## Design Considerations for Nano-Electromechanical Relay Circuits



Electrical Engineering and Computer Sciences University of California at Berkeley

Technical Report No. UCB/EECS-2015-195
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-195.html
August 14, 2015

Copyright © 2015, by the author(s). All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

# Design Considerations for Nano-Electromechanical Relay Circuits 

by
Matthew Edmund Spencer

A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy
in

Engineering - Electrical Engineering and Computer Sciences
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:
Professor Elad Alon, Chair
Professor Tsu-Jae King Liu
Professor Liwei Lin

Summer 2015

# Design Considerations for Nano-Electromechanical Relay Circuits 

Copyright 2015
by
Matthew Edmund Spencer

Abstract<br>Design Considerations for Nano-Electromechanical Relay Circuits<br>by<br>Matthew Edmund Spencer<br>Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences<br>University of California, Berkeley<br>Professor Elad Alon, Chair

Complementary metal oxide semiconductor (CMOS) technology has a minimum energy per operation, and that limitation is one of the myriad hurdles CMOS faces as it reaches small scales. This minimum energy is set by the balance between leakage energy and dynamic energy in subthreshold CMOS circuits, and sets floors on the achievable energy of digital units. A new, post-CMOS device with a sharper subthreshold slope than CMOS would be able to sidestep this minimum energy constraint.

A candidate device called a nano-electromechancial (NEM) relay has recently emerged. NEM relays are small, integrated, capacitively-actuated, mechanical switches. The devices have demonstrated extremely high subthreshold slopes: ten orders of magnitude over a millivolt of swing. However, in the same lithographic process they are twenty times larger than a minimum sized CMOS device, their gate capacitance is ten times that of a minimum sized CMOS device, and their mechanical motion is an order of magnitude slower than a CMOS inverter. Can NEM relays improve digital systems even with these drawbacks?

With proper circuit design, simulations say "yes". This dissertation examines three of the critical components of digital systems - logic, timing, and memory - and proposes NEM circuits which mitigate the weaknesses of the technology while achieving design goals. Simulations show that optimized relay logic, which arranges for all of the slow movement of relays to happen at the same time, can achieve an improvement of 10 x in energy-peroperation below the CMOS minimum energy point at a penalty of 10 x in delay and 3 x in area. This logic style is experimentally demonstrated. In addition, relay latch based timing with staticization in the feedback path is simulated, which results in a working relay pipeline with zero mechanical delays of timing overhead. Finally, a new device called NEMory is proposed to build dense, non-volatile, mechanical memory. A hybrid NEMory/CMOS array is simulated, and its performance is compared to other memory solutions. The NEMory density is higher than any non-volatile memory except for multi-level cell, off-chip Flash, and its read and write energy are lower than any other non-volatile technology. Finally, the scaling and process limits of realizing mechanical devices are discussed in the context of future work.

To my parents, Selden and Jean Spencer.

## Contents

Contents ..... ii
List of Figures ..... iv
List of Tables ..... viii
1 Introduction ..... 1
1.1 CMOS and the Minimum Energy per Operation ..... 3
1.2 Beyond Boltzman ..... 4
1.3 Electromechanical Devices to the Rescue? ..... 8
2 Design with Relays ..... 10
2.1 Physical Structure of MEM Relays ..... 10
2.2 Mechanical Model of the Relay ..... 12
2.3 Electrical Models of the Relay ..... 14
2.4 Relay Circuits ..... 16
3 Sequential Relay Circuits ..... 29
3.1 A Comparison of Relay State Elements ..... 31
3.2 Three Phase Clocked Relay Pipelines ..... 33
3.3 Two Phase Relay Pipelines ..... 36
3.4 Skew Tolerance ..... 40
3.5 Simulated Results ..... 43
4 NEM ory ..... 47
4.1 Challenges for Mechanical Memory ..... 47
4.2 Introduction To NEMORY ..... 50
4.3 Analyzing NEMory ..... 52
4.4 NEMory Design ..... 60
4.5 Layout Concerns ..... 68
4.6 Performance and Comparison to Other Technologies ..... 69
5 Conclusion ..... 77
5.1 Hurdles for the Relay Process Engineer ..... 78
5.2 Future Work ..... 80
5.3 Final Thoughts ..... 80
Bibliography ..... 82

## List of Figures

1.1 Current vs. voltage in a NEM relay, exhibiting very sharp slope during on and off transitions. Replicated from [1]. ..... 2
1.2 Drawing and band diagram of the parasitic, leakage BJT inside of a NMOS device. ..... 5
1.3 Drawing and band diagram of a TFET ..... 7
2.1 Diagram of a four terminal MEM relay [16, 17]. ..... 11
2.2 Diagram of a six terminal ( $\sigma$ ) relay. ..... 12
2.3 Schematic indicating the structure of the relay Verilog-A modle [16, 17]. ..... 17
2.4 A relay can be configured to behave in the same way as a NMOS or PMOS transistor by attaching its body to the supply voltage or ground (assuming the supply voltage is larger than $\mathrm{V}_{\mathrm{pi}}$ ). ..... 17
2.5 Relay $\mathrm{I}_{\mathrm{d}}-\mathrm{V}_{\mathrm{g}}$ curves are ambipolar; the state of a relay is determined by $\mathrm{V}_{\mathrm{gb}}$ and thus a relay can be shut with either sufficiently high or low voltage ..... 18
2.6 Schematics of relay logic gates which leverage the ambipolarity and $\mathrm{V}_{\mathrm{gs}}$ insensi- tivity of relays to make more compact logic gates. Because relays can pull up or down and be active either high or low, it is possible to build non-inverting logic and native, highly integrated XORs. ..... 18
2.7 Dieshot of CLICKR1 test chip. Thistest chip contained the oscillator experiment featured here [16, 17]. ..... 22
2.8 Waveforms captured from a relay oscillator which demonstrate the difference between electrical and mechanical time constants in relay systems [16, 17]. ..... 23
2.9 Schematics of an AND-OR-INVERT function implemented in CMOS and in re lays [16, 17]. The CMOS version consists of many small gates, while the relay version is a singlelarge gatethat has only onemechanical delay. Therelay version also uses half the number of devices as the CMOS version. ..... 24
2.10 Waveforms from and schematics of a relay based adder implemented on a $1 \mu \mathrm{~m}$ test chip. ..... 25
2.11 Schematic of a Manchester Carry Chain adder. ..... 26
2.12 Possible layout of a 90 nm 4 T relay. ..... 27
2.13 Energy delay comparison of CMOS Sklansky adders against relay Manchester Carry Chain adders [16, 17]. ..... 28
3.16 A circuit which can generate forward and reverse clocks for a relay latch based on a global clock. ..... 43
3.17 A seesaw relay and it's electrical schematic representation. ..... 44
3.18 Schematic of simulated system. ICLK and QCLK generators are instances of the clock generator in Figure 3.16 driven by quadrature clocks as shown in Figure 3.19 ..... 45
3.19 Simulated results of a two phase pipeline with local clock generation. ..... 46
4.1 CMOS SRAM Cell. BL is the bit line and $\overline{B L}$ is its complement, WL is the word line, $M 5$ and $M 6$ are names for the pass transistors, $Q$ is the stored bit and $\bar{Q}$ is its complement. ..... 48
4.2 Relay SRAM. BL is the bit line, WL is the word line, WWL is an additional write word line which is asserted when the word is being written, Q is the stored bit and $\mathrm{Q}^{0}$ is the bit being driven from or to the word line. ..... 48
4.3 Relay DRAM implmented on CLICRK 1. ..... 49
4.4 Micrograph and waveform from the prototypical NEM ory in [39]. Images repro- duced from [39] ..... 50
4.5 Modi ed NEM ory structure with active pull-o . BL _T is the top bit line, BL _B is bottom bit line, which stores the complement of the bit line, WL is the word line. Isolation is an insulating material that is mechanically anchored to the substrate. The device has three states: zero, one and off. In the one state WL is in contact with BL_T, in the zero state WL is in contact with BL_B, and in the off state the WL is not in contact with either BL. ..... 51
4.6 Interpolation between linear plate and beam spring constants based on aspect ratio of structure. The value at an aspect ratio of one is equal to $k_{p}$. The value at large aspect ratios is $\mathrm{k}_{\mathrm{b}}$. ..... 55
4.7 Force on the word line of an example NEM ory device as a function of displace- ment. Positive force represents force in the upwards (towards positive x ) direction. ..... 56
4.8 The voltage required to bring the word line of an example NEM ory device into equilibrium for any value of displacement, calculated by separating the force balance equation into displacement dependent and voltage dependent components. 58
4.9 Electrical model of NEM ory cell. ..... 59
4.10 Layout for a NEM ory cell. Though all layers continue past the cell boundary, the anchors have been explicitly extended since both the left and right anchor shapes are short. By contrast, the word line and bit line shapes extend the entire length of the array. ..... 62
4.11 NEM ory symbol and array. ..... 63
4.12 A NEM ory array con gured for writing. ..... 63
4.13 A level shifter which is capable of driving the bit line of a NEM ory above $\mathrm{V}_{\text {dd }}$. ..... 65
4.14 A NEM ory array con gured for reading. ..... 65
4.15 Di erence in current delivered to the sense ampli er when reading di erent array locations. Di erent colored lines correspond to di erent amounts of resistance on the bit line. There are two lines of each color, which correspond to the sides of the word line close to and far from the word line driver. In most cases, the bit line resistance dominates so the word line location has little a ect. At low voltages the diode dominates conduction and all currents fall within $50 \%$ of each other.66
4.16 Word Line Driver in NE M ory array. ..... 67
4.17 Floor plan for NEM ory array. ..... 69
4.18 Transient waveforms showing the write process for a NEM ory cell. ..... 71
4.19 Transient waveforms showing the write process for a NEM ory cell. ..... 72
4.20 Transient waveforms depicting two read and write cycles of a NEM ory array. Thearray is loaded with worst case data: all cells are oriented towards the top bitline, $B L_{\_} T$, resulting in higher capacitance and reverse leakage on that bit line.74

## A cknowledgments

M any hands other than mine have touched this document directly or indirectly, and I owe a huge debt of gratitude which I hope to tabulate here. That gratitude has to start with my advisor, Elad Alon, who has been everything that a person could ask for in a mentor. Elad is brilliant, insightful, a clear communicator, a genial negotiator and a hawk for his students interests, all of which made my path through graduate school easier. Even better, I get to take a little of his perspective into my future career: when I am stumped I am haunted by the question \What would Elad ask me about this?" In those moments my internal Elad simulator helps me through.

Other professors have been terri c mentors as well. Dejan M arkovic and V ladimir Stojanovic have been very close collaborators on the circuit side of the NEM relay project, and they have provided many astute insights throughout our years of collaboration. Tsu-J ae King-Liu has led the device development e orts that made the project possible, and her meticulous insight on device design, failure analysis, and communication have made it even more successful. Liwei Lin has been a valuable member of my committee. Jaijeet Roychowdhury helped me lay the foundations of the simulator models that undergird this work, and he has been very supportive of my e orts to publicize the models. I enjoyed my brief time working with V ivek Subramanian, M ichel M aharbiz, and K ris Pister on the unrelated, awesome, VAPR project.
$M$ any students have been in the trenches with me building and testing relay circuits. Hossein Fariborzi and Chengcheng Wang have been my other two musketeers, and we have fought it out with relay chips year in and year out. I'm glad to have had them at my side throughout the process: I still vividly remember our music selections from the CLICKR1 testing process. I learned most of what I know about CAD tools and circuit debugging from Fred Chen, who was a wonderful trailblazer for us. Sumit Dutta, K evin Dwan, Abhinav Gupta, Patrick K wong, and Pierce Oe ein have provided tremendous help along the way.

However, the circuit musketeers would have nothing to work on were it not for the valiant, backbreaking e orts of students on the device side of the NEM project. I am in awe of their collective device processing ability, and I am tremendously grateful to all of them; A nderson K am, R hesa Nathanael, J aeseok J eon, Vincent Pott, Filip Chen, Tim Chen, Jack Yaung, and Louis Hutin made this work possible.

This project has brought me into fruitful contact with excellent industrial partners and I've invariably enjoyed my time working with them. Ian Young and Uygar Avci were wonderful mentors at Intel, and every meeting of the minds I had while working with them in the Components Research Group was fascinating and inspiring. Lance Barron was an excellent collaborator, guide to TI and friend: I enjoyed working with him immensely. Mike Mignardi, Rick Oden, and all of the other DLP suspects also made a very positive impact. John Crossley, Matt Weiner, Chintan Thakkar, Alberto Puggelli, Douglas Adams and J onathan Spaulding helped bridge my transition from B erkeley to these industrial sites, provided hours of insightful discussion, and have remained steadfast friends.

M any EECS and BWRC sta members have enabled me to stay focused on this work. Their number includes the inestimable Ruth Gjerde, Dana J antz, and Shirley Salanio, who have shepherded many other students and me through all of the hurdles in the EECS program. I enjoyed working with the instructional lab sta , particularly W inthrop W ilson and Ferenc K ovacs, during my stints teaching labs. The BW RC sta : Tom B oot, Olivia N olan, Leslie Nishiyama, Sarah J ordan , Grace L ovio, B ira Coelho, Fred Burghardt, Brian Richards, J ames Dunn, Gary K elson, Dave Allstot, and Deirdre McA uli e Bauer kept the center running like a well oiled machine and provided a wonderful space in which to work. I reserve special thanks to the IT, Iab and CAD sta for keeping tools running: I couldn't do my work if they didn't keep the lights on. I've also had wonderful, if limited, interactions with the $M$ icrolab sta , and they all deserve kudos.

