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Abstract

Games with Vector Payoffs : A Dynamic Programming Approach

by

Vijay Sukumar Kamble

Doctor of Philosophy in Engineering – Electrical Engineeing and Computer Sciences

University of California, Berkeley

Professor Jean Walrand, Chair

In several decision-making scenarios in adversarial environments, a decision-maker cares
about multiple objectives at the same time. For example, in certain defense operations,
an agent might be interested in simultaneously defending multiple targets from an enemy.
In a repeated game against an unknown opponent, a player wants to minimize ‘regret’,
i.e., to try to choose a strategy that performs well relative to each strategy in some given
class of strategies in hindsight. In dynamic asymmetric information games where a player
lacks some information that other players have, a typical goal is to choose a strategy that
gives appropriate worst-case guarantees simultaneously on all possibilities. Many of these
scenarios can be modeled as a vector-valued sequential game between the agent and an
adversary. This thesis is concerned with characterizing and efficiently computing the optimal
worst-case guarantees that an agent can achieve on the losses in such games.

The main contribution of this work is to show that for large classes of sequential games,
these optimal guarantees can be characterized as the fixed point of a dynamic programming
operator defined on the space of extremal (either maximal or minimal) elements of subsets of
some partially ordered topological space. We first present this result in detail for the model
of discounted repeated games with vector payoffs and then extend it to stochastic games
with multiple states, and finally to reachability games (which model several types of pursuit-
evasion games that arise in defense operations). For each of these models, we prove several
structural properties of the set of these optimal guarantees and the corresponding optimal
strategies. This approach opens up the possibility of using many well-known dynamic pro-
gramming based methods and algorithms for approximating these guarantees and computing
approximately optimal strategies. One such method based on approximate value-iteration
is presented for the case of repeated games.

This approach results in the first characterization of the minmax optimal regret and the
corresponding optimal strategy for expected regret minimization in repeated games with
discounted losses. Further, it results in the first known procedure for efficiently computing
an approximately optimal strategy for the uninformed player in Aumann and Maschler’s
celebrated model of zero-sum discounted repeated games with incomplete information on
one side.
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Chapter 1

Introduction

In several decision-making scenarios in adversarial environments, an agent cares about mul-
tiple objectives at the same time. Typically in these cases her actions can have different
implications for the different objectives, and she wants to take some action that performs
appropriately well on all the objectives simultaneously. Such scenarios can be effectively
modeled as a game with vector-valued payoffs. Following are a few examples.

• Pursuit-evasion games of target defense: Consider the following pursuit-evasion
game that arises in defense operations. A defender wants to protect 3 different targets,
A, B and C from being destroyed by an enemy in a field. To achieve this, the defender
tries to apprehend the enemy (say by coming within some striking distance) before
the enemy is able to reach the targets. Since the targets are in different locations,
the defender needs to keep track of the effects of his movements on the vulnerability
of the different targets, which may be quite different: a move that keeps the enemy
away from one target may make the other target more vulnerable. One can model this
situation as a vector-valued dynamic game with three components, one for each target.
If the enemy reaches a target i, the defender faces a loss of li on the corresponding
component.

• Games of incomplete information: In many situations, an agent may not have
sufficient information about the game that she is involved in. For instance, all that
is known is that the underlying game is one of a finite set of possible games. Such
games of incomplete information can be modeled as a vector-valued game, where each
component of the vector represents the loss corresponding to a particular possibility.
Consider the following example. Alice and Bob decide to play the following simple
game that we will call ‘Bluff’. The game consists of two stages. In the first stage,
they simultaneously place a bet, which could be either 20 cents (low) or $1 (high). If
they both bet low, they keep their money and the game is over. If one bets high and
the other bets low, the low player loses his/her bet to the high player and the game is
over. If both bet high, then the game proceeds to stage two where they play a game
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of chess. The winner of the game takes all the money and the game is over. Now
both Bob and Alice know that Alice is an average chess player, but only Bob knows
his expertise, which could be ‘Expert’ or ‘Poor’. If Bob is an expert then he definitely
beats Alice, where as if he is a poor player then Alice definitely beats him. Thus in
the event that Bob is an expert, Alice always wants to bet low, whereas if he is a poor
player then she wants to bet high. One can model this situation as the vector-valued
game shown in Figure 1.1 with the two components corresponding to Alice’s loss in the
two different possibilities. Alice’s goal is then to minimize her losses simultaneously

(1,	  -‐1)	   (-‐0.2,	  -‐0.2)	  

(0.2,	  0.2)	   (0,	  0)	  

Alice	  

Bob	  
H	   L	  

L	  

H	  

Figure 1.1. A vector valued zero-sum game.

on the two possibilities.

• Regret minimization in repeated decision-making: One of the best studied
problems in online decision-making is that of regret minimization in repeated games
(see e.g., [9] for a survey). Imagine that Alice can choose one of two paths to go to
work each day. Each path may be congested, leading to a loss of 1 for Alice, or it may
be clear, leading to no loss. Each day, without knowing the state of the paths, Alice
chooses some path, possibly randomly. After having taken this path, she learns the
congestion levels of the two paths in hindsight. This model can be represented by the
matrix game in Table 1.1. The rows correspond to the choice made by Alice and the
columns correspond to the four different possibilities: either both paths are congested,
or both are clear, or one is congested and the other one is clear. Alice would like to
minimize her expected worst-case ‘regret’, defined as the difference between her actual
expected loss and the loss incurred by the better of the two paths in the long run.

Now consider the vector-valued game in Table 1.2. For any entry, the first component
is the additional loss incurred in a single stage relative to the loss incurred by choosing
the first path, and the second component is the additional loss incurred relative to the
loss incurred by choosing the second path, called the single-stage regret with respect to
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Table 1.1. Possible loss scenarios

Path 1 1 0 1 0
Path 2 0 1 1 0

Table 1.2. Single-stage regret w.r.t. Path 1 and 2 (in that order)

Path 1 (0,1) (0,-1) (0,0) (0,0)
Path 2 (-1,0) (1,0) (0,0) (0,0)

Path 1 and Path 2 respectively. The goal of minimizing regret can be formally thought
of as simultaneously minimizing the cumulative loss on the different components in a
repeated play of this vector-valued game.

The goal of the decision-maker in these games is to choose actions that perform well on the
different components despite the adversarial environment. Playing a strategy that guarantees
a low loss on one component could at the same time make the potential loss high on the other
components. Thus the problem for the decision-maker is to characterize the optimal tradeoff
between the guarantees on the different components and find strategies that achieve the
different points on this tradeoff. This thesis is concerned with characterizing and computing
this tradeoff and strategies that achieve it for different classes of dynamic games.

In this chapter, we will begin by reviewing a few classical results on zero-sum games with
scalar payoffs. We will then introduce vector-valued games and define the problem of finding
the minimal simultaneous guarantees on the losses in these games. We will give a few simple
examples to illustrate the use of a dynamic programming based approach to characterize
these minimal guarantees in dynamic games. We will finally give a brief overview of the
organization of the rest of the thesis.

1.1 Scalar zero-sum games: review of results

In its simplest form, a zero-sum game consists of two players, call them Alice (or the
player/agent/subject) and Bob (the adversary), who are endowed with a finite set of ac-
tions A and B respectively, and for each pair of actions (a, b), an amount of utility r(a, b) is
transferred from Alice to Bob. Figure 1.2 shows a matrix representation of an example of a
zero-sum game.

There are two quantities of interest: the minmax and maxmin. The minmax is the smallest
upper bound that Alice can guarantee on her loss in the game, formally defined as:

v̄ = min
a∈A

max
b∈B

r(a, b).
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2	   1	  

0	   3	  

Alice	  

Bob	  
1	   2	  

2	  

1	  

Figure 1.2. A zero-sum game.

The corresponding action that achieves this guarantee is called the minmax strategy. The
maxmin is the highest lower bound that Bob can guarantee on his gain, defined as:

v = max
b∈B

min
a∈A

r(a, b).

The corresponding Bob’s action that achieves this guarantee is called the maxmin strategy.
The minmax of the game defined above is 2 and is achieved by Alice’s action 1, and the
maxmin is 1, achieved by Bob’s action 2. Observe that the minmax is greater than the
maxmin, a fact that is in general true. Indeed, if a∗ and b∗ are the minmax and maxmin
actions respectively, then

v̄ = max
b∈B

r(a∗, b) ≥ r(a∗, b∗) ≥ min
a∈A

r(a, b∗) = v.

One can consider richer strategy spaces, namely those that result from randomizations over
actions. Let ∆(A) and ∆(B) denote the simplices of all probability distributions on the
actions of Alice and Bob respectively. These strategies are called mixed strategies. The
minmax and maxmin can be defined analogously as:

V = min
a∈∆(A)

max
b∈∆(B)

E[r(a, b)]

and
V = max

b∈∆(B)
min
a∈∆(A)

E[r(a, b)],

where the expectation is over the randomness in the choice of these actions. Again V ≥ V .
But the celebrated minmax theorem by Von-Neumann states that in this case, the opposite

inequality holds as well and hence V = V . This quantity, denoted by V , is then called the
value of the game. For the game defined above, one can compute that the both the maxmin
and the minmax are 3

2
. The optimal strategy for Alice is to play 1 with probability 3

4
and
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2 with probability 1
4
. Bob’s optimal strategy is to play both actions with equal probability.

Playing these two strategies comprises an ‘equilibrium’: one is a best response against the
other. Further any such equilibrium gives the same loss (gain) V to Alice (Bob).

The minmax theorem can be stated in a few different ways, nevertheless conveying the same
idea. First, in the form that we just presented, it says that the lowest upper bound on
the losses that Alice can guarantee is the same as the highest lower bound that Bob can
guarantee on his gains. This fact that there is no ‘gap’ between the maxmin and minmax
can also be stated in the following equivalent way. For any r ∈ R, either Alice has a strategy
that guarantees that her loss is not greater than r, or Bob has a strategy that guarantees
that his gain is at least r. This is clearly true if r is greater than minmax or if r is smaller
than maxmin. But if

V < r < V ,

then for such an r, neither Alice has a strategy that can guarantee that her loss is no more
than r, nor Bob has a strategy that can guarantee that his gain is at least r. The fact that
the minmax theorem holds implies that there can be no such r, and hence the two statements
are equivalent.

Another way of conveying the above notion is the following. Suppose that the payoffs of the
matrix game lie in the interval [m,M ]. Then for Alice, for any sets of the form [m, r], either
she has a strategy that ensures that the expected payoff of the game is in the given set, or
Bob has a strategy that ensures that the expected payoff is outside that set, in which case
we say that Bob can exclude this set. Similarly, for Bob, for any sets of the form [r,M ],
either he has a strategy that ensures that the expected payoff of the game is in the given
set, or Alice has a strategy that ensures that the expected payoff is outside that set. We will
call sets [m, r], downward closed (since for such a set S, if x ∈ S and if y ∈ [m,M ] is such
that y ≤ x, then y ∈ S as well) and the sets [r,M ], upward closed.

Note that although this distinction between the types of sets that Alice can guarantee (or
Bob can exclude) and Bob can guarantee (or Alice can exclude) is practically well justified:
Alice being the minimizer, is only interested in upper bounds on her losses, while Bob being
the maximizer is only interested in lower bounds on his gains, but mathematically, the
distinction between these two types of sets in artificial if one thinks about characterizing the
extent to which Alice and Bob can control the expected payoffs of the game. Indeed, one can
switch roles to have Alice be the payoff maximizer and Bob be the minimizer. The minmax
theorem will give the value of this game, which will typically be different from the value of
the original game (although in the game defined in Figure 1.2, the value of the game with
the roles reversed is the same). This implies an analogous result for Alice and Bob, but with
the types of the sets they can achieve reversed. Thus the minmax theorem is equivalent to
saying that if the payoffs of the matrix game lie in the interval [m,M ], then for any sets of
the form [r,M ] or [m, r], for any player, either he/she has a strategy that ensures that the
expected payoff of the game is in the given set, or other player has a strategy that ensures
that the expected payoff is outside that set. Note that this result does not hold for arbitrary
sets, even if they are closed and convex, i.e., closed intervals.
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1.2 Simultaneous guarantees in vector-valued games

In the simplest model of a game with vector payoffs, given finite action spaces A and B
for Alice and Bob respectively, the choice of a pair of actions a and b result in the transfer
of a utility vector r(a, b) with K components from Alice to Bob. The game of ‘Bluff’ in
Figure 1.1 is an example. We will now define the analogue of minmax for this vector-valued
version of a zero-sum game (the maxmin is analogous). Alice would like to choose a strategy
that would give robust guarantees on her loss irrespective of Bob’s behavior. But since the
losses are vector-valued, she is interested in ensuring simultaneous guarantees on her losses
on different components. To be more precise, for a choice of distribution ᾱ ∈ ∆(A), consider
the vector:

v(ᾱ) =

(
max
b∈B

∑

a∈A
αark(a, b)

)

k=1,··· ,K
.

By this choice of ᾱ ∈ ∆(A), Alice guarantees that her expected loss on component k is no
more than vk(ᾱ) for any k, irrespective of what Bob does. We then say that ᾱ achieves
the simultaneous guarantee vector v(ᾱ). Alice would then like to determine the minimal
such simultaneous guarantees that she can achieve. That is, she would like to determine the
Lower Pareto frontier of the set of different guarantees that she can achieve using different
mixed strategies, which is the set V∗ = Λ({v(ᾱ) : ᾱ ∈ ∆(A)}), where for a set U,

Λ(U) , {x̄ ∈ U : ∀ x̄′ ∈ U \ {x̄}, ∃ k s.t. xk < x′k}.
A geometric illustration of this operation for the game defined in Figure 1.1 is given in
Figure 1.3. The left figure illustrates the inner maximization by Bob for two different fixed
choices ᾱ1 and ᾱ2 of Alice. By varying ᾱ, the resulting set of guarantees is given by the
union of line segment joining (0.2, 0.2) and (0.36,−0.04) and the segment joining (0.36, 0.04)
and (1,−0.2). The Pareto frontier of this set is all the points on the segment, as shown in
the figure on the right. This frontier is achieved by choosing ᾱ to be all the different points
on the simplex.

In general, Alice may be interested in ensuring simultaneous guarantees not only on the dif-
ferent components, but on different linear combinations of components. Let (γ1, γ2, · · · , γL)
be a set of real valued (row) vectors with K components. Then in general Alice is interested
in computing:

V∗ = Λ

({(
max
b∈B

∑

a∈A
αaγlr(a, b)T

)
l=1,··· ,L : ᾱ ∈ ∆(A)

})
.

If L = 1, this is the case where the situation reduces to a scalar-valued game. The notion
of simultaneous guarantees on linear combinations of the different components of a vector
valued game allows us to answer whether Alice has a strategy that the expected payoffs
on the different components lie in a given convex polyhedron (possibly infinite). To do so,
suppose the convex polyhedron is of the form

AxT ≤ b,
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v(ᾱ1)
v(ᾱ2)

(0.2, 0.2)

(−0.2,−0.2)

(1,−1)

(0, 0)

(0.2, 0.2)

(−0.2,−0.2)

(1,−1)

(0, 0)
Λ

��
v(ᾱ) : ᾱ ∈ ∆(A)

��

(0.36,−0.04)
(1,−0.2)

Figure 1.3. Computing the set of simultaneous guarantees (left) and minimal simul-
taneous guarantees (right)

comprising of L inequalities of the form Alx
T ≤ bl, then if one computes the set

V∗ = Λ

({(
max
b∈B

∑

a∈A
αaAlr(a, b)T

)
l=1,··· ,L : ᾱ ∈ ∆(A)

})
,

then one can simply verify whether there is a ū ∈ V∗ such that ū � b. If so, then the
polyhedron is attainable, otherwise it is not. Since any convex set can be approximated to
an arbitrary precision by a convex polyhedron, one can approximately answer the question
of attainability for this convex set in a similar way.

1.3 Repeated vector-valued games

A classical model in games is where a pair of players play a particular matrix game repeatedly,
while getting the matrix payoffs corresponding to the actions chosen in each stage. When
the game is repeated finitely many times, then the payoff of this game is typically defined
to be simply the average of the stage payoffs. When the game is played infinitely often,
one then needs to define the total payoff of the game. Two payoffs typically considered are
the expected discounted payoff and the expected limiting average payoff. For a sequence
of actions (a1, b1, a2, b2, · · · ), for a discount factor β ∈ (0, 1), the total discounted payoff is
defined as:

(1− β)
∞∑

t=1

βtr(at, bt). (1.1)
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(0,	  1)	   (0,	  0)	  

(0,	  0)	   (1,	  0)	  

Alice	  

Bob	  1	   2	  

2	  

1	   V∗(0, 1)

(0, 0) (1, 0)

Figure 1.4. A vector valued zero-sum game (left) and the set of minimal one-stage
simultaneous guarantees (right).

Note that if the payoffs r(a, b) are bounded, then the quantity
∑∞

t=1 β
tr(at, bt) is well-defined

and it is bounded as well. The limiting average payoff is defined as:

lim sup
T→∞

1

T

T∑

t=1

r(at, bt). (1.2)

An adaptive randomized strategy (also called behavioral strategy) for each player prescribes
a mapping from the history of observed actions till time t, i.e., Ht = (a1, b1, · · · , at, bt) to
a randomization over their action set. We then ask the standard questions: what are the
minmax and maxmin values of the game and are they equal? When the game is scalar
zero-sum, the answer is simple. The minmax and the maxmin strategies are exactly playing
the minmax and maxmin strategies respectively of the single-shot game in every stage. The
value of the finite average, the discounted and the limiting average game is V , the value of
the one shot game.

