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Abstract

Refinements in Syntactic Parsing

by

David Leo Wright Hall

Doctor of Philosophy in Computer Science

University of California, Berkeley

Dan Klein, Chair

Syntactic parsing is one of the core tasks of natural language processing, with many appli-
cations in downstream NLP tasks, from machine translation and summarization to relation
extraction and coreference resolution. Parsing performance on English texts, particularly
well-edited newswire text, is generally regarded as quite good. However, state-of-the-art
constituency parsers produce incorrect parses for more than half of sentences. Moreover,
parsing performance on other genres or in other languages is still quite hit-or-miss, mostly
miss.

Many approaches have been developed for building constituency parsers over the years, in-
cluding lexicalization (Collins 1997; Charniak 2000), structural annotation (Johnson 1998a;
Klein and Manning 2003), and latent variable annotation (Matsuzaki, Miyao, and Tsujii
2005; Petrov et al. 2006). Each of these kinds of models have different strengths and weak-
nesses.

In this thesis, we develop a model of constituency parsing that attempts to unify these
earlier parsing models. This approach centers around the idea of refinement of a simple
underlying grammar. We show how latent variable modeling, structural annotation, and
lexicalization can all be expressed as grammar refinements.

These kinds of refinements capture different phenomena, but systems have generally
chosen one kind or another. This is because grammars can grow exponentially as additional
refinements are added. We present an approach where multiple refinements coexist, but
in a factored manner that avoids this combinatorial explosion. Our method works with
linguistically-motivated annotations, induced latent structure, lexicalization, or any mix of
the three. By using the approximate inference algorithm expectation propagation (Minka
2001), we are able to use many refinements at the same time, without incurring substantial
overhead in terms of parsing speed. With this system in hand, we examine the extent to
which using many kinds of refinements can improve performance.

From there, we question whether grammar refinements are necessary at all. We present
a parser that largely eschews refinements in favor of simple surface configurations. We show
that it works quite well on ten different languages from several different language families.
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Finally, we show how to take advantage of the refinement structure of latent variable
grammars to double the speed of an already extremely fast parser for graphics processing
units (GPUs). Our resulting GPU parser is around 40 times faster than the original CPU
implementation, parsing over 400 sentences per second on a commodity consumer-grade
GPU.
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A grammarian once embarked in a boat. Turning to the boatman with a self-satisfied
air he asked him:

‘Have you ever studied grammar?’
‘No,’ replied the boatman.
‘Then half your life has gone to waste,’ the grammarian said.

The boatman thereupon felt very depressed, but he answered him nothing for the
moment. Presently the wind tossed the boat into a whirlpool. The boatman shouted to
the grammarian:

‘Do you know how to swim?’
‘No’ the grammarian replied, ‘my well-spoken, handsome fellow’.
‘In that case, grammarian,’ the boatman remarked, ‘the whole of your life has gone

to waste, for the boat is sinking in these whirlpools.’
You may be the greatest scholar in the world in your time, but consider, my friend,

how the world passes away - and time!
– Jalal al-Din Rumi. Tales from Masnavi. Trans. by A.J. Arberry.
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Chapter 1

Introduction

This is a thesis about the syntactic parsing of natural language, which is to say analyzing
the structure of natural language utterances. Syntax is in some real sense the distinguishing
characteristic of human language. Other animals have sounds that they can communicate
with: as I write this, one of my chickens is making her “I laid an egg” song, and, a short
while ago, they made their danger noise when a neighborhood cat got too close. However,
while they have a surprisingly rich vocabulary, chickens, like most animals, do not have a
meaningful syntax for their language. That is, they do not compose small units of meaning
(words, pieces of bird song) into arbitrarily larger units—as best we can tell, anyway. This
is precisely what we do with syntax.

Because syntax is so important to human language, any system that can truly understand
language must incorporate a model of syntax, either explicitly or implicitly. And so, just
as syntax is essential to language, parsing is usually regarded as one of the “core” tasks of
natural language processing. Parsing has many applications in “downstream” NLP tasks,
from machine translation and summarization to relation extraction and coreference resolu-
tion. Parsing performance on English, particularly well-edited newswire text, is generally
regarded as quite good. However, state-of-the-art parsers produce incorrect parses for more
than half of sentences. Moreover, parsing performance on other genres or in other languages
is still quite hit-or-miss, mostly miss.

In this thesis, we develop an approach to constituency parsing that unifies many earlier
parsing models based on refinements of a simple base grammar. We then define a new model
that combines these different approaches in a way that is still computationally feasible.
Further, we analyze the relationships between the different approaches to parsing, showing
to what extent different refinements “stack” with one another when combined into a single
system. Moreover, we present a radically simpler parsing system that achieves near or at
state-of-the-art performance on 10 different languages, with nearly no adaptation. Finally,
we will revisit refinements, this time in the context of making parsers faster. We will present
a new system for parsing using Graphics Processing Units (GPUs) that exploits the structure
imposed by refinements to make parsing faster.
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1.1 Constituency

One of the key concepts in most theories of syntax is the constituent, a group of (consecutive)
words in a sentence that functions as a single cohesive unit. Constituents include most of the
categories one typically associates with grammar: noun phrases that make up the subject and
objects of a sentence, prepositional phrases that modify other constituents, and embedded
clauses that can either modify a constituent or be a complement.

Constituents are at the core of phrase structure grammars (Chomsky 1957), which are
defined by “rules” that combine two or more constituents to form larger constituents. For
example, the noun phrase “the dog with the chickens” is formed from a smaller noun phrase
“the dog” and a modifying prepositional phrase “with the chickens”. The phrase “with the
chickens” can be further broken down into a preposition and its argument noun phrase.
Schematically, this can be represented as a tree structure:

(1) NP

PP

NP

the chickens

IN

with

NP

the dog

Many first cuts at syntax were based on context free grammars, or CFGs, which are
one of the simplest ways for specifying phrase structure grammars. CFGs are composed of
rewrite rules that expand a constituent symbol like “NP” into more constituents, or into
“terminal” words. For example, the tree above would imply that we need a rewrite rule of
the form NP→ NP PP to represent the fact that an NP (like “the dog with the chickens”)
can be formed from combining an NP and a PP.

Consider the following sentence:

(2) The dog is eating the chickens.

A CFG that might produce this sentence is

(3) a. S→ NP VP

b. NP→ DT NN

c. VP→ VB VP

d. VP→ VB NP

e. DT→ the
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f. NN→ dog

g. VB→ is

h. VB→ eating

i. NN→ chickens

This CFG would yield this parse for (2):

(4) S

VP

VP

NP

NN

chickens

DT

the

VB

eating

VB

is

NP

NN

dog

DT

The

1.2 Refinements in Syntax

In practice, context free grammars do not work very well precisely because they lack context.
For instance, consider this slight variation on (2):

(5) ∗The chickens is eating the dog.

The ‘∗’ indicates that this sentence is ungrammatical, while the first sentence is, of course,
fine. However, in our simple grammar, these sentences are essentially identical in terms of
their syntactic structure:



CHAPTER 1. INTRODUCTION 4

(6) ∗ S

VP

VP

NP

NN

dog

DT

the

VB

eating

VB

is

NP

NN

chickens

DT

The

The only difference—syntactically—between the two sentences is that “chickens” is plural
while “dog” is singular. Therefore, we need to encode a notion of plural nouns into our
grammar. The easiest way to do this is to “split” the NP symbol into different kinds, one
for plural nouns and one for singular. That would give us symbols like NP[singular] and
NP[plural]. We use the X[r] notation to denote a refinement of the symbol X. Refinements
provide a simple mechanism for enforcing relationships between the different symbols.

However, just annotating plurality is not enough. For example, we need to ensure that
sentences like the following are also ungrammatical:

(7) ∗The dog eating the chickens.

This sentence does not have a finite verb (e.g. “is”) So we need to augment our grammar
to make the distinction between finite third person singular verbs (e.g. “is”, “eats”), other
finite forms of “to be” (e.g. “are”), and participles (e.g. “eating”):

(8) a. S→ NP[3s] VP[3s]

b. S→ NP[plural] VP[plural]

c. NP[3s]→ DT NN[3s]

d. NP[plural]→ DT NN[plural]

e. VP[3s]→ VB[3s] VP[ing]

f. VP[plural]→ VB[plural] VP[ing]

g. VP[plural]→ VB[ing] VP

h. VP[3s]→ VB[3s] NP

i. VP[plural]→ VB[plural] NP
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j. NP→ NP[3s]

k. NP→ NP[plural]

l. DT→ the

m. NN[3s]→ dog

n. VB[3s]→ are

o. VB[plural]→ are

p. VB[ing]→ eating

q. NN[plural]→ chickens

Historically, most statistical natural language constituency parsers have used refinements
like these as their core representation, though sometimes they do so implicitly. Roughly
speaking, all refinements can—like Gaul—be divided into three parts. Lexicalized parsers
like those of Collins (1997) use a “head word” refinement that chooses a single word from
each phrase. Structural parsers like those of Johnson (1998a) and Klein and Manning (2003)
indirectly encodes information like “NP-modifying PP” versus “VP-modifying PP” by adding
extra context to rules.1 Finally, latent variable parsers like those of Matsuzaki, Miyao, and
Tsujii (2005) and Petrov et al. (2006) use unsupervised learning to automatically allocate
refinements in a way that best fits the data.

In the first part of this thesis, we will present a unified framework for representing these
different kinds of refinements. Within this framework, we will describe three basic models
representing each of these approaches. These models will serve as the basis for the more
sophisticated models we consider later on.

1.3 Factored Refinements

While this refinements-based approach has been successful in past work in parsing, it has
come at a computational cost. Each new refinement we add increases our grammar size mul-
tiplicatively. For example, distinguishing between plural and singular requires duplicating
every noun phrase as well as every verb phrase. Further differentiating between nominative
case pronouns like “I” and “he” versus accusative case “me” and “he” could double the num-
ber of noun phrases again. Languages with more complex morphology might also distinguish
(and enforce agreement) between gender or more complex case relationships. As we consider
more and more different phenomena, the size of our grammar will grow exponentially, which
complicates both parsing and estimating the parameters for the parser.

1Collins (1997)’s parser also includes structural refinement in the form of verb subcategorization.
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This explosion of rules and grammar symbols quickly becomes untenable, and so we will
need another solution, for which we will turn to linguistic theory. Modern theories of syn-
tax like Minimalism (Chomsky 1992) and Head-driven Phrase Structure Grammar(Pollard
and Sag 1994) do not use the unanalyzed, monolithic categories like the ones we have de-
fined so far. Rather they exploit the fact that these categories have a structure: there
is a clear relationship between NP[3sing, +def] and NP[3sing, -def]. They analyze these
categories into their component parts, which they call features. Features are then used
to describe constraints on syntactic structures. For instance, we might have the constraints
like “S→ NP[+def] VP” and “S→ NP[+3sing] VP[+present,+3sing]”. The former requires
that the subject of a sentence be definite, and the latter requires that the subject and verb
agree if the verb is present tense and third person singular. Note that these are not discrete
rules. Rather, they are constraints on any particular derivation, and they are applied in
a factored way. (Minimalism calls this concept “checking;” HPSG uses a unification algo-
rithm.)

Note that “feature” is a term of art in natural language processing and machine learning
more broadly, where it refers to an individual predictor of the label of some datum. Thus,
after this section we will refer to linguistic features as refinements, and we will use factored
refinements when necessary to distinguish them from the monolithic categories.

In Chapter 5, we will spend some time discussing how linguistic theories use factored
refinements. Then we will describe an approach to parsing that uses factored refinements in
a way that is not dissimilar to the features used in linguistic theories. Moreover, we will show
how to exploit the factored structure of these grammars to speed up parsing by introducing
a parsing algorithm that is an instance of the approximate inference method expectation
propagation (Minka 2001).

1.4 Parsing without Refinements

Refinements are a critical approach to most formal theories of syntax, and we have outlined
some of the reasons why: distinguishing singular noun phrases from plural noun phrases
is useful for telling ungrammatical sentences from grammatical ones, as is modeling the
subcategorization frames of verbs.

On the other hand, from a practical perspective a parser does not need to distinguish
between good sentences and bad sentences: we are given natural language text that is
presumed to be good, and we need to recover the correct structure for it. Thus, a priori
there is no reason that a parsing system should care about, for example, distinguishing
singular from plural noun phrases.

Indeed, one could say this is the difference between natural language processing and
computational linguistics (or perhaps merely discriminative versus generative modeling). In
the former, we care more about getting the right answer than we do about getting the right
answer for the right reason. In this thesis, we are engaged in the former, using the latter
only as we find it useful. That is not to say that refinements are not useful—in fact, we will



CHAPTER 1. INTRODUCTION 7

	  	  	  A	  recent	  survey	  of	  …	  

NP	  

Figure 1.1: A simple noun phrase. Several context clues tell us the highlighted span “A recent
survey” is a noun phrase, independent of our grammatical representation or formalism.

see that they are—but that we should carefully evaluate concepts from formal syntax for
their impact on performance before including them in a practical system.

In the second part of the thesis, we will present a parser that largely eschews refinements
in favor of simple surface configurations. Consider the example in Figure 1.1. How do we
know that “A recent survey” is an NP?2 For one, it begins with the word “A,” which is
usually a determiner, especially at the start of a sentence. The phrase also ends with a word
that is quite likely to be a noun (though it could be a verb). It is also a relatively short
phrase, which means it’s probably not a full sentence. Finally, the word after the phrase is
“of” which is a word that usually follows noun phrases. Taken together, the weight of these
different features (in the machine learning sense) indicate that this span is probably a noun
phrase. In Chapter 6, we will build a parser that exploits exactly this intuition with a very
simple set of features, and we will show that it works quite well on nearly a dozen different
languages, even languages that are known to have relatively free word order, like Hungarian.

The idea of using surface features itself is not novel. This approach is actually the pre-
dominant one in the dependency parsing literature (McDonald, Crammer, and Pereira 2005;
McDonald and Nivre 2007; Koo, Carreras, and Collins 2008), and has seen some investigation
within the constituency parsing literature. However, previous work in constituency parsing
has also used surface features in their systems, but the focus has been on machine learning
methods (Taskar et al. 2004), latent refinements (Petrov and Klein 2008a; Petrov and Klein
2008b), or implementation (Finkel, Kleeman, and Manning 2008). The contribution in this
dissertation is our focus on a minimal grammar that uses no refinements, and the very simple
set of features that we use.

In Section 6.5, we will consider combining refinements with surface configuration, showing
experimentally which refinements “stack” with surface configurations.

2Linguists may be puzzled by my calling “A recent survey” a full NP, since there is a complementary PP
that follows it. In the grammar of the Penn Treebank used, base constituents like this are treated as NPs.
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1.5 Using Refinements for Parsing on GPUs

In the final chapter, we will shift our focus to a somewhat different topic: how can we make a
really, really fast parser? We will describe a system for parsing using a Graphics Processing
Unit, or GPU. GPUs are a substantially different architecture than modern CPUs: GPUs
excel at performing the same operation in many places and accessing memory in a regular,
structured way. Our refinement-free approach described in the previous section requires
random accesses to memory, making it not a good candidate for GPUs.

Thus, the parser we will describe uses a grammar based on latent refinements (namely,
the grammars from the Berkeley Parser (Petrov and Klein 2007)), and we will exploit this
refinement structure to accelerate parsing performance by a factor of two relative to with a
GPU approach that does not exploit that structure.

The end result is a parser can parse all of English Wikipedia (at time of writing) in just
a few days on a single medium-end GPU, compared to the many CPU-months that a typical
CPU implementation would take.

1.6 Contributions of This Dissertation

Our contributions are as follows. First, we build three models to serve as exemplars for the
different kinds of refinements past authors have employed. Then, we introduce a new model
for parsing with factored refinements, and an efficient approximate inference method for
them using Expectation propagation. This model will allow us to build parsers with many
different kinds of refinements simultaneously without creating an intractably large grammar.
Next, we will examine the question of whether we need additional grammar refinements at
all by building a very simple parser that uses only surface features and a basic grammar to
achieve performance that is competitive with parsers that do rely on these carefully crafted
refinements. We will then examine which refinements stack with this model. Finally, we
will go back to refinements, showing how we can exploit the subcategorization structure to
accelerate parsing on GPUs.
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Chapter 2

Experimental Setup

The experiments in this thesis are mainly about parsing performance, either from an accuracy
point of view (i.e. measuring the F1 score of a system’s output on a particular corpus), or
from a runtime point of view (measuring how long it takes to parse a corpus). In this chapter,
we describe the experimental setup that we use for most of the experiments in this thesis.

In order to build (supervised) statistical models, we need a source of labeled data. In
parsing, this comes in the form of a treebank, which is a corpus of sentences that have been
annotated with syntactic parses.

2.1 English Language Experiments

For better or for worse, most NLP research is conducted on the English language, and much
of this thesis will be no different; the majority of experiments we conduct will be on the
English language.

The Wall Street Journal portion of the English Penn Treebank (Marcus, Santorini, and
Marcinkiewicz 1993) has been the standard benchmark dataset for parsing for around twenty
years, a testament to the size of its undertaking. It consists of about one million words of
text from the Wall Street Journal annotated with constituency and part of speech tags. As
it is the standard, we will use it as our main benchmark as we develop our models.

Unless otherwise noted, all experiments in this thesis will be conducted on the English
Penn Treebank. We use sections 02-21 for training, 22 for the development set, and 23 for
the test set. We report accuracies using EVALB (Sekine and Collins 1997) using a slight
variation of the Collins parameter file, as is standard.

