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1 Abstract

Reinforcement learning for robotic applications faces the challenge of constraint satisfaction,

which currently impedes its application to safety critical systems. Recent approaches successfully

introduce safety based on reachability analysis, determining a safe region of the state space where

the system can operate. However, overly constraining the freedom of the system can negatively

affect performance, while attempting to learn less conservative safety constraints might fail to

preserve safety if the learned constraints are inaccurate. We propose a novel method that uses a

principled approach to learn the system’s unknown dynamics based on a Gaussian process model

and iteratively approximates the maximal safe set. A modified control strategy based on real-time

model validation preserves safety under weaker conditions than current approaches. Our frame-

work further incorporates safety into the reinforcement learning performance metric, allowing a

better integration of safety and learning. We demonstrate our algorithm on simulations of a cart-

pole system and on an experimental quadrotor application and show how our proposed scheme

succeeds in preserving safety where current approaches fail to avoid an unsafe condition.
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3 Introduction

Reinforcement Learning (RL) has proven to be a valuable tool in robotics, where pre-specifying

a policy for a robot to achieve a given task can be a major challenge. Through trial-and-error inter-

actions with its environment, a robot can employ RL techniques online to find a control policy for

achieving its task. Examples include rotorcraft performing aggressive maneuvers with high airflow

interaction [1],[5], autonomous driving in extreme conditions [13] or fast quadruped locomotion

through irregular terrain [10].



Traditional RL algorithms are not designed to guarantee constraint satisfaction, which makes

them unemployable in safety-critical scenarios. For this reason, the past years have seen a growing

interest in combining online learning with a supervisory framework that can guarantee the safety of

the dynamical system. We propose a safety framework that has reduced interference with the learn-

ing process of the system. Its novel control strategy can preserve safety under weaker conditions

than current safety approaches.

Different frameworks have been proposed in recent years using Lyapunov stability [16] or

model predictive control with a nominal linear model [2]. One particular technique that has been

explored recently for safe reinforcement learning [8],[9] is known as Hamilton-Jacobi-Isaacs (HJI)

reachability analysis, a method that has been previously used to guarantee safety in a variety of

contexts within the robotics literature [6]. By considering worst-case disturbances, this method

determines a safe region in the state space and provides a control policy to stay within that region.

The main advantage is that in the interior of this region one can execute any desired action as long

as the safe control is applied at the boundary, leading to a least restrictive control law. The desired

action can be specified by any method, including any learning algorithm.

However, reachability-based algorithms are not without shortcomings. First, in order to guar-

antee safety the system-designer must often rely on a nominal model that assumes conservative

worst-case disturbances, which reduces the computed safe region, and thereby the region where

the system can learn [9]. Second, the assumed bounds on the disturbances may not globally cap-

ture the true disturbance of the system, in which case current reachability-based methods can no

longer guarantee safety. Lastly, the least restrictive control law framework decouples safety and

learning, which can lead to poor results, since the learning controller has no notion of the unsafe

regions of the state space and may attempt to drive the system into them. Beyond chattering due

to controller switching, convergence of the learning controller may be extremely slow, if the safety

frequently prevents the learning control from being applied.

The major contributions of this work address these three issues. Learning the disturbances

from the data prevents an overly conservative reachability analysis, thus leading to a larger region

of operation for the system [9]. We introduce a principled way of updating prior disturbance

assumptions based on online data by means of a Gaussian process (GP) model. We propose a novel

control strategy that validates the model online and becomes more conservative if its predictions



account poorly for the observed dynamics. We present a method to validate the model in real

time and provide an adapted control strategy, which can guarantee safety under relaxed conditions,

even if assumptions on the disturbances are incorrect. This framework ultimately allows a less

conservative modeling of system uncertainty for the reachability analysis. To our knowledge this is

the first work in the area of reachability analysis that cross-validates the model online and proposes

a solution for cases in which the model does not accurately explain the observations. Lastly, we

incorporate safety metrics in the learning algorithm that reduce the amount of switching between

controllers.

The remainder of the paper is organized as follows. In Section 4 we introduce the model and

briefly explain the employed tools, reachability analysis and GPs, which are at the core of our

algorithm. The problem statement is presented in Section 5, with a discussion of the limitations of

state-of-the-art reachability-based safety algorithms. Section 6 contains the proposed methodology

to address these problems. Lastly, in Section 7 we demonstrate our framework on both simulations

(cart-pole swing-up) and experimental results (quadrotor trajectory tracking).

