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Abstract

Modeling and Selection for Real-time Wafer-to-Wafer Fault Detection Applications

by

Jae Yeon Baek

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Costas J. Spanos, Chair

The semiconductor manufacturing industry currently faces many challenges in terms of
metrology and process control. With the delay of EUV and the advent of high aspect-
ratio 3D structures, there is an increase both the number of complex processing steps and
systematic/random errors, and optical resolution for metrology has now reached its limit for
sub-14nm devices. The industry now requires real-time wafer-to-wafer control and in-line
metrology, such as scatterometry or virtual metrology, for effective process monitoring.

Data models provide a quick and flexible way for integrating different forms of informa-
tion. For example, in metrology, often times it is useful to combine sensor data, previous
measurements, and other types of signals to extract the best possible measurement. More-
over, as the number of process steps continues to increase, explicit physical modelling of each
step becomes extremely time-consuming and empirical data models will quickly become an
effective alternative. In this dissertation, we discuss the application and usefulness of em-
pirical data inference models in the context of W2W advanced process control, specifically
focusing on wafer fault detection.

We first use virtual metrology, a type of in-line metrology technique, to determine whether
the introduction of such data inference models is actually useful for the fab. Moreover,
results show that the effective cost is determined by not only the model type and accuracy,
but also the resulting false and missed alarm patterns. In the next chapter, we demonstrate
an application of data models to fault detection by constructing a support vector machine
classifier (SVM) and using only the diffraction signatures from scatterometry measurements
to detect alarms. In the last chapter, we develop an algorithm for the SVM that allows
one to choose the optimal false and missed alarm combination based on an asymmetric cost
function. Moreover, our algorithm can be generalized for optimal hyperparameter selection
for any SVM problem.



i

To my family and CC



ii

Contents

Contents ii

List of Figures v

List of Tables viii

1 Introduction 1
1.1 Wafer-to-Wafer Advanced Process Control . . . . . . . . . . . . . . . . . . . 1
1.2 Background on In-line Metrology . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Virtual Metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Scatterometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Holistic or Hybrid Metrology . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Motivation and Organization of Thesis . . . . . . . . . . . . . . . . . . . . . 10

2 Effect of Periodic Recalibration on Virtual Metrology 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Costs Associated with Imperfect Detection . . . . . . . . . . . . . . . . . . . 14
2.3 Sampling and Process Scenarios for Blended Metrology . . . . . . . . . . . . 18

2.3.1 Scenario without Re-inspection and Re-tuning . . . . . . . . . . . . . 18
2.3.2 Scenario with Re-inspection and Re-tuning . . . . . . . . . . . . . . . 19
2.3.3 Drifting Regression Model . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Virtual Metrology Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Exponentially-weighted Linear Regression . . . . . . . . . . . . . . . 22
2.4.3 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.1 Scenario without Re-inspection and Re-tuning . . . . . . . . . . . . . 24
2.5.2 Scenario with Re-inspection and Re-tuning . . . . . . . . . . . . . . . 31

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Real-time Inspection System using Scatterometry Pupil Data 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



iii

3.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Fast Model Selection for Grating Classification 44
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Background on 2ν-SVM with ARD-Gaussian Kernel . . . . . . . . . . . . . . 47
4.3 Parametric Optimization Method . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Dual Problem Reformulation . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 Lemmas for Matrix Invertibility . . . . . . . . . . . . . . . . . . . . . 49
4.3.3 Explicit Form of α∗(φ) . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.4 Some Properties of α∗(φ) . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.5 Explicit Form of the Classifier . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Generalization Cost Estimation and Gradient Calculation . . . . . . . . . . . 53
4.4.1 Estimation of Asymmetric Generalization Cost . . . . . . . . . . . . . 54
4.4.2 Gradient Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Gradient-based Hyperparameter Selection Algorithm . . . . . . . . . . . . . 56
4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6.1 Visualization of Critical Regions and Explicit Solutions . . . . . . . . 58
4.6.2 Gradient Descent Algorithm Results . . . . . . . . . . . . . . . . . . 62

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Conclusions and Outlook 71
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Broader Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliography 74

A Background on Support Vector Machines 81
A.0.1 Hard-margin SVMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.0.2 Soft-margin SVMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.0.3 SVMs for Non-linear Data . . . . . . . . . . . . . . . . . . . . . . . . 86
A.0.4 Cross Validation and Empirical Loss . . . . . . . . . . . . . . . . . . 87

A.1 The ν-SVM Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.2 Cost-Sensitive SVM Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.2.1 Multicategorical SVMs . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B Scatterometry Grating SEM Images and Bossung Curves 93
B.0.2 Focus-Exposure Matrix CD-SEM Images . . . . . . . . . . . . . . . . 94
B.0.3 Bossung Curves from YieldStar Measurements . . . . . . . . . . . . . 101

C Proofs for Fast Model Selection for Grating Classification 105



iv

C.0.4 Solution of over-determined system . . . . . . . . . . . . . . . . . . . 105
C.0.5 Properties of matrix Gβ . . . . . . . . . . . . . . . . . . . . . . . . . 106
C.0.6 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
C.0.7 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 107
C.0.8 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 107



v

List of Figures

1.1 Evolution of advanced process control in semiconductor manufacturing. . . . . . 2
1.2 Overview of scatterometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 The forward and inverse problem of scatterometry. . . . . . . . . . . . . . . . . 7
1.4 Slicing technique used to accommodate arbitrary profile shapes. . . . . . . . . . 8
1.5 Inference engine showing various forms of information, such as tool sensor data,

optical-CD measurements, off-line microscope measurements, and spatial/temporal
correlation, being integrated for the best possible estimate of a wafer. The infer-
ence model can be used for functions such as in-line metrology, fault detection,
or wafer-to-wafer control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 A blended metrology scenario: the virtual metrology model is constructed through
the initial training step, then applied to the process, and recalibrated later to in-
corporate process drift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Sampling scenario without re-inspection. SEM metrology is initially used to
construct the virtual metrology model. Following a metrology delay period, the
virtual metrology model is used for in-line fault detection before being recalibrated
again. The figure above shows the process condition matrices (Xi) and CD
values/estimates (yi) for each phase. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Extended sampling scenario with interrupted flag inspection. After initial train-
ing and deployment of the virtual metrology model, the samples that are flagged
by virtual metrology as bad are sent to the SEM for confirmation. If so, the
process is re-tuned to control with some delay. . . . . . . . . . . . . . . . . . . . 20

2.5 Optimization of blended metrology schemes as a function of rvm. When rvm is
small, there is frequent recalibration and more metrology delay. When rvm is
large, there is a risk for increased false and missed alarm rates due to process
drifts and less recalibration of the model. . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Total profit, mean-squared error, false and missed alarm probabilities for the
Linear Regression virtual metrology model. The increase in estimation error
is significant as the Rvm increases. Relatively constant false and missed alarm
patterns result in a flat total profit curve. . . . . . . . . . . . . . . . . . . . . . 26



vi

2.7 Total profit, mean-squared error, false and missed alarm probabilities for the
Exponentially-weighted Linear Regression virtual metrology model. The mean-
squared error and alarm probabilities have significantly improved compared to
Linear Regression. Tradeoff between false and missed alarm rates result in an
optimal point on the total profit curve. . . . . . . . . . . . . . . . . . . . . . . . 27

2.8 Total profit, mean-squared error, false and missed alarm probabilities for the
Kalman Filter virtual metrology model. This model shows the highest accuracy
and lowest error probabilities as it is a filter constructed for a state-space model.
Again, the tradeoff between false and missed alarms result in an optimal point
on the total profit curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.9 Regression coefficient estimates for each VM model for a Rvm of 100. (a) Esti-
mates for Linear Regression. Notice that the coefficients are underestimated due
to retained memory from start of the process, leading to an increase in missed
alarm probabilities. (b) Estimates for Exponentially-weighted Linear Regression.
Variance of estimations have increased due to smaller training size, but tracks
the drifting coefficients. (c) Estimates for the Kalman Filter. Most accurate
performance out of the three models. . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10 Averaged total profit for the three VM models and no VM case. This is for the
scenario without re-inspection/re-tuning. “Length of VM Run” would actually
be the number of unmonitored wafers between SEM recalibration measurements
for the no virtual metrology case. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.11 Total profit for each virtual metrology model and the conventional metrology
scheme. This is for the scenario with re-inspection/re-tuning. . . . . . . . . . . . 32

3.1 Basic schematic of proposed inspection tool. For each grating under test, only
the diffracted 0th-order intensity signals are used to determine whether the wafer
will go onto subsequent manufacturing steps. . . . . . . . . . . . . . . . . . . . . 36

3.2 Test set misclassification, false alarm, and missed alarm rates for focus-exposure
matrix gratings. The classifiers are trained only through RCWA simulations.
Each plot graphs the total misclassification (black), false alarm (blue), and missed
alarm (red) rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Tradeoff between false and missed alarm rates for classification models. As seen
in this figure, the curve is a straight line for random guessing, and gets steeper
for high-performing classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 W11 c1 = c2 = 1. (a) Exhaustive 2D calculation of Ψ̂ with optimal point marked.
(b) Highly fragmented critical regions due to a smaller value of β. (c) Calculated
Ψ̃ using Theorem 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 S500 c1 = c2 = 1. (a) Exhaustive 2D calculation of Ψ̂ with optimal point marked.
(b) Simple critical region structure due to a larger value of β. (c) Calculated Ψ̃
using Theorem 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



vii

4.4 (a) Convergence result for W11, c1 = 2, c2 = 1. (b) Convergence result for S500,
c1 = 1, c2 = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Convergence for β∗k for datasets (a) W11 (b) S500. The costs are set to c1 = c2 =
1. The black dashed line represent the converged value of β∗ for the RBF kernel,
and the blue lines represent converged values of β∗k for the ARD-Gaussian kernel. 69

A.1 (a) Soft-margin SVMs minimize the summed distance from the corresponding
hyperplane for misclassified points. (b) Most cases require a non-linear boundary
for proper classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.2 Multicategorical support vector machine classification. . . . . . . . . . . . . . . 91

B.1 CD-SEM images for P90CD45. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
B.2 CD-SEM images for P100CD45. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.3 CD-SEM images for P100CD50. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.4 CD-SEM images for P110CD55. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.5 CD-SEM images for P600100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
B.6 CD-SEM images for P600CD200. . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.7 CD-SEM images for P600CD300. . . . . . . . . . . . . . . . . . . . . . . . . . . 100
B.8 YieldStar Bossung curves for P90CD45. . . . . . . . . . . . . . . . . . . . . . . 101
B.9 YieldStar Bossung curves for P100CD45. . . . . . . . . . . . . . . . . . . . . . . 101
B.10 YieldStar Bossung curves for P100CD50. . . . . . . . . . . . . . . . . . . . . . . 102
B.11 YieldStar Bossung curves for P110CD55. . . . . . . . . . . . . . . . . . . . . . . 102
B.12 YieldStar Bossung curves for P600CD100. . . . . . . . . . . . . . . . . . . . . . 103
B.13 YieldStar Bossung curves for P600CD200. . . . . . . . . . . . . . . . . . . . . . 103
B.14 YieldStar Bossung curves for P600CD300. . . . . . . . . . . . . . . . . . . . . . 104



viii

List of Tables

2.1 Values for parameters in (2.1)-(2.3). We demonstrate using approximate but
realistic values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Different kinds of costs that occur for a metrology scheme. . . . . . . . . . . . . 17
2.3 Maximum mean profit and corresponding rvm for each VM model for case without

re-inspection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Maximum mean profit and corresponding rvm for each VM model for case with

re-inspection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Nominal grating dimensions for focus exposure matrix. . . . . . . . . . . . . . . 38
3.2 Sample images from FEM gratings. The first column shows the best focus and

exposure for each grating. The second column shows faulty gratings that Yield-
Star flagged out-of-spec by outputting a small numeric measurement. The third
column shows faulty gratings that YieldStar missed to flag. For context, there
were 43 erroneous gratings judged from SEM images; YieldStar correctly flagged
39 samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 FEM classification results for a linear SVM. . . . . . . . . . . . . . . . . . . . . 41
3.4 FEM classification razesults for an ellipsoid SVM. . . . . . . . . . . . . . . . . 41
3.5 FEM classification results for a radial basis kernel SVM. . . . . . . . . . . . . . 41

4.1 Comparison using RBF/ARD kernel, W11, starting points: 0.5,0.1,3 . . . . . . . 64
4.2 Comparison using RBF/ARD kernel, S500, starting points: 0.5,0.1,3 . . . . . . . 65
4.3 Comparison using RBF/ARD kernel, yeast, starting points: 0.5,0.1,3 . . . . . . 66
4.4 Comparison using RBF/ARD kernel, wdbc, starting points: 0.5,0.1,3 . . . . . . 67
4.5 Comparison using RBF/ARD kernel, waveform, starting points: 0.5,0.1,3 . . . . 68



ix

Acknowledgments

Foremost, I would like to thank my adviser and mentor, Professor Costas J. Spanos, for
guiding me through my graduate studies at Berkeley. He has given me both freedom and
guidance to pursue my research interests in novel and interesting directions. I cannot thank
him enough.

I would like to thank Robert Socha of ASML Santa Clara for providing me with an intern-
ship opportunity to test my ideas with YieldStar. The internship also laid the groundwork
for the hyperparameter selection work discussed in Chapter 4 of this dissertation. He was
an excellent mentor to me and I gained substantial knowledge of the industry through him.

I would like to thank Professors Kameshwar Poolla, Laura Waller, and Robert Leachman
for being on my Qualifying Exam committee and dissertation committee. They have given
me very helpful feedback for my graduate work.

I would like to thank Yuxun Zhou of our group. He was my co-researcher for the latter
part of my graduate studies and even more, a good friend.

I would like to thank all our group members: Zhaoyi Kang, Ming Jin, Ruoxi Jia, Ioannis
Konstantakopoulos, and Yovana Gomez for all their support and help.

I would like to thank all members of IMPACT+. I had a great exchange of ideas through
presenting my work and meeting new colleagues at its workshops.

Finally, I would like to thank Samsung Scholarship for funding both my undergraduate
and graduate studies. I could not have completed my degrees without their help.



1

Chapter 1

Introduction

1.1 Wafer-to-Wafer Advanced Process Control

Increasingly complex manufacturing processes and reduced device dimensions demand
ever tighter control in semiconductor manufacturing. Traditionally, improvement efforts
were focused on the tools and process themselves. In the mid-1980’s, as the number of
process steps and amount of process data increased, the industry began looking into in-situ
metrology as well as off-line metrology, in an attempt to increase process visibility. Most of
the efforts were focused on utilizing sensor and metrology data. [1]

Statistical process control (SPC) was the first mechanism that arose to address this
need. Introduced in the early 1930’s by W. Shewhart, statistical process control (SPC) has
been used in the microelectronics fabrication industry to monitor deviations from statistical
control [1]. Using the control chart as its main tool and assuming a Gaussian distribution
on the sensor data, SPC aimed to detect occurrence of shifts in process performance so
that investigation and corrective action may be undertaken to bring incorrectly behaving
manufacturing processes back under control [2, 3]. A process with SPC correction is shown
in Figure 1.1a. After being processed, wafers are randomly selected from a lot at each step
and measured at an off-line metrology station. These measurements are then recorded on
the control chart for outlier monitoring.

Although effective in monitoring process variability, SPC does not prescribe automatic
control actions [4]. Due to this need for continuous process tuning, advanced process control
(APC) evloved rapidly in the semiconductor industry in the 1980’s and 1990’s with Run-
to-Run (R2R) control emerging as the first technologically viable product of that evolution
[1]. Since collecting in-situ metrology data was difficult, R2R control mainly considered
modification of a product recipe with respect to a particular machine process ex-situ, or
between machine runs, to minimize process drift, shift, and variability. [1] In general, APC
now referred to a control framework that allowed R2R control, fault detection and prediction,
predictive maintenance, and SPC.

The first R2R control systems employed were lot-to-lot, and uses lot-level metrology
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(a) Statistical process control. A few wafers are randomly sampled from a lot. Measurements are
then recorded on a control chart and statistical parameters are used as indicators of out of control
processes.

(b) Lot-to-lot process control. In contrast to statistical process control, lot-to-lot control is a form
of advanced process control in which automated correction steps are taken at a lot-level. That is,
the recipes are held constant for each lot.

(c) Wafer-to-wafer process control. Advanced process control occurs at a wafer level and due to
off-line metrology delay, in-line metrology tools such as scatterometry or virtual metrology are
necessary.

Figure 1.1: Evolution of advanced process control in semiconductor manufacturing.
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data [5, 6]. This means that like SPC, a few wafers within a lot are measured at the
metrology station and the control values are kept the same for all of the wafers in a lot [6, 7].
Figure 1.1b shows a process with lot-to-lot control. SPC is still being used but measurements
are fed into fault detection and classification engines and a lot-to-lot controller. Occasionally,
measurements from previous steps are feed-forward into the controller. Depending on the
measurement received, the controller modifies the recipe for the process so as to minimize
variation. However, with shrinking device dimensions and increasing wafer diameters, even
L2L control is insufficient and wafer-to-wafer (W2W) control becomes crucial to maintaining
high quality and productivity.[6, 7, 8, 9, 10]

The largest obstacle in deploying W2W control is the delay of off-line metrology equip-
ment. Although conventional, off-line metrology produces relatively accurate measurements,
it is also costly and time-consuming because of the time gap from sending the test wafer to
the equipment to getting the results [9]. For example, even if there is a sudden drift or shift in
the process, this cannot be detected real-time, causing defectiveness to all wafers processed
in the delay period [8]. The fab incurs a significant cost due to these various disadvantages of
conventional metrology. [6] Since monitoring is now needed at a wafer-to-wafer level, off-line
metrology alone is insufficient and this drove the need for in-situ metrology, where the wafer
is measured during or right after it is processed. A W2W control schematic is shown in
Figure 1.1c.

Although all process parameters are important for effective product manufacturing, some
so-called critical dimensions (CDs) are determined to be the most important. CD’s typically
encompass those that define the electrical performance of transistors or interconnect. Cur-
rently, the main metrology workhorse for measuring the length of transistor gates has been
the scanning electron microscope (SEM), where measurements are collected off-line using
dedicated, throughput-limited equipment. Due to the need for W2W control, the two can-
didates for in-line metrology that arose in the 2000’s were scatterometry, in which gratings
are measured through matching diffraction signatures, and virtual metrology, in which tool
sensor data is used to infer an estimate of the CD through statistical modeling techniques.
Figure 1.1c shows real-time tool sensor data and other signals entering the in-line metrology,
FDC, and W2W control systems in addition to the off-line metrology data. Control actions
are taken on a wafer-to-wafer level.

In the next section, we briefly go over the background of some in-line metrology tools
that are currently being deployed or tested.