But what about repeated vector-valued games? Let us look at a simple example where the
game in Figure 1.4 is repeated twice. Computing such multi-stage optimal guarantees is
going to be a recurring theme throughout this thesis and hence we explain it in some detail.
Clearly, since the second stage is the last, the set of optimal guarantees that Alice can achieve
after the first stage is the set V∗ shown in Figure 1.4 on the right. Now a strategy for Alice
consists of choosing some ᾱ ∈ ∆(A) at stage 1 and then, choosing a point R(b) in the set
V∗ in stage 2 for every possible action b of Bob in stage 1. These choices are illustrated in
Figure 1.5, on the left.

For these choices of Alice, observe that if Bob wants to maximize component 1, he chooses
action 2, and if he wants to maximize component 2 then he chooses action 1. Thus the
resulting guarantee that Alice can achieve from time 1 onwards is as shown in the figure.
By varying the choices of ᾱ, R(1) and R(2), one gets the set of all achievable simultaneous
guarantees. The Pareto frontier of this set, V∗2, is shown in the figure on the right. Observe
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(0, 1)

(0, 0) (1, 0)ᾱ1

R(1)

R(2)

v2(ᾱ1,R(1),R(2))

(0, 1)

(0, 0) (1, 0)

V∗
2

(0, 2)

(2, 0)

V2

Figure 1.5. Computing the set of two-step simultaneous guarantees (left) and the
minimal set of two-stage guarantees V∗2 (right). Also shown is the set V2 of minimal
guarantees obtained with non-adaptive strategies

that V∗2 clearly gives (component-wise) better guarantees than those in V2 obtained by simply
choosing different one shot guarantees in each stage. Thus reacting to Bob’s actions has
a clear advantage. As an example, the point ū = (0.5, 1) is achieved by first choosing
ᾱ1 = (0.5, 0.5) in stage 1, then if Bob plays action 1, then play ᾱ2 = (0.5, 0.5) in stage 2 as
well, otherwise if he plays action 2, then play action 1 in stage 2.

This example is a simple illustration of the fact that the minimal simultaneous guarantees
achievable in repeated games can be obtained by backward induction. One starts with the
optimal set achievable in the last stage, and constructs the optimal set achievable from the
second to last stage and so on till one obtains the optimal guarantees achievable from the
beginning of the game. The operator that takes the minimal achievable set for an N stage
repeated game and gives the minimal achievable set for the N + 1 stage game is a set-valued
dynamic programming operator defined on the space of Lower Pareto Frontiers of certain
sets. This is an illustration of the general approach that will be formally established for
different classes of games in the rest of this thesis.

1.3.1 A Minmax theorem due to Blackwell

Although there are no known analogues of the minmax theorem for a single-shot matrix game
with vector payoffs, Blackwell, in his seminal paper [4] proved a generalization of the minmax
theorem for infinitely repeated vector-valued games. The notion is geometric. Recall that
an interpretation of the minmax theorem is that if the payoffs of the matrix game lie in the
interval [m,M ], then for any sets of the form [r,M ] or [m, r], for any player, either he/she
has a strategy that ensures that the expected payoff of the game is in the given set, or other
player has a strategy that ensures that the expected payoff is outside that set.
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Blackwell proved a result in similar vein for infinitely repeated games with vector payoffs.
He showed that that for any closed convex set, a player either has a strategy to ensure that
the long-run average payoffs of the game lie in that set with a probability approaching 1 as
the number of stages goes to infinity, in which case the set is said to be approachable, or
the other player has a strategy to ensure that the average payoffs are outside that set with
a probability approaching 1, in which case the set is said to be excludable. He also showed
that a necessary and sufficient condition for a closed convex set to be approachable is that
every halfspace that contains it is approachable. And a halfspace γxT ≤ b is approachable
if and only if the corresponding scalar-valued game obtained by the projection of the payoff
vectors on the halfspace, i.e., the game with payoffs {γr(a, b)T} has a value that is less than
or equal to b. In the case where a closed convex set is approachable, Blackwell also designed
a strategy that ensures that the set is ‘approached’.

Using Blackwell’s results, one can determine the set of minimal simultaneous guarantees that
Alice can achieve in a repeated game with limiting average rewards. We have observed, as we
will see when we discuss the applications of our results, that the set of minimal guarantees
for the discounted case seems to converge to this set (in a sense that would be defined later
in Chapter 2) as the discount factor approaches 1. We conjecture that this holds in general.
Analogous results have been shown to hold in Markov Decision Processes and zero-sum
stochastic games, see [27, 30].

1.4 Organization of the thesis

Chapter 2 begins with the model of repeated games with discounting and formally estab-
lishes that the set of minimal achievable simultaneous guarantees is the fixed point of an
appropriately defined set-valued dynamic programming operator defined on the space of
Lower Pareto Frontiers of convex and compact sets with an appropriately defined metric.
It also demonstrates a value-iteration based procedure to approximate this set and extract
approximately optimal strategies.

Chapter 3 is devoted to the applications and extensions of the results in Chapter 2. Two
applications are considered. First is to the problem of regret minimization in repeated games
with discounted losses, where this theory yields the first characterization of the minmax
optimal regret and the corresponding policy. The second is to the celebrated model of
discounted repeated games with incomplete information on one side due to Aumann and
Maschler [3], where this theory resolves a long-standing open problem of characterizing and
computing the optimal policy for the uninformed player. We consider two extensions: one
where in each stage, the actions are not chosen simultaneously, but either of the players
chooses his/her action first and then the other one makes a choice. Both these cases result
in different dynamic programming operators and the properties of the optimal policy changes
in the case where Alice acts first.

Chapter 4 is concerned with generalizing these ideas to more general models of dynamic
games with vector payoffs. We consider two classes of models. First is the class of stochastic
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games. These games proceed in stages and in each stage the players are in one of a finite
set of states. Depending on the state, their actions result in a vector-valued payoff and
the state probabilistically moves to another state in the next stage. A repeated game can
thus be seen as a stochastic game in which there is only one state. We show again that
for stochastic games with discounted payoffs, the sets of minimal simultaneous guarantees
achievable beginning from the different states are a fixed point of a dynamic programming
operator defined on the product (one for each state) of the space of lower Pareto frontiers of
convex compact sets.

Next, we consider another model of dynamic games called reachability games. In a reacha-
bility game, Alice and Bob take turns to deterministically move the state of a system within
a finite set of states, according to a set of fixed rules. Given an initial state, a set of states
is reachable if Bob has a strategy that guarantees that the state enters this set in a finite
time. Similarly, a set of states is excludable if Alice has a strategy that guarantees that the
state never reaches this set. An excludable set is maximal if any larger set that contains it
is reachable. We present an efficient algorithm to compute the maximal excludable subsets
of any specified set of target states and the corresponding strategies. We characterize these
maximal subsets as the fixed point of a dynamic programming operator defined on the space
of ‘maximal’ subsets of the set of target sets. Chapter 5 concludes the thesis with a summary
and a discussion of possible future directions.
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Chapter 2

Simultaneous Guarantees in Repeated

games with vector losses

2.1 Model

Consider a two-player vector-valued game G defined by an action set A = {1, · · · ,m} for
player 1, who is the decision-maker and whom we will call Alice, and the action set B =
{1, · · · , n} for player 2 who is the adversary and whom we will call Bob. For each pair of

actions a ∈ A and b ∈ B, Alice incurs a vector-valued loss r(a, b) ∈ RK . For simplicity, we

restrict the discussion to the case where K = 2, i.e. r(a, b) =
(
r1(a, b), r2(a, b)

)
, although

the results hold for any finite K.

The game G is played repeatedly in stages t = 1, 2, 3, · · · . In each stage t, both Alice and
Bob simultaneously pick their actions at and bt respectively, and Alice bears the vector of

losses r(at, bt) =
(
r1(at, bt), r2(at, bt)

)
. Fix a discount factor β ∈ [0, 1). Then the vector of

total discounted losses is defined as:

∞∑

t=1

βt−1r(at, bt) =

( ∞∑

t=1

βt−1r1(at, bt),
∞∑

t=1

βt−1r2(at, bt)

)
. (2.1)

An adaptive randomized strategy φA for Alice specifies for each stage t, a mapping from the
set of observations till stage t, i.e., Ht = (a1, b1, · · · , at−1, bt−1), to a probability distribution
on the action set A, denoted by ∆(A). Let ΦA be the set of all such policies of Alice.
Similarly, let ΦB be the set of all adaptive randomized strategies for Bob. For a pair of
strategies φA and φB, the expected discounted loss on component k in the repeated game is
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given by:

Rk(φA, φB) = EφA,φB

[ ∞∑

t=1

βt−1rk(at, bt)

]
, (2.2)

where the expectation is over the randomness in the strategies φA and φB. Now consider a
fixed policy φA ∈ ΦA. If Alice plays this strategy, then irrespective of the strategy chosen
by Bob, Alice guarantees that the long term expected losses on different components lie in
the ‘corner set’ :

C(φA) ,

{
x̄ ∈ Rm : xk ≤ max

φkB∈ΦB

Rk(φA, φ
k
B) for all k ∈ {1, 2}

}

defined by the corner point

(
max
φ1B∈ΦB

R1(φA, φ
1
B), max

φ2B∈ΦB
R2(φA, φ

2
B)

)
.

Let the set of all the corner points, or simultaneous guarantees that correspond to all the
strategies φA ∈ ΦA be defined as:

W ,

{(
max
φ1B∈ΦB

R1(φA, φ
1
B), max

φ2B∈ΦB
R2(φA, φ

2
B)

)
: φA ∈ ΦA

}
. (2.3)

Our objective is to characterize and compute the minimal points in the set W, i.e., its Lower
Pareto frontier, which is the set

U∗ = Λ(W) , {x̄ ∈W : ∀ x̄′ ∈W \ {x}, ∃ k s.t. xk < x′k}, (2.4)

and compute policies for Alice in ΦA that guarantee different points in this set.

2.1.1 Summary of main results in this chapter

• We show that the set U∗ of minimal losses that a (loss minimizing) player can simulta-
neously guarantee in a vector-valued zero-sum repeated game with discounted losses is
the fixed point of a set-valued dynamic programming operator defined on the space of
Lower Pareto frontiers of closed convex sets with an appropriately defined metric. We
then show that the optimal policies that guarantee different points in this set are of
the following form. U∗ can be parametrized so that each point corresponds to a ‘state’
in a compact state space. Each state is associated with an immediate optimal random-
ized action and a transition rule that depends on the observed action of the adversary.
In order to attain a point in U∗, the minimizing player starts with the corresponding
state, plays the associated randomized action, transitions into another state depend-
ing on the adversary’s observed action as dictated by the rule, plays the randomized
action associated with the new state and so on. In particular, the strategy does not
depend on the past actions of the minimizer and it depends on the past actions of
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the adversary only through this state that the minimizing player keeps track of. The
compactness of the state space of this strategy is in sharp contrast to the unbounded
memory required to implement the Blackwell approachability strategy (and other such
optimal strategies) for the average case, since it needs to keep track of the time.

• For the case where K = 2, we give a value-iteration based procedure to approximate
U∗ and to compute an approximately optimal policy that only uses a coarse finite
quantization of the compact state space. This strategy can be simply implemented
by a randomized finite-state automaton. Any desired diminishing approximation error
can be attained by choosing the appropriate quantization granularity and number of
iterations. Our procedure is easily extendable to an arbitrary number of actions.

2.2 Set-valued dynamic programming

In the remainder of the chapter, our goal is to compute U∗ = Λ(W) as defined before. We will
show that this set is the unique fixed point of a set-valued dynamic programming operator
defined on an appropriately defined metric space of Pareto Frontiers. In order to present our
results, we first define this space.

2.2.1 Defining the space of Pareto frontiers

We first define Pareto frontiers in [0, 1]2.

Definition 2.2.1.

(a) Let ū, v̄ ∈ R2. We say that ū � v̄ if u1 ≤ v1 and u2 ≤ v2. Also, we say that ū ≺ v̄ if

ū � v̄ and ū 6= v̄. If ū ≺ v̄, we say that v̄ is dominated by ū.

(b) A Pareto frontier in [0, 1]2 is a subset V of [0, 1]2 such that no v̄ ∈ V is dominated by

another element of V.

(c) The Lower Pareto frontier (or simply Pareto frontier) of S ⊂ [0, 1]2, denoted by Λ(S), is

the set of elements of S that do not dominate any another element of S.

Figure 2.1 shows the lower Pareto frontiers of some sets in [0, 1]2: The Pareto frontier of
a set may be empty, as is certainly the case when the set is open. The following result is
useful.

Lemma 2.2.1. Suppose that S is a compact subset of R2. Then Λ(S) is non-empty.
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0
0

1

1

Figure 2.1. Lower Pareto frontiers of some sets in [0, 1]2.

Proof. For some p ∈ (0, 1) consider the minimization problem:

min
x∈S

f(x) = px1 + (1− p)x2.

Since f(x) is a continuous function defined on a compact set, it achieves this minimum value

at some point x(p) ∈ S. Hence there cannot be any point x̄′ � x(p), which means that x(p)

is on the Pareto frontier of S.

Note that a set in R2 is compact iff it is closed and bounded. We define the following space
of pareto frontiers:

Definition 2.2.2. F is the space of Pareto frontiers of closed and convex subsets of [0, 1]2.

We will now define a metric on this space. We first define the upset of a set, illustrated in
Figure 2.2.

Definition 2.2.3. Let A be a subset of [0, 1]2. The upset up(A) of A is defined as up(A) =

{x̄ ∈ [0, 1]2 | x1 ≥ y1 and x2 ≥ y2, for some ȳ ∈ A}. Equivalently, up(A) = {x̄ ∈ [0, 1]2 |

x̄ = ȳ + v̄, for some ȳ ∈ A and v̄ � 0}.

It is immediate that the upset of the Pareto frontier of a closed convex set in [0, 1]2 is closed
and convex.

We recall the definition of Hausdorff distance induced by the ∞-norm.
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Figure 2.2. A Pareto frontier V and its upset up(V).

Definition 2.2.4. Let A and B be two subsets of R2. The Hausdorff distance h(A,B)

between the two sets is defined as

h(A,B) = max{sup
x̄∈A

inf
ȳ∈B
||x̄− ȳ||∞, sup

ȳ∈B
inf
x̄∈A
||x̄− ȳ||∞}.

We now define the distance between two pareto frontiers in F as the Hausdorff distance
between their upsets.

Definition 2.2.5. For two pareto frontiers U and V in F, we define the distance d(U,V)

between them as d(U,V) = h(up(U), up(V)).

We can then show that F is complete in the metric d. This follows from the completeness
of the Hausdorff metric for closed convex subsets of [0, 1]2.

Proposition 2.2.1. Let Vn be a sequence in F. Suppose that supm,k>n d(Vm,Vk)→ 0. Then

there exists a unique V ∈ F such that d(Vn,V)→ 0.

In order to prove the result, we need the following set of results about the Hausdorff distance:

Lemma 2.2.2. a) h is a metric on the space of closed subsets of R2.

b) Assume that {An} is a Cauchy sequence of closed subsets of [0, 1]2. Then there is a unique

closed subset A of [0, 1]2 such that h(An,A)→ 0. This set A is defined as follows:

A = {x̄ ∈ [0, 1]2 | ∃x̄n ∈ An s.t. x̄n → x̄}.
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c) If the sets {An} in b) are convex , then A is convex.

d) h(up(A), up(B)) ≤ h(A,B).

Proof. a)-b) This is the well-known completeness property of the Hausdorff metric; see [28].

c) Say that x̄, ȳ ∈ A. Then x̄ = limn x̄n and ȳ = limn ȳn for x̄n ∈ An and ȳn ∈ An. By

convexity of each An, z̄n := λx̄n + (1 − λ)ȳn ∈ An. But then, z̄n → z̄ := λx̄ + (1 − λ)ȳ. It

follows that z̄ ∈ A, so that A is convex.

d) Let ε := h(A,B). Pick x̄ ∈ up(A). Then x̄ = ȳ + v̄ for some ȳ ∈ A and v � 0. There is

some ȳ′ ∈ B with ‖ȳ− ȳ′‖∞ ≤ ε. Then x̄′ = min{ȳ′+ v,1} ∈ up(B), where the minimization

is component-wise. We claim that ‖x̄′ − x̄‖∞ ≤ ε.

If ȳ′ + v̄ ∈ [0, 1]2, this is clear. Assume y′1 + v1 > 1. Then,

x′1 = 1 < y′1 + v1 and x1 = y1 + v1 ≤ 1.

Thus,

0 ≤ x′1 − x1 < y′1 + v1 − y1 − v1 = y′1 − y1.

Hence, |x′1 − x1| ≤ |y′1 − y1|. Similarly, |x′2 − x2| ≤ |y′2 − y2|. Thus, one has

‖x̄′ − x̄‖∞ ≤ ‖ȳ′ − ȳ‖∞ ≤ ε.

Now we can prove the proposition.

Proof. Under the assumptions of the proposition, {up(V)n, n ≥ 1} is Cauchy in the Haus-

dorff metric, so that, by Lemma 2.2.2, there is a unique closed convex set such that

h(up(V)n,A) → 0. But since h(up(V)n, up(A)) ≤ h(up(V)n,A) (from Lemma 2.2.2), we

have that h(up(V)n, up(A)) → 0 and hence up(A) = A. Thus the Pareto frontier V of A is

then such that d(Vn,V)→ 0.
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To show uniqueness of V, assume that there is some U ∈ F such that d(Vn,U) → 0. Then,

the closed convex set up(U) is such that h(up(V)n, up(U))→ 0. By Lemma 2.2.2, this implies

that up(U) = up(V), so that U = V.