4 Preliminaries

Let x ∈Rn be the state of the system evolving according to dynamics ẋ = f (x,u,d). We restrict

f to the class of control-affine systems, for which parts of the dynamics are assumed known (or

already identified) while other parts remain unknown3:

f (x,u,d) = h(x)+g(x)u+d, (1)

where h : Rn → Rn and g : Rn → Rn×m are locally Lipschitz continuous functions representing

the known parts of the dynamics, u is the control input belonging to some compact set U ⊆
Rm, and d : Rn → Rn is an unknown, but deterministic, state dependent disturbance capturing

unmodeled dynamics. We assume that d(x) is a locally Lipschitz continuous function. Though

d(x) is unknown, we bound it by a conservative compact set D(x), which is allowed to vary in the

state space, and which in turn will be used in our initial safety assessment. Later on, we will use a

3The proposed method applies to more general dynamical systems, but here we restrict our attention to classes of

systems that can be addressed with currently available computational tools.



GP model to approximate d(x) with a tighter bound D̂(x).

The model given by (1) captures an ample variety of systems, where the actuation is under-

stood, but there exist uncertain factors such as air drag and turbulence for aircraft at high velocities

or contact forces between the tires of a ground vehicle and spatially varying terrains.

4.1 Safety and Reachability Analysis

Consider the state constraint set K , a compact subset of Rn that the system is required not

to leave. Given some time horizon τ (possibly infinite) the goal is to compute the set of initial

states of (1) for which there exists a control strategy that takes value in U such that x(t) ∈K ∀t ∈
[0,τ] =: T regardless of the actions of the disturbance in D(x). This is known as the discriminating

kernel of K denoted by DiscT(K ,D) [3].

We can compute this set by solving the corresponding modified terminal value HJI partial

differential equation [15]. Define a bounded Lipschitz continuous function κ : Rn→ R such that

K = {x∈Rn | κ(x)≥ 0}. A common choice for κ is the signed distance4 to the set K C =Rn\K .

Then the viscosity solution V : Rn×T→ R of

∂V
∂ t

(x, t) =−min
{

0, sup
u∈U

inf
d∈D(x)

∂V
∂x

(x, t) f (x,u,d)
}

(2)

with V (x,τ) = κ(x) describes the discriminating kernel:

DiscT(K ,D) = {x ∈ Rn |V (x,0)≥ 0}. (3)

The optimal policy u∗(x), the optimizer of (2), attempts to drive the system to the safest pos-

sible state always assuming an adversarial disturbance. If the hypotheses of the reachability

analysis hold true (namely d ∈ D(x) ∀x ∈ K ), then one can allow the system to execute any

desired control (in particular, any control ul dictated by the learning agent) while in the interior

int(DiscT(K ,D)), as long as the safety preserving action u∗(x) is taken whenever the state reaches

the boundary ∂ DiscT(K ,D); the system is then guaranteed to remain inside K over T. Typi-

cally, the level set computations will converge for a sufficiently large τ and it is then possible to
4For a given norm ‖ · ‖ on Rn, the signed distance from x ∈ Rn to A ⊂ Rn is inf{‖x− y‖,y ∈A } for x 6∈A , and

− inf{‖x− y‖,y ∈ Rn \A } for x ∈A .



guarantee safety for all time using the robust controlled invariant (henceforth simply controlled

invariant) set Disc(K ,D). For the rest of the paper we will only consider the converged discrim-

inating kernel, and refer to V (x) as the safety value function. The least restrictive control law for

guaranteed safety under disturbance set D(x) is then given by:

u ∈

U , if V (x)> 0

{u∗(x)}, otherwise
(4)

Lemma 1. Any nonnegative superlevel set of V (x) is controlled invariant.

Proof. By Lipschitz continuity of f and κ , we have that V is Lipschitz continuous [7] and hence,

by Rademacher’s theorem, almost everywhere differentiable. The convergence of V in (2) implies

that ∂V
∂ t (x, t) = 0. Therefore, ∀α ≥ 0 ∀x ∈ {x |V (x)≥ α} ∃u∗ such that ∀d ∂V

∂x (x, t) f (x,u∗,d)≥ 0

(otherwise r.h.s. would be non-zero). Then, the value of V along the trajectory is always non-

decreasing, so V ≥ α .

