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ABSTRACT

The number of smart appliances is rapidly increasing to fos-
ter the Internet of Things. However, identifying an appliance
for interaction in a building is also becoming more confusing.
Most work on simplifying contextual appliance identification
and selection either requires extra effort from users or infras-
tructure deployments. In this paper, we present an intuitive
system for users to “look up” appliances in a smart building
using an image. It constructs an annotated 3D visual model
of a building interior using RGB-D cameras and matches a
user-provided image on the model to determine the appli-
ances in the image. Our system matched 98% images on a
public robot-collected dataset and achieved 100% recall and
precision among them. We also deployed the system in our
lab with human captured RGB-D videos and images, which
have more degrees of freedom and noise than robots. We
matched 71% of the images. Of the matched images, 63% of
them achieved 80% recall, and 78% achieved 80% precision.

1. INTRODUCTION

There are many smart home appliances emerging today, such
as programmable thermostats, light bulbs, and fridges. The
intent is to make everyday things software-controllable and
connected to the Internet, namely the Internet of Things.
Plenty of work has been done towards connecting and man-
aging appliances to provide a more descriptive and pro-
grammable building [5, 6]. Even though it is desirable to
delegate more monitoring and actuation to applications and
services, people still need to interact directly with smart ap-
pliances. However, as the number of smart appliances grows
in the environment, identifying which appliances to interact
with through software becomes harder and more tedious for
users.

Although researchers have explored different approaches to
identify and interact with appliances, their approaches are
not intuitive because of two major problems. First, some ap-
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proaches require users to describe the appliance in cumber-
some ways. For example, they build appliance directories.
Users can query appliances with a formal query statement
[5], which enforces strict syntax. Or, they can use natural
language sentences with Amazon Echo, Google Now, or Mi-
crosoft Cortana. However, it is generally difficult to have
a unique human-friendly description of a device, especially
when multiple identical instances are at the same location.
Second, many approaches require the deployment of addi-
tional infrastructure. Some works require setting up laser
[29] or infrared [35] signal receivers on appliances, and a
user uses a special signal transmitter for interaction. Other
work depends on indoor localization [23], which generally
produces tens of centimeters error and does not work for in-
teractions at a distance. Therefore, given these drawbacks,
we employ a vision-based approach, which is both intuitive
for users and implies minimum deployment overhead.

In this paper, we explore an intuitive way of identifying ubig-
uitous appliances: what you see is what you interact with.
We argue that with the advance in computer vision and im-
age processing techniques, we should be able to identify the
objects more easily and interact with them in a straightfor-
ward manner. To achieve this goal, we develop a system
comprised of two major components: a modeling phase and
a matching phase. In the modeling phase, the building man-
ager needs to collect and mark a visual 3D building model.
In the matching phase, users can identify appliances on the
precomputed model using a smart phone to interact with
these appliances with minimum effort. We aim to build a
system that is intuitive in both phases. First, it should be
intuitive and simple for a building manager to build a visual
model. Second, it should be intuitive for users to identify
and interact with appliances, which is not only supported by
our image matching system, but also existing building man-
agement systems that provide clear and intuitive interfaces
to appliances as well as responsive interactions.

To achieve our goal, we adopted a suite of computer vision
techniques based on the specific requirements from our sys-
tem. For example, we need to label appliances, but also
require a fast response which contains point visibility anal-
ysis. We propose to avoid all accurate contour or box anno-
tation in computer vision and only label the center points
of appliances. Then we can project the annotated points
to the camera plane and determine which are in the image



view, therefore avoiding all heavy computation in conven-
tional visibility analysis, such as surface construction or hid-
den point removal [17]. We implemented our system using
Real-Time Appearance-Based Mapping (RTAB-Map) [20],
an open-source project for Simultaneous Localization And
Mapping (SLAM). We tested our system on the RTAB-Map
multi-session data set [21] collected by a 4-wheel robot, and
successfully matched 98% of test images. We achieved 100%
recall and precision on all appliances among the matched im-
ages. As an in-situ study, we also constructed a 3D model for
our lab with 1075 images. The 3D model is captured with a
human taking an RGB-D video, which generates more noise
and has more degrees of freedom than a video captured by
a robot. We collected images of appliances for identification
testing after 4 days of normal use of the lab. We matched
71% of the images onto the 3D model. Of the matched im-
ages, 63% of them achieved 80% recall, and 78% achieved
80% precision.