I've been supported by a variety of sources including the E3S, C2S2, BW RC, an Intel Fellowship and NSF Infrastructure Grant 040237.

I pursued other projects at the same time as my graduate work. Of those projects, my work with the EE Outreach @ Berkeley organization is my proudest extracurricular accomplishment. I'm grateful to have worked with tons of gifted volunteers and good friends through the group. A brief, and doubtless woefully incomplete, list of my collaborators is Reinaldo Vega, J ustin Valley, Zach J acobsen, Sam Burden, R achel Nancollas, A dair Gerke, Dan Calderone, Sam Coogan, Ben K eller, A chintya M adduri, A aron Bestick, K elvin So, A my W hitcombe, and Dorsa Sadigh. Thanks to them and everyone else who helped along the way.

I'm also proud of my work with the EEGSA, and I have many people to thank for setting me up, taking the baton from me, or helping along the way. I can't name everyone who helped with the organization, which I regret, but I can summarize some people with whom I worked especially closely: Gireeja Ranade, Zach J acobsen, Rehan K apadia, Adair Gerke, Ben K eller, B obby Schneider, K evin W eekly, Clair Lochner, Samarth B hargava, B en K eller, Stephen T wigg, Stephan Adams, Vasuki Narasimhaswamy.

I've been accompanied on the trip through graduate school by a wealth of wonderful friends who have helped make the journey to this dissertation joyful. They're named in big groups here for fear of eating many pages and still forgetting crucial names. I'm thankful to the all generations of $K$ eith House residents, my many friends from Cal Wushu (especially Darren and Tami as my rst, encouraging coaches), Team Moustache and other curlers and curling groupies, salseros and salseras, EECS board game groups, Fort A wesome, all of my friends from Elad's research group, the Lion Semiconductor team, the control theory happy hour, my integrated circuits rst year cohort, South B ay and Stanford suspects, MIT ex-pats, and many others.
$M$ aren has been a cornerstone in late chapters of my thesis, and my family has been the soil in which I took root. I love them tremendously.

## Chapter 1

## I ntroduction

A dissertation on mechanical computing may seem behind the times: mechanical computers went out of style in the 1950's \{ ENIAC was one of the last great examples of the technology \{ because the introduction of transistors shifted the underlying physics of computation. Information could be stored as clumps of electrons controlled with electric elds rather than stress in a physical spring controlled with power-hungry magnetic elds. The rewards of this shift in the underlying physics of switching devices were immense: the dawn of the transistor and Moore's law have resulted in enormous societal good and social change. However, the physics of transistors have shifted again over the long life of M oore's law, and the looming issues that face today's tiny transistors could allow mechanical computing devices to have another day in the sun.

There are many challenges facing transistors, and some quick examples include random dopant uctuation and shrinking gate dimensions, which have lead to increasing variability in planar bulk devices and various types of tunnelling leakage current respectively. One issue of particular import is the increasing relevance of the complementary metal oxide semiconductor (CMOS) minimum energy point: each operation con be optimized to consume a minimum amount of energy by balancing leakage and dynamic energy components. If devices operate at the minimum energy point, then clearly energy per operation can't be reduced even by sacri cing throughput, which means that architectural techniques like parallelism fail to provide any energy consumption bene ts.

Many techniques exist to reduce the power consumption of systems even in the face of this issue: power gating blocks when they're not in use, using specialized blocks that can perform some operations at lower energy, and using heterogeneous cores for di erent work loads. Even so, fundamentally shifting the minimum energy point would result in energy-per-operation gains. Unfortunately, the energy per operation is set by physics that are fundamental to the operation of a transistor: dynamic energy is a byproduct of putting charge on a capacitance and drain to source leakage occurs in any system that modulates the height of an energy barrier to gate electrons. Naturally, there is wide investigation of di erent ways to control the ow of electrons which will in turn reduce leakage. For example, tunnel eld e ect transistors (FETs) attempt to modulate the alignment of bands in order


Figure 1.1: Current vs. voltage in a NEM relay, exhibiting very sharp slope during on and 0 transitions. Replicated from [1].
to determine whether tunnelling is possible.
A more primal way to control tunnelling is to modulate the width of a tunnelling barrier by physically making it larger or smaller. Moving the electrodes on the sides of the barrier material achieves this. Further, making contact between those electrodes provides an even greater boost to the on-o ratio of the current, so mechanical switches built at the micro and nano scale show promise in creating a very low leakage switch. This promise has been con rmed by a range of prototypes; switches with less than femtoamperes of current have been demonstrated [1]. These devices have dramatic subthreshold slopes: their currentvoltage (I-V ) characteristics show changes of ten decades of current in millivolts of swing. An example of this transition is shown in Figure 1.1. W ith such sharp on-off characteristics these seem like natural candidates to replace CMOS switches and reduce energy-per-operation.

Of course, the I-V curve is only part of the story. Mechanical devices, even at the micro scale, switch very slowly compared to electrical devices. This mechanical delay is approximately one-thousand times longer than the electrical delay in an equivalent technology node. Further, each device is signi cantly larger than a minimum sized CMOS device, consuming about twenty times the area, and each device has larger gate capacitance than a minimum sized device, about ten times the capacitance. Clearly, CMOS circuits with the devices replaced by mechanical devices would be very large, very slow and very hungry for dynamic power unless the supply voltage was aggressively scaled.

However, these doom and gloom predictions assume naive circuit designs. Co-optimizing the circuits and the mechanical devices that comprise them can result in signi cantly im-
proved performance, reduced device count and accordingly lower area and energy consumption. This dissertation examines the circuit/ device co-optimization process for several canonical classes of digital circuits: logic, timing circuits and memory. The remainder of this chapter takes a closer look at the cause of the CM OS minimum energy point, the implications that has for designing digital systems, and the device technologies which attempt to alleviate the minimum energy problem. Chapter 2 introduces typical relay devices, a model appropriate for simulating them, and circuit design techniques suitable for building relay logic. These techniques result in logic blocks which operate in a single mechanical delay. The chapter includes experimental demonstrations of the circuits built in the resulting logic style. Chapter 3 examines timing circuits suitable for relay logic, observing that standard ip- ops would triple the delay of a system. The chpater proposes a latch based relay timing circuit which has zero mechanical delays of timing overhead and which is veri ed by simulations. Chapter 4 addresses the poor density of mechanical memory by proposing a new, non-volatile, high-density memory device, analyzing its performance and verifying the analysis with simulations. It includes a comparison of many modern non-volatile memories. Chapter 5 concludes the dissertation with ruminations on the fundamental limits of NE M ory and the relation of those limits to future work.

### 1.1 CM OS and the M inimum Energy per Operation

CMOS circuits have a well-de ned minimum energy per operation [2] which is de ned by optimally balancing the leakage and dynamic energies consumed by a digital block. Speci cally, [2] shows the energy consumed during each transition of a digital circuit can be represented as:

$$
\begin{align*}
\mathrm{E}_{\text {op }} & =\mathrm{E}_{\text {dynamic }}+\mathrm{E}_{\text {leak }}  \tag{1.1}\\
& =\mathrm{C}_{\text {block }} \mathrm{V}_{\text {dd }}+\mathrm{V}_{\text {dd }} l_{\text {leak }} \mathrm{t}_{\text {op }}  \tag{1.2}\\
& =C_{\text {block }} \mathrm{V}_{\text {dd }}+\mathrm{V}_{\text {dd }}\left(W_{\text {block }} \mid e^{\mathrm{V}_{T}=\mathrm{n}_{\text {th }}}\right) \frac{\mathrm{L}_{D} C_{\text {inv }} V_{\text {dd }}}{1 \mathrm{e}^{\mathrm{V}_{\text {dd }} V_{T}=n \text {th }}}  \tag{1.3}\\
& =\mathrm{V}_{\text {dd }}\left(C_{\text {block }}+W_{\text {block }} L_{D} C_{i n v} \mathrm{~V}_{\text {dd }}=\right.\text { th th } \tag{1.4}
\end{align*}
$$

where $E_{\text {dynamic }}$ is the component of energy lost to charging capacitors, $E_{\text {leak }}$ is the component of energy lost to leakage current, $\mathrm{C}_{\text {block }}$ is a generalized switching capacitance for the block each cycle which accounts for glitching and activity, $V_{\text {dd }}$ is the supply voltage, $I_{\text {leak }}$ is the leakage current through the block, $\mathrm{t}_{\mathrm{op}}$ is the amount of time required to perform an an operation, I is the dark current of the leaking CMOS diode, $\mathrm{V}_{\mathrm{T}}$ is the device's threshold voltage, n is the device non-ideality factor, th $=\mathrm{kT}=\mathrm{q}$ is the thermal voltage, $\mathrm{W}_{\text {block }}$ is an averaged "leakage width" which represents the total transistor width in the circuit weighted for the states which reduces leakage, $\mathrm{C}_{\mathrm{inv}}$ is the output capacitance of an inverter, and $\mathrm{L}_{\mathrm{D}}$ is the delay of the block measured in inverter delays: the logic depth. This model assumes that subthreshold current is dominated by gate-modulated drain-to-source leakage.
result in the gate capacitance exerting more control over the channel, either by increasing $\mathrm{C}_{\mathrm{ox}}$ ( nF ETs) or decreasing $\mathrm{C}_{\text {bulk }}$ (FDSOI). These have had impressive results, with subthreshold slopes approaching 60 mV per decade [3, 4].

Adjusting $\mathrm{V}_{\mathrm{T}}$ doesn't change the exponential relationship between the gate-to-source voltage, $\mathrm{V}_{\mathrm{gs}}$, and current, it just changes the barrier height between the drain and source. This can reduce leakage at the cost of subthreshold \on"-current, but can't a ect the total energy consumption as discussed above. The threshold voltage is an ine ective knob because subthreshold conduction relies on thermionic emission as its switching mechanism. A di erent switching mechanism could result in a steeper subthreshold slope and thus reduce the minimum energy per operation of a technology. This philosophy has led to investigations of a variety of novel devices, and tunnel FETs [5] are among the most mature of them.

A tunnel FET relies on a complex band structure, a cartoon example of which is shown in Figure 1.3, to achieve current switching. A large intrinsic region between the drain and source suppresses leakage because injected carriers tend to recombine, so there is little conduction across the structure without an external voltage applied. When one is applied the valence band of the drain aligns with the conduction band of the channel, which enables tunneling between them. The width of the tunneling barrier is just set by the width of the band gap in the channel, and it can be narrow enough to promise signi cant current density [6].

E ven so, demonstrated tunnel F ET s struggle to demonstrate both signi cant on-current and high subthreshold slopes at the same time. In particular, defects in the channel tend to create mid band traps that greatly enhance 0 -state tunnelling [7]. The highest demonstrated subthreshold slope is 20 mV , but that was at a current density of only $0.1 \mathrm{~A}=\mathrm{m}$ [8]. M ore aggressive tunnel FETs have demonstrated $1 \mathrm{~mA}=\mathrm{m}$ at a subthreshold swing of $60 \mathrm{mV}=$ decade [9], but this doesn't represent a signi cant improvement over state of the art
nFETs. In short, the subthreshold slope of tunnel FETs isn't improved relative to CMOS while the on-current is degraded. Possibly as a consequence, tunnel FETs have not seen large scale circuit demonstrations thus far.

Turning to other physical domains holds some promise for switching technologies. For instance, magnetic logic gates have been demonstrated to have very low energy per switching operation [10]. These devices store state in the orientation of magnetic domains rather than in the presence or absence of charge, and this magnetic spin by modulates the resistance of the devices with the giant magnetoresistive e ect (GMR). Interlocking domain and spin injection sites can result in assemblies which propagate logic through magnetism with relatively little electrical work. Ultimately, however, the devices switch because current is applied to them. Relatively low (A) currents are required to switch their state, but the devices are resistive at both their inputs and their outputs which necessitates aggressive architectural tricks to minimize power consumption [11]. Comparisons to CMOS reveal that the devices are not energy or delay competitive with CMOS gates, consuming pJ of energy for ns delays [12] at the gate level. B oth of those metrics are an order of magnitude higher than their CMOS counterparts.

Figure 1.3: Drawing and band diagram of a TFET.
chips which show functionality of common logic circuits. Projections of the behavior of future devices are made based on the demonstrated relays, and an energy delay analysis is performed on adders made of the projected devices.

Relay logic alone isn't enough to build really large digital systems. Logic needs to be partitioned into feasibly sized chunks, which requires synchronization between di erent logic blocks. Traditional ip- ops can be implemented using relays, but ip- ops contain several back-to-back inverters internally, so a realy ip- op would incur two additional mechanical delays on top of the delay of the logic block the ip- op serves. Further, the master-slave arrangement of traditional ip- ops guarantees that one bu er drives another in order to operate the system. Timing circuits that are suitable for use in relay-based systems need to have no mechanical delays on the forward path, and thus the staticization bu er needs to be moved into their feedback paths. Chapter 3 proposes a relay-based latch with a staticization bu er in the feedback path and a timing scheme such that the latch incurs zero mechanical delays of overhead in a relay VLSI system. Of course, the system incurs an electrical delay because nothing is free, but the overhead is shown to be negligible in simulations of a relay based pipelined accumulator.