Proposition 1. Consider two disturbance sets D1(x) and D2(x), and a compact set M ⊂ Rn that

is controlled invariant under D1(x). If D2(x) ⊆ D1(x) ∀x ∈ ∂M , then M is controlled invariant

also under D2(x).

Proof. For the sake of contradiction, assume that under the disturbance set D2(x) there exists some

trajectory starting at x0 ∈M such that for some T <∞, x(T ) 6∈M . Since f is locally Lipschitz, the

trajectory x : t 7→Rn is continuous for x∈M , and thus ∃t ′ ∈ [t0,T ] such that x(t ′)∈ ∂M . However,

since M is controlled invariant under D1(x), we know that ∀x ∈ ∂M ∃u∗(x) ∈ U such that no

possible disturbance d ∈ D1(x) can drive the system out of M . Since D2(x) ⊆ D1(x) ∀x ∈ ∂M

the same control policy u∗(x) on the boundary guarantees that no disturbance d ∈ D2(x) ⊆ D1(x)

can drive the system out of M . Hence, M is a controlled invariant set under D2(x).

Corollary 1. Let Q be a nonnegative superlevel set of the safety function V (x) computed for some

disturbance set D(x). If d(x) ∈ D(x) ∀x ∈ ∂Q, then Q is an invariant set under the optimal safe

control policy u∗(x) given by the HJI reachability analysis, even if d(x) 6∈D(x) ∀x ∈ int(Q).

This corollary, which follows from Proposition 1 by considering the singleton {d(x)}, is an

important result that will be at the core of the modified safety control policy presented in Section

6.2.



Finally, we define a safe set as any controlled invariant set S such that S ∩K C = /0. There-

fore, any level set satisfying Corollary 1 is a safe set of the true system. Furthermore, if D(x) =

{d(x)} ∀x ∈ Rn then Disc(K ,D) is the maximal safe set. In this case, the system dynamics are

known completely and the disturbance set reduces to a singleton.

4.2 Gaussian Process

To estimate the disturbance function d(x) over the state space we make use of GP regres-

sion. This is a powerful nonparametric regression technique that extends multivariate Gaussian

regression to the infinite-dimensional space of functions and provides a closed form expression for

Bayesian inference. Informally, a GP is a distribution over functions defined by a mean function

µ(x) and a covariance kernel function k(x,x′):

d(x)∼ G P(µ(x),k(x,x′)). (5)

The class of the prior mean function and kernel function is chosen to capture the characteristics

of the model (linearity, periodicity, etc), and is defined by a set of hyperparameters θp. These are

typically set to maximize the marginal likelihood of an available set of training data, or alternatively

to reflect some prior belief on the system. For a detailed description of GPs, see [18].

Given N measurements for the jth component of d(x), i.e. d̂j =
[
d̂ j

1 . . . d̂ j
N

]T
, observed

with zero-mean Gaussian noise ε j with variance σ2
n at the points X =

[
x1 . . . xN

]T
, i.e. d̂ j

i =

d j(xi) + ε j, and the Gaussian prior distribution, the posterior distribution of the function value

d j(x∗) at a new point x∗ is again a Gaussian distribution:

d̄ j(x∗) = µ(x∗)+K(x∗,X)(K(X ,X)+σnI)−1(d̂j(x)−µ(X)),

var(d j(x∗)) = K(x∗,x∗)−K(x∗,X)(K(X ,X)+σnI)−1K(X ,x∗),
(6)

where Ki j(X ,X ′) = k(xi,x′j), and µi(X) = µ(xi). Therefore the GP provides both the expected value

of the disturbance function at any arbitrary point x∗ and a notion of the uncertainty of this estimate.



5 Problem Statement

Given that d(x) is unknown, reachability analysis is computed with an estimated disturbance

set D̂(x) that attempts to provide a bound for d(x). Since the maximal safe set of the system is

given by Disc(K ,{d(x)}), a necessary condition to guarantee safety through (4) is Disc(K ,D̂)⊆
Disc(K ,{d(x)}).

5.1 Safety and Learning Trade-Off

Ideally, Disc(K ,D̂) = Disc(K ,{d(x)}), yielding a control strategy that would allow the sys-

tem to learn in the maximal safe set. Given prior observations of the disturbances our objective is

to infer a small set that contains d(x).

The approach in [9] begins with a conservative bound on the disturbance and then less con-

servative bounds are inferred from the data online (gradually growing the discriminating kernel).