1.2 Background on In-line Metrology

In this section, we introduce three important in-line metrology techniques. The first is
virtual metrology, in which statistical modeling or control techniques are used to estimate
a CD value based on tool sensor data or basically any other features that may provide
additional information on the measurement. The second is scatterometry, or optical CD
(OCD), in which a separate test grating with periodic structures is measured through shining
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light and collecting the intensity and/or phase information of the diffracted orders. The last
but not least is hybrid metrology, which is a framework for combining measurements from
different tools to get an enhanced measurement on the primary tool, usually scatterometry.

1.2.1 Virtual Metrology

The metrology delay from physical metrology stations makes wafer-to-wafer monitoring
and control difficult for today’s manufacturing lines, as thousands of wafers are processed
in a fab per day. A potential solution to this is virtual metrology (VM), which takes the
processing data produced by the processing tool in real time, (e.g. plasma etching data
during isolation trench formation, for example) and predicts an outcome of the wafer (e.g.
critical dimension of the trench) utilizing an inference model. Tool data utilized in fault
detection is usually used as the input to the VM model. These may be statistics of gas flows,
pressure, temperature, plasma parameters, etc. Implementation of a good virtual metrology
model enables W2W real-time quality control and reduces the cycle time, in addition to
decreasing number of test wafers [11].

VM models are constructed by collecting highly accurate off-line measurements and fitting
a predictive model. We assume we have a vector of off-line measurements ySEM , and a matrix
of tool data XSEM = [xT1 . . .x

T
n ]T , where there are a series of n samples and each xTi ∈ Rp

is a row vector of p different tool data statistics. The most simple but widely used methods
are regression-based algorithms, in which the CD measurement is assumed to be modeled as
a linear additive model

ySEM = XSEMβ + ε (1.1)

where β is a column vector of coefficients, and ε is usually assumed to be a vector of
independent (although often times they are not) Gaussian noise variables with each element
sampled from N(0, σ2). The best estimate for β is given by

β̂ = (XT
SEMXSEM)−1XT

SEMySEM .

Thus, the CD estimate for an incoming tool signal with feature vector xTnew would be

ŷnew = xTnewβ̂.

The equations described above are for ordinary least squares (OLS). Although this model
is the core of many regression-based algorithms, in practice more complex models such as
principal component analysis (PCA) and partial least squres (PLS) are used to further reduce
dimensionality of the data matrix and capture linear combinations of features that are more
effective in explaining the correlation between the tool data and off-line CD measurements.

After the CD has been estimated for an incoming sample, R2R control algorithms are
used to automate recipe corrections. One well-known algorithm is the exponentially weighted
moving average (EWMA) filter. Although the process model is very similar to (1.1), auto-
matic control actions are taken one sample at a time. We assume again, the true process at
time t is modeled by

yt = β0 + xTt β + εt,
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where we have included an offset term, β0, omitted from equation (1.1). The EWMA filter
estimates the noise as

ε̂t+1 = λ(yt − β̂0 − xTt β̂) + (1− λ)ε̂t (1.2)

where λ ∈ [0, 1] is the EWMA coefficient. If the target value is τ , the control action taken
for the next step of tool settings is

xt+1 = β̂
−1

(τ − β̂0 − ε̂t+1). (1.3)

If successfully employed, VM can potentially introduce many benefits. Since VM moni-
tors each wafer, this leads to higher yield and less scrapped wafers. Moreover, tighter process
control provides a way to overcome metrology delay in L2L control, and less time can be
spent on time-consuming ex-situ metrology, increasing the throughput of a process. [12]
However, one of the biggest drawbacks of VM is the limited accuracy of the model. In con-
trast to direct metrology, such as the SEM or AFM, VM utilizes a data model to infer the
CD indirectly, which often results in a compromise in the accuracy of the measurement. A
question we will be exploring in this work is whether the introduction of such VM inference
models is beneficial to the fab.

1.2.2 Scatterometry

Scatterometry, or optical metrology, is a non-destructive metrology technique that infers
the parameter values of a 3D geometric profile by analyzing the changes in the intensity of
light reflected from a periodic grating. [13, 14, 15] In contrast to local measurement tools
such as the CD-SEM or TEM, scatterometry reports an average measurement across the
grating. With in-line integration, scatterometry is a very powerful tool for manufacturing,
especially with high-aspect-ratio finFET and 3D structures. [16] Although there is room
for improvement, optical CD (OCD) metrology now significantly matches the CD-SEM and
has shown high accuracy and precision. Often times, the high accuracy of scatterometry is
paired with significant computation time, as we will see later in this section.

Scatterometry is the characterization of light diffracted from periodic structures. Fig-
ure 1.2 shows a general setup for scatterometry, with a simple periodic grating consisting
of bottom anti-reflective coating (BARC) and photoresist. The scattered or diffracted light
pattern, often referred to as a signature, can be used to characterize the details of the grat-
ing shape itself. For periodic gratings, the scattered light consists of distinct diffraction
orders at angular locations specified by the simple grating equation, which is given below.
Often times, to increase sensitivity, the light is polarized into transverse electric (TE) and
transverse magnetic (TM) polarizations.

In Figure 1.2, we show the 0th and 1th orders only. Due to complex interactions between
the incident light and the materials that constitute the grating, the intensity or phase of light
diffracted into any order is sensitive to the shape and parameters of the diffracting structure.
The intensity or phase information is then used to characterize that structure itself. [17] In
Figure 1.2, we show an example of parameters such as underlying BARC height, photoresist
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Figure 1.2: Overview of scatterometry.

height, mid-CD, and sidewall angle, where the photoresist is modeled as an infinitely long
trapezoid.

The simple grating equation is specifically given by

nisin(θm) = nisin(θi) +m
λ

d
, m = 0,±1,±2, . . . (1.4)

where θi is the angle between the incident light and the normal to the grating surface, θm is
the angle between the mth diffracted order and the normal to the grating surface, ni is the
incident medium’s index of refraction, and d is the grating period. [13] In practice, usually
information pertaining to only the zeroth order is collected and proves sufficient for profile
reconstruction.

1.2.2.1 Normal Incidence Spectroscopic Reflectometry

In normal-incidence spectroscopic reflectometry (NISR), a broadband light source is split
into a reference beam and a beam directed towards the sample. The reflectivity at various
wavelengths is calculated by comparing the intensity of these two beams. [18] Defining the
angle between the polarizer and grating lines to be φ, the complex reflectivities of TE and
TM waves to be r̃s = rse

iδ1 and r̃p = rpe
iδ2 , respectively, and the phase difference to be

∆ = δ1 − δ2, the total reflectivity is given by [18]

R(φ) = r2
s cos4φ+ r2

p sin4φ+ 2rsrp cos∆ cos2φ sin4φ. (1.5)

By varying the polarization angles, rs, rp, and cos∆ can be calculated.
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Figure 1.3: The forward and inverse problem of scatterometry.

1.2.2.2 Spectroscopic Ellipsometry

Spectroscopic ellipsometry measures the ratio of the zeroth-order complex TE and TM
reflection coefficients ρ = r̃p/r̃s = tanΨei∆, where tanΨ = |r̃p|/|r̃s|, and again, δ is the phase
difference. [13] Since ellipsometry measures the ratio of the two coefficients, no reference
beam is necessary. [19] The phase information contained in ∆ provides high sensitivity to
film properties, especially thickness of ultra-thin films. [20]

1.2.2.3 Variable-Angle Scatterometry

In variable-angle scatterometry, the incident beam is scanned through a series of discrete
angles, and the detector of the scatterometer is able to follow and measure the orders as
the incident angle is varied. The light can also be a laser at different wavelengths. [17]
Since the two angles in equation (1.4) are varied, this system is also referred to as a “2-Θ”
scatterometer. [17] One of the key advantages of this system is the ability to “visualize” the
grating profile at various incident angles. Although in general only intensity measurements
are used, various forms of variable-angle scatterometry can incorporate polarization and also
measure both magnitude and phase information like ellipsometry.

1.2.2.4 The Forward and Inverse Problem

Figure 1.3 shows the forward and inverse problems in reconstructing the grating profile.
The forward problem in scatterometry concerns itself with accurately simulating a diffraction
signature for a given set of profile parameters. Simple gratings are usually modeled as infinite
trapezoids but more complex shapes can also be analyzed. In the case of a trapezoid, the
grating profile can be explained by three parameters: CD (or linewidth), height, and sidewall
angle (Figure 1.2). The inverse problem then tries to “match” as closely as possible the
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Figure 1.4: Slicing technique used to accommodate arbitrary profile shapes.

diffraction signal collected from the sample to a simulated signal. The parameters that
result in the closest match are used as measurements.

The most popular method for simulating grating diffraction signatures is rigorous coupled-
wave analysis (RCWA). It is a mathematical mechanism that allows for the direct solution
of the electromagnetic fields diffracted by a grating. The profile is sliced into many thin
rectangular layers (Figure 1.4). By utilizing Maxwell’s equations and applying boundary
conditions at all interfaces of the rectangles, RCWA calculates the field strengths in all re-
gions of the grating. The flexibility of this method makes modeling more complex grating
shapes feasible. [17]

The inverse problem can be solved in two ways. One is a library search, where hundreds of
thousands or more diffraction signatures are simulated for a very fine grid of parameters. The
library signature that is closest to that of the sample is then identified as the measurement.
The library construction often takes hours or even days, and may range from hundreds of
thousands of simulations or more. The signatures are compared through a cost function,
which usually is a squared sum. The profile parameter set that results in the minimum cost
is used as the measurement.

Another approach is an iterative optimization algorithm to search for a non-linear least
squares minima. One example is the well-known Levenberg-Marquardt (LM) algorithm.
Assuming there are n optical response (usually intensity or phase) points and k parameters
for the profile, we denote the following.

� yi: optical response of the sample diffraction signal for the ith point.

� xi: measurement condition, e.g. values of wavelength or angle, for the ith point.

� p = [p1, . . . , pk]
T : profile parameter vector containing variables such as linewidth (CD),

height, sidewall angle, etc.

� f(xi;p): simulated RCWA optical response for condition xi and parameter values p
for the ith point.

The collected signature is modeled as the simulated signature plus noise

yi = f(xi;p) + εi, εi ∼ N(0, σ2).
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The function f(·) is highly non-linear and we do not know the explicit form of it. Thus, the
goal of LM is to find the set of optimal profile parameters p∗ that results in the minimum
of the cost function

C(p) = ||y − f(x; p)||2. (1.6)

Since the analytical form of f(·) is not known, the function at an updated point pt+1 = pt+s
is approximated by the Taylor expansion. For one point i, this results in

f(xi;p
t + s) ≈ f(xi;p

t) + J is (1.7)

where

J i =

[
∂f(xi;p

t)

∂p1

, · · · , ∂f(xi;p
t)

∂pk

]
.

Now the cost function at the updated location becomes

C(pt + s) ≈ ||y − f(x;pt)− Js||2. (1.8)

Notice that finding the optimal s∗ that minimizes the approximated C(pt + s) is a linear
least squares problem. Thus, the best estimate for s∗ is

s∗ = (JTJ)−1JT (y − f(x;pt)) (1.9)

where J = [J1 · · ·Jn]T . Due to some additional issues,

s∗ = (JTJ + λdiag(JTJ))−1JT (y − f(x;pt))

is used in practice. The LM algorithm finally updates pt+1 = pt + s∗ for each iteration until
convergence is reached or the algorithm goes out of bounds.

Both methods have their pros and cons. While constructing a library may take an
exhaustive amount of time beforehand, iterative methods may take a significant amount of
effort to converge during the measurement. In addition, as seen in by the LM algorithm, most
methods require precise calculations of the gradient, and in some cases, even the second-order
Hessian matrix, making them computationally intensive as well. However, iterative methods
do not choose an optimal set from a predetermined grid of values. Lastly, while many solver-
based algorithms achieve local minima, library based methods may achieve values close to
global minima since the search is exhaustive over all possible parameter sets.

1.2.3 Holistic or Hybrid Metrology

Recently, there has been significant interest in so-called hybrid or holistic metrology, the
practice of combining measurements from multiple sources in order to improve the measure-
ment of one or more critical parameters. [21, 22] Hybrid metrology allows us to combine
the strong points of each metrology tool, increasing both the accuracy and precision of CD
measurements. Vaid et al. [21] define hybrid metrology to be the combined use of two or
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more metrology tools to measure aspects of the same dataset. The central idea is that data
obtained from these tools is used in a complementary or synergistic way to enhance the
resolving power of either or both tools. Similarly, Zhang et al. [22] have used a Bayesian
statistical approach to combine measurement information from different metrology sources
directly in the parametric fitting process, improving measurement uncertainty.

Although there are multiple ways to mix measurements, we briefly go over an example
of combining scatterometry measurements, specifically from [22]. From Section 1.2.2.4, the
optimal parameter set s∗ was found by (1.9). For demonstration purposes, we only deal with
one profile parameter, say the CD. In Bayesian linear regression, we go one step further from
(1.9) and put a prior distribution over s. That is, we propagate some belief we have about
s through (1.9) from previous measurements.

In hybrid metrology, prior information is known about a measurement site of interest,
usually through past off-line metrology measurements. For example, this could be a set of
SEM measurements across a previously processed wafer. The prior distribution of p (the CD)
can be modeled as a Gaussian variable from the distribution N(µ0, σ

2
0), where µ0 is the mean

and σ2
0 is the variance of the off-line measurements. Since at each iteration, s = pt+1 − pt, s

now has a prior of N(µ0−pt, σ2
0) for a fixed pt value at the start of iteration t+1. Mixing this

information with the OCD diffraction signatures, the posterior distribution of s, P (s|J ,y),
is Gaussian distributed with

E(s|J ,y) =

(
µ0 − pt

σ2
0

+
(JTJ)−1JT (y − f(x; pt))

σ2(JTJ)−1

)(
1

1
σ2
0

+ 1
σ2(JTJ)−1

)

V ar(s|J ,y) =

(
1

1
σ2
0

+ 1
σ2(JTJ)−1

)
.

(1.10)

After convergence, the mean is usually taken as the estimate for s. The posterior distri-
bution is a mix of the prior and the OLS estimate, as seen by the terms in the mean and
variance. Notice that the posterior estimate of s has a smaller variance than the variance of
the prior distribution or the OLS estimate, improving the precision of the measurement.

1.3 Motivation and Organization of Thesis

Historically, metrology started with measuring a characteristic in question against a ref-
erence, such as a ruler. In semiconductor processing, hardware-intensive and highly intricate
off-line microscope tools, such as the SEM, have been considered the workhorse for metrol-
ogy. As technology nodes continue to shrink and 3D structures emerge, it will be a challenge
for microscope tools to resolve and “see” next generation devices. Thus, a significant amount
of current resources are focused on developing computational metrology, such as scatterom-
etry, that provide full profile information and W2W process monitoring through physical
modeling and optimization techniques.
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Figure 1.5: Inference engine showing various forms of information, such as tool sensor data,
optical-CD measurements, off-line microscope measurements, and spatial/temporal correla-
tion, being integrated for the best possible estimate of a wafer. The inference model can be
used for functions such as in-line metrology, fault detection, or wafer-to-wafer control.

Currently, many process control models are based on explicit modeling of the process or
electromagnetic phenomena. However, this level of modeling will now be difficult as products
go through hundreds of complex manufacturing steps and the time for model development is
limited. Although physical modeling will always be a priority, the industry must also focus
on complementing this with empirical inference models that have faster development time
and more flexibility in terms of integrating different forms of data. Moreover, most facilities
already have access to a huge pool of information from tool and optical sensors that may
help significantly in building such data models.

Figure 1.5 shows an inference engine. Very much like hybrid metrology, we would like to
combine or hybridize various forms of information, such as sensor data, OCD measurements,
various off-line measurements, and spatial/temporal correlations to extract the best estimate
of a wafer state. This information would be utilized for in-line metrology, hybrid metrology,
fault detection and classification, and W2W control. In this dissertation, we explore the
application and flexibility of inference engines in the semiconductor processing arena in the
context of W2W fault detection, since in many situations a method of quickly determining
whether the wafer is in-spec or out-of-spec is essential.

We start by exploring virtual metrology, which is in essence an inference model with
tool signals and off-line measurements as inputs. In reality, VM models are constructed, or
recalibrated, based on more accurate off-line metrology data. In a fault detection context,
we try to answer whether the introduction of such inference models actually improves the
overall performance of the fabrication sequence, and if so, analyzing the conditions under
which such a blended metrology scheme would be advantageous and optimized.

Specifically, the first part of the thesis, Chapter 2, illustrates possible cost scenarios when
using virtual metrology for fault detection, taking into account recalibration period length
and the type of VM model. We start by estimating cost parameters and delve into the
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effect of using VM for fault detection and its impact on total profit. For demonstration
purposes, we utilize three types of virtual metrology models, and two possible metrology
sampling scenarios. Simulation results allow us to explore when virtual metrology may or
may not be useful depending on the tradeoff between false and missed alarm rates. This
demonstration is not only for traditional virtual metrology models, but can also be extended
to other inference models that utilize any kind spatial or temporal information.

Since ultimately, the total cost is a function of false and missed alarm rates, we would like
to utilize a fault detection and classification model that provides flexibility in tuning these two
types of errors. In the next part of the thesis, the support vector machine (SVM) classifier,
which is another type of inference engine, is presented as the main FDC tool. We not only
demonstrate the speed and accuracy of SVMs with scatterometry grating classification, but
also demonstrate an algorithm that quickly chooses the appropriate parameters for tuning
false and missed alarm rates as needed.

Specifically, in Chapter 3, we construct a real-time inspection tool using SVM classifiers
that will allow us to detect erroneous or out-of-spec grating CD’s much faster and potentially
more accurate than scatterometry measurements. In contrast to Chapter 2, estimation of
the CD value of the grating is skipped entirely, and only the diffraction signatures of the
scatterometry tool are used for the full purpose of fault detection. Finally, in Chapter 4, we
develop an algorithm that will allow us to quickly determine the optimal parameter set for
a classifier depending on which false and missed alarm rate combination minimizes the loss
function. Moreover, this framework can also be used to choose appropriate scaling factors
that further improve the accuracy of the model.
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Chapter 2

Effect of Periodic Recalibration on
Virtual Metrology

2.1 Introduction

Past research on virtual metrology has been heavily focused on constructing empirical
models for process modeling. Various authors have developed VM models for wafer etch
rate using high dimensional sensor data. [23, 24, 25] Su et al. and Hung et al. developed
VM models for CVD film thicknesses using neural networks. [26, 27] Moreover, some have
implemented an APC model using VM measurements as inputs [6, 7]. The performance of
the VM model is usually measured against conventional metrology data by criteria such as
the error variance or the mean squared error (MSE).

Although VM has its advantages, VM model prediction quality is not as good as that
of conventional metrology, and the models need frequent recalibration in order to maintain
acceptable predictive capability. In real life, we envision that practical metrology schemes
will involve VM in combination with conventional or actual metrology, the latter being used
for the needed periodic recalibration of the VM empirical model. Such a scenario is shown
in Fig. 2.1. The initial training step is used to construct the VM model; the model is then
applied to incoming wafers and later recalibrated to incorporate process drift and other
faults. We also envision an algorithm that would respond to a fault being predicted by the
VM model by possibly requiring additional actual measurements.