2.2 Multilingual Experiments

While most of our experiments will be on English language treebanks, it is also important to
see how performance transfers to other languages. We will evaluate the performance of some
of our systems on a collection of treebanks from 9 other languages: Arabic, Basque, French,
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German, Hebrew, Hungarian, Korean, Polish and Swedish. These treebanks were used in the
2013 Syntactic Parsing of Morphologically Rich Languages (SMPRL) shared task. (Seddah
et al. 2013) Many (though not all) of these languages do in fact have rich morphologies.
Some even have relatively free word order.

The data is derived from the following treebanks:

• Arabic: The Penn Arabic Treebank (Maamouri et al. 2003) and the Columbia Arabic
Treebank (Habash and Roth 2009)

• Basque: The Basque Constituency Treebank (Aldezabal et al. 2008)

• French: The French Treebank (Abeillé, Clément, and Toussenel 2003)

• German: TiGer Treebank release 2.2 (Brants et al. 2002)

• Hebrew: The Modern Hebrew Treebank V2 (Sima’an et al. 2001)

• Hungarian: The Szeged Treebank (Csendes et al. 2005)

• Korean: The KAIST Treebank (Choi et al. 1994)

• Polish: The Sk ladnica Treebank (Woliński, G lowińska, and Marek 2011)

• Swedish: The Talbanken section of the Swedish Treebank (Nivre, Nilsson, and Hall
2006)

The SPMRL treebanks come with automatically induced POS tags and morphological
analyses. Preliminary experiments indicated that these were not useful for our system, and
so we do not use them. They also provided a small training set condition, in which parsers
are only given 5000 sentences of training data. We did not experiment with this condition.
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Chapter 3

Parsing with Refinements

Many high-performance probabilistic constituency parsers take an initially simple base gram-
mar over treebank labels like NP and enrich it with more complex syntactic features to
improve accuracy. This broad characterization includes lexicalized parsers (Collins 1997),
unlexicalized parsers (Klein and Manning 2003), and latent variable parsers (Matsuzaki,
Miyao, and Tsujii 2005). Figures 3.1(a), 3.1(b), and 3.1(c) show small examples of context-
free trees that have been annotated in these ways.

In this chapter, we will present a single canonical representation of constituency parsing
that covers the grammars used by nearly all standard chart-based parsers—that is, leaving
aside neural network parsers like Henderson (2003). In particular, we will frame these parsers
as having refinements at their core. This abstraction will allow us to reason about the
different ways these parsers work and to combine and manipulate those models to see how
they interact.

3.1 Maximum Likelihood PCFGs

Before we think about building refined grammar, let us be more specific about exactly which
grammar we are refining. The most obvious grammar one could build from a treebank is the
maximum likelihood estimate (MLE) like that used in Johnson (1998b). In this grammar,
we read off exactly the symbols used in the treebank, estimating the probability of each rule
as proportional to the number of times we have seen it.

As an example, if we saw a configuration like the following, we would create a rule
NP→ DT NNP CD NN:
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(a) NP[agenda]

NN[agenda]

agenda

NP[’s]

The president’s

(b) NP[ˆS]

NN[ˆNP]

agenda

NP[ˆNP-Poss-Det]

The president’s

(c) NP[1]

NN[0]

agenda

NP[1]

The president’s

Figure 3.1: Parse trees using three different refinement schemes: (a) Lexicalized refinement
like that in Collins (1997); (b) Structural refinement like that in Klein and Manning (2003);
and (c) Latent refinement like that in Matsuzaki, Miyao, and Tsujii (2005).

(9)
NP

NN

review

CD

19

NNP

Oct

DT

an

Because we have to use a grammar in Chomsky Normal Form, we binarize the rules with
more than two children by introducing synthetic symbols.1 Our rule from above becomes

1There are many ways to binarize a rule. One could start by peeling off from the left hand side, or from
the right hand side. We use “head outward binarization,” where we pick a head symbol from among the
children, and then add all symbols to its left, then to its right. For English, we use Collins (1997)’s head
rules. See Section 3.5.
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several:2

(10) a. NP→ DT NP[\DT]

b. NP[\DT]→ NNP NP[\NNP\DT]

c. NP[\NNP\DT]→ CD NN

All in all, reading a grammar from the Penn Treebank training set produces a grammar
with 38340 rules and 11681 symbols.3

Unfortunately, this grammar does not perform very well in practice, getting just 71.41
F1 on the development set of the Penn Treebank. The main reason this grammar does not
work well is that the raw treebank symbols like NP do not encode enough information. For
example, the maximum likelihood estimate grammar has no mechanism to differentiate the
different rewrite statistics of subject NPs and object NPs (subject NPs are more likely to
be pronomimal than object NPs), nor can it differentiate between PPs that attach to VPs
(e.g. those headed by “to”) and PPs that attach to NPs (e.g. those headed by “of”). These
kinds of attachment problems are critical to parsing performance; having a grammar that
can distinguish these “different kinds” of NPs and PPs is perhaps the most obvious way to
deal with the problem.

However, the grammar actually encodes too much context in other ways. In particular,
by using only configurations that have actually occurred in the treebank, the grammar
cannot represent certain novel configurations. For example, no NP in the training set of the
Penn Treebank has the rewrite “JJ NN VBG NNS,” (e.g. “domestic printer manufacturing
operations”) but that configuration does occur in the development set.

One way to correct for this shortcoming is to remove even more information from the
grammar in a process called “horizontal Markovization.” Here, we shorten histories in the
synthetic binarized symbols, removing a lot of the context that was encoded. For exam-
ple, we might collapse the symbols NP[\NNP\DT] and NP[\NNP\JJ] into a single symbol
NP[\NNP . . . ], where the . . . mean that the symbol may have some number of predecessors,
but the number and identity of those symbols are discarded. This has the effect of reducing
the size of the grammar considerably, as well as allowing the grammar to produce more tree
structures than it could before.4 Removing all but 2 sibling gives a much smaller grammar
with 3011 symbols and 16657 rules, scoring a slightly better 71.78 F1.

2The notation we use here is deliberately patterned on Categorial Grammar (Bar-Hillel 1953), where the
categories of many words are functions that combine with other categories to form constituents. We use it
merely to describe which neighbors a constituent has, but the binary rules produced by this process describe
the order in which constituents combine, giving a similar interpretation, roughly speaking.

3Minor implementation differences will produce grammars with different numbers of rules.
4For the pedants: yes, the PCFG could already generate infinitely many trees. You know what I mean.
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3.2 X-bar Grammars

But we can be more radical: we can strip the entire sibling histories from the binarized gram-
mar collapsing all of the complex intermediate symbols like NP[\NNP\DT] into a symbol
like “NP-bar.” The resulting grammar would then have rules like NP→ DT NP-bar. We
call this grammar an “X-bar” grammar, because of its resemblance to the grammars from
X-bar theory (Chomsky 1970; Jackendoff 1977) in linguistics.

This X-bar grammar is a much smaller grammar, with only 97 symbols (including syn-
thetic symbols) and 4258 rules when extracted from the Penn Treebank. In a very real
sense, this is the simplest grammar that makes any sense in the treebank: we include only
those symbols that are in the unbinarized grammar, as well as the synthetic symbols (like
“NP-bar”) needed to reconstruct unbinarized trees from binarized trees.5

As one might imagine, this parser performs worse than the MLE grammar, scoring only
64.76 F1. Nevertheless, its simplicity makes it an excellent starting point for seeing how
different kinds of refinements work; we will use it as the basis for all of our models.

3.3 Refinements

Equipped with our X-bar grammar, we can now proceed to describe refinements. Suppose we
have a raw (binarized) X-bar grammar, with rules of the form A→ B C. We will work with
refinements of these rules, which are built from refined symbols that have been annotated
with extra information, giving rules of the form A[x]→ B[y] C[z]. An x might include
information about the parent category, or a head word, or a combination of things. In the
case of latent refinements, x will be an integer that may or may not correspond to some
linguistic notion.

Take the process of horizontal Markovization. For the reasons we described before,
horizontal Markovization has become a critical piece of nearly every parser. Typically,
Markovization is described as a process of forgetting: we remove a certain amount (or all)
of the history encoded in the binarized treebank symbols. However, if we start from an
X-bar grammar, then horizontal Markovization of some of the past siblings can instead be
interpreted as a addition to, or refinement of, the grammar, rather than as a subtraction.
This is the framing we will follow in this thesis.

3.4 Basic Model

Now that we have a grammar, we need to specify a mathematical model. We employ a
general exponential family representation of our grammar. This representation is fairly
general, and—in its generic form—by no means new, save for the focus on refinements.

5One could imagine merging all synthetic symbols into a single “X-bar” category, or having the identity
of the parent be independent of the identity of the children, or something else. We don’t pursue that here.
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Formally, we begin with a parse tree T over base symbols for some sentence w, and we
decorate the tree with refinements X, giving a parse tree T [X]. The conditional probability
P(T [X]|w, θ) of an annotated tree given words is:

P(T [X]|w, θ)

=
f(T [X]; w, θ)∑

T ′,X′ f(T ′[X ′]; w, θ)

=
1

Z(w, θ)
f(T [X]; w, θ)

(3.1)

where the factor f takes the form:

f(T [X]; w, θ) = exp
(
θTϕ(T,X,w)

)
Here, ϕ is a feature function that projects the raw tree, refinements, and words into a feature
vector. This model is thus a tree-valued conditional random field (Lafferty, McCallum, and
Pereira 2001).

We further add a pruning filter that assigns zero weight to any tree with a constituent
that a baseline unannotated X-bar grammar finds sufficiently unlikely, and a weight of one
to any other tree. This filter is similar to that used in Petrov and Klein (2008a) and allows
for much more efficient training and inference. Formally, it can be incorporated into the
base measure of the distribution. We describe the pruning process we use in more detail in
Section 3.5.

Because our model is discriminative, training takes the form of maximizing the probability
of the training trees given the words. This objective is convex for deterministic refinements,
but non-convex for latent refinements. We (locally) optimize the (non-convex) log conditional
likelihood of the observed training data (T (d),w(d)):

`(θ) =
∑
d

log P(T (d)|w(d), θ)

=
∑
d

log
∑
X

P(T (d)[X]|w(d), θ)
(3.2)

Using standard results, the derivative takes the form:

∇`(θ) =
∑
d

E[ϕ(T,X,w)|T (d),w(d)]

−
∑
d

E[ϕ(T,X,w)|w(d)]
(3.3)

The first half of this derivative can be obtained by the forward/backward-like computa-
tion defined by Matsuzaki, Miyao, and Tsujii (2005), while the second half requires an
inside/outside computation (Petrov and Klein 2008a). The partition function Z(w, θ) is
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computed as a byproduct of the latter computation. Finally, we will regularize the objec-
tive.

For now, we note that we omit from our parser one major feature class found in other
discriminative parsers, namely those that use features over the words in the span (Taskar
et al. 2004; Finkel, Kleeman, and Manning 2008; Petrov and Klein 2008b). These features
might condition on words on either side of the split point of a binary rule or take into account
the length of the span. We will return to the question of features in Chapter 6.

3.5 Common Pre- and Post- processing

This section is full of details that are only interesting if you’re trying to build your own
parser.

We use a single preprocessing pipeline for all of our models and treebanks, with the ex-
ception that we convert the Arabic treebank—which is in the normalized form introduced by
Buckwalter (2002)–into Unicode Arabic characters. We delete all traces and empty elements.
In the Penn Treebank, there is one instance of the tag “PRT|ADVP,” where evidently the
annotators were not sure which one it was. We turn it into “PRT.”

In the newer non-English Treebanks, it has become standard to annotate most punctu-
ation as a single tag (e.g. “PU”) rather than as the punctuation mark itself. We explicitly
annotate tags over punctuation that do not match the punctuation with the punctuation
itself.

Binarization

We use a variant of the standard CKY algorithm as our core dynamic program. One conse-
quence of this choice is that we need to convert trees into Chomsky normal form (CNF), where
each node in a tree has at most two children. We use a version Collins’ head rules (Collins
1997) for our English language binarization.

For the foreign language experiments, we exploit the fact that all of the SPMRL treebanks
have gold-standard dependency parses. Dependencies by their very nature describe head-
dependent relationships, and so it is straightforward to convert a constituency tree and
a corresponding (projective) dependency tree into a head-binarized constituency tree by
identifying the head for each span as the word whose parent is outside of the span.6

Unary Rules

So far we have only discussed how we handle binary rules. However, treebanks typically
have a number of unary productions, especially after traces and empty elements are stripped

6The SPMRL data we considered had no non-projective trees, but in that case, where there might be two
or more words with parents outside of the span, we would arbitrarily choose one. Our algorithm currently
chooses the one closest to the end of the constituent.
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(as is customarily done). The correct handling of unary rules is a frequent challenge in the
design of a parser. In principle, a derivation of a tree could use infinitely many unary rules,
hopping from one constituent type to another.

One way to handle these infinite chains is to take the transitive closure of the graph
induced by the unary rules. This operation computes the sum (or maximum) of the scores
of all paths between all symbols using a version of the Floyd-Warshall algorithm (Roy 1959;
Floyd 1962; Warshall 1962).

In practice, however, one does not see novel unary chains with much frequency (just two
novel chains on the development set, out of more than 7500 unaries). If a particular path is
never seen in the training data, it is unlikely to appear in the test data. Thus, allowing all
possible transitions between any two constituents can only hurt performance.

We take a simple approach that captures this intuition. We only allow those paths in the
unary graph that are actually seen in the training data. Rather than having unary rules for
each link in a unary chain, we explicitly make each unique path its own unary rule. So, if we
see the chain S → VP→ VB, then we encode a single rule. But, if we have seen the unary
rules S→ VP and VP→ NP but have never seen the chain S→ VP→ NP, we do not allow
that as an output chain. As a consequence, every constituent in a tree has a “top” symbol
and a “bottom” symbol representing the beginning and end of each unary chain. Because
unary productions are not nearly as common as binary productions, most of the paths will
be the length-0 path that represents an “identity” unary chain, and so these two symbols
are usually identical. However, in the presence of a unary rule, these symbols are different,
like S → VP. During parsing, the standard CKY parse chart is replaced with a two layer
chart, one for the “bottom” symbol of a span, and another for the “top”.

Decoding

Our model scores refined trees T [X], while we are evaluated on unrefined trees. We could
use the Viterbi one-best refined tree and simply drop the annotations. However, we can do
better. Instead, we can pick a minimum Bayes’ risk tree that maximizes some expected score
of “goodness,” marginalizing out over all possible refinements X for all possible trees.

There are several possible choices of MBR algorithms, each of which optimizes for a
different criterion.7 We use a fairly simple one: the Max-Recall algorithm of Goodman
(1996). This algorithm maximizes the expected number of correct coarse symbols (A, i, j)
with respect to the posterior distribution over parses for a sentence.

This particular MBR algorithm has the advantage that it is relatively straightforward
to implement. In essence, we must compute the marginal probability of each refined sym-
bol at each span µ(A[X], i, j), and then marginalize to obtain µ(A, i, j). Then, for each
span (i, j), we find the best possible split point k that maximizes C(i, j) = µ(A, i, j) +
maxk (C(i, k) + C(k, j)). Parse extraction is then just a matter of following back pointers
from the root, as in the Viterbi algorithm.

7Many choices were explored in Petrov and Klein (2007).
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Ordinarily, the Max Recall algorithm needs to be carefully tweaked to handle unaries;
because it attempts to maximize the expected number of correct symbols (i.e. it does
not penalize expected incorrect symbols), the algorithm should place every symbol in the
grammar with non-zero marginal probability at every node in a long unary chain. In our
model, there is exactly one unary rule at each cell, and so we avoid this problem.

We do, however, have to pick the best unary chain at each cell. Because unary chains
are not explicitly represented in the parse chart, we have to infer them from the two end
points (the “top” symbol A and “bottom” symbol B). To do so, we choose the chain the
maximizes OT (A, i, j)f(A→ Bchain, i, j)I(B, i, j), where OT and IB are the outside top and
inside bottom probabilities, respectively. Finally, when converting the tree into standardized
form for output, we remove all identity unary chains.

Pruning

To make both training and parsing efficient, we use a simple coarse pruning approach in
all of our experiments. We first construct a simple but inaccurate “coarse” grammar that
can be parsed with quickly, and then we use it to filter out candidate constituents that
have sufficiently low probability. Then, we use one of our more sophisticated “fine” models,
skipping all candidate constituents (A, i, j) whose posterior probability under the simple
grammar is less than e−7. Coarse-to-fine approaches to parsing were pioneered by Charniak
et al. (2006a) and thoroughly explored in the work of Petrov and Klein (2007). Our approach
is similar to the latter’s, but we use one only one coarse pass instead of several. (Using several
would not make much sense for many of our models.)

Unless otherwise noted, we extract a simple generative X-bar grammar as our coarse
grammar. This grammar is very weak—its error rate is around four times that of our best
parsers—but nevertheless it can be used to filter out candidate constituents that are almost
certainly not the correct answer.

Evaluation

In general, we use EVALB (Sekine and Collins 1997) to compute all parse evaluation metrics.
When evaluating on the classical Penn Treebank, we follow standard practice and exclude
punctuation from the evaluation. For all other datasets, we include punctuation, as is
standard on those benchmarks.



19

Chapter 4

Three Parsing Models

In this chapter, we present three different kinds of parsing models that use different kinds
of refinements. We first present a lexicalized model which annotates every constituent with
a headword, a structural model that annotates constituents with its surrounding syntactic
context, and a latent variable model that annotates each constituent with a latent cluster
identifier. As we have said, there are alternative ways of building constituency parsers,
for example, by either using surface features ((Taskar et al. 2004; Finkel, Kleeman, and
Manning 2008; Petrov and Klein 2008b), or see Chapter 6), or neural networks (Henderson
2003; Socher et al. 2013a). Nevertheless, many of the most successful parsers use one of these
models at their core.