However, no principled way of updating the disturbance set is presented considering treatment of

outliers, measurement noise, extrapolation, and interpolation. The technique proposed in this pa-

per provides a principled inference method and additionally allows incorporation of prior beliefs

in the model characteristics by employing a GP model.

5.2 Assumption Violations and Safety

A sufficient condition for safety under control strategy (4) is that d(x) be captured by the

estimated disturbance set. In the literature this has typically been achieved by using conservative

bounds on the disturbance [8]. However, this approach generally produces a small (or even worse,

empty) discriminating kernel.

Our objective, instead, is to infer d(x), or at least to derive a tight bound, so as to have a control

strategy that guarantees safety under less restrictive conditions, by monitoring the consistency

between the model used for reachability and the observed system dynamics.



5.3 Integrating Safety Metric into Learning

The desired action in (4), applied in the interior of the safe set, is specified by a learning

algorithm that has some performance objective typically not including safety [8], [9]. This causes

the reachability analysis and the learning algorithm to be disjoint with respect to one another.

Switching control from the learning algorithm can cause the system to chatter or stall.

In addition, RL algorithms use the feedback obtained from the environment to specify the next

action that should be taken, which seeks to converge to or execute an optimal policy [11]. This

is particularly critical for on-policy algorithms, which require that the specified learning control

be the one executed by the system. Therefore, failing to incorporate safety metrics in the learning

algorithm can degrade the convergence and performance. The objective here is to unify learning

and safety by incorporating safety metrics in the learning.

6 Methodology

The overall scheme of the proposed algorithm is as follows. GP regression is used to infer the

disturbance set D̂(x) from past observations of the dynamics; this disturbance set D̂(x) is used to

conduct reachability analysis5 and obtain a safety function V (x) and an optimal safe control policy

u∗(x). Online, we implement a modified control law, which combines the least restrictive control

with a novel safety strategy based on online model validation. Whenever the safety control law is

not applied, the system applies the control specified by a safety-aware learning algorithm. Once a

new batch of data of arbitrary size is available, the process is repeated.

6.1 Gaussian Process and Model Inference

Starting from a prior disturbance set, we use a GP to approximate the disturbance function d(x)

yielding a probabilistic bound D̂(x). The objective is to obtain an estimated safe set Disc(K ,D̂)

that approaches the maximal safe set while providing safety guarantees. We assume that an ap-

5If no data has yet been collected we use an initial disturbance model.



proximation of the state derivatives is available (e.g. obtained by numerical differentiation), which

is denoted by f̂ (x,u). Since the disturbance considered in our formulation is additive, we can con-

struct measurements of d(x) for any state-input pair that has been visited as the residuals between

the observed dynamics and the model’s prediction:

d̂(x) = f̂ (x,u(x))−h(x)−g(x)u(x). (7)

The residuals are used to infer a distribution over d(x), and this distribution is used to construct

the disturbance set D̂(x) at every point x. We define the jth component of the disturbance, d j(x) ∈
R, as a GP with a zero mean function and squared exponential covariance function.

k(x,x′) = σ
2
f exp

(
(x− x′)T L−1(x− x′)

2

)
, (8)

where L is a diagonal matrix, with Li as the ith diagonal element, and θp =
[
σ2

f ,σ
2
n ,L1, . . . ,Ln

]
are

the hyperparameters, σ2
f being the signal variance, σ2

n being the measurement noise variance, and

Li being the squared exponential’s characteristic length for the ith state. The hyperparameters are

chosen to maximize the marginal likelihood of the training data set, and are thus recomputed for

each new batch of data.

We denote by X =
[
x1 · · · xN

]T
the training data given by a subset of the measured states.

We define the observed disturbance vector d̂j(X), where the ith element is given by d j(xi). As-

suming that the disturbance is observed with Gaussian uncertainty and given the Gaussian prior

distribution, the posterior distribution of d j(x∗) at any given state x∗ can be obtained from (6).

