallenging in larger buildings if there are a great amount of individual

applianes. In fat, from both a statistial and engineering perspetive, a metiulous

analysis will be wasteful. A onise but reliable desription of the applianes in eah

end-use ategory is preferred.

This thesis fouses on issues desribed above while demonstrating potential solu-

tions for both modeling perspetive and monitoring perspetive.

1.4 Thesis Outline

The rest of the thesis is organized as follows:

Chapter 2 presents a non-parametri statistial model, adaptive support ve-

tor regression (ASVR), as a Top-Down approah to address non-linearity and non-

stationarity issues in the maro-sale modeling of ommerial building end-uses.

Chapter 3 moves from maro-level Top-Down approahes to miro-level Bottom-

Up approahes. We demonstrate a Bottom-Up appliane-data-driven stohasti

ON/OFF probability model is demonstrated to stohastially estimate the end-use of

di�erent ategories of applianes followed by a disussion about a non-homogeneous

Poisson proess approah to model the shared applianes.

In Chapter 4, based on the study in Chapter 3, a Bottom-Up approah is used

to model real building plug-in loads power onsumption under di�erent senarios. A

new power disaggregation tehnique is proposed, whih is used to �lter out ON/OFF

states of individual applianes from aggregated raw power stream.

In Chapter 5, hallenges in Bottom-Up monitoring are addressed. A dimension-

ality redution tehnique, Logisti PCA (LPCA), is deployed to deal with binary

behavioral data in the Bottom-Up perspetive, and a sequential version of Logisti

PCA (SLPCA) is proposed and analyzed.

Finally, Chapter 6 onludes this study and inludes a brief disussion about

future tasks found within the topis studied by this thesis.
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Chapter 2

Top-Down Approah for End-Use

Modeling & Monitoring

2.1 Introdution

In this hapter, a Top-Down approah is disussed, followed by the proposed non-

parametri adaptive support vetor regression method for maro-level building end-

use modeling.

As illustrated in Chapter 1, a Top-Down approah treats the building as a blak

box and uses historial data or other physial parameters as features to build up a

statistial model. The widely used features inlude historial building power on-

sumption for eah setor; physial parameters, suh as the onstrution area, mate-

rial, strutures, et.; environmental parameters, suh as the temperature, humidity,

sunlight level, rain preipitation, et.; and maro-eonomi features, suh as gross

domesti produt (GDP), salary level, unemployment rate, appliane penetration

level, et.

Model predition apability is ritial. Researhers have studied two types of

models, namely, physial and statistial. Physial models simulate the energy on-

sumption from thermodynamis standpoint. Examples of this approah inlude En-

ergyPlus

1

, whih is a software developed by the Building Tehnology O�e of the

US Department of Energy. A physial model usually gives aurate results and an

be more adaptive to the hange of the building struture and material. However,

alulation is usually too tedious to be used in a real-time monitoring and evaluation

platform.

On the other hand, statistial models are empirial in nature (i.e., based on

1

http://apps1.eere.energy.gov/buildings/energyplus/
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observation) and are usually implemented as linear or nonlinear regression on a set

of features. The features an be seleted based on statistial signi�ane rather

than on physial priniples. Future power onsumption is usually extrapolated from

the features. Statistial models are usually too simple to provide highly aurate

results, but they are statistially robust and omputationally e�ient. Hene, they

are preferred in real-time modeling and monitoring.

In this hapter, we will fous on statistial methods and develop an adaptive

least-mean square version of the nonlinear time series model, whih ould be used in

real-time building end-use monitoring and diagnosis.

The rest of this hapter is organized as follows: Setion 2.2 presents a literature

review on existing models and hallenges. Setion 2.3 introdues the linear autore-

gressive model. Setion 2.4 brie�y talks about hallenges lying in the urrent data

feed. Setion 2.5 disusses an adaptive support vetor regression model. Setion

2.6 gives results and disussion, while Setion 2.7 onludes with disussions about

future tasks.

2.2 Prior Works

Prior Top-down studies apply physial, statistial, or eonometri models to use

historial data or other features to predit load urve e [78℄.

Physial models have been developed as software tools, suh as DOE-2

2

, Ener-

gyPlus

3

, BLAST

4

, ESP-r

5

. An overview an be found in [14℄, and an updating list

of these tools an be found in [18℄. These tools, in most ases, use very detailed

information about the building, whih beomes time-onsuming in both training and

estimation.

Statistial methods have been developed as approximate but omputationally

e�ient alternatives. There is an extensive amount of work on these topis, inluding

linear regression methods developed for di�erent geographial or limati onditions

[46℄, linear time series models, the so-alled Conditional Demand Analysis (CDA) [2℄,

the Bak Propagation Neural Network (BPNN) based methods [35℄, and the Support

Vetor Mahine (SVM) [47℄. The linear regression or time series model take the least

amount of parameters, whereas BPNN ould take more ompliated model struture

[78℄.

2http://doe2.com/DOE2/
3http://apps1.eere.energy.gov/buildings/energyplus/
4http://apps1.eere.energy.gov/buildings/energyplus/

energyplus_research_legacy.cfm, EnergyPlus is atually a merge of DOE-2 and BLAST

5http://www.esru.strath.ac.uk/Programs/ESPr.htm

http://doe2.com/DOE2/
http://apps1.eere.energy.gov/buildings/energyplus/
http://apps1.eere.energy.gov/buildings/energyplus/energyplus_research_legacy.cfm
http://apps1.eere.energy.gov/buildings/energyplus/energyplus_research_legacy.cfm
http://www.esru.strath.ac.uk/Programs/ESP-r.htm
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SVM [13℄ based methods are attrating more and more attentions reently be-

ause of their �exibility to model nonlinear behaviors and their relatively aeptable

model omplexity. In time series modeling, it an be extended to Support Ve-

tor Regression (SVR) with Auto-regressive terms [65℄. Several works have done on

exploring the appliation of this model [65℄ [51℄ [49℄ [24℄.

In this hapter, we will study an adaptive autoregressive SVR model for nonlinear

time series that an be used e�etively to estimate energy onsumption with great

extendibility.

2.3 Linear Auto-regressive Model

Conventionally, the linear auto-regressive model has been used to model time series

data. Some well-known methods inlude the Auto-Regressive (AR) model, the Auto-

Regressive Moving-Average (ARMA) model, and more. The AR model gives an

estimation of a ertain data point based on a linear extrapolation of its own history.

As an example, for time series x1, · · · , xn
.
= {xt}Tt=1, we model xt based on a

weighted sum of xt−1 through xt−q.

xt =

q∑

i=1

βixt−i (2.1)

in whih q is the order of the AR model and {βi}qi=1 are the parameters. The

parameters an be learned from minimizing the sum of square error as:

β̂i, · · · , β̂q = argmin

β1,··· ,βq

∑

t

(
xt −

q∑

i=1

βixt−i

)2

(2.2)

By writing β0 = −1, we an transform equation (2.1) as:

q∑

i=0

βixt−i = 0

Here we introdue the Bakward-operator as Bixt
.
= xt−i, and hene:

q∑

i=0

βixt−i =

q∑

i=0

βiBixt =

(
τ∑

i=0

Bi

)
xt = φq(B)xt = 0
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In whih φq(B) =
∑τ

i=0 βiBi. Similarly, seasonality an be easily added by

Seasonal-AR (SAR) model.

s∑

j=0

ηjφq(B)xt−j·S =

s∑

j=0

ηjBS
j φq(B)xt = φs(BS)φq(B)xt = 0 (2.3)

in whih s is the period and φs(BS) =
∑s

j=0 ηjBS
j .

An important assumption of these kind of models is that the model parameter

set {βi}qi=1 or {ηj}sj=1 is stationary, whih means the parameters are invariant over

time. If the parameters are subjet to hange, linear AR or SAR model will not be

able to apture that.

2.4 Challenges in Linear Auto-regressive Model

The linear auto-regressive models, although delivering well-formed theory, are subjet

to pratial issues.

• Usually, AR, espeially the SAR model, needs a large amount of data for model

training.

• Additionally, linear AR or SAR models are not suitable for nonlinearity appli-

ation.

• Furthermore, as illustrated earlier, linear AR or SAR modeling assumes sta-

tionarity of the model. If the data is nonstationary, then linear modeling is not

enough.

Take B-90 building in Lawrene Berkeley National Laboratory of U.S. Depart-

ment of Energy (DOE) as an example (as shown in Figure 2.1). Two building-level

power onsumption time series of B-90 are shown in Figure 2.2. The data are mea-

sured by DENT meter

6

(as in Figure 2.3) in one hour or 15 min intervals, and

olleted through sMAP protal

7

.

In Figure 2.2, a strong periodi pattern and haoti glithes an be observed.

Modeling by simple AR-type models is not enough. Reently, non-parametri data-

driven methods have been proposed to overome this issue. In this work, we will

study an alternative model, whih is alled the Adaptive Support Vetor Regression

(ASVR) model.

6http://www.dentinstruments.com
7http://new.openbms.org/plot/

http://www.dentinstruments.com
http://new.openbms.org/plot/
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Figure 2.1: Building-90 in Lawrene Berkeley National Laboratory (LBNL)

2.5 Adaptive Support Vetor Regression

In ASVRmodel, modeling problem is formed in a di�erent way. Let ut = {xt−1, · · · , xt−r}
be the autoregressive term, and our estimation of a ertain data point xt would be

βTut. By introduing a soft error bound of the di�erene xt − βTut similar to the

famous soft margin Support Vetor Mahine (SVM) [13℄ [69℄, we an put the opti-

mization problem (2.2) in the following form.

min

βi,∀i,ξ+t ,ξ−t ,∀t

n∑

t=1

(
ξ+t + ξ−t

)2
+

1

2
‖β‖2 (2.4)

s.t. − ξ−t ≤ xt − βTut ≤ ξ+t , ∀t

The

1
2
‖β‖2 is a regularization term, indiating that a �at or small β is preferred

here. (2.4) is a onvex optimization problem. The Lagrangian funtion is as be-

low [65℄

L(α+
t , α

−
t , ξ

+
t , ξ

−
t ) =

n∑

t=1

(
ξ+t + ξ−t

)2
+

1

2
‖β‖2

+
n∑

t=1

α+
t (xt − βTut − ξ+t ) +

n∑

t=1

α−
t (−ξ−t − xt + βTut) (2.5)
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Figure 2.2: Example of data olleted from Building-90. Total Eletriity onsump-

tion (upper) and Network gateway node onsumption (bottom).

in whih α+
t , α

−
t are the positive Lagrangian multipliers. Following the KKT ondi-

tion of this stritly onvex problem [8℄, we have the following onditions:

• Derivative v.s. β:

∂L

∂β
= β −

n∑

t=1

α+
t ut +

n∑

t=1

α−
t ut = 0 (2.6)

• Derivative v.s. ξ+t , ∀t:

∂L

∂ξ+t
= 2

n∑

t=1

(ξ+t + ξ−t )−
n∑

t=1

α+
t

• Derivative v.s. ξ−t , ∀t:

∂L

∂ξ−t
= 2

n∑

t=1

(ξ+t + ξ−t )−
n∑

t=1

α−
t
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Figure 2.3: Dent meter used to ollet the maro-level data

• Complementary slakness, ∀t:
α+
t (xt − βTut − ξ+t ) = α−

t (−ξ−t − xt + βTut) = 0 (2.7)

The Equation (2.6) satis�es:

β̂ =
n∑

i=1

(α+
i − α−

i )ui =
n∑

i=1

αiui

Notie that here the αi terms do not need to be positive. Hene, the estimated

observation follows:

x̂t = β̂Tut =

n∑

i=1

αi〈ui,ui〉 (2.8)

Due to (2.7), only part of the αi's are non-zero, orresponding to points with

equality in the onstraints in (2.4). Besides, following equation (2.8), only those

data points ontribute to the weighted sum of estimation. In Figure 2.4, we an see

that the irled dots are those orresponding to the data with non-zero αi's. Those

data points are alled Support Vetors (SVs), in that they support the shape of the

urve.

In ase of nonlinearity, in the observed data in Figure 2.2. An alternative way is

to map the input ut into another domain φ(ut) in whih the relationship is linear,

we have:

xt =

n∑

i=1

αi〈φ(ut), φ(ui)〉 =
n∑

i=1

αik(ut,ui) (2.9)
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Figure 2.4: Support vetors

in whih we have k(ut,ui) = 〈φ(ut), φ(ui)〉, alled the Kernel funtion. In (2.9), we

don't really need to know the form of φ(·), as long as we have an idea about the

Kernel funtion k(·, ·). This is also alled the kernel trik [69℄.