In this chapter, we explore whether introducing in-line metrology models for fault detec-
tion is advantageous for the manufacturing sequence and propose a general framework that
can be used to quickly lead to the optimal design of such schemes given the characteristics
of the process in question. This is done by exploring the effects of variables such as the
frequency of samples that go through actual metrology, the prediction quality of the VM
model, the cost of missed or false alarms, processing and actual metrology costs etc.

In our earlier work [28], we demonstrated that it is more beneficial to see VM in context of
a faulty process than a well-controlled process. In fact, a well-controlled process would need
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Figure 2.1: A blended metrology scenario: the virtual metrology model is constructed
through the initial training step, then applied to the process, and recalibrated later to in-
corporate process drift.

minimal metrology. Thus, we simulate a drifting process with low Cpk and calculate the total
profit for three different but realistic VM models: Linear Regression, Exponentially-weighted
Linear Regression (EWLR), and the Kalman Filter. This is done for two possible blended
metrology sampling scenarios, one where flagged wafers are automatically discarded, and
another where they are re-inspected and the process is re-tuned. From here on, our analysis
assumes conventional metrology to be the SEM and the unknown quantities to be the critical
dimension (CD).

2.2 Costs Associated with Imperfect Detection

In any metrology operation, whether conventional, virtual or blended, the value obtained
is an estimate of the true value that is being measured. For either conventional or virtual
metrology, let us assume that the true value of the quantity in question (unknown to the
process engineer), is y, and the value estimated by the metrology operation is ŷ. We assume
there are three types of cost associated with each sample wafer going through a metrology
scheme:

� Revenue per wafer: If the true value of a wafer sample is in-spec and the wafer goes
through the processing line, it ultimately becomes an integrated circuit product (e.g.
microprocessor). The fab then generates revenue from selling this product. This is
given by

revenue

wafer
=

revenue

die
× number of dies

wafer
× yield. (2.1)
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� Processing cost per wafer: Cost required to further process one wafer until it becomes
a final product. This is given by

process cost

wafer
=

process cost

die
× number of die

wafer
. (2.2)

� SEM cost for w wafers: Cost of using the SEM for processing w wafers. This includes
depreciation cost and employment of the operation engineer. This is given by

SEM cost for w wafers =
SEM tool cost

years used
× w wafers

wafers started per month× 12
. (2.3)

Here we assume with no loss of generality that the entire wafer is accepted or rejected
by the metrology operation. In addition, we assume for simplicity that there is no cost of
operating a virtual metrology software tool. Thus, we can define a total profit for each wafer
as

total profit = revenue− process cost− SEM cost. (2.4)

The financial parameters mentioned above vary widely depending on the type of chip (e.g.
microprocessor or memory). As we are proposing a methodology for blended metrology
optimization, we chose to demonstrate it using approximate but realistic values for current
microprocessor manufacturing processes. We list the numbers used in equations (2.1)-(2.3)
in Table 2.1.

Table 2.1: Values for parameters in (2.1)-(2.3). We demonstrate using approximate but
realistic values.

Parameter Value

Wafers started per month 40,000

Die yield / wafer 85%

# dies per wafer 280

Years SEM used 4

SEM tool cost $1.6 million

Revenue / die $120

Process cost / die $16

Due to imperfect estimation, fault detection models may produce false alarms (Type
I error) or missed alarms (Type II error). Those two types of errors are associated with
operational costs that depend on the metrology scheme and the algorithm used in response
to an alarm. We determine that a sample is “faulty” or “bad” if a metrology value is under
or over the respective specification limits. Thus, if the estimated metrology value is bad, the
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Figure 2.2: Plot of true and estimated metrology values for an R2 of 0.94 for a virtual
metrology model. The dotted lines are the ±3σ limits. The false and missed alarm error
regions are highlighted and labeled.

process engineer will have to throw away (or re-work) the sample, and if the estimated value
is good, the wafer continues onto subsequent manufacturing processes. Overall, there are
four cases that can happen when a process engineer uses either of the metrology schemes.
Depending on which category a wafer is in, it incurs a different set of costs.

� Correctly classified as good: The metrology tool (either conventional or virtual) classi-
fies the sample as good when the true value is good. The wafer goes through subsequent
processes and is turned into final product, generating revenue for the company. Given
some upper specification limit (USL) and lower specification limit (LSL), this directly
translates to

P (ŷvm = good | y = good) (2.5)

= P (USL ≥ ŷvm ≥ LSL | USL ≥ y ≥ LSL). (2.6)

� Correctly classified as bad: The metrology tool classifies the sample as bad when
the true metrology value is bad, and the wafer is discarded. The correct metrology
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estimate saves the company cost that could have incurred if the wafer was processed
subsequently, as the final product would have been defective due to the faulty true
value.

P (ŷvm = bad | y = bad) (2.7)

= P (ŷvm > USL ‖ ŷvm < LSL | y > USL ‖ y < LSL). (2.8)

� Type I error: Also known as a “false alarm”, the metrology tool classifies the sample
as bad when actually the true value is good (in-spec). The proportion of samples with
Type I error is given by:

P (ŷvm = bad | y = good) (2.9)

= P (ŷvm > USL ‖ ŷvm < LSL | USL ≥ y ≥ LSL). (2.10)

In this case, the wafer is discarded even though it could have been processed to become
a final product.

� Type II error: Also known as a “missed alarm”, the metrology tool classifies the sample
as good when actually the true value is bad. Similarly, the proportion of samples with
Type II error is given by:

P (ŷvm = good | y = bad) (2.11)

= P (USL ≥ ŷvm ≥ LSL | y > USL ‖ y < LSL). (2.12)

As a visual example, we plot simulated pairs of true and estimated VM values with
correlation coefficient ρ of 0.96, as seen in Fig. 2.2. Notice that this is a very high correlation
for a statistical model. The corresponding false and missed alarm error regions discussed
above are highlighted and labeled.

Table 2.2: Different kinds of costs that occur for a metrology scheme.

Revenue Process Cost Metrology Cost

Both Good Yes Yes Yes

Both Bad No No Yes

False Alarm No No Yes

Missed Alarm No Yes Yes

A missed alarm generally incurs the greatest cost because even though the wafer goes
through the whole manufacturing process, it is not made into a final product at the end due
to its defect. Also note that for W2W process control, all wafers generate metrology cost.
The different costs that occur for each classification category are summarized in Table 2.2.
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2.3 Sampling and Process Scenarios for Blended

Metrology

One question that remains is how to devise a metrology sampling scenario. Traditionally,
2-3 wafers are sampled out of a lot and are observed through the SEM. We devise two
sampling scenarios, both applied to a process with low Cpk. The first is a short, non-
interrupted process of 3,000 wafers (or 120 lots) in which flagged wafers by VM or SEM
are automatically discarded. The second is a long-term process of 10,000 wafers (or 400
lots) that allows for a SEM re-inspection whenever VM flags a wafer as faulty. Moreover,
this scenario allows for process re-tuning. Since the objective of this work is to determine
when virtual metrology is beneficial, we compare the total profit for the blended case and
conventional case (no VM used) for both scenarios. We define some terms before we delve
into details.

1. Initial Training Length (rit): Number of wafers used to initially train the VM model.

2. Length of VM Run (rvm): Number of wafers “measured” only through VM before
additional SEM measurements are collected for recalibration.

3. Recalibration Length (rrc): Number of wafers that need to be measured by the SEM
for each recalibration step.

4. Metrology Delay Length (rmd): Number of wafers processed while waiting for SEM
measurements to become available. These wafers are considered to be at-risk of being
processed under faulty process conditions.

5. Retune Delay Length (rrd): Number of wafers that could have been processed but
missed because the process is being re-tuned back to target.

2.3.1 Scenario without Re-inspection and Re-tuning

The non-interrupted process of 120 lots consists of initially training the VM model with
real-time processing data and SEM metrology data (given by rit). We assume that whenever
a wafer is sent to the SEM metrology station, there is a metrology delay of 2 lots (given
by rmd), or 50 wafers, that are unconditionally processed while waiting for the metrology
results. When the new metrology data is available, the VM model is updated using this
new data and applied to the next number of wafers. When the SEM or VM model flags
a wafer as being faulty, it is discarded. Finally, a number of wafers equal to rrc are sent
to the SEM station to update the model again. This whole process is repeated throughout
the simulation, as seen in Fig. 2.3. As usual, Xi represents a n × p matrix of process
conditions, where n is the number of wafers and p is the dimension of sensor data, and yi is
a n× 1 vector that represents actual metrology values or VM predictions depending on the
step. The conventional metrology scheme for this scenario follows the same SEM metrology
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sampling frequency as that of blended metrology but no VM is applied and all other wafers
unconditionally go through subsequent processing.

Figure 2.3: Sampling scenario without re-inspection. SEM metrology is initially used to
construct the virtual metrology model. Following a metrology delay period, the virtual
metrology model is used for in-line fault detection before being recalibrated again. The
figure above shows the process condition matrices (Xi) and CD values/estimates (yi) for
each phase.

2.3.2 Scenario with Re-inspection and Re-tuning

The extended process of 400 lots similarly trains the first rit number of samples to con-
struct the first VM model and applies it to the next rvm number of wafers. However, we
account for the limited prediction quality of VM by inspecting all flagged wafers. That is,
when VM estimates a wafer to be faulty, the sample is sent to the SEM and inspected one
more time with the risk of delaying rmd wafers. If the wafer is determined to be in-spec after
the SEM inspection (i.e. VM has generated a false alarm), the process goes back to being
monitored by VM; if the SEM confirms the wafer is bad, the process is halted and re-tuned
back to target, delaying Re-tune Delay Length (rrd) amount of wafers to be processed. After
either finishing one VM run or re-tuning the process, rrc number of wafers is collected from
the SEM to update the VM model. If a wafer is flagged during this phase, the process is
re-tuned again (there is no need to double-check as we assume SEM is 100% accurate). An
overview of this scenario is shown in Fig. 2.4. For the conventional case, process re-tuning
only occurs when SEM flags a wafer and all other wafers are processed unconditionally.

Fig. 2.5 shows a cartoon of what would happen to the total fab profit vs. rvm in a blended
metrology scheme. With short VM runs, there would be frequent updates of the VM model
but also more frequent SEM metrology delays, leading to a lot of at-risk wafers. At the
upper rvm, the delay would not impact as much, but since the VM model is not updated
enough, an increase in false and missed alarm rates would bring down the profit. In the
middle would be a maximum profit optimized to the fab’s characteristics.

2.3.3 Drifting Regression Model

As mentioned in Section 2.1, we propose that a well-controlled process setting is not a
compelling application for virtual metrology. In addition, we want a dynamic yet realistic
process that will allow us to explore the dependence between VM model accuracy and rvm.
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Figure 2.4: Extended sampling scenario with interrupted flag inspection. After initial train-
ing and deployment of the virtual metrology model, the samples that are flagged by virtual
metrology as bad are sent to the SEM for confirmation. If so, the process is re-tuned to
control with some delay.

Such a process is a regression model with drifting coefficients. Consider a general linear
process

yt = β0
t + β1

t x
1
t + β2

t x
2
t + . . .+ βhidt xhidt + εt (2.13)

where subscript t corresponds to time, the numerical superscripts correspond to the dimen-
sion of the sensor data, and εt is the observation error at time t. It is possible that the VM
model misses estimating an independent variable xhidt and its coefficient βhidt , and suppose
this hidden variable drifts over time by the amount ∆xhid. At the next time step, if all other
variables are constant, the process is now explained by

yt+1 = β0
t + β1

t x
1
t + β2

t x
2
t + . . .+ βhidt (xhidt + ∆xhid) + εt

= β0
t + (β1

t + ∆β)x1
t + β2

t x
2
t + . . .+ βhidt xhidt + εt.

(2.14)



CHAPTER 2. EFFECT OF PERIODIC RECALIBRATION ON VIRTUAL
METROLOGY 21

More frequent 
metrology delay

Maximum Profit

Figure 2.5: Optimization of blended metrology schemes as a function of rvm. When rvm is
small, there is frequent recalibration and more metrology delay. When rvm is large, there is
a risk for increased false and missed alarm rates due to process drifts and less recalibration
of the model.

Now the drift ∆xhid is captured in β1
t with ∆βx1

t = βhidt ∆xhid as a linearly drifting coefficient.
Thus, the final model of the true process would be

yt = xTt βt + εt, εt ∼ N(0, σ2
ε )

βt+1 = βt + u+ ηt, ηt ∼ N(0,Qt)
(2.15)

where yt is the true CD, xt are sensor values for one sample at time t, and εt, ηt are white
noise variables. Finally, u controls how much the coefficient drifts over time.

2.4 Virtual Metrology Models

In this section, we provide a brief theoretical background on the three VM models that
are used in the analysis: Linear Regression, Exponentially-weighted Least Squares (EWLS),
and the Kalman Filter (KF). To clarify how they are used in our work, we explain the
background in context of the sampling scenario shown in Fig. 2.3.

2.4.1 Linear Regression

Assuming there is a collection of nSEM sensor and CD data from the SEM, linear regres-
sion assumes the true process is of the form (note there is no incorporation of the drift in
the coefficient vector β that is present in the true process model)

ySEM = XSEMβ + ε, εi ∼ N(0, σ2
ε ) i = 1, 2, . . . , nSEM (2.16)
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and the well-known estimate of the coefficients is

β̂SEM = (XT
SEMXSEM)−1XT

SEMySEM . (2.17)

In the context of this work,

XSEM =

X1

X4
...

 , ySEM =

y1

y4
...


where Xi and yi, i = 1, 4, 7... refer to Fig. 2.3 and denote the training data from the SEM.
That is, at a certain point in time, we accumulate all data from the SEM that is available for
modeling not knowing the true process is faulty. Given our VM model, the CD prediction
for subsequent VM samples is

ŷVM = xTVM β̂SEM (2.18)

= xTVM(XT
SEMXSEM)−1XT

SEMySEM (2.19)

where xVM is an incoming wafer’s sensor data vector.

2.4.2 Exponentially-weighted Linear Regression

For this model, we assume that the engineer knows there is some drift in the process and
wants to weigh the recent observations more heavily than the earlier ones. The weights are
given by

wt = s(1− s)(nSEM−t) (2.20)

where s is a tunable parameter. The best value for s was found by training the model on
different s values and finding the one that minimized the MSE. With W = diag(w), the
EWLS estimates of β are given by

β̂SEM = (XT
SEMWXSEM)−1XT

SEMWySEM (2.21)

and similarly, the estimated CD predictions are given by

ŷVM = xTVM β̂SEM

= xTVM(XT
SEMWXSEM)−1XT

SEMWySEM .
(2.22)

2.4.3 Kalman Filter

This section largely references and follows the notation from [29]. More details about the
Kalman Filter are in the text. In our case, yt, σ

2
ε , εt are scalars, αt, zt,ηt are vectors, and
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T t,Qt,Rt are matrices. The Consider the general linear Gaussian state space model

yt = zTt αt + εt, εt ∼ N(0, σ2
ε )

αt+1 = T tαt +Rtηt, ηt ∼ N(0,Qt)

α1 ∼ N(a1,P 1), t = 1, . . . , n

(2.23)

where yt are the observations (e.g. CDs), αt are hidden state variables controlling the process
(e.g. process conditions and drift of the process), and εt, ηt are independent Gaussian noise
sequences with corresponding variance and covariance matrices σ2

ε and Qt.
The objective of the filter is to obtain the conditional distribution of αt+1 given Y t for

t = 1, . . . , n where Y t = {y1, . . . , yt}. That is, given SEM measurements up to time t, we
want to estimate the process conditions αt+1. Since all distributions are normal, conditional
distributions of subsets of variables given other subsets of variables are also normal. Now all
we need is αt+1|Y t ∼ N(at+1,P t+1) and then

at+1 = E(αt+1|Y t)

P t+1 = Cov(αt+1|Y t).
(2.24)

Since αt+1 = T tαt +Rtηt, we have

at+1 = E(T tαt +Rtηt|Y t)

= T t E(αt|Y t),

P t+1 = Cov(T tαt +Rtηt|Y t)

= T t Cov(αt|Y t)T
T
t +RtQtR

T
t

(2.25)

for t = 1, . . . , n. We now define vt, the one-step forecast error of yt given Y t−1.

vt = yt − E(yt|Y t−1)

= yt − E(zTt αt + εt|Y t−1)

= yt − zTt at.

(2.26)

Observing Y t is the same as observing {Y t−1, vt}, we see that E(αt|Y t) = E(αt|Y t−1)+
E(αt|vt). It is easy to see that E(vt) = 0, and Cov(vt,Y t−1) = 0. Through the lemma in
multivariate normal regression

E(αt|Y t) = E(αt|Y t−1, vt)

= E(αt|Y t−1) + E(αt|vt)
= E(αt|Y t−1) + Cov(αt, vt)[V ar(vt)]

−1vt

= at +M tF
−1
t vt,

(2.27)
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where M t = Cov(αt, vt) = P tzt, and gt = V ar(vt) = zTt P tzt + σ2
ε , when Y t−1 and vt are

uncorrelated. Substituting everything into expression for at+1 and P t+1, we get

at+1 = T tat + T tM tg
−1
t vt

= T tat +Ktvt

where Kt = T tM tg
−1
t = T tP tztg

−1
t .

(2.28)

Through similar analysis,
P t+1 = T tP tL

T
t +RtQtR

T
t

where Lt = T t −Ktz
T
t .

(2.29)

All the filtering recursion equations are given by

vt = yt − zTt at, gt = zTt P tzt + σ2
ε ,

Kt = T tP tztg
−1
t , Lt = T t −Ktz

T
t ,

at+1 = T tat +Ktvt, P t+1 = T tP tL
T
t +RtQtR

T
t .

(2.30)

For missing observations and observations to be forecasted, vt and Kt of the filter are
set to zero [29], and the updates just become

at+1 = T tat, P t+1 = T tP tT
T
t +RtQtR

T
t .

Given these update equations, the following zt, T t, and αt matrices

αt =

[
u
βt

]
, zTt =

[
0 · · · 0 xTt

]
, T t =

[
I 0
I I

]
are used for the Kalman Filter to model the true process in (2.15), where I is the identity
matrix with appropriate dimensions.

2.5 Results and Discussion

In this section, we simulate data for the true process (2.15) and report results for the
total profit, VM model MSE, false and missed alarm rates as a function of rvm for both the
scenario with and without re-inspection and re-tuning.

2.5.1 Scenario without Re-inspection and Re-tuning
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We generate data based on (2.15) with the following parameters

β0 =

1
1
1

 , u =

0.0004
0

0.0004

 , σ2
ε = 0.2, Qt = 02p×2p.