The expected value d̄ j(x∗) and the standard deviation σ∗ =
√

var(d j(x∗)) of the disturbance

can thus be computed for every point of interest x∗, and therefore the expected dynamics in (1) can

be evaluated at any given state for the reachability analysis. A probabilistic bound is chosen for the

maximum and minimum values of the disturbance, e.g. a ±2-sigma bound for 95.5% confidence

or ±3-sigma for 99.7%. This results in the disturbance set:

D̂(x) = [d̄(x∗)−mσ∗(x), d̄(x∗)+mσ∗(x)] with m≥ 0. (9)



6.2 Safety through Online Model Validation

A key contribution of this paper is providing a method to anticipate and react to inaccuracies

in the dynamic model that could invalidate reachability-based guarantees. The proposed algorithm

uses online measurements of the system’s evolution to monitor the local value of the disturbance

d(x) in real time using (7). We define the model reliability margin λ (x) as:

λ (x) =
dist
(
d(x),D̂(x)C

)
max

δ∈D̂(x)
dist
(
δ ,D̂(x)C

) , (10)

where dist(·, ·) : Rn× 2R
n → R is the signed distance function. The model reliability margin is

therefore a normalized signed distance function, with range [0,1] on the inside of D̂(x) and nega-

tive outside, which provides a metric for confidence in the GP model along the system’s trajectory.

Given (9) with sufficiently large m, the probability of the disturbance function d(x) taking val-

ues near or outside the boundary of D̂(x) is arbitrarily low. Obtaining a measurement with small

λ (x)> 0 indicates that the model is performing poorly, but its bound on the disturbance (on which

reachability guarantees are based) is still correct locally. Conversely, if λ (x)< 0, then all theoreti-

cal safety guarantees are lost (the disturbance is playing an unexpected value for which the control

action is not guaranteed to win the differential HJI game).

The new control strategy is given as follows:

VL =

max(V (x),VL) if λ (x)≤ λL

VL, otherwise
(11a)

u ∈

U if V (x)−VL > 0

{u∗(x)}, otherwise
, (11b)

where the critical safety level VL is initialized to 0 whenever a new disturbance model is produced

by the GP, and λL ∈ (0,1) is a predefined threshold; the criteria to select its value will be discussed

later in this section. We refer to the compact set {x : V (x)−VL > 0} as the critical level set; note

that this set is initialized to Disc(K ,D̂), and updated by the control strategy when the model

reliability margin reaches λL. The purpose of the above control strategy is to keep the system

within the critical level set. Effectively, the algorithm shrinks the allowed region of operation by

pruning away those states potentially admitting disturbances that are not likely according to the



model. The principle by which the new allowed operating region is chosen to be the critical level

set is based on the following result.

Proposition 2. If a state z is reached such that λL ≥ λ (z)> 0 and ∃VS ∈ [0,V (z)] such that d(x) ∈
D̂(x) ∀x ∈ {x : V (x) =VS }, then the strategy given by (11) is guaranteed to keep the system safe.

Proof. Since ∀x ∈ {x : V (x) =VS }, d(x) ∈ D̂(x), by Corollary 1 the level set associated with VS is

indeed a controlled invariant set of the true system under control policy u∗(x). Since the control

strategy given by (11) will apply the control u∗(x) for all x such that V (x) ≤ VL, then the system

cannot leave the level set {x : V (x)≥VS}, and therefore safety is guaranteed.

Note that the conditions for guaranteeing safety under the control strategy in (11) are much less

stringent than those required by current reachability-based safety algorithms. In order to preserve

safety, these frameworks require that the estimated disturbance set capture the true disturbance at

least on the boundary of the computed discriminating kernel. Conversely, our algorithm guarantees

safety as long as there exists some super-zero level set {x : V (x)=VS}, 0≤VS≤VL of the computed

safety function V (x) such that the disturbance is captured by the computed disturbance set on the

boundary of the said set. In a continuous state space, there are an infinite number of candidate level

set boundaries and it suffices that one of them satisfies the condition for safety guarantees to hold.

It is important to note that the choice of λL determines the conservativeness of the control

strategy: a larger value of λL leads the algorithm to start applying the safe control policy u∗(x) for

smaller deviations in the measured disturbance with respect to its expected value as predicted by

the GP. The likelihood of there existing a candidate level set boundary where the disturbance lies

within the specified bounds is therefore larger for larger values of λL, but the algorithm will also

be more sensitive to modeling error and become more restrictive for smaller inconsistencies with

observations.

Moreover, Proposition 2 provides a sufficient condition for safety when implementing our pro-

posed control strategy: safety may still be provided even when its premises do not hold. An

example of this will be shown in Section 7.2 through an experiment.