The most widely used kernel funtion is the Gaussian kernel, whih an be written

in the form of k(ut,ui) = e−σ‖ut−ui‖2
. Gaussian kernel quanti�es the orrelation or

similarity between ut,ui. Other widely used kernel funtion inludes the polynomial

kernel funtion k(ut,ui) = ‖ut − ui‖p.
When the data is in real time, it is ostly to form a onvex optimization problem

as (2.4) at every step. A solution to this is to put it in a reursive least square

formulation. For RLS, we an learn αi's in Equation (2.9) reursively. Due to the

omplementary slakness in (2.7), some data points may ontribute to the shape of

the urve, and some data points may not be support vetors.

Sine support vetors are those data points ritially determines the shape of the

urve, they usually demonstrates less similarity ompared to the previous data points.

Hene, we an determine whether a data point is support vetors by examining the

kernel funtion k(ut,ui) between ut to all the previous ui's, as well as examining

the error of estimation xt−
∑t−1

i=1 αik(ut,ui) =
∑

i∈SVs αik(ut,ui) in whih SVs is the

support vetor ditionary

8

, following the idea of [42℄, [24℄, [49℄ and [61℄.

• Let Kt = [· · · , k(ut,ui), · · · ], ∀i ∈ SVs.

• For eah time step t = 1, · · · , n, we have the error term Errt = xt −KT
t αt, and

a distane with respet to the kernel funtions Distt = maxj∈SVs ‖k(ut,ui)‖
8

By support vetor ditionary, we mean the olletion of all the support vetors up to the

urrent data point
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• If Errt ≤ µ and Distt ≤ ̟. Let K̃t = [KT
t , 1]

T
and α̃t = [αT

t , 0]
T
, update the

oe�ient as:

α̃t+1 = α̃t + η
xt − K̃T

t α̃t

‖K̃t‖2 + ρ
(2.10)

in whih η is the learning rate. The larger the η, the more adaptive to the

hange in the proess.

• Else, update the oe�ient as

αt+1 = αt + η
xt −KT

t αt

‖Kt‖2 + ρ
(2.11)

Therefore, we learn the parameters αi's. When a new data point is determined

as a support vetor, we just add it into the support vetor ditionary, and hange

the dimensionality of α aordingly.

2.6 Results and Disussion

Firstly, we examine the online evolution of the support vetor ditionary. As shown

in Figure 2.7, we have several key observations.

• Usually, only 15% of the data points are support vetors, whih means we only

need to store a small portion of the data but are able to apture most of the

�utuation, nonlinearity, and nonstationarity of the time series.

• The support vetors mostly appear around hange-points or nonlinear patterns

of a time series, exatly as expeted.

• There is de�nitely a trade-o� between auray and the ditionary-size. The

more support vetors we have, the more apable we are to apture the orig-

inal pattern; however, there is more storage ost. The number of support

vetors an be tuned by hanging the hyperparameter in the kernel funtion

(σ). This is illustrated in Figure 2.5 when running the algorithm on a three-

month total plug-in loads power onsumption in the CREST enter, and an

almost-monotoni pattern is observed. Moreover, same as the onventional

linear model, an overly detailed model su�ers from over-�tting, whih is illus-

trated in Figure 2.6. The total plug-in loads are also used in Figure 2.5, but

two-month's data is used as training and one-month's data is used as testing.

In Figure 2.6, training error dereases as expeted when we have a more de-

tailed model, whereas testing error demonstrates a bowl shape when ompared
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Figure 2.5: Number of support vetors as a funtion of hyperparameter in kernel

funtion (σ)

to the hyperparameter. In real time, a hyperparameter is most often used that

is not too ompliated but detailed enough to provide reasonable auray.

The ASVR an be used in pattern disovery with great extendibility. Spei�-

ally, a data point is added into the support vetor ditionary when a new pattern

appears, and thus, predition error or kernel distane funtion inreases, as shown

in Figure 2.8.

The distane measurement (in other words, the hange reognition funtions in

Figure 2.8) an also be altered to aommodate di�erent senarios. For example,

Distt = max
j∈SVs

‖k(ut,ui) exp

(
− 1

α
|1− cos(

2π∆t

ω
)|
)

︸ ︷︷ ︸
Periodi weight

× exp

(
−δ∆t2

ω

)

︸ ︷︷ ︸
Deay

‖ (2.12)

It is worth mentioning that the hoie of the kernel distane funtion (or hange

reognition funtion) an a�et the support vetor ditionary's distribution as well,

whih will be a subjet of future work.
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2.7 Conlusion and Future Tasks

In this hapter, we disuss the Top-Down modeling of building end-use power on-

sumption. The linear auto-regressive model is studied and its limitations in dealing

with nonlinearity and nonstationary are disussed. A non-parametri data-driven

adaptive support vetor regression (ASVR) model is introdued as an alternative

approah. The ASVR model an e�etively apture nonlinearity and nonstationary

by storing only a small portion of the original data points.

The future tasks of this hapter would be the design of proper distane funtion

(or hange reognition sore funtion) to ope with di�erent types of nonlinearity or

nonstationarity, and the method ould be extended to the fault diagnosis problem.

Inluding more parameters into the model will also be useful.

However, it should be noted that this method is a so-alled blak-box method.

It an apture statistially signi�ant features of a building but provides little in-

formation about oupant-dependent information, whih is, unfortunately, of speial

importane in modern smart building operation.

In the next several hapters, we will move on to the disussion of Bottom-Up
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approahes, whih are more apable of modeling oupant-dependent features.
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Chapter 3

Bottom-Up End-Use Modeling:

Model Setting

3.1 Bakground

The last hapter brie�y introdued the Top-Downapproah, and here we will move

on to the Bottom-Up approah. As mentioned before, Bottom-Up approahes are

relatively new and attrating more attention in reent years, beause of their apa-

bility in evaluating oupant demand and its adaptability under di�erent strategi

senarios. In the next two hapters, we will �rstly disuss modeling issues under

Bottom-Up settings and then study Bottom-Up monitoring issues in Chapter 5.

One of the earliest works on Bottom-up models is written by A. Capasso et al.

[10℄. Presene probability is used to model the likelihood that a resident is in a

house. Ativity probability is used to model how likely it is that an ativity will

be happening. These probabilities are extrated from Time-Of-Use (TOU) data.

TOU data omes from survey reordings of residents' daily ativities in 15-min time

intervals. Together with duration statistis1 obtained from prior knowledge, a power

stream an be generated by Monte Carlo (MC) simulation. In[74℄, TOU data is

used again, and nine syntheti ativity patterns are de�ned. A non-homogeneous

Markov Chain is used to model the turn-ON events of eah ativity. Duration and

ON events are sampled randomly from the estimated distribution. In [62℄, ativity

probability is also estimated from TOU data and other extraneous data, so that is

non-homogeneous. In [75℄, estimation of ativity probability patterns is based on

TOU survey, duration statistis, and a more elaborate model.

Existing methods that employ the Bottom-Up approah provide great insights

into end-use pro�le models of ommerial buildings. However, there are still several
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remaining issues:

• Previous works mostly used TOU data to obtain indoor ativity probability,

and then ativity was onverted to appliane pattern through an empirial

model. This is sometimes problemati, sine onversions are usually not rigor-

ously justi�ed.

• In ommerial buildings, variation of power onsumption among buildings is

not of signi�ant interest, sine the infrastrutures of di�erent buildings an sig-

ni�antly vary, whereas variation among users beomes espeially interesting,

sine it an indiate performane limits of a building's power system. However,

the latter is not thoroughly studied in previous work.

• Cross-orrelation among applianes is not diretly aptured in the past. A ran-

dom Markov Chain model ould under-estimate the demand. Moreover, most

previous researh mentioned modeling shared ativities, whereas validation of

these models is di�ult.

In this hapter, we will diretly estimate probability patterns of applianes in

ommerial buildings and develop a model based on the turning-ON/OFF probability

of applianes to quantify the variation of building end-use power pro�le. We will also

address orrelation between applianes with a orretion term.

This hapter is organized as follows: In Setion 3.2, the big piture of the Bottom-

Up model is disussed. In Setion 3.3, the Statistial Parameters in the model are

investigated. Setions 3.4 review the models of shared applianes. In Setion 3.5, a

onlusion is given.

3.2 Big Piture

A Bottom-up model an be viewed as a gray-box that takes two types of parameters,

as shown in Figure 3.1.

One is alled the Statistial Parameter, whih desribes statistial properties of

applianes (e.g., ON/OFF probability, presene probability, duration statistis, et.).

This type of parameter is usually extrated from appliane usage data olleted by

wireless sensor networks, and it an be learned in one building and extended to other

buildings with similar pro�les. For example, if a model is built for student spae, it

an be extended to other shool buildings.

The other type of parameters is alled the Field Parameter, whih inludes the

number of oupants, number of omputers, monitors, printers, mirowaves, et.,
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Level-
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Field parameters
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Functionality

ON/OFF probability, 
Presence probability, 

Duration, Rate-Of-Usage 
of each category of 

appliance, etc.

Number of appliances in 
each category, e.g. 
laptops, monitors, 

desktops, refrigerator, 
printer, etc.

Number and 
type of 

occupants

Level-
II 

Model

Level-
III 

Model

Figure 3.1: Parameters in Bottom-up model: Field Parameters and Statistial Pa-

rameters. Level-III model is the most omplex, and Level-II model is less omplex;

Level-I is the simplest but low auray.

depending on building struture and utility. These parameters are olleted from

�eld study or empirial knowledge and will be evaluated in the CREST enter, the

SWARM lab, and the fourth �oor of Sutardja-Dai Hall, all at UC Berkeley, as will

be disussed in more detail in Chapter 4.

Based on the omplexity of the Field Information, we an further divide the

models into Level-I model, Level-II model and Level-III model.

• In the most simpli�ed Field Parameter setting, we only know the building

funtionality. Oupant harateristis (e.g., the number of oupants, number

of desktop and laptops, et.) are inferred from building funtionality, and we

all this kind of model the Level-I model. Level-I will be most welomed in

ommerial appliation, but its auray annot be guaranteed.

• As we get to know more information of the oupants, for example, the number

and type of oupants, we are loser to the applianes, and the auray ould
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be better. The relatively omplex model is alled the Level-II model.

• The Level-III model diretly ontains parameters about the applianes, suh

as the number of desktops, laptops, monitors, printers, mirowaves, lamps, et.

However, though demonstrating great auray, these data are relatively ostly

to ollet, or even unavailable, espeially for early-stage power system design.

To ahieve better auray in this work, only the relative more omplex models,

in other words, Level-II and Level-III models, are onsidered.

3.3 Statistial Parameters

Previously, people use di�erent types of statistial parameters in their end-use model.

We an roughly divide their methodologies into the following three modules: rate-

of-use statistis, duration statistis, and ON/OFF-probability statistis.

To failitate the analysis, for an appliane, given that we have d days of obser-

vations, we de�ne S
(i)
t as its state of i-th day, i.e. S

(i)
t ∈ {0, 1} and 1 stands for

ON.

Rate-of-Use Statistis

Rate-Of-Use (ROU) statistis is a basi model used to desribe appliane usage.

De�nition 3.3.1 (Rate-Of-Use). Rate-Of-Use (ROU) is the portion of time that the

appliane is ON in eah time-of-day:

ROUt =
1

d

d∑

i=1

S
(i)
t = St (3.1)

For example, in the 80 days of experiment, the monitor is ON at 12:00PM in 16

days, the ROU would be 16/80 = 0.2 at 12:00PM. The ROU is plotted for monitor,

laptop and desktop in Figure 3.2. Strong daily pattern is observed. ROU indiates

the average energy onsumption, but it doesn't indiate the usage pattern of the

appliane.

Duration Statistis

Duration statistis were used to haraterize duration time of eah ativity [62℄ [75℄.

We extrated the duration statistis from sensor data after power disaggregation.
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The results are shown in Figure 3.3 for o�e applianes. The limited apability

to model the turn-o� appliane events is a potential problem. Another issue of

duration statistis is that they are usually time-dependent, whih makes them ostly

to estimate.

ON/OFF-Probability Statistis

Another module fouses on the empirial ON/OFF-probability [62℄[75℄ (i.e. the

probability of turning-ON/OFF at eah time step).

De�nition 3.3.2 (ON/OFF Probability). For ertain appliane at t, the empirial

ON/OFF probability is de�ned as P̂
ON/OFF

t :

P̂ON

t =

∑m
j=1 S

(j)
t (1− S

(j)
t−1)∑m

j=1(1− S
(j)
t−1)

=
St − StSt−1

1− St−1

(3.2)

P̂OFF

t =

∑m
j=1 S

(j)
t−1(1− S

(j)
t )

∑m
j=1 S

(j)
t−1

=
St−1 − St−1St

St−1

(3.3)

with whih we an do MC simulation to obtain the state sequenes as a Markov Chain

of all the applianes that we are interested in.

