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Abstract

Design of control algorithms for redundant neuroprosthetic brain-machine interfaces

by

Suraj Gowda

Doctor of Philosophy in Engineering–Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Jose M. Carmena, Chair

Dexterous control of upper arm movements is integral to activities of daily living. This
important ability may be lost due to neurological injury or disease, yet brain-machine inter-
faces (BMIs) or neuroprosthetics may offer the ability to restore motor function by bypassing
damaged neural circuitry. Though tremendous progress has been made in BMI performance
and robustness, additional gains are needed to improve the clinical utility of BMI systems. Of
particular importance is the need to scale BMI performance beyond the simple 2-D reaching
paradigm typically studied and extend to the multi-degree-of-freedom (multi-DOF) case. We
explored methods and design considerations for redundant multi-DOF BMIs and examine
the neuroprosthetic control mechanisms engaged by subjects.

In this work, healthy non-human primate subjects controlled a variety of virtual and phys-
ical actuators using neural signals recorded from electrode arrays implanted in the motor
cortex. We analyzed 2-D natural arm movements and developed a fast method to extract
sparse components of hand kinematics during point-to-point reaching. We then analyzed
neuroprosthetic control of a computer cursor in which neural decoding is performed using
a Kalman filter (KF). We discovered several links between KF parameters and control per-
formance of the overall BMI system, including the ability to manipulate the speed-accuracy
tradeoff of neural cursors. Building from hypotheses of model based control in natural motor
control, we examine BMI cursor control for evidence of model-based and feedforward control.

We then proceeded to develop an architecture for BMI control of a redundant actuator.
Subjects learned BMI control of a redundant four-link virtual “arm” which was confined
to move in a two-dimensional plane. When controlling this redundant arm, performance
improved when subjects made use of the redundant control dimensions. Furthermore, re-
dundant control signals were critical to escaping manipulator singularities, similar to how
redundant control signals are used in robotic systems. These results suggest the utility of
using neural signals in conjunction with standard robotic path planning methods to control
endpoint-redundant aspects of a robotic prosthesis. Altogether, the work of this dissertation
contributes progress toward BMI control of highly redundant prosthetic systems for clinical
use.
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Chapter 1

Introduction

Neuroprosthetics enable cortical control of an external actuator using a direct brain-machine
interface (BMI). This remarkable technology may hold the potential to restore communica-
tion and motor action for patients with severe neurological disorders or injuries, including
stroke, amyotrophic lateral sclerosis (ALS) and spinal cord injury. A number of compelling
proof-of-concept demonstrations have also been shown in both monkeys [1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11] and humans [12, 13, 14]. Cortically controlled prosthetics have become a realistic
possibility as advances in chronic, multi-site, multi-electrode arrays have demonstrated that
neural signals can be recorded and decoded for years from both monkeys and humans.

In addition to their potential clinical value, BMIs also provide a unique opportunity to
explore learning and control of novel systems. Despite the abstract nature of BMI control in a
virtual environment, the acquisition of BMI skill has been shown to resemble the acquisition
of natural motor skill. Over the course of several days, retuning of the BMI network during
BMI control has stability resembling a memory engram [8], can rapidly context-switch [8],
isolate the output layers of the network [15, 16], and involves deeper brain structures in the
basal ganglia [17]. Sleep has also been shown to play an important role in the consolidation of
BMI skill [18], as it does during learning of natural motor skill. Studies of short-term learning
(single session) have also shown that adaptation to perturbation involves both global (entire
network) and cell-specific adaptation strategies [19, 20], and that learning is faster when it
does not require changing the spontaneous correlational structure of the network [21].

Despite the compelling proof-of-concept of many BMI demonstrations, much remains to
be desired in terms of the robustness, flexibility, and ease-of-use of current BMI systems.
Improvement is needed both on the physical neural interface components as well as the
algorithms used to infer control signals for the actual prosthetic devices. On the implant
side, a wireless, fully implantable, long-lasting, more biocompatible system remains to be
developed, though much progress is being made on the neurotechnology front. This work
instead focuses on the development of control algorithms for BMI systems.

A central part of any BMI system is the decoder which maps from neural control signals
to actuator control signals (e.g., velocity set points, torque commands, etc.). Feedback
interaction between the brain and the decoder is a crucial determinant of performance.
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Intuitively, errors in the decoding algorithm resulting in BMI trajectories inconsistent with
the subject’s intention will result in a reaction from the subject to modify their motor plan.
This simple intuition suggests that we ought tune the parameters of our decoder while the
subject is interacting with the decoder. This approach, which we term closed-loop decoder
adaptation (CLDA), is a critical component of the methods used to develop the BMI systems
in this work.

In typical control problems, we may have a system which is not fully observable or fully
modeled, but full freedom to design the control law. In BMI applications, the inverse is
true: the control law is specified by the subject and we have little design freedom over it,
but we do have the ability to alter the properties of the system, the “plant”, to try and
enhance control. Although the decoder has been identified as important component of the
closed-loop interaction between brain and machine, relatively little is known about what type
of decoder is optimal for a neural controller. What coordinate system should the decoder
operate in? What should be the rate at which the decoder operates? Should an individual
BMI cell contribute to all aspects of the control signal, or should the cell population be more
compartmentalized, e.g., separate populations of cells to control the shoulder and to control
the elbow? These questions and others remain to be answered. Importantly, they remain
somewhat mysterious in natural movement as well; for example, the firing patterns of motor
cortical neurons has been implicated in both kinetic [22] as well as kinematic control [23].

In this work, we seek to analyze the neural control of movement, both natural and
neuroprosthetic, to inform how future generations of BMIs should be designed. Chapter
2 provides an overview of the experimental and mathematical methods used in this work.
Chapter 3 demonstrates for the particular case of the Kalman filter how a control systems
analysis can reveal properties which are not easily evident from the statistical modeling
framework. We discover pathological behavior of the decoding algorithm which emerges due
to calibration error and devise parameter estimators to correct this error, and discover simple
methods to tune the speed-accuracy tradeoff during BMI control. Chapter 4 explores the
hypothesis that natural motor control is intermittent and uses sparse feedforward control
inputs in addition to a continuous feedback controller. We devise accelerated methods to
extract this sparsity from natural movements. In Chapter 5, we examine the possibility of
model-based control of BMI systems. Finally, in Chapter 6, we demonstrate experimentally
BMI control of a redundant virtual actuator and show that subjects are able to exercise
control over the redundant elements in a way that enhances their control over the system.
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Chapter 2

Experimental and mathematical methods

This chapter outlines the experimental as well as mathematical methods used in this work.

2.1 Electrophysiology
Six adult male rhesus macaques (Macaca mulatta; monkeys P, R, S, J, C and G) were used
in this work. Not all monkeys participated in all aspects of each experiment. All procedures
were conducted in compliance with the National Institute of Health Guide for Care and
Use of Laboratory Animals and were approved by the University of California, Berkeley
Institutional Animal Care and Use Committee.

The monkeys were all implanted with chronic microwire electrode arrays for neural record-
ing (35 micron diameter, 500 micron wire spacing; Innovative Neurophysiology, Durham,
NC). Arrays targeted the arm areas of primary motor cortex (M1) and dorsal premotor
cortex (PMd) based on stereotactic coordinates. Monkeys S and J were implanted with one
8x16 array in each hemisphere targeting M1 and PMd. Monkey C also received the same
arrays as Monkeys S and J, but was also implanted with two 64 channel arrays targeting
the arm area of ventral premotor cortex (PMv), one in each hemisphere. Monkey G was
implanted in the left hemisphere with an 8x16 array and in the right hemisphere with two
8x8 arrays.