2.2.2 A dynamic programming operator and the existence of a

fixed point

By scaling and shifting the losses, we assume without loss of generality that rk(a, b) ∈ [0, 1−β]
for all (a, b, k). Accordingly, the total discounted losses of the game take values in [0, 1]. Now,

for a closed set S ⊆ [0, 1]2, define the following operator Ψ that maps S to a subset of R2:

Ψ(S) =

{(
max
b

{ m∑

a=1

αa
[
r1(a, b) + βR1(a, b)

]}
,max

b

{ m∑

a=1

αa
[
r2(a, b) + βR2(a, b)

]})

: (R1(a, b), R2(a, b)) ∈ S, ᾱ ∈ ∆(A)

}
. (2.5)

This operator can be interpreted as follows. Assuming that S is the set of pairs of expected
guarantees on losses that Alice can ensure from stage t+ 1 onwards, Ψ(S) is the set of pairs
of expected guarantees that she can ensure beginning from time t.

We will show that if S is closed then Ψ(S) is closed as well. But if S is convex then Ψ(S)
is not necessarily convex. Nevertheless we can show that the Pareto frontier of Ψ(S) is the
Pareto frontier of some convex and compact set. Following is the result.

Lemma 2.2.3. Let S ⊆ [0, 1]2 be a closed set. Then Ψ(S) ⊆ [0, 1]2 is closed. If in addition,

S is convex, then:

1. Any point ū in Λ(Ψ(S)) is of the form:

ū =

(
max
b

{ m∑

a=1

αa
[
r1(a, b)

]
+ βQ1(b)

}
,max

b

{ m∑

a=1

αa
[
r2(a, b)

]
+ βQ2(b)

})

for some Q(b) ∈ Λ(S), for each b ∈ B.

2. Λ(Ψ(S)) ∈ F.
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The first point calls for some explanation. Recall the interpretation that S is the set of
guarantees that Alice can achieve from time t+1 onwards. The result says that if S is closed
and convex, then to achieve the minimal points in the set Ψ(S) beginning from time t, the
guarantees in S beginning from time t + 1 chosen by Alice need only depend on the action
of Bob at time t and not on her own action at time t. In order to prove this lemma, we need
a few intermediate results. First, we need the following fact:

Lemma 2.2.4. Let V be the Lower Pareto frontier of a closed convex set. Then V is closed.

Proof. Suppose that {x̄n} is a sequence of points in V that converge to some point x̄. Then

since S is closed, x̄ ∈ S. We will show that x̄ ∈ V. Suppose not. Then there is some ū ∈ V

such that ū � x̄. Suppose first that u1 < x1 and u2 < x2. Then let ε = min(x1−u1,x2−u2)
2

and

consider the ball of radius ε around x̄, i.e.

Bx̄(ε) = {ȳ ∈ R2 : ‖ȳ − x̄‖2 ≤ ε}.

Then for any point ȳ in Bx̄(ε), we have that ū � ȳ. But since {x̄n} converges to x̄, there

exists some point in the sequence that is in Bx̄(ε), and ū is dominated by this point, which

is a contradiction. Hence either u1 = x1 or u2 = x2. Suppose w.l.o.g. that u1 < x1 and

u2 = x2. See Figure 2.3. Let δ = x1−u1
2

and consider the ball of radius δ centered at x̄, i.e.

Bx̄(δ). Let x̄n be a point in the sequence such that x̄n ∈ Bx̄(δ). Now xn1 > u1 and hence it

must be that xn2 < u2.

Now some λ ∈ (0, 1), consider a point r̄ = λū+(1−λ)x̄n such that r1 = u1 + δ
2
. It is possible

to pick such a point since x1 = u1 + 2δ and |xn1 − x1| ≤ δ, and hence xn1 > u1 + δ
2

(please see

the figure). Now r̄ ∈ S since S is convex. Now r1 = x1− 3δ
2
< x1 and also r2 < u2 = x2 since

λ > 0 and xn2 < u2. Let δ′ = x2−r2
2

. Then consider the ball Bx̄(δ
′) centered at x̄. Clearly

r̄ � ȳ for any ȳ ∈ Bx̄(δ
′). But since {x̄n} converges to x̄, there exist some point in the

sequence that is in Bx̄(δ
′), and r̄ is dominated by this point, which is again a contradiction.

Thus x̄ ∈ V and hence V is closed.

Note that the Pareto frontier of a closed set need not be a closed set, as the example in
Figure 2.4 shows.

Next we define the following notion of convexity of pareto frontiers.
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Figure 2.3. Construction in the proof of Lemma 2.2.4.
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Figure 2.4. A closed set S whose Pareto frontier V is not closed.

Definition 2.2.6. A Pareto frontier V is p-convex if for any v̄, ū ∈ V and for each λ ∈ [0, 1],

there exists a point r̄(λ) ∈ V such that r̄(λ) � λv̄ + (1− λ)ū.

We then show the following equivalences.

Lemma 2.2.5. For a Pareto frontier V ⊂ [0, 1]2, the following statements are equivalent:

1. V is p-convex and a closed set.

2. V is p-convex and the lower Pareto frontier of a closed set S ⊆ [0, 1]2.

3. V is the lower Pareto frontier of a closed convex set H ⊆ [0, 1]2.

Proof. 1 is a special case of 2 and hence 1 implies 2. To show that 2 implies 3, if S is convex
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then there is nothing to prove. So assume S is not convex. Then let H be the convex hull of

S. First, since [0, 1]× [0, 1] is convex, H ⊆ [0, 1]× [0, 1]. Then since S is closed and bounded,

it is also compact. Hence H is the convex hull of a compact set, which is compact and hence

closed and bounded. Now we will show that V is the Lower Pareto frontier of H. To see

this, any ū ∈ S is of the form ū = λx̄ + (1 − λ)ȳ where x̄, ȳ ∈ S. But then there are points

x̄′, ȳ′ ∈ V such that x̄′ � x̄ and ȳ′ � ȳ. Thus we have that

λx̄′ + (1− λ)ȳ′ � λx̄+ (1− λ)ȳ = ū.

But since V is convex, there exists some r̄(λ) ∈ V such that

r̄(λ) � λx̄′ + (1− λ)ȳ′ � λx̄+ (1− λ)ȳ = ū.

Thus the Pareto frontier of H is a subset of V, but since V ∈ H and it is a Pareto frontier,

V is the Lower Pareto frontier of H. Finally Lemma 2.2.4 shows that 3 implies that V is

closed. To show it is convex, suppose that ū and v̄ are two points in V. Since they also

belong to H, which is convex, for each λ ∈ [0, 1], λū + (1− λ)v̄ ∈ S and thus there is some

r̄(λ) ∈ V such that r̄(λ) � λū+ (1− λ)v̄. Thus V is convex.

We can now finally prove the lemma.

Proof. Note that Ψ(S) is the image of the continuous function f from the product space

Sm×n×∆(A) to a point in R2, which is a Hausdorff space. Since S is closed and bounded, it

is compact. Also the simplex ∆(A) is compact. Thus by Tychonoff’s theorem, the product

space Sm×n × ∆(A) is compact. Hence by the closed map Lemma, f is a closed map and

hence Ψ(S) is closed.

Now assume that S is a closed convex set. Then Λ(S) exists by Lemma 3.1 and further it

is p-convex by Lemma 2.2.5. Let U = Λ(S). Clearly, Λ(Ψ(S)) = Λ(Ψ(U)). Recall that any

point ū in Λ(Ψ(U)) is of the form:

ū =

(
max
b

{ m∑

a=1

αa
[
r1(a, b) + βR1(a, b)

]}
,max

b

{ m∑

a=1

αa
[
r2(a, b) + βR2(a, b)

]})
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for some ᾱ ∈ ∆(A) and R(a, b) ∈ U. But since U is p-convex, for each b ∈ B, there exists

some Q(b) ∈ U such that Q(b) �∑m
a=1 αaR(a, b). Hence statement 1 follows.

Now let

ū =

(
max
b

{ m∑

a=1

αa
[
r1(a, b)

]
+ βQ1(b)

}
,max

b

{ m∑

a=1

αa
[
r2(a, b)

]
+ βQ2(b)

})

and

v̄ =

(
max
b

{ m∑

a=1

ηa
[
r1(a, b)

]
+ βR1(b)

}
,max

b

{ m∑

a=1

ηa
[
r2(a, b)

]
+ βR2(b)

})

be two points in Λ(Ψ(U)), where ᾱ, η̄ ∈ ∆(A) and Q(b), R(b) ∈ V.

For a fixed λ ∈ [0, 1], let κa = αaλ+ ηa(1− λ). Then

λū+(1−λ)v̄ =

(
λmax

b

{ m∑

a=1

αa
[
r1(a, b)

]
+βQ1(b)

}
+(1−λ) max

b

{ m∑

a=1

ηa
[
r1(a, b)

]
+βR1(b)

}
,

λmax
b

{ m∑

a=1

αa
[
r2(a, b)

]
+ βQ2(b)

}
+ (1− λ) max

b

{ m∑

a=1

ηa
[
r2(a, b)

]
+ βR2(b)

})

�
(

max
b

{ m∑

a=1

κa
[
r1(a, b)

]
+ βλQ1(b) + (1− λ)R1(b)

}
,

max
b

{ m∑

a=1

κa
[
r2(a, b)

]
+ βλQ2(b) + (1− λ)R2(b)

})

�
(

max
b

{ m∑

a=1

κa
[
r1(a, b)

]
+ βL1(b)

}
,max

b

{ m∑

a=1

κa
[
r2(a, b)

]
+ βL2(b)

})

The first inequality holds since max is a convex function and the second follows since U is

p-convex, and hence L(b) = (L1(b), L2(b)) ∈ U that satisfy the given relation exist. Thus

Λ(Ψ(S)) is p-convex. And hence from Lemma 2.2.5, it is the Lower Pareto frontier of a

closed convex set in [0, 1]2, i.e. it is in F.

Define the following dynamic programming operator Φ on F. We will call it the general-
ized Shapley operator, since Shapley [29] was the first to propose a dynamic programming
operator to compute the minmax in zero-sum Stochastic games.
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Definition 2.2.7. (Generalized Shapley (GS) operator) For V ∈ F, we define Φ(V) =

Λ(Ψ(V)).

Now since V is the Lower Pareto frontier of some closed convex subset of R2, say S, and since
Λ(Ψ(V)) = Λ(Ψ(S)), from Lemma 2.2.3, we know that Φ(V) ∈ F whenever V ∈ F. Next, we
claim that Φ is a contraction in the metric d.

Theorem 2.2.1.

d(Φ(U),Φ(V)) ≤ βd(U,V). (2.6)

In order to prove this lemma, we first define another metric on the space F that is equivalent
to d.

Definition 2.2.8. For two Pareto frontiers A and B of [0, 1]2, we define

e(A,B) ,

inf{ε ≥ 0 : ∀ ū ∈ A, ∃ v̄ ∈ B s.t. v̄ � ū+ ε1 and ∀ v̄ ∈ B, ∃ ū ∈ A s.t. ū � v̄ + ε1}. (2.7)

Here 1 = (1, 1).

We show that the two metrics are equivalent.

Lemma 2.2.6.

e(A,B) = d(A,B).

Proof. Suppose that e(A,B) ≤ ε. Consider a point x̄ ∈ up(A) such that x̄ = ȳ + v̄ where

ȳ ∈ A and v̄ � 0. Suppose that there is no x̄′ ∈ up(B) such that ‖x̄− x̄′‖∞ ≤ ε. This means

that up(B) is a subset of the region S shown in the Figure 2.5. But since ȳ = x̄ − v̄, ȳ is

in region S′. But for any ū ∈ S and w̄ ∈ S′, ‖ū − w̄‖∞ ≥ ε. This contradicts the fact that

for ȳ there is some ȳ′ ∈ B, such that ȳ + ε1 � ȳ′. Thus d(A,B) ≤ ε. Now suppose that

d(A,B) ≤ ε. Then for any x̄ ∈ A, there is a x̄′ ∈ up(B) such that ‖x̄ − x̄′‖∞ ≤ ε where

x̄′ = ȳ + v̄ for ȳ ∈ B and v̄ � 0. Thus x̄+ ε1 � x̄′ = ȳ + v̄. Thus e(A,B) ≤ ε.
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Figure 2.5. Construction for the proof of Lemma 2.2.6

We can now prove Lemma 3.3.

Proof. Suppose e(U,V) = ε. Let

(
max
b

{ m∑

a=1

αar1(a, b) + βR1(b)

}
,max

b

{ m∑

a=1

αar2(a, b) + βR2(b)

})

be some point in Φ(V), where ᾱ ∈ ∆(A). Then for each R(a, b), for each a and b, we can

choose Q(b) ∈ U such that Q(b) � R(b) + ε1. We then have

max
b

{ m∑

a=1

αar1(a, b) + βQ1(b)

}

= max
b

{ m∑

a=1

αar1(a, b) + βR1(b) + β(Q1(b)−R1(b))

}

≤ max
b

{ m∑

a=1

αar1(a, b) + βR1(b) + βε

}

= max
b

{ m∑

a=1

αar1(a, b) + βR1(b)

}
+ βε.

Similarly, we can show that

max
b

{ m∑

a=1

αar2(a, b) + βQ2(b)

}
≤ max

b

{ m∑

a=1

αar2(a, b) + βR2(b)

}
+ βε. (2.8)
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Thus

(
max
b

{ m∑

a=1

αar1(a, b) + βQ1(b)

}
,max

b

{ m∑

a=1

αar2(a, b) + βQ2(b)

})

�
(

max
b

{ m∑

a=1

αar1(a, b) + βR1(b)

}
,max

b

{ m∑

a=1

αar2(a, b) + βR2(b)

})
+ βε1.

But since

(
maxb

{∑m
a=1 αar1(a, b)+βQ1(b)

}
,maxb

{∑m
a=1 αar2(a, b)+βQ2(b)

})
∈ Ψ(U),

and since Φ(U) = Λ(Ψ(U)), there exists some (L1, L2) ∈ Φ(U) such that

(L1, L2) �
(

max
b

{ m∑

a=1

αar1(a, b) + βQ1(b)

}
,max

b

{ m∑

a=1

αar2(a, b) + βQ2(b)

})
.

Thus

(L1, L2) �
(

max
b

{ m∑

a=1

αar1(a, b) + βR1(b)

}
,max

b

{ m∑

a=1

αar2(a, b) + βR2(b)

})
+ βε1.

We can show the other direction (roles of Φ(U) and Φ(V) reversed) similarly and thus we

have that

e(Φ(U),Φ(V)) ≤ βε = βe(U,V). (2.9)

Finally we show that the GS operator has a unique fixed point and starting from a Pareto
frontier in F, the sequence of frontiers obtained by a repeated application of this operator
converges to the unique fixed point.

Theorem 2.2.2. Let V ∈ F. Then the sequence (An = Φn(V))n∈N converges in the metric

d to a Pareto frontier V∗ ∈ F, which is the unique fixed point of the operator Φ, i.e., the

unique solution of Φ(V) = V.

Proof. Since Φ is a contraction in the metric d, the sequence {An} is Cauchy in F. Hence by

Lemma 2.2.2, {An} converges to a Pareto frontier V∗ ∈ F. The continuity of the operator

further implies that

V∗ = Φ(V∗).
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To show uniqueness, observe that if there are two fixed points U and V, then we have

d(U,V) = d(Φ(U),Φ(V)) ≤ βd(U,V),

which implies that d(U,V) = 0 and hence U = V.

We can then show that V∗ is indeed the optimal set U∗ defined in (3.7) that we are looking
for.

Theorem 2.2.3. U∗ = V∗.

Proof. Fix N ≥ 1 and consider a truncated game where Alice can guarantee the cumulative

losses in βN+1V∗ after time N + 1. Then the minimal losses that she can guarantee after

time N is the set:

Λ

({
max
b∈B

βN
∑

a∈A
αar1(a, b) + βN+1Q1(b),max

b∈B
βN
∑

a∈A
αar2(a, b) + βN+1Q2(b)

| ᾱ ∈ ∆(A), b ∈ B,Q(b) ∈ V∗,∀ b ∈ B
})

.

This set is βNV∗. By induction, this implies that the set of minimal losses that she can

guarantee after time 0 is V ∗.

The losses of the truncated game and of the original game differ only after time N +1. Since

the losses at each step are bounded by (1 − β), the cumulative losses after time N + 1 are

bounded by βN+1(1−β)
1−β = βN+1. Consequently, the minimal losses of the original game must

be in the set

{(ū ∈ [0, 1]2 : u1 ∈ [x1 − βN+1, x1 + βN+1], u2 ∈ [x2 − βN+1, x2 + βN+1], x ∈ V∗}.

Since N ≥ 1 is arbitrary, the minimal losses that Alice can guarantee in the original game

must be in V∗.
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2.2.3 Optimal policies: Existence and Structure

For a Pareto frontier V ∈ F, one can define a one-to-one function from a parameter set P

to V. Such a function parameterizes the Pareto frontier. For instance, consider the function
F V(p) : [0, 1]→ V, where one defines

F V = arg min
x∈V
{px2

1 + (1− p)x2
2}. (2.10)

This function is indeed one-to-one because there is only one ellipse px2
1 + (1− p)x2

2 = c that
shares a tangent at a particular point of V. We now express the GS operator in the form
of such a parametrization. Assume that V∗ is such that V∗ = Φ(V∗). For p ∈ P, choose
ᾱ(p) ∈ ∆(A) and q(b, p) ∈ P for each b ∈ B such that for k ∈ {1, 2},

F V∗

k (p) = max
b
{
∑

a∈A
αa(p)rk(a, b) + βF V∗

k (q(b, p))}.