De�nition 3.3.3 (Markov Chain). Markov Chain is a speial ase of a stohasti

proess. A stohasti proess is a time sequene of variables S1, S2, · · · , St, and their

joint probability an be written as:

Pr(S1, S2, · · · , St) = Pr(S1)
t∏

i=2

Pr(Si|Si−1, · · · , S1)

A stohasti proess is a Markov Chain (�rst order) if it follows the Markov

property, in that Pr(Si|Si−1, · · · , S1) = Pr(Si|Si−1), and we have:

Pr(S1, S2, · · · , St) = Pr(S1)

t∏

i=2

Pr(Si|Si−1) (3.4)

Here Pr(Si|Si−1) an also be viewed as transition probability. If they are onsistent

for all the i's, the Markov Chain is alled Homogeneous Markov Chain; otherwise it

is alled Non-Homogeneous Markov Chain.

De�nition 3.3.4. After we run J MC simulations, we de�ned the simulated state

in the j-th MC run as Ŝj
1:T , j = 1, · · · , J .
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Compared to ROU model, the ON/OFF probability model an apture the us-

age pattern [39℄[62℄[75℄. Previously, this model is built upon some time slots (e.g.

"0∼8AM", "8∼9AM", "9∼11:30AM", "11:30∼1:30PM", "1:30∼5PM", "5∼7PM",

"7∼9:30PM" and "9:30PM∼0AM"). The ON/OFF probability is assumed to be

onstant within eah time slots.
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Figure 3.4: Time-dependent ON probability of three types of applianes: desktop

(blak), monitor (red) and laptop (blue)

The time-slot-based ON-probability P̃ON

t is shown in Figure 3.4, for desktop,

monitor and laptop. Note that in Figure 3.2 the desktop pattern seems to be at

onstant line, whih is due to the limited number of desktops in our test spae,

and beause some of them are kept on overnight (i.e, their P̃OFF

t is small one they

are ON). To simulate turning-ON, we use the probability of P̃ON

t /TSLOT, in whih

TSLOT is the length the time slots. For example, at time interval "8∼9AM", if we

use 5 min interval step, TSLOT = 12.
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Figure 3.5: ON probability inside eah time slot for monitor

One onern about the time-slot-based model is that the probability inside eah

slot is not aptured well. Aording to a simple Poisson model, assuming independent

events within eah time slot, the ON events are geometrially distributed. However,

as shown in Figure 3.5 where monitor is taken as an example, most events do not

follow the model. The pattern of laptop and desktop an also demonstrate suh

disrepany.

Appliane ON/OFF Probability Model

In our work, for statistial parameters, the appliane high-resolution ON/OFF prob-

ability model is used.

• On one hand, the ON/OFF states of the applianes are used, instead of the

Time-Of-Use data in previous work. Hene, there is no empirial inferene

involved.
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• On the other hand, the data olleted in wireless sensor networks are used,

whih has resolution of up to one seond per sample.

In our hosen model, we use an appliane-data-driven high-resolution ON/OFF

probability model.

• We extrat the probability that an appliane is present in some day, marked as

PPRES, as well as the probability that an appliane is ON overnight, marked

as PINIT. Then, from the wireless sensor network, we ollet appliane power

stream and build the model based on appliane information, instead of on

ativities (as presented in other works, in whih an often-problemati ativity-

to-appliane transformation is needed [29℄).

• â�¢ Both ON/OFF probabilities are inluded and formulated in a Markov

Chain framework, whereas duration statistis are not inluded. Therefore, we

an better model the applianes' turning-OFF events.

ON OFF

���
���

���
�� � � ���

��� � ���
���

Figure 3.6: FSM interpretation of the model

• Instead of the time-slot model in Figure 3.4, we use a non-homogeneous Markov

Chain model for both ON/OFF probabilities. For eah appliane, the model

an be interpreted as a two-state Finite State Mahine (FSM) at eah times-

tamp (Figure 3.6).

Power Estimation

Based on the FSM model, power onsumption of a given spae is estimated by

running a Monte Carlo (MC) simulation to generate power sequenes aggregated

from individual applianes.



CHAPTER 3. BOTTOM-UP END-USE MODELING: MODEL SETTING 28

The MC-simulated appliane ON/OFF sequenes (a) an apture non-homogeneous

stohastiity of appliane usage patterns and is easily extended to analyze new teh-

niques and poliies, and (b) statistially onverges to the ROU model in estimating

states, whih means this method is essentially reasonable in end-use energy pro�le

modeling.

Theorem 3.3.1 (Convergene of MC Simulation). If Ŝj
1:n is the jth MC simulated

time series from the FSM as in Figure 3.6 and we have J suh MC simulations, then

E[ 1
J

∑
j Ŝ

j
t ] = St, in whih St is the ROU, and limJ→∞Var( 1

J

∑
j Ŝ

j
t ) → 0. In other

words, MC simulation onverges a.s. to ROU.

Proof. Let Ŝ1, · · · , Ŝt be the states at di�erent time steps from MC simulation. As-

sume that the states follows Markov Property, s.t. Pr(Ŝt|Ŝt−1, · · · , Ŝ1) = Pr(Ŝt|Ŝt−1).
Then by the hain rule of expetation [63℄, we have:

E[Ŝt] = E[E[Ŝt|Ŝt−1]] (3.5)

Sine we have:

E[Ŝt|Ŝt−1] = Pr(Ŝt = 1|Ŝt−1)

= P̂ON

t (1− Ŝt−1) + (1− P̂OFF

t )Ŝt−1

= P̂ON

t + (1− P̂ON

t − P̂OFF

t )Ŝt−1 (3.6)

Let us de�ne Gt whih follows as:

Gt = 1− P̂ON

t − P̂OFF

t =
StSt−1 − St · St−1

(1− St−1)St−1

Then, ombining (3.5) and (3.6) we obtain:

E[Ŝt] = P̂ON

t +GtE[Ŝt−1] (3.7)

Therefore, we an iteratively write E[Ŝt] as:

E[Ŝt] = P̂ON

t +

t∑

τ=3

P̂ON

τ−1

t∏

i=τ

Gi + E[Ŝ1]

t∏

i=2

Gi (3.8)

The initial state at t = 1 in MC simulation is generated from a Bernoulli proess

p1 = E[Ŝ1] = S1. We put the expression of P̂
ON/OFF

t as (3.2) and (3.3) in (3.8).

P̂ON

2

t∏

i=3

Gi + S1

t∏

i=2

Gi = S2

t∏

i=3

Gi (3.9)
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Then we have the following equation:

E[Ŝt] = P̂ON

t +

t∑

τ=4

P̂ON

τ−1

t∏

i=τ

Gi + S2

t∏

i=3

Gi

Therefore, we an simply equation (3.8) as:

E[Ŝt] = P̂ON

t + St−1Gt

=
St − StSt−1

1− St−1

+
StSt−1 − St · St−1

1− St−1

= St (3.10)

Sine Ŝj
t s are all binary sequenes, Var(Ŝj

t ) = St(1− St) and naturally we have

lim
J→∞

Var(
1

J

∑

j

Ŝj
t ) = lim

J→∞

1

J
Var(Ŝj

t ) → 0 (3.11)

Thus, MC simulation onverges to the ROU. It should, however, be noted that

Theorem 3.3.1 holds only if the ON/OFF probabilities are onsistent between simu-

lation and observation.

Data Sparsity & Kernel Smoothing

The ON/OFF events are always sparse [41℄, and variane of the estimation is always

high. In this situation, smoothing is needed.

When there are large amount of spikes, the empirial probability funtion an be

smoothed by a Kernel Smoother to obtain the probability funtion.

P̃
ON/OFF

t =

∑n
i=1K(t, i)P̂

ON/OFF

i∑n
i=1K(t, i)

(3.12)

in whih K(t, i) is the kernel funtion. Usually we use Gaussian kernel K(t, i) =

exp
(
− (i−t)2

2h2

)
in whih h is the bandwidth. The larger the bandwidth, the more

smoothing the kernel does. h an be hosen as the plug-in bandwidth (hpi) [71℄.

Remark 3.3.1. If we use P̃
ON/OFF

i instead of P̂
ON/OFF

i , Theorem 3.3.1 no longer

holds. However, under some most basi regularity ondition of the funtion P̂
ON/OFF

i ,

we have the following relationship:

lim
h→0

P̃
ON/OFF

i → P̂
ON/OFF

i
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This means, under reasonably hosen bandwidth of the funtionK(·), the smoothed

probabilities in (3.13) will be reasonable approximation for P̂
ON/OFF

i , and Theorem

3.3.1 will also approximately holds. It should be noted here that a strit analysis on

the ondition of the bandwidth would be required to fully understand the performane

of smoothing, and beause of the sope of this work, this will be a subjet of future

work.

Modeling of Cross-Correlation

In this study's experimental spae, espeially for omputer-related applianes, we

have 11 monitors, 5 desktops, and 14 laptops

1

. Intuitively, we an simulate eah

appliane independently and aggregate them to get the full power onsumption value.

The mean of the aggregation, as a orollary of Theorem 3.3.1, is unbiased. The

variane, however, ould be underestimated. Cross-orrelation among applianes

needs to be addressed. Here in this study, there are two reasonable assumptions.

• The applianes in the same ategory (monitors, desktops, or laptops) are the

same type

2

• The orrelation pattern is homogeneous, whih means it is same for every day.

An intuitive way to analyze this information is to generate orrelated Bernoulli se-

quenes in Monte Carlo simulation [50℄. However, for multivariate non-homogeneous

Markov Chain, generation suh orrelated Bernoulli sequenes is di�ult and unreli-

able [50℄. In this work, we propose a way to orret the variane on the independently

simulated sequenes.

For example, let St,i be the state of i-th single appliane, its variane Var (St,i) =
σ2
g we already know, g ∈ {desktop,monitor, laptop} is the appliane type, then the

aggregated variane of p di�erent applianes is:

Var

(
p∑

i=1

St,i

)
=

p∑

i=1

σ2
t,a(i) +

∑

i 6=j

cov (St,i, St,j) (3.13)

in whih a(i) is the type of the i-th appliane, The seond term on RHS orresponds

to the ovariane between di�erent applianes, and should be added to avoid under-

estimation of overall variation. This term an be extrated diretly from historial

data.

1

The ross-orrelation among lighting and shared applianes are not of signi�ane

2

This is reasonable espeially for o�e buildings when oupants have roughly the same sets of

applianes.
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Results and Disussion
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Figure 3.7: ON/OFF Probability in 5 min interval for Monitor, Laptop, and Desktop.

Gray lines: Measurement; Colored lines: Kernel smoothed

• O�e Applianes: O�e Applianes: The o�e applianes inlude monitor,

laptop, and desktop. The estimated ON/OFF probabilities for these three types

of applianes are shown in Figure 3.7. It is observed that the ON probability

peaks in the early morning and dereases during the day, whereas the OFF

probability peaks later in the day. It should be noted that data regarding

desktop is sparse and ON/OFF probabilities ontain more unertainty. Only

weekdays are inluded in this study.

• Pathway/Room Lighting: Pathway/Room Lighting: Lighting power onsump-

tion is a major ontributor to a building's energy pro�le. In this study's test

spae in Cory 406 at UC Berkeley, there is pathway lighting and room lighting.

Pathway lighting is shared in a large working area and has a more standard

shedule throughout the day. Room lighting has a motion sensor, so it is more
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Figure 3.8: ON/OFF Probability in 5 min interval for Room lighting, Pathway

lighting and Mirowave. Gray lines: Measurement; Colored lines: Kernel smoothed

adaptive to oupant behavior. The PowerSout data we olleted ontains the

aggregated signal of lighting power in seven rooms. For model simpliity, we

will assume that the seven rooms are the same. The result is shown in Fig-

ure 3.8. The pathway lighting has little overnight ativity, and the estimation

has more bias, sine in (3.3), St is zero for some t. These data points are given
a probability of 0.5.

• Shared Applianes: Shared applianes inlude a mirowave, a water heater,

a o�ee maker, and a refrigerator. The water heater and refrigerator have a

strong periodi pattern and less dependeny on oupant behavior. The mi-

rowave and o�ee maker show a spike-like pattern. The estimated probability

density for a mirowave is shown in Figure 3.8. Notie that the OFF probabil-

ity is very high, sine the duration of eah ON event is usually very short, as

ompared to our �ve-minute estimation interval.

Atually, for those applianes, duration is roughly �xed depending on the ap-
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pliane settings. In the next Setion, we will disuss an alternative way to

model the applianes, based on a non-homogeneous Poisson Proess model.

It is expeted that in a larger o�e building, when more applianes are present,

our proposed model would be more apable to apture overnight patterns.

Moreover, it should be noted that when the building oupany shemati

hanges, the only thing that needs to be tuned is the building pro�le. As long

as we have a reasonable ategory of users, we an evaluate the building energy

performane aordingly.