VLSI systems need memory in addition to logic and timing circuits. Fitting su cient quantities of memory on to chips requires high memory density, and the large size of relays prevents the construction of high density memory. A standard static random access memory (SRAM ) cell composed of relays would consume as much area as twenty CM OS SRAM cells. Chapter 4 asks how to improve the density of relay memory, and after touring through an experimental demonstration of three relay dynamic random access memory (DRAM), it proposes a new device referred to as NEM ory. The NE M ory device achieves high density and non-volatility because it is a clamp-clamp beam with actuation electrodes both above and below the moving exure. The clamp-clamp beam structure can be designed for an easy array layout, and the two electrodes allow the beam to be held in place by Van der Waals forces to achieve non-volatility. Immunity to sneak paths is achieved by careful materials selection of the beam such that a Schottky diode contact forms at the contact point between electrodes. Models of this device, analytical calculation, and simulations of hybrid NEM ory/CMOS arrays are used to benchmark the device's performance and compare it to state of the art memory technologies.

These chapters suggest that large VLSI systems can be built from electromechanical devices, and chapter 5 explores the future prospects of building those systems and extending Moore's law with mechanical devices.

## Chapter 2

## Design with Relays

This chapter will discuss a logic style for mechanical relays that reduces their delay and power. A n electromechanical model suitable for design work will be described and then used to inform the development of the relay logic style. Then measurements of a test chip will illustrate the salient points of the model. Finally, a scaled model will be used to simulate a relay adder in this design style. The scaled relay adder will be compared to a CMOS adder.

### 2.1 Physical Structure of MEM Relays

Figure 2.1 shows a diagram and SEM image of a four terminal MEM relay device. The device consists of a movable Poly-SiGe gate structure suspended by folded exures which act like springs. The bottom of the gate is covered with a layer of insulating AI O, and a strip of metal called the channel is attached to the bottom of the AI O layer. The gate and channel have vertical deformations called dimples. The gate, gate oxide and channel are suspended above several metal electrodes, which are referred to as body, drain and source. The dimples align with the drain and source.

Di erent metals have been used to make the channel, drain, source and body electrodes in di erent iterations of the relay design. The electrodes were made of tungsten in early designs and ruthenium is later ones. B oth Tungsten and Ruthenium were selected because of their high hardness: measurements and analysis suggest that 90 nm relays with contacts made from these two metals can withstand 10 on-o cycles [18]. However, ruthenium was used in later relay designs to improve the conductivity of the device over time when exposed to atmosphere. Both metals form an oxide on their surfaces when they are exposed to air, but tungsten forms an insulating oxide while Ruthenium forms a conductive oxide [19, 20]. This conductive oxide allows the device to operate stably in atmosphere over many cycles.

Figure 2.1 also illustrates the basic operation of the relay. Applying a voltage between the gate and the body creates an electrostatic force on the gate, causing it to move and to deform the folded exures. W hen the voltage between the gate and the body is increased above a critical value called the pull-in voltage, $\mathrm{V}_{\mathrm{p}}$, the gate moves as close as it can to the

Figure 2.1: Diagram of a four terminal MEM relay [16, 17].
body. This motion is stopped when the dimples on the channel are brought into contact with the drain and source. This forms a conductive path from drain to source, and the relay is said to be in the on state when such a connection is made. W hen the gate-body voltage is decreased below a di erent value called the release voltage, $\mathrm{V}_{\mathrm{r}}$, the gate is pulled back to its original position by the spring forces exerted by the deformed folded exures. This breaks the contact between the channel and the drain and source so that there is no conduction between them. When the drain-source connection is broken the device is then in the off state.

The relay pictured in Figure 2.1 shows the channel drawn from the left side of the relay to the right. However, there's no reason not to have the relay create a shorter loop from the right side to the right side. Two such channels can be included on a single device, which allows for improved functionality: a single gate can control two separate switching paths like a DPST switch. Such an arrangement is pictured in Figure 2.2 and is referred to as six-terminal, or 6 T , relay. The terminals are the gate and body which work the same as the relays discussed above, and two drain/ source pairs referred to as dmin right / source right, and drain left / source left. The standard relays discussed up to this point are referred to as 4 T relays, but when this text refers to a relay it should be assumed to be 4 T unless

Figure 2.2: Diagram of a six terminal (6T) relay.
speci cally denoted otherwise.

### 2.2 Mechanical M odel of the Relay

Designing a relay based system requires that su cient voltage and time are budgeted for the relays to move from state to state. Modeling the underlying physics of the relay provides insight into the their operating voltages and dynamics.

The dynamics of the motion of a relay can be described as a second order spring-massdamper system being driven by a non-linear, electrostatic force [15, 1]:

$$
\begin{equation*}
m x=F_{\text {elec }}\left(x ; V_{g b}\right) \quad b x \quad k x \tag{2.1}
\end{equation*}
$$

where $x$ is the displacement of the gate, bis the damping coe cient of the gate's motion, $k$ is the e ective spring constant of the folded exures, $\mathrm{V}_{\mathrm{gb}}$ is the voltage between the gate and the body, and $F_{\text {elec }}$ is the electrostatic force between the gate and the body.

Equation 2.1 glosses over modeling the forces which arise when the relay is in contact with the substrate. The force is e ectively in nite since the gate can't pass through the drain and source electrodes, but modeling it as such is unsuitable for simulators. Instead, it is modeled as an exponential force which turns on sharply for large values of $x$. This choice of model clashes somewhat with classical atomic interaction theory since the LennardJ ones potential integrated in three dimensions results in a ninth order polynomial for the repulsive surface, but using an exponential in its place has precedent in scienti c literature referred to as the Buckingham approximation[21]. Exponentials are often handled with special delicacy by circuit simulators, which makes models converge more easily, so the Buckingham approximation is used here[22].

The folded exures con ne the motion of the relay so that it only moves up and down. This means that the relay's electrostatic behavior can be modeled as a pair of moving parallel
overlap area. By design, this ratio is kept small so that voltages on the drain or source don't apply forces to the gate [26].

There are also capacitances between the drain/ source and the channel ( $\mathrm{C}_{c d}$ and $\mathrm{C}_{\mathrm{cs}}$ ), and these capacitances present a modeling challenge since the separation of the channel and the drain/ souce goes to zero as the relay is actuated. Using a standard parallel plate model would result in in nite capacitance as the relay turns on. There are various ways to model this which tradeo accuracy and stability in simulation, but the simplest and most expedient method is to add a small o set term to the separation so that the nal capacitor model is:

$$
\begin{equation*}
C_{c d}=\frac{A_{\text {con }}}{g_{d} \quad x+} \tag{2.9}
\end{equation*}
$$

where $A_{\text {con }}$ is the area of the channel contacts in which the dimples are formed and is the new separation o set term.

The electrical and mechanical models of the relay have been combined into a relay device model which has been veri ed by various experiments [1, 16, 17]. The model was implemented in Verilog-A to enable circuit design with relays. The performance of the computer model and the relays is well correlated [1]. N otably, this model captures the switching delay, pull-in and release voltages, and electrical delay of the devices. Figure 2.3 summarizes the model graphically.

### 2.4 Relay Circuits

Using relays as logic switches is di erent from using CMOS as logic switches because relays turn on and off based only on $\mathrm{V}_{\mathrm{gb}}$ and because relays' delay is dominated by their mechanical motion. These two assertions will be explored below.

## Static Relay Switching Characteristics

The electrical force on a relay is controlled by $\mathrm{V}_{\mathrm{gb}}$ according to Equation 2.2. This is significant, the body of each relay can be individually set to a di erent potential even when the relays are close together. A Iso, unlike CMOS transistors, the voltage between the gate and the source of a relay has no e ect on its ability to drive current. Consequently, any relay can be designed to serve as an active low device (a \PMOS" that also has a strong pull-down) or as an active high device (a $\backslash N M O S^{\prime \prime}$ that also has a strong pull-up) by setting one of its gate/ body terminals to the supply voltage or ground respectively. This is pictured in Figure 2.4. When a body terminal is attached to ground, the relay will turn on when the gate voltage is raised to a high value (greater than $\mathrm{V}_{\mathrm{pi}}$ ). Conversely, when a body terminal is connected to the supply voltage then the relay will turn on when the gate voltage is lowered below $\mathrm{V}_{\text {supply }} \mathrm{V}_{\mathrm{pi}}$. Note that if the gate voltage is allowed to travel outside of the supply voltage, then the relays can be actuated by su ciently high or low values as seen in gure 2.5.

Figure 2.5: Relay $I_{d} \quad V_{g}$ curves are ambipolar; the state of a relay is determined by $\mathrm{V}_{\mathrm{gb}}$ and thus a relay can be shut with either su ciently high or low voltage.

Figure 2.6: Schematics of relay logic gates which leverage the ambipolarity and $\mathrm{V}_{\mathrm{gs}}$ insensitivity of relays to make more compact logic gates. Because relays can pull up or down and be active either high or low, it is possible to build non-inverting logic and native, highly integrated XORs.

Using this con gurability, relays can be used to build non-inverting logic in single gates. For instance, it is possible to make both bu ers and inverters out of relays as pictured in Figure 2.6a. Even better, it is easy to make a relay into a 3-way XOR because the relay can be actuated by a di erence between the gate and body. Such an XOR is pictured in Figure 2.6b.

This suggests that relays can be used to build compact adders and multipliers because
those mathematical operations require many XORs. The advantages of using relays to construct XORs will be explored below. However, the dynamics of the relays will have a tremendous impact on the performance of any relay-based logic gates, so relay logic-dynamics are explored rst.

## Dynamic Relay Switching Characteristics

The calculation of delay in relay circuits is signi cantly di erent from CM OS circuits because of the mechanical delay that occurs while relays are moving from the off to on states. Though there is an electrical delay in relay circuits which is calculated the same way as the delay through CMOS gates, the physical motion of the relay across the actuation gap takes signi cantly longer than the electrical delay of charging up the relay's load capacitances in most cases, and the resistance and fanout of gates can be much larger in order to o set the penalty of incurring a mechanical delay.

This can be shown by examining an example. The RC delay of a relay is most signi cant compared to its mechanical delay at small scales where the electrical force is low (leading to high contact resistance) and the mechanical delay is small (because of high natural frequencies). A relay model for a 90 nm node, which is later used for energy delay comparisons, has been prepared to examine the relation between resistance and mechanical delay at scaled nodes. The parameters of the model are found in Table 2.1. The expected RC delay of a relay gate which has 100 series devices in a gate driving a fanout of 50 is

$$
\begin{equation*}
100 \mathrm{R}_{\text {on }} 50\left(\mathrm{C}_{\mathrm{gc}}+\mathrm{C}_{\mathrm{gb}}\right)+100 \mathrm{R}_{\mathrm{on}} \mathrm{C}_{\mathrm{gd}=\mathrm{s}}=5000 \mathrm{t}_{\mathrm{inv}}+10000 \mathrm{t}_{\mathrm{int}}=12: 5 \quad 17: 5 \mathrm{~ns} ; \tag{2.10}
\end{equation*}
$$

where $t_{i n v}=R_{o n}\left(C_{g c}+C_{g b}+2 C_{g d=5}\right)$ is the characteristic $R C$ delay of a relay inverter with a fanout of one and $t_{i n t}=R_{\text {on }} C_{g d=s}$ is the delay of a relay driving an internal node of a gate. In this extreme example, the RC delay is a factor of two smaller than the mechanical delay of an 90 nm relay when the gate is driven near $\mathrm{V}_{\mathrm{pi}}$ about equal to the delay at higher levels of gate overdrive.

This example can be generalized by rewriting the electrical delay as

$$
\begin{equation*}
t_{\text {elec }}=D F t_{i n v}+D t_{i n t} \tag{2.11}
\end{equation*}
$$

where $t_{\text {elec }}$ is the electrical delay of the gate, $D$ is the number of relays in series between the source and the load (the depth of the gate), and $F$ is the load capacitance measured in multiples of a unit relay inverter's capacitance (the fanout). $\mathrm{t}_{\text {int }}$ is very small in relays that are electrostatically sound: most of the actuation area should be devoted to $\mathrm{C}_{\mathrm{gb}}$ with $\mathrm{C}_{\mathrm{gd}=\mathrm{s}}$ determined by the minimum sized contacts. In the 90 nm example relay $\mathrm{t}_{\mathrm{int}}$ is an order of magnitude smaller than $t_{\text {inv }}$. That means its contribution remains below $10 \%$ of the total delay for values of $D$ less than ten and below $50 \%$ for $D$ less than 30 .
$D$ and $F$ are the design parameters which specify the maximum size of gates. They are constrained by the requirement that

$$
\begin{equation*}
t_{\text {elec }}<t_{\text {mech }} \tag{2.12}
\end{equation*}
$$

```
ov
d
    ch
    con pi
    surf
gc
gb
gd=s
mech
pi
    gd=s gd gs
    ov
    con
```

Table 2.1: Table of relay dimensions and relay model parameters

Figure 2.7: Die shot of CLICK R 1 test chip. This test chip contained the oscillator experiment featured here. [16, 17].
using more scaled devices suggested a mechanical delay of $100 \mathrm{~ns}[30,1]$. This is an order of magnitude higher than the expected electrical delay for a single relay driving a single relay.