Then we have the following result.

Theorem 2.2.4. For any p0 ∈ P, the pair of upper bounds on losses x = F V∗(p0) in V∗

is guaranteed by Alice first choosing action a0 ∈ A with probability αa(p0). Then if Bob

chooses an action b0 ∈ B, the optimal guarantees to choose from the second step on are then

βF V∗(p1) in βV∗, where p1 = q(b0, p0), which can be guaranteed by Alice by choosing action

a1 ∈ A with probability αa(p1), and so on.

Proof. Assume that Alice can guarantee every pair βN+1ū of cumulative losses with ū ∈ V∗

after time N + 1 by choosing some continuation strategy in ΦA. Let x̄ = F (p,V∗). We claim

that after time N , Alice can guarantee a loss of no more than βN x̄ on each component by

first choosing aN = a with probability αa(p) and then if Bob chooses b ∈ B, choosing a

continuation strategy that guarantees her F (p′,V∗), where p′ = q(b, p). Indeed by following

this strategy, her expected loss after time N is then

{βN
∑

a

αa(p)rk(a, b) + βN+1F V∗

k (q(b, p))} ≤ βNF V∗

k (p) = βNxk

when the game is Gk. Thus, this strategy for Alice guarantees that her loss after time N is

no more than βNV∗. Hence by induction, following the indicated strategy (in the statement

of the theorem) for the first N steps and then using the continuation strategy from time
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N + 1 onwards, guarantees that her loss is not more than F (p0,V
∗) after time 0. Now, even

if Alice plays arbitrarily after time N + 1 after following the indicated strategy for the first

N steps, she still guarantees that her loss is no more than F (p0,V
∗)+βN+1(1, 1)T . Since this

is true for arbitrarily large values of N , playing the indicated policy indefinitely guarantees

that her loss is no more than F (p0,V
∗).

This implies that P can be thought of as an information state space. Each state is associated
with an immediate optimal randomized action and a transition rule that depends on the
observed action of Bob. In order to attain a point in V∗, Alice starts with the corresponding
state, plays the associated randomized action, transitions into another state depending on
Bob’s observed action as dictated by the rule, plays the randomized action associated with
the new state and so on. In particular, the policy does not depend on the past actions of
Alice and it depends on the past actions of Bob only through this information state that Alice
keeps track of. Since Alice’s optimal policy itself does not depend on her own past actions,
Bob’s optimal response does not depend on them either. Hence one can see that Bob has an
oblivious best response to any optimal policy of Alice.

2.3 Approximating the optimal frontier

We now proceed to propose a computational procedure to approximate the optimal pareto
frontier in R2 and devise approximately optimal policies. In order to do so, we need to
define an approximation of a Pareto frontier. Consider the following approximation scheme
for a Pareto frontier V ∈ F. For an integer N , choose 2N + 1 lines defined as: {y =

x± k
N

: k = 1, 2, · · · , N}. Now for a pareto frontier V in F, define the vector valued function

F V
N(p) : {0,± 1

N
,± 2

N
, · · · ,±N−1

N
,±1} → R2, where for each p,

F V
N(p) = arg minx+ y (2.11)

s.t. x ≥ x1, y ≥ x2, (x1, x2) ∈ V, y = x+ p.

F V
N(p) is essentially the point of intersection of the line y = x+p with the upset of V in [0, 2]2

(see Figure 2.6). Define the approximation operator to be ΓN(V) = Λ

(
ch

({
F V
N(p) : p ∈

{0,± 1
N
,± 2

N
, · · · ,±N−1

N
,±1}

}))
. Here ch denotes the convex hull of a set. Now suppose

that V is the pareto frontier of a convex and compact set. Then we know that Φ(V) is also
the Pareto frontier of a convex and compact set, and thus we can express the compound
operator ΓN(Φ(V)) via a set of explicit optimization problems as in 2.11. Consider the
value-iteration based approximation procedure defined in Algorithm 1. We then we have the
following result:
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Algorithm 1: A procedure for approximating V∗:

• Fix integer N and number of iterations n.

• Initialize F 0(p) = (0, 0) for all p ∈ {0,± 1
N
,± 2

N
, · · · ,±N−1

N
,±1}.

• For i = 0 : n− 1 and for p ∈ {0,± 1
N
,± 2

N
, · · · ,±N−1

N
,±1}, solve

F i+1(p) = arg minx1 + x2

s.t. x1 ≥
∑

a∈A
αa(p)r1(a, b) + βQ1(b, p), x2 ≥

∑

a∈A
αa(p)r2(a, b) + βQ2(b, p),

x2 = x1 + p, ᾱ(p) ∈ ∆(A), Q1(b, p) ≥ F i
1(1), Q2(b, p) ≥ F i

2(−1).

If F i
1(q)− F i

1(q′) 6= 0 then

Q2(b, p)− F i
2(q) ≥ F i

2(q)− F i
2(q′)

F i
1(q)− F i

1(q′)
(Q1(b, p)− F i

1(q))∀ q, q′ s.t. |q − q′| = 1

N
,

else if F i
1(q)− F i

1(q′) = 0 then

Q1(b, p) ≥ F i
1(q).

• Gn = Λ

(
ch

({
F n(p) : p ∈ {0,± 1

N
,± 2

N
, · · · ,±N−1

N
,±1}

}))
.
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Figure 2.6. Approximating V.

Theorem 2.3.1.

d(V∗,Gn) ≤ 1

N

(
1− βn
1− β

)
+ βn. (2.12)

We first need the following lemma about the approximation operator.

Lemma 2.3.1. Consider a V ∈ F. Then

d(V,ΓN(V)) ≤ 1

N
.

Proof. Any point in ΓN(V) is of the form λū+ (1− λ)v̄ where ū, v̄ ∈ V. By the p-convexity

of V, there is some r̄(λ) ∈ V, such that r̄(λ) � λū+ (1− λ)v̄. Also clearly for any ū ∈ V,

min

{
||ū− v̄||∞ : v̄ ∈ ΓN,M(V)

}
≤ max

{
||F V

M,N(p)− F V
M,N(p′)||∞ : |p′ − p| = 1

N

}
=

1

N
.

Next, consider the sequence of functions (F n) generated by the procedure. Define

Gn = Λ

(
ch

({
F n(p) : p ∈ {0,± 1

N
,± 2

N
, · · · ,±N − 1

N
,±1}

}))

and consider the corresponding sequence (Gn). From the definition of F n, one can see that

Gn = ΓN(Φ(Gn−1)) (2.13)
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Note that G0 = {(0, 0)}. Now consider another sequence of pareto frontiers

(
An = Φn(G0)

)

n∈N
(2.14)

Then we have

d(An,Gn) = d(Φ(An−1),ΓN(Φ(Gn−1))) (2.15)

(a)

≤ d(Φ(An−1),Φ(Gn−1)) + d(Φ(Gn−1),ΓN(Φ(Gn−1))) (2.16)

(b)

≤ βd(An−1,Gn−1) +
1

N
(2.17)

where inequality (a) is the triangle inequality and (b) follows from (3.27) and Lemma 2.3.1.
Coupled with the fact that d(A0,G0) = 0, we have that

d(An,Gn) ≤ 1

N

(
1 + β + β2 + · · · βn−1

)
(2.18)

=
1

N

(
1− βn
1− β

)
(2.19)

Since Φ is a contraction, the sequence {An} converges to some pareto frontier V∗. Suppose
that we stop the generation of the sequences {An} and {Gn} at some n. Now since A0 = G0 =
{(0, 0)}, and since the stage payoffs rk(a, b) ∈ [0, 1−β], we have that d(A1,A0) ≤ 1−β. Using

the contraction property of the GS operator, this implies that d(V∗,An) ≤ βn(1−β)
1−β = βn and

thus by triangle inequality we have

d(V∗,Gn) ≤ 1

N

(
1− βn
1− β

)
+ βn. (2.20)

Hence for any ε, there is a pair (N, n) such that d(V∗,Gn) ≤ ε.

2.3.1 Extracting an approximately optimal policy

A 2N+1-mode policy γ is a mapping from each p ∈ {0,± 1
N
,± 2

N
, · · · ,±N−1

N
,±1} to the pair

(
ᾱ(p),

{(
q(b, p), q′(b, p), κ(b, p)

)
: q(b, p), q′(b, p) ∈ {0,± 1

N
,± 2

N
, · · · ,±N − 1

N
,±1}

s.t. |q(b, p)− q′(b, p)| = 1

N
, κ(b, p) ∈ [0, 1], ∀ b ∈ B

})
. (2.21)
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The interpretation is that if the current ‘mode’ is p, then Alice first chooses action a ∈ A
with probability αa(p). Then if Bob plays action b ∈ B, Alice considers the new mode to be
q(b, p) with probability κ(b, p) and q′(b, p) with probability 1− κ(b, p) and plays accordingly
thereafter.

Now consider the optimization problem (2.3) that corresponds to i = n, i.e., the problem
the procedure would have solved if it was allowed to continue for one more iteration. Now
one can extract a 2N + 1-mode policy γn from the solution of this optimization problem as
follows. Defining ᾱ(p) is immediate. Now note that the optimal Q(b, p) is such that either
Q(b, p) = F n(1) or Q(b, p) = F n(−1), or Q(b, p) = κ(b, p)F n(q)+(1−κ(b, p))F n(q′) for some

κ(b, p) ∈ [0, 1] and some q, q′ such that |q−q′| = 1
N

. These define κ(b, p), q(b, p) and q′(b, p) in

our policy. If Q(b, p) = F n(1), then κ(b, p) = 1 and q(b, p) = 1, where as if Q(b, p) = F n(−1)
then κ(b, p) = 0 and q′(b, p) = −1.

Let Vγn be the corresponding Pareto frontier that is attained by the policy γn by choosing
different possible initial randomizations over the 2N+1 modes. We have the following result.

Theorem 2.3.2.

d(Vγn ,V∗) ≤ 1

N

(
1− βn
1− β

)
+ 2βn +

1

N

(
2− βn − βn+1

(1− β)2

)
. (2.22)

In order to prove this we need a few intermediate definitions and results. First, we need to
characterize the losses guaranteed by any 2N + 1-mode policy. Such a policy γ defines the

following operator on a function F : {0,± 1
N
,± 2

N
, · · · ,±N−1

N
,±1} → R2.

∆γ
N(F )(p) =

(
max
b∈B

{∑

a∈A
αa(p)r1(a, b) + κ(b, p)βF1(q(b, p)) + (1− κ(b, p))βF1(q′(b, p))

}
,

max
b∈B

{∑

a∈A
αa(p)r2(a, b) + κ(b, p)βF2(q(b, p)) + (1− κ(b, p))βF2(q′(b, p))

})
. (2.23)

For a function F : {0,± 1
N
,± 2

N
, · · · ,±N−1

N
,±1} → R2, define the following norm:

‖F‖ = max
p∈{0,± 1

N
,± 2

N
,··· ,±N−1

N
,±1}
‖F (p)‖∞.

We can easily show that ∆γ
N is a contraction in the norm.

Lemma 2.3.2.

‖∆γ
N(F )−∆γ

N(G)‖ ≤ β‖F −G‖. (2.24)

We can then show the following result.
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Lemma 2.3.3. Consider a 2N + 1-mode policy γ. Then there is a unique function F γ :

{0,± 1
N
,± 2

N
, · · · ,±N−1

N
,±1} → R2 such that

∆γ
N(F γ) = F γ.

The policy γ initiated at mode p where p ∈ {0,± 1
N
,± 2

N
, · · · ,±N−1

N
,±1}, guarantees the

vector of losses F γ(p).

The first part of the result follows from the fact that the operator is a contraction and the
completeness of the space of vector-valued functions with a finite domain for the given norm.
The second part follows from arguments similar to those in the proof of Theorem 3.3.

Now let Vγn = Λ(ch({F γn(p) : p ∈ {0,± 1
N
,± 2

N
, · · · ,±N−1

N
,±1}})), where F γn is the fixed

point of the operator ∆γn
N .

We then have that

d(Vγn ,V∗) ≤ d(Vγn ,Gn) + d(Gn,V
∗) (2.25)

≤ d(Vγn ,Gn) +
1

N

(
1− βn
1− β

)
+ βn. (2.26)

The following result is immediate.

Lemma 2.3.4.

d(Vγn ,Gn) ≤ ‖F γn − F n‖. (2.27)

Next we have

‖F γn − F n‖ ≤ ‖F γn −∆γn
N (F n)‖+ ‖∆γn

N (F n)− F n‖ (2.28)

(a)
= ‖∆γn

N (F γn)−∆γn
N (F n)‖+ ‖F n+1 − F n‖ (2.29)

(b)

≤ β‖F γn − F n‖+ ‖F n+1 − F n‖. (2.30)

(2.31)

Here (a) holds because ∆γn
N (F n) = F n+1 by the definition of the policy γn, and also because

F γn is a fixed point of the operator ∆γn
N . (b) holds because ∆γn

N is a contraction. Thus we
have

d(Vγn ,Gn) ≤ ‖F γn − F n‖ ≤ ‖F
n+1 − F n‖
1− β . (2.32)

And finally we have:

d(Vγn ,V∗) ≤ 1

N

(
1− βn
1− β

)
+ βn +

‖F n+1 − F n‖
1− β . (2.33)

To finish up, we need the following result:
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Lemma 2.3.5.

‖F n+1 − F n‖ ≤ d(Gn+1,Gn).

Proof. Let ū = F n+1(p) and v̄ = F n(p) for some p. Now ū is the point of intersection of Gn+1

and the line y = x+p. v̄ is the point of intersection of the frontier Gn and the line y = x+p.

Now suppose that ‖ū− v̄‖∞ > d(Gn+1,Gn). Then either for ū, there is no r̄ ∈ Gn such that

r̄ � ū + 1d(Gn+1,Gn) or for v̄, there is no r̄ ∈ Gn+1 such that r̄ � v̄ + 1d(Gn+1,Gn). Either

of the two cases contradict the definition of d(Gn+1,Gn). Thus ‖ū− v̄‖∞ ≤ d(Gn+1,Gn).

Finally, by the triangle inequality we have

d(Gn+1,Gn) ≤ d(An+1,An) + d(Gn+1,An+1) + d(Gn,An) (2.34)

≤ (1− β)βn +
1

N

(
1− βn+1

1− β

)
+

1

N

(
1− βn
1− β

)
. (2.35)

Combining with (2.33) we have the result.

2.3.2 Remarks

Note that the procedure to approximate the frontier and extract an approximately optimal
policy is not optimized for complexity: it is mainly presented to illustrate that our character-
ization of the minmax optimal policy via the fixed point of a dynamic programming operator
opens up the possibility of using several dynamic programming based approximation proce-
dures. In particular, we have not tried to determine an algorithm that achieves the optimal
error-complexity tradeoff. For fixed (N, n), in order to approximate the optimal frontier, the
procedure needs to solve nN linear programs, each with O(N) variables and constraints to
give the corresponding error bound in the theorem. One can split the error into two terms:
the first term is the quantization error which is bounded by 1

N(1−β)
and the iteration error

which is bounded by βn. The second term is relatively benign but the first term requires
N = 1

(1−β)ε
, which grows rapidly when β is close to 1. For finding an approximately optimal

policy, the scaling is like 1
(1−β)2ε

, which is even worse. Nevertheless, note that all of this

computation can be done offline. The resulting approximately optimal policy is very simple
to implement, and requires a small memory.
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Chapter 3

Applications and Extensions

In this chapter, we first discuss two applications of the results in the previous chapter. Then
we will also discuss some extensions of the core ideas. In all of our discussion so far we have
restricted ourselves to games with simultaneous moves, i.e., the two players Alice and Bob
choose their actions simultaneously at each stage. We will now relax this assumption and
consider two related dynamic programming operators: one for the case where Alice chooses
her action first in each step, and then Bob chooses his action after having observed Alice’s
action, and vice versa. We will see that the structure of the optimal policy for Alice changes
if she moves first: in this case, the information state transitions not only depend on Bob’s
actions, but also on her own actions.

3.1 Application 1: Regret minimization in discounted

repeated games

Several types of sequential decision-making problems in an adversarial environment can be
modeled as a repeated game between an agent and the environment (the adversary), where
at each time step, the agent chooses one of several available actions and the environment
simultaneously chooses the loss incurred by the agent for each action. An important example
that has been particularly studied due to its numerous applications (e.g., in financial decision
making) is the problem of combining expert advice (a variant of the path selection problem
that we introduced briefly in Chapter 1). In this problem on each day, the decision-maker
chooses to act based on the recommendations made by a set of experts (see e.g., [9] for a
survey). In these settings, the notion of ‘regret’ is of central importance: it measures the
difference between the player’s actual loss and the loss that she would have incurred if she
had always chosen the single best action against the realized sequence of loss vectors in
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hindsight. It is desirable to use a no-regret strategy, that is a strategy that ensures that the
average regret vanishes as the number of time steps increases regardless of the environment’s
behavior.

A powerful method to obtain no-regret strategies is to transform the game into a vector-
valued repeated game, where the different components keep track of the additional loss
incurred relative to the loss incurred if each of the possible actions were always chosen in the
past, and use Blackwell approachability theory [4] to obtain a strategy that guarantees a zero
average loss on each component. As we discussed in Chapter 1, theory of approachability
gives sufficient conditions for a set to be approachable by a player in a repeated game with
vector losses, which means that there exists a strategy for a player that ensures that the
average loss approaches this set regardless of the adversary’s actions. Moreover, it explicitly
defines an adaptive randomized strategy that ensures this.