As with most parsers or other complex natural language processing systems, the over-
all system is hard to completely describe in text, and so we are releasing our parser at
https://www.github.com/dlwh/epic.

4.1 Structural Refinement

We have said that one of the reasons that raw X-bar grammar performs so badly is that it
does not encode enough information to make correct decisions when parsing. For instance,
the symbol PP for a prepositional phrases is used for both for those prepositional phrases
that usually attach to noun phrases—such as those beginning with “of”—and for those that
usually attach to verb phrases—such as those beginning with “to” or “by”. This lack of
modeling capacity is a direct consequence of the context-free grammar formalism: because
decisions are local, a simple grammar cannot harness this critical contextual information.

One way to correct for this is to forcibly inject context into the grammar. That is, one
could augment the raw symbols like PP with extra information about its environment: which
constituents are above it in the tree, or to its left or right. For instance, we might annotate
every PP with its parent constituent, so that now there are distinct symbols for prepositional
phrases that have an NP parent (“PP[ˆNP]”) and those that have a VP parent (“PP[ˆVP]”).

This is the intuition exploited by parsers like the Johnson (1998b) and the Klein and
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Manning (2003) parser. In their models, constituents are endowed with extra information
describing their tree context, including parent information. Our structural parser is approx-
imately a discriminative version of the generative model of Klein and Manning (2003).

This parser starts from a grammar with labels annotated with sibling, parent, and grand-
parent information, and then adds specific refinements, such as whether an NP is possessive
or whether a symbol rewrites as a unary. More specifically, we use the following additional
refinements:

1. SplitAux: Splits auxiliary verbs from other verbs. Specifically, inflections of “to be”
are annotated with AuxBe, and all inflections of “to have” are annotated with AuxHave.

2. SplitVP: Infinitival VPs are split from finite verb phrases.

3. SplitIN: The preposition tag IN is split based on whether or not its grandparent is a
noun phrase (NP), quantifier phrase (QP), embedded small clause (SBAR), or other
embedded clause.

4. SplitPossNP: Possessive NPs are distinguished from non-possessives.

5. MarkBaseNP: Base NPs—those without phrasal modifiers or complements—are split
from non-base NPs.

6. MarkRightRecNP: Marks NPs that are right-recursive: NPs whose right-most child
is an NP.

7. MarkNonIdentityUnaries: Marks the parent of a unary rule if the parent and the
child are not the same.

8. MarkUnaryDTRB: Marks determiners and adverbs that are the only word of a
phrase.

9. DominatesV: Marks phrases that have some preterminal part of speech tag that is a
verb.

Finally, like Klein and Manning (2003), we keep the temporal functional tag marker “TMP”
that is used in the original Penn treebank to mark temporal noun phrases. All in all, this
produces a grammar with 24024 symbols and 95667 rules. We experimented with slightly
different refinements and adding more featurization, but this seemed to work about as well
as the other slight variants we tried.

So far we have described the grammar for the structural model. We also have to describe
what features we use. We use indicator features on the fully annotated rule, the rule with
only parent and sibling refinement, the X-bar rule, and then features that conjoin the X-bar
rule with the presence of each individual refinement (beside parent and sibling refinement)
for each of the parent, left, and right children.
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4.2 Latent Refinement

While structural refinement can be reasonably effective, many refinements require a lot of
language-specific engineering. For instance, the SplitIN and SplitAux refinements are
highly English-specific, requiring detailed knowledge of the kinds of constructions that occur
in English. Moreover, even with language-specific knowledge, it is hard to know which
refinements are likely to be important for good parsing performance.

An alternative to structural refinement that avoids these drawbacks is to use latent
variables, wherein we ask a machine learning algorithm to divide constituents with the same
symbol into clusters in a way that fits the data best. For instance, the algorithm might
decide that NP-3 is for NPs that are modified by PPs, while NP-0 is for base NPs, and
NP-1 is for NPs that usually do not take PPs (like pronouns). This approach was pioneered
by Matsuzaki, Miyao, and Tsujii (2005), and significantly improved upon by Petrov et al.
(2006).

Our latent variable model is essentially the same as the discriminative model of Petrov
and Klein (2008a). We allocate some number of latent clusters to all constituents. Typically,
in our model, we assign the same number of clusters to all constituents, with the exception
that we assign only one cluster to symbols that the state-splitting Berkeley Parser (Petrov
et al. 2006; Petrov and Klein 2007) assigns one cluster to when trained on the English Penn
Treebank.1 Those states are:2

• #

• $

• ”

• ,

• -LRB-

• -RRB-

• @CONJP

• @INTJ

• @LST

• @RRC

• @SBARQ

• @WHADJP

• @WHADVP

• @WHNP

• @X

• CONJP

• EX

• FRAG

• FW

• INTJ

• LS

• LST

• NAC

• PRT

• RBS

• ROOT

• RP

• RRC

• SBARQ

• SINV

• SYM

• TO

• UCP

• UH

• WDT

• WHADJP

• WHADVP

• WHPP

• WP

• WP$

• WRB

• X

Unlike the relatively complicated featurization of the structural model, we use only in-
dicators on the fully annotated rule in our latent variable model. We found this to be more
effective than including features on the unrefined X-bar rule as well.

1Of course, this is one particular execution of the Berkeley Parser, which has a randomized component.
We used the publicly available grammar.

2Refer to the Penn Treebank II Standards Bies et al. (1995) for an explanation of these symbols. Currently
they are summarized at http://web.mit.edu/6.863/www/PennTreebankTags.html. The “@” symbol de-
notes intermediate symbols produced by binarization, which we have called “-bar” previously.
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4.3 Lexicalized Refinement

Recall that we said that we needed refinements to be able to distinguish between PPs that
usually attach to noun phrases (like those that start with “of”) and those that usually attach
to verb phrases (like those that start with “to”). In the structural model, we captured that
intuition by modeling tree context: we tell the grammar that PPs have different rewrite
distributions depending on what their parent is. In the latent variable model, we asked the
learning algorithm to learn which distinctions are most important.

In a lexicalized model, we instead model these attachment preferences directly using head
words. A head word is the word that governs the syntactic behavior of a constituent. In a
prepositional phrase, that word is the preposition. So, we can say there is a “PP[of]” and a
“PP[to].” Because we are explicitly augmenting the grammar state with head words, many
of the phenomena we would like to capture fall out directly. Lexicalized models were one of
the earliest approaches to constituency parsing, and one of the most effective (Collins 1997;
Charniak and Johnson 2005a).

As with our other models, our lexicalized model is a discriminative conditional random
field parser. We are not aware of a prior discriminative lexicalized constituency parser,
and it is quite different from generative models like Collins (1997). It is more similar to
dependency parsers like McDonald, Crammer, and Pereira (2005); McDonald and Nivre
(2007); Koo, Carreras, and Collins (2008). Broadly, our model considers features over a
binary rule annotated with head words: A[h]→ B[h] C[d] and A[h]→ B[d] C[h]. We use the
following features:

1. I[A→ B C]

2. I[A→ B C,HEAD = lfsuf(wh)]

3. I[A→ B C,DEP = lfsuf(wd)]

4. I[A→ B C,HEAD = lfsuf(wh),DEP = lfsuf(wd)]

5. I[DIST=binDistance(h, d), ∗]

6. I[A→ B C,HEAD-1 = lfsuf(wh−1)]

7. I[A→ B C,HEAD+1 = lfsuf(wh+1)]

8. I[A→ B C,DEP-1 = lfsuf(wd−1)]

9. I[A→ B C,DEP+1 = lfsuf(wd+1)]

where tag maps each words to its most common tag, and lfsuf is the longest suffix of a word
that occurs at least 100 times in the treebank. binDistance is a function that bins words
into one of eight bins, based on their surface distance. The ∗ is meant to mean that we use
all the previous features with their distance-augmented variants.
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Model F1
Latent, 2 states 81.7
Latent, 4 states 83.2

Structural Model 86.3
Lexicalized 87.3

Table 4.1: Baseline results for the three models. Experiments performed on the Penn Tree-
bank development set (section 22). See Chapter 2 for a more detailed description of experi-
mental parameters.

This is not quite a complete description of our features, as these templates would produce
quite a large number of features. Instead, we produce these features only for configurations
that actually occur in the treebank. For other “bad” features, we randomly hash their
respective features to a number of buckets. We found that using a number of buckets equal
to the number of good features worked well. (See Section 6.4 for a more detailed analysis.)

4.4 Experiments

We evaluated these baseline models on the development section of the Penn Treebank. We
use Adaptive Gradient Descent (Duchi, Hazan, and Singer 2010) with L2 regularization for
optimization, using a batch size of 512. We ran all experiments for 1000 gradient steps,
which is about 10 passes through the Treebank. Performance usually leveled off after 3-4
passes; latent variables took longer.

Our strongest model is our lexicalized model, consistent with the usual results for English.
Our structural model ties the generative model of Klein and Manning (2003) that it is based
on. With two states (or one bit of annotation), our latent variable model gets 81.7 F1, edging
out the comparable parser of Petrov and Klein (2008a). On the other hand, our parser gets
83.2 with four states (two bits), short of the performance of prior work.
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Chapter 5

Factored Refinements

A preliminary version of this chapter appeared as Hall and Klein (2012).

In the previous chapter, we defined three different parsing models that used different
kinds of refinements. While none of these models are quite state of the art for English, each
of them performed reasonably well, with some models outperforming than others. In this
chapter, we will present a model for working with all of these refinements at the same time
in a way that is effective and computationally efficient.

Typically, parsers have focused on using one kind of refinement or another. Klein and
Manning (2003) used only structural refinements, while Petrov et al. (2006) used only latent
variables. As notable exceptions, the lexicalized model of Collins (1997) also included a fairly
elaborate model of verb subcategorization, a form of structural refinement that is closely
related to lexical refinement, while Charniak (2000) uses sibling, parent, and grandparent
annotation in addition to lexicalization.

In general, when multi-part refinements are used in the same grammar, systems like
that of Collins (1997) have generally multiplied these refinements together, in the sense that
an NP that was definite, possessive, and VP-dominated would have a single unstructured
PCFG symbol that encoded all three facts, like NP[ˆVP,+def,+POS]. In addition, modulo
backoff or smoothing, that unstructured symbol would often have rewrite parameters entirely
distinct from, say, the indefinite but otherwise similar variant of the symbol (Klein and
Manning 2003). Therefore, when designing a grammar, one would have to carefully weigh
new contextual refinements. Should a definiteness refinement be included, doubling the
number of NPs in the grammar and perhaps overly fragmenting statistics? Or should it be
excluded, thereby losing important distinctions? Klein and Manning (2003) discuss exactly
such trade-offs and omit refinements that were helpful on their own because they were not
worth the combinatorial or statistical cost when combined with other refinements.

Moreover, there has been to our knowledge no attempt to employ both latent and non-
latent refinements at the same time. There is good reason for this: lexicalized or highly
refined grammars like those of Collins (1997) or Klein and Manning (2003) have a very large
number of states and an even larger number of rules. Further refining these rules with latent
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NP[agenda,ˆS,1]

NN[agenda,ˆNP,0]

agenda

NP[’s,ˆNP-Poss-Det,1]

The president’s

Figure 5.1: Parse trees using factored, mixed refinements. Compare with the examples of
single kinds of refinements in Figure 3.1.

states would produce an infeasibly large grammar. Nevertheless, it is a shame to sacrifice
expert refinement on the altar of unsupervised feature learning. Thus, it makes sense to
combine these refinement methods in a way that does not lead to an explosion of the state
space or a fragmentation of statistics.

In this chapter, we examine grammars with factored refinements, that is, grammars with
refinements that have structured component parts that are partially decoupled. Our refined
grammars can include both latent and explicit refinements, as illustrated in Figure 5.1,
and we demonstrate that these factored grammars outperform parsers with unstructured
refinements.

After discussing the factored representation, we describe a method for parsing with fac-
tored refinements, using an approximate inference technique called expectation propaga-
tion (Minka 2001). Our algorithm has runtime linear in the number of refinement factors in
the grammar, improving on the näıve algorithm, which has runtime exponential in the num-
ber of refinements. Our method, the Expectation Propagation for Inferring Constituency
(Epic) parser, jointly trains a model over factored refinements, where each factor naturally
leverages information from other refinement factors and improves on their mistakes.

We demonstrate the empirical effectiveness of our approach in two ways. First, we effi-
ciently train a latent-variable grammar with 8 disjoint one-bit latent refinement factors, with
scores as high as 89.7 F1 on length ≤40 sentences from the Penn Treebank (Marcus, San-
torini, and Marcinkiewicz 1993). This latent variable parser outscores the best of Petrov and
Klein (2008a)’s comparable parsers while using two orders of magnitude fewer parameters.
Second, we combine our latent variable factors with lexicalized and unlexicalized refinements,
resulting in our best F1 score of 89.4 on all sentences.

5.1 Factored Refinements in Syntax

Linguists have long noted the limitations of CFGs as a grammatical formalism, essentially
since their introduction. Chomsky (1965) noted that CFGs are unable to capture generaliza-
tions between what are plainly similar constituent types. As an example, Chomsky (1965)
gives:



CHAPTER 5. FACTORED REFINEMENTS 26

(11) a. N→ Proper

b. N→ Common

c. Proper→ Proper-Human

d. Proper→ Proper-non-Human

e. Common→ Common-Human

f. Common→ Common-non-Human

Under a CFG, there is no relationship between ‘Common-Human’ and ‘Common-non-Human’,
which is clearly undesirable from a theoretical point of view. Chomsky (1965) thus proposed
that CFGs be augmented with features. For instance, a noun phrase might have several
features,1 including one indicating whether or not the noun phrase refers to a human, and
another indicating whether or not it is proper. Further, more syntactic features might be
considered, like case or number.

In a similar vein, modern theories of grammar such as Minimalism (Chomsky 1992) and
HPSG (Pollard and Sag 1994) do not ascribe unstructured conjunctions of refinements to
phrasal categories. Rather, phrasal categories are associated with sequences of metadata
that control their function. For instance, an NP might have refinements indicating that it
is definite, singular, masculine, and nominative, with perhaps further information about its
animacy or other aspects of the head noun.

Broadly speaking, these modern theories are centered around the amalgamation of two
child constituents into a single larger parent. In unification-based formalisms, this operation
is the eponymous unification operation.2 In minimalism, this operation is called Merge.3 We
will use Amalgamate as a neutral term to emphasize our attempt to be theory-neutral.

Usually, this amalgamation satisfies some unsatisfied requirement of one of the children.
This child is called the head. Schematically, we can represent it as follows:

(12) X[α⊕ Y[β]]

Y[β]X[α, /Y[β]]

Here, X and Y are phrase structure categories like NP and VP, while α and β are bundles
of features.4

1 As we mentioned in the introduction of this dissertation, after this section we will refer to these
“features” as “refinements” to avoid an ambiguity with the machine learning definition of “feature.”

2Pollard and Sag (1994) actually use a slightly different operation called “conjunction.”
3So capitalized. Some variants of Minimalism differentiate between Move and Merge.
4These theories actually go so far as to suggest that the categories like NP and VP are nothing more

than features. It would be interesting to pursue that idea in a similar framework to ours, though we leave
that for future work.
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In Minimalism, the “/Y” is usually written as “uY,” where the “u” means “uninter-
pretable”; a constituent with an uninterpretable feature cannot be present in a valid output
structure. When the two constituents are merged, the uninterpretable feature is “checked”
and then “deleted,” indicating that is has been satisfied. The rest of the features of X pass
through unchanged. That is, α⊕ β = α. Thus, the parent in (12) is just X[α].

In HPSG, features are not deleted. Instead, constraints are satisfied. As a consequence,
this almagamation operation—induced by the Head Complement Rule or Head Specifier
Rule—is somewhat more powerful. In particular, the “missing” part of the head child can
be a partial specification of what is missing, rather than a single atomic feature. For instance,
the missing part might just specify that the required constituent is a noun. Schematically,
we have:

(13) X[α⊕ Y[β]]

Y[β]X[α, /Y[γ]]

where β 4 γ,5 meaning that β is a structure that is a (potentially) more fully specified than
γ, but that it has all of the features of γ, and no features that “disagree” with γ. As an
example, γ might require that the Y is an animate noun phrase, but it might not care about
whether or not the noun is plural or singular, masculine or feminine. The ⊕ operation here
“unifies” the two bundles of features into a single larger bundle.

5.2 Model Representation

Thus, it is appealing for a grammar to be able to model the various, (somewhat) orthogonal
factors that govern syntactic acceptability, that is, to have something like syntactic features.
However, most models have no mechanism to encourage this. As a notable exception, Dreyer
and Eisner (2006) tried to capture this kind of insight by allowing factored refinements to
pass unchanged from parent label to child label, though they were not able to demonstrate
substantial gains in accuracy.

In practice, our use of features (which we call “factored refinements”) will be much more
impoverished than any of the linguistic formalisms we described. In particular, we will not
allow for complex, structured constraints like the kinds enabled by the 4 relationship we used
for discussing HPSG. Instead, we will define a simple factored representation of a grammar
into several components.

Suppose we have a raw (binarized) treebank grammar, with productions of the form
A→ B C. The typical process is to then annotate these rules with additional information,
giving rules of the form A[x]→ B[y] C[z]. In the case of explicit refinements, an x might
include information about the parent category, or a head word, or a combination of things.
In the case of latent refinements, x will be an integer that may or may not correspond to

5HPSG does not use this notation, but I find it useful.
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some linguistic notion. We are interested in the specific case where each x is actually factored
into M disjoint parts: A[x1, x2, . . . , xM ]. (See Figure 5.1.) We call each component of x a
refinement factor or a refinement component.