This disparity between mechanical and electrical delays and the analysis above suggest that it is advantageous to include many relays in a single, functionally-complex gate that stacks multiple relays in series between the supply and the output. Gates built this way look similar to the logic gates used for pass-transistor logic, and an example comparing relay and CMOS implementations of the AOI function appears in Figure 2.9. This design style allows for all of the relays to move at the same time because the input signals directly drive the gates of every mechanical device. To reiterate, a tree structure where all of the stages of the tree are driven by an input signal at the same time guarantees the gate will only require a single mechanical delay to achieve complex functionality. Per the above discussion, it will incur a relatively small penalty in electrical delay because of the much faster electrical time constants in a relay based system. This \pass gate" design style uses a smaller number of devices than an equivalent CM OS implementation.

These tree-like, pass-gate structures can be synthesized from binary-decision-diagram representations of logic functions. Preliminary work on that synthesis has been performed

Figure 2.9: Schematics of an AND-OR-INVERT function implemented in CMOS and in relays [16, 17]. The CMOS version consists of many small gates, while the relay version is a single large gate that has only one mechanical delay. The relay version also uses half the number of devices as the CMOS version.

Figure 2.10: Waveforms from and schematics of a relay based adder implemented on a 1 m test chip.
loads on the SUM outputs added enough electrical delay to the adder it started to impact overall performance. The delay was reduced by adding an additional bu er stage at the output of the relay and isolating the loads from the conducting path of the chain. This cost an additional mechanical delay and some area, but improved the performance of the design.

This circuit design was compared against 90 nm CMOS adders. The relay adders, the same as those pictured in $F$ igure 2.11 were composed of 12 devices per cell without the bu ers ( 14 with bu ers). It would require 24 transistors for a CM OS implementation, which reduces the area penalty of the individually larger relays. The single, compound-gate, 32-bit add thus requires 384 relays ( 448 with bu ers). Each relay is slightly less that 12 m ; so assuming a wiring overhead of $30 \%$ the relay based adder would occupy 6000 m ( 7000 m with bu ers). The CMOS adders were Sklansky adders [33], which have been shown to be the minimum energy adder topology over a wide range of delays [34]. The most salient point to compare against relays is the minimum-energy, maximum delay point. W hen designed at that point \{ i.e.: synthesized from standard cells with no delay constraint \{ the adder uses 836 gates and occupies an area of about 2000 m . The energy delay characteristics of the adders were pulled from [34] and compared against the relay adder simulations.

The CMOS adder reaches its minimum energy point $[2,34]$ for delays above 1 ns. Thus, at delays of $10-50 \mathrm{~ns}$, a single MEM-relay adder 0 ers an improvement of $10 x$ in energy at an area overhead of $3.5 x$ compared to the CMOS adder. There is a clear advantage to

Figure 2.11: Schematic of a M anchester Carry Chain adder.
this technology for applications requiring $20 \mathrm{MOPS} / \mathrm{s}$ or less. Relays adders can be put in parallel to achieve higher throughputs. This trades 0 area overhead with performance. For instance, the parallelized curves in Figure 2.13 would require 100x the area of a CMOS adder. This area penalty can be improved with optimized relay layouts.

The area penalty can be further mitigated by using $6 T$ relays. The unit cells of the M anchester carry chain from Figure 2.11 are composed of both a true and a complement path to avoid using additional inverters to generate the sum. This design saves a very costly mechanical delay, but almost doubles the area and device count of the circuit. This seems especially wasteful since the generate, kill and propagate blocks in both the true and complement paths are controlled by the same signals: A on gate and B on both for propagate, a series combination of two devices with A and B on gates and ground on the bodies for generate, and a series combination of two devices with $A$ and $B$ on gates and $V_{d d}$ on the bodies for kill. In each case, there are separate devices controlled by the same gate/ body signals which carry di erent drain/ source signals.

These devices can be merged into a single 6 T device where the gate and body signals


Figure 2.12: Possible layout of a 90 nm 4 T relay.
control two separate drain/ source pairs. A modi ed $M$ anchester Carry full adder appears in Figure 2.14. Merging devices in this way cuts the total number of devices in the adder by 41.5\% (each unit cell uses seven devices instead of 12), and accordingly cuts the total energy per operation by the same amount. This costs some area on each device, which theoretically reduces the area available for actuation and the speed of the device, however that penalty is negligible and this reduction is power and device area comes essentially for free.

6 T relays have been evaluated against CMOS multipliers [29] and the relay multiplier circuits compare to the CMOS multipliers even more favorably in terms of energy and delay than the relay adder circuits above. The 6 T relay multipliers show a larger energy bene t (10x) and a smaller delay penalty (4x) and area penalty (1.5x). This con rms that the circuit techniques described here scale to larger logic blocks. However, large logic blocks aren't enough to build a computing system, and these results point to future work demonstrating the other necessary components which are needed to assemble large VLSI systems: timing and memory.

Figure 2.13: Energy delay comparison of CM OS Sklansky adders against relay M anchester Carry Chain adders [16, 17].


Figure 2.14: Manchester Carry full adder implemented with 6 T relays. Using 6 T relays reduces the number of devices needed from twelve to seven at very minimal delay cost.

## Chapter 3

## Sequential Relay Circuits

Sequential logic is obviously an important component of any VLSI design, including one made from relays. Though the previous Chapter 2 suggests that large, single-mechanical delay gates are the best logic style for relays, any su ciently complex logic function will result in an explosion of area if it isn't broken down into smaller subunits. In addition, the limitations on D for relay gates requires that logic be broken up into multiple stages. Sequential logic is needed to order the operations of those smaller chunks of logic.

Consequently, the CLICKR1 test chip was used to demonstrate a latch made from relays. The schematic and experimental results for the relay latch appear in Figure 3.1. The latch is shown to successfully transition between opaque and transparent state and to pass information from D to Q while transparent.

This latch is implemented in the same was as a CMOS latch would be. Two pseudoinverters made of \N"-biased relays and pull-up resistors are placed back to back to make a bu er, and relay pass gates are used as a multiplexer to select whether the bu er's input is driven by the D input to the circuit or feedback from Q .

The discussion in C hapter 2 suggests that circuits which are designed by mapping relays to CMOS implementations are often suboptimal because they incur more than one mechanical delay. That is obviously true of this latch, which would incur two mechanical delays for each transition of the input: the edge would cause the rst relay to change state which in turn would cause the second relay to change state. It is possible for the latch to incur even more mechanical delays if the pass gates which switch the input of the bu er are set in motion after Q reaches a nal value. However, the CLK signal can be adjusted to arrive early enough that the mechanical delay of the multiplexer occurs at the same time as the second pseudo-inverter.

Using \P "-biased relays would reduce the delay of each latch to a single mechanical delay, but a ip- op composed of two back-to-back latches would incur two mechanical delays in its operation: one for each bu er. The CLK signal can be assumed to arrive early so that the pass gate delay happens at the same time as the bu er delays. A relay ip- op that incurs this penalty is pictured in F igure 3.2 with a two mechanical delay path sketched through it.


Figure 3.1: Relay latch


Figure 3.2: Relay op


Figure 3.3: Schematics of several di erent latches. A relay latch could be implemented in the same style as a CMOS latch, which is pictured in 3.3b. There are a few optimizations to the relay latch: it uses a bu er rather than an inverter and its pass gates are controlled by a single clock phase. However, it would incur a mechanical delay from D to Q. A latch with the bu er in the feedback path avoids that penalty.

Figure 3.4: A schematic which shows, in general, how sequential logic could be made from relay latches and combinational logic blocks.

It is tempting to remove BUF 0 and BUF 1 in order to reduce the number of relays needed for timing elements. If the bu ers are removed, the state is stored as charge on the Q0 and Q1 nodes rather than in the position of the staticization relays. Since relays have no leakage, this dynamic storage is nominally safe until the storage node is no longer high impedance. However, this optimization is risky because of coupling and charge sharing. Automatically placed and routed VLSI systems won't take care to keep Q0 and Q1 isolated from aggressor wires which could transiently change their states. Further, the fanout of the latch could reduce the voltage stored on Q0 by distributing it to many other gates. Though this dynamic storage could be made to work with careful design and layout, and though it might yield performance bene ts in highly optimized systems, this discussion focuses on the much more generally useful staticized latch.

LATO Formard Pass Rel ay Position, Low --> on

LATO Reverse Pass Rel ay Position, Low --> on


DO
$Q$

DI

BUFO Pul I Up Rel ay Position, Low --> on

BUFO Pull Down Rel ay Position, Low --> on


Figure 3.5: Timing diagram illustrating how staticization and driving the next stage happen at the same time in the pipeline in Figure 3.6. E ach time increment is one mechanical delay.


Figure 3.6: A pipeline made of relay latches and relay combinational logic blocks.

### 3.2 Three Phase Clocked Relay Pipelines

To show that this latching scheme is suitable for general use in VLSI systems, it is necessary to show that it can be made into an in nite length pipeline. This is usually shown by demonstrating that a pipeline can drive itself. Figure 3.6 shows relay latches assembled into an in nite pipeline and Figure 3.7 shows a timing diagram that indicates the operation of this pipeline.

The pipeline is clocked by a three phase clock with a $66 \%$ duty cycle in order to ac-


Figure 3.11: An accumulator for a relay based system showing separate logic for odd and even samples and an output serializer.

LAT 1 becoming opaque so there is no contention on Q1. The transition on Q1 makes D0 uncertain, but the CLKI also isolates D0 from Q0 to prevent contamination. The cycle repeats after that.

This clocking scheme still achieves one mechanical delay per stage even though the clock period is longer than the previous pipeline example. Because each clock edge cause a one mechanical delay period of opacity, each full clock cycle actually creates the same set of states in the pass structure twice: opaque-transparent-opaque-transpare.n $\pi$ he pipeline operates on these repetitive half-clock cycles, and relies on the opacity to prevent uncertain data from leaking into the next stage. For instance, passes through two combination stages reaching nodes D1 and D2 during the half clock cycle in the third and fourth time intervals.

Feedback into this pipeline still needs to happen in phase with the clock, but there are fewer clock phases to keep track of. This pipeline could feed back into itself after two cycles. However there are some structures which demand feedback in one clock cycle. A ccumulators are a classic example, and they are a useful example to demonstrate general methods of dealing with single cycle feedback. A n example accumulator is pictured in Figure 3.11. T wo stages of pipeline allow for two additions over two cycles, such that the accumulator's current value appears on nodes Q0 and Q1 alternately.

This creates a separate stream of \even" and \odd" results from the accumulator which appear on di erent nodes and on quadrature clocks. This data can be handled in an assortment of ways. The simplest option is processing them separately separately in even and odd logic which is clocked by odd and even latches. That option is shown in Figure 3.11. However, some logical operations will depend on both even and odd values. Those operations can be created by aligning the even and odd values through back to back latches. The early data passes through three latches and the late data passes through only two latches. This guarantees that both pieces of data are available on the same clock phase, though at the cost of some latency.

Odd and even samples can be serialized onto a wire by using a pair of relays driven by CLKI and CLKQ. An example serializer appears in Figure 3.12 and a timing diagram for


Figure 3.13: Timing diagram illustrating the serialization of odd and even values onto a wire.
it can pass data and the second holds the value on the storage node while the staticization bu er and feedback pass structure con gure. The reverse clock does need to arrive with a tight time relationship to the forward clock \{ the reverse clock edge must be one mechanical delay after the forward clock edge \{ to ensure there's no contention when D drives the node. The period of the pipeline is set by the timing of the reverse staticization clocks, the forward clocks just provide transparency in order to grab each incoming data transition.

These modi ed requirements suggest modi cations to the latch structure. By driving the two devices in the clock di erently, the opaque and transparent periods of the clock can be extended to accomodate non-idealities like electrical delays. A modi ed version of the clocking structure which can accommodate this clock stretching appears in Figure 3.15. By extending the overlap between CLKI 1 and CLKI 2 or CLKQ 1 and CLKQ 2 it is possible to keep the forward or reverse pass structures transparent or opaque for more time.

C ontrolling this two phase latch requires many closely timed clocks, and distributing those


Figure 3.17: A seesaw relay and it's electrical schematic representation.
or counterclockwise torques to keep the gate at. The gate is actuated by electrostatic forces which appear between the two body terminals and the gate. One body terminal, body left overlaps the left side of the gate, and the other, body right overlaps the right side of the gate. A ny in nitesimal slice of either terminal applies a vertical electrostatic force to the gate slice above it, but these forces are applied far away from the axis of rotation of the seesaw. Thus, the forces translate to clockwise or counterclockwise electrostatic torques. These torques ght against the torsional spring, resulting in a torque balance equation that is similar to the force balance of linear springs vs. vertical electrostatic forces in a 4T or 6 T relay. The details of torsional force calculations for certain MEMS structures have been well summarized in [35], and speci c experiments with seesaws are discussed further in [36, 37].

The left and right ends of the seesaw have channels mounted on them which can contact a drain source pair. W hen the torsional electrostatic force overcomes the torsional spring the MEMS structure experiences a pull-in e ect and the channel is brought into contact with the drain/ source pair on the side of the seesaw where the force is applied. This causes the other channel to be moved further away from its drain/ source pair and its body. Thus, a seesaw functions like a pair of relays where only one is allowed to be in the on-state at any given time. A ccordingly, a seesaw is represented in schematics as a pair of relays which share a gate contact. A small triangle is added to the diagram to indicate that the device is a seesaw and not just a pair of 4T relays.