Blackwell approachability is an elegant theory that addresses a fundamental problem in
multi-objective decision-making, as a result of which it has found applications in various
online learning problems (see [18], [9, Section 7.8], [26]). However, an important drawback
of this theory is that it is only applicable to average losses. In the real world, losses incurred
in the near future are more damaging than those incurred later. This is usually captured by
introducing a discount factor β ∈ (0, 1) and weighting the t-th stage loss by (1−β)βt−1 (note
that (1−β) is just a normalizing factor, which ensures that the sum of the weights is 1). This
weighted average of losses is called the discounted average. When current losses are more
important than future ones, we cannot expect losses incurred in the initial stages to have an
increasingly negligible contribution to the total loss as the number of stages increases, and
hence we cannot expect to achieve a vanishing average discounted regret. A straightforward
application of Blackwell approachability strategy in the discounted case gives an expected
regret bound of O(

√
1− β) [25] that can be large if β is not close to one.

Curiously, computing the exact minimal expected worst-case regret for the discounted case,
or computing strategies that guarantee this regret has been an open problem. But now that
we can compute the set of minimal simultaneous upper bounds on the losses that can be
achieved by a player in a discounted repeated game with vector losses, we can finally resolve
this problem. In this section, we will demonstrate this.

3.1.1 Related work

The first study of regret minimization in repeated games dates back to the pioneering work
of Hannan [17] who first proposed an algorithm that achieves vanishing average regret. Since
then, numerous other algorithms have been proposed for regret minimization, particularly
in the experts setting [24, 33, 8, 15]. Other settings with more limited feedback have been
considered, most notably the multi-armed bandit setting [2, 7]. Stronger notions of regret
such as internal regret, have also been defined, and corresponding minimizing strategies have
been proposed [14, 10, 6, 31].

Approachability theory was introduced by Blackwell [4] to study achievable guarantees in
vector-valued repeated games. It was also Blackwell who first noticed that approachabil-
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ity can be used to obtain no-regret strategies [5]. This theory was subsequently extended
in various ways [32, 23], and stronger connections with learning problems such as regret
minimization or calibration were shown [1, 26], always for the case of average rewards.

The idea of regret minimization with non-uniformly weighted losses has been considered
before in the literature. These works derive bounds on the regret of natural extensions of
no-regret algorithms ([10], Thm 2.8; [26], Prop. 6]. While these bounds are useful (average
regret goes to zero) if the weights satisfy a non-summability condition, they can be quite
crude if this condition is not satisfied (in particular for the natural discounting of losses that
we consider where weights decrease exponentially) because the average regret in this case does
not vanish. Also, despite the existence of lower bounds ([10], Thm 2.7), the minimax regret
was unknown. In contrast to deriving such bounds, we derive the exact optimal minmax
regret and policy for the natural discounting with any given discount factor. Also, a few
works (see [11] in particular) derive better bounds for the case where future losses are given
a higher weight that current ones, but such a weighting goes against the notion of time value
of money. The difference between our results and prior literature is similar to the difference
between the optimal policy for the discounted multi-armed bandit problem due to Gittins
[16] and the regret minimization for the stochastic multi-armed bandit problem due to Lai
and Robbins [22]: the first analysis gives exact optimality using dynamic programming while
the second is concerned with rate optimality and uses techniques that are quite different.

3.1.2 Repeated games with discounted losses

Let G be a two player game with m actions A = {1, . . . ,m} for player 1, who is assumed to be
the minimizer and who we will call Alice (the decision-maker), and n actions B = {1, . . . , n}
for player 2, who is the adversary and who we will call Bob. For each pair of actions a ∈ A
and b ∈ B, the corresponding loss for Alice is l(a, b) ∈ R. The losses for different pairs of
actions are known to Alice. The game G is played repeatedly in stages t = 1, 2, · · · . In each
stage, both Alice and Bob simultaneously pick their actions at ∈ A and bt ∈ B and Alice
incurs the corresponding loss l(at, bt). The loss of the repeated game is defined to be the

total discounted loss given by
∑∞

t=1 β
t−1l(at, bt). We define the total discounted regret of

Alice as:
∞∑

t=1

βt−1l(at, bt)−min
a∈A

∞∑

t=1

βt−1l(a, bt), (3.1)

which is the difference between her actual discounted loss and the loss corresponding to
the single best action against the sequence of actions chosen by Bob in hindsight. An
adaptive randomized strategy φA for Alice specifies for each stage t, a mapping from the set
of observations till stage t, i.e., Ht = (a1, b1, · · · , at−1, bt−1), to a probability distribution on
the action set A, denoted by ∆(A). Let ΦA be the set of all such policies of Alice.

The adversary Bob is assumed to choose a deterministic oblivious strategy, i.e., his choice is
simply a sequence of actions φB = (b1, b2, b3, · · · ) chosen before the start of the game. Let
ΦB be the set of all such sequences. We would like to compute the worst case or minmax
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expected discounted regret which is defined as:

min
φA∈ΦA

max
φB∈ΦB

EφA

[ ∞∑

t=1

βt−1l(at, bt)

]
−min

a∈A

∞∑

t=1

βt−1l(a, bt), (3.2)

and the strategy for Alice that guarantees this value. Here the expectation is over the
randomness in Alice’s strategy. We can equivalently write this as:

min
φA∈ΦA

max
φB∈ΦB

max
a∈A

EφA

[ ∞∑

t=1

βt−1(l(at, bt)− l(a, bt))
]
. (3.3)

In order to address this objective, it is convenient to define a vector-valued game G, in which,
for a pair of actions a ∈ A and b ∈ B, the vector of losses is r(a, b) with m components
(recall that |A| = m), where

rk(a, b) = l(a, b)− l(k, b) (3.4)

for k = 1, · · · ,m. rk(a, b) is the single-stage additional loss that Alice bears by choosing
action a instead of action k, when Bob chooses b: the so called single-stage regret with
respect to action k. For a choice of strategies φA ∈ ΦA and φB ∈ ΦB of the two players, the
expected loss on component k in this vector-valued repeated game is given by

Rk(φA, φB) = EφA

[ ∞∑

t=1

βt−1rk(at, bt)

]
, (3.5)

where the expectation is over the randomness in Alice’s strategy. Now observe that by
playing a fixed policy φA ∈ ΦA, irrespective of the strategy chosen by Bob, Alice guarantees
that the long term expected losses on different components lie in the ‘corner set’ :

C(φA) ,

{
x̄ ∈ Rm : xk ≤ max

φkB∈ΦB

Rk(φA, φ
k
B) for all k ∈ {1, · · · ,m}

}

defined by the corner point

(
maxφkB∈ΦB Rk(φA, φ

k
B)

)

k=1,··· ,m
. Suppose that we determine the

set of all the corner points, or simultaneous guarantees that correspond to all the strategies
φA ∈ ΦA, defined as:

W ,

{(
max
φkB∈ΦB

Rk(φA, φ
k
B)

)

k=1,··· ,m
: φA ∈ ΦA

}
. (3.6)

Then it is easy to see that minφA∈ΦA
maxφB∈ΦB

maxa∈AEφA

[∑∞
t=1 β

t−1(l(at, bt)− l(a, bt))
]

=

minx̄∈W maxk xk. In fact, we are only interested in finding the minimal points in the set W,
i.e., its Lower Pareto frontier, which is the set

U∗ = Λ(W) , {x ∈W : ∀x′ ∈W \ {x}, ∃ k s.t. xk ≤ x′k}. (3.7)
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Our results help us exactly characterize this set as we will now argue. In fact, U∗ is exactly the
fixed point V∗ of the GS operator in Definition 2.2.7. The only problem in showing this seems
to be that in our discussion on repeated games with vector losses, we endowed the adversary
Bob with a richer strategy space than being able to just choose a sequence of actions offline
and deterministically. We will show that this does not make any difference. First note that
the best response to the optimal strategy of Alice that achieves different points on the frontier
V∗ is deterministic and offline. This is because Alice does not use Bob’s actions to determine
the information state transitions. In fact, if Alice is restricted to use strategies that do not
depend on her own actions chosen in the past, then the best response to such policy is always
an offline deterministic policy, and hence the minimal achievable frontier if Bob is restricted
to use offline deterministic policies is V∗. So all we need to show is that Alice does not gain
by using policies that depend on her own past actions, when Bob is restricted to using only
offline deterministic strategies. To see this, suppose that Vt is the set of guarantees that
Alice can achieve from time t+ 1 onwards by using general randomized adaptive strategies,
assuming that Bob is restricted to using deterministic offline policies. Then the guarantees
that she can achieve at time t are given by first choosing a distribution over her actions ᾱ
and then a mapping from (a, b) to some continuation (randomized adaptive) policy φ(a, b) in
response to the realized action a and Bob’s action b. But since Bob’s responses that maximize
the losses on the different components cannot depend on the realization of Alice’s action a,
and can only depend on ᾱ, his best responses from time t + 1 onwards would effectively be
against the strategy φ′(b) of Alice that chooses the policy φ(a, b) with probability αa for each
realized action a. Note that such policy guarantees a point in Vt. Thus the guarantees that
Alice can achieve from time t onwards is given by the set:

Vt+1 = Λ

({
max
b∈B

βN
∑

a∈A
αar1(a, b) + βN+1Q1(b),max

b∈B
βN
∑

a∈A
αar2(a, b) + βN+1Q2(b)

| ᾱ ∈ ∆(A), b ∈ B,Q(b) ∈ Vt,∀ b ∈ B
})

.

But this is exactly the dynamic programming operator in Definition 2.2.7. Hence we can
conclude from the Theorems 2.2.3 and 2.2.4 that V∗ is indeed the set of minimal guarantees,
even if Bob is restricted to using deterministic offline policies.

3.1.3 Example: Repeated path selection

Consider the following problem that we introduced in Chapter 1. Alice can choose one of
two paths to go to work each day. Each path may be congested, leading to a loss of 1 for
Alice, or it may be clear, leading to no loss. Each day, without knowing the state of the
paths, Alice chooses some path, possibly randomly. After having taken this path, she learns
the congestion levels of the two paths in hindsight. We reproduce the matrix of losses in
Table 3.1. The matrix of single-stage regrets is reproduced in Table 3.2.
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Table 3.1. Possible loss scenarios.

Path 1 1 0 1 0
Path 2 0 1 1 0

Table 3.2. Single-stage regret.

Path 1 (0,1) (0,-1) (0,0) (0,0)
Path 2 (-1,0) (1,0) (0,0) (0,0)

In Figure 3.1, the computed approximately optimal Pareto frontiers for a range of values of
β are shown with the corresponding (theoretical) approximation errors as given by Theorem
2.3.1. Note that these frontiers appear to converge to the optimal frontier for the average
case, i.e. the single point (0, 0), as could be expected. In Table 3.3, for illustration purposes
we compute an approximately optimal 11 −mode policy (N = 5) for β = 0.8. The second
column contains the probability of choosing Path 1 in each of the different modes and columns
3 and 4 give the transition rules to the different modes if Path 1 incurs a loss and if Path
2 incurs a loss respectively. If both the experts incur a loss or incur no loss then one stays
in the same mode as before (although its is sub-optimal for the adversary to choose that
option).

For β ≤ 0.5 we can argue that the following trivial policy is regret-optimal: choose either of
the experts with equal probability in the first stage, and from the next stage onwards always
choose the expert that incurred no loss in the first stage (repeat if both experts incurred the
same loss). The reason is that, because the discounting is so high, once an expert incurs no
loss in the first stage, even if he always incurs loss in the future stages, he is still the best
expert in the long run (since β = 0.5, the first stage is as important as all the future stages).
Thus the optimal policy is to just choose this expert forever.

3.2 Application 2: Repeated games with incomplete

information on one side

One of the most celebrated and well studied models of dynamic games with incomplete
information is a model introduced by Aumann and Maschler of zero-sum repeated games
with incomplete information on one side, see [3]. It is described as follows.

There are K two person zero-sum games G1, · · · , GK , each with m actions, A = {1, · · · ,m}
for player 1, who is the minimizer (Alice), and n actions B = {1, · · · , n} for player 2, who
is the maximizer (Bob). For simplicity, consider the case where K = 2. Let the payoff
corresponding to actions a and b of players 1 and 2 respectively be denoted by r1(a, b) in
game G1 and r2(a, b) in game G2. We further restrict ourselves to the setting where in each
of the games G1 and G2, Alice and Bob play their actions simultaneously.
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β = 0.95 err ≈ 0.15
β = 0.9 err ≈ 0.1
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β = 0.5 err ≈ 0.02
β = 0.4 err ≈ 0.02
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Figure 3.1. Approximations of (1− β)V∗ for different β values with corresponding errors

Table 3.3. An approximately optimal 11-mode policy for β = 0.8.

Modes Pr(Path 1) Transition if Path 1 incurs loss Transition if Path 2 incurs loss
+5 0.994 +4 w.p. 0.63 and +5 w.p. 0.37 Stay in +5
+4 0.97 +3 w.p. 0.88 and +4 w.p. 0.12 Go to +5
+3 0.9113 +1 w.p. 0.13 and +2 w.p. 0.87 Go to +5
+2 0.8082 +1 w.p 0.62 and 0 w.p. 0.38 +5 w.p. 0.37 and +4 w.p. 0.63
+1 0.6656 -1 w.p. 0.62 and 0 w.p. 0.38 +4 w.p. 0.12 and +3 w.p. 0.88
0 0.5 -2 w.p. 0.87 and -1 w.p. 0.13 +2 w.p. 0.87 and +1 w.p. 0.13
-1 0.3344 -4 w.p. 0.12 and -3 w.p. 0.88 +1 w.p. 0.62 and 0 w.p. 0.38
-2 0.1918 -5 w.p. 0.37 and -4 w.p. 0.63 -1 w.p 0.62 and 0 w.p. 0.38
-3 0.0887 Go to -5 -1 w.p. 0.13 and -2 w.p. 0.87
-4 0.03 Go to -5 -3 w.p. 0.88 and -4 w.p. 0.12
-5 0.006 Stay in -5 -4 w.p. 0.63 and -5 w.p. 0.37
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We define the game G∞ as follows. One of the two games G1 and G2 is chosen by nature
with probability (p, 1 − p) respectively. This distribution is known to both the players but
the actual choice of the game is informed to Bob and not to Alice. Let the chosen game be
denoted by G. Then this game G is played infinitely often in stages t = 1, · · · ,∞. At each
stage t, Alice and Bob play their actions simultaneously. The payoff that is incurred by the
players is not observed by Alice at any stage, but she observes Bob’s actions. An adaptive
randomized strategy (also called a behavioral strategy) φ1 for Alice specifies for each time

t, a mapping from her set of observations till time t, i.e. H1
t = (a1, b1, · · · , at−1, bt−1), to

∆(A). A behavioral strategy φ2 for Bob specifies for each time t, a mapping from his set of

observations till time t and the choice of the game G, i.e. H2
t = (G, a1, b1, · · · , at−1, bt−1), to

∆(B). We will express the behavioral strategy φ2 of Bob as φ2 = (φ2
1, φ

2
2), where φ2

i is his
strategy conditioned on the event {G = Gi}.
One needs to specify the objectives of the two players in G∞. For a discount factor β ∈ (0, 1)
and for a choice of strategies φ1 and φ2 of the two players, the ex-ante expected payoff is
given by

R(φ1, φ2) = Eφ1,φ2,G

[ ∞∑

t=1

βt−1rG(at, bt)

]
(3.8)

= pEφ1,φ21

[ ∞∑

t=1

βt−1r1(at, bt)

]
+ (1− p)Eφ1,φ22

[ ∞∑

t=1

βt−1r2(at, bt)

]
(3.9)

Alice’s objective is to minimize this payoff while Bob’s objective is to maximize it. The
minmax or the upper value of the game is given by

V = min
φ1

pmax
φ21

Eφ1,φ21

[ ∞∑

t=1

βt−1r1(at, bt)

]
+ (1− p) max

φ22

Eφ1,φ22

[ ∞∑

t=1

βt−1r2(at, bt)

]
. (3.10)

The minimizing strategy in the outer minimization problem is the minmax strategy for Alice
and it will simply be called her optimal strategy. Similarly, the maxmin or the lower value
of the game is given by

V = max
φ21,φ

2
2

min
φ1

(
pEφ1,φ21

[ ∞∑

t=1

βt−1r1(at, bt)

]
+ (1− p)Eφ1,φ22

[ ∞∑

t=1

βt−1r2(at, bt)

])
. (3.11)

The optimal strategy for Bob is similarly defined as his maxmin strategy, i.e. the maximizing

strategy in the outer maximization problem. In general, we have that V ≥ V, but in this

case one can show that a minmax theorem holds and V = V, see [30, 34].

One would to determine the structure of the optimal policy for the uninformed player (Alice)
and provide a computationally efficient algorithm to compute this policy. In order to see
why this is a difficult problem, it is instructive to think about the corresponding question
for Bob, the informed player.