6.3 Safety Metric Integration into Learning Algorithm

The goal is to reduce switching between the safe control and learning control, or equivalently

minimize the number of times the system reaches the boundary of the critical level set. On the

interior of the critical level set, the safety function V (x)−VL can be viewed as a measure of how

far a state is from reaching the boundary of the set. The safety function is incorporated as a metric

in the learning algorithm to discourage the system from reaching the boundary. This idea will be

exemplified with the learning algorithm Policy Gradient via the Signed Derivative (PGSD).

PGSD is a model-free policy search algorithm introduced in [12]. We present the algorithm

here briefly and refer the reader to [12] for a more detailed description. In policy gradient learning

algorithms, a parametrized control policy is updated in order to optimize a given cost function over

the state-action pair, C(x,u). As an example, we consider a quadratic cost and a control that is

linear in the state features

C(x,u) =
1
2
(x− x∗)>Q(x− x∗)+

1
2

u>Ru, u = Θφ(x). (12)

where x∗ is the desired state, Q and R are diagonal positive semidefinite matrices penalizing devi-

ation from x∗ and control input respectively, φ(x) ∈Rk is a vector of features, each of which maps

the state to a scalar value, and Θ ∈ Rm×k is a matrix of weights that linearly map these features

into controls. The controller’s objective is to minimize the cost incurred over a horizon H starting

at x0 while applying Θ:

J(x0,Θ) =
H

∑
t=1

C(xt ,ut), ut = Θφ(x). (13)

For simplicity of notation we omit the arguments of the cost in the following. PGSD updates the

parameters as:

Θ←Θ−α∇ΘJ (14a)

∇ΘJ =
1
H

H−1

∑
t=0

(∇ut J)φ(xt)
> (14b)

∇ut J ≈
H

∑
t ′=t+1

S>Q(xt ′− x∗t ′)+Rut ′, (14c)

where α > 0 is the step size, and Si, j is the sign of ∂ (xt′)i
∂ (ut) j

with the additional restriction that only

one element in each row of S is nonzero corresponding to the control that has the largest effect on



that given state. The safety metric can be included as follows:

CS(x,u) =C(x,u)− γlog(V (x)−VL), (15)

where γ is a weighting factor. The log barrier function goes to infinity at the boundary of the

critical level set, and is approximately constant in the interior. Equation (14c) then becomes

∇ut J =
H

∑
t ′=t+1

S>Q(xt ′− x∗t ′)−
γS>∇xV (xt ′)

V (xt ′)−VL
+Rut ′. (16)

The gradient ∇xV (x) is calculated from (2) during the reachability computations.

7 Simulations and Experiments

We highlight each aspect of our algorithm in different simulations and experiments. We use

the Level Set Toolbox [14] to compute the discriminating kernel and the optimal safety-preserving

control laws.The GP regression is done using the GPML toolbox [18].

The model and safe set are not computed at every time step due to computational cost. The

cost of GP regression is cubic in the number of data points, and the cost of reachability analysis

grows exponentially with the state dimension. We maintain a grid of the state space (over which we

perform the reachability computations), and as such (9) must be obtained at each grid point which

does not affect the computational complexity of the overall algorithm. We then have a look-up

table specifying the disturbance set at each grid cell.

7.1 Cart-Pole Swing Up: Safety Metric Integration

In this simulation we highlight the benefits of including a safety metric in the learning al-

gorithm. We implemented the PGSD algorithm described in Section 6.3 on a simulated cart-

pole system with one actuator controlling the thrust of the cart. The states of the system are

x =
[

p ṗ θ θ̇

]>
; position, velocity, clockwise angle (pendulum up is the origin), and angular



velocity. The dynamics are

p̈ =
(u−d)+h1cos(θ)sin(θ)+h2sin(θ)(θ̇)2

h3 +h4cos2(θ)
, (17)

θ̈ =
g1cos(θ)(u−d)+g2cos(θ)sin(θ)(θ̇)2 +g3sin(θ)

g4 +g5cos2(θ)
, (18)

where h1, . . . ,h4 and g1, . . . ,g5 are physical constants, U = [−25 N,25 N] is the set of valid thrust

controls, and D̂(x) is uniformly bounded over the entire state space by [−5 N,5 N].

The task is for the pendulum to swing itself up and stabilize at a fixed point p∗ = 0.25 meters,

while never leaving the track, defined by K = {x :−0.5 m≤ p≤ 0.5 m}. The goal is to track the

reference x∗ =
[

p∗ 0 0 0
]>

, starting at the initial condition x0 =
[
0 0 π 0

]>
.