Figure 3.18: Schematic of simulated system. ICLK and QCLK generators are instances of the clock generator in Figure 3.16 driven by quadrature clocks as shown in Figure 3.19.

The schematics of seesaw-based elements for a demonstration pipeline appear in Figure 3.18. Speci cally, the gure shows a two phase relay pipeline latch, an adder, a clock generator, and their arrangement into an accumulator. The circuit featured in that schematic was simulated and the results appear in Figure 3.19.

These schematics feature minor modi cations from their earlier appearance in the chapter. The input and output of the seesaw based latch have had xed capacitors added to them in order to smooth out spurious voltage transients on the state nodes of the device. In addition, two seesaws have been added to initialize the pipeline to a known state before running the simulation.

These results show the non-overlapping clocks generated by local clock sources and the successful accumulation of values on the sum nodes of the output circuit. The circuit is con gured to add one and two on alternate clock phases to the running sum in the accumulator. Thus, the sum on any particular node of the circuit should increase by 3 each time


Figure 3.19: Simulated results of a two phase pipeline with local clock generation.
it transistions. This can be seen in both the S1 and S2 outputs. The output logic levels feature some glitches at the start of the simulation, which represent drive ghts between $D$ and the stored data as the motion of the seesaws rst begins. These glitches can't cause data errors because the feedback devices that store the old, incorrect state all transition to the off-state before the forward device does.

These simulations con rm that it is possible to build pipelines of relay based logic with minimal timing and area overhead. This is an important step towards building VLSI systems out of mechanical logic, but the question of how to build memory still remains.

## Chapter 4

## NEM ory

Building memory in a mechanical VLSI system poses challenges because the density of memory is crucial and each individual relay in a mechanical system is many times larger than its CMOS counterpart. However, careful device and circuit design can lead to mechanical memories which preserve density even in highly scaled processes. This chapter discusses the challenges of mechanical memory, the current state of the art, and presents a co-optimized device and circuit which can improve the density of mechanical systems.

### 4.1 Challenges for M echanical M emory

Implementing CM OS-style 6T SRAM in a relay technology would result in poor performance. A standard CMOS SRAM cell contains six devices: two access devices and a self-staticizing loop of inverters. This is pictured in Figure 4.1. If this were ported to relays there would be a sti delay penalty, and the area would be large: writing the cross-coupled inverters would require two mechanical delays, and each relay is about the size of twenty CM OS devices in an equivalent technology node. Even worse, the sharp, hysteretic non-linearity of relays cause the cell to hold its state in the case of a drive ght between the wordline and an inverter: the voltage would fall near half the supply voltage which is in the middle of the relay's hysteretic region.

A SRAM cell similar to the CMOS 6T cell, but optimized for relay operation appears in Figure 4.2. Staticization is achieved in this circuit using a bu er feeding back on itself rather than two inverters. An additional write-assist device is included to break the feedback loop and allow data onto the bu er. This structure only needs to be accessed on the input side of the bu er in order to write it \{ the input side can't cause a drive ght when the feedback is broken and the input side obviously controls the bu er state. As a result, the total number of devices and metal lines in this cell is smaller than a CMOS SRAM, but the area penalty of relays still makes this cell much larger than a CMOS cell.

The density of memory can be improved further by leveraging the extremely low leakage characteristics of relays to build long-term DRAM storage. DRAM typically requires refresh


Figure 4.3: Relay DRAM implmented on CLICRK 1.
because the nodes of the circuit lose charge to the junctions in the CMOS access device and the deep junction capacitor. However, relay based technologies have extremely low leakage in both the devices and capacitors, and this makes DRAM especially appealing for longer term storage in relay systems. Further, it has been shown that hypothetical, scaled cantilever DRAM can achieve high memory density and low energy consumption [38]. A proof of concept Relay DRAM was built on the CLICKR 1 test chip. A schematic, micrograph, and measured traces from that circuit appear in Figure 4.3.

The CLICKR1 DRAM circuit works like NAND ash. Each cell is comprised of a storage device, an access device and a bypass device. The state of the cell is indicated by charge stored on the body of the storage device. The body of that device is connected to or disconnected from the write bit line by the access device, which is controlled by the write word line. During read, the read word line closes every bypass device except the device for the word of interest. By having the bypass devices default to an on state, this read delay can be made quite quick, since it is a turn-off relay delay rather than a turn-on relay delay. The read bit line is composed of relays connected drain to source: the conducting bypass devices in every word except the word of interest, and the storage device in the word of interest. If charge is stored on the body of the storage device, then the device will be shut and the read bit line will be conductive. This conductivity is tested by trying to charge a pre-discharged output node through the read bit line.

Though the CLICKR1 test circuit demonstrated the functionality of the relay DRAM, it was unable to explicitly show the retention characteristics of the device. The storage node of the device needed to be externally wires, which meant the leakage was set by the surface leakage of the test PCB \{ signi cantly higher than leakage through a relay \{ and the parasitic capacitance was set by the test probe. The leakage and the capacitance were both arti cially enhanced, which made it impossible to measure the characteristics of the cell itself.

Figure 4.5: Modi ed NEM ory structure with active pull-o . BL _T is the top bit line, BL _B is bottom bit line, which stores the complement of the bit line, WL is the word line. Isolation is an insulating material that is mechanically anchored to the substrate. The device has three states: zero, one and off. In the one state WL is in contact with BL_T, in the zer state WL is in contact with BL_B, and in the off state the WL is not in contact with either BL.
in this case $\{$ to reduce the number of features required to draw a single mechanical element. As Figure 4.4 shows, the device can be made of a single $1 F \times 1 F$ square of metal contact and an additional 1F given over to separation from the next device, making for a 2 Fx 2 F cell. However, the forces acting on this version of NEM ory are of vastly di erent scales, and the electrostatic force required to hold the device closed is very small compared to the spring force and electrostatic force. In order for the device to operate, it must be fabricated so that the electrostatic and spring force are almost exactly the same, to within the tiny margin of the built-in electrostatic force. This causes low device yield for this design.

The mechanical memory cell pictured in Figure 4.5 avoids this problem. The device is very similar to the prototype device, but it relies on having two bit line electrodes to deactuate a word line that has de ected into the surface. Like the prototype device, this new device is pulled shut by electrostatic forces between a bit line electrode and the word line electrode. The electrostatic force the word line electrode to de ect into contact with the bit line electrode where it is held in place by Van Der Waals forces and forms a Schottky diode. This contact is non-volatile because the device is engineered such that Van Der Waals forces are bigger than the spring forces restoring it to its original position. However, the device di ers from the earlier prototype in how it is removed from the non-volatile state. A voltage is applied between the opposite bit line electrode and the word line to deactuate a device stuck to one bit line. This bias applies an electrostatic force that overcomes the Van Der Waals force and pulls the word line into contact with the opposite bit line electrode.

Figure 4.7: Force on the word line of an example NE M ory device as a function of displacement. Positive force represents force in the upwards (towards positive $x$ ) direction.
by plotting the force experienced by the word line for every value of $x$ with $\mathrm{V}_{\mathrm{up}}$ and $\mathrm{V}_{\mathrm{dn}}$ set to zero. A plot of an $F_{W L}(x ; 0 ; 0)$ seesaw is featured in Figure 4.7, and the gure shows a non-volatile system. This can be seen by examining the roots of the force equations and looking for stable equilibria. A stable equilibrium will have a negative slope so that increases in $x$ will result in a negative force that opposes the change in position. The equilibrium at zero is stable, it represents the resting state of the NEM ory, and the most extreme left and right equilibria are stable, representing non-volatile zero and one states. The zero and one state equilibria are only present if the negative dip in force caused by the Van der Waals interaction overcomes the spring force and causes the net force to become negative. This makes intuitive sense: if the spring is too strong then it's impossible for the relatively weak Van der Waals force to hold the device shut.

A pplying voltage to the NEM ory structure causes the the curve to move upwards or downwards as the $\mathrm{F}_{\mathrm{el} ; \mathrm{up}}\left(\mathrm{x} ; \mathrm{V}_{\mathrm{up}}\right)$ and $\mathrm{F}_{\mathrm{el} ; \mathrm{dn}}\left(\mathrm{x} ; \mathrm{V}_{\mathrm{dn}}\right)$ contribute to the expression. This can eliminate the zero or one state equilibrium, which causes the structure to experience forces that pull it towards the flat or opposite state. An example curve with voltage applied appears in Figure 4.7, and the zero equilibrium at -0.9 has been eliminated such that the force always pulls the device towards the one state. The point at which an equilibrium is eliminated represents a pull-in voltage for the structure, but unlike the standard relay there
are multiple possible pull-in voltages. Depending on the relative forces, there can exist a flat-side pull-in voltage which represents the voltage needed to move from the flat state to the zero or one state, and that voltage can be di erent from the side-side pull-in voltage which moves the switch from the zero state to the one state or vice versa.

These voltages can be calculated by separating the force balance equation into displacement dependent and voltage dependent components

$$
\begin{align*}
& F_{w L}\left(x ; V_{\text {up }} ; V_{\text {dn }}\right)=f(x)+g(x) V_{\text {up }} \quad g(x) V_{d n}  \tag{4.14}\\
& \begin{array}{c}
\text { wheref }(\mathrm{x}) \quad \mathrm{F}_{\mathrm{k}}(\mathrm{x})+\mathrm{F}_{\text {vdw;up }}(\mathrm{x}) \quad \mathrm{Z}_{\mathrm{L}} \mathrm{~F}_{\text {viw;dn }}(\mathrm{x}) \quad \mathrm{F}_{\text {surf;up }}(\mathrm{x})+\mathrm{F}_{\text {surf;dn }}(\mathrm{x}) \\
\text { and } \mathrm{g}(\mathrm{x}) \quad \mathrm{Wdy} \\
2(\mathrm{~g} \mathrm{mode} \mathrm{x} ; \mathrm{y}))
\end{array} \tag{4.15}
\end{align*}
$$

Like many of the integrals above, the $g(x)$ integral can be carried out numerically. Note that $g(x) V_{\text {up }}=F_{\text {el;up }}\left(x ; V_{\text {up }}\right)$, i.e. $g(x)$ is only the constant and $x$ dependent part of $F_{\text {el;up. }}$

This separation of components leads to a convenient way to nd the pull-in voltages of the NEM ory if certain facts about the operation are observed. First, at a pull-in point, the force applied to the word line will be zero because an equilibrium will be crossing the zero axis as the curve moves upward. Second, during operation the NEM ory is only going to be pulled in one direction at a time, so assuming the driver circuits do a good job, either $\mathrm{V}_{\text {up }}$ or $\mathrm{V}_{\mathrm{dn}}$ can be set to zero when calculating the pull-in voltages. A pplying these facts the equation becomes

$$
\begin{align*}
& 0=f\left(x_{\mathrm{pi}}\right)+\mathrm{g}\left(x_{\mathrm{pi}}\right) V_{\mathrm{up} ; \mathrm{pi}}  \tag{4.17}\\
& V_{\mathrm{pi}}=\frac{\mathrm{f}\left(\mathrm{x}_{\mathrm{pi}}\right)=g\left(x_{\mathrm{pi}}\right)}{}
\end{align*}
$$

where $\mathrm{X}_{\mathrm{pi}}$ is the displacement at which pull-in happens and $\mathrm{V}_{\mathrm{up} ; \mathrm{pi}}$ is the upward pull-in voltage.

The next challenge is nding $n d x_{p i}$ and $V_{u p ; p i}$ based on $f$ and $g$, which are known. This can be achieved by plotting

$$
\begin{equation*}
V_{u p ; e q}(x)={ }^{p} \overline{f(x)=g(x)} \tag{4.19}
\end{equation*}
$$

where $\mathrm{V}_{\mathrm{up} ; e \mathrm{eq}}(\mathrm{x})$ represents the amount of voltage that needs to be applied for the NEM ory to reach equilibrium at any given $x$. The absolute value is included in this equation because $f(x)=g(x)$ is sometimes negative despite representing a squared value. This is because $f(x)$ is a force and contains information about the direction the device will move in its sign, which is irrelevant to determining how much voltage is needed to move the device to a given point.

Equation 4.19 is plotted in Figure 4.8, and the curve has local maxima. Raising the voltage above a local maximum means that the voltage is higher than is required to bring the system into equilibrium for points to the right of the maximum. This rightward directionality arises because this plot considers only the upward force, and the upward electrical force can only increase $x$ since it is always positive. The condition of having more electrical force than is needed to bring the system into equilibrium is exactly what is necessary for an

Figure 4.9: Electrical model of NEM ory cell.

## Electrical M odeling

An electrical model of the NEM ory is important for determining the power consumption and delay of memory circuits made from NEM ory. A model appears in Figure 4.9.

The resistors in the electrical model represent the resistance of the word line and the bit line. They form a T model with the electrical diode contact in the middle of the cell. The value of the resistors is calculated from the dimensions of the cell and the standard resistivity formula:

$$
\begin{equation*}
R_{B L}=\frac{B L L_{B L}}{t_{B L} W_{B L}} \text { and } R_{W L}=\frac{W L L_{W L}}{t W} \text {; } \tag{4.20}
\end{equation*}
$$

where $R_{B L}$ and $R_{W L}$ are the resistance per NEM ory cell of the bit and word lines, $B L$ and $w L$ are the resistivity of the bit and word lines, $L_{B L}, W_{B L}$ and $t_{B L}$ are the length, width and thickness of the bit line, and $\mathrm{L}_{\mathrm{w}}$ is the electrical length of the word line. t and W are inherited from the mechanical model, since the word line thickness and width are used in both electrical and mechanical calculations. However, the word line length values used for electrical and mechanical calculation, $L_{B L}$ and $L$, are di erent because the anchor in the layout prevents a portion of the word line from moving.
design decisions are examined below, and are separated into device design decisions, circuit and array design decisions for the write operation, circuit and array decisions for the read operation, and layout decisions.