3.4 Shared Applianes

Poisson Proess Model

As mentioned in Setion 3.5, shared applianes (e.g., mirowaves, printers,

o�ee mahines) usually demonstrate spiking patterns. The duration of the

spike is usually due to a mahine's setting. The bottlenek of the modeling

is, instead, the turning-ON probability of the appliane. Sine several people

are sharing this appliane, we would like to �lter out an individual turning-ON

probability or other usage harateristi that is independent of the number of

users. That way, we are able to extend this model to another building spae.

This work shows a methodology to model the shared applianes and eventually

�lter out a usage pattern of a shared appliane from one oupant.

Essentially, we model the usage of an appliane through a Poisson proess [63℄,

with the rate of the proess depending on the number of oupants inside a

spae. The Poisson Proess (PP) models the number of events nt during a [0, t]
interval, and nt follows the Poisson distribution with rate λt as nt ∼ Pois(λt)
as:

Pr(nt = k) =
λktk

k!
e−λt

in whih λ is the rate funtion. The expetation of the number of events is λt,
and the variane is λt as well. PP is a memoryless proess [63℄, whih means in

the time interval [s, t+ s], the inremental events satis�es Poisson distribution

Pois(λt) as well:

Pr(nt+s − ns = k) =
λktk

k!
e−λt

(3.14)

If we model eah user as a PP, and we have l idential users in total, the

aggregation is still PP as

∑l
k=1 n

(k)
t ∼ Pois(lλt).
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Non-Homogeneous Poisson Proess (NHPP) Model

If the rate funtion is time dependent λ(t), then the proess is Non-Homogeneous

Poisson Proess (NHPP). For instane, given the rate funtion at time t as
λ(t), the number of events in a small interval [t, t + h] follows nt+h − nt ∼
Pois(λ(t)h). If we argue that h is one unit of time, then the expetation would

be E[nt+h − nt] = λ(t). Hene, if we assume the number of oupants is also

time dependent funtion Θ(t), then nt+h − nt ∼ Pois(λ(t)Θ(t)h). From this

stand point, we only need to estimate the time-dependent rate funtion λ(t) in
order to extrat an individual usage pattern.

Based on this model, we onstrut a relationship between the events and the

time dependent rate funtion λ(t). If we would like to estimation the time-

dependent rate funtion λ(t), we an obtain it through statistial inferene.

Bayesian Statistis framework

Based on NHPP model, we an onstrut the full probability funtion in

Bayesian framework. Let v(t) be the inremental number of events at time

t, and let the joint prior probability funtion for λ(t) and θ(t) as φ(λ(t), θ(t)),
we an write the full probability funtion of n(t), λ(t) and θ(t) as:

Pr ∝
n∏

t=1

e−λ(t)θ(t)[λ(t)θ(t)]v(t)φ(λ(t), θ(t)) (3.15)

If we further assumes that θ(t) is the daily number of oupants, whih means

it is onstant within a day; whereas λ(t) is time-of-day dependent and same for

eah day, and let λ(t) = λ0η(t) for simpliity, in whih η(t) ∈ {η1, · · · , ηp} is a

normalized data with

∑
j ηj = p the daily data points3, and θ(t) ∈ {θ1, · · · , θd}

as d the total number of days. Let v be total number of events, vj orresponds
to the number of events w.r.t. the j-th time slots (suh that

∑
j vj = v), and

v(i) be the number of events on the i-th day, we have:

Pr ∝ e−λ0p
∑

i θiλv
0

(
∏

j

η
vj
j

)(
∏

i

θv
(i)

i

)
φ(·) (3.16)

We an use MCMC tehniques suh as Gibbs sampler to generate sample of

λ0, {ηj}pj=1 and {θi}dj=i. The prior of Poisson distribution is the Gamma distri-

bution [63℄, we follow the proess as below:

3

In 5 min interval data, there are 288 date point every day, so P = 288.
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Figure 3.9: Sampling result of λ(t) along the day with 5 min per sample.

� sample λ0 ∼ Γ(αλ + v, βλ + p
∑

i θi), whih assumes a prior of Γ(αλ, βλ)

� sample η1, · · · , ηp, in whih ηj ∼ Dir(αη + vj) whih is the Dirihlet dis-

tribution with prior Dir(αη).

� sample θ1, · · · , θd in whih θi ∼ Γ(αθi + v(i), βθi + pλ0), whih assumes a

prior of Γ(αθk , βθk).

Results and Disussion

Prior distributions are assumed from rough understanding, and we run 1500

MCMC steps, with another 500 as burn-in period.

The sampling result of λ(t) (t = 1, ·, p) is shown in Figure 3.9. The histogram

of λ0 in Equation (3.16) is shown in Figure 3.10 for referene. We an tell the

daily pattern from Figure 3.9 as well as the daily �utuation in distribution.

The sampling result of θ(t) (atually θ1, · · · , θd) is shown in Figure 3.11. We

an also obtain the statistial variability from the �gure. This indiates that

the sampling method not only an give estimation of the parameters, but also

give estimation of their statistial variability.
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Figure 3.10: Sampling histogram of λ0.

Figure 3.11: Sampling result of Θ(t) in eah day.
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3.5 Conlusion

In this hapter, modeling issues under the Bottom-Up setting are omprehen-

sively disussed. Compared to the Time-Of-Use (TOU) data used in previous

Bottom-Up models, this work takes advantages of the high frequeny sampled

data from wireless sensor networks and builds an appliane-data-driven end-use

model. ON/OFF probabilities of applianes are extrated, and a theoretially

unbiased Finite-State-Mahine (FSM) Monte Carlo model is developed with

ross-orrelation orretion. This hapter also brie�y introdues work on mod-

eling the shared appliane based on the Non-Homogeneous Poisson Proess

(NHPP) sampling method, whih an �lter out an individual usage pattern

out of ON/OFF states of shared applianes.
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Chapter 4

Bottom-Up End-Use Model: Data

and Experiments

In Chapter 3, we studied the theories and settings of the Bottom-Up end-

use model and demonstrated that the Bottom-Up model an be re-used in

other similar buildings to estimate end-use power onsumption. This setion

ontinues this line of study by pulling everything together and veri�es model

performane in a real end-use modeling appliation.

In this work, we make use of the Bottom-Up model struture shown in Chapter

3, and only Level-II and Level-III models are foused on here. For onveniene,

the proposed model's shemati is shown again in Fig. 4.1.

In Setion 4.1, the data olletion proess is disussed. Then in Setion 4.2,

a brief disussion about the power disaggregation tehnique used to �lter out

individual appliane ON/OFF states from aggregated raw power sequenes

follows. Finally, in setion 4.3, experimental results are shown as happened in

Cory Hall and Sutardja-Dai Hall at UC Berkeley, followed by the onlusion in

Setion 4.3.

4.1 Data Colletion

Power onsumption of the applianes is olleted through a large-sale wireless

sensor network (WSN). WSNs have been implemented in many di�erent se-

narios to failitate system estimation, onditioning, and diagnosis [39℄[45℄[38℄.

� DENT meter [17℄ is used to ollet whole spae real-time power onsump-

tion data. The DENT meter has 18 hannels, eah one monitoring a
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each category, e.g. 
laptops, monitors, 

desktops, refrigerator, 
printer, etc.
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type of 

occupants

Level-
II 

Model

Level-
III 

Model

Figure 4.1: Parameters in Bottom-up model: Field Parameters and Statistial Pa-

rameters. Level-III model is the most omplex, and Level-II model is less omplex;

Level-I is the simplest but rather hard to ahieve.

subset of applianes, e.g. plug loads, lights, kithenware et. The DENT

meter data is handled in CoreSight from OSIsoft

1

.

� ACme sensors are used to ollet real-time power onsumption of eah

oupant [33℄, with resolution up to one seond per sample. The ACme

meter data is handled using the sMAP protool [16℄. We implement one

ACme sensor for eah oupant to optimize ost and experimental per-

formane. The states of eah appliane are �ltered out by the power

disaggregation algorithm from the aggregated oupant-level power on-

sumption, as will be illustrated in the next setion [37℄.

1http://picoresight.osisoft.com/

http://picoresight.osisoft.com/
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4.2 Power Disaggregation

In Bottom-Up models, we need to ollet power onsumption data of eah

individual appliane. However, deploying sensors to eah appliane will be

ostly and raise issue in privay and stability, espeially in modern ommerial

buildings.

On one hand, modern buildings demonstrate sophistiated funtionality and

inreasing number of applianes, whih makes large-sale sensor deployment

ostly. On the other hand, users may omplain if many sensors are deployed

in their spae. Finally yet importantly, as more sensors are inluded in the

network, ommuniation may su�er from stability issues, and thus data quality

is less guaranteed [45℄.

For all of these reasons above, a low-ost, non-intrusive monitoring is preferred

that an measure power onsumption of applianes without the diret attah-

ment of power meters [76℄. The most ommon solution to this issue is to use

a power strip to aggregate all the applianes of eah user and attah it to a

power meter to measure aggregated power. Then, we apply power disaggre-

gation methods to the aggregated signal to obtain signals of eah individual

appliane, as shown in Figure 4.2. With the appliane-level onsumption re-

overed, we an build a Bottom-up model for the building spae under study.

Here is a mathematial de�nition of power disaggregation:

De�nition 4.2.1 (Power Disaggregation). In power disaggregation, we deode

the ON/OFF state of individual appliane from an observed aggregated power

stream. Let pt, ∀t = 1, · · · , n be the aggregated power stream from p applianes.

Let St be the state vetor of the n applianes at step t. Our task is to infer

St from pt. St is a vetor of n binary variables, one for eah appliane, i.e.

St ∈ {0, 1}p, in whih 1 for ON, 0 for OFF. There are in total 2p ombinations

of ON/OFF states.

Various existing power disaggregation methods are studied in this setion, along

with a omparison of their performane followed by proposed new algorithms

based on sequential hypothesis testing.

Related Work

Typial solutions to Power Disaggregation are either based on a Hidden Markov

Model, or on Edge-based Model.
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Figure 4.3: Shematis of Hidden Markov Model for power onsumption over time

(pt, t = 1, · · · , T )

� Hidden Markov Model (HMM): The aggregated power stream is modeled

as a Hidden Markov Chain (HMC), with hidden states as the ON/OFF

states of individual applianes, as shown in Figure 4.3 [25℄.

Firstly, the aggregated power pt is a Gaussian distributed variable on-

ditioned on the appliane state vetor st. If we assume that the power
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onsumption of the i-th appliane is approximately Gaussian distributed

as N (Wi, σ
2
i ), and let w = {W1, · · · ,Wn} and Σ = {σ2

1, · · · , σ2
n}, then the

aggregated power follows:

pt|s ∼ N (sTw, sTΣ) (4.1)

Seondly, the sequene of st with t = 1, · · · , T in Figure is modeled as a

Markov Chain (MC).

De�nition 4.2.2 (Markov Chain). Markov Chain is a speial ase of a

stohasti proess. A stohasti proess is a time sequene of variables

S1, S2, · · · , St, and their joint probability an be written as:

Pr(S1, S2, · · · , St) = Pr(S1)

t∏

i=2

Pr(Si|Si−1, · · · , S1)

A stohasti proess is a Markov Chain (�rst order) if it follows the

Markov property, in that Pr(Si|Si−1, · · · , S1) = Pr(Si|Si−1), and we have:

Pr(S1, S2, · · · , St) = Pr(S1)

t∏

i=2

Pr(Si|Si−1)

Here Pr(Si|Si−1) an also be viewed as transition probability. If they are

onsistent for all the i's, the Markov Chain is alled Homogeneous Markov

Chain; otherwise it is alled Non-Homogeneous Markov Chain.

For onveniene, we note that:

Pr(st|st−1, · · · , s1) = Πst−1,st (4.2)

Based on (4.1) and (4.2), we estimate the state at eah step, based on

Maximum Likelihood Estimation (MLE) estimation of st:

st = argmax
s

Pr(st = s|p1:T ) (4.3)

Sine the searh spae is 2n, there will be an exponential explosion w.r.t.

n. However, if we assume that only one appliane is swithing at eah

step, the inremental state searh spae from st−1 to st is only n. This

assumption is reasonable with manually swithed devies and a sampling

rate at the sensor node higher than 1 se/sample.

Equation (4.3) an be solved by a Viterbi algorithm [25℄.
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De�nition 4.2.3 (Viterbi Algorithms). We note Lt(s) = Pr(st = s|p1:T )
as the likelihood funtion and we use st−1,ML = Ψt(st) to store the most

likely state bak at step t− 1 given that the urrent state at t is st. Then,
it is argued that Lt(s) and Ψt(st) an be obtained from the terms from step

t− 1: {
Lt(s) = maxs′ Lt−1(s

′)Πs′,s Pr(pt|st = s)
Ψt(st) = argmaxs′ Lt−1(s

′)Πs′,st
(4.4)

The above problem is solved sequentially, as �rst estimate the state at the

last step sT = argmaxs′ LT (s
′), and then baktrak for the best estimate

at eah step as st−1 = Ψt(st).