The feature vector, φ(x), now contains two sets of features. One set of features is made inactive

(set equal to zero) when the pole is above the horizon (π

2 < |θ |), and the other set becomes inactive

when the pendulum is below the horizon. The first set of features includes the error in each state,

as well as the absolute position (five features in total). The second set of features contains the error

in the position and velocity, the absolute position, and two disjoint features for the angle error that

are inactivated depending on whether the sign of the angular velocity is the same as the sign of

the angle error (five features in total). The absolute position acts as a safety feature that moves

the cart away from the ends of the tracks. As for the cost function R = 0,Q1,1 = 1,Q3,3 = 2, and

Q2,2 = Q4,4 = 0. For PGSD with safety γ = 0.002.

PGSD was run with and without the proposed safety metric in equation (15) for 100 seconds.

The result can be seen in Fig. 1. Without the safety metric the controller switches more often, and

it takes a longer time for the task to be completed.

7.2 Quadrotor Flight: Online Model Validation for Safety

We demonstrate the robust safety-preserving performance of our algorithm on the Stanford-

Berkeley Testbed of Autonomous Rotorcraft for Multi-Agent Control (STARMAC), using an As-

cending Technologies Pelican quadrotor (Fig. 2). The vehicle’s altitude was controlled at 30 Hz

based on state feedback from a VICON motion capture system. The code for our algorithm was
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Figure 1: Top: The pendulum learns the swing-up task faster when the safety metric is included

in the learning. Bottom: Incorporating the safety metric reduces the intervention of the safety

controller.

developed in MATLAB and run online using the open-source control software starmac-ros-pkg [4]

within the Robot Operating System (ROS) framework [17].

Rather than focusing on the performance of reinforcement learning within the safety frame-

work, the purpose of the results presented here is to illustrate how our novel algorithm can provide

safety under inexact models of the disturbance while a more accurate representation is learned.

To this end, the vehicle is given a 60 second reference altitude trajectory designed to deliberately

violate the state constraints (defined by the floor and ceiling of the room) as well as other poten-

tially dangerous regions of the state space (e.g. aggressively approaching the floor or the ceiling);

blindly attempting to follow this trajectory, or doing so with a standard reachability-based safety

framework based on an inaccurate dynamic model, can result in loss of safety.

We use a nonlinear dynamic model of quadrotor vertical flight accounting for actuator delay,

with state equations:

ẋ1 = x2

ẋ2 = kT x2
3 +g+d(x)

ẋ3 = kp(u− x3)

(19)



where x1 is the vehicle’s altitude, x2 is its vertical velocity, x3 is the current average angular velocity

of the four rotors and u is the commanded average angular velocity. State x3 tracks control input

u with a time constant 1/kp measured to be 0.15 s. The gravitational acceleration is g = −9.8

m/s2 and d is the disturbance term used to account for unmodeled forces in the system. The state

constraints are K = {x : 0.5 m≤ x1 ≤ 2.8 m}.

In the first experiment, we show the algorithm’s ability to iteratively learn the disturbance

throughout the state space using a GP, while guaranteeing safety even when a given iteration pro-

duces a bad estimate D̂(x), which does not contain d(x), leading to an overoptimistic approxima-

tion of the safe set. For every state x, we define D̂(x) as the µ±2σ interval of the distribution d(x)

predicted by the GP.

The vehicle starts off with an a priori conservative global bound on d(x) and computes an initial

conservative discriminating kernel Ω0 = Disc(K ,D̂) (shown in Fig. 4). It then follows the given

trajectory avoiding the unsafe regions by transitioning to the safe control u∗(x) on ∂Ω0, as shown

in Fig. 3.

The disturbance is measured and monitored online during this test (with model reliability

threshold λL = 0.1) and is found to be consistent with the initial conservative bound. After

this iteration, a GP model is computed. Constructing the state-dependent disturbance bound

D̂(x) = {d ∈ µ(x)± 2σ(x)}, a second discriminating kernel Ω1 is computed as an approxima-

tion of the unknown true safe set.

The results of this new reachability analysis are used for the second run: 5 seconds into the

test, the vehicle measures a disturbance d that approaches the boundary of D̂(x) so that λ (x)< λL,

and immediately reacts by contracting the safe set boundary to the current level set V (x) = VL.