For monkeys S and J, single and multi-unit activity was recorded using a 128-channel
MAP system and sorted online using Sort Client (Plexon, Inc., Dallas, TX). For monkeys
C and G, a 256-channel Omniplex system (Plexon, Inc., Dallas, TX) was used instead. The
BMI control in this work focused primarily on control using putative single- and multi-unit
action potentials. In some experiments, typically when recording quality had degraded, the
neural signal was local field potentials (LFPs).
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2.2 Behavioral Tasks
All the behavioral tasks used in this work are variants of a 2D point-to-point reach and hold
task in which they were required to move a cursor to a highlighted target. Monkeys were
first trained on the abstract computer task by associating the cursor with the motion of
their hand, either by moving their arm using a 2-D planar exoskeleton (BKIN Technologies,
Kingston, ON, Canada) or by moving a manipulandum (joystick). The monkeys initiated
trials by moving the cursor to the visually-instructed origin and holding for 400-1500ms.
Upon entering the origin, the terminus appeared. The monkeys were then required to reach
to the specified terminus within a specified time-limit and hold for 400-1500ms to receive a
liquid reward. More specific details are provided in each chapter, as the task details often
varied by the scientific questions being asked. In some experiments, after they learned the
rules of the task they were switched to controlling the cursor using cortical neural activity
and did not directly benefit from overt arm movement.

2.3 Decoding algorithms
The decoding algorithm or “decoder” of a BMI forms the bridge from neural activity (e.g.,
spike rate, field potential power, etc.) to commands to an actuator (e.g., virtual cursor,
virtual arm, exoskeleton, etc.). This section provides a partial overview of the methods used
in this work and is primarily background material. Novel methods are introduced in context
in later chapters.

The core of current state-of-the-art decoding algorithms involves inference on a hidden
Markov model graph, as shown in Figure 2.1. The hidden state x̃t represents the subject’s
intended BMI state at time t, and the observations yt represent neural activity features ob-
servable from the electrode array. Inference algorithms generate an estimate of the intended
state, xt, which is then used to drive the actuator. For example, x̃t could be used to represent
the subject’s intended cursor position (p̃) and velocity (ṽ) at time t:

x̃t =
[
p̃horizt p̃vertt ṽhorizt ṽvertt 1

]T
.

Symbols and notation

xt = hidden state, e.g. intended BMI kinematics
∆ = discrete-time update rate of the filter
yt = Spikes observed during interval (t, t+ ∆] for all Nneurons

y[k,t] = Spikes observed during interval (t, t+ ∆] for neuron k
yt1t0 = {yt0 , · · · , yt1}

yt = yt0 = History of spike observations up to time t



CHAPTER 2. EXPERIMENTAL AND MATHEMATICAL METHODS 5

x̃t�1

ytyt�1

... ...x̃t

Figure 2.1: Hidden Markov model for BMI decoding.

We make use of two special types of matrices, the M × P matrix of all zeros 0M×P and the
N ×N identity matrix IN . When possible, we follow the standard mathematical convention
of writing 0 in place of 0M×P when the size of the matrix is unambiguous. When indexing
sub-matrices, we follow the MATLAB convention, e.g. z[1:2,:] refers to the first two rows of a
matrix z.

State-space model

The state-space model (SSM) is our model of how the intended trajectory would evolve
over time if we could observe it directly. In mathematical terms, the state-space model defines
the conditional probability distribution p(x̃t|x̃t−1). In nearly all applications where the BMI
state is continuous-valued and the subject exerts continuous control over the prosthesis, a
Gaussian random walk SSM is used:

x̃t+1 = Ax̃t + wt; wt ∼ N (0,W ) .

This model is typically selected not because it is particularly accurate, but rather because
it simplifies inference on the model. In this model, wt represents our estimate of the control
input to the system. Indeed, comparison to a standard linear system

x̃t+1 = Ax̃t +But,

where But represents the subject’s input control signal to the system, reveals that the process
noise wt is just a rather simple zeroth-order model of what would be the control term in a
linear system. We will return to this relationship in later chapters.

Kalman filter and Gaussian observation model

Variants of the KF have been used in several online BMI experiments [11, 24, 25, 26, 27]. Un-
der the KF model, the observations yt represent the spikes observed from a neural ensemble
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in the past 100 ms. The KF models x̃t and yt as jointly Gaussian with the relationship

yt = Cx̃t + qt; qt ∼ N (0, Q) .

This model of neural firing assumes that spikes are linearly related to cursor kinematics.
Neural noise is modeled by qt, which represents neural firing covariance not captured by the
linear model.

Note that due to conditional independence properties (Markov properties) of the KF
model, p (yt|xt, yt−1) = p (yt|xt). In words, the current spike observations are conditionally
independent of past spike observations when the BMI state is known. Parameters A and W
define the “state space” model while parameters C and Q constitute the neural firing model.
Together, the parameter set θ = A,W,C,Q completely specifies the KF model.

The minimum mean squared error estimate of x̃t, xt, is both linear and recursive under
the KF model:

xt = (I −KtC)Axt−1 +Ktyt. (2.3.1)

The KF algorithm recursively estimates x̃t using the previous estimate xt−1 and the most
recent observation yt. The Kalman gain Kt is an optimal linear mapping that combines the
observation vector with the previous state estimate. The decoder was updated as frequently
as new observations of neural activity could be made (every ∆=100 ms).

The Kalman gain can be computed using common properties of jointly-gaussian distribu-
tions. The Kalman gain can be found using basic properties of jointly Gaussian distributions.
We begin by partitioning the set yt:

p
(
xt| yt

)
= p

(
xt| yt, yt−1

)
.

The latter expression has a simple form because the variables are jointly Gaussian. To derive
the distribution p (xt| yt), we first write the joint distribution p (xt, yt| yt−1):

[
xt
yt

]∣∣∣∣ yt−1 ∼ N
([

x̂t|t−1

Cx̂t|t−1

]
,

[
cov (xt| yt−1) cov (xt, yt| yt−1)
cov (yt, xt| yt−1) cov (yt| yt−1)

])
.

We fill in blocks of the joint covariance matrix with the covariance calculations:

cov
(
xt| yt−1

)
, Pt|t−1

cov
(
xt, yt| yt−1

)
= E

[
xty

T
t

∣∣ yt−1
]

= E
[
xt (Cxt)

T + xtq
T
t

∣∣∣ yt−1
]

= E
[
xtx

T
t

∣∣ yt−1
]
CT = Pt|t−1C

T

cov
(
yt, xt| yt−1

)
= cov

(
xt, yt| yt−1

)T
= CP T

t|t−1 = CPt|t−1

cov
(
yt| yt−1

)
= cov

(
Cxt| yt−1

)
+ cov

(
qt| yt−1

)

= C · cov
(
xt| yt−1

)
CT + cov (qt) = CPt|t−1C

T +Q.