Computing the maxmin policy for Bob : To compute the maxmin policy for Bob
(see [30, 34]) one can use a dynamic programming approach that exploits the structural
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relationship between the original game and the game after one stage has elapsed. Suppose
V (p) is a function that assigns to every prior probability p of choosing game G1, the maxmin
value of the associated infinitely repeated game. Then one can show that the maxmin value
is the fixed point of the following dynamic programming operator defined on the function V :

Ψ(V )(p) = max
q21 ,q

2
2∈∆A2

min
q1∈∆A1

pEq21 ,q1 [r1(a, b)] + (1− p)Eq22 ,q1 [r2(a, b)] (3.12)

+
∑

b∈A2

β(pq2
1(b) + (1− p)q2

2(b))V

(
pq2

1(b)

pq2
1(b) + (1− p)q2

2(b)

)
. (3.13)

To see this intuitively, notice that in the first stage, any probability distribution over Bob’s
actions, chosen by him for the two games G1 and G2 as a part of his strategy φ2, makes
his realized action an informative signal of the true game chosen by nature. Since Alice is
assumed to know this strategy in her inner minimization, she can perform a Bayesian update
of her belief about the chosen game. Thus once the randomization of Bob in the first stage
is fixed, there is a one-stage expected reward that is minimized by Alice, and then every
realized action of Bob results in a new game, which has a maxmin value corresponding to
the computed posterior distribution, weighted by β. Bob thus chooses a randomization (for
the two choices) that maximizes the sum of these two values. Consistency then requires that
the function V (p) has to be the fixed point of this resulting operator. One can show that
the operator is a contraction and that a fixed point exists. Further one can also show that
the optimal policy for Bob is a stationary policy that depends only on the posterior pt at
stage t and does not depend on the actions of player 2.

Now what is the problem with using a similar approach to computing the minmax policy
for Alice, the uninformed player? The problem is that in order to perform the Bayesian
update as a part of her policy φ1, Alice needs to know Bob’s policy φ2, which means that
φ1 presupposes the knowledge of φ2, which contradicts the fact that the maxmin policy is

‘universal’: it guarantees that her loss is no more than V irrespective of the strategy chosen
by Bob. Even if Bob’s optimal strategy is unique, the best response strategy of Alice that
computes the posterior updates at each stage and plays optimally accordingly is vulnerable to
bluffing by Bob. Thus the optimal strategy of Alice cannot rely on the computation of these
posterior distributions and must depend instead on Bob’s actions and the corresponding
losses incurred in the different possible choices of games.

The computation of Alice’s optimal policy has been an open problem. Structurally, it is
known (see [30]) that in the optimal policy, Alice’s decision at stage t depends on Bob’s
actions till time t and not on her own actions. This also suggests the possibility that any
dynamic programming based procedure that may be developed to compute this policy may
suffer from the curse of dimensionality, i.e., the state may include the entire history of actions.

The key step that resolves this problem is the following. Instead of computing the upper

value V corresponding to the prior distribution p, suppose that one computes the following
set:

W =

{(
max
φ21

E

[ ∞∑

t=1

βt−1r1(at, bt)

]
,max

φ22

E

[ ∞∑

t=1

βt−1r2(at, bt)

])
: φ1 ∈ Φ1

}
. (3.14)



44

This is the set of upper guarantees that Alice can simultaneously achieve on the two compo-
nents of the vector of the long term discounted payoffs, by playing all the possible strategies

in Φ1. If we determine this set, then one can simply choose a point r̄(p) ∈ V such that

r̄(p) = arg min
(r1,r2)∈V

pr1 + (1− p)r2. (3.15)

The corresponding strategy of Alice that results in the simultaneous guarantee r̄ is then the
optimal policy in the original game. In fact, one need not compute the entire set W, but
just its lower Pareto frontier, since in any case the optimal point that solves (3.15) has to

be on this frontier. Then we are interested in characterizing the set U∗ = Λ(V). But this is
exactly the set we characterized in Chapter 2.

Note that we solve a harder problem than the one we set out to solve, since instead of
computing the minmax value corresponding to one prior p, we are trying to simultaneously
compute the minmax values corresponding to all the possible priors. But it turns out that this
harder objective makes this problem suddenly become amenable to a dynamic programming
based approach. This should not be too surprising, since as we have seen for the case of
the informed player, in order to solve for the lower value corresponding to a prior p and to
compute the optimal strategy, one needs to simultaneously solve for games starting from all
possible priors p ∈ [0, 1].

3.3 Games with alternating moves

In the previous discussion, we had restricted ourselves to the case where Alice and Bob take
actions simultaneously in each stage. In this section, we relax this assumption and consider
two possibilities: one where Alice moves first and the one where Bob (the adversary) moves
first. Both these cases result in different dynamic programming operators.

3.3.1 Case 1: Alice plays first

In this case, adaptive randomized strategy φA for Alice specifies for each stage t, a mapping
from the set of observations till stage t, i.e., Ht = (a1, b1, · · · , at−1, bt−1) to ∆(A). For Bob,
his strategy φB specifies for each stage t, a mapping from the set of observations till stage
t and Alice’s action at time t, i.e., Ht = (a1, b1, · · · , at−1, bt−1, at) to ∆(B). Consider the
following operator defined on frontier in F:

Definition 3.3.1. For V ∈ F, define

Φ(V) = Λ

{({ m∑

a=1

αa max
b

[
r1(a, b) + βR1(a, b)

]}
,

{ m∑

a=1

αa max
b

[
r2(a, b) + βR2(a, b)

]})
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: (R1(a, b), R2(a, b)) ∈ V, ᾱ ∈ ∆(A)

}
. (3.16)

The interpretation is as before: suppose that V is the set of minimal guarantees that Alice
can achieve from time t+ 1 onwards, then Φ(V) is the set of guarantees that she can achieve
from time t onwards. Similar to the simultaneous moves case, Alice first chooses an action
with a probability distribution in ∆(A) and then, depending on the action chosen by Bob,
chooses a point in V. But in this case, in contrast to the simultaneous moves case, her action
is observed by Bob before he acts and thus in the dynamic programming operator, the order
of the max and expectation (over the randomness in Alice’s action) is interchanged. We can
then show the following:

Lemma 3.3.1. Φ(V) ∈ F

Proof. Since V ∈ F, it is clear from the closed map lemma that Φ(V) is Pareto-frontier of a

closed and compact set. All that remains to be shown is that Φ(V) is p-convex. Let

ū =

( m∑

i=1

αi max
j
{r1(i, j) + βQ1(i, j)},

m∑

i=1

αi max
j
{r2(i, j) + βQ2(i, j)}

)

and

v̄ =

( m∑

i=1

ηi max
j
{r1(i, j) + βR1(i, j)},

m∑

i=1

ηi max
j
{r2(i, j) + βR2(i, j)}

)

be two points in Φ(V), where ᾱ, η̄ ∈ ΣA1 and Q̄(i, j), R̄(i, j) ∈ V. For a fixed λ ∈ [0, 1], let

κi = αiλ+ ηi(1− λ). Then

λū+(1−λ)v̄ =

( m∑

i=1

κi

[
λαi
κi

max
j
{r1(i, j)+βQ1(i, j)}+

(1− λ)ηi
κi

max
j
{r1(i, j)+βR1(i, j)}

]
,

m∑

i=1

κi

[
λαi
κi

max
j
{r2(i, j) + βQ2(i, j)}+

(1− λ)ηi
κi

max
j
{r2(i, j) + βR2(i, j)}

])

�
( m∑

i=1

κi max
j
{r1(i, j) + β

(λαi
κi
Q1(i, j) +

(1− λ)ηi
κi

R1(i, j)
)
},

m∑

i=1

κi max
j
{r2(i, j) + β

(λαi
κi
Q2(i, j) +

(1− λ)ηi
κi

R2(i, j)
)
}
)

�
( m∑

i=1

κi max
j
{r1(i, j) + βS1(i, j)},
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m∑

i=1

κi max
j
{r2(i, j) + βS2(i, j)}

)
.

The first inequality follows since max is a convex function and the second follows since V is

convex, and hence S̄(i, j) = (S1(i, j), S2(i, j)) ∈ V that satisfy the given relation exist.

Note that in this case, contrary to the operator for simultaneous moves, it is not true that
Alice’s choice of points in V from time t+1 onwards needs to only depend on Bob’s observed
action at time t. This choice must also depend on her realized action at time t. We next
show that this operator is a contraction:

Theorem 3.3.1.

d(Φ(U),Φ(V)) ≤ βd(U,V). (3.17)

Proof. Suppose e(U,V) = ε. Let

(∑m
i=1 αi maxj{r1(i, j)+βR1(i, j)},∑m

i=1 αi maxj{r2(i, j)+

βR2(i, j)}
)

be some point in Φ(V), where ᾱ ∈ ∆A. Then for each R(i, j), for each i and j,

we can choose R′(i, j) ∈ U such that R′(i, j) � R(i, j) + ε1. We then have

m∑

i=1

αi max
j
{r1(i, j) + βR′1(i, j)} (3.18)

=
m∑

i=1

αi max
j
{r1(i, j) + βR1(i, j) + β(R′(i, j)−R(i, j))} (3.19)

≤
m∑

i=1

αi max
j
{r1(i, j) + βR1(i, j) + βε} (3.20)

=
m∑

i=1

αi max
j
{r1(i, j) + βR1(i, j)}+ βε. (3.21)

Similarly, we can show that

m∑

i=1

αi max
j
{r2(i, j) + βR′2(i, j)} ≤

m∑

i=1

αi max
j
{r2(i, j) + βR2(i, j)}+ βε. (3.22)

Thus

( m∑

i=1

αi max
j
{r1(i, j) + βR′1(i, j)},

m∑

i=1

αi max
j
{r2(i, j) + βR′2(i, j)}

)
(3.23)

�
( m∑

i=1

αi max
j
{r1(i, j) + βR1(i, j)},

m∑

i=1

αi max
j
{r2(i, j) + βR2(i, j)}

)
+ βε1.(3.24)
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But there exists some (L1, L2) ∈ Φ(U) such that

(L1, L2) �
( m∑

i=1

αi max
j
{r1(i, j) + βR′1(i, j)},

m∑

i=1

αi max
j
{r2(i, j) + βR′2(i, j)}

)
.(3.25)

Thus

(L1, L2) �
( m∑

i=1

αi max
j
{r1(i, j) + βR1(i, j)},

m∑

i=1

αi max
j
{r2(i, j) + βR2(i, j)}

)
+ βε1.(3.26)

We can show the other direction (roles of Φ(U) and Φ(V) reversed) similarly and thus we

have that

d(Φ(U),Φ(V)) ≤ βε = βd(U,V). (3.27)

The following three results immediately follow. We omit the proofs here in order to refrain
from reproducing the same arguments.

Theorem 3.3.2. Let V ∈ F. Then the sequence (An = Φn(V))n∈N converges in the metric

d to a Pareto frontier V∗ ∈ F, which is the unique fixed point of the operator Φ, i.e., the

unique solution of Φ(V) = V.

Theorem 3.3.3. Let V∗ be the fixed point of the GS operator Φ. Then

V∗ = Λ(

{(
max

Φ2
E

[ ∞∑

t=1

βt−1r1(a1
t , a

2
t )

]
,max

Φ̄2
E

[ ∞∑

t=1

βt−1r2(a1
t , a

2
t )

])
: Φ1 ∈ Φ1

}
). (3.28)

Finally, we can derive the structure of the optimal policy. For a Pareto frontier V ∈ F,
consider a one-to-one function F V(p) : P → V. Assume V∗ is such that V∗ = Φ(V∗). Then
for a fixed p ∈ P, choose ᾱ(p) ∈ ∆(A) and a function q(a, b, p) ∈ P for each p ∈ P, a ∈ A
and b ∈ B that satisfies

F V∗

k (p) =

{ m∑

a=1

αa max
b∈B

[
rk(s, a, b) + βF V∗

k (q(a, b, p))
]}
.

Then the following policy is optimal:

Theorem 3.3.4. For any p0 ∈ P, the pair of upper bounds on losses x = F V∗(p0) in V∗ is

guaranteed by Alice first choosing action a0 ∈ A with probability αa(p0). Then if Bob chooses
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an action b0 ∈ B, the optimal guarantees to choose from the second step on are then βF V∗(p1)

in βV∗, where p1 = q(a0, b0, p0), which can be guaranteed by Alice by choosing action a1 ∈ A

with probability αa(p1), and so on.

Thus in this case, the transitions of the information state not only depend on Bob’s actions
but on Alice’s actions as well.

3.3.2 Case 2: Bob plays first

In this case, adaptive randomized strategy φB for Bob specifies for each stage t, a mapping
from the set of observations till stage t, i.e., Ht = (b1, a1, · · · , bt−1, at−1) to ∆(B). For Alice,
her strategy φA specifies for each stage t, a mapping from the set of observations till stage
t and Bob’s action at time t, i.e., Ht = (b1, a1, · · · , bt−1, at−1, bt) to ∆(B). Consider the
following operator defined on a frontier in F:

Definition 3.3.2. For V ∈ F, define

Φ(V) = Λ

{(
max
b

{ m∑

a=1

αa(b)
[
r1(a, b)+βR1(a, b)

]}
,max

b

{ m∑

a=1

αa(b)
[
r2(a, b)+βR2(a, b)

]})

: (R1(a, b), R2(a, b)) ∈ V, ᾱ(b) ∈ ∆(A) ∀ b ∈ B
}
. (3.29)

The interpretation is again similar. Suppose that V is the set of guarantees that Alice can
achieve from time t+1 onwards, then Φ(V) is the set of guarantees she can achieve beginning
from time t. She does so by choosing a randomization over her actions ᾱ(b) for each possible
action b that Bob chooses and then chooses a point in V depending on actions b and her
realized action a. It turns out that analogous to the case of simultaneous moves, her choice
of a point in V need not depend on her won action at time t.

Lemma 3.3.2. Suppose that V ∈ F . Then

1. Any point ū ∈ Φ(V) is of the form

ū =

(
max
b

{ m∑

a=1

αa(b)r1(a, b) + βQ1(b)

}
,max

b

{ m∑

a=1

αa(b)r2(a, b) + βQ2(b)

})

where Q(b) ∈ V for each b ∈ B.
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Proof. The first part follows from the fact that, by p-convexity of V, there exists a Q(b) ∈ V

such that Q(b) �∑a∈A αa(b)R(a, b). For the second claim, since V ∈ F, we know from the

closed map lemma that Φ(V) is the Pareto frontier of a compact set, and thus all that is

needed to be shown is that Φ(V) is p-convex. Let

ū =

(
max
b

{ m∑

a=1

αa(b)
[
r1(a, b)

]
+ βQ1(b)

}
,max

b

{ m∑

a=1

αa(b)
[
r2(a, b)

]
+ βQ2(b)

})

and

v̄ =

(
max
b

{ m∑

a=1

ηa(b)
[
r1(a, b)

]
+ βR1(b)

}
,max

b

{ m∑

a=1

ηa(b)
[
r2(a, b)

]
+ βR2(b)

})

be two points in Φ(V), where ᾱ(b), η̄(b) ∈ ∆(A) and Q(b), R(b) ∈ V for all b ∈ B.

For a fixed λ ∈ [0, 1], let κa(b) = αa(b)λ+ ηa(b)(1− λ). Then

λū+ (1− λ)v̄ =

(
λmax

b

{ m∑

a=1

αa(b)
[
r1(a, b)

]
+ βQ1(b)

}

+(1− λ) max
b

{ m∑

a=1

ηa(b)
[
r1(a, b)

]
+ βR1(b)

}
,

λmax
b

{ m∑

a=1

αa(b)
[
r2(a, b)

]
+ βQ2(b)

}
+ (1− λ) max

b

{ m∑

a=1

ηa(b)
[
r2(a, b)

]
+ βR2(b)

})

�
(

max
b

{ m∑

a=1

κa(b)
[
r1(a, b)

]
+ βλQ1(b) + (1− λ)R1(b)

}
,

max
b

{ m∑

a=1

κa(b)
[
r2(a, b)

]
+ βλQ2(b) + (1− λ)R2(b)

})

�
(

max
b

{ m∑

a=1

κa(b)
[
r1(a, b)

]
+ βL1(b)

}
,max

b

{ m∑

a=1

κa(b)
[
r2(a, b)

]
+ βL2(b)

})

The first inequality holds since max is a convex function and the second follows since V is

p-convex, and hence L(b) = (L1(b), L2(b)) ∈ V that satisfy the given relation exist. Thus

Φ(V) is p-convex.
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Next we can show that the operator is a contraction in the metric d. We omit the proof
since it is almost identical to the proof of Theorem 2.2.1.

Theorem 3.3.5.

d(Φ(U),Φ(V)) ≤ βd(U,V). (3.30)

The following three results immediately follow. Again we omit the proofs in order to refrain
from producing the same arguments.

Theorem 3.3.6. Let V ∈ F. Then the sequence (An = Φn(V))n∈N converges in the metric

d to a Pareto frontier V∗ ∈ F, which is the unique fixed point of the operator Φ, i.e., the

unique solution of Φ(V) = V.

Theorem 3.3.7. Let V∗ be the fixed point of the GS operator Φ. Then

V∗ = Λ(

{(
max

Φ2
E

[ ∞∑

t=1

βt−1r1(a1
t , a

2
t )

]
,max

Φ̄2
E

[ ∞∑

t=1

βt−1r2(a1
t , a

2
t )

])
: Φ1 ∈ Φ1

}
). (3.31)

Finally, we can derive the structure of the optimal policy. For a Pareto frontier V ∈ F,
consider a one-to-one function F V(p) : P → V. Assume V∗ is such that V∗ = Φ(V∗). Then
for a p ∈ P and b ∈ B, choose ᾱ(b, p) ∈ ∆(A) and a function q(b, p) ∈ P for each p ∈ P and
b ∈ B that satisfies

F V∗

k (p) = max
b∈B

{ m∑

a=1

αa(b, p)rk(s, a, b) + βF V∗

k (q(b, p))

}
.