HMM gives stable state inferene, and many existing algorithms on power

disaggregation are built upon this basi model. Wang et al. [72℄ treated

power disaggregation in a onvex optimization framework using sparse

onstraints. [59℄ solved the HMM by the Extended Viterbi algorithm and

onsidered only the major power onsuming applianes. The sampling

method is widely used to deal with the exponential explosion issue. In

[41℄[44℄[43℄[34℄, statistial inferene of the joint distribution is based on

Fatorial HMM [28℄, though most of the sampling methods have ompu-

tation issues.

However, the standard HMM does not have a good way to handle the fat

that states may stay unhanged for long time intervals. This is signi�ant

for our problem, sine many applianes, suh as a lamp or a monitor, will

have very di�erent duration harateristis, while HMM models the dura-

tion as a Geometri distribution [44℄. Some extensions of HMM have been

proposed to address this issue. In [27℄, the persistene of state (stikiness)

is guaranteed by introduing a onstraint on the Markov hain model.

Whereas in [44℄, [43℄, a Hidden Semi-Markov Model is used to model du-

ration statistis. However, in most ases, we need a long training period

of time of this model, sine ON/OFF events of individual applianes may

not be that frequent.

� Edge-based Model: An intuitive way to get around duration modeling is

to fous only on the ON/OFF edges, in an approah we all the Edge-

based model, as shown in Figure 4.4. Edge-based model applies a hange

detetion algorithm to trak the edges and trae the soure based on

statistial learning methods [4℄. Usually, we trak the mean (βt) and

variane (σ2
t ) of the aggregated power over time using an exponential
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Figure 4.4: Shematis of Edge-based method

moving average �lter suh as:

{
β0 = 1

d

∑t−d
τ=t−1 pτ exp

(
− τ−t

ω

)

σ2
0 = 1

d

∑t−d
τ=t−1(pτ − β0)

2 exp
(
− τ−t

ω

)
(4.5)

where ω is the deay fator and d the window size. Then, we look at the

deviation of the urrent power pt w.r.t. the mean and variane [7℄. Edge-

based model originates from the early work on NILM [30℄. A review an

be found in [76℄. Algorithms that are studied inlude Linear Disriminant

Classi�er [20℄, Bayes lassi�er [22℄, Neural Network [21℄, et.

Around the edges, there are several transient features that an be ex-

trated from the ative power or the reative power readings, the latter

often having unique harmoni patterns when observed at high enough

sampling rates [48℄. Suh high frequeny transients an help distinguish

between, for example of a o�ee-maker and a handelier, espeially when

fousing on their reative power patterns.

In general, high frequeny sampling will also be useful in distinguishing

between applianes, sine larger data sets, aided by the Law of Large

Numbers [7℄, will generally be better for distinguishing among di�erent

soures. The obvious tradeo� here is, of ourse, that higher sampling

rates would typially imply higher instrumentation and omputational

ost.

Existing Challenges

In general, the existing hallenges are from the noise and the non-stationarity.

� We have the assumption that the power onsumption is essentially a Gaus-

sian random variable. However, in a real power system, the noise is an
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Figure 4.5: Impulse noise observed in power onsumption data

approximate Gaussian noise plus large amounts of spikes or impulses. In

Figure 4.5, we an see that the spikes apparently deviate from Gaussian

distribution and an be as high as 5∼10 Watts. This deviation from Gaus-

sian noise would ause unexpeted trouble to the performane of a power

disaggregation algorithm.

� Another assumption is that the power onsumption is stationary. An

appliane with multiple levels of power onsumption urve an be modeled

as a Gaussian mixture. However, many power onsumption urves follow

temporal trends or �utuations, as shown in Figure 4.6. We all this

phenomenon non-stationarity. This would make the traditional power

disaggregation fail.

In this work, we will be fousing on addressing those issues. A robust sequential

test-based method will be proposed.

Sequential Test Based Power Disaggregation: Theory

From the statistis perspetive, edge detetion is inherently a hypothesis testing

problem [7℄. The null hypothesis is no hange happened (H0), and the alternative

hypothesis is hange happened (H1). Hypothesis testing for hange detetion has

been widely studied before [4℄[7℄. Usually we design a test statisti T (x). If and only

if T (x) > λ, H0 is rejeted; whereas if T (x) ≤ λ, we still keep H0, in whih λ is the

threshold. To evaluate the test, we use the power of the test and the False Positive

Rate (FPR).
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De�nition 4.2.4 (Power of Test). The power of a test (β) is de�ned as the prob-

ability that it will orretly rejet the null hypothesis. Mathematially, it is formed

as:

β = Pr(T (x) > c|H1) (4.6)

De�nition 4.2.5 (False Positive Rate). Moreover, we de�ne the False Positive Rate

(FPR), whih determines the error rate of a hypothesis test as:

α = Pr(T (x) > c|H0) (4.7)

The test statisti T (x) determines the power and error rate of the test. In [7℄,

it has been argued that within all the test statistis, Neyman-Pearson framework is

the most powerful.

De�nition 4.2.6 (Neyman-Pearson Test). Let the probability density and parameter

be f0(x) and θ0 for H0, respetively, and f1(x) and θ1 for H1, respetively. The N-

P framework ensures that the Uniformly Most Powerful (UMP) test given ertain

False Positive Rate (FPR) is ahieved by using Probability Ratio as test statisti, i.e.

T (x) = f1(x)
f0(x)

. The result of the test (noted as a 0/1 variable δ(x)) follows:

δ(x) =

{
1 if T (x) > λ i.e. rejet H0

0 if T (x) < λ i.e. do not rejet H0
(4.8)

where the value of λ is determined from the onstraint of FPR α = Pr(T (x) > λ|H0).
However, the power of the N-P test depends on the sample size of the input data x,
whih limits the performane of the test.
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De�nition 4.2.7 (Sequential N-P Test). The sample size issue an be solved by the

sequential version of the N-P Test, knows as the Sequential Probability Ratio Test

(SPRT). In this framework, the likelihood funtion is inrementally updated after

every new sample arrival [5℄, given xn = {X1, · · · , Xn}:

L(xn) = log
f1(x

n)

f0(xn)
= L(xn−1) + log

f1(Xn)

f0(Xn)
(4.9)

where rejet H0 if L(xn) > α and rejet H1 if L(xn) < β, where α and β are two

onstants. If α ≥ L(xn) ≥ β, we ontinue to aept new samples till a deision an

be made.

SPRT simulates the way human makes deisions. One makes deision if one has

enough on�dene and will ontinue to reeive information if not. In SPRT, we do not

need to pre-determine the size of the test. Instead, the size is adaptively determined

based on the observations. Even better is that SPRT requires fewer samples than

standard non-sequential N-P test given the same FP Rate onstraint. The expeted

number of samples for ertain FP rate α is given as [60℄

{
E(N |H0, H1) ≈ log(α)

D(f0|f1) for Sequential

E(N |H0, H1) ≈ log(α)
C(f0|f1) for Non-sequential

(4.10)

in whih D(f0|f1) is the Kullbak-Leibler (K-L) distane and C(f0|f1) the Cherno�
distane. For Gaussian variable, the K-L distane is usually greater than Cherno�

distane. Therefore, SPRT needs fewer samples to reah a deision.

The optimality of the sequential test motivates us to formulate the power disag-

gregation problem based on it.

Now we move on to multiple-hypothesis test. If we have one null hypothesis

and k alternative hypotheses, from [7℄, we should ompare one hypothesis with all

the other hoies. Suppose that the jth hypothesis has a prior πj , we an write the

posterior probability of the jth hypothesis as:

pjn =
πj

∏n
i=1 fj(Xi)∑k

j=0 πj′
∏n

i=1 fj′(Xi)
(4.11)

For omputation purpose, we use its inverse as the test statisti. Deision is made

towards the jth hypothesis if the threshold orresponding to the jth hypothesis, whih
is noted as χj, is exeeded. Otherwise, more data are sampled:

F n
1 (j) =

1

pjn
< χj (4.12)
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The algorithm works as in Figure 4.7(a), in whih F n
1 (1) exeeds the threshold,

whereas F n
1 (2) goes to the opposite diretion. The threshold for the jth hypothesis is

alulated as χj = α
(
δj
∑

j′
πj′

δj′

)−1

, in whih δj = minj′ 6=j D(fj|fj′) [2℄. The number
of samples we need to reah a deision is:

n = inf {n ≥ 1, F n
1 (j) < χj, ∀j} (4.13)

The seond issue is to loate the edge e�iently. Usually, exat edge loation is

not known a priori. If we assume the edge is at time τ . Then, the aumulation

of the probability ratio funtions in Equ. (12) will start from τ , and the number of

sample n will be τ dependent:

n(τ) = inf
{
t ≥ 1, St

τ (j) < Aj, ∀j
}

(4.14)

As we have disussed before, the funtions F t
τ (j) will only move toward threshold

when its hypothesis is the truth. Thus, if a guess is ahead of the true loation, the

funtion will move away from threshold for a while; whereas if the guess is behind

the true loation, the funtion will have a late hit to the threshold, as shown in

Figure 4.7(b). Therefore, the exat loation will be determined by the funtion that

�rstly hit the threshold, as:

n = inf
τ
n(τ)

For Gaussian distribution, the density deays very quikly for outliers. This is

not preferable from a numerial standpoint. The log-likelihood funtion is more

promising. Thus, the original formulation is modi�ed as follows:

N(τ) = inf
t≥1

{
F t
τ (k) < χk, ∀k

}

≈ inf
t≥1

{
max
j 6=k

t∑

i=t−τ

log
fj(Xi)

fk(Xi)
< log

χk

k
, ∀k
}

≈ inf
t≥1

{
t∑

i=t−τ

max
j 6=k

log
fj(Xi)

fk(Xi)
< log

χk

k
, ∀k
}

(4.15)

The �rst approximation is to relax the left side of the inequality and transform

it into log-likelihood ratio, while the seond puts the maximum inside the sum and

takes the maximum at eah step, hene will make the test robust to noisy data (i.e.

"spikes" that frequently appear in power stream data).

The MSPRT originates from the Edge-based model. However, by sequentially

onsidering the density funtion, MSPRT borrows ideas from the probabilisti HMM

and it appears that it ombines some of their advantages.
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Figure 4.7: Demonstration of MSPRT: (a) Log-likelihood funtion evolution; (b)

Edge positioning

Sequential Test Based Power Disaggregation: Results

The k-hypotheses in MSPRT an be used to test the status of k di�erent applianes.

By sequentially applying MSPRT to the power stream, we an �nd the right hy-

pothesis, hene the right swithing appliane. Thus, MSPRT an be used in power

disaggregation appliations. We will disuss this more in this setion and ompare

MSPRT with HMM and the Edge-Based Model.

It is also worth noting that to use MSPRT in the power disaggregation applia-

tion; we need to know in advane the appliane pro�les that onnet to the sensor

node. This is usually done by learning from a period of ground-truth data. Apart

from that, MSPTR does not ask for extra parameters ompared to that of HMM

or Edge-based Model. For the situation in whih some applianes an have multi-

ple states, these states an be transformed into virtual applianes, whih presents a

similar problem as before.

Pseudo-realisti power stream is used in this study's analysis. Firstly, a set of

real data was olleted by measurement. Several meters have been deployed in 550

Cory Hall at UC Berkeley olleting power streams of plug-in loads. Eah appliane

has its harateristis pro�le, and some applianes, suh as a laptop omputer, have
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a non-stationary pattern, as illustrated in Figure 4.8.

The data olleted by measurement has limited stohastiity, so white Gaus-

sian noise and/or impulse noise was added to introdue randomness. By tuning

the noise parameters, the potential performane limit of di�erent methods an be

benhmarked. Thirty Monte Carlo simulations were performed at eah setting of

parameters.

To evaluate the model performane, one riteria we used is the Detetion Error

Rate (DER), whih is the gap between the deteted and the true number of edges,

i.e.:

DER =
ndetect − ntrue

ntrue

(4.16)

Another one we used is the LDA sore, or F-sore [41℄. LDA sore integrates the

Preision and Reall sores. Preision is given by

Pre =
TP

TP + FP

in whih TP is True Positive rate, FP is False Positive rate. Reall is given by:

Re =
TP

TP + FN

in whih FN is False Negative rate. The LDA is eventually given by:

LDA =
2Pre× Re

Pre + Re

(4.17)

Therefore, the e�ay of the various methods will be judged in terms of ahieving

low DER and high LDA values.