We summarize our contributions as follows:

e We propose an intuitive way to identify smart appli-
ances for interactions using a smart phone camera.

e We provide in-depth discussions on design choices among

computer vision and image processing techniques for
our particular purpose in smart buildings.

e We develope an end-to-end system to prove the effi-
ciency of our approach.’

e We conduct a comprehensive evaluation of our system
on a public dataset and a lab deployment.

The rest of this paper is organized as follows: Section 2 de-
scribes related work from object identification and computer
vision. Section 3 elaborates our technical requirements and
design choices. Section 4 discusses details of the system ar-
chitecture and algorithms. Section 5 presents the evaluation
results on several aspects of our system. Section 6 and 7
discuss and conclude the paper.

2. RELATED WORK AND BACKGROUND

In this section, we first talk about works that aim to simplify
human-object interactions. We discuss their approaches and
drawbacks compared to vision based approaches. After that,
we summarize the work in computer vision that enables the
components of our system.

2.1 Appliance Identification and Interaction
Much work has been done to enable easier interaction be-
tween humans and appliances. Many of them require ex-
tra infrastructure deployment on either the appliance or the
user. As examples, Kemp et al. [18] make users illuminate
an appliance with a laser pointer and use a camera to cap-
ture the selection. HOBS [35] uses an infrared transmitter
with a receiver installed on each appliance. Goggles [4] is
a face-mounted device that tracks eye movements for appli-
ance selection.

!The code and documentation are available at
https://github.com/SoftwareDefinedBuildings/SDB3D

To avoid heavy deployment overhead, other works make use
of sensors on commodity smart phones. Rekimoto et al. [31]
attach 2D markers on appliances and use a smart phone
camera to scan and identify them, but 2D markers suffer
from inefficiency at distance and with poor illumination [16].
Tricorder [23] uses signal strength-based indoor localization
to display nearby devices on a map. However, state-of-the-
art indoor localization systems can only achieve tens of cen-
timeters accuracy [24], and do not work when a user wants
to control appliances from a distance.

Other approaches integrate natural language processing into
their systems to provide a more intuitive way for users to
identify and interact with appliances. For example, Amazon
Echo is a recent product that parses spoken natural lan-
guage, potentially for the control of appliances in a smart
home. However, uniquely describing an appliance is difficult
especially when there are duplicate appliances in the vicinity
such as lights.

In comparison to audio, visual information is more intuitive
and straightforward. Augmented Reality (AR) is the con-
cept of overlaying information about or interface of objects
in an image. Heun et al. [14] built an AR interface for smart
devices, but do not discuss how to recognize the objects.
Mayer et al. [25] and Jain et al. [15] collected a set of im-
ages in the building and manually labeled the appliances
on the images. When a user’s camera view can match any
of the appliance images in terms of local features, such as
Speeded Up Robust Features (SURF) [3], they display rele-
vant AR information. However, because local feature-based
image matching is not robust enough from different view
angles [28], one object needs multiple images from differ-
ent angles and distances, which significantly increases the
labeling overhead for users.

2.2 Computer Vision

As we are leveraging image matching for appliance identi-
fication, we provide descriptions of some computer vision
terms used across the paper. Then we describe topics in
computer vision that are related to our work.

2.2.1 Terminology

Point Cloud: A set of 3D points. They can have extra
information including RGB values. A point cloud can be
visualized as a 3D world.

Image Registration or Image Matching: Computing
the transformation (location and orientation) of an image
as to another 3D coordinate system.

RGB-D Camera: A camera that captures both RGB im-
ages and their depth values at most pixels.

3D Model: A point cloud with useful extra information. In
this paper, the extra information contains: (1) raw images
and depth values that are used to construct the point cloud,
along with their transformations, and (2) labels annotated
on some points in the point cloud.

2.2.2  Computer Vision Topics
Object Recognition: Object recognition localizes and iden-
tifies objects in a 2D image or 3D point cloud. Ideally,



we could recognize the appliances in an image and inter-
act with them. However, object recognition usually requires
heavy training with a huge amount of human-labeled data
[7]. Furthermore, state-of-the-art algorithms report a mean
average precision of 53.1% for 2D images [10] and 57.6% for
3D point clouds [11]. These are not adequate for our pur-
pose, let alone when there are many identical devices in a
building such as monitors and lights.