Then the following policy is optimal:

Theorem 3.3.8. For any p0 ∈ P, the pair of upper bounds on losses x = F V∗(p0) in V∗ is

guaranteed by Alice by first choosing action a0 ∈ A with probability αa(b0, p0), after having

observed Bob’s action b0 ∈ B. Then the optimal guarantees to choose from the second step

on are βF V∗(p1) in βV∗, where p1 = q(b0, p0), which can be guaranteed by Alice by choosing

action a1 ∈ A with probability αa(b1, p1) after having observed Bob’s action b1, and so on.
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Chapter 4

Generalizations to games with

multiple states

4.1 Stochastic games with vector losses

We define a vector-valued generalization of a stochastic game G with a finite state space
S = {1, · · · ,Ω}. These games were first introduced by Shapley for the scalar case in [29].
Each state s is associated with action spaces As = {1, · · · ,ms} and Bs = {1, · · · , ns} for
Alice and Bob respectively. The game is played in stages t = 1, 2, · · · , starting from some
state s1 ∈ S. In each stage, Alice and Bob simultaneously play one of the actions that are
available to them in the current state, as a result of which they get a vector of losses and the
state of the game probabilistically transitions into another state in the next stage. Suppose
the game is in some state s, then for the pair of actions a ∈ As and b ∈ Bs, the vector of
instantaneous losses is given by r(s, a, b) ∈ Rl, and let p(s′|s, a, b) denote the probability that
the next state is s′ for each s′ ∈ S. For simplicity, we assume that the vector of instantaneous
payoffs has only two components, i.e. r(s, a, b) = (r1(s, a, b), r1(s, a, b)).

Let st denote the state, and let at and bt denote the actions of Alice and Bob at time t. Fix
a discount factor β ∈ [0, 1). Then the vector of total discounted losses is defined as:

∞∑

t=1

βt−1r(st, at, bt) =

( ∞∑

t=1

βt−1r1(st, at, bt),
∞∑

t=1

βt−1r2(st, at, bt)

)
. (4.1)

An adaptive randomized strategy φA for Alice specifies for each stage t, a mapping from the
set of observations till stage t, i.e., Ht = (s1, a1, b1, · · · , st−1, at−1, bt−1, st), to a probability
distribution on the action set Ast , denoted by ∆(Ast). Let ΦA be the set of all such policies of
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Alice. Similarly, let ΦB be the set of all adaptive randomized strategies for Bob. Beginning
with a state s1 = s, for a pair of strategies φA and φB, the expected discounted loss on
component k in the stochastic game is given by:

Rk(s, φA, φB) = Es,φA,φB

[ ∞∑

t=1

βt−1rk(st, at, bt)

]
, (4.2)

where the expectation is over the randomness in the strategies φA and φB, and in the state
transitions. Now consider a fixed policy φA ∈ ΦA and a fixed initial state s ∈ S. If Alice
plays this strategy, then irrespective of the strategy chosen by Bob, Alice guarantees that
the long term expected losses on different components lie in the ‘corner set’ :

C(s, φA) ,

{
x̄ ∈ Rm : xk ≤ max

φkB∈ΦB

Rk(s, φA, φ
k
B) for all k ∈ {1, 2}

}

defined by the corner point

(
max
φ1B∈ΦB

R1(s, φA, φ
1
B), max

φ2B∈ΦB
R2(s, φA, φ

2
B)

)
.

For a game starting from state s, let the set of all the corner points, or simultaneous guar-
antees that correspond to all the strategies φA ∈ ΦA be defined as:

Ws ,

{(
max
φ1B∈ΦB

R1(s, φA, φ
1
B), max

φ2B∈ΦB
R2(s, φA, φ

2
B)

)
: φA ∈ ΦA

}
. (4.3)

Our objective is to characterize and compute the minimal points in the set Ws, i.e., its Lower
Pareto frontier

U∗s = Λ(Ws) (4.4)

for each s ∈ S, and compute policies for Alice in ΦA that guarantee different points in this
set.

4.1.1 The Generalized Shapley operator

As in chapter 2, let F be the space of Pareto frontiers of convex and closed subsets of [0, 1]2

endowed with the metric d, which is defined as the Hausdorff distance between the upsets
of the frontiers.

Consider the space FΩ with each element of the form V = (Vs)s∈S and define

d̄(V,U) = max
s∈S

d(Us,Vs). (4.5)

Since F is complete in metric d, it is clear that FΩ is complete in the metric d̄.
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Now again assume that by scaling and shifting the losses rk(s, a, b) ∈ [0, 1− β] for all s ∈ S,
a ∈ As, b ∈ Bs and k = 1, 2. Thus the total discounted losses of the game lie in the set

[0, 1]2. Now consider a collection of sets
(
Ss
)
s∈S in [0, 1]2, one associated with each state

s ∈ S. We will denote this collection by S. Define the following operator on the space of
such collections of sets in [0, 1]2.

Ψ(S)s =

{(
max
b

{ m∑

a=1

αa
[
r1(s, a, b) + β

∑

s′∈S
p(s′|s, a, b)R1(s′, a, b)

]}
,

max
b

{ m∑

a=1

αa
[
r2(s, a, b) + β

∑

s′∈S
p(s′|s, a, b)R2(s′, a, b)

]})

: (R1(s′, a, b), R2(s′, a, b)) ∈ Ss′ , ᾱ ∈ ∆(As)

}
. (4.6)

This operator can be interpreted in the following way. Suppose that Ss′ is the set of simul-
taneous guarantees that Alice can achieve starting from state s′ at time t+ 1 for all s′ ∈ S.

Then Ψ(S)s is the set of simultaneous guarantees that she can achieve starting from state s
at time t. A point in this set corresponds to Alice first choosing a probability distribution
over her available actions at time t in state s, and then choosing a mapping from 1) the
action of Bob at time t and 2) the realized state s′ at time t + 1, to a point in Ss′ . We will

next prove that if each Ss for s ∈ S is closed, the each Ψ(S)s is closed as well. Further, if

each Ss is convex, then the Pareto frontier Λ(Ψ(S)s) is the Pareto frontier of some closed
convex set.

Lemma 4.1.1. Let Ss ⊆ [0, 1]2 for each s ∈ S be closed sets. Then Ψ(S)s ⊆ [0, 1]2 is closed

for each s ∈ S. If in addition, Ss is convex for each s ∈ S, then:

1. Any point ū in Λ(Ψ(S)s) is of the form:

(
max
b

{ m∑

a=1

αar1(s, a, b) + β
∑

s′∈S

( m∑

a=1

αap(s
′|s, a, b)

)
Q1(s′, b)

}
,

max
b

{ m∑

a=1

αar2(s, a, b) + β
∑

s′∈S

( m∑

a=1

αap(s
′|s, a, b)

)
Q2(s′, b)

})

for some Q(s′, b) ∈ Λ(Ss′), for each s′ ∈ S and b ∈ B.

2. Λ(Ψ(S)s) ∈ F.

Proof. The first claim of the Lemma follows from the closed map lemma as in the proof

of Lemma 2.2.3. Now assume that Ss is a closed convex set for each s ∈ S. Then Λ(Ss)
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exists by Lemma 3.1 and further it is p-convex by Lemma 2.2.5. Let Us = Λ(Ss). Clearly,

Λ(Ψ(S)s) = Λ(Ψ(U)s) where U = (Us)s∈S. Recall that any point ū in Λ(Ψ(U)s) is of the

form: (
max
b

{ m∑

a=1

αa
[
r1(s, a, b) + β

∑

s′∈S
p(s′|s, a, b)R1(s′, a, b)

]}
,

max
b

{ m∑

a=1

αa
[
r2(s, a, b) + β

∑

s′∈S
p(s′|s, a, b)R2(s′, a, b)

]})

for some ᾱ ∈ ∆(As) and R(s′, a, b) ∈ Us′ . But since Us′ is p-convex, for each b ∈ Bs, there

exists some Q(s′, b) ∈ Us′ such that Q(s′, b) �
∑m

a=1 αap(s′|s,a,b)R(s′,a,b)∑m
a=1 αap(s′|s,a,b) . Hence statement 1

follows.

Now let

ū =

(
max
b

{ m∑

a=1

αar1(s, a, b) + β
∑

s′∈S

( m∑

a=1

αap(s
′|s, a, b)

)
Q1(s′, b)

}
,

max
b

{ m∑

a=1

αar2(s, a, b) + β
∑

s′∈S

( m∑

a=1

αap(s
′|s, a, b)

)
Q2(s′, b)

})

and let

v̄ =

(
max
b

{ m∑

a=1

ηar1(s, a, b) + β
∑

s′∈S

( m∑

a=1

ηap(s
′|s, a, b)

)
R1(s′, b)

}
,

max
b

{ m∑

a=1

ηar2(s, a, b) + β
∑

s′∈S

( m∑

a=1

ηap(s
′|s, a, b)

)
R2(s′, b)

})

for some ᾱ, η̄ ∈ ∆(As) and Q(s′, b), R(s′, b) ∈ Us′ for each s′ ∈ S and b ∈ B. Now for a fixed

λ ∈ [0, 1], let κa = λαa + (1− λ)ηa.

Then we have

λū+ (1− λ)v̄

=

(
λmax

b

{ m∑

a=1

αar1(s, a, b) + β
∑

s′∈S

( m∑

a=1

αap(s
′|s, a, b)

)
Q1(s′, b)

}

+(1− λ) max
b

{ m∑

a=1

ηar1(s, a, b) + β
∑

s′∈S

( m∑

a=1

ηap(s
′|s, a, b)

)
R1(s′, b)

}
,

λmax
b

{ m∑

a=1

αar2(s, a, b) + β
∑

s′∈S

( m∑

a=1

αap(s
′|s, a, b)

)
Q2(s′, b)

}
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+(1− λ) max
b

{ m∑

a=1

ηar2(s, a, b) + β
∑

s′∈S

( m∑

a=1

ηap(s
′|s, a, b)

)
R2(s′, b)

})

�
(

max
b

{ m∑

a=1

κar1(s, a, b) + β
∑

s′∈S

( m∑

a=1

κap(s
′|s, a, b)

)

×λ(
∑m

a=1 αap(s
′|s, a, b))Q1(s′, b) + (1− λ)(

∑m
a=1 ηap(s

′|s, a, b))R1(s′, b)∑m
a=1 κap(s

′|s, a, b)

}
,

max
b

{ m∑

a=1

κar2(s, a, b) + β
∑

s′∈S

( m∑

a=1

κap(s
′|s, a, b)

)

×λ(
∑m

a=1 αap(s
′|s, a, b))Q2(s′, b) + (1− λ)(

∑m
a=1 ηap(s

′|s, a, b))R2(s′, b)∑m
a=1 κap(s

′|s, a, b)

})

�
(

max
b

{ m∑

a=1

κar1(s, a, b) + β
∑

s′∈S

( m∑

a=1

κap(s
′|s, a, b)

)
L1(s′, b)

}
,

max
b

{ m∑

a=1

κar2(s, a, b) + β
∑

s′∈S

( m∑

a=1

κap(s
′|s, a, b)

)
L2(s′, b)

})
.

The first inequality holds since max is a convex function and second holds since Us is p-

convex, and thus L(s′, b) = (L1(s′, b), L2(s′, b)) that satisfy the given relation exist. Thus

Λ(Ψ(U)s) is p-convex. And thus by Lemma 2.2.5, it is the Pareto frontier of a closed convex

set, i.e., it is in F.

We now define the following Generalized Shapley operator on the space FΩ.

Definition 4.1.1. For V =
(
Vs
)
s∈S where Vs ∈ F, define Φ(V)s = Λ(Ψ(V)s).

From Lemma 4.1.1 we know that Φ(V) is in FΩ if V is in FΩ. Next we show that the operator

Φ is a contraction in the metric d̄.

Lemma 4.1.2.

d̄(Φ(U),Φ(V)) ≤ βd̄(U,V).

Proof. Suppose that d̄(U,V) = ε. By Lemma 2.2.6, this means that e(Us,Vs) ≤ ε for each

s ∈ S. Now let

ū =

(
max
b

{ m∑

a=1

αar1(s, a, b) + β
∑

s′∈S

( m∑

a=1

αap(s
′|s, a, b)

)
R1(s′, b)

}
,
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max
b

{ m∑

a=1

αar2(s, a, b) + β
∑

s′∈S

( m∑

a=1

αap(s
′|s, a, b)

)
R2(s′, b)

})

be some point in Φ(U)s, where ᾱ ∈ ∆(As) and R(s′, b) ∈ Us′ . Now we can choose some point

Q(s′, b) ∈ Vs′ for each s′ ∈ S and b ∈ Bs, such that Q(s′, b) � R(s′, b) + ε1. This in turn

implies that

(
max
b

{ m∑

a=1

αar1(s, a, b) + β
∑

s′∈S

( m∑

a=1

αap(s
′|s, a, b)

)
Q1(s′, b)

}
,

max
b

{ m∑

a=1

αar2(s, a, b) + β
∑

s′∈S

( m∑

a=1

αap(s
′|s, a, b)

)
Q2(s′, b)

})

�
(

max
b

{ m∑

a=1

αar1(s, a, b) + β
∑

s′∈S

( m∑

a=1

αap(s
′|s, a, b)

)
R1(s′, b)

}
,

max
b

{ m∑

a=1

αar2(s, a, b) + β
∑

s′∈S

( m∑

a=1

αap(s
′|s, a, b)

)
R2(s′, b)

})
+ βε1.

But there exists some (L1, L2) ∈ Λ(Ψ(U)s) such that

(L1, L2) �
(

max
b

{ m∑

a=1

αar1(s, a, b) + β
∑

s′∈S

( m∑

a=1

αap(s
′|s, a, b)

)
Q1(s′, b)

}
,

max
b

{ m∑

a=1

αar2(s, a, b) + β
∑

s′∈S

( m∑

a=1

αap(s
′|s, a, b)

)
Q2(s′, b)

})

. We can similarly show the other direction with the roles of Φ(U)s and Φ(V)s reversed.

Thus

e(Φ(U)s,Φ(V)s) ≤ βε

and thus d̄(Φ(U),Φ(V)) ≤ βd̄(U,V).

We finally show that the GS operator has a unique fixed point and starting from any initial
point in FΩ, the sequence of sets of Pareto frontiers obtained by repeated application of this
operator converges to this fixed point.

Theorem 4.1.1. Let V ∈ FΩ. Then the sequence (A
n

= Φn(V))n∈N converges in the metric

d̄ to a Pareto frontier V
∗ ∈ FΩ, which is the unique fixed point of the operator Φ, i.e., the

unique solution of Φ(V) = V.
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Proof. Since Φ is a contraction in the metric d̄, the sequence {An} is Cauchy in FΩ. Hence by

Lemma 2.2.2, {An} converges to a Pareto frontier V
∗ ∈ FΩ. The continuity of the operator

further implies that

V
∗

= Φ(V
∗
).

To show uniqueness, observe that if there are two fixed points U and V, then we have

d̄(U,V) = d̄(Φ(U,Φ(V)) ≤ βd̄(U,V),

which implies that d̄(U,V) = 0 and hence U = V.

Following two theorems are immediate. We omit their proofs since they are very similar

to those for the case of repeated games. First we show that the fixed point V
∗

of the GS
operator Φ is exactly the set of sets (Us)s∈S defined in equation 4.4.

Theorem 4.1.2. U
∗

= V
∗
.

The next result gives the structure of the optimal policy. For a Pareto frontier V ∈ F,

consider a one-to-one function F V(p) : P → V. Assume V
∗

is such that V
∗

= Φ(V
∗
). Then

for a fixed s ∈ S and p ∈ P, choose ᾱs(p) ∈ ∆(As) and a function q(s′, b, p.s) ∈ P for each
s, s′ ∈ S, p ∈ P and b ∈ Bs that satisfies

F
V∗s
k (p) = max

b∈Bs

{ m∑

a=1

αsark(s, a, b) + β
∑

s′∈S

( m∑

a=1

αsap(s
′|s, a, b)

)
F

V∗
s′

k (q(s′, b, p, s))

}

Then we have the following result:

Theorem 4.1.3. For any starting state s0 ∈ S, for any p0 ∈ P, the pair of rewards x =

F V∗s0 (p0) in V∗s0 is guaranteed by Alice first choosing action a0 ∈ As0 with probability αs0a0(p0).

Then if Bob chooses an action b0 ∈ B and the state transitions into another state s1, then the

optimal guarantees to choose from the second stage onwards, beginning from the new state

s1 are then βF V∗s1 (p1) in βV∗s1, where p1 = q(s1, b0, p0, s0), which can be guaranteed by Alice

by choosing action a1 ∈ As1 with probability αs1a1(p1), and so on.
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4.2 Maximal guarantees in Reachability games

Several types of pursuit-evasion games that arise in defense operations can be modeled as
a reachability game (see [12]) after discretization. In a reachability game, two players Alice
and Bob take turns to (deterministically) move the state of the system within a finite set of
states, governed by a set of specified rules. Given an initial state, a set of states is reachable if
Bob has a strategy that guarantees that the state enters this set in a finite time. Similarly, a
set of states is excludable if Alice has a strategy that guarantees that the state never reaches
this set. An excludable set is maximal if any larger set that contains it is reachable. In this
chapter, we present an efficient algorithm to compute the maximal excludable subsets of any
specified set of target states and the corresponding strategies. This objective is practically
motivated: for example, if in some scenario a defender is unable to protect all of a given
set of sensitive targets from an attacker, then being able to efficiently compute the largest
subsets of targets that it can simultaneously protect can be of critical importance. The core
idea is similar to the approaches in the previous chapters. We define an appropriate dynamic
programming operator on the space of maximal subsets of a finite set, which can be seen as
the abstract space of ‘Pareto frontiers’ of collections of subsets of a finite set.