As in Chapter 3, we begin with a parse tree T over base symbols for some sentence w,
and we decorate the tree with refinements X, giving a parse tree T [X]. We focus on the case
when X partitions into disjoint components X = [X1, X2, . . . , XM ]. These components are
decoupled in the sense that, conditioned on the coarse tree T , each column of the refinement is
independent of every other column. However, they are crucially not independent conditioned
only on the sentence w. This model is represented schematically in Figure 5.2(a).

The conditional probability P(T [X]|w, θ) of an annotated tree given words is:

P(T [X]|w, θ)

=

∏
m fm(T [Xm]; w, θm)∑

T ′,X′
∏

m fm(T ′[X ′m]; w, θm)

=
1

Z(w, θ)

∏
m

fm(T [Xm]; w, θm)

(5.1)

where the factors fm for each model take the form:

fm(T [Xm]; w, θm) = exp
(
θTmϕm(T,Xm,w)

)
Here, Xm is the refinement associated with a particular model m. ϕ is a feature function
that projects the raw tree, refinements, and words into a feature vector. The features ϕ
need to decompose into features for each factor fm; we do not allow features that take into
account the refinements from two different components.

Because our model is discriminative, training takes the form of maximizing the probability
of the training trees given the words. This objective is convex for deterministic refinements,
but non-convex for latent refinements. We (locally) optimize the (non-convex) log conditional
likelihood of the observed training data (T (d),w(d)):

`(θ) =
∑
d

log P(T (d)|w(d), θ)

=
∑
d

log
∑
X

P(T (d)[X]|w(d), θ)
(5.2)

The derivative takes the form:

∇`(θ) =
∑
d

E[ϕ(T,X,w)|T (d),w(d)]

−
∑
d

E[ϕ(T,X,w)|w(d)]

∇θm`(θ) =
∑
d

E[ϕm(T,Xm,w)|T (d),w(d)]

−
∑
d

E[ϕm(T,Xm,w)|w(d)]

(5.3)
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The first half of this derivative can be obtained by the forward/backward-like computa-
tion defined by Matsuzaki, Miyao, and Tsujii (2005), while the second half requires an
inside/outside computation (Petrov and Klein 2008a). The partition function Z(w, θ) is
computed as a byproduct of the latter computation.

5.3 Parsing with Factored Refinements

Note that the first term of Equation 5.3—which is conditioned on the coarse tree T—factors
into M pieces, one for each of the refinement components. However, the second term does
not factor because it is conditioned on just the words w. Indeed, näıvely computing this
term requires parsing with the fully articulated grammar, meaning that inference would be
no more efficient than parsing with non-factored refinements.

Standard algorithms for parsing with a CFG run in O(G|w|3), where |w| is the length
of the sentence, and G is the size of the grammar, measured in the number of (binary)
rules. Let G0 be the number of binary rules in the unannotated “base” grammar. Suppose
that we have M refinement components. Each refinement component can have up to A
primitive refinements per rule. For instance, a latent variable grammar will have A = 8b

where b is the number of bits of refinement. If we compile all refinement components into
unstructured refinements (producing a grammar that looks something like Example 11), we
can end up with a total grammar size of O(AMG0), and so in general parsing time scales
exponentially with the number of refinement components. Thus, if we use latent refinements
and the hierarchical splitting approach of Petrov et al. (2006), then the grammar has size
O(8SG0), where S is the number of times the grammar was split in two. Therefore, the size
of annotated grammars can reach intractable levels very quickly, particularly in the case of
latent refinements, where all combinations of refinements are possible.

Dreyer and Eisner (2006) suggested an iterative approach to splitting refinements that
were sufficiently different from each other. Similarly, Petrov et al. (2006) introduced a
heuristic approach to merging grammar refinements that were not sufficiently different to
provide any gains in likelihood. Thus, their approaches tried simply to slow down the
exponential growth of splitting. In a follow-up, Petrov and Klein (2007) then presented a
hierarchical coarse-to-fine inference algorithm that gave large increases in parsing speed.

Petrov (2010) considered an approach to slowing this growth down by using a set of M
independently trained parsers Pm, and parsed using the product of the scores from each parser
as the score for the tree. This approach worked largely because training was intractable: if
the training algorithm could reach the global optimum, then this approach might have yielded
no gain. However, because the optimization technique is local, the same algorithm produced
multiple grammars.

In what follows, we propose another solution that exploits the factored structure of our
grammar with expectation propagation. Crucially, we are able to jointly train and parse
with all refinement factors, minimizing redundancy across the models. While not exact, we
will see that expectation propagation is indeed effective.
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5.4 Factored Inference

The key insight behind the approximate inference methods we consider here is that the
full model is a product of complex factors that interact in complicated ways, and we will
approximate it with a product of corresponding simple factors that interact in simple ways.
Since each refinement factor is a reasonable model in both power and complexity on its own,
we can consider them one at a time, replacing all others with their approximations, as shown
in Figure 5.2(c).

The way we will build these approximations is with expectation propagation (Minka 2001).
Expectation propagation (EP) is a general method for approximate inference that generalizes
belief propagation. We describe it here, but we first try to provide an intuition for how it
functions in our system. We also describe a simplified version of EP, called assumed density
filtering (Boyen and Koller 1998), which is somewhat easier to understand and rhetorically
convenient. For a more detailed introduction to EP in general, we direct the reader to either
Minka (2001) or Wainwright and Jordan (2008a). Our treatment most resembles the former.

Factored Approximations

Our goal is to build an approximation that takes information from all components into ac-
count. To begin, we note that each of these components captures different phenomena: a
structurally-refined grammar is good at capturing structural relationships in a parse tree
(e.g. subject noun phrases have different distributions than object noun phrases), while a
lexicalized grammar might capture preferred attachments for different verbs. At the same
time, each of these component grammars can be thought of as a refinement of the raw unan-
notated treebank grammar. By itself, each of these grammars induces a different posterior
distribution over unannotated trees for each sentence. If we can approximate each model’s
contribution by using only unannotated symbols, we can define an algorithm that avoids the
exponential overhead of parsing with the full grammar, and instead works with each factor
in turn.

To do so, we define a sentence specific core approximation over unannotated trees q(T |w) =∏
m f̃m(T,w). Figure 5.2(b) illustrates this approximation. Here, q(T ) is a product of M

structurally identical factors, one for each of the annotated components. We will approximate
each model fm by its corresponding f̃m. Thus, there is one color-coordinated approximate
factor for each component of the model in Figure 5.2(a).

There are multiple choices for the structure of these factors, but we focus on anchored
PCFGs. Anchored PCFGs have productions of the form iAj → iBk kCj, where i, k, and j
are indexes into the sentence. Here, iAj is a symbol representing building the base symbol
A over the span [i, j].

Billott and Lang (1989) introduced anchored CFGs as “shared forests,” and Matsuzaki,
Miyao, and Tsujii (2005) have previously used these grammars for finding an approximate
one-best tree in a latent variable parser. Note that, even though an anchored grammar is
unannotated, because it is sentence specific it can represent many complex properties of the
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full grammar’s posterior distribution for a given sentence. For example, it might express a
preference for whether a PP token attaches to a particular verb or to that verb’s object noun
phrase in a particular sentence.

Before continuing, note that a pointwise product of anchored grammars is still an an-
chored grammar. The complexity of parsing with a product of these grammars is therefore
no more expensive than parsing with just one. Indeed, anchoring adds no inferential cost
at all over parsing with an unannotated grammar: the anchored indices i, j, k have to be
computed just to parse the sentence at all. This property is crucial to EP’s efficiency in our
setting.

Assumed Density Filtering

We now describe a simplified version of EP: parsing with assumed density filtering (Boyen
and Koller 1998). We would like to train a sequence of M models, where each model is
trained with knowledge of the posterior distribution induced by the previous models. Much
as boosting algorithms (Freund and Schapire 1995) work by focusing learning on as-yet-
unexplained data points, this approach will encourage each model to improve on earlier
models, albeit in a different formal way.

At a high level, assumed density filtering (ADF) proceeds as follows. First, we have
an initially uninformative q: it assigns the same probability to all unpruned trees for a
given sentence. Then, we factor in one of the annotated grammars and parse with this
new augmented grammar. This gives us a new posterior distribution for this sentence over
trees annotated with just that refinement component. Then, we can marginalize out the
refinements, giving us a new q that approximates the annotated grammar as closely as
possible without using any refinements. Once we have incorporated the current model’s
component, we move on to the next annotated grammar, augmenting it with the new q, and
repeating. In this way, information from all grammars is incorporated into a final posterior
distribution over trees using only unannotated symbols. The algorithm is then as follows:

• Initialize q(T ) uniformly.

• For each m in sequence:

1. Create the augmented distribution qm(T[Xm]) ∝ q(T) · fm(T[Xm]) and compute
inside and outside scores.

2. Minimize DKL

(
qm(T )||f̃m(T )q(T )

)
by fitting an anchored grammar f̃m.

3. Set q(T ) =
∏m

m′=1 f̃m′(T ).

Step 1 of the inner loop forms an approximate posterior distribution using fm, which is the
parsing model associated with component m, and q, which is the anchored core approxima-
tion to the posterior induced by the first m− 1 models. Then, the marginals are computed,
and the new posterior distribution is projected to an anchored grammar, creating f̃m. More
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intuitively, we create an anchored PCFG that makes the approximation “as close as possi-
ble” to the augmented grammar. (We describe this procedure more precisely in Section 5.4.)
Thus, each term fm is approximated in the context of the terms that come before it. This
contextual approximation is essential: without it, ADF would approximate the terms inde-
pendently, meaning that no information would be shared between the models. This method
would be, in effect, a simple method for parser combination, not all that dissimilar to the
method proposed by Petrov (2010). Finally, note that the same inside and outside scores
computed in the loop can be used to compute the expected counts needed in Equation 5.3.

Now we consider the runtime complexity of this algorithm. If the maximum number of
refinements per rule for any factor is A, ADF has complexity O

(
MAG0|w|3

)
when using

M factors. In contrast, parsing with the fully annotated grammar would have complexity
O
(
AMG0|w|3

)
. Critically, for a latent variable parser with M refinement bits, the exact

algorithm takes time exponential in M , while this approximate algorithm takes time linear
in M .

It is worth pausing to consider what this algorithm does during training. In training,
we seek to maximize the probability of the correct tree T given the words w. At each step,
we have in q an approximation to what the posterior distribution looks like with the first
m− 1 models. In some places, q will assign high probabilities to spans in the gold tree, and
in some places it will not be so accurate. θm will be particularly motivated to correct the
latter, because they are less like the correct tree. On the other hand, θm will ignore the other
“correct” segments, because q has already sufficiently captured them.

Expectation Propagation

While this sequential algorithm gives us a way to efficiently combine many kinds of refine-
ments, it is not a fully joint algorithm: there is no backward propagation of information
from later models to earlier models. Ideally, no model should be privileged over any other.
To correct that, we use EP, which is essentially the iterative generalization of ADF.

Intuitively, EP cycles among the models, updating the approximation for that model
in turn so that it closely resembles the predictions made by fm in the context of all other
approximations, as in Figure 5.2(c). Thus, each approximate term f̃m is created using infor-
mation from all other f̃m′ , meaning that the different refinement factors can still “talk” to
each other. The product of these approximations q will therefore come to act as an approx-
imation to the true posterior: it takes into account joint information about all refinement
components, all within one tractable anchored grammar.

With that intuition in mind, EP is defined as follows:

• Initialize contributions f̃m to the approximate posterior q.

• At each step, choose m.

1. Include approximations to all factors other than m: q\m(T ) =
∏

m′ 6=m f̃m′(T ).
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flex flat f̃lat
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Full product model Approximate model 

P (T [X]|w; ✓) q(T |w)

qlex qlat

f̃strfstr

qstr

Figure 5.2: Schematic representation of our model, its approximation, and expectation prop-
agation. (a) The full joint distribution consists of a product of three grammars with different
refinements, here lexicalized, latent, and structural. This model is described in Section 3.2.
(b) The core approximation is an anchored PCFG with one factor corresponding to each
refinement component, described in Section 5.1. (c) Fitting the approximation with expec-
tation propagation, as described in Section 5.3. At the center is the core approximation.
During each step, an “augmented” distribution qm is created by taking one refinement factor
from the full grammar and the rest from the approximate grammar. For instance, in upper
left hand corner the full flex is substituted for f̃lex. This new augmented distribution is
projected back to the core approximation. This process is repeated for each factor until
convergence.

2. Create the augmented distribution by including the actual factor for component
m

qm(T [Xm]) ∝ fm(T [Xm])q\m(T )
and compute inside and outside scores.

3. Create a new f̃m(T ) that minimizes DKL

(
qm(T )||f̃m(T )q\m(T )

)
.

• Finally, set q(T ) ∝∏m f̃m(T ).

Step 2 creates the augmented distribution qm, which includes fm along with the approximate
factors for all models except the current model. Step 3 creates a new anchored f̃m that has the
same marginal distribution as the true model fm in the context of the other approximations,
just as we did in ADF.

Assumed density filtering is a special case of EP in which only a single pass is made over
the models. Moreover, the technique of Petrov (2010) can be seen as a degenerate variant
of EP where the f̃m are set independently.
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In practice, it is usually better to not recompute the product of all f̃m each time, but
instead to maintain the full product q(T ) ∝ ∏m f̃m and to remove the appropriate f̃m by
division. This optimization is analogous to belief propagation, where messages are removed
from beliefs by division, instead of recomputing beliefs on the fly by multiplying all messages.

Schematically, the whole process is illustrated in Figure 5.2(c). At each step, one piece of
the core approximation is replaced with the corresponding component from the full model.
This augmented model is then reapproximated by a new core approximation q after updating
the corresponding f̃m. This process repeats until convergence.

Epic Parsing

In our parser, EP is implemented as follows. q and each of the f̃m are anchored grammars
that assign weights to unannotated rules. The product of anchored grammars with the
annotated factor fm need not be carried out explicitly. Instead, note that an anchored
grammar is just a function q(A→ B C, i, k, j) ∈ R+ that returns a score for every anchored
binary rule. This function can be easily integrated into the CKY algorithm for a single
annotated grammar by simply multiplying in the value of q whenever computing the score
of the respective production over some span. The modified inside recurrence takes the form:

inside(A[x], i, j)

=
∑

B,y,C,z

θTϕ(A[x]→ B[y] C[z],w)

·
∑
i<k<j

inside(B[y], i, k) · inside(C[z], k, j)

· q(A→ B C, i, k, j)

(5.4)

Thus, parsing with a pointwise product of an anchored grammar and an annotated grammar
has no increased combinatorial cost over parsing with just the annotated grammar.

To actually perform the projection in step 3 of EP, we create an anchored grammar from
inside and outside probabilities.6 Given a set of inside and outside scores over annotated
labels I(A[x], s, t) and O(A[x], s, t), we compute the expected number of times the rule

iAj → iBk kCj occurs, and then then we locally normalize for each symbol iAj, using the
equations in Figure 5.3. Basically, we just marginalize over refinements, and normalize so
that

∑
B,C,u p(sAt → sBuuCt) = 1.

This procedure actually creates the new q distribution, and so we have to divide out q\m.
This process minimizes KL divergence subject to the local normalization constraints.

All in all, this gives an algorithm that takes time O
(
IMAG0|w|3

)
, where I is the max-

imum number of iterations, M is the number of models, and A is the maximum number of
refinements for any given rule.

6This discussion largely derives from Matsuzaki, Miyao, and Tsujii (2005)’s , where they used an anchored
grammar for decoding.
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p(sAt → sBuuCt) =

∑
xyz O(A[x], s, t)score(A[x]→ B[y] C[z],w, s, t, u)I(B[y], s, u)I(C[z], u, t)∑

xO(A[x], s, t)I(A[x], s, t)

p(sAt → sBt) =

∑
xy O(A[x], s, t)scoreu(A→ B,w, s, t)I(B[y], s, t)∑

xO(A[x], s, t)I(A[x], s, t)

p(sAs+1 → ws) = 1

score(A[x]→ B[y] C[z],w, s, t, u) = exp
(
θTmϕ(A[x]→ B[y] C[z],w) + log q(A→ B C, s, u, t)

)
scoreu(A[x]→ B[y],w, s, t) = exp

(
θTmϕ(A[x]→ B[y],w) + log q(A→ B, s, t)

)
Figure 5.3: Estimating an anchored grammar for a sentence w from the inside and outside
scores of an anchored grammar. Note that we use alternating layers of unaries and binaries.

Other Inference Algorithms

To our knowledge, expectation propagation has been used only once in the NLP community;
Daumé III and Marcu (2006) employed an unstructured version in a Bayesian model of
extractive summarization. Therefore, it is worth describing how EP differs from more familiar
techniques.

EP can be thought of as a more flexible generalization of belief propagation, which has
been used several times in NLP (Smith and Eisner 2008; Niehues and Vogel 2008; Cromières
and Kurohashi 2009; Burkett and Klein 2012). In particular, EP allows for the arbitrary
choice of messages (the f̃m), meaning that we can use structured messages like anchored
PCFGs.

Mean field (Saul and Jordan 1996) is another approximate inference technique that allows
for structured approximations (Xing, Jordan, and Russell 2003; Burkett, Blitzer, and Klein
2010), but here the natural version of mean field for our model would still be intractable.
However, it is possible to adapt mean field into allowing for tractable updates that are similar
to the ones we proposed. We do not pursue that approach here.

Dual decomposition (Dantzig and Wolfe 1960; Komodakis, Paragios, and Tziritas 2007)
has recently become popular in the community (Rush et al. 2010; Koo et al. 2010). In fact,
EP can be seen as a particular kind of dual decomposition of the log normalization constant
logZ(w, θ) that is optimized with message passing rather than (sub-)gradient descent or LP
relaxations. Indeed, Minka (2001) argues that the EP objective is more efficiently optimized
with message passing than with gradient updates. This assertion should be examined for
the structured models common in NLP, but that is beyond the scope of this dissertation.