Structure from Motion: A 3D model is important to lo-
calize an image to get context information for AR. Plenty of
work has been done to construct a point cloud from images
taken from different angles and locations, dubbed Structure
from Motion (SfM). The primitive operation of SfM is to
perform image registration of one image to another image.
Image registration is a well-studied topic, such as the multi-
view geometry approaches [12]. SfM based on only RGB
images was used to build a 3D model of Rome [1]. How-
ever, this approach usually generates low-density models in
indoor environments because they usually have low levels of
illumination and are texture-less. Fortunately, thanks to re-
cent commercial RGB-Depth cameras, such as the Microsoft
Kinect and ASUS Xtion Live Pro, high density 3D models
are feasible [13, 8].

Visibility Analysis: Visibility analysis computes whether
a point is visible given the location, rotation, and view size of
a camera. Alsadik et al. [2] summarizes two groups of state-
of-the-art visibility analysis approaches. The first group
builds surfaces in a point cloud and determine if the ray be-
tween the camera and the target point intersects with any
surface. The second group consists of Hidden Point Removal
(HPR) algorithms [17] and its extensions [27]. They calcu-
late the convex hull of the point cloud’s spherical flipping
projection centered at the camera. The points on the con-
vex hull are proved to be visible. However, both approaches
involve iterating on all points, which is slow given the num-
ber of points in a point cloud.

3. SYSTEM DESIGN

One of our main contributions is analyzing the characteris-
tics of different computer vision approaches for our partic-
ular purpose. In this section, we first describe a use case
to show what is desired in the concept of “What you see is
what you interact with.” Based on the use case, we discuss
the design requirements and details of how we decide to use
each particular technique in our system.

3.1 Use Case

Imagine Alice is about to give a presentation in a meet-
ing room. She wants to change several settings quickly in
the room before her presentation: close the shutters, pull
down the electronic projector screen, dim the lights near
the screen, turn on the projector, and connect her laptop to
the projector.

Today, she would walk to every window and manually close
the shutters. Then she finds the control panel of the pro-
jector screen and finds the button to pull it down. Then
she needs to walk to the light switches, and might have to
try several switches to get to the correct one. Finally, she
finds the remote controller of the projector and figures out
how to turn it on and connect a laptop to it, either through
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Figure 1: Using Building Management System.

a cable somewhere in the room or over local network at an
IP address and port. All these efforts are tedious, and this
happens frequently in daily life.

Instead, Alice wants to interact in a more intuitive way. She
does not want to provide any description for the appliance
that she intends to control, including the IP address, se-
rial number, location, or voice dictation. Specifically, she
wants to point her smart phone camera to the appliance,
and instantly all controllable appliances are highlighted in
the view. She taps on the appliance of her choice, and all its
virtual Ul components will be overlaid on the screen. Each
type of appliance should have its particular Ul components.
For example, a light should have at least a toggle button and
a brightness slider. Then she can naturally interact with the
appliance and see the changes in the real world with imper-
ceptible delay.

3.2 Using Building Management Systems
Even though we focus on intuitively identifying appliances,
end-to-end human-object interactions also rely heavily on
a good Building Management System (BMS) to handle all
interactions. Based on the requirements, we expect the sys-
tem to have a high-level architecture as shown in Figure 1.
A mobile phone client captures an image of an appliance
and transmits to our server, which runs as an application of
the BMS. Our server finds the target appliance and sends its
control information back. Then the user can interact with
the appliance, and all traffic is relayed through our server to
the BMS interface.

A BMS should be built on top of stable and fast building
infrastructure, including physical appliance controllers and
a communication network, such as BACNet. In the BMS,
we need abstractions of different types of appliances, along
with separate drivers for different models of hardware. To
guarantee performance and safety, many other components
are required, such as application authorization and authen-
tication or interaction transaction management. As for our
purpose, we also require the BMS to define all user inter-
faces that we can interpret and show on a smart phone.
Such interfaces can be defined using specific interface de-
ception languages [26]. Researchers have put great effort
into building such a BMS [5, 6], and we expect to be able to
take advantage of these in the near future.