The rit is set to 200 wafers, the rrc to 20 wafers, and the rmd to 50 wafers (2 lots). 3,000
wafers are simulated and the corresponding total profit, false and missed alarm rates, and
the MSE are calculated for each VM model (Fig. 2.6, 2.7, and 2.8). For repeatability, 100
simulations are repeated and the average is plotted in bold to distinguish them from the
first first 20 simulations. For the Kalman Filter, we start with a randomized hidden state
vector as our initial guess. Estimates of the beta coefficients for each model are also shown
in Fig. 2.9 (a), (b), and (c) along with the true coefficient values in the background.

2.5.1.1 Linear Regression

One noticeable feature about Fig. 2.6 is the non-existent false alarms and the very large
amount of missed alarms. This is due to the under-estimation of the regression coefficients,
as seen in Fig. 2.9(a). Since all past and present observations are weighed equally in the
recalibration phase, the coefficient estimates have significantly lower values than the true
ones. This constraint in the gain leads to VM estimates that are mostly inside the LSL/USL
limits and as a result, the model fails to catch most of the alarms that happen, leading to the
significant missed alarm probabilities. Relatively constant false and missed alarm patterns
result in a flat total profit curve. The maximum mean profit occurs at $5.874 × 107 when
the rvm is 145.

2.5.1.2 Exponentially-weighted Linear Regression

EWLR shows a significantly reduced VM MSE than Linear Regression (Fig. 2.7), as only
the recent observations are used in the recalibration stage. This is also seen in Fig. 2.9(b),
where the EWLR estimates accurately track the drift in the true coefficients. However, in
contrast to Fig. 2.9(a), the estimates have more variance. This translates to an increased
probability of false alarms, and as seen in the third column of Fig. 2.7, the false alarm
probability is not zero anymore. We see an increase in missed alarms as the rvm increases
because the coefficient estimates for a certain VM stage stay constant while the process keeps
on drifting. The tradeoff between false and missed alarms result in an optimal point on the
total profit curve. The maximum mean profit occurs at $5.921× 107 when the rvm is 665.

2.5.1.3 Kalman Filter

The Kalman Filter gives us the least MSE out of all three VM models. Note that this is
partially because the filter is constructed on such a state-space model like the true process
in (2.15). Moreover, we have assumed that the exact value of some of the parameters are
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No VM

Linear Regression

Weighted LR

Kalman Filter

Figure 2.10: Averaged total profit for the three VM models and no VM case. This is for
the scenario without re-inspection/re-tuning. “Length of VM Run” would actually be the
number of unmonitored wafers between SEM recalibration measurements for the no virtual
metrology case.

known, including the noise covariance matrices. As seen in Fig. 2.9(c), the Kalman Filter
estimates accurately track the true values. Although the false and missed alarm probabilities
are quite low, we see that the variances of these quantities increase as rvm increases. Note
the increase in total profit variance as the rvm increases. This is due to the increased variance
of the hidden state variable estimate. Again, the tradeoff between false and missed alarms
result in an optimal point on the total profit curve. The maximum mean profit occurs at
$5.909× 107 when the rvm is 340. Although the KF has the highest accuracy, this quantity
is lower than the weighted linear regression model due to the time the KF needs to converge
from the initial guess.

Table 2.3: Maximum mean profit and corresponding rvm for each VM model for case without
re-inspection.

Max. Profit ($) rvm (# wafers)

Linear Regression 5.874× 107 145

Exponentially-weighted LR 5.921× 107 665

Kalman Filter 5.909× 107 340

The average total profit for all VM models was plotted along with that of the conventional
metrology scenario in Fig. 2.10. For this scenario, blended metrology schemes profit more
than the conventional scheme in most regions. Although Fig. 2.10 shows that the weighted
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linear regression VM model has the highest average total profit out of all three VM models,
we want to emphasize that the example given in this paper is one of many cases and the
results depend on different cost and revenue values. Consider an extreme example of a
process with a very high false alarm cost; in this case, a linear regression-like model would
be the most beneficial to the fab, even though this model has the worst MSE out of the three
models. Even more, for different processes, using VM may not result in higher profit for the
fab.

Given a LSL/USL, each model generates a different false and missed alarm pattern that
directly translates to total profit. It is the combination of model accuracy and missed / false
alarm patterns that determine the optimal total metrology profit.

2.5.2 Scenario with Re-inspection and Re-tuning

We generate data based on (2.15) with the following parameters

β0 =

1
1
1

 , u =

0.0002
0

0.0002

 , H t = 0.2, Qt = 02p×2p.

The rit is set to 200 wafers, the rrc to 20 wafers, and the rmd to 50 wafers (2 lots) as
well as the rrd. 10,000 wafers are simulated and the corresponding total profit is plotted in
Fig. 2.11. We do not plot the MSE, false and missed alarm rates of the VM models because
the VM phase is no longer continuous as in the first scenario.

As discussed in section 2.3.2, a wafer is re-inspected every time it is flagged by VM. If
there were no virtual metrology, the total profit would again look like Fig. 2.5. Too short of
a VM run will decrease profit due to more frequent SEM recalibration and more delays. Too
long of a VM run will decrease profit because it takes longer for the SEM to catch faults and
the process will have drifted farther from target. This is what we see in the fourth column
of Fig. 2.11.

The LR VM model underestimates the CD and hardly flags a wafer. Thus, the graph is
similar to that of the no VM case, as seen in the first column of Fig. 2.11. For Exponentially-
weighted Linear Regression, the total profit steadily decreases and plateaus as the rvm in-
creases because the VM model is not updated and again, the CD’s are underestimated.
Total profit for the Kalman Filter steadily increases and plateaus because the filter continu-
ously tracks the process drift accurately. The total profit curve for both EWLR and the KF
converges as rvm increases because even though the VM model is not recalibrated enough,
subsequent SEM measurements detect the drift and the process is retuned. We again em-
phasize that even though the Kalman Filter seems to generate the most profit, it does not
mean it is the best VM model in general. The maximum total profit and corresponding rvm
is shown in Table 2.4.
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Table 2.4: Maximum mean profit and corresponding rvm for each VM model for case with
re-inspection.

Max. Profit ($) rvm (# wafers)

No VM 1.677× 108 525

Linear Regression 1.657× 108 465

Exponentially-weighted LR 1.786× 108 0

Kalman Filter 1.848× 108 ∞

2.6 Summary

This work takes a step back from empirical VM model construction and analyzes when
VM is actually useful for the fab and how it can be optimized as a function of VM recali-
bration frequency. This is done by identifying 4 categories of VM estimate classification and
defining critical parameters such as the revenue, processing cost, and actual metrology cost.
These parameters were combined into a metric we called the total profit. We concentrated
our analysis on a largely deviating process, the regression model with drifting coefficients,
to link the relationship between VM recalibration frequency, VM model accuracy, and total
profit.

Two blended metrology scenarios were carried out on a simulated drifting process for 3
VM models, Linear Regression, Exponentially-weighted Linear Regression, and the Kalman
Filter. The first scenario was for a relatively short process with less than optimal Cpk. The
second scenario was a long-term process with better but still low Cpk, which also allowed re-
inspection to compensate for limited VM prediction quality and process re-tuning. Although
the second scenario is more realistic, the continuity of the first scenario provided us with
some valuable insights about blended metrology. Results indicated that each VM model had
different false (Type I) and missed (Type II) alarm patterns that translated to different total
profit patterns as a function of rvm. Moreover, an optimal value of rvm that gave the maximal
total profit was identified for each model. The analysis indicated the need for missed and
false alarm pattern analysis, rather than solely focusing on increasing a certain accuracy
metric.

In practical reality this means that a high VM proportion may be beneficial early into the
process lifecycle, while this proportion may be gradually reduced as the process becomes more
mature, and therefore more stable. This finding is similar to the intuition that the overall
role of metrology changes with process maturity, starting with detecting and diagnosing
significant deviations, and continuing to using metrology to drive more subtle run-to-run
control adjustments.

In this work, we use plasma etching as the example because etching has historically been
a step more suitable for VM deployment. One could easily extend our analysis to physical
metrology tools such as scatterometry, or even to “virtual” tools that consist of blending
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various physical tools (i.e. CD-SEM and scatterometry).
Although this work gives us a view into how the cost, error probabilities, and recalibration

sizes are related, a lot of assumptions were incorporated into the process model. For instance,
we assumed the observation errors were independent from one time to the next, whereas in
reality some autocorrelation would need to be accounted for. In addition, we assumed exact
parameter values for the Kalman Filter. It would be interesting to see how the results change
for a real processing dataset where the parameters of the Kalman Filter would have to be
estimated via some parameter estimation algorithm. Moreover, we believe the next step is
to provide a theoretical framework past Monte Carlo simulations that would provide robust
and accurate decision rules for the metrology industry.
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Chapter 3

Real-time Inspection System using
Scatterometry Pupil Data

3.1 Introduction

Following the background from Appendix A, in this chapter, we utilize support vector
machine (SVM) classifiers as a tool for fault detection with an application to scatterometry.
In a general sense, this example will demonstrate not only the actual use of empirical inference
models in the semiconductor processing arena, but also their fast development time and
flexibility. Moreover, the work in this chapter does not require any alterations to existing
hardware configurations.

Although there have been many proposals on optimal metrology sampling for semicon-
ductor processing, current sites for measurements are usually picked at random or around
locations on the wafer that are thought to have high process variability (e.g. wafer edge
spots). As mentioned in Chapter 2, most measurements show well-controlled behavior if
chosen at random, especially in high-volume matured processes. Ideally, we would like to
concentrate efforts to sites that express more interesting behavior than well-controlled ones,
especially for computational metrology techniques such as scatterometry. In addition, both
library-based and solver-based OCD metrology outputs a number based on the assumption
that the grating has a certain input profile shape, which generates missed alarms when the
grating is faulty or does not conform to the specified shape. For example, the gratings stud-
ied in this paper were measured by ASML’s S(T)-200 “YieldStar” in-line metrology tool with
the assumption that they were infinitely long trapezoids. These missed alarms in scatterom-
etry are mainly caused by practical limitations of the optical system (only the 0th order is
collected in most systems) and computational limitations, which sometimes leads to valid
profile reconstruction for erroneous gratings.

There were many classification models to choose from. Some of the most prominent ones
are artificial neural networks (ANN), decision trees, linear discriminant analysis (LDA) /
quadratic discriminant analysis (QDA), and ADABOOST. The SVM is currently one of the
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Figure 3.1: Basic schematic of proposed inspection tool. For each grating under test, only
the diffracted 0th-order intensity signals are used to determine whether the wafer will go onto
subsequent manufacturing steps.

most sophisticated classifiers available for binary decision-making. It has a very fast, yet
simple training process; moreover, as seen in Appendix A, it is very flexible across data
with high feature dimension spaces, in addition to the ability to transform the original space
into larger Hilbert spaces. As we will see, this aspect was suitable for scatterometry optical
diffraction data, since the number of features (or varying angles and wavelengths) can get
quite large. In contrast, ANN’s have a longer training time for the same performance, and
many other models, such as ADABOOST, can be prone to overfitting. However, by Wolpert
and Macready’s “No Free Lunch Theorem”, it has its drawbacks. Since the complexity of the
SVM is O(n2)−O(n3), the training time can quickly get larger as the number of instances
is increased. Moreover, it is empirically known that the SVM underperforms compared to
other classifiers for data with more than 2 classes. [97, 96] Regardless, for our fault detection
purposes, which classify an incoming die into 2 classes (in-spec or out-of-spec), binary SVMs
performed well.

In this chapter, we construct an inspection tool with the SVM classifier that requires
significantly less time and computation power and is potentially capable of detecting alarms
missed by scatterometry. We use ASML’s YieldStar S(T)-200 in-line metrology tool, which
uses high aperture angle-resolved scatterometry with a non-linear optimization solver. As
seen in Section 1.2.2.4, solver-based scatterometry requires repeatedly comparing RCWA
signatures to that of the collected one until the cost function is minimized. In contrast to this
process, we utilize only the signal of the diffracted 0th-order to determine whether a sample
CD is in-spec or out-of-spec. In essence, our objective is to construct a fast diagnostic tool
that determines whether a sample should or should not proceed to subsequent manufacturing
steps. This allows measurement time to be focused on samples that generate alarms. We
shift our focus from the optimization algorithm used to minimize the cost function to the
signal itself, which means no more iterative RCWA calculations during inspection, and thus
almost instant computation time. The objective of this tool is not replacing scatterometry,
but to provide more information for effective resource allocation and missed outlier detection.

As seen in Figure 3.1, the proposed system is constructed by using each pixel of the
intensity signature as a feature, resulting in a high dimensional binary (or more) classification
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problem. Various SVM classifiers are trained and applied to predict whether an incoming
sample should be labeled as in-spec or out-of-spec depending on the middle critical dimension
(MCD) 10% process window. To demonstrate that no hardware alterations are needed to
use inference models, we train the classifiers on simulated RCWA diffraction signatures and
apply them to collected signatures from focus-exposure matrix gratings with nominal CD
dimensions ranging from 45-300nm.

3.2 Experimental Design

As mentioned in Sec. 3.1, ASML’s YieldStar S(T)-200 is a high-numerical aperture (NA)
angle-resolved scatterometer. The OCD signals are the intensities of the diffracted zero-
order, and are observed through the pupil of the metrology objective. [30] Every point
in the pupil corresponds to one incident or azimuth angle for a fixed wavelength. [31] A
wavelength of 425nm is used for this work. Due to confidentiality issues, we could not
publish the metrology signal used in this work. However, for an example image, please refer
to Fig. 3 in Benschop et al. [31]. From recent sources, the measurement acquire time (MA)
for YieldStar is approximately 0.40 seconds. [32]

The FEM testing set is composed of 11 1-D gratings, all with photoresist on top of bottom
anti-reflective coating (BARC). Thus, the relevant profile parameters for scatterometry are
photoresist height, SWA, and mid-CD (our parameter of interest). 6 matrices have a nominal
pitch of 600nm, and 5 have a nominal pitch of 100nm (Table 3.1). All were exposed at IMEC,
Belgium, with each wafer having a different nominal CD value from 45nm to 300nm. The
data acquired from this experiment includes 1 SEM image of the grating per field, 1 YieldStar
measurement per field, and the corresponding diffraction intensity signatures. Due to the
objective of this work, this includes erroneous, under and over-exposed samples. We use 7
FE matrices for analysis, all printed in Appendix B (Figures B.1-B.7). The depth of focus
is varied horizontally and the exposure is varied vertically. The numbers under each image
represent the local CD-SEM measurement.

We first construct Bossung curves (Figures B.8-B.14) from the YieldStar measurements
for each FEM wafer and determine the 10% process window. Each sample is labeled as in-
spec or out-of-spec according to the specification limits given in the last column of Table 3.1.
Moreover, SEM images are visually inspected for erroneous gratings (this includes necking,
bridging, unexposure, etc. of the gratings) and the label is adjusted accordingly if YieldStar
missed to flag such a sample. For example, in Figure B.1, faulty gratings can be seen at
positions (4,0), (3,2), and (3,3), where the indices correspond to (row,col). This data is set
aside for the final testing stage.

For the training and validation phase, classifiers are constructed and selected by using
1500 diffraction signatures simulated around the process window for each FE matrix. All
3 parameters, including the mid-CD, are varied to generate this data. Finally, this process
is repeated for multi-categorical SVM classifiers (Section A.2.1), to see whether we can also
differentiate between below LSL and above USL samples in addition to classifying them
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Table 3.1: Nominal grating dimensions for focus exposure matrix.

Name Pitch (nm) CD (nm) Num. Samples LSL/USL (nm)

P90CD45 90 45 80 36/44

P100CD45 100 45 80 22.5/27.5

P100CD50 100 50 80 36/44

P600CD100 600 100 83 63/77

P600CD150 600 150 83 108/132

P600CD200 600 200 83 162/198

P600CD300 600 300 83 256.5/313.5

as out-of-spec. Although for maximum accuracy, training of the classifiers can be done
on exposed wafers, we would optimally like to save resources and demonstrate that the
inspection tool can be constructed without major alterations to current YieldStar or other
scatterometry hardware.

3.3 Results

In this section, we demonstrate the inspection tool on physical gratings and analyze the
performance with respect to different kernel functions. Linear, ellipsoid, and radial basis
functions are used as the kernels.

Figure 3.2 shows the misclassification (black square), false alarm (blue diamond), and
missed alarm (red triangle) rates for the FEM gratings. A more detailed breakdown can be
found in Tables 3.3-3.5 for each kind of classifier. For all gratings, the RBF SVM shows the
most promising results, with low false alarm and missed alarm rates. The classification rates
range from 87% to over 98%, as shown in Table 3.5. In addition, the RBF SVM classifier
flagged 42 out of the 43 erroneous grating samples. We also implement the multi-categorical
classification given in (A.34). Results showed that all samples correctly estimated as out-of-
spec by the RBF SVM classifier were also correctly classified as either above the upper limit
or below lower limit.

Table 3.2 shows the SEM images for best focus and exposure (first column) and erroneous
samples we found interesting for each grating (second and third columns). The third column
shows 4 images that YieldStar missed to flag. As expected, gratings P90CD45, P100CD45,
and P100CD50 have a significantly higher number of erroneous fields than those with 600nm
pitches. Disregarding under and over-exposed samples, there were 43 faulty gratings. For 39
samples, YieldStar “measured” the mid-CD of these gratings as a very small number (e.g.
5nm instead of 30nm) and correctly flagged the fault. It missed only 4 samples, shown in
the third column of Table 3.2, and instead gave a mid-CD measurement that was in-spec.
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One key thing is the flexibility of the RBF kernel to capture various non-linear boundaries,
hence the high classification performance across the varying gratings. Another interesting
behavior is the extreme 100% false alarm and 0% missed alarm points, usually occurring in
linear and ellipsoid classifiers. If a classifier is not flexible enough to handle the separation,
we can see that it weighs the label with more training data to minimize the objective function
in (A.13). As mentioned in Chapter 1 we would ideally like to construct a classifier that
allows flexible tuning of these rates for maximum operating profit. In Chapter 4 we develop
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Figure 3.2: Test set misclassification, false alarm, and missed alarm rates for focus-exposure
matrix gratings. The classifiers are trained only through RCWA simulations. Each plot
graphs the total misclassification (black), false alarm (blue), and missed alarm (red) rates.
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Table 3.2: Sample images from FEM gratings. The first column shows the best focus and
exposure for each grating. The second column shows faulty gratings that YieldStar flagged
out-of-spec by outputting a small numeric measurement. The third column shows faulty
gratings that YieldStar missed to flag. For context, there were 43 erroneous gratings judged
from SEM images; YieldStar correctly flagged 39 samples.

Best
Faulty Gratings

Detected by Scatterometry Not Detected by Scatterometry

90/45

100/45

100/50

600/100

600/150

600/200

600/300

a method of quickly selecting such a classifier through cost-sensitive SVMs.



CHAPTER 3. REAL-TIME INSPECTION SYSTEM USING SCATTEROMETRY
PUPIL DATA 41

Table 3.3: FEM classification results for a linear SVM.