In this study's simulation, one desktop omputer, one omputer monitor, and

one laptop omputer were inluded, as these are the most ommon applianes in

a typial o�e building. We also inluded a water heater with a pump for water

�ltering. The patterns for the �ve applianes are shown in Figure 4.9. Note that

non-stationary time series is also onsidered here (e.g., in the left �gure). Non-

stationarity de�nitely bring about extra hallenge, and in this work, it was handled

by onsidering the dynami time series model.

There are two groups of study in this setion. In the �rst group we only onsider

Gaussian random noise, and the data is modeled as pt = h(st) + zt with h(st) being
the state-dependent lean signal, and zt being the Gaussian noise with variane

σ2
z . The impat of noise is investigated by tuning σ2

z from 1 to 256, based on the

measurements. The state duration is modeled as Gamma distributed [41℄, and it was

assumed that at eah step, one appliane swithes at most.
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Figure 4.8: Measured power pro�le of desktop, monitor and laptop
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Figure 4.9: Simulated power pattern for �ve devies

The three methods under study in this setion are as follows: the MSPRT, the

HMM, and the Edge-Based Model. The simulation results for these three methods

are summarized by showing the LDA in Figure 4.10, and the DER in Figure 4.11.

In terms of LDA for the laptop and monitor, there is a drop in LDA above

a ertain noise level for the Edge-Based Model. For �xed sample detetion, the

expeted number of samples needed is following equation (4.10). If this number

is over the test sample size (whih inreases as the noise level inreases), then the

hanges ould be missed. MSPRT adaptively learns the test samples size, and HMM
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Figure 4.10: Monte Carlo Simulated LDA results for the �ve applianes as a funtion

of Gaussian noise amplitude, under the three models

tunes itself by introduing state transitions. Thus, they do not have the abrupt drop

in LDA, as shown in Figure 4.10, though MSPRT is slightly better.

In terms of DER, MSPRT is the most aurate method, sine the state hanges

only after the edge is deteted and the sample size an be self-tuned. The edge-

based model su�ers a sudden inrease of DER at high noise levels beause it is

non-sequential, whereas HMM is worse in DER ompared to MSPRT, sine the state

stikiness is not well modeled in HMM.

The impat of impulse noise was studied in the seond group. Here, we model the

data as pt = h(st)+ zt+λwt, where wt is the impulse noise term with variane σ2
w ≫
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Figure 4.11: Monte Carlo simulated DER as a funtion of Gausian noise amplitude

for the three methods under study

σ2
z , and λ ∈ 0, 1 is a Bernoulli proess that models the impulse noise probability.

The impat of impulse noise was investigated by varying noise variane σ2
w as well

as the Bernoulli proess probability Pr(λ = 1). Based on measured data, the range

of σ2
w was set from 502 to 1502, and Pr(λ = 1) was set to be from 0.02 to 0.5. The

only fous here is on MSPRT and HMM, sine these methods give better average

performane.

The LDA and DER of MSPRT and HMM are shown in Figure 4.13, Figure 4.14

and Figure 4.15. They have similar performane in terms of LDA, and MSPRT, not

surprisingly, has better DER than HMM. However, even for MSPRT, the DER goes

beyond 100% as noise-level inreases.

It is well known that tests assuming a Gaussian distribution are sensitive to

outliers or impulses [7℄. In the presene of impulse noise, both MSPRT and HMM

su�er from degradation aused by the outliers. Therefore, it is neessary to introdue

a robust model. This is found to be most e�ient for MSPRT.

Several distributions an model data sets that either have longer-than-Gaussian

tails, or are skewed. Examples inlude the student t-distribution or the Gamma

distribution. In this work, inspired by the Huber Robust Loss Funtion [32℄, a robust

distribution that has quadrati deay in its main body and linear deay towards its

tails is introdued. Assuming, without loss of generality, that the data is zero-
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Figure 4.12: Demonstration of RMSPRT: (a) Impulse noise response and (b) True

edge response

entered and standardized (y = x
σk
):

log fk ∼= −y2

2
1 {|y| ≤ ξ} − |y|+ ξ2 − ξ

2
1 {|y| > ξ}

The normalization oe�ient of fk an be obtained as:

C = 2σk

{√
2π (Φ(ξ)− 0.5) + 2e−

1
2
ξ2
}
∝ σk

in whih Φ(ξ) is the umulative density funtion (CDF) of the standard Normal

Distribution. Thus, the log-likelihood funtion an be written similar to the Gaussian

ase (yk(j) =
x

σk(j)
) as log

fj
fk
.

A demonstration of the Robust MSPRT (R-MSPRT) is shown in Figure 4.12.

From Figure 4.12(a), R-MSPRT is less sensitive to impulse noise. However, as seen

in Figure 4.12(b), R-MSPRT is, at the same time, less likely to detet true hanges,

even in a normal setting. We need to pay attention to this tradeo� as we hoose the

parameters.

We ompare the performane of this R-MSPRT with the MSPRT and the HMM

in Figures 4.13 to Figure 4.15, and we only fous on the �rst three applianes in



CHAPTER 4. BOTTOM-UP END-USE MODEL: DATA AND EXPERIMENTS55

LD
A

 [%
]

R-MSPRT MSPRT HMM

LD
A

 [%
]

60 90 120 150
0

20

40

60

80

100

60 90 120 150
0

20

40

60

80

100

Impulsive Noise Standard Deviation σz

60 90 120 150
0

20

40

60

80

100

0.02 0.18 0.34 0.5
0

20

40

60

80

100

0.02 0.18 0.34 0.5
0

20

40

60

80

100

Impulsive Noise Bernoulli Probability P(γ=1)

0.02 0.18 0.34 0.5
0

20

40

60

80

100

������ ������	 
�����

Figure 4.13: LDA as a funtion of impulse noise amplitude and impulse Bernoulli

probability for the �rst three applianes under study, using Monte Carlo simulated

data

Figure 4.9. The R-MSPRT gives better LDA ompared with the other two methods,

and it shows muh better DER as well. Atually, R-MSPRT has DER onsistently

below 5% and does not su�er frommuh degradation as noise variane inreases. This

is due to the introdution of a noise that is robust to large deviation. It should be

noted that R-MSPRT has similar omputational omplexity to the ordinary MSPRT.

A problem of R-MSPRT is that when the observed data is ambiguous, many

samples may need to be proessed in order to satisfy the on�dene requirement. A

deision an be made before a ertain number of samples are reahed by a trunated

SPRT [60℄, whih ould be a subjet for future study.

With power disaggregation tehniques, the ON/OFF states of individual appli-

anes an be obtained, and then ON/OFF probabilities used in simulation may be

alulated. In the next setion, we will test the performane of our model in Chapter

3 in real buildings.
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Figure 4.14: Monte Carlo simulated DER as a funtion of Bernouli noise probability

showing the e�ay of the Robust noise model

4.3 Experiments and Results

Model Setting

To make it lear, the Bottom-up approah is built based on the following steps.

• Firstly, the ON/OFF states of applianes are extrated using the power disag-

gregation algorithm disussed in Setion 4.2.

• Seondly, the Statistial Parameters are extrated as illustrated in Setion

3. The shared applianes are modeled as Non-Homogeneous Poisson Proess

(NHPP).

• Thirdly, the Field Parameters are also extrated either in a Level-III or in a

Level-II model. For auray reasons, the Level-I model is not onsidered in

this work.
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Figure 4.15: Monte Carlo simulatede DER as a funtion of Bernouli noise amplitude

showing the e�ay of the Robust noise model.

Model Training

The model was trained based on ACme power-meter readings during the 2014 Fall

Semester (i.e., 09/01/2014 to 12/01/2014) at UC Berkeley's CREST Center. The

ACme meters are implemented at an individual level, and power disaggregation teh-

nique was used to deompose the aggregated ubile level to an appliane level, as

disussed in Setion 4. Then, following the rules in Setion 3, a Bottom-Up model

based on the stohasti ON/OFF probability was built. As bakground information,

there are 18 oupants in the CREST spae with 3 desktops, 10 monitors, and 11

laptops.

Cory Hall 406 Winter Semester

In the 2014â��15 winter semester (12/28/2014 to 01/16/2015), the CREST spae is

muh less oupied, with only 3 monitors, 5 laptops, and 2 desktops atively running.

The simulated and measured mean and standard deviation of the power onsumption

of the Level-III model are shown in Figure 4.16. Most of the levels are aptured, and

the error in standard deviation omes from the limited data in our study, espeially



CHAPTER 4. BOTTOM-UP END-USE MODEL: DATA AND EXPERIMENTS58

for desktop. For the Level-III model, muh �eld information is needed, whih in most

ases is unreliable. For a new test spae, the Level-II model is preferred.
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Figure 4.16: The simulated (Sim.) and measured (Mea.) mean and standard devia-

tion (std.) of the power onsumption (in kW).

Sutardja-Dai Hall 4th Floor Fall Semester

The seond test was arried out on the fourth �oor of UC Berkeley's Sutardja-Dai

Hall. The shemati of the �oor spae is illustrated in Figure 4.17. There were 62

oupants on fourth �oor, with 46 of them in ubiles and 16 of them in o�es.

There are also three printers and one kithen.

The seond test is for Level-II model, and the di�erene of Level-II model from

Level-III model is that it only takes the number of oupants as input and infer
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the number of applianes based on the possession probability. This probability is

estimated from the fourth �oor of Sutardja-Dai Hall, and CREST enter spae, as

well as SWARM lab in Cory Hall, all at UC Berkeley. There are more than 110

users inluded. For eah individual, the probability of having an laptop is 0.4545,

monitor is 0.6545, and the desktop is 0.2455. Printers are speial, for o�e users,

eah oupant has a printer; for ubile users, eah ommon spae has roughly one

printer. De�nitely, it should be noted that the omputer applianes are still the

major power onsumption.

Figure 4.17: Shemati of CITRIS fourth �oor.

Whole-building plug-in measurements were olleted during 09/01/2014 to 12/01/2014,

and a Level-II model simulation was ompleted. The result is shown in Figure 4.18.

Most of the daytime variation is aptured but with an unidenti�ed baseline missing.

This baseline is almost onstant and is believed to orrespond to the onstant server

or proessor operation on this �oor. Thus, for the Level-II model, adding the num-

ber of proessors into the model, apart from the number of oupants, will probably

yield results that are more aurate. However, it should also be noted that suh

proessors ould be task-spei�.
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Figure 4.18: Simulated and measured data from CITRIS fourth �oor. The uniden-

ti�ed baseline is the measurement minus the simulation.

4.4 Conlusions and Future Tasks

In this hapter, based on the study from Chapter 3, we make use of the Bottom-

up approah to model the building plug-in loads power onsumption under di�erent

senarios.

Power disaggregation as an important tehnique to �lter appliane ON/OFF state

from aggregated raw power sequenes is disussed. A new disaggregation tehnique

based on multiple-hypothesis sequential testing and robust statistis is introdued,

showing stable performane under impulsive power sequenes.

The experiment was then onduted in Cory Hall and Sutardja-Dai Hall at UC

Berkeley. The model demonstrates a strong apability to simulate seasonal and
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daytime variation of power onsumption in ommerial buildings.

For the next step, attention ould be given to the modeling and feasibility analysis

of a Level-I model with simpliity and ommerial potential.
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Chapter 5

Bottom-Up End-Use Monitoring: A

Dimensionality Redution Approah

5.1 Introdution

In Chapter 3 and Chapter 4, themodeling issue in Bottom-up approah was disussed.

In this hapter, we will move on to study the monitoring issue. As disussed before,

the advantage of Bottom-up approahes is its overage of �ne-grained individual

power onsumption. However, as in other multivariate systems, when the amount of

data sales up, several hallenges arise in the e�ieny of monitoring, storage, and

the performane of statistial learning algorithms [31℄. By providing a more e�ient

lower-dimensional reonstrution of the original system, dimensionality redution

1

is

one of the tehniques that an help to overome these issues [58℄.

Among the dimensionality redution tehniques, Prinipal Component Analysis

(PCA) is most widely known. PCA �nds the linear projetion of the original data

matrix that explains the largest portion of the variane, known as the Prinipal

Component (PC). However, when data are not onsistently Gaussian distributed

2

,

the linear projeted Prinipal Component is usually not interpretable. For example,

when data are binary, whih happens a lot in behavioral siene, the linear projetion

is usually not binary anymore.

Reently, a generalized PCA framework for exponential-family distributed data

is developed (also known as the ePCA) [12℄by formalizing PCA into a generalized

low-rank approximation framework. In the ase of Bernoulli random variables, the

1

Dimesionality redution, dimension redution, dimensional redution refer to the same thing,

in this work.

2

By onsisteny the streaming data are following same distribution.
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generalized PCA is alled Logisti PCA (LPCA).

Moreover, with the explosion of streaming data nowadays, it is also important

to have the algorithm appliable in real-time setting. Running bath mode LPCA

every time when new data point omes in is de�nitely too ostly, and a sequential

version of LPCA would be highly preferred.