3.3 System Requirements

The intuitive human-object interaction we propose requires
minimum effort from users, but in turn imposes many design
requirements on our system. Here we give a summary of



these requirements with explanations, then we talk about
how we address each of them respectively in the remainder
of this section.

e A good visual model that is easy to build and
manipulate. A visual model of the building needs
to be created for appliance identification. We require
that (1) collecting data to construct the model is sim-
ple, such as taking a video of the building interior; (2)
the visual model is accurate enough for visualization,
and applying labels should be straightforward and ef-
fortless.

e Fast, robust, and accurate RGB image match-
ing onto the 3D model. We require (1) fast match-
ing because it is interactive; (2) robust matching from
all image locations and orientations; (3) accurate match-
ing, otherwise the visibility analysis will not be ac-
curate; and (4) matching RGB image without depth
values, because smart phone cameras do not provide
depth information;

e Fast, robust, and accurate visible point anal-
ysis. The visible point analysis should also be fast,
robust, and accurate for the same reasons as RGB im-
age matching.

3.4 Object Recognition or Image Matching?
There are two ways to determine objects in an image: ob-
ject recognition and image matching. Object recognition
“understands” what objects are in an image based on mod-
els trained from human-labeled objects in images, such as
a Convolutional Neural Network [22, 7]. Image matching
searches for images similar to those that have already been
labeled in terms of their local features.

We chose to use the image matching approach for two pri-
mary reasons. First, object recognition requires a large
amount of manual labeling effort on the training data to
account for the different forms of an object. For example,
ImageNet [7] has more than 14 million images. In compar-
ison, because an indoor environment has relatively limited
and static space, we only need a limited number of images
to capture local features of all appliances and their visual
context, rather than “recognizing” the objects. Second, ob-
ject recognition accuracy is not practical for our purpose.
State-of-the-art algorithms can only achieve a mean average
precision of 53.1% [10], whereas image matching can achieve
more than 90% accuracy with 10-60% recall of all matches
under different image transformations such as scale, rota-
tion, blurring, illumination, and view point [28]. We argue
that a small recall of matches is good enough for our pur-
pose because we only need one correct match to register an
image, even though it can be matched to many other images.

3.5 A List of Labeled Images or A 3D model?

Image matching based appliance identification involves two
steps: (1) look for a similar image to the user-provided im-
age among precollected images, and (2) determine which
appliances are visible in the image. There are two ways to
do the second step: (1) label all devices in all precollected
images, which is used in [15], or (2) build a 3D model from
all precollected images, and label on the point cloud.

In our system, we decided to create a 3D model for three
reasons. First, because local feature-based image matching
can only get up to 60% accuracy for different viewpoints and
80% accuracy for different scales (or distances) [19], we need
many pictures of an appliance from different angles and dis-
tances to guarantee successful matches. However, this signif-
icantly increases the number of images we need t represent
all appliances. For example, we use 1075 images to cover a
864 sq. ft. (80 sq. meters) lab in our evaluation. Therefore,
labeling on every image is tedious and requires significant
human effort. By contrast, as we will describe next, label-
ing an appliance in a 3D model involves simply clicking on a
point in the model. Second, a 3D model can be used to cre-
ate synthetic images using 3D-to-2D projection, which can
be used to match user-provided images that are not simi-
lar to any precollected image. Third, 3D reconstruction is
effortless and intuitive thanks to RGB-D cameras, because
the depth information simplifies the matching algorithm, im-
proves the accuracy, and produces a more dense point cloud.
We can construct a point cloud by simply capturing a video
with an RGB-D camera while walking through the building
[34].

3.6 Labeling the Point Cloud

Object labeling is mostly used to create a ground truth
database to train and evaluate computer vision models. For
this purpose, all object labeling works require labeled ob-
ject to be enclosed in a contour or a box in either 2D [32]
or 3D [33] cases, so the model can capture all features of
the objects. Because labeling is very strenuous work for a
human, people usually use crowd-sourcing platforms, such
as Amazon Mechanical Turk?.

Conventional labeling does not meet our requirements, be-
cause we aim to make the system easy to use for the building
manager. In addition, we need the visibility analysis to be
fast, which is tightly coupled with how appliance labels are
structured. Fortunately, instead of the visual features of an
appliance, we only need its location to perform the visibility
analysis later. Moreover, we assume that when a user wants
to control an appliance, she will capture the main part of the
appliance in the image intuitively. Therefore, we decided to
only label a handful of center points (possibly as few as one
point) on each appliance in the point cloud.