## Device Design

The nal design of the NEM ory device consists of picking the materials for use in the device and setting the dimensions of the device. Titatium Nickel ( TiNi ) is selected as the word line material because of its low Young's M odulus and high strain limit [40], and heavily doped (10 dopants=m ) Poly-Silicon is selected as the semiconducting bit line material. The air gap of the NEM ory device is set to 2 nm to prevent tunneling leakage across the air gap [14]. The thickness of the word line is set to the minimum possible thickness for an ALD deposited $\mathrm{Im}, 5 \mathrm{~nm}[43]$. The thickness of the bit line is much less constrained, so it is set to a value consistent with low level metal layers in characteristic processes: 300 nm .

The NEM ory needs to conform to the restrictive design rules of highly scaled processes and also needs to achieve a pull-in voltage which the process can provide without breakdown. The design rules assumed for the NEM ory are those of the bottom few metal layers of the 14 nm target process. This allows the NEM ory to be built on top of active devices. As a result, the minimum feature of the layers which comprise NEM ory is 32 nm , and because this feature size is small NEM ory features are constrained to fall onto a 32 nm grid.

The width of the word line should be set to the minimum possible value of 32 nm to maximize device density. The mechanical length was picked as 64 nm in order to t on the 32 nm grid while producing a low pull-in voltage. Shorter lengths lead to higher pull-in voltages because the spring force becomes very strong, longer lengths lead to higher pull-in voltages because the spring force is too weak to assist pulling the word line out of the zero or one states where the Van der Waals force is high.

The Hamaker constant determines relative strength of the Van der Waals forces in the system and it has a very large e ect on the pull-in voltage and the desired spring force. The Hamaker constant for a TiNi / micromachined poly-silicon surface was assumed to be A $=35 \mathrm{z}$ ] based on extrapolation from tables in [44] and [45] and the assumption that passivating elements could be introduced to the rough, micromachined surface to engineer the Hamaker constant. This, quite low, value of Hamaker constant needs to be controlled tightly: a $5 \%$ increase in the Hamaker constant would increase the side-to-side pull-in voltage above 1.6 V . The at-side pull-in voltage is not a ected by the Hamaker constant because the Van Der Waals force falls o quickly as the separation between surfaces increases.

The bit line width should nominally be the same as the word line length to minimize the total footprint of the cell. However, other layout concerns which are discussed later in the chapter necessitate slightly more routing space under each cell, so the width of the bit line is set to 96 nm . This is slightly longer than desired mechanical length of the word line. The extra space on the word line layer is taken up by an expanded anchor, and 96 nm is used as the electrical length for the purpose of calculating parasitics.


Figure 4.11: NEM ory symbol and array.

Figure 4.12: A NEM ory array con gured for writing.
the expected bit line swings so that coupling would not disturb it. Half selected columns can be preserved by applying zero volts to both the top and bottom bit lines. This writing scheme is pictured in Figure 4.12.

One hazard of this writing scheme is the forward bias applied to word lines results in a DC path to ground through forward biased diodes on potentially every word line. If the state of the NE M ory in a cell is such that it is connected to the zero potential bit line, then the forward bias used to deselect the line will be forward biasing the cell's diode. If the diode is instead hooked to the bit line biased at the operating voltage, the word line only
sees the reverse leakage current of the diode. As a result the total power loss due to forward biased diodes will be data dependent. K eeping the forward bias as small as noise margins will allow and keeping the writing period short can work to mitigate the power loss posed by this forward bias.

During write, the bit lines need to be driven to the operating voltage, which is twice the core logic level. A level shifter circuit is required to drive this voltage, but the level shifter needs to account for a hidden stability risk when writing to the NEMory. NEM devices which are experiencing an actuation voltage will deform more than those that are not, and that additional deformation represents the storage of additional stress energy in their mode shapes. If the applied voltage is removed too quickly, that stored energy can be converted into enough momentum to break the device free of the Van Der Waals force. As a result, the edge rate seen by any NEM ory cells needs to be su ciently low to prevent loss of data during the discharge of the bit line after a write.

Standard level shifting techniques are very capable of doubling the logic level of 0.8 V , which allows them to drive the operating voltage of 1.5 V . Adding an RC Iter to the output of the level shifter can reduce the edge rate to preserve the array's stability. A sample bit line driver, featuring the level shift and the output Iter, is pictured in Figure 4.13. All devices are minimum sized and use the highest available threshold voltage. The three PM OS devices in the pull-up path suppress leakage when the bit line driver is not in use. They are necessary to enable the array's read mode, which is discussed below, and they don't a ect performance because the resistance of the array is dominated by the bit line and word line resistance. The RC Iter is implemented using 187 dummy NEM ory devices, which are biased with 0.8 V on the word line to prevent their actuation. The bit-line resistance and the bit-line to word-line capacitances provide the $R$ and $C$ values. These devices $t$ into the NEM ory array with no area overhead, which is explained when discussing layout below.

One such level shifter is needed for each column. The BLUP _band BLDN signals can be generated from the data with simple CM OS logic. Word line drivers are related to writing because they are needed to drive the forward bias onto the non-target word lines to prevent actuation. However, they also have other requirements based on reading the array, so they will be elaborated after discussing the array's read mode.

## A rray Design for Reading

To read the array, the bit lines can be pre-discharged and then made high impedance (by setting BLUP _bto one and BLDN to zero in the driver), and a reading voltage can be applied to the word line. The reading voltage will cause current to ow through the diode to the bit line to which it is attached, and a sense ampli er can measure the di erence in voltage between the bit lines to determine the state of the cell. A schematic representation of this appears in Figure 4.14.

The value of the reading voltage needs to be carefully considered because of the resistance in the NE M ory array. Cells which are far from the driver will have signi cant series resistance along the word line between the driver and the diode, while cells near the driver will look


Figure 4.15: Di erence in current delivered to the sense ampli er when reading di erent array locations. Di erent colored lines correspond to di erent amounts of resistance on the bit line. There are two lines of each color, which correspond to the sides of the word line close to and far from the word line driver. In most cases, the bit line resistance dominates so the word line location has little a ect. At low voltages the diode dominates conduction and all currents fall within $50 \%$ of each other.
almost like ideal diodes. This di erence could cause di erent columns to experience di erent charging rates depending on their proximity to the driver. Di erent currents would result in more total power being spent each read cycle as the quickest charging bit lines reach higher voltages than the slowest charging bit lines, and di erent currents would complicate sense ampli er timing.

The di erence in cell charging currents is shown in Figure 4.15. The gure reveals that applying a low voltage keeps the charging current di erence between di erent bit lines small. This is because low voltages don't fully turn on the diodes in the NEM ory cells, so all of the cell currents are limited by the diode rather than the resistive path they have to pass through. Conveniently, the maximum logic voltage of 0.8 V falls at the upper limit of the diode-limited voltage range, and can thus be used as the read voltage.

For the sense ampli er to work properly, the bit line contacted by the target cell needs to rise to a higher voltage than the non-contacted bit line. However, the worst case situation for reading the array makes this somewhat di cult. In the worst case, every cell on a bit


Figure 4.16: Word Line Driver in NEM ory array.
line stores the same value, so all of the NEM ory diodes are in contact with the same bit line. The diodes on the non-target cells will leak currents backward through their junctions, which reduces the amount of read current through the target cell that goes into charging the sense ampli er capacitors. If the array is big enough and the reverse leakage is high enough (both true of the example array in this chapter) then the reverse leakage also sets a maximum voltage to which the bit line will rise: at some voltage the forward current of the target cell is exactly cancelled by the reverse leakage. In addition, the non-target cell diodes contribute to the capacitance of the target bit line, making it much more capacitive than the non-target bit line.

These factors combine to make the read operation very sensitive to leakage currents. In order for the voltage on the target bit line to rise as quickly as the non-target bit line, the leakage-degraded forward current needs to be many times larger than the leakage through the bit line drivers. Speci cally, the ratio of the forward current to the bit line driver leakage needs to be greater than the ratio of the target bit line's capacitance to the non-target bit line's capacitance. Because of this, the bit line driver has many features devoted to reducing its leakage during read operation as shown above.

The word line driver, however, is still quite simple. It needs to be able to drive three di erent voltages: ground, the write non-select voltage, and the reading voltage. A word line driver capable of driving these three values is pictured in Figure 4.16, and it consists of a PMOS pull up to the reading voltage, an NMOS pull down to ground, and a pass gate that connects the word line to the non-select forward bias. A pass gate is necessary for the non-select voltage because the word line needs to be driven from an unknown state, either logic $\mathrm{V}_{\text {dd }}$ or ground, to the mid-rail, non-select voltage, which means the driver needs to pull both up and down.

The sense ampli er is implemented as a Strongarm latch with PMOS inputs. NMOS sampling devices have thier sources connected to the Strongarm inputs, their drains connected to BL and BL B, and their gates connected to a sampling signal which is triggered shortly before the sense ampli ers evaluation signal. The NMOS samplers isolate the bit lines from the Strongarm kickback, which would a ect them di erently because of the large di erence in bit line cap in the worst case. The Strongarm latch is followed by an SR latch per standard practice. All devices in both latches are minimum sized for density reasons, which poses a problem from a variability standpoint: the 0 sets can easily swamp out the voltage di erence on the bit lines.

### 4.5 Layout Concerns

In NEM ory the memory devices are built in layers above the active layer, so it is possible to build the memory array on top of the drivers in order to maximize the density. However, each driver (as picture in Figure 4.13) is larger than an individual NEM ory device. NEM ory devices are approximately a single wire pitch even and the minimum sized devices used to assemble the level shifter are signi cantly larger. The drivers need to be carefully laid out to To mitigate this size mismatch and achieve parity between the driver area and the NEM ory device area.

A rranging for parity in area between the drivers and the cell array requires exploiting the fact that the number of drivers grows as the sum of the number of rows and columns while the number of NEM ory cells grows as the product. To do this, the bit lines will be oriented at ninety degrees to the longest dimension of the bit line drivers. For the sake of discussion, assume the bit lines run vertically \{ in the y direction \{ and the longest dimension of the bit line drivers runs horizontally so that it would rest on the $x$ axis. The array has a maximum size in the $x$ direction which is given by the sum of the long dimension of the bit line drivers, the bit line read circuitry, and the word line drivers necessary to cover all of the word lines which $t$ in the width (short dimension) of one bit line. The NEM ory will need to have enough bit lines to cover the maximum $x$ extent, and the number of word lines will be determined by the total number of bit lines.

A diagram of the oor plan that results from this strategy is pictured in Figure 4.17. The minimum size array that results from this oor planning strategy is $40: 9 \mathrm{~m} \quad 319: 0 \mathrm{~m}$, which is 319 bit lines wide by 4785 word lines deep. The array's size is 1.52 M b .

Even with this oor planning e ort the array winds up slightly shorter in the y dimension than the underlying drivers when the x dimensions are matches. The spare space is devoted to the dummy NEM ory cells which reduce the edge rate of the bit line drivers.

C ontacting the NEM ory poses a challenge because the electrodes are integrated vertically. In particular, the upper bit line and the word line are both separated from the drivers and underlying metal layers by the lower bit line layer. The array is dense enough that it is impossible to get a via through it. Therefore, it is necessary to wrap wires around the end of the array to contact the bit lines and the word lines. The bit lines are deliberately

Figure 4.17: Floor plan for NEM ory array.
slightly wider than the length of the cell so that two wires can $t$ beneath them. One wire is contacted to the lower bit line using vias, but the other wire connects to a stack of vias at the north end of the array which extends the upper bit lines. The word lines at the east end of the array can similarly be wrapped around to the word line drivers.

### 4.6 Performance and Comparison to Other Technologies

Having derived a sample array it is possible to benchmark the array's performance and energy consumption in order to compare it to existing technology. This can be done by using classic electrical models for delay and energy and comparing the models against simulations of the electrical and mechanical behavior of the device. The simuations of the NEM ory arrays are built using the force, circuit, and device models pictured above. Like previous chapters, the device models are implemented in Verilog-A so that they can be directly co-simulated with the circuits. In order to keep the simulations tractable and save simulation time, only a single row and column of the NEM ory were simulated. Though there is nominally reverse leakage into the rest of the array, the single row/ column \cross model" is a good approximation for demonstrating the functionality of the overall system.

The read performance of the NEM ory is a purely electrical phenomenon that can be readily calculated based on the unit capacitance and resistance of the bit and word lines and the current through the diode during read mode.

$$
\begin{align*}
t_{\text {read }} & =t_{W L}+t_{B L}  \tag{4.24}\\
& =\ln (2) N_{W L}\left(N_{W L}+1\right) C_{W L} R_{W L}+N_{B L} C_{B L} V_{B L}=1_{r d} \tag{4.25}
\end{align*}
$$

where $t_{W L}$ is the distributed RC delay of charging the word line, $t_{B L}$ is the delay of charging the bit line, $N_{W L}$ is the number of cells on the word line, $\mathrm{C}_{W L}$ is the unit capacitance of a cell on the word line, $R_{W L}$ is the unit word line resistance of a cell, $N_{B L}$ is the number of cells on the bit line, $C_{B L}$ is the unit bit line capacitance of a cell, $V_{B L}$ is the voltage that cells are charged to before the sense amp is triggered, and $I_{r d}$ is the read current through the target cell's diode.