Pitch/CD (nm)
Actual Estimated Linear SVM Performance (%)

in-spec out-spec in-spec out-spec correct false missed

90/45 27 53 0 53 66.25 100 0
100/45 5 75 0 75 93.75 100 0
100/50 23 57 0 57 71.25 100 0
600/100 28 55 11 47 69.88 60.71 14.55
600/150 43 40 0 40 48.19 100 0
600/200 57 26 26 26 62.65 54.39 0
600/300 67 16 0 16 19.28 100 0

Table 3.4: FEM classification razesults for an ellipsoid SVM.

Pitch/CD (nm)
Actual Estimated Ellipsoid SVM Performance (%)

in-spec out-spec in-spec out-spec correct false missed

90/45 27 53 0 53 66.25 100 0
100/45 5 75 0 75 93.75 100 0
100/50 23 57 0 57 71.25 100 0
600/100 28 55 0 55 66.27 100 0
600/150 43 40 25 37 74.70 41.86 7.50
600/200 57 26 30 26 67.47 47.37 0
600/300 67 16 62 16 93.98 7.46 0

Table 3.5: FEM classification results for a radial basis kernel SVM.

Pitch/CD (nm)
Actual Estimated RBF SVM Performance (%)

in-spec out-spec in-spec out-spec correct false missed

90/45 27 53 24 53 96.25 11.11 0
100/45 5 75 5 7 98.75 0 1.33
100/50 23 57 18 55 91.25 21.74 3.51
600/100 28 55 22 51 87.95 21.42 7.27
600/150 43 40 41 37 93.97 4.65 7.50
600/200 57 27 56 22 92.85 1.75 18.52
600/300 67 16 66 16 98.79 1.49 0
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3.4 Summary

In this chapter, we presented a pre-inspection tool that was capable of real-time CD
monitoring through construction of a classification model. We first used simulated RCWA
diffraction signals for parameter ranges of interest to train a SVM classifier. This was done by
tagging all signals with MCD’s outside the specification limits as out-of-spec, and all other
samples as in-spec. The gratings were assumed to be infinite trapezoids. We conducted
classifications on gratings exposed from a focus-exposure matrix at IMEC.

The RBF kernel SVM had the highest classification rates, ranging from 87-98%, and
flagged all but one erroneous grating. We also successfully constructed multi-categorical
classifiers to differentiate samples above the upper specification limit (USL) and below the
lower specification limit (LSL). It should be noted that our tool was applied to one type of
scatterometry implementation, the YieldStar, and the performance of the classifier on differ-
ent scatterometers is to be further explored and may result in different statistics then those
reported here. However, the overall design framework of the tool provides an easy extension
over to other scatterometry methods, and each will have its limitations and advantages. For
example, although the off-axis beams in angle-resolved scatterometry cause increased sen-
sitivity to the profile, it is hard to differentiate between changes in profile parameters and
changes in underlying thin-film thickness due to the available wavelengths. These thin-film
effects may decrease in spectroscopic reflectometry (SR) by using a shorter wavelength.

The inspection tool presented in this paper cannot be utilized as a standalone metrology
system. However, it provides a few additional functions that scatterometry does not have.
One, it preserves more information about the grating by using all feature dimensions instead
of reducing the intensities to one value through a cost function. This gives the classifier the
flexibility and sensitivity to flag erroneous gratings missed by scatterometry, since it does not
have to bias the grating into a fixed shape. Second, the computation time of the classifier for
an incoming signal is one vector dot product. This allows the tool to be used real-time and
focus the computation power of scatterometry on samples that are deemed more interesting.
Both of these advantages could be particularly helpful in reducing measurement setup time,
as it would allow fast recipe setup for OCD measurements.

The final significant but non-obvious benefit is a further increase in processing flexibility
due to the use of classification techniques. For example, Tables 3.3-3.5 show resulting error
rates for equal false alarm and missed alarm costs. That is, the two types of errors contribute
equally in constructing the classifier. However, additional statistical techniques applied to
the classifier can allow tuning of the two error rates depending on individual situations, an
aspect that is not available in cost minimization algorithms. For example, missed alarms
cause significantly more loss in the fab then do false alarms, and the flag rate can be adjusted
accordingly. Such a method will be discussed in Chapter 4.

As device structures get more complicated and the dimensions even smaller, a holistic
approach to metrology is the only way to meet tight measurement requirements. [22, 21, 33]
In a more general sense, this means that all evidence from current tools or any combination
of tools should be utilized and combined to provide an optimal manufacturing environment.
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Although we utilized only OCD signals in this paper, signals from other sources, such as
processing conditions from previous steps, can easily be included in the analysis by increasing
the dimensionality of the data. In essence, we have demonstrated a framework that provides
real-time monitoring capabilities and incorporates the idea of holistic metrology by providing
a flexible and easy framework in which signals from other sources can easily be incorporated
into the computational inference process.
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Chapter 4

Fast Model Selection for Grating
Classification

4.1 Introduction

In Chapter 3, SVM classifiers were used to quickly determine a fault status of a grating
without iterative optimization steps. As seen in Chapter 2, operational costs depend on the
cost of false and missed alarms, and we would like to have the flexibility of choosing the
classifier that results in an optimal combination. Note that we are discussing the error rates
on unseen data, such as the validation set or testing set, and not the training data. As seen
in Figure 4.1, a tradeoff between the two types of errors occur for every classification model.
The tradeoff curve is a straight line for random guessing (e.g. coin flip), and gets steeper for
high-performing classifiers. Notice that for all performance levels, all curves are bounded by
the extreme cases of 100% false alarms or 100% missed alarms. As seen in Tables 3.3-3.5,
conventional SVM models result in only one point on the curve. However, depending on
relative costs for these two errors, one may benefit from tuning the classifier such that it
gives a different error combination. For example, in Figure 4.1, we would like to shift the
current 50-50 error combination to one with a higher false alarm rate, if the missed alarm
costs are significantly higher.

As we will see, this can be done by using cost-sensitive 2ν-SVMs (Section A.2), with an
additional hyperparameter γ that weights one category over the other for different treatments
between the two error rates. Since the tradeoff curve for a classifier is unknown, the ques-
tion becomes how to choose the optimal hyperparameter set in (A.27) or (A.28), such that
it minimizes some asymmetric generalization cost in the form of (A.32). For cost-sensitive
problems, choosing the right value of γ becomes especially important. However, a signifi-
cant obstacle of this approach is the substantial amount of computational power needed for
the cross-validation process as the number of hyperparameters is increased. Although our
motivation behind this chapter is cost-sensitive classification, our problem is just one exam-
ple of how to quickly choose an optimal hyperparameter set for any classification problem
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Figure 4.1: Tradeoff between false and missed alarm rates for classification models. As
seen in this figure, the curve is a straight line for random guessing, and gets steeper for
high-performing classifiers.

that introduces additional hyperparameters to incorporate more flexibility and performance
improvement in specific conditions.

Conventional application of the soft margin C-SVM or ν-SVM with a radial basis kernel
function (RBF) involves the selection of 2 hyperparameters and can be solved by afore-
mentioned exhaustive search methods (Section A.0.4). [34] Nonetheless, alternate forms of
the SVM introduce additional parameters that result in an improved performance of the
resulting classifier. Two examples are the aforementioned cost-sensitive 2ν-SVM and the
ARD-Gaussian kernel SVM. In the ARD-Gaussian kernel SVM, each feature dimension is
assigned a separate kernel parameter to compensate for differences in overfitting and un-
derfitting between different feature spaces. [35] In addition, several works [36, 37, 38], have
proposed to use the ARD-Gaussian kernel for feature selection.

Since the exhaustive approach quickly becomes intractable for SVMs with 3 or more
parameters, the design of scalable hyperparameter selection is not only favorable but also
necessary. In the context of C-SVM, Chapelle et al. (2002) [39] proposed to implicitly
calculate gradients of various error bounds and loss functions and proceeded to use this in a
gradient-descent algorithm. Based on this method, Keerthi et al. [40] proposed an improved
algorithm that does not require large matrix inversion. This method enables fast selection
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of hyperparameters and is widely applicable to various situations.
In this chapter, we tackle the problem of constructing a classifier which enables flexible

tuning of error rates as needed. In a broader perspective, we deal with shortening the cross-
validation process for any type of SVM with additional hyperparameters for increased degree
of freedom. As an example, we consider the problem of optimal hyperparameter selection
for the cost-sensitive 2ν-SVM with the ARD-Gaussian kernel. We propose a new approach
by exploiting the inherent properties of the dual SVM problem, and adopting a parametric
programming framework. [41] We show that the challenging problem of finding the explicit
form of the dual SVM solution as a function of its hyperparameters can be solved under
mild conditions. Our theorem indicates that in the feasible set, the solution is a piecewise
differentiable function of the hyperparameters, with an explicit form for a given critical
region. This allows us to write the generalization cost as a function of the hyperparameters,
so that explicit computation of the gradient is made possible with smooth approximations.
Finally, a gradient descent algorithm is constructed for optimal hyperparameter selection.
Our solution has nice properties in terms of continuity and piecewise differentiability. While
we developed our method for the 2ν-SVM with the ARD Gaussian Kernel, it can be readily
adopted for ν − SVM ’s and C − SVM ’s with other Mercer kernels.

This chapter is organized as follows. Section 4.2 reviews the 2ν-SVM with the ARD-
Gaussian kernel and introduces notation used throughout the chapter. Section 4.3 gives the
derivation for the explicit form of the dual solution and the classifier as a function of the
hyperparameters in a parametric optimization framework. Section 4.4 defines the empirical
generalization cost and calculates its gradient with smooth approximations. Based on these
results, Section 4.5 proposes a gradient descent algorithm for optimal parameter selection.
Finally, Section 4.6 demonstrates the performance of our method on two datasets, and show
that it is significantly faster than exhaustive search without compensating accuracy. The
work developed in this chapter was co-authored by Yuxun Zhou.
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4.2 Background on 2ν-SVM with ARD-Gaussian

Kernel

The dual problem for 2ν-SVM with an ARD-Gaussian kernel was

max
α,β,δ

− 1

2

n∑
i=1

n∑
j=1

yiyjαiαjκβ(xTi xj)

subject to 0 ≤ αi ≤
γ

n
for i ∈ I+

0 ≤ αi ≤
1− γ
n

for i ∈ I−
n∑
i=1

αiyi = 0

n∑
i=1

αi ≥ ν.

(4.1)

with

κβ(xi,xj) = exp

{
−

p∑
k=1

βk
(
xki − xkj

)2

}
(4.2)

where we denote βk aks the kernel parameter for kth feature, β = [β1, . . . , βp]
T ∈ (0,∞)p,

and xki and xkj denote the kth-dimension of samples i and j. Note that the kernel function
is written as κβ(·) to emphasize the dependence on hyperparameters β. Since the ARD-
Gaussian kernel is also a Mercer kernel, its positive definite (PD) property guarantees the
strict convexity of (4.1). Therefore, the solution α∗ is unique for a fixed hyperparameter
configuration. With fixed training data, this implies that α∗ can be determined as a function
of the hyperparameters.

Throughout this chapter, we denote θ = [γ, ν]T ∈ (0, 1) × (0, 1/2], and φ = [θT ,βT ]T .
Note that according to (A.31), only a subset of the parameter space (0, 1)×(0, 1/2]×(0,∞)p

can yield feasible prime or dual problems. With slight abuse of terminology, we call this set
the “feasible set” of hyperparameters. Moreover, after solving (4.1), we define the following
set of partitions:

Definition 1. (Partition of Training Data) After solving the dual problem of 2ν-SVM,
we obtain a partition of training samples as {S0,Sb,Sub} based on the value of corresponding
α∗. We define the index set of non-support vectors as S0 , {i | α∗i = 0}, bounded support
vectors as Sb , S+

b ∪ S
−
b , {i | i ∈ T+, α

∗
i = γ

n
} ∪ {i | i ∈ T−, α∗i = 1−γ

n
}} and unbounded

support vectors as Sub , S+
ub ∪ S

−
ub , {i | i ∈ T+, 0 < α∗i <

γ
n
} ∪ {i | i ∈ T−, 0 < α∗i <

1−γ
n
}.
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4.3 Parametric Optimization Method

In the terminology of operational research and optimization, a problem that depends on
multiple parameters is referred to as a parametric program (PP). The goal is to analyze
the dependence of the optimal solution α∗ on the hyperparameter vector φ. However, a
non-linear PP is not a trivial problem, and existing theories are usually restricted to special
cases or require additional assumptions. In this section, we derive the explicit form of α∗ as
a function of φ, by exploring the partition of support vectors. We start with reformulating
(4.1) into a PP framework.

4.3.1 Dual Problem Reformulation

Since the order of training samples does not matter, we re-write (4.1) with a systematic
form by rearranging training data as [T+ T−]T . Thus the corresponding label vector y is
simply [+1, . . . ,+1,−1, . . . ,−1]T with dimension n+ + n− = n. We define the following
matrices,

Qβ =


y1y1κβ(x1,x1) y1y2κβ(x1,x2) · · · y1ynκβ(x1,xn)
y2y1κβ(x2,x1) y2y2κβ(x2,x2) · · · y2ynκβ(x2,xn)

...
...

. . .
...

yny1κβ(xn,x1) yny2κβ(xn,x2) · · · ynynκβ(xn,xn)



Cα =



−1 · · · 0
...

...
...

...
0 · · · −1
1 · · · 0
...

...
...

...
0 · · · 1
−1 · · · −1


Cθ =



0 0
...

...
...

...
0 0

1/n 0
...

...
−1/n 0

...
...

0 −1


C0 =



0
...
...
0
0
...
1
n
...
0


and (4.1) becomes

min
α

1

2
αTQβα

subject to Cαα ≤ Cθθ +C0

αTy = 0.

(4.3)

where the inequality constraints are encapsulated into a matrix form. Notice that Cα has
dimensions (2n + 1) × n, with each block having n, n+, n− and 1 rows. Cθ has dimensions
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(2n+ 1)× 2, and C0 has dimensions (2n+ 1)× 1, with blocks defined similarly.
Note that (4.3) is in fact a quadratic PP with θ and β as hyperparameters. The study and

application of quadratic PP’s have been previously addressed by operational research and
control communities [41, 42]. However, most results do not allow variations of the matrixQβ.
More importantly, they rely on the Linear Independence Constraint Qualification (LICQ)
condition [43], which in our case cannot be satisfied due to the existence of the equality
constraint, αTy = 0. In fact, problem (4.3) corresponds to a degenerate case, and usually
requires special treatment. In subsequent parts, we show that the explicit form of α∗(φ) can
be obtained under mild conditions. For convenience, we largely borrow notation from [42]
and introduce some definitions before we proceed.

Definition 2. (Active Constraint) Assume that a solution of (4.3) has been obtained as
α∗(φ). Then the ith row of the constraint is said to be active at φ, if Cα

i α
∗(φ) = Cθ

iθ+C0
i ,

and inactive if Cα
i α
∗(φ) < Cθ

iθ + C0
i . The index set of all active inequality constraints i

is denoted by A, and all inactive inequality constraints by AC. We denote Cα
A as the Cα

matrix with only rows that correspond to the active constraints, and Cα
AC as the matrix with

only rows that correspond to inactive constraints.

Definition 3. (Non-degenerate SVM) We say that a solution of a soft-margin SVM is
Non-degenerate if the set of unbounded support vectors Sub contains at least one i ∈ T+ and
at least one i′ ∈ T−, i.e. both S+

ub and S−ub are non-empty.

4.3.2 Lemmas for Matrix Invertibility

In this section, we discuss the invertibility of a matrix that is crucial in solving (4.3).
With some constraints active, we define a matrix

P β , C
α
A

(
Q−1
β yy

TQ−1
β

yTM−1
β y

−Q−1
β

)
CαT
A . (4.4)

Note that if all (xi, yi) ∈ T are unique, Qβ is positive definite (PD), and thus invertible.
However, P β is symmetric, but in general not always invertible. A simple example is the
case of training data with samples from only one class. The invertibility issue is one of the
major difficulties in solving the parametric optimization problem. With a series of lemmas
given in Appendix C, we prove the following result. For the proof, please refer to the end of
the thesis.

Theorem 1. If the solution α∗ of (4.3) is non-degenerate, the matrix Pβ is symmetric
negative definite, hence invertible.

Theorem 1 guarantees the uniqueness of the Lagrangian multipliers, as we will see later in
this section. Another issue is the non-degeneracy requirement in the theorem. Since except
for deliberately designed cases, meaningful classifiers have at least one unbounded support
vector in both classes, the vast majority of classifiers will satisfy non-degeneracy.
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4.3.3 Explicit Form of α∗(φ)

With Theorem 1, we are now able to derive a piecewise explicit form for the optimal
solution α∗ of (4.3) as a function of the hyperparameters. We present one of the main
results of this chapter.

Theorem 2. Assume that the solution of a 2ν-SVM is non-degenerate and induces a set of
active and inactive constraints A and AC, respectively. Then in the critical region defined by{

P−1
β (Cθ

Aθ +C0
A) ≥ 0

Cθ
ACθ +C0

AC −Cα
ACTβP

−1
β (Cθ

Aθ +C0
A) ≥ 0

(4.5)

the optimal solution α∗ of (4.3) admits a closed form

α∗(φ) = T βP
−1
β (Cθ

Aθ +C0
A) (4.6)

where

T β ,

(
Q−1
β yy

TQ−1
β

yTQ−1
β y

−Q−1
β

)
CαT
A . (4.7)

Proof. Problem (4.3) is equivalent to

max
λ,µ

min
α

L(α, λ,µ) =
1

2
αTQβα

+ λ(αTy) + (Cαα−Cθθ −C0)Tµ

subject to µ ≥ 0.

(4.8)

where λ,µ are the Lagrangian multipliers for the equality and inequality constraints, respec-
tively.

The KKT conditions specify for optimal (α∗, λ∗,µ∗),

∇αL = Qβα
∗ + λ∗y +CαTµ∗ = 0 (4.9a)

yTα∗ = 0 (4.9b)

µ∗i ≥ 0 for i = 1, . . . , n (4.9c)

µ∗i (C
αα∗ −Cθθ −C0)i = 0 for i = 1, . . . , n (4.9d)

(Cαα∗ −Cθθ −C0)i ≤ 0 for i = 1, . . . , n. (4.9e)

From (4.9a),
α∗ = −Q−1

β (λ∗y +CαTµ∗). (4.10)
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where Qβ is invertible for any β ∈ (0,∞)p due to its positive definiteness. Now plugging in
the above expression for α∗ into (4.9b),

yTα∗ = −yTQ−1
β (λ∗y +CαTµ∗) = 0

⇒− λ∗yTQ−1
β y − y

TQ−1
β C

αTµ∗ = 0

⇒λ∗ = −
yTQ−1

β C
αTµ∗

yTQ−1
β y

.