The distribution becomes[
xt
yt

]∣∣∣∣ yt−1 ∼ N
([

x̂t|t−1

Cx̂t|t−1

]
,

[
Pt|t−1 Pt|t−1C

T

CPt|t−1 CPt|t−1C
T +Q

])
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Multivariate Gaussian theory provides a simple way to write the conditional distribution
p (xt| yt) from the joint distribution p(xt, yt):

xt| yt ∼ N
(
x̂t|t, Pt|t

)

x̂t|t = x̂t|t−1 + cov
(
xt, yt| yt−1

)
cov
(
yt| yt−1

)−1 (
yt − Cx̂t|t−1

)

= (I −KtC) x̂t|t−1 +Ktyt; Kt = Pt|t−1C
T
(
CPt|t−1C

T +Q
)−1

Pt|t = cov
(
xt, yt| yt−1

)
cov
(
yt| yt−1

)−1
cov
(
yt, xt| yt−1

)

= Pt|t−1C
T
(
CPt|t−1C

T +Q
)−1

CPt|t−1,

where Kt as defined above is the Kalman gain. Finally, to complete the recursion, we
determine the distribution p (xt|yt−1):

xt| yt−1 ∼ N
(
x̂t|t−1, Pt|t−1

)

x̂t|t−1 = E
[
xt| yt−1

]
= E

[
Axt−1 + wt| yt−1

]

= AE
[
xt| yt−1

]

= Ax̂t|t−1

Pt|t−1 = cov
(
xt| yt−1

)
= cov

(
Axt−1 + wt| yt−1

)

= cov
(
Axt−1| yt−1

)
+ cov

(
wt| yt−1

)

= A · cov
(
xt−1| yt−1

)
AT +W

= APt−1|t−1A
T +W.

The quantities Pt|t−1 and Kt are closely related to each other and will be important for any
modifications to the KF parameter estimation procedure.

Point-process observation model

Though the Kalman filter has been successfully applied to the decoding of action potentials
by approximating integer spike counts as Gaussian, spike processes are in reality better
described as point-processes, where events occur with some rate λ, where λ may in general
depend on some (unobservable) covariates or the past event history. For sufficiently small
∆, the point process observation model for unit k is

p
(
y[k,t]|xt, yt−1

)
≈ exp

{
y[k,t] log

[
λk
(
t|xt, yt

)
∆
]
− λk

(
t|xt, yt

)
∆
}

=
[
λk
(
t|xt, yt

)
∆
]y[k,t] exp

{
λk
(
t|xt, yt

)
∆
}

For derivation of the point-process filter (PPF), it’s sufficient to think about the observation
model as modeling the probability of observing 1 spike in a time period of length ∆ under a
Poisson distribution. Each unit is assumed to be conditionally independent when the state
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xt and process history yt−1 are known, so

p
(
yt|xt, yt−1

)
=

N∏

k=1

p
(
y[k,t]|xt, yt−1

)

Generalized linear models are often used to capture the relationship between relevant covari-
ants (kinematic parameters, spiking history, etc.) and the spike rates λk (e.g., [28]). In the
general case (for any model of λ), the inference equation becomes

x̂t|t = x̂t|t−1 + P−1
t|t

(
∂

∂xt
log λt

)
[yt −∆λt] .

A full derivation of the relationship above is provided in A.2, as well as the equation for
calculating the posterior estimator covariance, Pt|t.

The simplest BMI-relevant model of neural tuning is

log λk (t|xt) = C[k,:]xt

This simple model has conditionally independent cells, and does not take into account the
self or population history of neural spiking. In this case, evaluating Pt|t becomes quite simple
and the PPF equations greatly resemble the KF equations:

Q−1 :=




∆ exp
(
C[0,:]xt

)
. . .

∆ exp
(
C[N,:]xt

)




Pt|t = Pt|t−1 − Pt|t−1C
T
(
Q+ CPt|t−1C

T
)−1

CPt|t−1

Note that (A.2.13) and (A.2.6) are identical with the appropriate definition of Q−1. For
completeness, we show the use of the matrix inversion lemma, but (A.2.14) is not necessarily
numerically stable since it requires calculating the inverse of a matrix with many small
diagonal elements, since typically the number of expected spikes in a bin will be predicted to
be close to 0. In the KF, the Q matrix is a static parameter meant to represent “unexplained
covariance” or “noise” in the observations. In the PPF, the Q matrix equivalent changes
dynamically with the observation. In essence, the more spikes you observe, the more your
uncertainty about the state decreases

2.4 Closed-loop decoder adaptation (CLDA)
Closed-loop decoder adaptation (CLDA) is an emerging paradigm for rapidly improving
closed-loop BMI performance by re-estimating decoder parameters while the subject contin-
ues to operate the BMI [2, 29, 30, 31, 11, 26].
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SmoothBatch

Parameter estimation procedures were described in our previous work [26]. Briefly, A and
W represent a linear model of hand endpoint kinematics over time, which can be estimated
independently of C and Q due to the structure of the KF model. Linear regression was used
to estimate A and W from arm movement kinematics discretized at the update rate of the
BMI. Here we used SmoothBatch [26], a CLDA algorithm that updates decoder parameters
on an intermediate time-scale with a sliding average of parameters estimated on small (1-2
min) batches of data. Parameter settings were updated by the equations

Ci+1 = αCi + (1− α) Ĉ (2.4.1)

Qi+1 = αQi + (1− α) Q̂ (2.4.2)

In (2.4.1), Ĉ is an estimate of C from the newest “batch” of data (e.g., the previous minute),
Ci and Ci+1 are the previous and updated parameter settings, respectively, and α determines
the rate at which parameters change. Maximum-likelihood estimators (MLEs) are used to
calculate Ĉ and Q̂ by constructing a linear model between our estimate of the subject’s
intended kinematics and neural spiking [26].

2.5 Assistive (shared) control
During the CLDA calibration procedure described in Section 2.4, the parameter initialization
may result in very poor performance in the early stages of CLDA. To keep the subjects
engaged and to ensure that the training data set spans the entire workspace roughly evenly,
we may share control between a machine feedback controller and the decoder in the initial
calibration procedure. The assistive input methods we use are typically in two flavors

Directed random walk assist

Section 2.3 introduced the random walk model which we typically used for decoding algo-
rithms. This section introduces a slight variant, the directed random walk model:

xt+1 = Axt + ct + wt; wt ∼ N (0,W ) (2.5.1)

The new term ct is what specifies the “directed” component of the model, as it alters the state
in a way which is not zero-mean. This captures a “control input term” to a linear system,
which is absent from the random walk model. In essence, an appropriate choice of ct inputs
makes this a noisy, goal-directed model. In our applications, this term may be specified in
three ways:

1. Specify ct directly.
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2. Specify ut and compute ct = But for a static control input matrix B.

3. Specify F and x∗ and compute ut = −F (xt − x∗) for a static control input matrix B.

In the cases where ct is specified without reference to the current state xt (cases 1 and 2
above), the model control input is regarded as an “oracle” signal that appears magically and
does not affect the covariance of xt+1. In the third case, the random walk model becomes

xt+1 = Axt −BF (xt − x∗) + wt

= (A−BF )xt +BFx∗ + wt.

In this case, the covariance of xt+1 is affected. To fit this case into our original formalism
(2.5.1), we make the substitutions

A← A−BF
ct ← BFx∗,

where in the modified equivalent system, ct becomes a constant if x∗ is constant.

Weighted average assist

One drawback with using the directed random walk assist is that the control term is simply
added onto the decoder. Thus the decoder may be able to “overpower” the assist and in cases
where the parameter initialization is extremely bad, this may result in bizarre performance.
This ability of the decoder to overpower the assist comes from the wt term, where the
possibility of process noise admits neural control inputs into the system. This overpowering
can be squashed by changing the magnitude of the W matrix temporarily. However, the
units of the W matrix may be difficult to interpret and hence difficult to manipulate in a
way that carefully impacts performance (see Section 3.3 for a discussion on this point using
real experimental data). An equivalent but much simpler parameterization simply involves
a weighted assist:

xt+1 = (1− α)xdecodert+1 + αxassistt+1

Bounding of configuration space

In addition to generating goal-directed trajectories during the parameter calibration period,
similar methods may be used to apply soft constraints to the state of the prosthesis, e.g.,
to keep the position of a cursor in range of an “equilibrium” point or to keep a robot near a
particular part of configuration space. In this case, applying the methods of Section 2.5 with
x∗ set to a constant, experimenter-specified equilibrium state yields a system which softly
constrains the state of the BMI. Just as with the assist, the decoded neural commands can
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override the model-generated command to drive the system toward the equilibrium state.
We apply this idea to the control of a redundant kinematic chain in Chapter 6 and find in
Chapter 3 that similar behavior emerges by accident when certain neural models are applied
to KF control of a cursor.