In this hapter, we will study the LPCA mentioned before on multivariate binary

data and extend it to a sequential version alled SLPCA, based on the sequential

onvex optimization theory [80℄ [64℄. The onvergene property of this algorithm is

disussed. An appliation in building energy end-use pro�le modeling is investigated

based on this method.

This hapter is organized as follows: In Setion 5.2, the bakground and the

detail of the algorithm is given, inluding PCA, exponential family, and eventually

the sequential LPCA (i.e. SLPCA) whih we propose. In Setion 5.3, the onvergene

property of the algorithm is disussed, followed by the simulation results as well as

the appliation in energy end-use modeling in Setion 5.4. In Setion 5.5, onlusion

is drawn.

5.2 Algorithm Framework

PCA as a dimensional redution tehnique has been well studied, and our Sequential

LPCA is essentially a generalized inremental version of the lassial model.

Prinipal Component Analysis

PCA is a well-known tehnique for dimensional redution for high dimension data.

It is of speial importane in high dimensional regression model, and in a variety of

appliations, ranging from fae reognition to generalized mahine learning [70℄ [31℄.

Apart from the maximum variane projetion perspetive mentioned before, there

is another perspetive of PCA alled the low-rank fatorization perspetive [68℄. Let

X ∈ R
n×p

be p-dimensional data with length n. PCA �nds a lower rank matrix

Θ to minimize ertain loss funtion. In onventional PCA, the loss funtion is in

Frobenious norm (or squared-error) shape:

min
Θ

‖X−Θ‖2F (5.1)

in whih ‖ · ‖F is the Frobenious norm. The lower rank matrix Θ will ontain the

prinipal omponents (PCs).

When X ∈ R
n×p

follows Gaussian distribution, this minimization problem is

essentially maximum likelihood low rank reonstrution [68℄. From this standpoint,
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if X follows other distribution, we an also extrat the PCs by designing the loss

funtion as negative likelihood funtion L(X‖Θ) = − log Pr(X‖Θ). However, there
are two issues needs to be address.

• The maximum likelihood low rank reonstrution problem is not always as

straightforward to solve as in equation (5.1). For non-onvex loss funtion,

global optimal solution is not guaranteed.

• As illustrated before, the low rank reonstruted matrixΘ need to be onsistent

with the original distribution.

Fortunately, when original data X ∈ R
n×p

follows Exponential Family distribu-

tion, the two issues above an be takled.

Exponential Family

De�nition 5.2.1 (Exponential Family). In the exponential family of distributions

the onditional probability of a value X given parameter value Θ takes the following

form:

logP (X|Θ) = logP0(X) +XΘ−G(Θ) (5.2)

in whih, Θ is alled the natural parameter of the distribution. Then we have E[X ] =
∇G(Θ) = g(Θ) is the inverse anonial link funtion, and Var[X ] = ∇∇TG(Θ).

• Log-likelihood funtion of exponential family distribution is onave with re-

spet to the natural parameter Θ, hene the negative likelihood minimization

is e�ient.

• Sine E[X ] = g(Θ), we an interpret the Prinipal Components as g(Θ).

Example 5.2.1. In the ase of Gaussian distribution, the negative log-likelihood

follows

L(x‖g(θ)) = 1

2
(x− θ)2

It oinides with the Frobenious norm funtion in equation (5.1).

Example 5.2.2. In the ase of Bernoulli distribution, the negative log-likelihood is

the logit funtion

L(x‖g(θ)) = log(1 + exp(−x∗θ)) (5.3)

where x∗ = 2x−1 ∈ {−1, 1}. In this ase, the loss funtion is a onvex funtion of θ.
However, the minimum ould be at in�nity. Hene, usually we put a regularization
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term γ θ2

2
there, with the full loss funtion being L(x‖g(θ)) = log(1+exp(−x∗θ))+γ θ2

2
.

Note that for Bernoulli distribution, the inverse anonial link funtion is g(θ) =
1

1+exp(−θ)
with 0 and 1. Thus, the Prinipal Components an be interpretable.

Exponential Family PCA

In this work, we will only work on Bernoulli variable, as in the seond example, we

replae Frobenious loss in (5.1) by the logit funtion. For multivariate binary date

matrix X ∈ R
n×p

, we have:

L(X‖Θ) =
∑

i,j

log(1 + e−x∗

ijθij) (5.4)

For a rank-r matrix Θ, we an always write it as a produt of two matries

Θ = AVT
where A ∈ R

N×r
and V ∈ R

P×r
, both rank-r. Thus equation (5.4)

beomes:

L(X‖g(AVT)) =
∑

i,j

log(1 + e−x∗

ij(AVT )ij ) (5.5)

The optimization problem in (5.5) is not jointly onvex beause of the AVT
term.

However, interestingly, from some mathematial disussions [53℄[1℄[26℄, every loal

minimum is a global minimum, whih is partially beause of the interhangeability

between A andV. Loal minimum an be obtained from alternating projet method,

whih means that we solveA withV �xed, and then solveV withA �xed, and iterate

this proess:





At = arg min
A∈Rn×r

L(X‖g(A(Vt−1)T )) + γ
2
‖A‖2F

Vt = arg min
V∈Rp×r

L(X‖g(AtVT )) + λ
2
‖V‖2F

(5.6)

in whih

γ
2
‖A‖2F and

λ
2
‖V‖2F are regularization terms.

Equation (5.5) is marginally onvex for both A and V, hene eah equation in

(5.6) is onvex and an be solved e�iently by Newton's method. Without loss of

generality, we mark the loal minimum obtained from (5.6) as A∗
and V∗

, and this

solution is alled Bath Logisti PCA (BLPCA) solution.

Sequential Logisti PCA (SLPCA)

As we work with streaming data (n is not �xed), A ∈ R
N×r

hanges in size as n
inreases, though the dimension of V is still �xed. It would be too ostly to update

the whole A matrix eah time when we have a new data point.
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Conventionally as we have aumulated loss funtions L(w) =
∑

t Lt(w) and w
�xed in size, we an make use of gradient desent to update w sequentially:

wt = wt−1 − η∆Lt(w
t−1) (5.7)

However, A matrix in our ase is not �xed in size. Hene, we hoose to do a

further approximation. At eah step t when a new data omes in, we only look at

the t-th row of A, whih we note by at, t = 1, · · · , n. Sine the loss funtion in

equation (5.5) an be deomposed by the summation of a loss funtion of eah row of

A, we only optimize over the loss funtions relevant to that row (at), alled Lt(at,V):

Lt(at,V) = L(xt‖g(atV
T )) =

∑

j

log(1 + e−x∗

tj(AVT )tj) (5.8)

and note that the total loss funtion is the aggregation of (5.8):

L(xt‖g(AVT )) =
∑

t

Lt(at,V)

This method is similar to [54℄. At eah time t, instead of working on the full A

up to step t, we only solve for the urrent element at. We mark the solution as ãt.

As for V, at eah step we optimize it over all the row-level loss funtions up to t,
and we mark the solution as Ṽt

).

In this algorithm, for t = 1, · · · , n:




ãt = argmin
a∈R

Lt(a, Ṽ
t−1) + γ

2
‖a‖2F

Ṽt = arg min
V∈Rp

∑t
s=1 Ls(ãs,V) + λ

2
‖V‖2F

(5.9)

The one for ãt in (5.9) is easy to solve with a Newton's method. The one for Ṽt

in (5.9) deal with a target funtion inreasing in size. However, we an still make

use of the stohasti gradient desent method as in equation (5.7).

Ṽt = Ṽt−1 − ηt∇VLt(ãt, Ṽ
t−1) (5.10)

where ηt is the step size. The hoie of step size ηt deserves some disussions.

This method is alled Sequential LPCA (SLPCA), and we will investigate the

onvergene property of this algorithm in the next setion. The full SLPCA algorithm

is shown below in Algorithm 1.
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begin

Input: data X ∈ R
n×p

, X∗ = 2X− 1 ∈ {−1, 1};
Initialize: Ṽt ≈ 0, C, γ, ǫ, β ∈ (0, 1), α;

for t = 1, . . . , n, lt(ãt)
.
= Lt(ãt, Ṽ

t−1) + λ
‖ãt‖2F

2
do

Set ãt = 0, ∆ = ∇lt(ãt) (∇2lt(ãt))
−1∇lt(ãt);

while λ > ǫ do

Let ∆ = − (∇2lt(ãt))
−1∇lt(ãt), d = d0;

while lt(ãt + d∆) > lt(ãt) + αd∇lTt ∆ do

Update d = βd;
end

Update ãt = ãt + d∆;

Update ∆ = ∇lt(ãt) (∇2lt(ãt))
−1∇lt(ãt);

end

Set ηt;

Update Ṽt = Ṽt−1 − ηt∇VLt(ãt, Ṽ
t−1)

end

end

Algorithm 1: Sequential LPCA (SLPCA) Pseudo-Code

5.3 Convergene Analysis

In this setion, we will study the onvergene of SLPCA with respet to BLPCA

algorithm in terms of some widely-used settings from online statistial learning so-

iety.

Evaluation Settings

• Bath Loss Funtion (BLF), use {A∗} {V∗}:

BLF =
1

n

n∑

t=1

Lt(a
∗
t ,V

∗) (5.11)

• Sequential Loss Funtion (SLF), use {ãt} {Ṽn}:

SLF =
1

n

n∑

t=1

Lt(ãt, Ṽ
n) (5.12)
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• Regret Loss Funtion (RLF), use {ãt} {Ṽt}:

RLF =
1

n

n∑

t=1

Lt(ãt, Ṽ
t) (5.13)

It is important to note that, the three settings oinide with the BLPCA and

SLPCA problem in Equation (5.6) and (5.10), exept the regularization term. How-

ever, beause of the term

1
n
, the regularization term will be diminishing as n inreases.

Therefore, the three settings an be used as the evaluation of the LPCA algorithm.

Moreover, RLF is of more interests sine it an sequentially aumulate the loss

funtions without waiting til we alulate the last update Vn
.

Convergene Analysis

Lemma 5.3.1. For t = 1, · · · , n and Lt(·) de�ned in (5.8), ‖∇VLt‖F ≤ ‖a‖F , and
‖∇2

V
Lt‖opt ≤ 1

4
‖a‖2F .

Proof. W.l.o.g., let rank(Θ) = 1, we have:

[∇VLt]j = − x∗
tjat

1 + exp(x∗
tjatv

T
j )

[
∇2

V
Lt

]
ij
=

(
x∗
tjatδij

2 cosh(1
2
x∗
tjatv

T
j )

)2

where δij = 1 only when i = j means matrix ∇2
V
Lt is diagonal. Sine cosh(x) ≥ 1,

hene the norms satisfy ‖∇VLt‖F ≤ ‖a‖F , and ‖∇2
V
Lt‖opt ≤ 1

4
‖a‖2F .

Lemma 5.3.2. Let ãt be bounded by Ω, for ∀t = 1, · · · , n. Based on (5.13) we have

‖Ṽt − Ṽt−1‖F ≤ ηtΩ.

Proof. From Equation (5.12), we have ‖Ṽt − Ṽt−1‖F = ηt‖∇VLt‖F . Sine ãt result

from a regularized problem in (5.10), so ãt is bounded by Ω. Thus we have ‖Ṽt −
Ṽt−1‖F ≤ ηt‖ãt‖F ≤ ηtΩ.

Lemma 5.3.3. For Lt(·) in (5.8), 〈a,∇aLt〉 = 〈V,∇VLt〉. Hene, for t = 1, · · · , n,
ηtγ‖ãt‖2F = 〈Ṽt−1,−ηt∇VLt〉 = 〈Ṽt−1, Ṽt − Ṽt−1〉.

This follows diretly from (5.5) and (5.10).
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Lemma 5.3.4. Lt(·) and surrogate funtion L̃t(·), as well as their �rst derivative

∇Lt(·) and ∇h̃t(·) are all Lipshitz ontinuous.

This is indiated diretly from Lemma (5.3.1) & Lemma (5.3.2) and the de�nition

of Lipshitz ontinuous [6℄.

Lemma 5.3.5. For t = 1, · · · , n, if Ω is the upper bound of ‖a‖2opt as in Lemma

(5.3.2), ‖Ṽt‖2F ≤ Ω2
∑t

s=1 η
2
s + 2γΩ2

∑t
s=1 ηs.

Proof. We start from the relationship:

‖Ṽt − Ṽt−1‖2F = ‖Ṽt‖2F − ‖Ṽt−1‖2F − 2〈Ṽt − Ṽt−1, Ṽt−1〉
= ‖Ṽt‖2F − ‖Ṽt−1‖2F − 2ηtγ‖ãt‖2F

We sum over the LHS and RHS and get:

t∑

s=1

‖Ṽs − Ṽs−1‖2F + 2γ

t∑

s=1

ηs‖ãs‖2F = ‖Ṽt‖2F − ‖Ṽ0‖2F

For simpliity, assume ‖Ṽ0‖2F ≈ 0, we proved the lemma.