(4.11)

There are two cases for the inequality constraints.{
µ∗i > 0, Cα

i α
∗ −Cθ

iθ −C0
i = 0 for i ∈ A

µ∗i = 0, Cα
i α
∗ −Cθ

i θ −C0
i < 0 for i ∈ AC

(4.12)

We define vectors µA and µAC , where each one is composed of elements from µ with i ∈ A
and i ∈ AC , respectively. Since CαTµ∗ = CαT

A µ
∗
A, the formula for α∗, λ∗ in equations (4.10)

and (4.11) reduces to

α∗ = −Q−1
β

(
λ∗y +CαT

A µ
∗
A
)

(4.13)

λ∗ = −
yTQ−1

β C
αT
A µ

∗
A

yTQ−1
β y

. (4.14)

Substituting (4.14) into (4.13), we get

α∗ =

(
Q−1
β yy

TQ−1
β

yTQ−1
β y

−Q−1
β

)
CαT
A µ

∗
A

= T βµ
∗
A.

(4.15)

where we have defined

T β ,

(
Q−1
β yy

TQ−1
β

yTQ−1
β y

−Q−1
β

)
CαT
A .

Another equality we get from the active constraints is

Cα
Aα
∗ = Cθ

Aθ +C0
A. (4.16)

Combining (4.15) and (4.16), we get an expression for µ∗A since

Cα
A

(
Q−1
β yy

TQ−1
β

yTQ−1
β y

−Q−1
β

)
CαT
A µ

∗
A

= Cθ
Aθ +C0

A

⇒µ∗A = P−1
β (Cθ

Aθ +C0
A)

(4.17)
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with P β defined as before, whose invertibility has already been proved. Finally, we get

α∗(φ) = T βP
−1
β (Cθ

Aθ +C0
A) (4.18)

as an explicit function of φ.
We now derive the boundaries of the critical region in which (4.18) holds. For active

constraints, (4.9c) and (4.9e) require that

µ∗A ≥ 0 (4.19)

Cα
ACα∗ ≤ Cθ

AC +C0
AC . (4.20)

These two inequalities yield

P−1
β (Cθ

Aθ +C0
A) ≥ 0

Cα
ACT βP

−1
β (Cθ

Aθ +C0
A) ≤ Cθ

ACθ +C0
AC .

(4.21)

Hence in the region defined above, the optimum α∗ can be computed explicitly as a function
defined by (4.18).

Note that in each critical region, the partition {S0,Sb,Sub} does not change, because
they are uniquely determined by the set of active and inactive constraints, A and AC . Since
the dual of the classic soft margin ν-SVM is simply the formulation (4.3) with γ = 1/2, the
parametric solution for the ν-SVM is just a special case. In addition, equation (4.10) only
relies on the PD property and is readily extended to other Mercer kernels used in SVMs.
Therefore, the solution given in Theorem 2 is quite general for soft-margin SVMs.

In short, Theorem 2 concludes that the optimal solution α∗(φ) is a piecewise defined
function, and for a given critical region, the SVM has to be solved only once since other
α∗ for any φ inside the region can be constructed through (4.18). From the explicit form,
we see that α∗(φ) is differentiable in each critical region. The following subsection provides
some interesting properties of the critical regions and its boundaries.

4.3.4 Some Properties of α∗(φ)

Proposition 1. Assuming a non-degenerate SVM, α∗(φ) is continuous over the feasible set.
The number of critical regions Nr is finite and upper bounded by |I−| · |I+| ·2|I|−2. The set of
all critical regions R1, R2, . . . , RNr defined by Theorem 2 constitute a partition of the feasible
set, i.e. any feasible φ belongs to one and only on region.

For proof, refer to Appendix C. At first glance, the upper bound of Nr is quite large
since it is exponential to the sample size. However, in practice, this number is limited due
to conflicts and inclusion of constraints. We will also show in Section 4.6.1 that the number
and area of the critical regions vary according to the choice of parameters. The proposition
implies that since there are only finite number of boundaries, their overall measure is zero
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when an appropriate measure is defined for regions. Consequently, with the differentiability
in each critical region, we conclude that α∗(φ) is differentiable almost everywhere. Moreover,
if we consider a fixed kernel parameter and look at the 2D space of γ and ν, we have the
following proposition.

Proposition 2. In the 2D plane of θ with fixed β, α∗β(θ) is a piecewise affine function of
θ on a set of polyhedrons, and the optimal objective function is piecewise quadratic.

Proof is obvious by observing (4.6) with constant β. Illustrations of this proposition will
be also given in Section 4.6.1.

4.3.5 Explicit Form of the Classifier

Since the explicit form of α∗(φ) is known, the classifier can also be constructed through
(A.12). For simplicity of notation, we define

dj = [y1κβ(x1,xj), . . . , ynκβ(xn,xj)]
T (4.22)

for any j ∈ Z. In addition, if we denote the vector dU = 1
2|U|
∑

u∈U du, the calculation of the

intercept b∗ in (A.12) can be reformulated as

b∗ = dTUα
∗ =

1

2|U|
∑
u∈U

dTuα
∗. (4.23)

Note that dj also depends on β. By this notation, we define the hyperplane for a validation
feature vector h(xj)

h(xj) =
n∑
i=1

α∗i yiκβ(xi,xj) + b∗ = (dTj − dTU)α∗(φ) (4.24)

= (dTj − dTU)T βP
−1
β (Cθ

Aθ +C0
A), (4.25)

and the classifier is merely the sign of h(xj). Now we have the explicit form of the classifier
as a function of the hyperparameters.

4.4 Generalization Cost Estimation and Gradient

Calculation

The parametric solution in Theorem 2 allows us to construct the hyperplane and the
classifier as a piecewise defined function of hyperparameters. In this section, we extend
these results to the empirical generalization cost. Finally we calculate its gradients with a
smooth approximation for the purpose of hyperparameter selection.
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4.4.1 Estimation of Asymmetric Generalization Cost

As seen in Section A.2, an example of asymmetric empirical generalization cost on the
validation set was given by

Ψ̂T ,Z(φ) =
c1

2m−

∑
j∈J−

[1− yj sign(hj)]
m−
m

+
c2

2m+

∑
j∈J+

[1− yj sign(hj)]
m+

m

(4.26)

where 1
2m−

∑
j∈Z−

[1− yj sign(hj)] and 1
2m+

∑
j∈Z+

[1− yj sign(hj)] are unbiased estimates of

false and missed alarms, c1 and c2 are their corresponding costs, and m−
m

and m+

m
are the

estimated probability of occurrences for the two classes. Although other forms of generaliza-
tion cost can be considered, we use (A.32) for simplicity and demonstration. Our problem
of hyperparameter selection becomes

φ∗ = argmin
φ

Ψ̂T ,Z(φ). (4.27)

Now by plugging in the classifier (4.25), an explicit form of Ψ̂T ,Z(φ) can be obtained.
Nonetheless, the discontinuity of the sign function will make the minimization a combina-
torial problem. A natural solution is to consider approximating the sign function with a
sigmoid function. In particular, we consider the tanh(τx) function with parameter τ chosen
to be large enough for good approximation1. We denote the smoothed empirical generaliza-
tion cost as Ψ̃T ,Z(φ) where

Ψ̃T ,Z(φ) =
c1

2m+

∑
j∈J−

[1− yjtanh(τhj)]

+
c2

2m−

∑
j∈J+

[1− yjtanh(τhj)].
(4.28)

From the differentiability of hj and the tanh(τx) function, Ψ̃T ,Z(φ) is also differentiable in
each critical region, and by Proposition 1 it is almost everywhere differentiable.

4.4.2 Gradient Calculation

In this section, we calculate the gradient of Ψ̃T ,Z(φ) at specific φ, assuming that we have
solved the dual problem once and have obtained sets A and AC . The partial derivative of

1The choice of τ is actually a trade-off. A large value of τ gives a good approximation, but will increase
the sensitivity of the gradient and slow down the convergence of the gradient based algorithm.
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Ψ̃T ,Z(φ) with respect to one dimension φi of φ follows directly from the chain rule.

∂Ψ̃T ,Z(φ)

∂φi
=

c1

2m

∑
j∈J−

−yj(τ − τtan2(τhj))
∂hj
∂φi

+
c2

2m

∑
j∈J+

−yj(τ − τtan2(τhj))
∂hj
∂φi

(4.29)

where for the first two dimensions θ = [γ, ν]T of φ,

∂hj
∂θ

= (Cθ
A)

T
P−1
β T β

T (dj − dU). (4.30)

The partial derivative of the hyperplane with respect to βk is more involved.

∂hj
∂βk

=
∂(dj − dU)T

∂βk
T βP

−1
β (Cθ

Aθ +C0
A)

+ (dj − dU)T
∂T β

∂βk
P−1
β (Cθ

Aθ +C0
A)

+ (dj − dU)TT β

∂P−1
β

∂βk
(Cθ
Aθ +C0

A).

(4.31)

The partial derivative of
∂dj
∂βk

is just

−
[
y1κ(x1,xj)(x

k
1 − xkj )2 · · · ynκ(xn,xj)(x

k
n − xkq)2

]T
. (4.32)

Using the fact that ∂A−1

∂βk
= −A−1 ∂A

∂βk
A−1, the partial derivatives of T β with respect to βk is

∂T β

∂βk
=

1

yTQ−1
β y

∂(Q−1
β yy

TQ−1
β C

αT
A )

∂βk

−
Q−1
β yy

TQ−1
β C

αT
A

(yTQ−1
β y)2

∂(yTQ−1
β y)

∂βk
−
∂Q−1

β C
αT
A

∂βk

(4.33)

with
∂(Q−1

β yy
TQ−1

β )

∂βk
= −Q−1

β

∂Qβ

∂βk
Q−1
β yy

TQ−1
β

−Q−1
β yy

TQ−1
β

∂Qβ

∂βk
Q−1
β

(4.34)

and
∂yTQ−1

β y

∂βk
= −yTQ−1

β

∂Qβ

∂βk
Q−1
β y. (4.35)
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Finally,
∂Qβ

∂βk
is given in terms of the Hadamard Product

∂Qβ

∂βk
= −Qβ ◦Πd (4.36)

where (Πd)ij = (xdi − xdj )2 · 1(i 6= j) or in matrix form

Πd =


0 (xd1 − xd2)2 · · · (xd1 − xdn)2

(xd2 − xd1)2 0 · · · (xd2 − xdn)2

...
...

(xdn − xd1)2 (xdn − xd2)2 · · · 0


Similarly, we also have

∂P−1
β

∂βk
= −P−1

β

∂P β

∂βk
P−1
β = −P−1

β (Cα
A)T

∂T β

∂βk
P−1
β . (4.37)

By plugging in everything to (4.29), the gradient of Ψ̃T ,Z(φ) is computed as a vector valued
function of hyperparameters. The following property for its smoothness in each critical
region is useful for the convergence of the gradient based algorithm.

Proposition 3. The gradient ∇Ψ̃T ,Z(φ) is Lipschitz continuous in each critical region.

Proof is given in Appendix C.

4.5 Gradient-based Hyperparameter Selection

Algorithm

In this section, we propose the gradient descent algorithm for optimal parameter selection
using gradients calculated in Section 4.4. We also discuss the choice of step size and some
other issues. As a batch stochastic gradient descent method, we update φ at each iteration
as

φt+1 = φt − ηt∇φΨ̃T ,Z(φt) (4.38)

where ηt is the step size at iteration t, and ∇φΨ̃T ,Z(φt) can be obtained by (4.29). Again,
Ψ̃T ,Z(φt) is calculated by first constructing the critical region and classifier at φt using T ,
and then applying it to Z.

The overall gradient descent algorithm is summarized in Algorithm 1. In each iteration,
the function randSample() randomly assigns the data to either T or Z with a predefined
ratio. The function svm2ν() takes T and φt, and solves (4.3)2. The outputs of this function

2We used CVX package for quadratic optimization.
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Algorithm 1: Gradient Descend Algorithm for Parameter Selection

t← 0, r ∈ [0.2, 0.8]
φ0 ← ν0, s0,β0

while ||∇φΨ̃T ,Z(φt)|| ≥ ε do
ηt ← initStep(t)
T ,Z ← randSample(D)
α∗ ← svm2ν(T ,φt)
{∇φΨ̃T ,Z(φt),Rt} ← getGrad(Z,α∗)
φ̃
t+1

= φt − ηt∇φΨ̃T ,Z(φt)

while Ψ̃(φ̃
t+1

)− Ψ̃(φt) > ε′ do
ηt = rηt

end while
φt+1 = φt − ηt∇φtΨ̃T ,Z(φt)
t← t+ 1;

end while
return φt;

comprises of the solution α∗. Using these outputs, the getGrad() function first constructs
the explicit classifier and critical region containing φt, and then calculates ∇φΨ̃T ,Z(φt).

The choice of step size ηt is very important for any gradient based method. Following a
similar argument as in [44]3 , it can be shown that if we choose a step size with appropriate
decreasing rate, such as

∑
t (ηt)

2 ≤ ∞ and
∑

t η
t = ∞, the stochastic gradient method is

guaranteed to converge at least to a local minima. We also incorporate backtrack line search
for better convergence. In each iteration, the function initStep(t) provides a decaying initial
step size. A line search is conducted along the gradient to find better update, i.e. if an
improvement condition is not satisfied, we further decrease ηt with ratio r ∈ [0.2, 0.8]. [45]

If φ̃
t+1

is in the current critical region, Theorem 2 can be exploited to compute Ψ̃(φ̃
t+1

).
Otherwise, we invoke svm2nu() again and proceed.

By resampling at each iteration, we avoid local minima arisen from fixed training and
validation partition. Also note that the computation of the explicit solution involves the
inversion of matrix P β. The size of this matrix equals to the number of training samples
and seems to be computationally expensive. However, by Theorem 1, P β is symmetric
negative definite and many matrix decomposition techniques can be used for fast inversion.

4.6 Experiments

Two datasets were used to test the validity of our method. The first dataset, S500,
has 1500 samples and 500 features, consisting of reflected intensities from semiconductor

3Constructing Lyapunov process and using Prop. 3
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gratings. The second dataset, W11, has 1359 samples and 11 features, consisting of wine
tasting quality with chemical characteristics of the wine as features4. In section 4.6.1, we
visualize the region construction and explicit solution of Ψ̃(φ) based on Theorem 2. For
visualization purposes, we use a RBF kernel and fix the value of β to a single value and
plot the (γ, ν) space. In Section 4.6.2, we provide some examples of the gradient descent
algorithm discussed in Section 4.5. In addition to showing the convergence results, we list
the optimal choice of hyperparameters and the corresponding cost for various asymmetric
cases and also demonstrate differences in performance for the RBF and ARD kernel.

4.6.1 Visualization of Critical Regions and Explicit Solutions

For visualization purposes, we use a RBF kernel with a single kernel parameter. Fig-
ures 4.2 and 4.3 show the critical regions and explicit solutions Ψ̃(φ) for W11 and S500, with
kernel parameter β = 1 and β = 10, respectively. All results are based on a balanced cost,
i.e. c1 = c2 = 1. For comparison purposes, we also add the exhaustive grid calculation5 of
the estimated generalization cost in Figures 4.2a and 4.3a.

Figures 4.2b and 4.3b illustrate the polyhedral critical regions derived in Theorem 2. We
observe that the critical regions exhibit lots of interesting patterns depending on the values
of γ and ν. For instance, the area of the critical region becomes larger as we decrease the
value of ν, and increase the value of β. In addition, Figures 4.2c and 4.3c show the calculated
Ψ̃(φ) for a fixed training and validation set using the fact that α∗(θ) is an affine function of
θ in each critical region. We observe that the explicit solution for the generalization error
matches very well to that of the exhaustive one.

We now discuss the effect of the parameters on region size. For a given critical region,
the partition {S0,Sb,Sub} is invariant according to Theorem 2. Because α∗i , i ∈ Sb ∪ S0

is fixed (α∗i is 0 or γ
n

or 1−γ
n

), only the numerical values of unbounded support vectors’ α∗i
change in each critical region. Intuitively, this means that for a region with a large number
of unbounded support vectors |Sub|, we have more degrees of freedom and hence a larger
area that satisfies the partition. As ν decreases, the classifier tends to overfit and increase
the number of unbounded support vectors |Sub|. The effect of βk for RBF kernels can be
viewed very similarly. In fact, the kernel operator can be viewed as a similarity measure. As
discussed in [35], when βk is large, the dissimilarity between samples are high, and overfitting
will happen. On the other hand, when βk is small, the similarity between samples is high,
and underfitting will happen. Thus the region pattern reflects the fact that, a small (large)
value of ν or a large (small) value of β lead to overfitting (underfitting) and more (less)
unbounded support vectors.
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Figure 4.2: W11 c1 = c2 = 1. (a) Exhaustive 2D calculation of Ψ̂ with optimal point marked.
(b) Highly fragmented critical regions due to a smaller value of β. (c) Calculated Ψ̃ using
Theorem 2.
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Figure 4.3: S500 c1 = c2 = 1. (a) Exhaustive 2D calculation of Ψ̂ with optimal point
marked. (b) Simple critical region structure due to a larger value of β. (c) Calculated Ψ̃
using Theorem 2.
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4.6.2 Gradient Descent Algorithm Results

We now demonstrate the effectiveness of Algorithm 1 for hyperparameter selection of the
2ν-SVM with an ARD-Gaussian kernel.

Figures 4.4a and 4.4b demonstrate the convergence for two examples with the ARD
kernel. Figure 4.4a shows the approximation generalization cost and the hyperparameters
in each iteration for W11. The costs were c1 = 2, c2 = 1, and the initial values were
γ0 = 0.6, ν0 = 0.1, β0

k = 3 ∀k. To test for robustness, we deliberately set γ0 = 0.6, while we
expect the optimal value of γ∗ to be below 0.5 for c1 = 2, c2 = 1. Even with a bad initial
guess for γ0 and β0

k , our algorithm converges to a minimum within 60 steps. Figure 4.4b
shows similar results for S500. The costs were c1 = c2 = 1, and the initial values were γ0 =
0.5, ν0 = 0.15, β0

k = 1 ∀k. We set a reasonable initial value of γ0 = 0.5, since c1 = c2 = 1.
The algorithm converges within 350 steps, but note that the number of iterations required
to converge is significantly small, considering we have 502 hyperparameters to choose from.
The costs in both cases exhibit fluctuations because we incorporate resampling of training
and validation sets in the algorithm.

In Tables 4.1-4.5, we list the optimal cost, error rates, hyperparameters, and time/steps
to convergence for different combinations of c1, c2 using the gradient algorithm with the
ARD Gaussian kernel (grad-MPK) and the RBF kernel (grad-SPK) for various datasets,
including W11 and S500. For comparison purposes, we also list the optimal parameters for
the RBF case found from an exhaustive search (ES-SPK)6 in the (γ, ν, β) space. Note that
optimal values for β∗k in the grad-MPK case are omitted due to space limitation. For S500,
a dimension reduced version was used to construct the table.