12

Chapter 3

Designing dynamical properties of BMIs
to optimize task-specific performance

This chapter analyzes a BMI cursor system from a linear systems perspective and analyzes
empirically and theoretically how changes in the decoder parameters affect task performance.
This work was in collaboration with Amy Orsborn, Simon Overduin, Helene Moorman and
Jose Carmena and has been published [32].

3.1 Introduction
An understanding of the dynamical properties of closed-loop BMI systems may inform the
design of future BMI decoding algorithms. In this paper, we demonstrate that closed-loop
dynamical properties of a BMI vary due to parameter recalibration, affect BMI performance
and can be tailored to a particular task to maximize performance.

In closed-loop BMI, subjects attempt to control the state of the neuroprosthesis using
real-time feedback. Discrepancies between the subject’s motor intent and the output of the
decoding algorithm, or “decoder”, likely alter the subject’s future control plan. Given this
inherent closed-loop interaction between subject and decoder, the dynamical properties of the
decoder are of great relevance to BMI performance. For instance, performance is influenced
by the selection of kinematic variables to be decoded. BMIs using a stochastic position model
were outperformed by BMIs where position was computed deterministically by integrating
velocity [3, 11, 24]. In addition, closed-loop BMI experiments have demonstrated how the
smoothness of the decoded output [?] as well as the total delay of the decoder [33] can
affect performance. BMI subjects can also improve performance with learning [8], adapt to
rotation perturbations [19, 34, 20], and even learn to control arbitrary linear systems [7, 8].
However, experimental evidence also suggests that BMI subjects may not be able to learn to
produce arbitrary activity patterns with the neurons selected for BMI [20, 35], meaning that
there may be decoders with properties that cannot be optimally controlled. Understanding
the properties and performance impacts of various BMI subsystems can enable the design of
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more effective BMIs.
To better understand the range of possible closed-loop BMI system properties and how

they influence performance, we trained monkeys to make center-out reaches using a Kalman
filter (KF) BMI that decoded cursor position and velocity [25]. The position-velocity KF
(PVKF) has readily interpretable parameters that can produce a broad range of interesting
dynamical features. We analyzed two system properties in detail. First, nearly all parameter
settings for the PVKF create attractor points that the subject’s control input to the system
must counteract. Attractor points can change unpredictably when the PVKF parameters
change, e.g. when the decoder is recalibrated, but they are eliminated entirely in systems
where only velocity is decoded. Second, we observed an intuitive tradeoff between speed
of the cursor and proficiency in holding at the target. This tradeoff is highly correlated
with changes in system memory, which can also change with recalibration but can be easily
controlled by the BMI designer with proper parameter selection.

3.2 Methods

Task

Monkey S (J) was trained to perform a self-paced delayed 2D center-out reaching task to
8 circular targets of 1.7 (1.2) cm radius uniformly spaced about a 14 (13) cm-diameter
circle. After being trained to perform the task with arm movements, the monkeys learned to
perform the BMI task. In this task, the monkeys controlled the cursor directly with neural
activity via a Kalman filter decoder and in the absence of overt arm movements. Figure 3.1
illustrates the experimental setup. The monkeys initiated trials by moving the cursor to the
center and holding for 400 (250) ms. The monkeys had an unlimited amount of time to enter
the center to initiate a trial. Upon entering the center, the peripheral target appeared. After
the center-hold period ended, the monkeys were cued (the center changed color) to initiate
the reach. Then they were required to move the cursor to the peripheral target within a given
3-7 second time-limit and hold for 400 (250) ms to receive a liquid reward. Failure to hold at
the center, hold at the peripheral target, or reach the peripheral target within the time limit
restarted the trial to the same target without reward. Center hold errors at the start of the
trial occurred frequently as the penalty to the monkey was minimal. Failure to hold at the
target was far more common than failure to reach the target within the time limit. Targets
were block-randomized to evenly distribute trials to each target in pseudorandom order.

Performance Measures

We quantified BMI task performance as well as the accuracy with which the monkeys per-
formed the task. Upon successfully initiating a trial, there were two possible task-errors:
failure to reach the peripheral target in time, and failure to hold at the peripheral target.
We only analyzed performance of “target-in” trials, in which the monkeys were able to reach
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Figure 3.1: (A) BMI task. While controlling a 2D BMI cursor, the monkeys sat in primate
chairs with their arms outside of the cursor workspace. Monkeys were required to operate the
BMI in a center-out task. Visual feedback of the cursor’s decoded position was presented
to the monkeys to enable closed-loop BMI operation. Recursive decoders, like the KF,
use internal decoder feedback to generate new decoder outputs based partially on previous
decoder outputs. The BMI is represented as a linear dynamical system in this diagram,
which can represent many commonly used BMI algorithms including the population vector
algorithm, Wiener filter and Kalman filter. (B) Time-line of task events.

the peripheral target, including both successful trials and trials that ended in target hold
errors (see Figure 3.1B). BMI performance was assessed using three metrics:

1. Hold error rate: the number of target hold errors per successful trial, e.g. a hold
error rate of 2 corresponds to 2 hold errors per successful trial. Target hold errors had
a stricter penalty than center hold errors, as the monkey was required to return to
the center before re-attempting the target hold. Hold errors have been identified by
numerous studies as particularly problematic for BMIs [3, 11, 13, 24].

2. Cursor speed: the displacement of the cursor per second, calculated continuously (i.e.,
every new decoder output yielded a new speed measurement) during the time-limited
“reaching” epoch (see Figure 3.1B).
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3. Movement error (ME): the average distance between the cursor’s position and the
“task axis”, the straight line between the center and peripheral target, per trial [24].
We discarded a small percentage of highly inaccurate trials in which the cursor touched
one of the other targets.

Lower values correspond to better performance for all of these performance measures. The
number of initiated trials also varied across sessions because the task was self-paced and the
duration of experimental blocks varied. In statistical tests across sessions with different
numbers of trials, each target-in trial was given equal statistical weight (e.g. weighted
regression analysis).

Simulating BMI control using linear-quadratic control

Simulations of optimal control provide a useful mechanism for qualitatively understanding
how a fixed control strategy behaves when the properties of the system being controlled
changes. We simulated center-out reaches by generating control inputs to the BMI system
using an optimal linear feedback controller with no control noise. In mathematical terms,
the BMI system is simulated as



pt
vt
1


 = F



pt−1

vt−1

1


+




02×1

ut
0


 . (3.2.1)

The two-dimensional velocity control signal ut was designed to drive the cursor from an
initial rest position x0 to a final rest position xtarg while minimizing the linear-quadratic
cost function

∑T
t=1(xt − xtarg)

TZ(xt − xtarg) + uTt Rut. The optimal feedback controller L
is given by the linear-quadratic regulator (LQR) solution for the system in (3.2.1) if Z, R,
and a model of F are known [36]. Thus, the model of F used for controller design, Fmodel,
is analogous to the BMI subject’s “internal model” of cursor dynamics. Both Z and R were
set to 1 to avoid extreme control inputs (e.g. on-off/bang-bang controllers). The feedback
controller generated the control input sequence ut = Lxt in both open- and closed-loop. The
source of xt used to generate the input ut differentiated open- versus closed-loop execution.
Open-loop execution used xOLt pre-computed using the internal model:

xOLt = F t
modelx0 +

t−1∑

k=1

F t−k
model · uk; uOLt = LxOLt .