3.7 Visibility Analysis

After matching an image, we need to perform visibility anal-
ysis to determine which appliances are shown in it. There are
two questions we need to answer: (1) Given the orientation
and view angle of the image, which appliances are covered
in the viewing cone? (2) Given the location of the image,
which appliances in the view cone are occluded (hence the
rest are visible)?

The first question can be solved by projecting all labeled
3D points onto the 2D image plane and determining which
fall into the image pixel range. Because we choose to label
each appliance with a small number of points, there could
be only tens of points in a room. Furthermore, the 3D-to-2D
projection algorithm has time complexity O(n), where n is

*https://www.mturk.com/mturk/welcome



®RGB-D @ Point -
e images | Structure from Cloud . @ Labels
Motion Czbeling 3D Model
RGB-D Camera

Figure 2: Modeling Phase Overview

T
' g
g TSURE ; e ® Feature Correspondences
- : SR
>
(@ Frame 1 RGB : (2 Frame 1 Features | Match m

' Rame =
'
'
ks L.
@ Frame 2 RGB (@ Frame 2 Features

I
: Depth @ Feature 3D ) Relative
: Conversion Coordinates Transformation

©)] Frame 1 Depth

Depth @ Feature 3D
Conversion Coordinates

Structure from Motion

@ Frame 2 Depth

Figure 3: Image registration algorithm in the Struc-
ture from Motion (SfM) component.

the number of labeled points, so we expect this step to be
very fast.

The second question is the conventional visibility analysis
problem. As we described in Section 2.2.2, visibility analy-
sis considers surfaces formed by points to determine occlu-
sions, either by reconstructing the surfaces from points or
projecting them spherically to calculate the convex hull [2].
However, all current approaches need to iterate all points
in a point cloud, which can easily be several million for a
room. Furthermore, these algorithms have higher complex-
ity. For example, HPR has time complexity O(nlogn) [17].
Therefore, we decided not to use conventional visibility anal-
ysis algorithms, and address the second question by listing
multiple appliances sorted by distance from the camera.

4. SYSTEM ARCHITECTURE

Our system consists of two phases: (1) a modeling phase for
the building manager to create a 3D model, and (2) a match-
ing phase for users to identify and interact with appliances.
In this section, we describe how each phase works.

4.1 Modeling

The modeling phase is designed for the building manager to
construct a 3D model. Figure 2 shows the overview of the
modeling process. The building manager uses an RGB-D
camera to take a video walking through the building, and
the Structure from Motion module outputs a point cloud
with all registered images. Then the building manager labels
all appliances to generate the 3D model that we need in the
matching phase.

4.1.1 Structure from Motion

Our Structure from Motion (SfM) component converts an
RGB-D video to a point cloud. It runs on a laptop connected
to an RGB-D camera. To perform the reconstruction, the
building manager carries them and takes a video walking
through the building.

Given an RGB-D video, SfTM assumes every two consecu-
tive frames have a small difference in location and orienta-
tion, meaning they have enough common local features to be

registered. This image registration step is the primitive of
StM. Figure 3 shows the details of the image registration al-
gorithm with example pictures generated using RTAB-Map
[20]. When doing image registration, SfM first computes all
SURF features on both frames. For each feature in one im-
age, STM searches for the closest feature in the other image,
therefore generating a list of pairs of matched points be-
tween the two images. As implemented in RTAB-Map, two
features are matched using the Nearest Neighbor Distance
Ratio (NNDR) approach. Particularly, feature A in image
1 matches feature B in image 2 if and only if

distance(A, B) < ¢ - distance(B,C) (1)

for any feature C in image 2, where ¢ is a predefined ratio. A
pair of matched points are supposed to be the same physical
location in a 3D world, but could be at different positions on
the two images. With the list of matched points, SfM com-
putes their corresponding 3D point coordinates in their own
image coordinate system based on the depth values. SfM
then uses the RAndom SAmple Consensus (RANSAC) al-
gorithm [9] to calculate the relative transformation between
the two frames. After all consecutive frame pairs are regis-
tered, their 3D points will be transformed and added to a
global point cloud.

RTAB-Map [20] fits our design for SfM well, so we decided
to use it as our SfM implementation. After the point cloud
of a building is generated, we save it in a PLY (Polygon File
Format)® file. Along with the point cloud, all images and

their locations and orientations are automatically saved in
an RTAB-Map-defined SQLite database.