We discuss some interesting observations from Table 4.1. As seen in the rows labeled
ES-SPK and grad-SPK, the optimal hyperparameters γ∗, ν∗ found by Algorithm 1 match
relatively well with those in the exhaustive search, and the final γ∗ reflects the cost variations.
Note that “at boundary” means the algorithm converged to the boundary of the feasible set
due to the cost of one error type being too high. For β∗, the gradient algorithm converges
to a local minima and is much different from the results of the exhaustive search. However,
the cost is not significantly compromised, and in some cases, our algorithm even achieves
a lower cost. In addition, we have observed that the optimal point is not necessarily at a
single point of β. Rather, a range of β values have similar values of γ∗ and ν∗, leading to
multiple minima. This can be further verified by the fact that the gradient of the cost with
respect to β is relatively small in this range. Finally, as expected, the grad-MPK performs
best for all combinations of costs with reasonable computation time.

Similar trends are observed for Tables 4.2-4.5. In contrast to W11, S500 is relatively
separable, resulting in lower error rates. Since the number of errors is significantly smaller

4https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/
5Grid size is set to 0.01. Approximately 600 training and validation samples.
6Parallel processing with 4 cores. Grid size was 0.025 for γ, ν ∈ (0, 1), and 7 values of β, between 10−2

and 103, were used. For both data sets, approximately 400 training and validation samples were used for
exhaustive search and the gradient descent algorithm.
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than W11, the variance for the estimate of γ∗ was quite large. Thus, we see discrepancies for
γ∗ between the algorithm and the exhaustive search, which also lead to higher generalization
cost for the grad-SPK, and grad-MPK results. However, we also want to point out that there
is less use for the algorithm if the data set is initially well-separated. One final aspect of
these results is that grad-MPK does not always outperform grad-SPK. This may be due to
random error from subset sampling of the data, but may also be due to overfitting. Similar
observations are discussed in [39]. Thus, one should be cautious before using kernel functions
with many hyperparameters.

Finally, Figures 4.5a and 4.5b show final β∗k values for both datasets with c1 = c2 = 1.
The black dotted line is the converged β∗ value for the RBF kernel, and the blue lines
represent the converged β∗k values for each dimension in the ARD-Gaussian kernel. Optimal
scaling of the data is significantly different for each dimension, as seen by the different β∗k
values in the ARD-Gaussian kernel. Moreover, Figure 4.5b shows a periodic pattern in the
scaling, which coincides with what we observe in the data.

In summary, we produced a rigorous alternative to the classic exhaustive search method
for solving the hyperparameter selection problem for any general SVM. In one of our sample
problems, a single parameter basis function formulation was used to produce essentially iden-
tical results to the exhaustive search, at approximately 1/50 of the computational cost. Also,
a fully parameterized kernel formulation was used to produce consistently better results than
the exhaustive search (by 20-30%), and did so at approximately 1/5 of the computational
cost. This not only justifies the benefit of feature rescaling by the ARD-Gaussian kernel, but
also verifies that our algorithm can be used to effectively choose the optimal configuration
in a high-dimensional hyperparameter space.

4.7 Summary

We started out with the question of how to tune the hyperparameters of the SVM such
that it minimizes an asymmetric generalization cost. In this work, we explored beyond
this question and proposed a new method for optimizing parameter selection for general
SVMs with additional hyperparameters, specifically demonstrating on the 2ν-SVM with
the multiparametric ARD-Gaussian kernel. Through a parametric optimization framework,
we showed that the solution of the dual problem was a piecewise explicit function of the
hyperparameters. This allowed us to derive the explicit form of the generalization cost and
construct a gradient descent algorithm for optimal parameter selection. Two datasets were
used to verify the algorithm, and results showed that our method successfully converged to a
parameter set with low cost. Although we chose to demonstrate our method on the 2ν-SVM
with the ARD-Gaussian kernel, our method can be extended to any soft-margin SVMs with
multiple hyperparameters.

The contributions are many-fold. Theoretically, we solved a degenerate parametric pro-
gram, which is considered to be a challenging problem in the operational research community,
by identifying conditions that lead to a closed-form solution. In this process, we derived the
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Figure 4.5: Convergence for β∗k for datasets (a) W11 (b) S500. The costs are set to c1 =
c2 = 1. The black dashed line represent the converged value of β∗ for the RBF kernel, and
the blue lines represent converged values of β∗k for the ARD-Gaussian kernel.
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explicit forms for the dual solution, the classifier, the generalization cost, and its gradient,
which had nice continuity and differentiability properties. Our solution provides many in-
sights into the characteristics of the soft-margin SVM. Specifically, Theorem 2 describes the
overall picture of the dual solution and makes it possible to analyze the effect of the number
of support vectors of the classifier on the area of the critical region.

Practically, we turned an intractable high-dimensional parameter search problem into
a scalable non-linear minimization problem, which can be solved by gradient descent al-
gorithms. Hence, this allows optimal usage of the cost-sensitive SVM and/or the flexible
ARD-Gaussian kernel, which is important in many applications.

A lot of work remains to be done in the future. To further improve the efficiency of the
algorithm, matrix completion techniques can be applied to problems with a large number of
training data. In addition, high-order gradient-based methods can be explored for enhanced
convergence. Finally, since an explicit form of the generalization cost has been obtained, we
can regularize the usage of features by adding appropriate regularization penalties for β in
the cost minimization.



71

Chapter 5

Conclusions and Outlook

5.1 Conclusions

In this dissertation we discussed the importance of inference models in the context of
advanced process control fault detection. Such models are beneficial for various reasons. As
mentioned in Chapter 1, Bayesian inference frameworks are used to overcome the physical
limitations of current tools and processes by integrating information coming from various
sources (previous measurements, tool sensors, spatial profiles, etc.). Moreover, as the number
of complex processing steps gets significantly large, data inference models provide a way for
engineers to quickly model processes using real-time sensor data, especially since developing
explicit physical models for each step is time-consuming.

This work explores the application and possible issues of inference models on in-line
metrology and fault detection. In Chapter 2, we looked at virtual metrology, which uses
inference models to estimate measurements from tool sensor signals, for fault detection pur-
poses. Specifically, we were interested in the question of whether the introduction of such
inference models actually benefit the fab. Two different metrology sampling scenarios were
explored, one with and one without process correction. We also simulated three types of
VM model candidates for fault detection that resulted in different alarm patterns, and thus
different cost consequences for the fab.

In Chapters 3 and 4, we explored support vector machines as an inference model for fault
detection and classification. In Chapter 3, SVMs were used to construct a real-time inspec-
tion tool for erroneous grating detection to demonstrate the use of data models. In contrast
to virtual metrology, the tool directly used the diffraction signatures from the grating in
test, without any profile measurement reconstruction. To demonstrate the feasibility of such
models, the inspection tool was demonstrated without alterations to the current YieldStar
scatterometry hardware setup. Results showed that by preserving the dimensionality of the
data, SVM classifiers outperformed the corresponding scatterometer on detecting out-of-spec
grating detection, with almost instantaneous time.

In Chapter 4, we rediscovered the problem of choosing optimal combinations of false and
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missed alarm rates. Specifically, in the context of the 2ν-SVM, we demonstrated a gradient-
descent algorithm that not only gave the optimal hyperparameter set for asymmetric cost
minimization, but also for any additional parameters in the SVM that were introduced
for accuracy and data scaling improvements. Not only did the algorithm significantly im-
prove hyperparameter search time compared to exhaustive search methods (two orders of
magnitude for our example), but also allowed us to turn infeasible search problems in a high-
dimensional hyperparameter space into a feasible one. It successfully selected combinations
which resulted in minimal generalization cost.

5.2 Outlook

Semiconductor manufacturing currently faces many challenges. Multi-patterning will
continue due to the delay in EUV development, leading to resolution and alignment issues.
The advent of 3D devices, such as the FinFET and 3D-NAND, make processing even more
difficult as many steps require high aspect-ratio etching and full profile information. As
process windows continue to shrink, tighter control of the manufacturing process is required
through real-time process monitoring and control. In this context, data mining and machine
learning techniques will have a larger role in the semiconductor manufacturing industry due
to the increased need for fast empirical modeling.

Constantly monitoring a significant number of process steps for tighter control will re-
quire both direct measurements and indirect monitoring through the utilization of sensor
signals, measurement data from previous steps, and other relevant information. “Big data”
approaches to manufacturing will become essential, as a substantial amount of unorganized,
heterogeneous data will have to be analyzed real-time. This can include continuous vari-
ables, such as temperature, pressure, and optical signatures, or categorical variables, such
as wafer and tool labels. As a consequence, preprocessing the data into a structured, usable
form will become critical for successful model deployment. Moreover, filtering out useful
features from such high-dimensional data will be a challenge. For instance, the stream from
many tool sensors are “noise” variables that are irrelevant to the process model in question.
Feature selection and reduction methods from machine learning can be useful for tackling
such a problem.

Another aspect that will result in more empirical data modeling is the consolidation of
the manufacturing industry into huge fabs backed by few major companies. Currently, there
exist a handful of very large facilities that handle chip manufacturing for multiple design
houses. For design-manufacturing optimization, recipes and tool setting have to be tweaked
for each new design. Explicit modeling for each design is extremely time-consuming and
process engineers may turn to empirical models for their quick setup time and flexibility.
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5.3 Broader Implications

The concepts presented in this thesis are not only applicable to the semiconductor man-
ufacturing industry, but can also be generalized to other contexts. The model selection
algorithm can easily be extended to any SVM classification problem that needs flexible tun-
ing of the weights of samples and features. For example, SVMs are now being explored in
medical diagnosis, where the cost of a missed alarm (or missed diagnosis) is severe. In bio-
computation, researchers deal with genomic microarray data, which has a significantly higher
number of features than samples; the feature weighing done through the ARD-Gaussian ker-
nel can be advantageous. In addition, an overarching theme throughout this work was the
tradeoff between using costly, time-consuming but accurate measurements and cheaper but
less accurate sensor signals. This tradeoff happens to occur in many other areas. For in-
stance, in smart buildings, researchers often need to estimate the number of people in a given
room (occupancy detection), since this has an effect on energy-expensive heating, ventilat-
ing, and air-conditioning (HVAC) and lighting systems. Although cameras can be used for
this purpose, installing the hardware in a room is costly, let alone the devices themselves.
An alternative way is to estimate such quantities by using data from CO2 sensors, WiFi
signals, and passive infrared sensors (PIR). Eventually, the problem is to indirectly estimate
meta properties from sensor signals and balance the use of costly equipment with inference
models, which was explored throughout this thesis.
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Appendix A

Background on Support Vector
Machines

We briefly go over the theoretical background behind support vector machine (SVM)
classifiers in this appendix. The invention of this algorithm is credited to Vapnik et al. in
1995. [46] A complete derivation can be found in the references at the back of this chapter.
[46, 47, 48, 34, 49]

The training set T consists of n data points, T = {(x1, y1), (x2, y2), . . . , (xn, yn) | xi ∈
Rp, yi ∈ {−1,+1}}, where xi is a p-dimensional feature vector with a dependent categorical
variable yi. The labels {−1,+1} correspond to each “class” in a binary classification problem.
The objective of a linear SVM classifier is to construct a p-dimensional hyperplane that
separates data points in the two classes such that it maximizes the distance between two
margin hyperplanes. Figure A.1a shows an example with xi ∈ R2. The blue and red points
can be thought of as samples with yi = −1 and +1, respectively.

A.0.1 Hard-margin SVMs

Hard-margin SVMs assume that the data is linearly separable without any misclassified
points. Specifically, the objective is to construct a decision hyperplane wTx = b, and two
margin hyperplanes wTx = b + 1,wTx = b − 1 such that the distance between the two
margin hyperplanes is maximized while achieving separation. Take xmin to be nearest data
point to hyperplane wTx − b = 0 and normalize w, b such that |wTxmin − b| = 1. The
following theorem from [47] is very useful.

Theorem 3. Arbitrary-Norm Projection on a Plane. [47] Let q ∈ Rn be any point
in Rn not on the plane:

P := {x | wTx = b}, 0 6= w ∈ Rn, b ∈ R. (A.1)
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(a) Soft-margin classification.

(b) Classification with non-linear boundaries.

Figure A.1: (a) Soft-margin SVMs minimize the summed distance from the corresponding
hyperplane for misclassified points. (b) Most cases require a non-linear boundary for proper
classification.

A projection p(q) ∈ P using a general norm || · || on Rn is given by:

p(q) = q − w
Tq − b
||w||′

z(w), (A.2)

where || · ||′ is the dual norm to || · || and:

z(w) ∈ arg max
||z||=1

wTz. (A.3)
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Consequently, the distance between q and its projection p(q) is given by:

||q − p(q)|| = |w
Tq − b|
||w||′

. (A.4)

By Theorem 3, the Euclidean distance from any point on the decision hyperplane wTx =
b to either hyperplanes wTx = b+ 1 and wTx = b−1 is |b−(b±1)|

||w||2 = 1
||w||2 . Note that the dual

norm of the L2 norm is itself. Our problem now turns into

max
w,b

1

||w||2
subject to min

i=1,2,...,n
|wTxi − b| = 1.

(A.5)

Formulating this as a linear program (LP), this is equivalent to

min
w,b

1

2
wTw

subject to yi(w
Txi − b) ≥ 1, i = 1, 2, . . . , n.

(A.6)

From hereon, we derive the dual of the problem in (A.6). We denote the dual variables
associated with the inequality constraints as αn for each training sample. The dual problem
is now

max
α

min
w,b

L(α,w, b) =
1

2
wTw −

n∑
i=1

αi(yi(w
Txi − b)− 1)

subject to αi ≥ 0, i = 1, 2, . . . , n.

(A.7)

Taking ∇w,bL(α,w, b) = 0, we get

∇wL(α,w, b) = w −
n∑
i=1

αiyixi = 0

∂L
∂b

=
n∑
i=1

αiyi = 0

∴ w =
n∑
i=1

αiyixi,
n∑
i=1

αiyi = 0.

(A.8)

Substituting the results in (A.8) into (A.14), the dual problem now becomes

max
α

L(α) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjαiαjx
T
i xj

subject to αi ≥ 0 for i = 1, 2, . . . , n,
n∑
i=1

αiyi = 0

(A.9)
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which is a quadratic program. We can rewrite (A.16) as

min
α

1

2
αT

y1y1x
T
1 x1 · · · y1ynx

T
1 xn

...
. . .

...
yny1x

T
nx1 · · · ynynx

T
nxn

α+ (−1)Tα

subject to α ≤ 0,

αTy = 0.

(A.10)

Given optimal solutions α∗,w∗, b∗, we see that the complementary slackness from the
KKT conditions gives us

α∗i (yi(w
∗Txi − b∗)− 1) = 0, i = 1, 2, . . . , n

⇒ either α∗i = 0 or yi(w
∗Txi − b∗) = 1.

(A.11)

For values of αi > 0, the corresponding xi’s are on the hyperplane wTxi = b± 1. These are
called the support vectors. We denote the set U to contain the indices of an equal number
of support vectors from each class. After solving for α∗ in (A.14) through any optimization
package, the variables w∗ and b∗ are given by

w∗ =
n∑
i=1

α∗i yixi, b∗ =
1

|U|
∑
u∈U

w∗Txu =
1

|U|
∑
u∈U

n∑
i=1

α∗i yix
T
i xu. (A.12)

For an incoming sample xj, the classifier is given by hj = w∗Txj + b∗, and the classification
is given by ŷj(xj) = sign(hj).

A.0.2 Soft-margin SVMs

We now turn to soft-margin SVMs. Soft-margin SVMs are used when the data is not
completely separable. During the training period, data points are allowed to cross their
corresponding margin hyperplanes, but of course, the number of these, as well as how far
they cross over the hyperplane should be minimized. This is done by relaxing the constraints
on the hyperplanes given in (A.6). The new primal problem now becomes

min
w,b,ξ

1

2
wTw + C

n∑
i=1

ξi

subject to yi(w
Txi − b) ≥ 1− ξi,

ξi ≥ 0, i = 1, 2, . . . , n.

(A.13)

More details can be found in references, but ξi is 0 for non-support vectors, and is a
positive number representing the distance of a data point from its margin hyperplane for
misclassified points. The farther away the point is from the margin hyperplane, the greater
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the value of ξi. C is a parameter controlling the tradeoff between maximizing the margin
and decreasing the number of misclassified points. If misclassified points are penalized too
much, overfitting will occur; on the contrary, if the margin is too wide, the classifer may not
be flexible enough and underfitting will occur. The optimal C value is find through cross-
validation techniques as will be mentioned in the next section. Similarly to Section A.0.1,
we find out the Lagrangian is

max
α,β

min
w,b,ξ

L(α,w, b) =
1

2
wTw + C

n∑
i=1

ξi −
n∑
i=1

αi(yi(w
Txi − b)− 1 + ξi)−

n∑
i=1

βiξi

subject to αi ≥ 0,

βi ≥ 0, i = 1, 2, . . . , n.
(A.14)

Taking ∇w,b,ξL(α,β,w, b, ξ) = 0, we get

∇wL(α,w, b) = w −
n∑
i=1

αiyixi = 0

∂L
∂b

=
n∑
i=1

αiyi = 0

∂L
∂ξi

= C − αi − βi = 0.

(A.15)

Substituting the results, the dual problem now becomes

max
α

L(α) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjαiαjx
T
i xj

subject to 0 ≤ αi ≤ C for i = 1, 2, . . . , n,
n∑
i=1

αiyi = 0.

(A.16)

We now look at the complementary slack conditions. Contrary to the hard-margin case,
there are two types of support vectors.

� ξ∗i = 0⇒ β∗i > 0⇒ 0 < α∗i < C ⇒ yi(w
∗Txi − b∗) = 1

⇒ Corresponds to support vectors on the margin hyperplanes, similar to those seen in
(A.11). These are denoted as unbounded support vectors, since α∗i is between 0 and C.

� ξ∗i > 0⇒ β∗i = 0⇒ α∗i = C ⇒ yi(w
∗Txi − b∗) < 1

⇒ Corresponds to support vectors that are on the wrong side of their corresponding
margin hyperplane. These are denoted as bounded support vectors, since α∗i is equal to
the bound C.
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Similarly to the hard-margin case, w∗ and b∗ can be found by (A.12), where U is now the
index set of an equal number of unbounded support vectors.