In general, xt 6= xOLt due to control noise and/or mismatch between the internal model and
the true system. In contrast, the closed-loop controller uses the true xt, i.e. uCLt = Lxt.

For our simulations, the internal model was set to be “physically realistic”, assuming
the cursor position to be set by integrating independent horizontal and vertical velocity
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components:

Fmodel =




I2 0.055I2 02×1

02×2 0.6I2 02×1

01×2 01×2 1


 . (3.2.2)

We picked the values 0.055 and 0.6 from the range of experimentally observed instances of
F . In Section 3.3, we explored how the controller designed with Fmodel behaved when there
was a one-parameter mismatch between the true F and Fmodel.

3.3 Results

Comparisons of dynamical systems underlying linear decoding
algorithms

BMI systems that use linear decoders, including the KF, produce the estimate of intended
kinematics x̃t using the previous estimate xt−1 and the current spike observations yt, as
shown in (2.3.1):

xt = (I −KtC)Axt−1 +Ktyt = Ftxt−1 +Ktyt. (3.3.1)

We refer to (3.3.1) as the BMI system equation. Ft is the closed-loop state transition matrix
of the system, and Kt is the control input matrix. In the KF, Ft and Kt are determined by
the initial cursor state and all of the model parameters (not just the state-space model).

In stable KFs with fixed model parameters, F_t and K_t converge to F and K, respec-
tively. This convergence occurs within seconds at the update rate of BMIs. This “steady-
state” Kalman filter has been used in offline predictions in place of the standard KF to reduce
computational overhead [37]. Rapid convergence enables us to analyze KF decoders as time-
invariant linear dynamical systems and exposes decoder properties that directly impact BMI
control. Figure 3.1A shows this system in block-diagram form.

For 2D linear position/velocity BMIs, we can further sub-divide F and K into components
related to position and velocity:



pt
vt
1


 =



T S p̄
M N v̄
0 0 1





pt−1

vt−1

1


+



Kpos

Kvel

1


 yt (3.3.2)

In (3.3.2), T and M determine position-dependent dynamics while S and N determine
velocity-dependent dynamics. In this context, dynamics refers generally to properties of a
dynamical system. The control input sub-matrices Kpos = K[1:2,:] and Kvel = K[3:4,:] map
spike observations to control inputs for position and velocity, respectively.

The duration of time that a velocity control input Kvelyt influences the system state xt
depends on N : N = 0 allows a control input to be active for exactly one system iteration,
||N ||2 ≥ 1 creates an unstable system in which control inputs affect the system state forever,
and 0 < ||N ||2 < 1 causes the influence of a control input to smoothly decay over multiple
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time steps. In this last case, which represents all KF decoders used in practice, the time
duration a control input remains relevant to the system state depends on the magnitude of
N . Consequently, we will say that the system has a control memory quantified by ||N ||2.
In contrast, position control inputs Kposyt generate “instantaneous” position displacement,
which is characteristically different from the multiple time steps required for a velocity control
input to enact a position displacement.

The linear systems perspective enables us to easily identify common features of different
linear decoding algorithms. For example, the VKF state xt =

[
vhorizt vvertt 1

]T contains
only the velocity components. Position estimates are generated by “integrating” the decoded
velocity: pt = ∆vt + pt−1, where Δ is the rate at which new decoder outputs are generated.
The VKF system equation reduces to



pt
vt
1


 =



I2 ∆I2 0
0 N v̄
0 0 1





pt−1

vt−1

1


+




0
Kvel

1


 yt.

The steady-state VKF is a special case of the steady-state PVKF, governed by a similar but
more structured system driven only by the velocity terms.

The ReFIT-KF [11] retains some, but not all, properties of the PVKF. The ReFIT-KF
uses the same neural observation model as the PVKF, but decodes position deterministically,
like the VKF [11]. The ReFIT-KF thus has a decoder structure in between the PVKF and
the VKF: 


pt
vt
1


 =



I2 ∆I2 0
M N v̄
0 0 1





pt−1

vt−1

1


+




0
Kvel

1


 yt. (3.3.3)

The closed-loop implications of allowing M 6= 0, the major difference in decoder structure
between the VKF and the ReFIT-KF, are discussed in Section 3.3.

To acquire the standard population vector algorithm (PVA), we only need to modify the
VKF to make N = 0, which updates the cursor based only on the instantaneously decoded
velocity. However, the velocity decoded by the PVA is often smoothed before integration
(e.g. [34] uses a boxcar filter). Any linear filter can be absorbed into (3.3.1). For example,
when we apply the parameter constraints

A =



I2 ∆I2 0
0 aI2 0
0 0 1


 ,W =




0 0 0
0 wI2 0
0 0 0


 , CTQ−1C =




0 0 Σp

0 dI2 Σv

ΣT
p ΣT

v Σ1


 , (3.3.4)

to the PVKF, the system becomes


pt
vt
1


 =



I2 sI2 p̄
0 nI2 v̄
0 0 1





pt−1

vt−1

1


+



γKvel

Kvel

1


 yt. (3.3.5)

(see Appendix for details). This system is equivalent to a PVA decoder with a first-order
infinite impulse response low-pass filter. The first two constraints force the KF state-space
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model to treat horizontal and vertical velocity independently. The third constraint asserts
that the vertical tuning models should be orthogonal. Because A and W are never re-
calibrated in our system, only one degree of freedom remains to determine both n and s.
We will refer to all three constraints collectively as the independent velocity control (IVC)
constraints. Under these constraints, the control memory ||N ||2 simplifies to ||N ||2 = n.

More generally, y_t can be replaced with spike inputs from multiple time-steps, e.g.,
ỹt =

[
yTt · · · yTt−J

]T to accommodate the multi-timestep history often decoded using
Wiener filter decoders, also referred to as optimal linear estimators (e.g. [1, 3, 8, 9, 12]).
The Wiener filter can be written simply as xt = KWF ỹt. Just as for the PVA, F can be
extended to capture any static filtering applied to the decoded output.

A high degree of similarity exists between the various types of linear decoders used in
BMI demonstrations. Because the PVKF permits the most possible dynamical properties
in F, the remainder of the Results analyzes how various PVKF properties may affect BMI
performance, both theoretically (Section 3.3) and in BMI experimental data (Sections 3.3-
3.3).

Closed-loop properties of linear decoders

In this section, we demonstrate possible closed-loop dynamical properties of linear position-
velocity decoders using simple optimal control simulations described in Section 3.2. The
feedback control strategy is based on an “internal model” of the true behavior of the system
being controlled, in this case the BMI. For the system in (3.2.1), the internal model used was
physically realistic as described previously in Section 3.2. This physically realistic structure
was not established in the PVKF when using standard MLEs to estimate parameters, as we
show at the end of this section. The presence of non-physical system properties may affect
performance due to mismatch between the control strategy and the true system properties.
In the following simulations, the true F differed from F_model in (3.2.2) by exactly one
element. Each simulation perturbed a different parameter and we simulated open- and
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closed-loop control in each condition:

F∆T[1,1]
=




0.98 0 0.055 0 0
0 1 0 0.055 0
0 0 0.6 0 0
0 0 0 0.6 0
0 0 0 0 1



,

F∆M[1,1]
=




1 0 0.055 0 0
0 1 0 0.055 0

0.03 0 0.6 0 0
0 0 0 0.6 0
0 0 0 0 1



,

F∆N[1,2]
=




1 0 0.055 0 0
0 1 0 0.055 0
0 0 0.6 −0.1 0
0 0 0 0.6 0
0 0 0 0 1



,

F∆(∆n) =




1 0 0.055 0 0
0 1 0 0.055 0
0 0 0.6 0 0
0 0 0 0.5 0
0 0 0 0 1



.