4.1.2 Labeling

We employ two approaches to label appliances. The first is
CloudCompare®*, which is an open source project for point
cloud manipulations. The building manager can inspect the
point cloud and select a point. The coordinates of a list of
selected points can be saved as a text file. We use one text
file for every appliance and use the appliance name as the
file name. Because CloudCompare implements the hidden
point removal algorithm [17], we can directly label points on
point clouds without constructing surfaces, which would be
computationally intensive.

We have also built our own 2D-to-3D labeling tool to label
3D point from 2D images that are registered on the point
cloud. Our tool allows the building manager to specify a 2D
coordinate on an image for the calculation. It first calculates
the 3D coordinate of the point in the camera’s coordinate
system using the depth values of the image saved in the 3D
model. Then we convert it to a global 3D coordinate using
the transformation of the image.

After the list of label files is created, we have a complete
3D model. In summary, the 3D model contains: (1) A point
cloud PLY file, (2) an RTAB-Map-defined database contain-
ing registered images and their parameters, and (3) a list of
label files containing the coordinates of labeled points.

4.2 Matching
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After the 3D model for a building is created, we put it on our
server for the matching phase. Figure 4 gives an overview
of the matching phase. A user takes an RGB image of the
appliance she wants to interact with using our mobile ap-
plication, which is immediately transmitted to our server.
Then the server computes the location and rotation of the
RGB image by matching it to the most similar image in the
3D model. It then performs visibility analysis for all labeled
appliances to check whether they show in the RGB image.
After the appliances are determined, our server talks to the
BMS for interactions as described in Section 3.2.

4.2.1 RGB Image Matching

The image matching component takes a new RGB image
from a smart phone and registers it onto the point cloud in
the 3D model. Although image matching is already imple-
mented in the SfM component, we cannot simply reuse it to
match new images for two reasons. First, an image has to
be registered with another image that shares enough com-
mon SURF features. However, the new image is from an
arbitrary location and orientation, so we do not know which
image it should be registered with. Second, the RGB im-
age does not have depth information, so we cannot use the
RANSAC approach to compute the relative transformation.
We therefore adopted another approach to perform the RGB
image matching.

Figure 5 shows how our RGB image matching works. We

3http://paulbourke.net/dataformats/ply/
“http://www.danielgm.net/cc/

first calculate SURF features for the new RGB image. Then
we find the closest image that has the highest similarity with
the RGB image. We adopted the similarity definition used
by RTAB-Map, which is:

Number of matched feature pairs

Similarity = Max number of features of two images )
With the depth values of the closest image and its regis-
tration information, we calculate the global 3D coordinates
of its matched features. Then the image matching prob-
lem becomes a Perspective-N-Point (PnP) problem [30]. A
PnP problem is the determination of image location and
orientation given the 3D coordinate of a point and the 2D
coordinate of its corresponding point in an image. For noisy
data, RANSAC can be used to solve PnP problem, which is

what we adopted.

Many pieces are implemented in RTAB-Map, such as a wrap-
per of the PnP solver in OpenCV. We extended RTAB-Map
to perform our RGB image matching.

4.2.2  Visibility Analysis

After we obtain the camera location and orientation, we need
to perform visibility analysis to determine which appliances
are visible in the RGB image. As we discussed in Section
3.7, we only check whether the labeled 3D points are visible
in the image. We first check which points are behind the
camera plane. The camera plane is an infinite 2D plane
defined in the pinhole camera model [12], and all points with
negative Z axis values are behind the plane. By transforming
the points to the camera’s 3D coordinate system, we remove
all points with negative Z axis values. Then all the labeled
points in front of the camera are projected onto the camera
plane. We then pick the 2D pixels on the image plane that
are within range of the image.

4.2.3 Appliance Interactions

When we have determined the appliance that a user intends
to control, we talk to the building management system for
specifications of Ul and interactions. Because we assume
a well designed BMS, this should be straightforward. We
leave this to future work.

5. EVALUATION

To investigate the usefulness and effectiveness of our system,
we evaluate it on the RTAB-Map multi-session dataset [21]
and a deployment in our lab.