This contraction process takes place several times during the test run, as the vehicle measures

disturbances which are close to becoming inconsistent with the model. Fig. 4 shows the contraction

of Ω1 to the level set Ω̃1 = {x : V (x) ≥ VL}; the algorithm succeeds in keeping the state of the

system inside this controlled invariant set.

After the test is safely completed, a new GP is computed, resulting in an estimated safe set Ω2,

contained between the initial over-conservative discriminating kernel and the intermediate over-



Figure 2: A STARMAC quadrotor during the flight test.

optimistic estimate, as depicted in Fig. 4. This indicates the algorithm’s ability to safely converge

to the true safe set (asymptotically, as sufficient data is collected) without requiring this process

to consist in a monotonic succession of under-approximations (an assumption made by previous

approaches often violated in practice).

To further illustrate the strength of our proposed approach, we consider one additional ex-

periment, in which we compare the behavior of our safety algorithm with that of a standard

reachability-based safety framework with no online validation when presented with an initial

model that fails to account for the true disturbance. For the sake of fairness, we define a tra-

jectory that does not explicitly attempt to drive the system out of the state constraints (which in

this case are re-defined to be K = {x : 0.2 m ≤ x1 ≤ 2.8 m}, 0.2 m corresponding to the actual

position of the body-frame origin when the base of the vehicle comes to physical contact with the

ground). The initial model in this case assumes a prior bound on d(x) which is 10 times smaller

than in the previous experiment. Both algorithms begin with the same initial discriminating kernel

Ω0.

Once the test begins, the standard algorithm breaches the computed safe set on several occa-

sions and violates the constraints incurring two consecutive ground collisions, marked in Fig. 5.

Conversely, the proposed framework immediately detects a persistent unmodeled disturbance (in

this case, λ (x) < 0) and consequently reduces the safe set to the current safety value, immedi-

ately applying the control action u∗: this constitutes the system’s best effort for safety given its

current knowledge of the system, even when the sufficient conditions from Proposition 2 do not

hold (since the model reliability margin λ (x) is already negative to begin with). Since the mea-
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0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

4

 

 
Computed Safe Sets

Position (m)

V
e

lo
c
it
y
 (

m
/s

)

  Initial Safe Set Ω
0

  Learned Safe Set Ω
1

  Contracted Set Ω
~

1

  Learned Safe Set Ω
2

Figure 4: Successive approximations of Disc(K ,D) under different disturbance models; a repre-

sentative 2D section is shown for a fixed value of rotor velocity.



0

0.5

1

1.5

2

2.5

3

A
lt
it
u
d
e
 (

m
)

No Online Validation

 

 

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

A
lt
it
u
d
e
 (

m
)

Online Disturbance Validation

Time (s)

Safety: increased thrust command

Safety: decreased thrust command

Physical Collision

Figure 5: Altitude trajectory of the quadrotor with an incorrect disturbance model. The stan-

dard reachability-based safety algorithm attempts to follow the trajectory, incurring several safety

breaches and two physical collisions. The proposed algorithm rapidly detects the inconsistency

between model and observations and retracts to the region with the highest computed safety value,

until it can recompute a more accurate disturbance model and discriminating kernel.

sured disturbance keeps breaking the model’s assumptions the system keeps contracting its safe

set to higher level curves until it reaches what is, to the best of its knowledge, the safest grid cell

in the state space. It then computes a new disturbance model and the associated discriminating

kernel. The resulting kernel Ω1 is comparable in shape and size to the initial set Ω0 in the pre-

viously discussed experiment, which means that the learning and state exploration can continue

normally—and safely—after this step.6 While the results in Fig. 5 may look quite restrictive, it

should be noted that this is an extreme case where the model of the system is wrong everywhere.

Under these conditions, temporarily restricting the vehicle’s motion is generally preferable to a

crash.
6The results after Ω1 is computed are omitted because they are similar to the previous experiment.



8 Conclusions

We have introduced a general reachability-based safe learning algorithm that leverages GPs to

learn a model of the system disturbances and employs a novel control strategy based on online

model validation, providing stronger safety guarantees than current state-of-the-art reachability-

based frameworks. In addition, our algorithm makes improvements upon these techniques by in-

corporating the safety value function into the performance metric of the learning algorithm, which

reduces the interference of the safe control policy with the learning process.

In the future, we plan to develop an algorithm that can perform real-time updates to the safe

set for every data point, in contrast to our current batch-based approach. In addition, we intend to

look into speeding up GP computation by incorporating sparse GPs.
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