Theorem 5.3.1 (Proposition 2, [54℄). Under the regularity ondition of Lemma

(5.3.4), and Lt(·) a marginally onvex funtion, SLF onverges a.s. to BLF.

The Proof has been implemented in [52℄ and [54℄, following a quasi-martingale

theory, and use the Bregman divergene under surrogate funtion as a bridge L̃t(·).

Theorem 5.3.2. Given step size as ηt = C × t−1/2
or ηt = C, the Regret Loss

Funtion RLF = 1
n

∑n
t=1 Lt(ãt, Ṽ

t) onverges to within a onstant to Sequential

Loss Funtion SLF = 1
n

∑n
t=1 Lt(ãt, Ṽ

n), and thus onverges to within a onstant

of BLF = 1
n

∑n
t=1 Lt(a

∗
t ,V

∗).

Proof. Based on (5.10) we have:

‖Ṽt − Ṽn‖2F = ‖Ṽt−1 − Ṽn‖2F + η2t ‖∇VLt‖2F
− 2ηt〈∇VLt, Ṽ

t−1 − Ṽn〉
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From Lemma (5.3.1), Lemma (5.3.2), and ‖∇VLt‖2F ≤ Ω2
, thus:

n{RLF − SLF} ≤
n∑

t=1

〈∇VLt, Ṽ
t−1 − Ṽn〉

≤ ‖Ṽn‖2F
2η0

+

n∑

t=1

(
1

2ηt
− 1

2ηt−1

)
‖Ṽn − Ṽt−1‖2F +

Ω2

2
ηt

≤ ‖Ṽn‖2F
2η0

+
n∑

t=1

(
1

2ηt
− 1

2ηt−1

)
‖Ṽn‖2F +

Ω2

2
ηt

• diminishing step size ηt = Ct−1/2
. From Lemma (5.3.5), we have:

|RLF − SLF | ≤ Ω2C

2

logn

n
+

Ω2C

4

log n√
n

+
Ω2(2γ + C)

2
√
n

+
γΩ2

2

Then limn→∞ |RLF − SLF | ≤ γΩ2

2
. But with reasonable n, the term Ω2C logn√

n

will also be signi�ant. Usually, small C and γ an fore a lower error bound.

However, small γ an result in more steps in optimizing for ãt, whereas small

C would make the step size too small, whih may not be a good hoie if we

want a fast deaying of the error bound.

• onstant step size ηt = C: For onstant step, we have:

|RLF − SLF | ≤ γΩ2 + Ω2C

Similarly, we prefer small small C and γ. The hallenge of using small C and

γ has already been disussed.

Prinipal Component Seletion Criterion

Conventional PCA evaluates Prinipal Component (PC) seletion by the amount of

variane the PCs apture. In LPCA, this is not working, and we need to �nd other

riterion.

Sine we are maximizing the likelihood funtion, an intuitive way is to evaluate

the likelihood as below:

L =
∑

i,j

log
[
g(θij)

Xij (1− g(θij))
1−Xij

]
(5.14)
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in whih g(θ) =
(
1 + e−θ

)−1
.

Figure 5.1: Log Likelihood as a funtion of the number of Prinipal Components

taken, based on simulated orrelated 10-dimensional binary sequenes, with orrela-

tion fator equals to 0.8 (upper) and 0.2 (lower).

We an show this from Figure 5.1, whih shows the log likelihood as a funtion

of the number of prinipal omponents under di�erent orrelation fators.

However, in most ases likelihood funtion is hard to evaluate. Another intuitive

way is to study the auray the PCs arry. As we reover the original data, we

annot reover the 0, 1 multivariate data. Instead, we reover the natural parameter

g(θ) =
(
1 + e−θ

)−1
, whih is a real number between 0 and 1. If the reovery is 0.7,

then there is 70% hane that we will reover the right state. For multivariate data,

we an alulate the average error rate. The error rate funtion is:

Err = 1−
∑

i,j

[
g(θij)

Xij (1− g(θij))
1−Xij

]
(5.15)
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Following the Jensen's equality, the auray funtion Err is roughly an upper

bound of the likelihood funtion. We show the result in Figure 5.2. As expeted,

for highly-orrelated (ρ = 0.8) sequenes, �rst prinipal omponent is enough to

apture roughly 90% auray, whereas for ρ = 0.2, �rst prinipal omponent an

only apture 60% auray.

Figure 5.2: Average auray as a funtion of the number of Prinipal Components

taken, based on simulated orrelated 10-dimensional binary sequenes, with orrela-

tion fator equals to 0.8 (upper) and 0.2 (lower).
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5.4 Experimental Results

Simulated Binary-State System

Firstly, simulated binary data was used to test the performane of the SLPCA algo-

rithm in a binary-state system. The generation of orrelated Bernoulli sequenes is

illustrated in [50℄. This work foused on the ase where rank(Θ) = 1, sine this usu-
ally demonstrates the best dimension redution apability. It should be noted here

that the extension to multiple prinipal omponents is straightforward, following the

iterative updating rules in [12℄.

We tried the above on data with P = 8 dimension and length of n = 1000
data points. We initialize Ṽ0

suh that its norm is lose but not equal to zero, for

omputation and onvergene purposes. Fig 5.3 shows the three funtions de�ned in

(5.11) to (5.13); whereas Fig 5.4 shows the key parameters in the sequential steps.

There are some interesting �ndings.

Firstly, though both SLF and RLF onverges at least within a onstant to BLF,

the stohasti learning an be learly divided into three Phases, as shown in Fig 5.3.

Phase I stands for the period when the norm of Ṽ0
is lose to zero right after

the initialization, when Lt(at,V) approahes P log 2 as in Equation (5.8). Phase II

haraterizes the deay of error versus n, whereas Phase III stands for when the error

onverges to within a onstant independent of n.
Seondly, ‖Ṽt‖2F inreases versus t, whih means that ‖Ṽt‖2F behaves di�erently

from the oe�ient in sequential learning of linear model [52℄ [54℄. Matrix fator-

ization plaes no onstraints for Ṽt
, hene annot guarantee the bound of Ṽt

. From

another perspetive, ãt is bounded sine Equation (5.10) has �xed in size, while Ṽt

not sine there is a summation of loss funtions. It should be noted that, in Fig 5.4,

ãt dereases versus t, whih ould result from (5.9) and is an interesting topi in the

future.

Thirdly, due to the unbounded Ṽt
, the term ‖Ṽt − Ṽt−1‖F is not ∝ t−1

as in

[52℄ and [54℄. It should be noted that the theoretial bound for ‖Ṽt − Ṽt−1‖F under

onstant step size ould be as low as t−1/2
, whih ould be a result of the onvergene

behavior of ãt under onstant step size.

Last but not least, it is important to mention that the bounds obtained in The-

orem (5.3.2) assume n large enough. However, in many ases the deay of n is not

that fast. Therefore, the e�et of n annot be ompletely ignored in the analysis.
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Building End-Use Energy Modeling

As illustrated before, Top-Down monitoring of building end-use is usually imple-

mented as a statistial �lter. For Bottom-Up monitoring, however, we need to trak

multiple-dimensional oupant-behavioral sequenes. SLPCA is able to extrat a

Prinipal Appliane out of the multivariate sequenes to haraterize the whole spae

oupant behavior.

As an example �eld study, we fous on Bottom-Up monitoring of the multiple-

omputer-monitors system. The omputer monitors are loated in CREST spae at

University of California, Berkeley. We ollet the power onsumption of 6 monitors

in 10 minutes interval by ACme sensor network

3

through CoreSight OsiSoft system

4

.

We take �ve days data, whih is roughly 720 data points. The real power sequenes

are �ltered into ON/OFF states by power disaggregation algorithm [37℄. The indi-

vidual as well as the aggregated ON/OFF state sequenes are shown in Figure 5.6.

With the ON/OFF states, we then use BLPCA and SLPCA to obtain the Prinipal

Appliane of the building.

In our SLPCA, we hoose onstant step size that is short enough to trak the

hanges as they appear

5

. We also only onsider the �rst Prinipal Appliane sine

more than 90% auray an be ahieved. The onvergene of the algorithm is shown

in Figure 5.5. We observe a good onvergene for both SLF and RLF. Periodi

�utuation is observed, due to the periodi transition between day and night energy

onsumption, whih results in periodial hanging of the data model. Moreover, the

online algorithm demonstrates less �utuation beause they adaptively update the

model of the data.

We reonstrut the original data with three sets of variables: the BLF setting

A∗
, V∗

; the SLF setting {ãt}, Ṽn
; and the RLF setting {ãt}, {Ṽt}. The results are

ompared with the original data in Figure 5.7 (sum of states of all applianes, 1 as

ON and 0 as OFF). Interestingly, SLF setting gives better approximation to BLF

setting sine it is more adaptive in terms of Ṽt
and an better ath the periodi

pattern of the original data. On the other hand, BLF setting uses the Ṽn
, whih

ould give unpromising result if data is non-stationary.

3

http://ame.s.berkeley.edu/

4

http://pioresight.osisoft.om/

5

one ould presumably also leverage the likely periodi behavior of the data by appropriate

aggregation
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5.5 Conlusions and Future Tasks

In this Chapter, dimensionality redution in Bottom-Up end-use monitoring is dis-

ussed. A logisti PCA (LPCA) is applied to aommodate the traditional PCA to

the multivariate binary data in Bottom-Up end-use setting. To adapt the LPCA to

streaming data and fast online appliation, a sequential version of LPCA (SLPCA)

was developed based on online onvex optimization theory, whih an ahieve om-

putational and storage e�ieny. In this study, two funtions to evaluate the SLPCA

algorithm were de�ned (i.e., the Sequential Loss Funtion, or SLF and the Regret

Loss Funtion, or RLF), and it was shown that both of them onverge at least within

a onstant to o�ine bath LPCA (BLPCA) results. An appliation of this algorithm

in building end-use monitoring was eventually demonstrated.
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Figure 5.3: The three funtions BLF, SLF and RLF as funtion of t. Top: ηt =
Ct−1/2

, with C = 0.2, γ = 0.1. Bottom: ηt = C, with C = 0.05, γ = 0.1.
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Figure 5.4: The onvergene property of ãt, Ṽ
t
and ‖Ṽt−Ṽt−1‖F . Top: ηt = Ct−1/2

,

with C = 0.2, γ = 0.1. Bottom: ηt = C, with C = 0.05, γ = 0.1.



CHAPTER 5. BOTTOM-UP END-USE MONITORING: A DIMENSIONALITY

REDUCTION APPROACH 78

���

���

���

Figure 5.5: The three funtions BLF, SLF and RLF as funtion of t for energy

end-use simulation with onstant step size ηt = C as C = 0.05, γ = 0.1.
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Figure 5.6: The individual as well as the aggregated ON/OFF sequenes of six

omputer monitors.
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under the three sets of variables.
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Chapter 6

Conlusion and Future Tasks

In this work, the modeling and monitoring of the end-use of ommerial buildings

are studied. Two types of the most widely used methods, Top-Down approahes and

Bottom-Up approahes, were investigated and ompared while urrent issues were

addressed.

In the Top-Down approah, an ASVR model was developed to aommodate the

nonlinearity and nonstationarity of the maro-level time series that is di�ult to

solve in a linear autoregressive model. A future task in this work would be to design

the hange reognition funtion to deal with new non-ideal patterns, espeially in

monitoring and fault diagnosis appliation.

In the Bottom-Up approah, an appliane-data-driven stohasti model based on

ON/OFF swithing events was built to estimate the power onsumption of eah end-

use setor of a ommerial building. Future tasks inlude a better modeling of shared

applianes and a more reasonable modeling of inter-appliane orrelation.

Power disaggregation tehniques used in Bottom-Up end-usemonitoring andmod-

eling were also disussed. Conventional methods of power disaggregation, inlud-

ing HMM and Edge-Driven models were studied and ompared, with new methods

based on multi-hypothesis sequential testing algorithm proposed to overome impulse

noise. With power disaggregation tehnique to obtain appliane ON/OFF states, the

appliane-data-driven Bottom-Up model was demonstrated in real ommerial build-

ings under di�erent senarios, along with its apability to estimate the end-use power

onsumption of ommerial buildings.

Finally,monitoring in Bottom-Up settings was studied. Dimensionality redution

tehnique was applied to ahieve e�ient monitoring; in order to aommodate to the

streaming multivariate binary-state oupant-behavioral data, logisti PCA (LPCA)

was hosen as a tool and extended to a sequential version, as SLPCA. In the future, it

is needed to further improve the onvergene and performane of SLPCA through a
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more e�ient online onvex optimization algorithm. A more intuitive way to quantify

dimensionality redution in binary data is also needed.
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