5.1 Experiment Setup

5.1.1 RTAB-Map Multi-Session Dataset

The RTAB-Map multi-session dataset was collected by a
four-wheeled robot attached to a Microsoft Kinect [21], which
produces 640 x 480 RGB images and corresponding depth
values on most pixels. It contains five videos of a building
floor, with a total path length of 750 meters. The center
part of the floor is captured by all videos to perform global
loop closure detection. We picked one of the videos to con-
struct a point cloud with 304 images registered and labeled
10 objects in the 3D model, which are shown as Y axis la-
bels in Figure 6a. We only label 1-3 points on each object.
Although these objects are not smart now, we expect all of



them to be connected to the Internet in the foreseeable fu-
ture. We manually subsampled 46 RGB images taken from
the common center area from the other 4 videos that contain
labeled objects. Because the 5 videos are taken at different
times, the images are always from different angles and dis-
tances.

5.1.2  Lab Deployment

We deployed our system in our lab in Soda Hall in UC Berke-
ley. The size of the room is approximately 864 sq. ft. (80
sq. meters). We hand-hold a Microsoft Kinect to capture
and reconstruct the interior of the lab in approximately 18
minutes. Our video was captured at 1 Hz and contains 1075
RGB-D images. We labeled 15 appliances in the lab with 1
point on each. The 15 appliances are shown as Y axis labels
in Figure 6b.

To take into account the daily changes, we did the match-
ing experiment dour days after the construction of the 3D
model. For each of the 15 labeled appliances, we took 5-6
pictures of each appliance from different angles using an LG
G2 Mini Android phone, and got 76 pictures with 2560 x
1920 pixels in total.

Compared to the RTAB-Map multi-session deployment, the
lab deployment is more challenging for several reasons. First,
the robot has fewer degrees of freedom in its motion than a
human. It captures all images from a fixed height above the
floor. This makes it easy to match images taken from a sim-
ilar height and angle, but humans are likely to take images
from a variety of heights and angles. Also, robots move more
smoothly than human, which leads to fewer blurry images.

5.2 Image Matching

We regard an image to be matched (or registered) if it finds
an image from the 3D model that is most similar to it, and
they have enough common features to compute a relative
transformation. In addition, as adopted in RTAB-Map in
SfM, if the transformation between these two images, as
computed by the PnP algorithm, has a rotation exceeding
90°, we regard the registration as a failure. 45 out of 46
(98%) images in the RTAB-Map multi-session dataset are
matched. In our laboratory deployment, 54 out of 76 (71%)
images are matched. This is reasonable given the degrees of
freedom of human motion and changes in the environment
in the four days.

5.3 Appliance Identification

Because it is hard to obtain the ground truth location and
orientation of images, we study how well our system identi-
fies objects, which in turn relies on image registration. Ev-
ery appliance in every test RGB image, which we call an
instance, is marked as one of four types based on human
observation:

1. Not Visible: None of the object lies in the viewing cone
of the image.

2. Occluded: The object lies in the viewing cone of the
image but is occluded by other objects.

3. Partially Visible: Part of the object can be seen in the
image.
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Figure 7: Lab deployment recalls (left) and preci-
sions (right)

4. Visible: The whole object can be seen in the image.

Our system reports whether an appliance is identified for ev-
ery appliance and every successfully matched image. There-
fore, every instance falls into one of 8 categories given both
its ground truth and its identification result. The 8 cate-
gories are shown in the result Figure 6.

Figure 6a shows the results of the 45 matched images in the
RTAB-Map multi-session dataset, along with the 10 labels
and 8 categories. There are in total 450 instances, and 392
(87.1%) of them are type 7 and type 8, which means our
system reports correct results. Another 40 (8.9%) instances
are type 6, which means the appliances are occluded but lo-
cated in the viewing cone of the image. Because we do not
perform any occlusion analysis, which is computationally in-
tensive, these results are expected. The remaining 18 (4.0%)
instances, which are type 4 or type 5, are partially visible in
some images and are not always identified. Because we only
label central points of an appliance, if a labeled point falls
out of the image viewing cone, our system does not iden-
tify the appliance. This will not impact our user experience
because users will intuitively try to put the entire target ap-
pliance in the image. In our system, we regard all instances
in categories 4-8 to be successful identifications. Therefore,
we achieved 100% success on the RTAB-Map multi-session
dataset.