Finally, note that EP, like belief propagation but unlike mean field, is not guaranteed to
converge, though in practice it usually seems to. In our experiments, typically three or four
iterations are enough for almost all sentences to reach convergence, and we found no loss in
cutting off the number of iterations to four.
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Parsing

Training ADF EP Exact Petrov

ADF 84.3 84.5 84.5 82.5
EP 84.1 84.6 84.5 78.7

Exact 83.8 84.5 84.9 81.5
Indep. 82.3 82.1 82.2 82.6

Table 5.1: The effect of algorithm choice for training and parsing on a product of two 2-
state parsers on F1. Petrov is the product parser of Petrov (2010), and Indep. refers to
independently trained models. For comparison, a four-state parser achieves a score of 83.2.

5.5 Experiments

In what follows, we describe four experiments. First, in a small experiment, we examine
how effective the different inference algorithms are for both training and testing. Second, we
scale up our latent variable model into successively larger products. We also will look at how
expectation propagation’s runtime compares to exact inference for these models. Finally, we
present a selection of the many possible model combinations, showing that combining latent
and expert refinement can be quite effective.

Experimental Setup

For our experiments, we trained and tested on the Penn Treebank using the standard splits
described in Section 2.1. Each discriminative parser was trained using the Adaptive Gradient
variant of Stochastic Gradient Descent (Duchi, Hazan, and Singer 2010). Smaller models were
seeded from larger models. That is, before training a grammar of 5 models with 1 latent
bit each, we started with weights from a parser with 4 factored bits. Initial experiments
suggested this step did not affect final performance, but greatly decreased total training
time, especially for the latent variable parsers. When using EP or ADF, we initialized the
core approximation q to the uniform distribution over unpruned trees.

When counting parameters, we consider the number of parameters per binary rule. Hence,
a single four-state latent model would have 64 (= 43) parameters per rule, while a product
of 5 two-state models would have just 40 (= 5 · 23).

Comparison of Inference Algorithms

In our first experiment, we test the relative performance of the various approximate inference
methods at both train and test time. In order to include exact inference, we necessarily need
to look at a smaller scale example for which exact inference is still feasible. We examined
development performance for training and inference on a small product of two parsers, each
with two latent states per symbol.

During training, we have several options. We can use exact training by parsing with the
fully articulated product of both grammars, or, we can instead use EP, ADF, or independent
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training. At test time, we can parse using the full product of both grammars, or, we can
instead use EP, ADF, or we can use the method of Petrov (2010) wherein we multiply the
parsers together in an ad hoc fashion.

The results are in Table 5.1. The best reported score, unsurprisingly, is for using exact
training and parsing, but using EP for training and parsing results in a relatively small loss
of 0.3 F1. ADF, however, suffers a loss of 0.6 F1 over Exact when used for training and
parsing. Otherwise, Exact and EP seem to perform fairly similarly at parse time for all
training conditions.

In general, there seems to be a gain for using the same method for training and testing.
Each testing method performs at its best when using models trained with the same method.
Moreover, except for ADF, the converse holds true: the grammars trained with a given
parsing method are best decoded using the same method. This result is similar to that
found in stoyanov2012minimum

Oddly, using Petrov (2010)’s method does not seem to work well at all for jointly trained
models, except for ADF. Similarly, joint parsing underperforms Petrov (2010)’s method when
using independently trained models. Likely, the joint parsing algorithms are miscalibrating
the redundant information present in the two independently-trained models, while the two
jointly-trained components come to depend on each other. In fact, the F1 scores for the two
separate models of the EP parser are in the 60’s.

As expected, ADF does not perform as well as EP. Therefore, we exclude it from our
subsequent experiments, focusing exclusively on EP.

Latent Variable Experiments

Most of the previous work in latent variable parsing has focused on splitting smaller unstruc-
tured refinements into larger unstructured refinements. Here, we consider training a joint
model consisting of a large number of disjoint one-bit (i.e. two-state) latent variable refine-
ments. Specifically, we consider the performance of products of up to 8 one-bit refinements.

In Figure 5.4, we show development F1 as a function of the number of latent bits. Im-
provement is roughly linear up to 3 components. Performance levels off afterwards, with the
top performing system scoring 89.7 F1. Nevertheless, these parsers outperform the compa-
rable parsers of Petrov and Klein (2008a) (89.3), even though our six-bit parser has many
fewer effective parameters per binary rule: 48 instead of the 4096 in their best parser. We
also ran our best system on Section 23, where it gets 89.1 and 88.4 on sentences less than
length 40 and on all sentences, respectively. This result compares favorably to the 88.8/88.3
of Petrov and Klein (2008a).

Runtime Experiments

We also examined how long exact inference and expectation propagation took as we increased
the number of components. We plotted runtime, in sentences per second, for each algorithm
as a function of the number of latent bits (like in the previous section), calculated on the
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Figure 5.4: Development F1 plotted against the number M of one-bit latent refinement
components. The best grammar has 6 one-bit refinements, with 89.7 F1.
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Figure 5.5: Number of seconds to parse a sentence for a given number of factored latent bits.
The time taken by exact inference grows exponentially, becoming intractable after just three
latent bits. Expectation propagation, on the other hand, shows linear growth.
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Models F1, ≤ 40 F1, All

Lexicalized 87.3 86.5
Structural 86.3 85.4
3xLatent 88.6 87.6

Lex+Struct 90.2 89.5
Lex+Lat 90.0 89.4

Struct+Lat 90.0 89.4
Lex+Struct+Lat 90.2 89.7

Table 5.2: Development F1 score for various model combinations for sentences less than
length 40 and all sentences. 3xLatent refers to a latent refinement model with 3 factored
latent bits.

Models
Lat. Bits φ Lexicalized Structural Lex+Struct

0 ——– 87.3/86.5 86.3/85.4 90.2/89.5
1 81.6/80.6 89.7/89.0 88.1/87.2 90.2/89.5
2 84.6/83.9 89.8/89.2 88.6/87.8 90.1/89.6
3 87.6/86.1 90.0/89.4 88.7/88.0 90.2/89.7
4 88.5/87.6 89.8/89.2 88.8/88.1 90.0/89.3
5 89.2/88.4 89.9/89.2 88.4/87.7 90.1/89.4
6 89.7/88.9 90.1/89.5 88.5/87.7 90.0/89.3

Table 5.3: Extra development set results with more combinations. The values reported here
are Section 22 Len 40/All of Section 22. The numbers on the left hand side are the number
of factored latent bit refinements used in conjunction with the model above. The φ column
uses only latent information.

development set of the Penn Treebank. Figure 5.5 shows how the time taken by exact
inference increases rapidly with the number of components, while EP shows linear growth.

Heterogeneous Models

We now consider factored models with different kinds of refinements. Specifically, we tested
grammars comprising all subsets of {Lexicalized, Structural, Latent}. We used a model
with 3 factored bits as our representative of the latent variable class, because it was closest
in performance to the other models. Of course, other smaller and larger combinations are
possible, but we found this selection to be representative.

The development results are in Table 5.2, with results for more combinations in Table
5.3. Unsurprisingly, adding more kinds of refinements helps for the most part, though the
combination of all three components is not much better than a combination of just the lexi-
calized and unlexicalized models. Indeed, our best systems involved combining the lexicalized
model with some other model. This is probably because the lexicalized model can repre-
sent very different syntactic relationships than the latent and unlexicalized models, meaning
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there is more diversity in the joint model’s capacity when using combinations involving the
lexicalized refinements.

Finally, we ran our best system (the fully combined one) on Section 23 of the Penn
Treebank. It scored 90.1/89.4 F1 on length 40 and all sentences respectively, slightly edging
out the 90.0/89.3 F1 of Petrov and Klein (2008a). However, it is not quite as good at exact
match: 37.7/35.3 vs 40.1/37.7. Note, though, that their parser makes use of span features,
which deliver a gain of +0.3/0.2F1 respectively, while ours does not.

5.6 Analysis

Factored representations capture a fundamental linguistic insight: grammatical categories
are not monolithic, unanalyzable entities. Instead, they are composed of numerous facets
that together govern how categories combine into parse trees.

We have developed a new model for grammars with factored refinements and presented
two methods for parsing with these grammars. Our experiments have demonstrated that
our approach produces higher performance parsers with many fewer parameters. Moreover,
our model works with both latent and explicit refinements, allowing us to combine linguistic
knowledge with machine learning.
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Chapter 6

Parsing without Refinements

A preliminary version of this chapter appeared as Hall, Durrett, and Klein (2014).

As we saw in Chapter 3, näıve context-free grammars, such as those embodied by standard
treebank refinements, do not parse well because their symbols have too little context to
constrain their syntactic behavior. For example, to PPs frequently attach to verbs and of
PPs frequently attach to nouns, but a context-free PP symbol can equally well attach to
either. Much of the last few decades of parsing research has therefore focused on propagating
contextual information from the leaves of the tree to internal nodes. For example, head
lexicalization (Eisner 1996; Collins 1997; Charniak 1997), structural refinement (Johnson
1998a; Klein and Manning 2003), and state-splitting (Matsuzaki, Miyao, and Tsujii 2005;
Petrov et al. 2006) are all designed to take coarse symbols like PP and decorate them
with additional context. The underlying reason that such propagation is even needed is
that probabilistic constituency parsers score trees based on local configurations only, and
any information that is not threaded through the tree becomes inaccessible to the scoring
function. There have been non-local approaches as well, such as tree-substitution parsers
(Bod 1993; Sima’an 2000), neural net parsers (Henderson 2003), and rerankers (Collins and
Koo 2005; Charniak and Johnson 2005b; Huang 2008). These non-local approaches can
actually go even further in enriching the grammar’s structural complexity by coupling larger
domains in various ways, though their non-locality generally complicates inference.

In this chapter, we instead try to minimize the structural complexity of the grammar by
moving as much context as possible onto local surface features. We examine the position that
grammars should not propagate any information that is available from surface strings, since a
discriminative parser can access that information directly. We therefore begin with a minimal
grammar and iteratively augment it with rich input features that do not enrich the context-
free backbone. Previous work has also used surface features in their parsers, but the focus
has been on machine learning methods (Taskar et al. 2004), latent refinements (Petrov and
Klein 2008a; Petrov and Klein 2008b), or implementation (Finkel, Kleeman, and Manning
2008).

By contrast, we investigate the extent to which we need a grammar at all. As a thought
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experiment, consider a parser with no grammar, which functions by independently classifying
each span (i, j) of a sentence as an NP, VP, and so on, or null if that span is a non-constituent.
For example, spans that begin with the might tend to be NPs, while spans that end with of
might tend to be non-constituents. An independent classification approach is actually very
viable for part-of-speech tagging (Toutanova et al. 2003), but is problematic for parsing – if
nothing else, parsing comes with a structural requirement that the output be a well-formed,
nested tree. Our parser uses a minimal context-free backbone grammar to ensure a basic
level of structural well-formedness, but relies mostly on features of surface spans to drive
accuracy. Formally, our model is a conditional random field (CRF) where the features factor
over anchored rules of a small backbone grammar, as shown in Figure 6.1.

Some aspects of the parsing problem, such as the tree constraint, are clearly best cap-
tured by a PCFG. Others, such as heaviness effects, are naturally captured using surface
information. The open question is whether surface features are adequate for key effects like
subcategorization, which have deep definitions but regular surface reflexes (e.g. the preposi-
tion selected by a verb will often linearly follow it). Empirically, the answer seems to be yes,
and our system produces strong results, e.g. up to 90.5 F1 on English parsing. Our parser
is also able to generalize well across languages with little tuning: it achieves state-of-the-art
results on multilingual parsing, scoring higher than the best single-parser system from the
SPMRL 2013 Shared Task on a range of languages, as well as on the competition’s average
F1 metric.

One advantage of a system that relies on surface features and a simple grammar is that
it is portable not only across languages but also across tasks to an extent. For example,
Socher et al. (2013b) demonstrates that sentiment analysis, which is usually approached as a
flat classification task, can be viewed as tree-structured. In their work, they propagate real-
valued vectors up a tree using neural tensor nets and see gains from their recursive approach.
Our parser can be easily adapted to this task by replacing the X-bar grammar over treebank
symbols with a grammar over the sentiment values to encode the output variables and then
adding n-gram indicators to our feature set to capture the bulk of the lexical effects. When
applied to this task, our system generally matches their accuracy overall and is able to
outperform it on the overall sentence-level subtask.

6.1 Parsing Model

Recall from Chapter 3 that our model is a conditional random field (Lafferty, McCallum,
and Pereira 2001) over trees. As before, we define the probability of a tree T conditioned on
a sentence w as

p(T |w) ∝ exp

(
θᵀ
∑
r∈T

f(r,w)

)
(6.1)

where the feature domains r range over the (anchored) rules used in the tree. An anchored
rule r is the conjunction of an unanchored grammar rule rule(r) and the start, stop, and split
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indexes where that rule is anchored, which we refer to as span(r). It is important to note
that the richness of the backbone grammar is reflected in the structure of the trees T , while
the features that condition directly on the input enter the equation through the anchoring
span(r).

We start with a simple X-bar grammar whose only symbols are NP, NP-bar, VP, and
so on. Our base model has no surface features: formally, on each anchored rule r we have
only an indicator of the (unanchored) rule identity, rule(r). As we saw in Chapter 3, this
grammar does not parse very accurately.

In past work that has used tree-structured CRFs in this way (and in the previous chapters
of the thesis), increased accuracy partially came from decorating trees T with additional
refinements, giving a tree T ′ over a more complex symbol set. These refinements introduce
additional context into the model, usually capturing linguistic intuition about the factors that
influence grammaticality. For instance, we might annotate every constituent X in the tree
with its parent Y , giving a tree with symbols X[ˆY ]. Finkel, Kleeman, and Manning (2008)
used parent refinement, head tag refinement, and horizontal sibling refinement together in
a single large grammar. In Petrov and Klein (2008a) and Petrov and Klein (2008b), these
refinements were latent; they were inferred automatically during training. In the last chapter,
we employed both of these kinds of refinements, along with lexicalized head word refinement.
All of these CRF parsers (aside from ours in the previous work) do also exploit span features,
as did the structured margin parser of Taskar et al. (2004); the current work primarily differs
in shifting the work from the grammar to the surface features.

As we saw in the previous chapter, the problem with rich refinements is that they in-
crease the state space of the grammar substantially. For example, adding parent refinement
can square the number of symbols, and each subsequent refinement causes a multiplicative
increase in the size of the state space. Thus, in the last chapter, we attempted to reduce
this state space by factoring these refinements into individual components. The factored ap-
proach changed the multiplicative penalty of refinement into an additive penalty, but even
so their individual grammar projections are much larger than the base X-bar grammar.

In this chapter, we want to see how much of the expressive capability of refinements can
be captured using surface evidence, with little or no refinement of the underlying grammar.
To that end, we avoid annotating our trees at all, opting instead to see how far simple surface
features will go in achieving a high-performance parser. We will return to the question of
refinement in Section 6.5.

6.2 Surface Feature Framework

To improve the performance of our X-bar grammar, we will add a number of surface feature
templates derived only from the words in the sentence. We say that an indicator is a surface
property if it can be extracted without reference to the parse tree. These features can be
implemented without reference to structured linguistic notions like headedness; however, we
will argue that they still capture a wide range of linguistic phenomena in a data-driven way.
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averted    financial    disaster

VP

NPVBD

JJ NN

PARENT = VP

FIRSTWORD = averted

LENGTH = 3

RULE = VP → VBD NP

PARENT = VP

Span properties

Rule backoffs

Features

...

5 6 7 8... LASTWORD = disaster

⌦FIRSTWORD = averted

LASTWORD = disaster PARENT = VP⌦
⌦FIRSTWORD = averted RULE = VP → VBD NP

Figure 6.1: Features computed over the application of the rule VP → VBD NP over the
anchored span averted financial disaster with the shown indices. Span properties are gen-
erated as described throughout Section 6.3; they are then conjoined with the rule and just
the parent nonterminal to give the features fired over the anchored production.

Throughout this and the following section, we will draw on motivating examples from the
English Penn Treebank, though similar examples could be equally argued for other languages.
For performance on other languages, see Section 6.6.

Recall that our CRF factors over anchored rules r, where each r has identity rule(r)
and anchoring span(r). The X-bar grammar has only indicators of rule(r), ignoring the
anchoring. Let a surface property of r be an indicator function of span(r) and the sentence
itself. For example, the first word in a constituent is a surface property, as is the word
directly preceding the constituent. As illustrated in Figure 6.1, the actual features of the
model are obtained by conjoining surface properties with various abstractions of the rule
identity. For rule abstractions, we use two templates: the parent of the rule and the identity
of the rule. The surface features are somewhat more involved, and so we introduce them
incrementally.

One immediate computational and statistical issue arises from the sheer number of pos-
sible surface features. There are a great number of spans in a typical treebank; extracting



CHAPTER 6. PARSING WITHOUT REFINEMENTS 45

Features Section F1
Rule 6.3 73.0

+ Span First Word + Span Last Word + Length 6.3 85.0
+ Word Before Span + Word After Span 6.3 89.0
+ Word Before Split + Word After Split 6.3 89.7

+ Span Shape 6.3 89.9

Table 6.1: Results for the Penn Treebank development set, reported in F1 on sentences of
length ≤ 40 on Section 22, for a number of incrementally growing feature sets. We show that
each feature type presented in Section 6.3 adds benefit over the previous, and in combination
they produce a reasonably good yet simple parser.

features for every possible combination of span and rule is prohibitive. One simple solution
is to only extract features for rule/span pairs that are actually observed in gold annotated
examples during training. Because these “positive” features correspond to observed con-
stituents, they are far less numerous than the set of all possible features extracted from all
spans. As far as we can tell, all past CRF parsers have used “positive” features only.