Each of the selected parameters, T[1,1], M[1,1], N[1,2] and ∆n = |N[0,0] − N[1,1]|, was replaced
with its average experimental value to form the “perturbed” system and differs from the
controller’s internal model (3.2.2) by the single selected parameter. The feedback controller
was not updated after the system was altered, so the internal model used for planning and
control did not match the true system properties.

Mathematical analysis can predict the effect of each perturbation. The system F∆T[1,1]

has a property that drives |px|, the absolute value of the cursor’s horizontal position, to 0.
The system F∆M[1,1]

has a property which causes vertical velocity to increase as the position
of the cursor moves towards the top of the workspace, creating non-uniform velocity offsets
in the vertical dimension of the workspace. The system F∆N[1,2]

has a property that causes
horizontal velocity to decrease as vertical velocity increases, resulting in counterclockwise
curl dynamics. Finally, the system F∆(∆n) has a property that makes the velocity control
memory asymmetric, causing the cursor to respond differently to velocity control inputs in
the horizontal and vertical dimensions.

The LQR controller planned an open-loop control sequence using its internal model of
system properties. Figure 3.1A shows the example planned reach, which was identical for
open- and closed-loop control simulations. This control sequence was executed with each of
the four perturbed F matrices in turn. Figure 3.1B-E shows this open-loop control executed
after modifying T[1,1],M[1,1], N[1,2] and ∆n, respectively. Figure 3.1B shows open-loop control
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Figure 3.1: Simulations of open-loop and closed-loop optimal control using a fixed internal
model. (A) Open-loop planned reach from the center to the peripheral target, where the
trajectory begins as gray and transitions to black at the end of the reach. The open-loop
control sequence was executed on a system that was slightly different from the internal
model used for planning. Depending on the difference between the internal model and the
true system, the open-loop trajectory was affected by (B) position drift, (C) non-uniform
velocity offsets, (D) counterclockwise curl and (E) undershooting. (F) Same reach planned
as in (A), but control inputs were generated using closed-loop feedback control instead of
open-loop feedforward control. The closed-loop trajectory was distorted by (G) position
drift, (H) non-uniform velocity offsets, (I) counterclockwise curl and (J) clockwise curl due
to closed-loop control of an asymmetric system.

of F∆T[1,1]
, where at the end of the reach, the cursor drifts left toward the vertical axis where

|px| = 0. Figure 3.1C illustrates open-loop control of F∆M[1,1]
, where the cursor overshoots

the planned vertical endpoint due to the non-zero vertical velocity at the endpoint. Figure
3.1D depicts open-loop control of F∆N[1,2]

, where the cursor trajectory curls off to the left.
Intuitively, F∆N[1,2]

does not allow the cursor to move along the horizontal axis by controlling
only the horizontal velocity. Lastly, Figure 3.1E demonstrates open-loop control of F∆(∆n),
where the trajectory was still a straight line reach but short of the target in the vertical
dimension. Simply put, open-loop control cannot compensate for any of the perturbations
because they were unknown at the time of trajectory planning.

Switching to the closed-loop controller produces better but suboptimal trajectories. Fig-
ure 3.1F-J shows closed-loop control executed after modifying T[1,1], M[1,1], N[1,2] and ∆n,
respectively. For modifications to T[1,1], M[1,1], N[1,2], closed-loop control reduced the impact
of dynamical effects that were problematic for open-loop control, but did not eliminate them
entirely. Interestingly, Figure 3.1J shows that when controlling F∆(∆n), a curl effect was
present in closed-loop but not open-loop control. In this case, the control policy recognized
that the cursor was vertically short of the target, but because it was designed for a system
with symmetric velocity dynamics, it made the horizontal velocity larger even though the
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original horizontal control was correct. Therefore, unexpected decoder dynamics can have
a deleterious effect on BMI performance, even when control inputs are generated in closed-
loop and without control noise. These theoretical results imply that non-physical system
properties may affect BMI control if the subject plans BMI movements using a mismatched
internal model.

In experimental PVKF decoders, all of these non-physical “perturbations” are active
simultaneously and interact with each other. For example, we can examine how the static
offsets p̄ and v̄, which were zero for illustration purposes earlier, interact with T andM . The
net position offset will be zero under certain conditions, i.e. the effects of T cancel p̄ when
(T − I2) pt + p̄ = 0 and the effects of M cancel with v̄ when Mpt + v̄ = 0. In experimental
decoders, both M and T − I2 were always invertible, establishing p∗T = −(T − I2)−1p̄ and
p∗M = M−1v̄ as cursor attractor points. As shown in (3.5.4), the static offsets p̄ and v̄ changed
based on the neural firing model. Any training method for C and Q must be data-dependent,
meaning that the attractor points are also training data-dependent.

Based on this analysis of the dynamical subsystems of the position/velocity decoder, we
split F into two components

F =



I2 sI2 0
0 nI2 0
0 0 0




︸ ︷︷ ︸
F vel

+



T − I2 S − sI2 p̄
M N − nI2 v̄
0 0 0




︸ ︷︷ ︸
F offset

. (3.3.6)

The system F vel moves the cursor by propagating forward independent horizontal and vertical
velocity states, including the control memory discussed in Section 3.2. The addition of F offset

incorporates all of the “offset” properties discussed in this section. The scalar n is set to the
average diagonal value of N to minimize ||N−nI2||F (Frobenius norm); s is defined similarly.
With these subsystem splits, the equations governing the motion of the cursor become

pt+1 = pt + svt + F offset
pos xt +Kposyt (3.3.7)

vt+1 = nvt + F offset
vel xt +Kvelyt, (3.3.8)

where F offset
pos = F offset

[1:2,:] and F offset
vel = F offset

[3:4,:] . The offset effects had sizable contribution
to the cursor kinematics. Across all PVKF sessions (monkey S: 114, monkey J: 8), F offset

pos

contributed 0.35±0.15 cm (mean±sd) for monkey S and 0.30±0.07 cm for monkey J, a sizable
contribution when compared to Kposyt (monkey S: 0.47±0.13 cm, monkey J: 0.61±0.13 cm)
or when compared with svt (monkey S: 0.24±0.02 cm, monkey J: 0.23±0.02 cm). Similarly
for the velocity, F offset

vel contributed 1.53±0.66 cm/sec for monkey S and 0.92±0.27 cm/sec
for monkey J, which was again sizable compared to Kvelyt (monkey S: 2.92±0.33 cm/sec,
monkey J: 2.35±0.23 cm/sec) and compared to nvt (monkey S: 1.48±0.24 cm/sec, monkey
J: 2.14±0.19 cm/sec). The offset effects clearly make a non-trivial contribution to cursor
motion and we explore their performance impacts further in Section 3.3.
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Stochastic position decoding generates workspace attractor points

In Section 3.3, we described two mechanisms by which the inclusion of F offset could gen-
erate workspace attractor points, denoted p∗T and p∗M based on their respective underlying
mathematical causes. We confirm here that the influence of these attractor points is indeed
visible in experimental data. In this analysis, we analyzed BMI control of 114 sessions for
monkey S and 8 PVKF sessions from monkey J.