The lab deployment results are shown in Figure 6b. Among
all 810 instances across 54 images and 15 appliances, 707
(87.3%) are type 7 and 8, 11 (1.4%) are type 6, and 12
(1.5%) are type 4 and 5. Given the noise arising from human
video capture and environmental changes, there are more
erroneous instances than in the RTAB-Map multi-session
dataset experiment. To further evaluate how the system
performs, we define the recall of each image as the number of
appliances correctly identified by the system divided by the
total number of appliances actually appearing in the image.
We also define the precision of each image as the number of
appliances correctly identified by the system divided by the
total number of appliances identified by the system.

Figure 7 shows the histogram of recall and precision of all
54 images. We can see that both the recall and precision
distributions are bimodal, which means some images give
completely wrong results, whereas the rest perform fairly
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Figure 8: Number of matched images (top left),
similarity calculation time (top right), recall (bot-
tom left), and precision (bottom right) with different
numbers of images in the 3D model

well. Among the 54 images, 34 (63%) have recall larger
than 0.8, and 42 (78%) have precision larger than 0.8.

5.4 Amount of Images in 3D Model

We studied the number of images required to cover a certain
space, such that enough RGB images can still be matched
and the recall and precision remain stable and high. We
chose to use the RTAB-Map multi-session dataset because
it gives perfect results with 304 images in the 3D model.
We uniformly and randomly subsampled the dataset with
predefined proportions and reran the experiments. Figure
8 contains four subplots that show how the following values
change as the number of images in the database increases:
(1) the number of matched images, (2) the similarity calcu-
lation time, (3) recall, and (4) precision. As we can see, the
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Figure 9: Time of system components in matching
phase for RTAB-Map multi-session dataset and lab
deployment

number of images that we can locate saturates at around 200
images in the 3D model. Also, because we iterate through
all images in the 3D model to find the most similar one,
the matching time increases linearly as expected. Both re-
call and precision reach 100% with around 120 images in
the 3D model. Thus, we conclude that for our RTAB-Map
multi-session dataset experiment, we can achieve the same
performance with only 200 images instead of 304. This also
implies that we do not have to capture as many images as
possible when building the 3D model. A more interesting
question is what images we should keep in the 3D model,
and we leave this to future work.

5.5 Execution Time Analysis
The time we spend on processing every RGB image is the
key to our goal of achieving low latency. Although the image
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transmission from smart phone to the server also contributes
to latency, it depends largely on the network environment,
which we do not get to control. We break down the time
of the matching phase on our server based on the four main
components: (1) SURF, (2) similarity calculation, (3) PnP,
and (4) visibility analysis.

Figure 9 shows the time spent on each component for both
experiments. It is interesting to see that SURF and PnP
took most of the time. As we use 2560 x 1920 pixel images
in the lab office deployment, its SURF and PnP calculations
are several times longer in duration than the processing of
the 640 x 480 Kinect images in the RTAB-Map multi-session
dataset. This means that we should subsample the image
before sending to the server.

5.6 Android Application

We built an Android application as part of our end-to-end
system. Figure 10 shows an example of the user interface in
the application. As we can see from the perspective of a user,
the smart phone camera is pointing at a smart lamp. Our
system matched the image and determined the appliance in
the view of the camera, so it talks to the BMS to get a list
of Ul elements to show on the right side of the screen. In
this case, The lamp has ON/OFF and dimmer buttons.

6. DISCUSSION

Bringing computer vision to practical smart building appli-
cations involves many challenges. With our system and eval-
uation, we identify several issues for future work. First, our
system assumes the visual environment does not change over
time, which is not true for mobile appliances. Users could
submit images in a crowdsourcing strategy to update the
3D model as the building environment changes. This would
make the system more robust in the case of dynamic envi-
ronments and mobile appliances. Second, as we observed in
the lab deployment, some images cannot be registered to the
3D model because there is no similar image. On the other
hand, there are many “duplicated” images that are very sim-
ilar to each other in the 3D model. It is useful to learn which
images should be saved in the 3D model to provide a higher
image matching rate. Third, as the majority of the image
matching time is spent on SURF and PnP computations, we
can further reduce the end-to-end delay by subsampling the
image before transmitting to the server.

7. CONCLUSION

In this paper, we presented an intuitive appliance identifica-
tion system using image matching. We break down the prob-
lem to several tractable components and present a compre-
hensive analysis on design choices of computer vision tech-
niques. We tested our system on a public data set and de-
ployed our system in our lab. The results demonstrate the
viability of the system, and also raise interesting questions
and challenges on incorporating computer vision technolo-
gies to augment smart buildings.
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