However, negative features—features that are not observed in any tree—are still powerful
indicators of (un)grammaticality: if we have never seen a PRN that starts with “has,” or a
span that begins with a quotation mark and ends with a close bracket, then we would like the
model to be able to place negative weights on these features. Thus, we use a simple feature
hashing scheme where positive features are indexed individually, while negative features are
bucketed together. During training there are no collisions between positive features, which
generally receive positive weight, and negative features, which generally receive negative
weight; only negative features can collide. Early experiments indicated that using a number
of negative buckets equal to the number of positive features was effective.1

6.3 Features

Our goal is to use surface features to replicate the functionality of other refinements, without
increasing the state space of our grammar, meaning that the rules, rule(r), remain simple,
as does the state space used during inference.

Before we present our main features, we briefly discuss the issue of feature sparsity. While
lexical features are a powerful driver of our parser, firing features on rare words would allow
it to overfit the training data quite heavily. To that end, for the purposes of computing our
features, a word is represented by its longest suffix2 that occurs 100 or more times in the

1In Section 6.4, we analyze this choice a little more closely.
2We mean “suffix” in the computer science sense, not the linguistic sense. That is, a suffix is any

substring that ends at the end of the original string.
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training data (which will be the entire word, for common words).3

Table 6.1 shows the results of incrementally building up our feature set on the Penn
Treebank development set. Rule specifies that we use only indicators on rule identity for
binary production and nonterminal unaries. For this experiment and all others, we include
a basic set of lexicon features, i.e. features on preterminal part-of-speech tags. A given
preterminal unary at position i in the sentence includes features on the words (suffixes) at
position i−1, i, and i+1. Because the lexicon is especially sensitive to morphological effects,
we also fire features on all prefixes and suffixes of the current word up to length 5, regardless
of frequency.

Subsequent lines in Table 6.1 indicate additional surface feature templates computed
over the span, which are then conjoined with the rule identity as shown in Figure 6.1 to give
additional features. In the rest of the section, we describe the features of this type that we
use. Note that many of these features have been used before (Taskar et al. 2004; Finkel,
Kleeman, and Manning 2008; Petrov and Klein 2008b); our goal here is not to amass as
many feature templates as possible, but rather to examine the extent to which a simple set
of features can replace a complicated state space.

Basic Span Features

We start with some of the most obvious properties available to us, namely, the identity of
the first and last words of a span. Because heads of constituents are often at the beginning
or the end of a span, these feature templates can (noisily) capture monolexical properties of
heads without having to incur the inferential cost of lexicalized refinements. For example, in
English, the syntactic head of a verb phrase is typically at the beginning of the span, while
the head of a simple noun phrase is the last word. Other languages, like Korean or Japanese,
are more consistently head final.

Structural contexts like those captured by parent refinement (Johnson 1998a) are more
subtle. Parent refinement can capture, for instance, the difference in distribution in NPs
that have S as a parent (that is, subjects) and NPs under VPs (objects). We try to capture
some of this same intuition by introducing a feature on the length of a span. For instance,
VPs embedded in NPs tend to be short, usually as embedded gerund phrases. Because
constituents in the treebank can be quite long, we bin our length features into 8 buckets, of
lengths 1, 2, 3, 4, 5, 10, 20, and ≥21 words.

Adding these simple features (first word, last word, and lengths) as span features of
the X-bar grammar already gives us a substantial improvement over our baseline system,
improving the parser’s performance from 73.0 F1 to 85.0 F1 (see Table 6.1).

3Experiments with the Brown clusters (Brown et al. 1992) provided by Turian, Ratinov, and Bengio
(2010) in lieu of suffixes were not promising. Moreover, lowering this threshold did not improve performance.
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no  read  messages  in  his  inbox

VP

VBP NNS

VP → no VBP NNS

Figure 6.2: An example showing the utility of span context. The ambiguity about whether
read is an adjective or a verb is resolved when we construct a VP and notice that the word
proceeding it is unlikely.

has  an  impact  on  the  market

PPNP

NP

NP → (NP ... impact) PP)

Figure 6.3: An example showing split point features disambiguating a PP attachment. Be-
cause impact is likely to take a PP, the monolexical indicator feature that conjoins impact
with the appropriate rule will help us parse this example correctly.

Span Context Features

Of course, there is no reason why we should confine ourselves to just the words within the
span: words outside the span also provide a rich source of context. As an example, consider
disambiguating the POS tag of the word read in Figure 6.2. A VP is most frequently preceded
by a subject NP, whose rightmost word is often its head. Therefore, we fire features that
(separately) look at the words immediately preceding and immediately following the span.
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(  CEO  of  Enron  )

PRN

(XxX)

     said  ,  “  Too  bad  ,  ”

VP

x,“Xx,”

Figure 6.4: Computation of span shape features on two examples. Parentheticals, quotes,
and other punctuation-heavy, short constituents benefit from being explicitly modeled by a
descriptor like this.

Split Point Features

Another important source of features are the words at and around the split point of a binary
rule application. Figure 6.3 shows an example of one instance of this feature template.
impact is a noun that is more likely to take a PP than other nouns, and so we expect this
feature to have high weight and encourage the attachment; this feature proves generally
useful in resolving such cases of right-attachments to noun phrases, since the last word of
the noun phrase is often the head. As another example, coordination can be represented
by an indicator of the conjunction, which comes immediately after the split point. Finally,
control structures with infinitival complements can be captured with a rule S → NP VP
with the word “to” at the split point.

Span Shape Features

We add one final feature characterizing the span, which we call span shape. Figure 6.4
shows how this feature is computed. For each word in the span,4 we indicate whether
that word begins with a capital letter, lowercase letter, digit, or punctuation mark. If it
begins with punctuation, we indicate the punctuation mark explicitly. Figure 6.4 shows that
this is especially useful in characterizing constructions such as parentheticals and quoted
expressions. Because this feature indicates capitalization, it can also capture properties of
NP internal structure relevant to named entities, and its sensitivity to capitalization and
punctuation makes it useful for recognizing appositive constructions.

4For longer spans, we only use words sufficiently close to the span’s beginning and end.
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Bin Ratio F1
0.00 88.2
0.01 88.6
0.10 89.9
1.00 90.1
5.00 90.0
10.0 90.1

Table 6.2: Results for the Penn Treebank development set using the same setup as before,
varying the number of hash bins for negative features. We examine settings at several
multiples of the number of positive features.

6.4 Hash Features

As we mentioned previously, we use feature hashing for “negative” features because there are
too many possible features we have not seen to enumerate them all. Using a HyperLogLog
sketch (Flajolet et al. 2007), we estimate there are roughly 50 times more negative features
than there are positive features if we use an X-bar grammar. If we use refinements—as
we do in the next section—it only gets worse, with over a billion features if we use parent
annotation. Here we explore parsing accuracy as a function of the number of buckets. Table
6.2 shows parsing performance as a function of the number of hash features (expressed as
a multiple of the number of positive features.) For reference, there are roughly 1.3 million
positive features.

Clearly, using negative features is quite important: we get gains of up to 1.9F1 from
using them. However, once we have “enough” (around 10%) features, performance levels off.
We use 100%, as it seemed to work well in a variety of settings.

6.5 Refinements

We have built up a strong set of features by this point, but have not yet answered the ques-
tion of whether or not grammar refinement is useful on top of them. In this section, we
examine two of the most commonly used types of additional refinement, structural refine-
ment, and lexical refinement. Recall from Section 6.2 that every span feature is conjoined
with indicators over rules and rule parents to produce features over anchored rule produc-
tions; when we consider adding an refinement layer to the grammar, what that does is refine
the rule indicators that are conjoined with every span feature. While this is a powerful way
of refining features, we show that common successful refinement schemes provide at best
modest benefit on top of the base parser.
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Refinement Dev, len ≤ 40
v = 0, h = 0 90.1
v = 1, h = 0 90.5
v = 0, h = 1 90.2
v = 1, h = 1 90.9
Lexicalized 90.3

Table 6.3: Results for the Penn Treebank development set, sentences of length ≤ 40, for
different refinement schemes implemented on top of the X-bar grammar.

Structural Refinement

The most basic, well-understood kind of refinement on top of an X-bar grammar is structural
refinement, which annotates each nonterminal with properties of its environment (Johnson
1998a; Klein and Manning 2003). This includes vertical refinement (parent, grandparent,
etc.) as well as horizontal refinement (only partially Markovizing rules as opposed to using
an X-bar grammar).

Table 6.3 shows the performance of our feature set in grammars with several different
levels of structural refinement.5 Klein and Manning (2003) find large gains (6% absolute
improvement, 20% relative improvement) going from v = 0, h = 0 to v = 1, h = 1; however,
we do not find the same level of benefit. To the extent that our parser needs to make use of
extra information in order to apply a rule correctly, simply inspecting the input to determine
this information appears to be almost as effective as relying on information threaded through
the parser.

In Section 6.6 and Section 6.8, we use v = 1 and h = 0; we find that v = 1 provides a
small, reliable improvement across a range of languages and tasks, whereas other refinements
are less clearly beneficial.

Lexical Refinement

Another commonly-used kind of structural refinement is lexicalization (Eisner 1996; Collins
1997; Charniak 1997). By annotating grammar nonterminals with their headwords, the idea
is to better model phenomena that depend heavily on the semantics of the words involved,
such as coordination and PP attachment.

Table 6.3 shows results from lexicalizing the X-bar grammar; it provides meager improve-
ments. One probable reason for this is that our parser already includes monolexical features
that inspect the first and last words of each span, which captures the syntactic or the seman-
tic head in many cases or can otherwise provide information about what the constituent’s
type may be and how it is likely to combine. Lexicalization allows us to capture bilexical

5We use v = 0 to indicate no refinement, diverging from the notation in Klein and Manning (2003).
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Test ≤ 40 Test all
Berkeley 90.6 90.1

This work 89.9 89.2

Table 6.4: Final Parseval results for the v = 1, h = 0 parser on Section 23 of the Penn
Treebank.

Arabic Basque French German Hebrew Hungarian Korean Polish Swedish Avg
Dev, all lengths

Berkeley 78.24 69.17 79.74 81.74 87.83 83.90 70.97 84.11 74.50 78.91
Berkeley-Rep 78.70 84.33 79.68 82.74 89.55 89.08 82.84 87.12 75.52 83.28
Our work 78.89 83.74 79.40 83.28 88.06 87.44 81.85 91.10 75.95 83.30

Test, all lengths
Berkeley 79.19 70.50 80.38 78.30 86.96 81.62 71.42 79.23 79.18 78.53

Berkeley-Tags 78.66 74.74 79.76 78.28 85.42 85.22 78.56 86.75 80.64 80.89
Our work 78.75 83.39 79.70 78.43 87.18 88.25 80.18 90.66 82.00 83.17

Table 6.5: Results for the nine treebanks in the SPMRL 2013 Shared Task; all values are F-
scores for sentences of all lengths using the version of evalb distributed with the shared task.
Berkeley-Rep is the best single parser from (Björkelund et al. 2013); we only compare to this
parser on the development set because neither the system nor test set values are publicly
available. Berkeley-Tags is a version of the Berkeley parser run by the task organizers where
tags are provided to the model, and is the best single parser submitted to the official task.
In both cases, we match or outperform the baseline parsers in aggregate and on the majority
of individual languages.

relationships along dependency arcs, but it has been previously shown that these add only
marginal benefit to Collins’s model anyway (Gildea 2001).

English Evaluation

Finally, Table 6.4 shows our final evaluation on Section 23 of the Penn Treebank. We use
the v = 1, h = 0 grammar. While we do not do as well as the Berkeley parser, we will see in
Section 6.6 that our parser does a substantially better job of generalizing to other languages.

6.6 Other Languages

Historically, many refinement schemes for parsers have required language-specific engineer-
ing: for example, lexicalized parsers require a set of head rules and manually-annotated
grammars require detailed analysis of the treebank itself (Klein and Manning 2003). A key
strength of a parser that does not rely heavily on an annotated grammar is that it may be
more portable to other languages. We show that this is indeed the case: on nine languages,
our system is competitive with or better than the Berkeley parser, which is the best single
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parser6 for the majority of cases we consider.
We evaluate on the constituency treebanks from the Statistical Parsing of Morphologically

Rich Languages Shared Task (Seddah et al. 2013). We compare to the Berkeley parser
(Petrov and Klein 2007) as well as two variants. First, we use the “Replaced” system of
Björkelund et al. (2013) (Berkeley-Rep), which is their best single parser.7 The “Replaced”
system modifies the Berkeley parser by replacing rare words with morphological descriptors
of those words computed using language-specific modules, which have been hand-crafted
for individual languages or are trained with additional refinement layers in the treebanks
that we do not exploit. Unfortunately, Björkelund et al. (2013) only report results on the
development set for the Berkeley-Rep model; however, the task organizers also use a version
of the Berkeley parser provided with parts of speech from high-quality POS taggers for
each language (Berkeley-Tags). These part-of-speech taggers often incorporate substantial
knowledge of each language’s morphology. Both Berkeley-Rep and Berkeley-Tags make up
for some shortcomings of the Berkeley parser’s unknown word model, which is tuned to
English.

In Table 6.5, we see that our performance is overall substantially higher than that of the
Berkeley parser. On the development set, we outperform the Berkeley parser and match the
performance of the Berkeley-Rep parser. On the test set, we outperform both the Berkeley
parser and the Berkeley-Tags parser on seven of nine languages, losing only on Arabic and
French.

These results suggest that the Berkeley parser may be heavily fit to English, particularly
in its lexicon. However, even when language-specific unknown word handling is added to
the parser, our model still outperforms the Berkeley parser overall, showing that our model
generalizes even better across languages than a parser for which this is touted as a strength
(Petrov and Klein 2007). Our span features appear to work well on both head-initial and
head-final languages (see Basque and Korean in the table), and the fact that our parser
performs well on such morphologically-rich languages as Hungarian indicates that our suffix
model is sufficient to capture most of the morphological effects relevant to parsing. Of
course, a language that was heavily prefixing would likely require this feature to be modified.
Likewise, our parser does not perform as well on Arabic and Hebrew. These closely related
languages use templatic morphology, for which suffixing is not appropriate; however, using
additional surface features based on the output of a morphological analyzer did not lead to
increased performance.

Finally, our high performance on languages such as Polish and Swedish, whose training
treebanks consist of 6578 and 5000 sentences, respectively, show that our feature-rich model
performs robustly even on treebanks much smaller than the Penn Treebank.8

6I.e. it does not use a reranking step or post-hoc combination of parser results.
7Their best parser, and the best overall parser from the shared task, is a reranked product of “Replaced”

Berkeley parsers.
8The especially strong performance on Polish relative to other systems is partially a result of our model

being able to produce unary chains of length two, which occur frequently in the Polish treebank (Björkelund
et al. 2013).
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6.7 Analysis

One question one might ask is how does this parser fare on longer sentences.9 We have
said that either the first or the last word of a span tend to be the (semantic or syntactic)
head of that span. This is especially true for shorter constituents, but not as true for longer
constituents. As an example, longer NPs might have modifying adjectival or prepositional
phrases, with the head embedded somewhere in the middle of the span. Or, the head of an
S is usually the main verb, which is usually somewhere in the middle of the sentence (in
English). One possible shortcoming of our approach, then, is that it will not fare as well on
longer sentences as approaches that inject information into the grammar. To the extent that
the head word is the most “important” word—linguistically speaking—for a constituent, the
longer the sentence, the worse this surface feature heuristic becomes.

On the other hand, we use head outward binarization for our base grammar. For (un-
binarized) rules with a preterminal head child, the head word for the constituent is always
on one side or the other of the split point of the binarized rule. In some sense, this choice
of binarization along with the split point features mean that we get an approximation of
(mono-)lexicalization “for free:” we have a cubic time parsing algorithm that still always
has access to the headword.10 However, we do not have access to bilexical dependencies,
but as we mentioned before, Gildea (2001) found that bilexical information did not help in
Collins’ model, and we found at best modest gains using bilexical features.

In light of the preceding discussion, we were curious to know how our parser performed
on sentences of different lengths, relative to a strong baseline. In Figure 6.5, we examine
parsing performance (measured in F1) of our system (with and without parent annotation)
relative to the parsing performance of the Berkeley Parser for different (binned) lengths of
sentences. Specifically, we plotted the ratio of our system’s F1 to the Berkeley Parser’s on
the development set of the Penn Treebank. (We omit the two sentences of length greater
than 65.) On the very short sentences (which are few in number), both of our systems are
much better than the Berkeley Parser, which actually performs quite poorly. On sentences
of moderate length (which make up the bulk of the data), our systems are a little worse than
the Berkeley Parser overall, but in general in the same ballpark. On the sentences in the
50-59 word range (of which there are 25), our best system is again better than the Berkeley
Parser, while on the four length 60-64 sentences, the Berkeley parser is considerably better,
though this could just be noise. So, there is no particularly clear trend in the relative parsing
performance of these models, except perhaps for the very long and very short sentences.

9Thanks to Julia Hockenmaier for inspiring this line of analysis.
10Bilexical constituency parsing has runtime that is O(n4), or O(n5) with begin, split, and end point

features.
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Figure 6.5: Parsing performance compared to the Berkeley Parser’s for two of our systems for
varying sentence lengths. The Y-axis is the ratio of our systems’ F1 to the Berkeley Parser’s
for sentences of a given length bin. “Features” is our basic system, while “Features+Parent”
is our system with parent-annotated grammar.