4.2.1 Model

We consider two-person reachability games of alternating moves on a finite state space S.
From each state s ∈ S, there is a set of one-step reachable states for each of the two players
and the players take turns to (deterministically) move the state of the system according to
a given set of rules. One can think of the states as representing nodes in a graph, and each
player has a different set of directed edges in this graph that capture the transitions that are
allowed for the player from the different states. Figure 4.1 shows a reachability game with
the state space {A,B,C,D,E}, with the two sets of directed edges, one for Alice and one
for Bob. For example, from state D, Alice can move the system to state C or E, but Bob
can only move it to state C. The players take turns to move. So suppose that the system
is in state D and Alice has the first move, and suppose she moves the state to C, then in
the next step it is Bob’s turn to move and he can move the state to either A or E, and then
Alice moves again, and so on.

Given an initial state s ∈ S, and the specification of the player who moves first, a subset
T ⊆ S of states is reachable if Bob has a policy that guarantees that the state enters this
subset in a finite time. Similarly, T is excludable if Alice has a policy that guarantees that
the state never reaches this set. An excludable set is maximal if any other set that contains
it (i.e., a strict superset) is reachable by Bob. We focus on the computation of the maximal
excludable subsets of a given set GOAL ⊂ S from an arbitrary initial state.

At any given stage, we can define the ‘state’ of this dynamic game to be the pair that
includes the state of the system and the player with the next move. In order to avoid
confusion, we will refer to the state of the system as the ‘position’. The state space is
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A	  

E	  

B	  

C	  

D	  

A	  

E	  

B	  

C	  

D	  

Figure 4.1. The directed graph showing allowed state transitions for Alice (left) and
Bob (right)

denoted as W = S × {alice, bob}, with any w ∈ W of the form (s, j) where s ∈ S is the
position of the system and j ∈ {alice, bob} specifies the player.

One can show that starting from any initial state in W , any subset of S is either reachable
or excludable. Thus a given subset of S partitions the state space of the dynamic game
into two sets: the initial states from which this subset is reachable and those from which it
is excludable. Further this partition can be computed efficiently using a simple backward
inductive algorithm. For each position s ∈ S, the set of one-step reachable positions from s
by player j is denoted by R(s, j) = R(w). Similarly, L(w) denotes the set of positions from
where s is one-step reachable by player j, where w = (s, j) ∈ W . For a given set T ⊆ S,
Algorithm 1 computes the set of initial states from which T is reachable.

To see why the algorithm converges till we have Vk(w) = Vk−1(w) for each w ∈ W , observe
that if Vk(w) = 0 for some k and w, then Vk′(w) = 0 for all k′ > k. Thus since the state
space is finite the algorithm must converge. It is straightforward to see that {w : V ∗(w) = 1}
are the states from where T is excludable and {w : V T∗(w) = 0} are the states from where
T is reachable.

Now one straightforward way to compute the maximal excludable subsets of GOAL is to
consider all the possible subsets of GOAL and compute the partition for each one of them.
But this requires solving a prohibitively high number of instances. The question is if one
can do better. Intuitively, answering the reachability question for each possible subset of
GOAL has severe redundancies: all the information is captured by the maximal excludable
sets of GOAL, which, in most cases would be a much smaller object to deal with. So can
we perhaps come up with an algorithm similar to the one above, that inductively performs
appropriate manipulations of these maximal excludable sets in every iteration?



60

Algorithm 1: Computing the set of states from where T is reachable.

• Initialize: For each w ∈ W , set V T
0 (w) = 1.

• Do: For k > 0, for each w = (s, j) ∈ W ,

– If s ∈ T , then V T
k (w) = 0,

– Otherwise, if j = B, then

Vk(w) = min
s′∈R(w)

V T
k−1((s′, A)),

– Else if j = A, then

Vk(w) = max
s′∈R(w)

V T
k−1((s′, B)).

• Until: V T
k (w) = V T

k−1(w) = V T∗(w) for each w ∈ W .

• {w : V T∗(w) = 1} are the states from where T is excludable and {w : V T∗(w) = 0} are

the states from where T is reachable.
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4.2.2 One-step optimality conditions

Let G be the power set of GOAL. Consider a finite collection U of sets in G. This collection
is called maximal if for no two A,A′ ∈ U, A ⊂ A′ (a collection with a single set is maximal).
Let F be the space of maximal collections of elements in G. Let |GOAL| = G.

First, we define an operation that takes a collection of subsets in G and outputs the largest
maximal sub-collection. This is analogous to the operation of extracting the Pareto frontier
of a set in the real vector space.

Definition 4.2.1. For a finite collection of sets U = {A1, · · · , AN} in G, define

Λ(U) = {A ∈ U : ∀B 6= A ∈ U, A \B 6= φ}.

Note that Λ ∈ F. For example let U =
{
{A,B,C}, {B}, {C,D}, {A,C,D}, {B,D}

}
. Then

Λ(U) =
{
{A,B,C}, {A,C,D}, {B,D}

}
. This operation can be performed in O(N2G) time

using a simple algorithm: for each set, one can iterate through all the other sets to check if
it is a subset (checking whether a set is a subset of the other takes at the most O(G) time
assuming the elements are ordered).

Our approach is going to be the following. For every state w, we will associate a maximal
collection of subsets of GOAL, V(w), that Alice can exclude, starting from that state. These
V(w) must satisfy certain local one-step optimality conditions that we will identify. These
will then help us formulate an iterative algorithm to actually compute these V(w) for all w.

One-step optimality conditions for a state with Alice’s move: Consider a state
w = (s, alice) where it is Alice’s turn to move. Let K(w) be the set of states that are one-
step reachable from this state, i.e., K(w) = K(s, alice) = {(s′, bob) : s′ ∈ R(w)}. Suppose
that for each u ∈ K(w), one has already computed V(u). What should then V(w) be?

Consider the situation shown in the Figure 4.2. The set of GOAL states is {A,B,C,D,E}
and the system is in the state w = (C, alice). V (u) for u ∈ K(w) is as shown. Now note
that since Alice can choose to enter any of the states in K(w), she can effectively exclude
any set present in any of the V(u) for u ∈ K(w). But since she is already in position C, she
cannot exclude C. Hence V(w) is the maximal sub-collection of the collection of all the sets
present in V(u) for u ∈ K(w), with C removed from each set. We thus define the following
operator:

Definition 4.2.2. For a list of collections {V1, · · · ,VK}, where each Vk ∈ F, consider the

collection of all sets in all these collections: U = {A : ∃ k ∈ {1, · · · , K} s.t. A ∈ Vk}. Then

UPPER({V1, · · · ,VK}) = Λ(U).
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{A,B}	  

{B,D,E}	  

{A,B,C}	  
{B,C,D}	  
{B,	  E}	  

V(u1) =
{A,B}	  
{B,D}	  
{B,C,E}	  

V(u2) = {B,C}	  
{B,D,E}	  

V(u3) =

V(w) = UPPER({V(u) \ {C} : u ∈ K(w)}) =

u1 u2 u3

w w = (C, alice)

Figure 4.2. One-step optimality condition for a state with Alice’s move

Thus the operation UPPER takes a list of maximal collections of sets in G and out-
puts the largest maximal sub-collection of the collection of all sets in all of the col-

lections in the list. For example, if V1 =
{
{A,B,C}, {A,C,D}, {B,D}

}
and V2 ={

{A,B,C}, {A,D}, {B,C,D}
}

, then

UPPER({V1,V2}) =
{
{A,B,C}, {A,C,D}, {B,C,D}

}
.

Now if |Vi| ≤ Q, then |U| ≤ KQ, and this operation can be performed in O(K2Q2G) time
using the algorithm for computing Λ(U) given above. If w = (s, alice) for some s ∈ S, then
V(w) is then given by

V(w) = UPPER({V(u) \ {s} : u ∈ K(w)}), (4.7)

where for a collection of sets U = (A1, · · · , AN) and some set A ∈ G, by U \ A we mean the

collection {A1 \A, · · · , AN \A}. In the example in the figure, V(w) =
{
{A,B}, {B,D,E}

}
.

One-step optimality conditions for a state with Bob’s move: Consider a state w =
(s, bob) where it is Bob’s turn to move and let K(w) = K(s, bob) = {(s′, alice) : s′ ∈ R(w)}
be the set of states that are one-step reachable by Bob from w. Suppose that for each
u ∈ K(w), one has already computed V(u). Again, we would like to compute V(w). Consider
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{A,B,C}	  
{B,C,D}	  
{B,	  E}	  

V(u1) =
{A,B}	  
{B,D}	  
{B,C,E}	  

V(u2) = {B,C}	  
{B,D,E}	  

V(u3) =

{B,D}	  

{B,E}	  
V(w) = LOWER({V(u) \ {C} : u ∈ K(w)}) =

u1 u2 u3

w w = (C, bob)

Figure 4.3. One-step optimality condition for a state with Bob’s move

the situation shown in the Figure 4.3. The system is in the state w = (C, bob). Clearly Alice
cannot exclude C since the system is in position C. Now in each of the states u ∈ K(w),
it is Alice’s turn to move, and depending on the state u that Bob chooses to enter, she can
respond by choosing any of the set of states in V(u) \ {C} to exclude. Such a response plan
of Alice consists of a choice of sets {A(u) : A(u) ∈ V(u) \ {C}, u ∈ K(w)}, one for each
u ∈ K(w). This response plan guarantees that Alice is able to exclude exactly the set of
positions: ∩u∈K(w)A(u), because for any superset of this intersection, Bob can guarantee

that he can reach this set (given Alice’s response plan). Now by varying over all the possible
Alice’s response plans, one gets a collection of subsets of GOAL that Alice can exclude. The
maximal sub-collection of this collection is thus the collection of maximal excludable subsets
starting from state w. We define the following operator:

Definition 4.2.3. For a list of collections {V1, · · · ,VK}, where each Vk ∈ F, consider the

collection of subsets U = {A1 ∩A2 ∩ · · · ∩AK : Ak ∈ Vk}. Then LOWER({V1, · · · ,VK}) =

Λ(U).

For V1 =
{
{A,B,C}, {A,C,D}, {B,D}

}
and V2 =

{
{A,B,C}, {A,D}, {B,C,D}

}
given

above, LOWER({V1,V2}) =
{
{A,B,C}, {A,D}, {C,D}, {B,D}

}
. Now if |Vi| ≤ Q, then

|U| ≤ QK . Computing each intersection takes O(KG) time and hence the total time for com-
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puting U is O(QKKG). Then computing the maximal sub-collection Λ(U) takes O(Q2KG)

time. Thus the total time is O(Q2KKG). The collection of maximal excludable subsets
starting from state w = (s, bob) is

V(w) = LOWER({V(u) \ {s} : u ∈ R(w)}). (4.8)

In the example given in the figure, V(w) =
{
{B,D}, {B,E}

}
.

These local optimality conditions suggest the following algorithm for computing the maximal
excludable subsets of GOAL starting from any state w.

Algorithm 2: Computing the set of maximal excludable subsets of GOAL, start-

ing from each state w.

• Initialize: For each w ∈ W , set V0(w) = GOAL.

• Do: For k > 0, for each w = (s, j) ∈ W ,

– If j = bob, then

Vk(w) = LOWER({Vk−1((s′, alice)) \ {s} : s′ ∈ R(w)}),

– Else if j = alice, then

Vk(w) = UPPER({Vk−1((s′, bob)) \ {s} : s′ ∈ R(w)}),

• Until: Vk(w) = Vk−1(w) = V∗(w) for each w ∈ W .

• V∗(w) is then the maximal collection of excludable subsets of GOAL from the initial

state w.

To see why this algorithm converges and gives the correct solution, one only needs to check
that there is an equivalence between each iteration of this algorithm and the iteration that
one would have performed under the naive approach, which computes the excludability
answer for each possible subset of GOAL for each set w ∈ W . Clearly, for a state w, if
one is given whether or not one can exclude each possible subset of GOAL, then from that
information one can extract the maximal excludable subsets. In the other direction, suppose
that one is given the maximal excludable subsets of GOAL starting from a state w. Then
one can determine excludability for each subset A of goal as follows: if A is contained in
some maximal subset (not necessarily strictly), then it is excludable, otherwise it is not.
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Now consider the one-step optimality condition defined for the problem of computing max-
imal excludable sets for a state w = (s, alice), in which it is Alice’s turn to move (equa-
tion 4.7). For a subset H of GOAL, if s ∈ H, then one concludes that it is not excludable by
both approaches. If s /∈ H, then H is excludable only if there is at least one u ∈ K(w) such

that for this state u, V H(u) = 1. But if that is the case, then there is some subset A such
that H ⊆ A and A ∈ V(u), i.e., it is in the collection of maximal excludable subsets starting
from state u. By the one-step optimality condition, there is some maximal set H ′ ∈ V(w)
such that A ⊆ H ′. And thus H is excludable since H ⊆ H ′. Thus the two approaches
give the same answer if H is excludable. Similarly, H is not excludable only if for every
u ∈ K(w), V H(u) = 0. This means that H \ A 6= φ for any A such that A ∈ V(u) for any
u ∈ K(w). But then by the one-step optimality condition, this means that H \ A 6= φ for
any A ∈ V(w). Thus the two approaches give the same answer if H is not excludable.

Next consider the one-step optimality condition defined for the problem of computing maxi-
mal excludable sets for a state w = (s, bob), in which it is Bob’s turn to move (equation 4.8).
For a subset H of GOAL, if s ∈ H, then one concludes that it is not excludable by both
approaches. If s /∈ H, then H is excludable only if for all u ∈ K(w), V H(u) = 1. But if that
is the case, then there are sets {A(u) : u ∈ K(w)} such that H ⊆ A(u) for each u. Hence
H ⊆ ∩u∈R(w)A(u). Now by the one-step optimality condition, there is some maximal set

H ′ ∈ V(w) such that ∩u∈R(w)A(u) ⊆ H ′. And thus H is excludable since H ⊆ H ′. Thus the
two approaches give the same answer if H is excludable. Similarly, H is not excludable only
if there is some u′ ∈ K(w), such that V H(u′) = 0. This means that H \A 6= φ for any A such
that A ∈ V(u′). But then for any choice of sets {A(u) : u ∈ K(w)}, H \ ∩u∈R(w)A(u) 6= φ.

But by the one-step optimality condition this means that H \A 6= φ for any A ∈ V(w). Thus
the two approaches give the same answer if H is not excludable.



66

Chapter 5

Conclusion

This thesis extended the dynamic programming paradigm that is ubiquitously used in dy-
namic optimization problems and games, to the problem of computing minmax optimal
strategies in dynamic vector-valued games. Since these vector spaces of payoffs are only
partially ordered, the extremal elements of compact subsets of these spaces are not single-
tons, but rather a set of potentially multiple elements. Hence the outer minimization in the
minmax operator to compute the simultaneous guarantees results in a set of points. Each
of these points is minimal in the sense that Alice cannot achieve a simultaneous guarantee
that is dominated by one of these points. One of the key messages of this thesis is that if
one wishes to compute the minimal achievable simultaneous guarantees in dynamic games,
and if one wishes to do so by temporally decomposing the problem and using a backward
inductive procedure, then one needs to operate on the entire set of achievable guarantees at
each stage.

Dynamic programs that operate on a compact state space are commonly used in solving
partially observable Markov Decision Processes and Stochastic games, see [27, 21, 19] (also,
e.g. such a program is used to solve the optimal maxmin policy for the informed player
in Aumann and Maschler’s model as described in Chapter 3). There the state space is the
space of beliefs. The key difference between these dynamic programming operators and our
operator is that in the former case, the state transitions are a result of Bayesian updates of
the beliefs, whereas in our case these transition rules are control variables that are optimally
chosen.

5.1 Future directions

We propose the following directions.

• Our characterization of the minimal simultaneous guarantees for discounted vector-
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valued repeated games opens up the possibility of several dynamic programming based
algorithms to approximate the optimal guarantees and compute approximately optimal
strategies. We presented one such algorithm based on value iteration combined with
finitely parametrized approximations of the set of guarantees. It would be interesting
to explore other approaches and characterize the optimal error-complexity tradeoffs

• Aumann and Maschler also considered the model of zero-sum Repeated games with
incomplete information on both sides, where both Alice and Bob have some partial
information of the underlying repeated game. It would be interesting to extend our
dynamic programming approach to compute the minmax policy for Alice (or maxmin
for Bob) in this case. We believe that this should not be too difficult. One can imagine
a dynamic programming operator defined on the product of two state spaces: one is the
space of commonly held Bayesian beliefs about the information known by Alice, and the
other is the compact state space coming from Alice trying to adaptively simultaneously
optimize for the different possibilities of the information held by Bob. The transitions
of the first state will be Bayesian, while that of the second will be optimally chosen by
the operator.

• The set-valued dynamic programming approach that we presented in this thesis for
discounted vector-valued dynamic games has a lot of potential for extensions. First,
note that most of the results in Chapters 2-4 are for the case of discounted payoffs.
It would be interesting to see if one can extend these to the case of limiting average
payoffs defined in Chapter 1. Note that dynamic programming operators for MDPs (see
[27]) and certain classes of Stochastic games (see [20]) with limiting average payoffs are
well studied. This could potentially result in a derivation of new no-regret strategies
paralleling Blackwell’s strategy and others, based on purely dynamic programming
based approaches.

• Similarly, it would be interesting to extend our approach to computing minimal guar-
antees in Reachability games where the players move simultaneously. More generally, a
Reachability game is a special type of recursive game [13]. These games are stochastic
games where each stage either does not give any immediate payoff, or is terminating,
i.e., the game never gets out of that state. Everett [13] showed that with limiting aver-
age payoffs, these games have a value (i.e., a minmax theorem holds) and further, the
players have stationary optimal strategies. We believe that the vector valued versions
of both repeated games and recursive games with limiting average payoffs possess suf-
ficiently nice structure that make them attractive immediate subjects for the extension
of our approach.
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