The directional variance of F offset
pos xt decreased substantially after accounting for the

attractor point p∗T . For a two-dimensional vector x = (x1, x2), we define its direction as
∠x = tan−1(x2/x1); the directional variance of x is the circular variance of ∠x [38]. In the
experimental data, the circular variance of [∠F offset

pos xt − ∠(p∗T − pt)] is much less than that
of ∠F offset

pos xt: 89.9±12.2% (mean±std) less for monkey S and 93.5±2.7% less for monkey J.
Figure 3.2A shows an example of the influence of F offset

pos as well as the theoretical attractor
point for a typical experimental session. Note that theoretically the path along which the
attractor point pulled the cursor could have been a curved path but the effects of F offset

pos

were typically well explained as a straight pull toward p∗T . The attractor points due to p∗T
in other sessions varied across the workspace unsystematically and changed unpredictably.
Thus, for both monkeys, one of the main drivers of cursor motion was driving the cursor
toward a fixed position.

The effects of F offset
vel were less clearly defined than those of F offset

pos . For monkey J, the
directional variance of F offset

vel xt decreased 61.7±28.1% after accounting for p_M^*. Monkey
S contributed many more sessions than monkey J, and the results were more complex due
to the greater diversity of dynamical effects. For 62 sessions, the standard deviation of
the direction of F offset

vel xt was less than 15 degrees and thus well explained as a pull in a
particular direction (rather than towards a point). For 64 sessions, the directional variance
of F offset

vel xt decreased at least 25% after accounting for the location of the attractor point;
the variance reduction for this subset of the data was 62.2±17.4%. 32 sessions were well
described by both models (e.g. if p∗M were far enough from the workspace that p∗M − pt was
approximately constant across the workspace); thus 94 sessions (64+62-32) are well described
by one of the two models. For the 20 remaining sessions, these models were insufficient to
describe F offset

vel , indicating more complicated interaction between the offset effects. Figure
3.2B shows an example of F offset

vel xt during a representative experimental session, and its
behavior is clearly more complex than that of F offset

pos xt in the same session, shown in Figure
3.2A.

Simulations and experimental data indicate that the attractor points may be due to
parameter estimation artifacts rather than the monkey’s control strategy. To investigate
how properties of the MLEs can affect decoder properties, we simulated the neural activity
of 25 velocity-tuned neurons with uniformly distributed preferred directions and modulation
depth of 0.7 spikes per cm [39] in response to artificial center-out trajectories. Attractor
points in these simulation conditions must be artifacts because the true neural tuning was
invariant to the cursor position; a positional dependence could only emerge due biases in
the training data, e.g. finite data effects or the correlation between velocity and position in
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Figure 3.2: Experimental examples of PVKF “offset” properties. The evolution of the cursor’s
position and velocity, which were updated every Δ=100 ms, can be mapped back to 3
different sub-systems of the KF: the direct “control input”, the integration of the previous
velocity, and lumped “offset” characteristics of the system, as shown in (12) and (13). (A)
Examples of the position offset properties in an experimental position-velocity decoder, which
we show in Section 3.3 can be explained primarily as movement toward an attractor point
(gray dot). (B) Velocity offset properties for the same experimental session as in (A), which
generally cannot be described as compactly as the position offset properties. As we show in
Section 3.3, both position and velocity offsets have non-trivial contributions to the kinematics
of the BMI.

center-out trajectories. However, across 100 simulations, p∗T again accounted for 91.8±9.1%
of the directional variance of F offset

pos xt, similar to the experimental data, and the attractor
points found were spread across the workspace, even though trajectories and neural tuning
properties were identical in all simulations. Moreover, for subject J, application of the IVC
constraints resulted in decreases to both the median ||p̄|| and the median ||v̄|| compared
to PVKF estimates of p̄ and v̄: ||p̄|| decreased by a factor of 30 (Kruskal-Wallis ANOVA,
p<0.001) and ||v̄|| decreased by a factor of 9 (Kruskal-Wallis ANOVA, p<0.001). That
is, when position-dependent offset properties were eliminated, the static offset properties
diminished without constraint. This implies that the necessity of the static offsets depends
on the presence of position-dependent offset properties within the system, and the emergent
attractor points in unconstrained PVKFs could be modeling artifacts rather than features
of the monkey’s neural control strategy.

Our results offer an explanation for other studies that have described a negative impact of
stochastic position models on BMI performance. As we described in Section 3.3, the attractor
points cannot exist if T = I2 and M = 0. Other decoding algorithms automatically impose
such constraints by removing stochastic position-related components, including the VKF,
ReFIT-KF, PVA and PVKF under IVC constraints, and experiments of [11] and [24] both
show performance improvements if T = I2. Consistent with those results, monkey S’s hold
error rate improved as ||F offset

pos xt|| decreased (r=0.34, p < 0.0005) and monkey J’s hold
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error rate when using the PVKF was improved by nearly a factor of 4 with IVC constraints
(Kruskal-Wallis test, p < 0.0005). In other words, hold performance improved when p∗T
decreased in relevance or was eliminated entirely. Additionally, our results indicate that
for monkey S, hold performance improved as ||F offset

vel xt|| decreased (r=0.20, p<0.05) and
when ||N −nI2|| decreased (r=0.19, p<0.05). Correlations with cursor speed and movement
error were not significant, suggesting that ||F offset

pos xt|| and ||F offset
vel xt|| have their greatest

impact on performance during the precision holds. However, the effects of F offset
vel were

complex, and making strong conclusions about its performance impact may require future
experiments. From (3.3.3) it can be observed that the ReFIT-KF allows one attractor point
but not the other (p∗M but not p∗T ). The experiments of Shenoy and colleagues show that
ReFIT-KF outperforms a VKF trained on arm movements and their work discusses the
benefits of modeling the neural response to the cursor’s position [11]. Our analysis here
shows that these position models can be used without creating any attractor points if F
is appropriately structured. Many options may be possible to achieve such structure, e.g.
by intervening in the operation of the KF as is performed by Shenoy and colleagues [11].
Eliminating static attractor points while retaining a position-dependent neural model might
result in further performance improvements if neural firing is significantly related to cursor
position, but further experimentation is required to test this hypothesis.

Model-driven tradeoff between accuracy and speed

In Section 3.3, we noted that ||N ||2 quantifies the system’s control memory which determines
how long a velocity control input Kvelyt influences the state of the BMI. Intuitively, a cursor
with a longer control memory should be faster but also harder to slow down. To verify this
intuition with experimental data, we used the same 114 PVKF sessions from monkey S and
8 PVKF sessions from monkey J used in Section 3.3, as well as 17 PVKF sessions with IVC
parameter constraints from monkey J. For both monkeys, the cursor speed increased as ||N ||2
increased (r = 0.482 for monkey S and r = 0.871 for monkey J, p < 0.001). Furthermore,
we also found that the hold error rate increased as ||N ||2 increased (r = 0.583 for monkey
S, r = 0.825 for monkey J, p < 0.001). Figure 3.3 depicts these results graphically, and a
similar tradeoff is observed for the movement error. This tradeoff is also observed for monkey
J when limiting the data only to experiment sessions where IVC parameter constraints were
applied. Again, larger ||N ||2 correlated with increases in cursor speed (r = 0.945, p < 10−7)
as well as the hold error rate (r = 0.63, p = 0.006). As discussed in Section 3.3, the control
memory is the only free parameter in F after the IVC parameter constraints are applied.
Therefore, it is likely that the control memory is responsible for an intuitive tradeoff between
speed and accuracy.