6.8 Sentiment Analysis

Finally, because the system is, at its core, a classifier of spans, it can be used equally well for
tasks that do not normally use parsing algorithms. One example is sentiment analysis. While
approaches to sentiment analysis often simply classify the sentence monolithically, treating
it as a bag of n-grams (Pang, Lee, and Vaithyanathan 2002; Pang and Lee 2005; Wang and
Manning 2012), the recent dataset of Socher et al. (2013b) imposes a layer of structure on
the problem that we can exploit. They annotate every constituent in a number of training
trees with an integer sentiment value from 1 (very negative) to 5 (very positive), opening
the door for models such as ours to learn how syntax can structurally affect sentiment.11

Figure 6.6 shows an example that requires some analysis of sentence structure to correctly
understand. The first constituent conveys positive sentiment with never lethargic and the

11Note that the tree structure is assumed to be given; the problem is one of labeling a fixed parse backbone.
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While “ Gangs ” is never lethargic    , it is hindered by its plot .

4 1

2
2 → (4 While...) 1

Figure 6.6: An example of a sentence from the Stanford Sentiment Treebank which shows
the utility of our span features for this task. The presence of “While” under this kind of
rule tells us that the sentiment of the constituent to the right dominates the sentiment to
the left.

second conveys negative sentiment with hindered, but to determine the overall sentiment of
the sentence, we need to exploit the fact that while signals a discounting of the information
that follows it. The grammar rule 2→ 4 1 already encodes the notion of the sentiment of the
right child being dominant, so when this is conjoined with our span feature on the first word
(While), we end up with a feature that captures this effect. Our features can also lexicalize
on other discourse connectives such as but or however, which often occur at the split point
between two spans.

Adapting to Sentiment

Our parser is almost entirely unchanged from the parser that we used for syntactic analysis.
Though the treebank grammar is substantially different, with the nonterminals consisting
of five integers with very different semantics from syntactic nonterminals, we still find that
parent refinement is effective and otherwise additional refinement layers are not useful.

One structural difference between sentiment analysis and syntactic parsing lies in where
the relevant information is present in a span. Syntax is often driven by heads of constituents,
which tend to be located at the beginning or the end, whereas sentiment is more likely to
depend on modifiers such as adjectives, which are typically present in the middle of spans.
Therefore, we augment our existing model with standard sentiment analysis features that
look at unigrams and bigrams in the span (Wang and Manning 2012). Moreover, the Stanford
Sentiment Treebank is unique in that each constituent was annotated in isolation, meaning
that context never affects sentiment and that every word always has the same tag. We
exploit this by adding an additional feature template similar to our span shape feature from
Section 6.3 which uses the (deterministic) tag for each word as its descriptor.
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Root All Spans
Non-neutral Dev (872 trees)

Stanford CoreNLP current 50.7 80.8
This work 53.1 80.5
Non-neutral Test (1821 trees)

Stanford CoreNLP current 49.1 80.2
Stanford EMNLP 2013 45.7 80.7

This work 49.6 80.4

Table 6.6: Fine-grained sentiment analysis results on the Stanford Sentiment Treebank of
Socher et al. (2013b). We compare against the printed numbers in Socher et al. (2013b) as
well as the performance of the corresponding release, namely the sentiment component in
the latest version of the Stanford CoreNLP at the time of this writing. Our model handily
outperforms the results from Socher et al. (2013b) at root classification and edges out the
performance of the latest version of the Stanford system. On all spans of the tree, our model
has comparable accuracy to the others.

Results

We evaluated our model on the fine-grained sentiment analysis task presented in Socher et
al. (2013b) and compare to their released system. The task is to predict the root sentiment
label of each parse tree; however, because the data is annotated with sentiment at each
span of each parse tree, we can also evaluate how well our model does at these intermediate
computations. Following their experimental conditions, we filter the test set so that it only
contains trees with non-neutral sentiment labels at the root.

Table 6.6 shows that our model outperforms the model of Socher et al. (2013b)—both the
published numbers and latest released version—on the task of root classification, even though
the system was not explicitly designed for this task. Their model has high capacity to model
complex interactions of words through a combinatory tensor, but it appears that our simpler,
feature-driven model is just as effective at capturing the key effects of compositionality for
sentiment analysis.

6.9 Discussion

To date, the most successful constituency parsers have largely been generative, and operate
by refining the grammar either manually or automatically so that relevant information is
available locally to each parsing decision. Our main contribution in this chapter is to show
that there is an alternative to such refinement schemes: namely, conditioning on the input
and firing features based on anchored spans. We build up a small set of feature templates as
part of a discriminative constituency parser and outperform the Berkeley parser on a wide
range of languages. Moreover, we show that our parser is adaptable to other tree-structured
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tasks such as sentiment analysis; we outperform the recent system of Socher et al. (2013b)
and obtain state of the art performance on their dataset.
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Chapter 7

Using Refinements to Accelerate
GPU Parsing

A preliminary version of this chapter appeared as Hall et al. (2014).

Because NLP models typically treat sentences independently, NLP problems have long
been seen as “embarrassingly parallel”—large corpora can be processed arbitrarily fast by
simply sending different sentences to different machines. However, recent trends in com-
puter architecture, particularly the development of powerful “general purpose” GPUs, have
changed the landscape even for problems that parallelize at the sentence level. First, clas-
sic single-core processors and main memory architectures are no longer getting substantially
faster over time, so speed gains must now come from parallelism within a single machine. Sec-
ond, compared to CPUs, GPUs devote a much larger fraction of their computational power to
actual arithmetic. Since tasks like parsing boil down to repeated read-multiply-write loops,
GPUs should be many times more efficient in time, power, or cost. The challenge is that
GPUs are not a good fit for the kinds of sparse computations that most current CPU-based
NLP algorithms rely on.

In Canny, Hall, and Klein (2013), we proposed a GPU implementation of a constituency
parser that sacrifices all sparsity in exchange for the sheer horsepower that GPUs can provide.
That system uses a grammar based on the Berkeley parser (Petrov and Klein 2007) (which
is particularly amenable to GPU processing), “compiling” the grammar into a sequence of
GPU kernels that are applied densely to every item in the parse chart. Together these
kernels implement the Viterbi inside algorithm. On a mid-range GPU, our previous system
can compute Viterbi derivations at 164 sentences per second on sentences of length 40 or
less (see timing details below).

In this chapter, we develop algorithms that can exploit sparsity on a GPU by adapting
coarse-to-fine pruning to a GPU setting. On a CPU, pruning methods can give speedups of up
to 100x. Such extreme speedups over a dense GPU baseline currently seem unlikely because
fine-grained sparsity appears to be directly at odds with dense parallelism. However, in this
chapter, we present a system that finds a middle ground, where some level of sparsity can be
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Figure 7.1: Overview of the architecture of our system, which is an extension of Canny,
Hall, and Klein (2013)’s system. The GPU and CPU communicate via a work queue, which
ferries parse items from the CPU to the GPU. Our system uses a coarse-to-fine approach,
where the coarse pass computes a pruning mask that is used by the CPU when deciding
which items to queue during the fine pass. The original system of Canny, Hall, and Klein
(2013) only used the fine pass, with no pruning.

maintained without losing the parallelism of the GPU. We use a coarse-to-fine approach as
in Petrov and Klein (2007), but with only one coarse pass. Figure 7.1 shows an overview of
the approach: we first parse densely with a coarse grammar and then parse sparsely with the
fine grammar, skipping symbols that the coarse pass deemed sufficiently unlikely. Using this
approach, we see a gain of more than 2x over the dense GPU implementation, resulting in
overall speeds of up to 404 sentences per second. For comparison, the publicly available CPU
implementation of Petrov and Klein (2007) parses approximately 7 sentences per second per
core on a modern CPU.

A further drawback of our previous dense approach in Canny, Hall, and Klein (2013)
is that it only computes Viterbi parses. As with other grammars with a parse/derivation
distinction, the grammars of Petrov and Klein (2007) only achieve their full accuracy using
minimum-Bayes-risk parsing, with improvements of over 1.5 F1 over best-derivation Viterbi
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parsing on the Penn Treebank (Marcus, Santorini, and Marcinkiewicz 1993). To that end, we
extend our coarse-to-fine GPU approach to computing marginals, along the way proposing
a new way to exploit the coarse pass to avoid expensive log-domain computations in the
fine pass. We then implement minimum-Bayes-risk parsing via the max recall algorithm of
Goodman (1996). Without the coarse pass, the dense marginal computation is not efficient
on a GPU, processing only 32 sentences per second. However, our approach allows us to
process over 190 sentences per second, almost a 6x speedup.

7.1 A Note on Experiments

We build up our approach incrementally, with experiments interspersed throughout the
chapter, and summarized in Tables 7.1 and 7.2. In this chapter, we focus our attention
on current-generation NVIDIA GPUs. Many of the ideas described here apply to other
GPUs (such as those from AMD), but some specifics will differ. All experiments are run
with an NVIDIA GeForce GTX 680, a mid-range GPU that costs around $500 at time of
writing. Unless otherwise noted, all experiments are conducted on sentences of length ≤ 40
words, and we estimate times based on batches of 20K sentences.1 We should note that our
experimental condition differs from that of Canny, Hall, and Klein (2013): there we evaluated
on sentences of length ≤ 30. Furthermore, in that work we used two NVIDIA GeForce GTX
690 s—each of which is essentially a repackaging of two 680s—meaning that our system and
experiments would run approximately four times faster on that hardware. (This expected
4x factor is empirically consistent with the result of running that system on our current
hardware.)

7.2 Sparsity and CPUs

One successful approach for speeding up constituency parsers has been to use coarse-to-
fine inference (Charniak et al. 2006b). In coarse-to-fine inference, we have a sequence of
increasingly complex grammars G`. Typically, each successive grammar G` is a refinement
of the preceding grammar G`−1. That is, for each symbol A[X] in the fine grammar, there is
some symbol A in the coarse grammar. For instance, in a latent variable parser, the coarse
grammar would have symbols like NP, VP, etc., and the fine pass would have refined symbols
NP[0], NP[1], VP[4], and so on.

In coarse-to-fine inference, one applies the grammars in sequence, computing inside and
outside scores. Next, one computes (max) marginals for every labeled span (A, i, j) in a
sentence. These max marginals are used to compute a pruning mask for every span (i, j).

1The implementation of Canny, Hall, and Klein (2013) cannot handle batches so large, and so we tested
it on batches of 1200 sentences. Our reimplementation is approximately the same speed for the same batch
sizes. For batches of 20K sentences, we used sentences from the training set. We verified that there was no
significant difference in speed for sentences from the training set and from the test set.
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This mask is the set of symbols allowed for that span. Then, in the next pass, one only
processes rules that are licensed by the pruning mask computed at the previous level.

This approach works because a low quality coarse grammar can still reliably be used to
prune many symbols from the fine chart without loss of accuracy. Petrov and Klein (2007)
found that over 98% of symbols can be pruned from typical charts using a simple X-bar
grammar without any loss of accuracy. Thus, the vast majority of rules can be skipped, and
therefore most computation can be avoided. It is worth pointing out that although 98% of
labeled spans can be skipped due to X-bar pruning, we found that only about 79% of binary
rule applications can be skipped, because the unpruned symbols tend to be the ones with a
larger grammar footprint.

7.3 GPU Architectures

Unfortunately, the standard coarse-to-fine approach does not näıvely translate to GPU archi-
tectures. GPUs work by executing thousands of threads at once, but impose the constraint
that large blocks of threads must be executing the same instructions in lockstep, differing
only in their input data. Thus sparsely skipping rules and symbols will not save any work.
Indeed, it may actually slow the system down. In this section, we provide an overview of
GPU architectures, focusing on the details that are relevant to building an efficient parser.

The large number of threads that a GPU executes are packaged into blocks of 32 threads
called warps. All threads in a warp must execute the same instruction at every clock cycle:
if one thread takes a branch the others do not, then all threads in the warp must follow
both code paths. This situation is called warp divergence. Because all threads execute all
code paths that any thread takes, time can only be saved if an entire warp agrees to skip
any particular branch.

NVIDIA GPUs have 8-15 processors called streaming multi-processors or SMs.2 Each
SM can process up to 48 different warps at a time: it interleaves the execution of each warp,
so that when one warp is stalled another warp can execute. Unlike threads within a single
warp, the 48 warps do not have to execute the same instructions. However, the memory
architecture is such that they will be faster if they access related memory locations.

A further consideration is that the number of registers available to a thread in a warp
is rather limited compared to a CPU. On the 600 series, maximum occupancy can only be
achieved if each thread uses at most 63 registers (Nvidia 2008).3 Registers are many times
faster than variables located in thread-local memory, which is actually the same speed as
global memory.

2Older hardware (600 series or older) has 8 SMs. Newer hardware has more.
3A thread can use more registers than this, but the full complement of 48 warps cannot execute if too

many are used.
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7.4 Anatomy of a Dense GPU Parser

This architecture environment puts very different constraints on parsing algorithms than a
CPU environment does. In Canny, Hall, and Klein (2013), we proposed an implementation of
a PCFG parser that sacrifices standard sparse methods like coarse-to-fine pruning, focusing
instead on maximizing the instruction and memory throughput of the parser. Here, as in
our past work, we assume that we are parsing many sentences at once, with throughput
being more important than latency. In this section, we describe the dense algorithm, which
we take as the baseline for this chapter; we present it in a way that sets up the changes to
follow.

At the top level, the CPU and GPU communicate via a work queue of parse items of
the form (s, i, k, j), where s is an identifier of a sentence, i is the start of a span, k is
the split point, and j is the end point. The GPU takes large numbers of parse items and
applies the entire grammar to them in parallel. These parse items are enqueued in order of
increasing span size, blocking until all items of a given length are complete. This approach
is diagrammed in Figure 7.2.

Because all rules are applied to all parse items, all threads are executing the same sequence
of instructions. Thus, there is no concern of warp divergence.

Grammar Compilation

One important feature of Canny, Hall, and Klein (2013)’s system is grammar compilation.
Because registers are so much faster than thread-local memory, it is critical to keep as many
variables in registers as possible. One way to accomplish this is to unroll loops at compilation
time. Therefore, we inlined the iteration over the grammar directly into the GPU kernels
(i.e. the code itself), which allows the compiler to more effectively use all of its registers.

However, register space is limited on GPUs. Because the Berkeley grammar is so large,
the compiler is not able to efficiently schedule all of the operations in the grammar, resulting
in register spills. Previously, we found we had to partition the grammar into multiple different
kernels. We discuss this partitioning in more detail in Section 7.6. However, in short, the
entire grammar G is broken into multiple clusters Gi where each rule belongs to exactly one
cluster.

All in all, the Canny, Hall, and Klein (2013) system is able to compute Viterbi charts
at 164 sentences per second, for sentences up to length 40. On larger batch sizes, our new
implementation of this approach is able to achieve 193 sentences per second on the same
hardware. (See Table 7.1.)

7.5 Pruning on a GPU

Now we turn to the algorithmic and architectural changes in our approach. First, consider
trying to directly apply the coarse-to-fine method sketched in Section 7.2 to the dense baseline
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Clustering Pruning Sent/Sec Speedup

Canny et al. – 164.0 –

Reimpl – 192.9 1.0x
Reimpl Empty, Coarse 185.5 0.96x
Reimpl Labeled, Coarse 187.5 0.97x
Parent – 158.6 0.82x
Parent Labeled, Coarse 278.9 1.4x
Parent Labeled, 1-split 404.7 2.1x
Parent Labeled, 2-split 343.6 1.8x

Table 7.1: Performance numbers for computing Viterbi inside charts on 20,000 sentences of
length ≤40 from the Penn Treebank. All times are measured on an NVIDIA GeForce GTX
680. ‘Reimpl’ is our reimplementation of our previous approach. Speedups are measured in
reference to this reimplementation. See Section 7.6 for discussion of the clustering algorithms
and Section 7.5 for a description of the pruning methods. The Canny, Hall, and Klein (2013)
system is benchmarked on a batch size of 1200 sentences, the others on 20,000.
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Figure 7.2: Schematic representation of the work queue used in Canny, Hall, and Klein
(2013). The Viterbi inside loop for the grammar is inlined into a kernel. The kernel is
applied to all items in the queue in a blockwise manner.

described above. The natural implementation would be for each thread to check if each rule
is licensed before applying it. However, we would only avoid the work of applying the rule
if all threads in the warp agreed to skip it. Since each thread in the warp is processing a
different span (perhaps even from a different sentence), consensus from all 32 threads on any
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Figure 7.3: Schematic representation of the work queue and grammar clusters used in the
fine pass of our work. Here, the rules of the grammar are clustered by their coarse parent
symbol. We then have multiple work queues, with parse items only being enqueued if the
span (i, j) allows that symbol in its pruning mask.

skip would be unlikely.
Another approach would be to skip enqueuing any parse item (s, i, k, j) where the pruning

mask for any of (i, j), (i, k), or (k, j) is entirely empty (i.e. all symbols are pruned in this cell
by the coarse grammar). However, our experiments showed that only 40% of parse items are
pruned in this manner. Because of the overhead associated with creating pruning masks and
the further overhead of GPU communication, we found that this method did not actually
produce any time savings at all. The result is a parsing speed of 185.5 sentences per second,
as shown in Table 7.1 on the row labeled ‘Reimpl’ with ‘Empty, Coarse’ pruning.

Instead, we take advantage of the partitioned structure of the grammar and organize
our computation around the coarse symbol set. Recall that the baseline already partitions
the grammar G into rule clusters Gi to improve register sharing. (See Section 7.6 for more
on the baseline clustering.) We create a separate work queue for each partition. We call
each such queue a labeled work queue, and each one only queues items to which some rule in
the corresponding partition applies. We call the set of coarse symbols for a partition (and
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therefore the corresponding labeled work queue) a signature.
During parsing, we only enqueue items (s, i, k, j) to a labeled queue if two conditions

are met. First, the span (i, j)’s pruning mask must have a non-empty intersection with the
signature of the queue. Second, the pruning mask for the children (i, k) and (k, j) must be
non-empty.