Setting $\mathrm{V}_{\mathrm{BL}}$ (and, implicitly, $\mathrm{t}_{\mathrm{BL}}$ ) requires careful attention to the voltages and currents during the read transient, because the reverse leakage of the other NEM ory cells on the bit line means that the read waveforms won't look exactly like a current source charging a capacitor. Simulations show the bit line voltages and relevant currents during a read transient in Figure 4.18. B ased on the simulation, $\mathrm{V}_{B L}$ was set to 7 mV because that is the value at which there is the largest di erence between the bitline voltages during the read. This is because the reverse leakage current through the array prevents charging the bit line any higher than 10 mV , while the bit line driver leakage current will continue charging the other, less capacitive bit line well past 10 mV .
$\mathrm{C}_{B L}$ is comprised of several capacitances: a parasitic capacitance ( $\mathrm{C}_{\text {par_top }}$ or $\mathrm{C}_{\text {par_bot }}$ ), possibly a junction capacitance ( $\mathrm{C}_{\mathrm{j}}$ ) and an air gap capacitance ( $\mathrm{C}_{\text {gap_top }}$ or $\mathrm{C}_{\text {gap_bot }}$ ). Many of these parameters are variable on a number of conditions: the gap capacitance is large when the word line is in contact with the bit line and small otherwise, the junction capacitance also is only present if the word line is contacting the bit line but it is further dependent on the bit line voltage, and the parasitic capacitance is larger for the top cells because of the wraparound wire needed to contact them. As a result, there are a range of possible values for $t_{B L}$ which depend on the stored data of the cell.

The total delay of writing a NEM ory cell comes from the electrical delay of charging the bit line. The word line delay is signi cantly faster, and it can be \hidden" by charging the word line at the same time as the slower bit line. The same is true of the mechanical delay because the devices have high natural frequencies and the bit lines have very large RC constants. The electrical delay of the word and bit lines can be readily calculated from the same distributed RC model used for the word line read delay. Simulations of a test array, described in greater detail below, were carried out to measure the write delay, and transient waveforms showing the results are pictured in Figure 4.19. This simulation con rmed that the mechanical delay is not a signi cant contributor to the overall delay

The shape of the displacement waveform in Figure 4.19 is interesting because, at rst glance, the wave might suggest that the mechanical delay is longer when driving a larger capacitive load. This is not a correct conclusion because the mechanical delay is measured from the time when the bit line reaches the operating voltage of the relay, which is the atside pull-in voltage for this device. The at-side pull-in voltage only demarcates the nal pull-in at the end of the mechanical transition, and the duration of that nal transition is the same for both cases. However, the displacement varies slowly beforehand in the worst case bit line and quickly in the best case. That is because the NEM ory is in equilibrium during the middle of its transition after the initial pull-o, and the slow electrical transition is responsible for the slow mechanical changes until the at-side pull-in voltage is reached.


Figure 4.18: Transient waveforms showing the write process for a NEM ory cell.

W hen the capacitive load is low the voltage changes quickly and reaches the higher at-side pull-in voltage more quickly.

The read and write energy of the NEM ory can also be predicted analytically based on the amount of capacitance charged and discharged and the DC currents in the array. During a read there are no DC currents in the array, so only the capacitive energy needs to be considered:

$$
\begin{align*}
E_{\text {read }} & =E_{B L}+E_{W L}  \tag{4.26}\\
& =N_{W L}\left(C_{\text {gap_top }}+C_{\text {gap_bot }}+C_{j}\left(V_{r d}\right)\right) V_{r d}+N_{W L} N_{B L} C_{\text {cell; } ; B L} V_{r d} V_{B L} \tag{4.27}
\end{align*}
$$

where $\mathrm{V}_{\text {rd }}$ is the word line voltage during a read operation ( 0.8 V per earlier discussion), $\mathrm{V}_{\mathrm{BL}}$ is the voltage the bit line is allowed to charge to during read operation ( 7 mV in the worst case, per earlier discussion), and $\mathrm{C}_{\text {cell; } ; \mathrm{b}}$ is the capacitance that each cell attaches to the bit line. A s above, all of the NEM ory cells are oriented the same way. They are all disconnected
4.22 because the voltage applied to the array is low enough that the resistance of word and bit lines have little e ect on the current passing through the cells. The DC contribution to the energy features $I_{\text {nonsel }}$ being multiplied by $V_{D D}$ because it is assumed that $V_{\text {nonsel }}$ is generated in a linear way from the supply voltage.

These energy and delay predictions have been checked against a simulation of a NEM ory array. The CMOS circuit schematics were implemented in an appropriatePDK and the PDK models were used to simulate them. M odels of the NE M ory devices were built in Verilog-A based on the analytical models discussed above. The array was sized based on the oor plan shown above, resulting in an array with 315 bit lines and 4785 word lines. It was not possible to simulate the entire array at the same time because of memory limitations, instead one row and one column of the array were simulated. The delay of reading and writing the cell at the intersection of the column were measured, and the read energy was readily determined by measuring the energy extracted from the power supply during a read operation. Extracting the write energy was somewhat more complex because this model only captures the leakage energy of a single column, so the leakage energy was measured using a separate supply and multiplied by the number of columns. Transient results of the simulation appear in Figure 4.20 .

These results are summarized and compared against other memory solutions in Table 4.1. Some columns of the table deserve discussion because their entries were interpolated from multiple papers. These entries are marked. The energy consumption of the representative SRAM [46] was calculated by nding a paper describing a similar technology [3] in order to nd the C V characteristics of the NEM ory array. These C V characteristics were used to calculate read energy:

$$
\begin{align*}
E_{\text {rd;SRAM }}= & N_{\text {WL;SRAM }}\left(2 C_{\text {gate }}\right) V_{\text {dd;SRAM }}+ \\
& N_{B L ; S R A M} N_{\text {WL;SRAM gd }}\left(1+{ }_{d m}\right) C_{\text {gate }} V_{\text {dd;SRAM }} V_{\text {sw;SRAM }} ; \tag{4.30}
\end{align*}
$$

where $\mathrm{N}_{\mathrm{Wl} \text {;SRAM }}$ and $\mathrm{N}_{\mathrm{Bl} ; \mathrm{SRAM}}$ are the number of SRAM cells on the word and bit lines, $\mathrm{C}_{\text {gate }}$ is the gate capacitance for a minimum sized SRAM device (45fF based on [3] and the size of gates extracted from the picture of the cell in [46]), $\mathrm{V}_{\text {dd; }}$ SRAM is the supply voltage of the SRAM ( $0: 8 \mathrm{~V}$ ), gd is the ratio of gate to drain capacitance (assumed to be 1), dm is the ratio of the metal-to-metal capacitance of the bit line to the total drain capacitance on the cell (assumed to be 2), and $\mathrm{V}_{\text {sw;SRAm }}$ is the swing allowed to develop on the bit lines before the sense ampli ers were triggered (assumed 100 mV ).

W rite energy was calculated in a similar way:

$$
\begin{equation*}
E_{\text {wr;SRAM }}=N_{\text {WL;SRAM }}\left(2 C_{\text {gate }}\right) V_{d d ; S R A M}+N_{\text {WL;SRAM }} N_{\text {BL;SRAM }}(1+d m) C_{\text {gate }} V_{d d ; S R A M}: \tag{4.31}
\end{equation*}
$$

This equation re ects the one of every pair of bit lines must be charged to full rail, rather than only discharged through a sense ampli er swing. Finally, the write delay was actually lifted from a tentatively related SRAM exemplar [47].

T wo papers describing the same piece of eF lash memory were used to compile the eF lash entry [48, 49] because each featured di erent, relevant waveforms.

Figure 4.20: Transient waveforms depicting two read and write cycles of a NEM ory array. The array is loaded with worst case data: all cells are oriented towards the top bit line, $B L_{-} \mathrm{T}$, resulting in higher capacitance and reverse leakage on that bit line.

The NEM ory compares favorably to many other non-volatile memory solutions. In particular, the NEM ory is a very high density memory, rivaled only by aggressive 1T 1R ReRAM cells and traditional ash memory. The NEM ory density is about eight times lower than ash, which is because the ash is $2 \mathrm{~F} \times 2 \mathrm{~F}$ rather than the NEM ory's $2 \mathrm{~F} x 4 \mathrm{~F}$, the ash stores 2 bits per cell, and the ash is using a feature that is e ectively half the size of the NEM ory. The ReRAM with similar density to NEM ory also has a $2 F x 4 F$ cell in a similar process, but overhead of the read and write circuitry degrades its density while NEM ory can mitigate that cost by putting the cells above the drivers. The NEM ory's read and write energy requirements also best all other contenders except for traditional SRAM, which is a volatile memory solution with a very di erent purpose.

Even so, the NEM ory faces signi cant challenges to becoming a commonly used tool in CMOS or relay processes. The device as designed relies on releasing extremely small gaps, which is technically unfeasible right now, and is also dependent on very tight process control to ensure an unusually low Hamaker Constant. However, NEM ory demonstrates some promise as a high density and low voltage non-volatile memory solutions, and other recent work examines similar, stiction-based, designs for relay and CM OS BE OL applications [50].

## Chapter 5

## Conclusion

This work has examined the implementation of three broad components of digital systems using nano-electromechanical devices and shown that careful circuit design can improve the performance NEM circuits relative to naive, CMOS-like implementations. The use of NEM circuits is motivated by the immeasurably low leakage exhibited by NEM devices, which promises very low energy-per-operation digital blocks. However, CMOS-like circuits implemented with relays were shown to perform poorly because NEM devices operate signi cantly more slowly than CMOS devices and are larger. As discussed in Chapter 2, logic circuits bene $t$ from a tree-like logic style which ensures that all of the physical motion of the NEM devices happens at the same time. This ensures that each logical operation requires only a single mechanical delay; the additional electrical delay required to charge the load capacitance is negligible compared to the time required for mechanical motion. This logic style was demonstrated on a pair of test chips [17]. The same problem was shown to haunt timing circuits in Chapter 3, but again a clever circuit design could hide the mechanical delays of each stage of the timing circuit. In this case, the mechanical delay of the timing circuit was designed to occur at the same time as the next stage's logic, which resulted in a pipelined performance of one delay per operation. Unlike the previous two chapters, Chapter $4 \mathrm{ob}-$ served that memory was limited by the area consumption of NEM devices rather than the mechanical delay: density is a critical parameter of memory circuits. An alternative device was proposed and analyzed to demonstrate the limits of scaling a CMOS memory. A model of the device was created and a memory array made from them was simulated to demonstrate functionality and verify the analysis of the device's delay and power. This performance was compared against a wide variety of technologies and shown to have a very high density and palatable delay and energy performance.

These circuit level optimizations have demonstrated huge improvements over naive NEM circuit designs. Relay logic shows a performance increase of $32 x$ over a similarly constructed 32-bit adder, latch based relay timing improves performance $3 x$ over ip- op based systems, and NEM ory is about 170x denser than CM OS-like memory cells. Thus, circuit level optimization of MEMS devices is crucial to achieving the best energy and delay performance of NEM systems, and is crucial to making fair comparisons between NEM s and its competitors.

### 5.1 Hurdles for the R elay Process Engineer

Though these circuit optimizations clearly improve the performance of NEM devices they don't answer the underlying question of whether the devices will be successful CMOS replacements. There are sizable process barriers to making these devices at a scale where their energy bene ts could be realized. The device need to be scaled to a much smaller scale to reap energy bene ts, and their reliability needs to be carefully examined.

One of these barriers is scaling the smallest devices fabricated for this work were in a 250nmnode, but the NEM ory devices discussed in Chapter 4 were designed in the low-level metal of a 14 nm process. Further, though depositing Ims for these devices and patterning them are fairly well understood, there's been very little work on releasing M EMS-like structures in extremely ne-line processes. This kind of release could require very delicate processing. For instance, if NEM ory were released using HF vapor, great care would have to be taken to remove the ILD without damaging the gate dielectric.

This processing is further complicated by the fact that it is crucial to control the H amaker constant of contact between the device and its electrodes. The Hamaker constant impacts the required spring constants of devices and, consequently, their minimum operating voltages. Variations in surface stiction across the chip could cause device failures, and providing margin against these variations results in painful overdesign that directly attacks the energy bene ts of the device: operating at a higher voltage provides a quadratic energy penalty. This suggests that developing a process for NEM devices will require work on the surface science and packaging techniques. Packaging is of especial importance because the ambient environment a ects the contact resistance stability of devices in addition to the chemistry of surfaces [19].

This focus on the Hamaker constant is re ective of the importance of surface forces to the achievable performance of of NEM devices. The fundamental physical limits of the devices are given by the relationship of the three governing forces controlling them: the electrical force applied by the electrodes, the spring force of the deformed structure and the attractive force of the contacting surfaces. This is discussed in [44, 50, 59], and another simple formulation will be presented here for the purpose of illuminating these tradeo $s$.