A.0.3 SVMs for Non-linear Data

One problem that remains is separating a data set with non-linear boundaries. Fig-
ure A.1b shows an example of a data set that is best separated with a non-linear boundary.
SVM can be applied to such problems by mapping the current feature space into another
one that will provide linear boundaries. Consider the following equations for an ellipse in
R2:

c(x1 − a)2 + d(x2 − b)2 − 1 = 0

cx2
1 + dx2

2 − 2acx1 − 2bdx2 + ca2 + db2 − 1 = 0
(A.17)

If we take the following mapping into some space Z,[
x1 x2

]
=⇒

[
x2

1 x2
2 x1 x2 x1x2 1

]
we find that the original equation is now a linear function of the new features, and we can
now apply our original linear SVM models. One can see that the optimization problem and
solution all require only the inner product xTi xj. We do not have to explicitly transform
each xi into the new feature space, all we need is a function for the inner product in that
space. For two vectors zi, zj ∈ Z mapped from xi,xj,

zTi zj = x2
1ix

2
1j + x2

2ix
2
2j + . . .+ x1ix2ix1jx2j + 1

= (1 + xTi xj)
2

= κ(xi,xj)

(A.18)

where we have defined the “kernel function” K(xi,xj) the inner product between two feature
vectors in the transformed space. Some well-known kernel functions are

� Linear: κ(xi,xj) = xTi xj

� Ellipsoid: κ(xi,xj) = (1 + xTi xj)
2

� Radial Basis Function (RBF): κ(xi,xj) = exp(−β||xi − xj||2)

� ARD-Gaussian: κ(xdi ,x
d
j ) = exp(−

∑p
k=1 βk||xi − xj||2).

The RBF kernel maps the feature space into an infinite dimension space, and is one of
the most flexible kernel functions for non-linear classification. The optimal kernel parameter
β is found through cross-validation techniques, discussed in the subsequent section. The
ARD-Gaussian kernel is an extension of the RBF but has a separate parameter for each
feature dimension. This allows each dimension to be scaled differently avoiding underfitting
and overfitting. To use a certain kernel function in the construction of a classifier, xTi xu is
replaced with κ(xi,xu) in (A.12).
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A.0.4 Cross Validation and Empirical Loss

There are many parameters in the SVM that are not an optimization or dual variable. For
example, C is a parameter that chooses the tradeoff between margin width and misclassified
points. β in the RBF kernel determines the shape of the classifier. These kinds of parameters
in learning are often called hyperparameters. As well-known in statistical learning theory, the
optimal classifier is chosen by cross-validation. Usually, the data set is divided into training,
validation, and testing sets. The training set is used to induce classifiers with different sets
of hyperparameters. These models are then applied to an unseen validation set, where the
hyperparameter combination that minimizes the loss function is chosen as the optimal value.
The accuracy of the validated model on the testing set is reported. In many cases, the loss
is averaged over many partitions of the data set. As before, we denote the training set as T ,
with |T−| = n− and |T+| = n+, and the validation set as Z, with |Z−| = m− and |Z+| = m+.

The classifier will induce a so called generalization cost (risk in other literature), which
is the expected value of the loss function, for an unseen data set z = (x, y). The most widely
used loss function for classification models is the 0-1 loss, where

l(ŷ, y) =

{
1 if ŷ 6= y

0 if ŷ = y.
(A.19)

Since the ground truth distribution P (x, y) is never known, the expected cost is usually
estimated with an empirical average on the data set. For the validation data, this is given
by

Ψ̂T ,Z(φ) =
1

2m

∑
j∈Z

[1− yj sign(hj)], (A.20)

where φ is a vector of hyperparameters. Note that for each validation sample (xj, yj),
1 − yj sign(hj) is 2 if the true label yj is different from the classification estimate sign(hj),
and 0 if the labels coincide. Finally, the problem of hyperparameter selection becomes

φ∗ = argmin
φ

Ψ̂T ,Z(φ). (A.21)

As mentioned before, an exhaustive search across the hyperparameter space is needed to
validate the optimal φ∗ that minimizes the empirical generalization cost.

A.1 The ν-SVM Classifier

So far, we have demonstrated the foundation of a SVM classifier: the primal and dual
problems, support vectors, and its hyperparameters. One disadvantage of the C-SVM is
that the optimal C can range anywhere between 0 to ∞. An alternate model is the ν-SVM,
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where the parameter ν ∈ (0, 1). The primal problem is given by

min
w,b,ρ,ξ

1

2
wTw − νρ+

1

n

n∑
i=1

ξi

subject to yi(w
Txi − b) ≥ ρ− ξi for i = 1, 2, . . . , n

ξi ≥ 0

ρ ≥ 0.

(A.22)

Scholkopt et al. [50, 51, 52] proposed that if the optimization result has ρ > 0,

� ν is an upper bound on the fraction of margin errors (hence the fraction of training
errors).

� ν is also a lower bound on the fraction of support vectors.

� If the data was generated i.i.d. from a certain distributsion, and the kernel is analytic
and non-constant, with probability 1, asymptotically, ν equals both the fraction of
support vectors and the fraction of margin errors.

The Lagrangian of (A.22) is given by

L(w, b, ξ, ρ,α,β, δ) =
1

2
wTw − νρ+

1

n

n∑
i=1

ξi −
n∑
i=1

αi(yi(w
Txi − b)− ρ+ ξi)

−
n∑
i=1

βiξi − δρ.
(A.23)

where αi, βi, δ ≥ 0. Taking ∇w,b,ρL(w, b, ξ, ρ,α,β, δ) = 0, we get

∇wL = w −
n∑
i=1

αiyixi = 0

∂L
∂b

=
n∑
i=1

αiyi = 0

∂L
∂ρ

= −ν +
n∑
i=1

αi − δ = 0

∂L
∂ξi

=
1

n
− αi − βi = 0.

(A.24)
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Plugging everything in the Lagrangian gives us

max
α,β,δ

L(α,β, δ) = −1

2

n∑
i=1

n∑
j=1

yiyjαiαjx
T
i xj − ρ

n∑
i=1

αi − δ +
1

n

n∑
i=1

ξi

− b
n∑
i=1

αiyi + ρ

n∑
i=1

αi −
n∑
i=1

αiξi −
n∑
i=1

βiξi − δρ

subject to α,β, δ ≥ 0 for i = 1, 2, . . . , n.

(A.25)

This is equivalent to the dual problem

max
α,β,δ

L(α,β, δ) = −1

2

n∑
i=1

n∑
j=1

yiyjαiαjx
T
i xj

subject to 0 ≤ αi ≤
1

n
n∑
i=1

αiyi = 0

n∑
i=1

αi ≥ ν.

(A.26)

A.2 Cost-Sensitive SVM Classifiers

Traditional classifiers like C-SVM and ν-SVM penalize errors in both classes equally.
That is, if the training data has a disproportionate number of samples for one class, the
above formulations will favor reducing the error on the class with larger size. In this section,
we explore the 2ν-SVM, which penalizes each category in a cost-sensitive manner. The 2ν-
SVM (or dual -ν) was originally proposed by Chew et al. [53] in 2001. As a variation of the
ν-SVM, the cost-sensitive version introduces an additional parameter γ ∈ [0, 1] that decides
the relative weight between the two classes errors in constructing the classifier. [53, 54, 55]
Similarly to the ν-SVM, ν controls the upper bound of margin errors, and a small or large
value of ν may cause over or under-fitting, respectively. The primal problem of the 2ν-SVM
is given by

min
w,b,ρ,ξ

1

2
wTw − νρ+

γ

n

∑
i∈I+

ξi +
1− γ
n

∑
i∈I−

ξi

subject to yi(w
Txi − b) ≥ ρ− ξi for i = 1, 2, . . . , n

ξi ≥ 0

ρ ≥ 0.

(A.27)
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The dual for the 2ν-SVM is just

max
α,β,δ

− 1

2

n∑
i=1

n∑
j=1

yiyjαiαjx
T
i xj

subject to 0 ≤ αi ≤
γ

n
for i ∈ I+

0 ≤ αi ≤
1− γ
n

for i ∈ I−
n∑
i=1

αiyi = 0

n∑
i=1

αi ≥ ν.

(A.28)

Following notation from [55], we note parameters

ν+ =
νn

2γn+

, ν− =
νn

2(1− γ)n−
. (A.29)

where

� ν+ is an upper bound on the fraction of margin errors in class +1.

� ν− is an upper bound on the fraction of margin errors in class -1.

� ν+ is a lower bound on the fraction of support vectors from class +1.

� ν− is a lower bound on the fraction of support vectors from class -1.

Moreover, (A.28) is feasible if and only if

ν ≤ 2min(γn+, (1− γ)n−)

n
, (A.30)

or in other words,
ν+ν− ≤ min(ν−, ν+). (A.31)

Assuming we have different costs for false and missed alarms, the expected generalization
cost, for example, can be written as

ΨT ,Z(φ) = E[l(ŷ(x) 6= y)]

= c1P (ŷ(x) = +1|y = −1)P (y = −1) + c2P (ŷ(x) = −1|y = +1)P (y = +1)
(A.32)

where c1 is the false alarm cost and c2 is the missed alarm cost. Note that the generalization
cost can have other forms than (A.32). For instance, either c1, c2 can be functions of the
false and missed alarm rates, and not just constants.
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Figure A.2: Multicategorical support vector machine classification.

Similarly to (A.20), we can define an empirical generalization cost as

Ψ̂T ,Z(φ) =
c1

2m−

∑
j∈Z−

[1− yj sign(hj)]
m−
m

+
c2

2m+

∑
j∈Z+

[1− yj sign(hj)]
m+

m (A.33)

where 1
2m−

∑
j∈Z−

[1− yj sign(hj)] and 1
2m+

∑
j∈Z+

[1− yj sign(hj)] are unbiased estimates of

false and missed alarms, and m−
m

and m+

m
are the estimated probability of occurrences for

the two classes.

A.2.1 Multicategorical SVMs

Some problem settings require multiple categories for classification. An obvious example
is the distinct modes of failure in scatterometry, such as positive/negative defocus, necking,
bridging, and unexposed fields. It would be useful if we could differentiate not only faults but
also the distinct types of faults. [56] Figure A.2 shows a 2-D example where the objective is
to differentiate between black samples and samples of three different colors. This is done by
constructing three separate hyperplanes, leading to a polyhedral classifier. Assuming a total
of r categories, we denote each “out-of-spec” category with a subscript k, and the “in-spec”
category with a subscript 0. For the supervised case, we assume that we exactly know the
value of r, and construct the following optimization problem:
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min
w1...wr,b1...br,ξ

(1)...ξ(r)

1

2

r∑
k=1

wT
kwk +

r∑
k=1

C1

nk∑
i=1

ξ
(k)
i + C2

n0∑
i

ξ
(0)
i

subject to wT
kxi − bk ≥ 1− ξ(k)

i for i = 1, . . . , nk, k = 1, 2, . . . , r

−wT
0 xi − b0 ≥ 1− ξ(0)

i for i = 1, . . . , n0

ξ
(k)
i ≥ 0 for i = 1, . . . , nk, k = 1, 2, . . . , r

ξ(0) ≥ 0 for i = 1, . . . , n0.

(A.34)

where nk denotes the number of samples in category k. The idea behind (A.34) is to simply
construct r hyperplane classifiers between class 0 and class k, where each classifier has the
form w∗Tk x = b∗k.
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Appendix B

Scatterometry Grating SEM Images
and Bossung Curves
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B.0.2 Focus-Exposure Matrix CD-SEM Images

Figure B.1: CD-SEM images for P90CD45.
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Figure B.2: CD-SEM images for P100CD45.
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Figure B.3: CD-SEM images for P100CD50.
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Figure B.4: CD-SEM images for P110CD55.
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Figure B.5: CD-SEM images for P600100.
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Figure B.6: CD-SEM images for P600CD200.
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Figure B.7: CD-SEM images for P600CD300.
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B.0.3 Bossung Curves from YieldStar Measurements

Figure B.8: YieldStar Bossung curves for P90CD45.

Figure B.9: YieldStar Bossung curves for P100CD45.
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Figure B.10: YieldStar Bossung curves for P100CD50.

Figure B.11: YieldStar Bossung curves for P110CD55.
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Figure B.12: YieldStar Bossung curves for P600CD100.

Figure B.13: YieldStar Bossung curves for P600CD200.



APPENDIX B. SCATTEROMETRY GRATING SEM IMAGES AND BOSSUNG
CURVES 104

Figure B.14: YieldStar Bossung curves for P600CD300.
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Appendix C

Proofs for Fast Model Selection for
Grating Classification

As a reminder, y is the ordered labels, Qβ is the augmented kernel matrix, CA the rows
of active constraints, and P β defined in 4.4, we further define

Gβ =
Q−1
β yy

TQ−1
β

yTQ−1
β y

−Q−1
β . (C.1)

In addition, we denote the number of non-support vectors s0 = |S0|, bounded support vectors
sb = |Sb|, and unbounded support vectors sub = |Sub|.

C.0.4 Solution of over-determined system

Lemma 1. If the solution α∗(φ) is non-degenerate, with CA and y defined previously, the
over-determined system for the variable ξ

Cα
A
Tξ = y (C.2)

does not have a solution.

Proof. Note that the rows ofCα only contains n dimensional standard basis {−eT1 ,−eT2 , . . . ,−eTn},
{eT1 , eT2 , . . . , eTn} and [−1, . . . ,−1]T . The active constraints are induced by non-support vec-
tors in the first block, and bounded support vectors in the second block. These s0 + sb =
n− sub active constraints must be orthogonal and span a subspace of Rn. This is because α∗i
cannot be 0 and γ/n or (1− γ)/n at the same time. Ignoring the last inequality constraint,
the rows of Cα

A consist of n − sub positive or negative standard basis. For any k ∈ AC ,
the basis ±ek are not in Cα

A, hence the kth column vectors of Cα
A must be all zero. When

the solution of SVM is non-degenerate, there exist at least two samples in AC , with one
corresponding to yk = 1 and another corresponding to yk = −1, by definition. Now consider

two cases for the last inequality constraint
n∑
i=1

α∗i ≥ ν.
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1.
n∑
i=1

α∗i > ν – Since CαT
A has at least two zero rows, the linear system CαT

A ξ = y results

in two equations 0 = −1 and 0 = +1.

2.
n∑
i=1

α∗i = ν – (Cα
A)T now has an additional last column of [−1, . . . ,−1]. We again

consider two indices k, k′ ∈ AC such that yk = −1 and yk = +1. The kth and
k′th row of CαT

A are zeros except the last element −1. This results in two equations
−ξn−sub = −1 and −ξn−sub = +1.

We see that for both cases, CαT
A ξ = y is an inconsistent system with no solutions.

C.0.5 Properties of matrix Gβ

Lemma 2. Gβ has rank n− 1.

Proof. By the Rank-nullity theorem, we know that rank(Gβ) + nul(Gβ) = n. We now
consider the nullspace of Gβ. First, note that if a vector υ ∈ Rn is in the nullspace of Gβ,

Gβυ = 0⇐⇒ (yyTQ−1
β )υ = (yTQ−1

β y)υ. (C.3)

Since rank(yyTQ−1
β ) = 1, this means υ is the eigenvector corresponding to the only non-zero

eigenvalue of yyTQ−1
β . We can verify υ = y and null(Gβ) = y, proving that rank(Gβ) =

n− 1.

Lemma 3. Gβ is a symmetric negative semi-definite matrix.

Proof. We look at υTGβυ ∀υ ∈ Rn.

υTGβυ = υT

(
Q−1
β yy

TQ−1
β

yTQ−1
β y

−Q−1
β

)
υ

=
(υTQ−1

β y)2 − (υTQ−1
β υ)(yTQ−1

β y)

yTQ−1
β y

.

(C.4)

Since Q−1
β is assumed to be a positive definite matrix, it has a unique Cholesky decompo-

sition Q−1
β = LLT where L is a lower triangular matrix. Defining υ̃ , LTυ, and ỹ , LTy

the numerator of υTGβυ becomes

(υTQ−1
β y)2 − (υTQ−1

β υ)(yTQ−1
β y)

=(υTLLTy)2 − (υTLLTz)(yTLLTy)

=(υ̃T ỹ)2 − (υ̃T υ̃)(ỹT ỹ)

=|〈υ̃, ỹ〉|2 − ||υ̃||2||ỹ||2.

(C.5)
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By the Cauchy-Schwarz inequality, |〈υ̃, ỹ〉|2 ≤ ||υ̃||2||ỹ||2, and the numerator of υTGβυ is
≤ 0. Therefore, Gβ is a negative semi-definite matrix.

C.0.6 Proof of Theorem 1

Proof. P β was defined as P β = Cα
AGβC

αT
A . We look at ξTP βξ ∀ξ ∈ Rn0 , where n0 =

n− sub + 1.
ξTCα

AGβC
αT
A ξ = ξTCα

AUΛUTCαT
A ξ

= ξTCα
AUΛ

1
2 Λ

1
2UTCαT

A ξ

= ξTCα
ARR

TCαT
A ξ

= ξ̃
T
ξ̃ � 0

(C.6)

where we’ve used the spectral theorem to decompose Gβ and defined ξ̃ , RTCαT
A ξ. If

∃ξ̃ | ξ̃T ξ̃ = 0, this implies RTCαT
A ξ = 0. Notice that rank(RT ) = n − 1 and null(RT ) = 1,

since Gβ = RRT and by Lemma 2, rank(Gβ) = n − 1. Moreover, the nullspace of RT is
solely composed of y. Thus, in order for ξTP βξ to be 0, we need CαT

A ξ = y, and by Lemma
1 this does not have a solution. Therefore, P β is a negative definite matrix.

C.0.7 Proof of Proposition 1

Proof. The proof of this proposition relies on the strict convexity of the dual. Since the
boundary of any two regions belongs to both closures, and the optimum is unique for all
hyperparameters in the feasible set, the solution across the boundary is continuous.

Because any feasible configuration of φ admits a solution, it must be contained in at
least one region. Suppose a configuration of φ belongs to 2 or more regions. Since the set
of active constraints are different in any 2 regions, the optimum cannot be the same except
at the boundary. However, by assumption, if φ belongs to two regions, and this means the
dual has at least two solutions. This is contradictory to the uniqueness of the solution.

Finally, by construction, the number of critical regions should be upper bounded by the
number of all combinations of active constraints. In the non-degenerate case, this is just
|T−| · |T+| · 2|T |−2.

C.0.8 Proof of Proposition 3

Proof. Take two arbitrary points φ1 and φ2 in rth region Rr. Let h = φ1 − φ2, J [·] the
jacobian matrix of a vector value function, ‖ · ‖2 the L2 norm, and ‖ · ‖I the induced L2
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norm of a matrix, i.e. ‖A‖I = sup {‖Ax‖2 | ‖x‖2 = 1}, then

‖g(φ2)− g(φ1)‖2 = ‖g(φ1 + h)− g(φ1)‖2

=

∥∥∥∥∫ 1

0

J [g(φ1 + th)] · h dt
∥∥∥∥

2

≤
∫ 1

0

‖J [g(φ1 + th)] · h‖2 dt

≤
∫ 1

0

‖J [g(φ1 + th)]‖I · ‖h‖2dt

≤M‖h‖2 = M‖φ2 − φ1‖2

The second inequality is a direct application of matrix norm inequality ‖Ax‖2 ≤ ‖A‖I · ‖x‖2,
and the third inequality holds since in a continuous bounded region the induced norm of the
Jacobian is bounded by some scalar M .
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