Once on the GPU, parse items are processed using the same style of compiled kernel as
in Canny, Hall, and Klein (2013). Because the entire partition (though not necessarily the
entire grammar) is applied to each item in the queue, we still do not need to worry about
warp divergence.

At the top level, our system first computes pruning masks with a coarse grammar. Then
it processes the same sentences with the fine grammar. However, to the extent that the
signatures are small, items can be selectively queued only to certain queues. This approach
is diagrammed in Figure 7.3.

We tested our new pruning approach using an X-bar grammar as the coarse pass. The
resulting speed is 187.5 sentences per second, labeled in Table 7.1 as row labeled ‘Reimpl’
with ‘Labeled, Coarse’ pruning. Unfortunately, this approach again does not produce a
speedup relative to our reimplemented baseline. To improve upon this result, we need to
consider how the grammar clustering interacts with the coarse pruning phase.

7.6 Grammar Clustering

Recall that the rules in the grammar are partitioned into a set of clusters, and that these
clusters are further divided into subclusters. How can we best cluster and subcluster the
grammar so as to maximize performance? A good clustering will group rules together that
use the same symbols, since this means fewer memory accesses to read and write scores for
symbols. Moreover, we would like the time spent processing each of the subclusters within
a cluster to be about the same. We cannot move on to the next cluster until all threads
from a cluster are finished, which means that the time a cluster takes is the amount of time
taken by the longest-running subcluster. Finally, when pruning, it is best if symbols that
have the same coarse projection are clustered together. That way, we are more likely to be
able to skip a subcluster, since fewer distinct symbols need to be “off” for a parse item to
be skipped in a given subcluster.

In Canny, Hall, and Klein (2013), we clustered symbols of the grammar using a sophisti-
cated spectral clustering algorithm to obtain a permutation of the symbols. Then the rules
of the grammar were laid out in a (sparse) three-dimensional tensor, with one dimension
representing the parent of the rule, one representing the left child, and one representing the
right child. We then split the cube into 6x2x2 contiguous “major cubes,” giving a partition
of the rules into 24 clusters. We then further subdivided these cubes into 2x2x2 minor cubes,
giving 8 subclusters that executed in parallel. Note that the clusters induced by these major
and minor cubes need not be of similar sizes; indeed, they often are not. Clustering using
this method is labeled ‘Reimplementation’ in Table 7.1.



CHAPTER 7. USING REFINEMENTS TO ACCELERATE GPU PARSING 66

The addition of pruning introduces further considerations. First, we have a coarse gram-
mar, with many fewer rules and symbols. Second, we are able to skip a parse item for an
entire cluster if that item’s pruning mask does not intersect the cluster’s signature. Spread-
ing symbols across clusters may be inefficient: if a parse item licenses a given symbol, we
will have to enqueue that item to any queue that has the symbol in its signature, no matter
how many other symbols are in that cluster.

Thus, it makes sense to choose a clustering algorithm that exploits the structure intro-
duced by the pruning masks. We use a very simple method: we cluster the rules in the
grammar by coarse parent symbol. When coarse symbols are extremely unlikely (and there-
fore have few corresponding rules), we merge their clusters to avoid the overhead of beginning
work on clusters where little work has to be done.4 In order to subcluster, we divide up rules
among subclusters so that each subcluster has the same number of active parent symbols.
We found this approach to subclustering worked well in practice.

Clustering using this method is labeled ‘Parent’ in Table 7.1. Now, when we use a coarse
pruning pass, we are able to parse nearly 280 sentences per second, a 70% increase in parsing
performance relative to Canny, Hall, and Klein (2013)’s system, and nearly 50% over our
reimplemented baseline.

It turns out that this simple clustering algorithm produces relatively efficient kernels
even in the unpruned case. The unpruned Viterbi computations in a fine grammar using
the clustering method of Canny, Hall, and Klein (2013) yields a speed of 193 sentences per
second, whereas the same computation using coarse parent clustering has a speed of 159
sentences per second. (See Table 7.1.) This is not as efficient as Canny, Hall, and Klein
(2013)’s highly tuned method, but it is still fairly fast, and much simpler to implement.

7.7 Pruning with Finer Grammars

The coarse to fine pruning approach of Petrov and Klein (2007) employs an X-bar grammar
as its first pruning phase, but there is no reason why we cannot begin with a more complex
grammar for our initial pass. As Petrov and Klein (2007) have shown, intermediate-sized
Berkeley grammars prune many more symbols than the X-bar system. However, they are
slower to parse with in a CPU context, and so they begin with an X-bar grammar.

Because of the overhead associated with transferring work items to GPU, using a very
small grammar may not be an efficient use of the GPU’s computational resources. To that
end, we tried computing pruning masks with one-split and two-split Berkeley grammars.
The X-bar grammar can compute pruning masks at just over 1000 sentences per second,
the 1-split grammar parses 858 sentences per second, and the 2-split grammar parses 526
sentences per second.

Because parsing with these grammars is still quite fast, we tried using them as the coarse
pass instead. As shown in Table 7.1, using a 1-split grammar as a coarse pass allows us

4Specifically, after clustering based on the coarse parent symbol, we merge all clusters with less than 300
rules in them into one large cluster.
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to produce over 400 sentences per second, a full 2x improvement over our original system.
Conducting a coarse pass with a 2-split grammar is somewhat slower, at a “mere” 343
sentences per second.

7.8 Minimum Bayes risk parsing

The Viterbi algorithm is a reasonably effective method for parsing. However, many authors
have noted that parsers benefit substantially from minimum Bayes risk decoding (Goodman
1996; Sima’an 2003; Matsuzaki, Miyao, and Tsujii 2005; Titov and Henderson 2006; Petrov
and Klein 2007). MBR algorithms for parsing do not compute the best derivation, as in
Viterbi parsing, but instead the parse tree that maximizes the expected count of some
figure of merit. For instance, one might want to maximize the expected number of correct
constituents (Goodman 1996), or the expected rule counts (Sima’an 2003; Petrov and Klein
2007). MBR parsing has proven especially useful in latent variable grammars. Petrov and
Klein (2007) showed that MBR trees substantially improved performance over Viterbi parses
for latent variable grammars, earning up to 1.5F1.

Here, we implement the Max Recall algorithm of Goodman (1996). This algorithm max-
imizes the expected number of correct coarse symbols (A, i, j) with respect to the posterior
distribution over parses for a sentence.

This particular MBR algorithm has the advantage that it is relatively straightforward
to implement. In essence, we must compute the marginal probability of each fine-labeled
span µ(Ax, i, j), and then marginalize to obtain µ(A, i, j). Then, for each span (i, j), we find
the best possible split point k that maximizes C(i, j) = µ(A, i, j) + maxk (C(i, k) + C(k, j)).
Parse extraction is then just a matter of following back pointers from the root, as in the
Viterbi algorithm.5

Computing marginal probabilities

The easiest way to compute marginal probabilities is to use the log space semiring rather
than the Viterbi semiring, and then to run the inside and outside algorithms as before. We
should expect this algorithm to be at least a factor of two slower: the outside pass performs
at least as much work as the inside pass. Moreover, it typically has worse memory access
patterns, leading to slower performance.

Without pruning, our approach does not handle these log domain computations well at
all: we are only able to compute marginals for 32.1 sentences/second, more than a factor of
5 slower than our coarse pass. To begin, log space addition requires significantly more oper-
ations than max, which is a primitive operation on GPUs. Beyond the obvious consequence
that executing more operations means more time taken, the sheer number of operations be-
comes too much for the compiler to handle. Because the grammars are compiled into code,
the additional operations are all inlined into the kernels, producing much larger kernels.

5This is the same algorithm we described in 3.5.
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System Sent/Sec Speedup

Unpruned Log Sum MBR 32.1 –
Pruned Log Sum MBR 130.4 4.1x
Pruned Scaling MBR 190.6 5.9x

Pruned Viterbi 404.7 12.6x

Table 7.2: Performance numbers for computing max constituent (Goodman 1996) trees on
20,000 sentences of length 40 or less from the Penn Treebank. For convenience, we have
copied our pruned Viterbi system’s result.

Indeed, in practice the compiler will often hang if we use the same size grammar clusters as
we did for Viterbi. In practice, we found there is an effective maximum of 2000 rules per
kernel using log sums, while we can use more than 10,000 rules rules in a single kernel with
Viterbi.

With coarse pruning, however, we can avoid much of the increased cost associated with
log domain computations. Because so many labeled spans are pruned, we are able to skip
many of the grammar clusters and thus avoid many of the expensive operations. Using
coarse pruning and log domain calculations, our system produces MBR trees at a rate of
130.4 sentences per second, a four-fold increase.

Scaling with the Coarse Pass

One way to avoid the expense of log domain computations is to use scaled probabilities
rather than log probabilities. Scaling is one of the folk techniques that are commonly used
in the NLP community, but not generally written about. Recall that floating point numbers
are composed of a mantissa m and an exponent e, giving a number f = m · 2e. When a
float underflows, the exponent becomes too low to represent in the available number of bits.
In scaling, floating point numbers are paired with an additional number that extends the
exponent. That is, the number is represented as f ′ = f · exp(s). Whenever f becomes either
too big or too small, the number is rescaled back to a less “dangerous” range by shifting
mass from the exponent e to the scaling factor s.

In practice, one scale s is used for an entire span (i, j), and all scores for that span are
rescaled in concert. In our GPU system, multiple scores in any given span are being updated
at the same time, which makes this dynamic rescaling tricky and expensive, especially since
inter-warp communication is fairly limited.

We propose a much simpler static solution that exploits the coarse pass. In the coarse
pass, we compute Viterbi inside and outside scores for every span. Because the grammar used
in the coarse pass is a projection of the grammar used in the fine pass, these coarse scores
correlate reasonably closely with the probabilities computed in the fine pass: If a span has a
very high or very low score in the coarse pass, it typically has a similar score in the fine pass.
Thus, we can use the coarse pass’s inside and outside scores as the scaling values for the fine
pass’s scores. That is, in addition to computing a pruning mask, in the coarse pass we store
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the maximum inside and outside score in each span, giving two arrays of scores sIi,j and sOi,j.
Then, when applying rules in the fine pass, each fine inside score over a split span (i, k, j)
is scaled to the appropriate sIi,j by multiplying the score by exp

(
sIi,k + sIk,j − sIi,j

)
, where

sIi,k, s
I
k,j, s

I
i,j are the scaling factors for the left child, right child, and parent, respectively.

The outside scores are scaled analogously.
By itself, this approach works on nearly every sentence. However, scores for approxi-

mately 0.5% of sentences overflow (sic). Because we are summing instead of maxing scores
in the fine pass, the scaling factors computed using max scores are not quite large enough,
and so the rescaled inside probabilities grow too large when multiplied together. Most of
this difference arises at the leaves, where the lexicon typically has more uncertainty than
higher up in the tree. Therefore, in the fine pass, we normalize the inside scores at the leaves
to sum to 1.0.6 Using this slight modification, no sentences from the Treebank under- or
overflow.

We know of no reason why this same trick cannot be employed in more traditional
parsers, but it is especially useful here: with this static scaling, we can avoid the costly log
sums without introducing any additional inter-thread communication, making the kernels
much smaller and much faster. Using scaling, we are able to push our parser to 190.6
sentences/second for MBR extraction, just under half the speed of the Viterbi system.

Parsing Accuracies

It is of course important verify the correctness of our system; one easy way to do so is
to examine parsing accuracy, as compared to the original Berkeley parser. We measured
parsing accuracy on sentences of length ≤ 40 from section 22 of the Penn Treebank. Our
Viterbi parser achieves 89.7 F1, while our MBR parser scores 91.0. These results are nearly
identical to the Berkeley parser’s most comparable numbers: 89.8 for Viterbi, and 90.9 for
their “Max-Rule-Sum” MBR algorithm. These slight differences arise from the usual minor
variation in implementation details. In particular, we use one coarse pass instead of several,
and a different MBR algorithm. In addition, there are some differences in unary processing.

7.9 Analyzing System Performance

In this section we attempt to break down how exactly our system is spending its time. We
do this in an effort to give a sense of how time is spent during computation on GPUs. These
timing numbers are computed using the built-in profiling capabilities of the programming
environment. As usual, profiles exhibit an observer effect, where the act of measuring the
system changes the execution. Nevertheless, the general trends should more or less be
preserved as compared to the unprofiled code.

6One can instead interpret this approach as changing the scaling factors to sI
′

i,j = sIi,j ·∏
i≤k<j

∑
A inside(A, k, k + 1), where inside is the array of scores for the fine pass.
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System Coarse Pass Fine Pass

Unpruned Viterbi – 6.4
Pruned Viterbi 1.2 1.5

Unpruned Logsum MBR — 28.6
Pruned Scaling MBR 1.2 4.3

Table 7.3: Time spent in the passes of our different systems, in seconds per 1000 sentences.
Pruning refers to using a 1-split grammar for the coarse pass.

System Coarse Pass Fine Pass
Binary Unary Queueing Masks Overhead Binary Unary Queueing Overhead

Unpruned Viterbi – – – – – 5.42 0.14 0.33 0.40
Pruned Viterbi 0.59 0.02 0.19 0.04 0.22 0.56 0.10 0.34 0.22
Pruned Scaling 0.59 0.02 0.19 0.04 0.20 1.74 0.24 0.46 0.84

Table 7.4: Breakdown of time spent in our different systems, in seconds per 1000 sentences.
Binary and Unary refer to spent processing binary rules. Queueing refers to the amount of
time used to move memory around within the GPU for processing. Overhead includes all
other time, which includes communication between the GPU and the CPU.

To begin, we can compute the number of seconds needed to parse 1000 sentences. (We
use seconds per sentence rather than sentences per second because the former measure is
additive.) The results are in Table 7.3. In the case of pruned Viterbi, pruning reduces the
amount of time spent in the fine pass by more than 4x, though half of those gains are lost
to computing the pruning masks.

In Table 7.4, we break down the time taken by our system into individual components.
As expected, binary rules account for the vast majority of the time in the unpruned Viterbi
case, but much less time in the pruned case, with the total time taken for binary rules in
the coarse and fine passes taking about 1/5 of the time taken by binaries in the unpruned
version. Queueing, which involves copying memory around within the GPU to process the
individual parse items, takes a fairly consistent amount of time in all systems. Overhead,
which includes transport time between the CPU and GPU and other processing on the CPU,
is relatively small for most system configurations. There is greater overhead in the scaling
system, because scaling factors are copied to the CPU between the coarse and fine passes.

A final question is: how many sentences per second do we need to process to saturate
the GPU’s processing power? We computed Viterbi parses of successive powers of 10, from
1 to 100,000 sentences.7 In Figure 7.4, we then plotted the throughput, in terms of number
of sentences per second. Throughput increases through parsing 10,000 sentences, and then
levels off by the time it reaches 100,000 sentences.

7We replicated the Treebank for the 100,000 sentences pass.
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Figure 7.4: Plot of speeds (sentences / second) for various sizes of input corpora. The full
power of the GPU parser is only reached when run on large numbers of sentences.

7.10 Related Work

Apart from the model of Canny, Hall, and Klein (2013), there have been a few attempts at
using GPUs in NLP contexts before. Johnson (2011) and Yi et al. (2011) both had early
attempts at porting parsing algorithms to the GPU. However, they did not demonstrate sig-
nificantly increased speed over a CPU implementation. In machine translation, He, Lin, and
Lopez (2013) adapted algorithms designed for GPUs in the computational biology literature
to speed up on-demand phrase table extraction.

7.11 Discussion

GPUs represent a challenging opportunity for natural language processing. By carefully
designing within the constraints imposed by the architecture, we have created a parser
that can exploit the same kinds of sparsity that have been developed for more traditional
architectures.

One of the key remaining challenges going forward is confronting the kind of lexicalized
sparsity common in other NLP models. The Berkeley parser’s grammars—by virtue of being
unlexicalized—can be applied uniformly to all parse items. The bilexical features needed by
dependency models and lexicalized constituency models are not directly amenable to accel-
eration using the techniques we described here. Determining how to efficiently implement
these kinds of models is a promising area for new research.

The system described in this chapter is available as open-source at https://www.github.
com/dlwh/puck.
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Chapter 8

Conclusion

In this thesis, we have presented a number of refinements1 to methods for syntactic parsing.
We introduced a unifying framework for talking about different kinds of syntactic refine-
ment, and showed how to combine these different refinements into a larger system in a way
that maintains both accuracy and computational tractability. Then, we constructed a parser
that eschews refinements in favor of simple surface features. Ultimately, we saw that adding
refinements to this model resulted in increased performance, though certain kinds of anno-
tation “stacked” with surface features better than others. Finally, we used refinements to
build a new GPU parser that achieved massive speedups relative to CPU systems.

Looking forward, there are a few ways one could extend the work in this thesis. A
particularly exciting direction would be to combine the factored approach we took in Chapter
5 with the GPU architecture we described in Chapter 7. One could imagine updating all
factors that have identical refinement structure at the same time. A sequence of K two-bit
refinements can parallelize at the warp level easily by having each thread in a warp responsible
for a different factor for a given cell. Developing this system would require extensions to
the core Expectation Propagation algorithm, which usually assumes serial updates. One
way to fix this would be to use a convexified version of Expectation Propagation, along
the lines described for Belief Propagation in Wainwright, Jaakkola, and Willsky (2003);
Wainwright and Jordan (2008b); Schwing et al. (2011). Other possibilities include using
different grammatical formalisms in a single factored system (e.g. HPSG, CCG, as well as
the standard phrase structure grammar), or to consider less-factored parsers with pairwise
interactions between the different factors.

1Pun very much intended.
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