W hat is required for a NEM device to operate properly? B roadly, multiple force regimes which will cause the device to switch appropriately. De ning those regimes depends on how the device is intended to be operated. There are two categories of operation for NEM devices: active pull-o and non-active pull-o . NEM ory devices are an example of active pull-o devices since they have multiple stable contacting states and can only be pulled from one to the other by the application of an external force. The 4T and 6 T relay devices of chapters 2 and 3 are non-active pull-o devices since the devices return to a non-contacting state when voltage is removed without any external forces applied to them. A chieving either pull-o behavior requires that the forces on the device obey certain inequalities:

$$
\begin{gather*}
F_{\text {elec }}\left(X_{\text {pi }} ; V_{\text {pi }}\right)>F_{k}\left(X_{\text {pi }}\right) ; \text { and } F_{k}\left(g_{\mathrm{d}}\right)>F_{\text {surf }} \text { for non-active pull-o } ;  \tag{5.1}\\
F_{\text {elec }}\left(V_{\text {pi }} ; 2 g\right)+F_{k}(g)>F_{\text {surf }}>F_{k}(g) \text { for active pull-o : } \tag{5.2}
\end{gather*}
$$

tragedy: M oore's law has driven tremendous economic growth, invaluably aided the progress of science, and enabled sweeping social changes in a tiny amount of time. However, as transistor scaling has slowed, transistor heterogeneity has increased: the presence of high-k metal-gate devices, SOI devices and $n$ devices in the same market attests to increasing diversi cation. Device heterogeneity and the use of post-M oore devices could extend that trend.

Relays are interesting from a post-M oore standpoint because scaled devices promise lower leakage than any other technology on the market. M assively parallel, high latency operations, which constitute much of scienti c computing and web hosting, could bene tremendously from the reduction in power promised by lower leakage. So with further work, NEM relays and their relative could be a powerful arrow in the post-M oore quiver. Showing the bene ts of the technology will continue to require careful circuit and device co-design to maximize the strengths of the technology while minimizing its weaknesses.
[29] H. Fariborzi, F. Chen, R. Nathanael, I.-R. Chen, L. Hutin, R. Lee, T.-J. K. Liu, and V. Stojanovic, \Relays do not leak: CMOS does," in Proceedings of the 50th Annual Design Automation Conferenceser. DAC '13. New York, NY, USA: ACM, 2013, pp. 127:1\{127:4. [Online]. A vailable: http:/ / doi.acm.org/ 10.1145/ 2463209.2488890
[30] J. J eon, L. Hutin, R. Jevtic, N. Liu, Y. Chen, R. Nathanael, W . K won, M. Spencer, E. Alon, B. Nikolic, and T.-J. K. Liu, \Multiple-input relay design for more compact implementation of digital logic circuits," IEEE Electron Device Letters vol. 33, no. 2, pp. 281\{283, 2012.
[31] K. Dwan and D. Markovic, \Logic synthesis of mem relay circuits," Master's thesis, ECE Department, University of California, Los A ngeles, May 2011. [Online]. A vailable: http:// icslwebs.ee.ucla.edu/ dejan/ researchwiki/ images/ b/ bf/ K evin_D wan_M S_T hesis.pdf
[32] M. Jiang, \Bdd based logic synthesis of mem relay circuits," Master's thesis, May 2013. [Online]. A vailable: http:// escholarship.org/ uc/ item/ 2mp5d00h
[33] J. Sklansky, \Conditional-sum addition logic," IRE Transactions on Electronic Computers, vol. EC-9, no. 2, pp. 226\{231, J un. 1960.
[34] D. Patil, O. Azizi, M. Horowitz, R. Ho, and R. Ananthraman, \Robust energy-e cient adder topologies," in 18th IEEE Symposium on Computer Arithmetic, 2007. ARITH '07, J un. 2007, pp. 16\{28.
[35] O. Degani, E. Socher, A. Lipson, T. Lejtner, D. Setter, S. K aldor, and Y. Nemirovsky, \Pull-in study of an electrostatic torsion microactuator," Journal of Microelectromechanical Syste $m_{s}$ vol. 7, no. 4, pp. 373\{379, 1998.
[36] J. J eon, V. Pott, H. K am, R. Nathanael, E. Alon, and T. .J. K. Liu, \Seesaw Relay Logic and Memory Circuits," Journal of Microelectromechanical Systemsol. 19, no. 4, pp. $1012\{1014$, Aug. 2010.
[37] | , \Perfectly Complementary Relay Design for Digital Logic Applications," IEEE Electron Device Letters vol. 31, no. 4, pp. 371\{373, Apr. 2010.
[38] A. Gupta and E. Alon, \Nem relay memory design," Master's thesis, EECS Department, University of California, Berkeley, May 2009. [Online]. A vailable: http:/ / www.eecs. berkeley.edu/ P ubs/ TechR pts/ 2009/ E E CS-2009-83.html
[39] W. K won, J.J eon, L. Hutin, and T.-J. K. Liu, \Electromechanical Diode Cell for CrossPoint Nonvolatile Memory Arrays," IEEE Electron Device Letters vol. 33, no. 2, pp. 131\{133, 2012.
[40] L. Hutin and T.-J. K. Liu, \Non-volatile Electro-M echanical M emory (NEM ory) Cell Scaling for Energy-e cient and High-density Crosspoint Arrays," in Proceedings of the 3nd Berkeley Symposium on Energy Effient Electronic Systems Oct. 2013.
[41] R. Maboudian and R. T. Howe, \Critical Review: Adhesion in surface micromechanical structures," Journal of Vacuum Science $\mathcal{B}$ Technology $B$ vol. 15, no. 1, pp. 1\{20, Jan. 1997. [Online]. A vailable: http:// scitation.aip.org/ content/ avs/ journal/ jvstb/ 15/ 1/ 10.1116/ 1.589247
[42] N. Yu and A. A. Polycarpou, \A dhesive contact based on the LennardJ ones potential: a correction to the value of the equilibrium distance as used in the potential," Journal of Colloid and Interface Science vol. 278, no. 2, pp. 428\{435, Oct. 2004. [Online]. A vailable: http:// www.sciencedirect.com/ science/ article/ pii/ S0021979704005454
[43] L. Hutin, personal communication, 012014.
[44] C. Pawashe, K. Lin, and K. K uhn, \Scaling Limits of Electrostatic Nanorelays," IEEE Transactions on Electron Device,svol. 60, no. 9, pp. 2936\{2942, 2013.
[45] J. N. Israelachvili, Intermolecular and Surface Fores: Revis ed Third EditianA cademic Press, Jul. 2011.
[46] M.-C. Chen, C.-H. Lin, Y.-F. Hou, Y .-J . Chen, C.-Y. Lin, F.-K . Hsueh, H.-L. Liu, C.-T. Liu, B.-W. Wang, H.-C. Chen, C.-C. Chen, S.-H. Chen, C.-T. Wu, T.-Y. Lai, M.-Y. Lee, B.-W. Wu, C.-S. Wu, I. Yang, Y.-P. Hsieh, C. Ho, T. Wang, A. Sachid, C. Hu, and F.-L. Yang, \A 10 nm Si-based bulk FinFETs 6t SRAM with multiple $n$ heights technology for $25 \%$ better static noise margin," in 2013 Symposium on VLSI Circuits (VLS IC), J un. 2013, pp. T 218\{T 219.
[47] E. K arl, Y . Wang, Y .-G . Ng, Z. Guo, F. Hamzaoglu, U. Bhattacharya, K . Zhang, K . M istry, and M. Bohr, \A 4.6ghz 162mb SRAM design in 22nm tri-gate CMOS technology with integrated active V MIN-enhancing assist circuitry," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE Internation,aFeb. 2012, pp. $230\{232$.
[48] D. Shum, J. Power, R. Ullmann, E. Suryaputra, K. Ho, J. Hsiao, C. Tan, W. Langheinrich, C. Bukethal, V. Pissors, G. Tempel, M. R ohrich, A. Gratz, A. Iserhagen, E. A ndersen, S. Paprotta, W. Dickenscheid, R. Strenz, R. Duschl, T. Kern, C. Hsieh, C. Huang, C. Ho, H. Kuo, C. Hung, Y. Lin, and L. Tran, \Highly Reliable Flash M emory with Self-A ligned Split-G ate Cell Embedded into High Performance $65 n \mathrm{~nm}$ CMOS for Automotive amp; Smartcard Applications," in Memory Workshop (IMW), 2012 4th IEEE International, May 2012, pp. 1 \{4.
[49] M. Jefremow, T. Kern, U. Backhausen, J. Elbs, B. Rousseau, C. Roll, L. Castro, T. Roehr, E. Paparisto, K. Herfurth, R. Bartenschlager, S. Thierold, R. Renardy, S. K assenetter, N. Lawal, M. Strasser, W. Trottmann, and D. Schmitt-Landsiedel, \A 65 nm 4 mb embedded ash macro for automotive achieving a read throughput of $5.7 \mathrm{gb} / \mathrm{s}$ and a write throughput of $1.4 \mathrm{mb} / \mathrm{s}$, " in ESS CIRC (ESS CIRC), 2013 Proceedings of the Sep. 2013, pp. $193\{196$.
[50] N. Xu, J. Sun, I.-R. Chen, L. Hutin, Y. Chen, J. Fujiki, C. Qian, and T .-J. K . Liu, \Hybrid CMOS/BEOL-NEMS technology for ultra-low-power IC applications," in Electron Devices Meeting (IEDM), 2014 IEEE International Dec. 2014, pp. 28.8.1\{28.8.4.
[51] H. Noguchi, K. Ikegami, K. K ushida, K. A be, S. Itai, S. Takaya, N. Shimomura, J. Ito, A. K awasumi, H. Hara, and S. Fujita, \7.5 A 3.3ns-access-time 71.2 \#x03bc;W / M Hz 1 mb embedded STT-MRAM using physically eliminated read-disturb scheme and normally-o memory architecture," in Solid- State Circuits Conference - (IS SCC), 2015 IEEE International, Feb. 2015, pp. $1\{3$.
[52] C. K im, K. K won, C. Park, S. J ang, and J. Choi, \7.4 A covalent-bonded cross-coupled current-mode sense ampli er for STT-M RAM with 1t1mtj common source-line structure array," in Solid-State Circuits Conference - (ISSCC), 2015 IEEE InternationalFeb. 2015, pp. 1 \{3.
[53] R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. M ills, K. T sutsui, J. J avanifard, K. Tedrow, T. T sushima, Y. Shibahara, and G. Hush, \19.7 A 16gb ReRAM with $200 \mathrm{mb} / \mathrm{s}$ write and $1 \mathrm{gb} / \mathrm{s}$ read in 27 nm technology," in Solid-State Circuits Conference Digest of Technical Papers (IS SCC), 2014 IEEE InternationaFeb. 2014, pp. $338\{339$.
[54] M .-F. Chang, J.-J. Wu, T .-F. Chien, Y .-C. Liu, T .-C. Yang, W .-C. Shen, Y .-C. K ing, C.J. Lin, K.-F. Lin, Y .-D. Chih, S. Natarajan, and J. Chang, \19.4 embedded 1mb ReRAM in 28nm CMOS with 0.27-to-1v read using swing-sample-and-couple sense ampli er and self-boost-write-termination scheme," in Solid-State Circuits Conference Digest of Technical Papers (IS S CC), 2014 IEEE InternationalFeb. 2014, pp. $332\{333$.
[55] N. Gilbert, Y. Zhang, J. Dinh, B. Calhoun, and S. Hollmer, \A $0.6 \mathrm{v} 8 \mathrm{pJ} /$ write nonvolatile CBRAM macro embedded in a body sensor node for ultra low energy applications," in 2013 Symposium on VLS I Circuits (VLS IC) J un. 2013, pp. C204\{C205.
[56] G. De Sandre, L. B ettini, A . Pirola, L. M armonier, M. Pasotti, M . B orghi, P. M attavelli, P. Zuliani, L. Scotti, G. Mastracchio, F. Bedeschi, R. Gastaldi, and R. Bez, \A 4 Mb LV MOS-Selected Embedded Phase Change Memory in 90 nm Standard CMOS Technology," IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 52\{63, J an. 2011.
[57] T. Song, W. Rim, J. J ung, G. Yang, J. Park, S. Park, K.-H. Baek, S. Baek, S.-K. Oh, J. J ung, S. Kim, G. Kim, J. Kim, Y. Lee, K. S. Kim, S.-P. Sim, J. S. Y oon, and K .-M. Choi, \13.2 A 14nm FinFET 128mb 6t SRAM with VMIN-enhancement techniques for low-power applications," in Solid-State Circuits Conference Digest of Technical Papers (IS S CC), 2014 IEEE International, Feb. 2014, pp. $232\{233$.
[58] M. Helm, J.-K. Park, A. Ghalam, J. Guo, C. w. Ha, C. Hu, H. K im, K. K avalipurapu, E. Lee, A. M ohammadzadeh, D. N guyen, V. Patel, T. Pekny, B. Saiki, D. Song, J. T sai, V. Viajedor, L. Vu, T. Wong, J. H. Yun, R. Ghodsi, A. d'Alessandro, D. Di Cicco,
and V. M oschiano, \19.1 A 128gb MLC NAND-Flash device using $16 n m$ planar cell," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, Feb. 2014, pp. 326\{327.
[59] A. J ain and M. A lam, \Prospects of Hysteresis-Free A brupt Switching ( $0 \mathrm{mV} /$ decade) in Landau Switches," IEEE Thansactions on Electron Devicesvol. 60, no. 12, pp. 4269\{ 4276, 2013.