In addition to controlling performance tradeoffs, properly constraining the control mem-
ory may enable faster decoder calibration. The average trajectories for ||N ||2 during CLDA
were similar across sessions and monkeys. In Figure 3.4A-B, we show the average trajectories
of ||N ||2 over the course of SB adaptation for the most common training time of 25 min-
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Figure 3.3: BMI “control memory” influences performance. The “control memory” of the
linear decoder, quantified by ||N ||2, is plotted against three experimental performance mea-
sures, the hold error rate, mean cursor speed and mean movement error. Each point in the
scatter-plot represents one set of decoder parameters and the color of each point represents
the number of trials for which that decoder parameter set was used in experimental sessions.
For both monkeys, as ||N ||2 increased, mean cursor speed increased, but so did the hold error
rate and movement error. Manipulating the system’s control memory setting may enable
the BMI designer to manipulate the tradeoff between cursor speed and hold performance.

utes. The small standard error indicates that ||N ||2 followed a consistent trajectory across
sessions during the course of CLDA calibration; trends during other calibration blocks of
different lengths were similar. This data suggests that calibrating the control memory once
per monkey and always leaving it fixed will facilitate faster parameter recalibration as well
as more consistent performance. In the KF model, the control memory changes based on
our confidence in the state-space model, W , as well as our confidence in the observation
model, CTQ−1C. These relationships between the KF model parameters and the control
memory are observed most simply when the IVC constraints are applied as both CTQ−1C
and W can be represented as scalar values (see Appendix). Figure 3.4C shows how changing
||CTQ−1C||2 can alter ||N ||2 and thus the system’s control memory; a similar relationship
can be shown for ||W ||2. Thus, by crafting the covariance matrices in the KF model, the
tradeoff between speed and hold performance can be manipulated.
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Figure 3.4: The BMI’s control memory changes over the course of CLDA: (A-B) Average
trajectory and standard error for the BMI’s “control memory”, quantified by ||N ||2, during
closed-loop calibration of decoder parameter settings. The settings learned for ||N ||2 are
visually consistent across session and across monkey. This suggests that keeping the control
memory fixed at a known high-performance value may enable faster parameter calibration
using CLDA. (C) For the KF, the control memory changes based on our certainty about
the neural tuning model, quantified by ||CTQ−1C||2 (a.u.), as decreasing certainty about the
neural tuning model results in a larger control memory and a higher degree of smoothing
applied by the decoder. By adjusting relevant covariance matrices in the KF model, the
experimenter may be able to manipulate the system’s control memory to alter performance
tradeoffs described in Section 3.3.

3.4 Discussion
Small changes in closed-loop BMI dynamical properties can have significant and predictable
effects on performance. Using the PVKF as a specific algorithm to study, we demonstrated
the presence of unintended attractor points which pulled the cursor to arbitrary workspace
positions, as well as a calibration-dependent control memory property which parameterized
the tradeoff between speed and hold performance. Importantly, both properties were not
only present in experimental data but also their mathematical causes could be traced back to
the mechanics of the closed-loop decoder. Understanding the basis of these and other closed-
loop BMI system properties may be crucial to increasing system reliability by minimizing
the noisiness decoder calibration procedures, including CLDA.

None of the PVKF model parameters overtly describe an attractor point, despite its sig-
nificant effect on the BMI. It is important to clarify that our results do not suggest much,
if anything, about the parameters M1 neurons encode in natural movement or even in BMI.
Rather, the main takeaway regarding the attractor points should be that the behavior of the
linear model was unexpected. Furthermore, depending on the intended purpose of the BMI,
the presence of an attractor point is not necessarily problematic. For instance, if an attractor
point was intentionally placed at the center of the workspace, then the experimenter could
embed a “return to center” property into the decoder. Such a property could speed up the
number of center-out trials initiated at the cost of hold performance (which we observed) or
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generalization to new target layouts. However, in recalibrations of the PVKF, the attractor
point moved across the workspace unpredictably, even in simulation conditions where no
attractor point should have existed at all, suggesting that the attractor points were mod-
eling artifacts. Unintended attractor points can be removed through simple changes to the
decoding algorithm (e.g. decoding velocity only) or to the structure of the decoder param-
eters (e.g. applying the IVC constraints). The shortcomings of position decoders are not
fundamental limitations. In a linear system such as the PVKF cursor, an LQ controller with
knowledge of the system matrices would have little trouble tailoring the control law to match
the specific plant properties. This mismatch between experiment and theory suggests that
a position strategy might be outside the “manifold” of intuitive theories [21]. For the KF,
and generally for recursive Bayesian decoders, the closed-loop properties induced by inter-
action between the state-space model and the neural firing model can produce unintentional
dynamical artifacts.

We demonstrated a tradeoff between speed and hold performance which likely is driven
by the fluctuation in the closed-loop control memory of the decoder. The control memory
alters smoothing properties, which are known to contribute to performance [?]. The optimal
tradeoff between speed and hold performance must again depend on the BMI’s purpose. For
example, in a communication prosthesis requiring only short holds, one may wish to design
the control memory to explicitly prioritize cursor speed. However, like the attractor point,
control memory and smoothing properties of the KF changed when parameters were recal-
ibrated. We showed that the control memory for the KF changed depending on the neural
noise variance parameter estimated during CLDA. The estimated covariance of neural noise
could change across sessions due to a plethora of possible causes such as insufficient train-
ing data. Indeed during the calibration period we observed consistent decreases in control
memory as CLDA received more training data. This highlights a possible disadvantage of
attempting to learn all of the parameters from limited training data. For example, we showed
that under appropriate mathematical constraints, the PVKF becomes structurally identical
to a PVA decoder combined with a smoothing filter. However, the experimenter defines the
smoothing filter for the PVA whereas CLDA defines the smoothing filter for the PVKF and
is therefore subject to recalibration noise. If it is desirable to tightly control the tradeoff
between speed and hold performance to improve performance consistency, then continuously
attempting to recalibrate smoothing parameters may not be desirable.

The presence of the PVKF attractor point can be interpreted as CLDA learning an
“equilibrium point” for the cursor’s position. This is similar to BMI architectures that
propose to decode force field parameters [40], with the difference that once CLDA is finished,
the neurons can only change the location of the attractor point by altering the baseline firing
rates of the ensemble. Future BMIs might benefit from an attractor point that the subject can
move across the workspace, enabling hierarchical control where the attractor point defines
the coarse location and the cursor’s velocity can also be controlled to specify precise location.
Exploring this decoder architecture is the subject of future work.

Our previous work [8] shows numerous benefits of keeping both the decoder and the neural
ensemble fixed across sessions, including performance improvements and the formation of a
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prosthetic “motor memory”. In practice, however, it may be necessary to alter the BMI
neural ensemble if a cell is lost (due to electrode array shifts, cell death, etc.), and CLDA
is an effective tool to calibrate a decoder even from poor initial performance [26]. As we
showed here, CLDA can change system properties that we might prefer to keep fixed if we
wish to keep the system as consistent as possible before and after recalibration. Our results
suggest that the least complex dynamical system may be the easiest to learn (e.g. without
attractor points), particularly if the subject tries to learn to improve performance by learning
an internal model of the decoder [41]. Regardless, [8] suggests that we ought to keep the
decoder as constant as possible, including the F matrix, before and after recalibration. For
the KF, this requires restricting the observation model to a subspace (i.e., keeping CTQ−1C
fixed). Doing so may facilitate learning across days even with a changing ensemble, but these
hypotheses require further experiments.

In summary, we analyzed experimental data from two monkeys performing closed-loop
BMI to gain a better understanding of BMI system properties and their influence on task
performance. We demonstrated by simulation that mismatches between the true BMI dy-
namics and the model used for control can cause predictable errors in the planned trajectory.
In particular, this analysis revealed that attractor points intrinsic to the position-velocity
Kalman filter had a sizable and deleterious effect in experimental data. Furthermore, we
identified dynamical features such as system memory that should be kept static during any
recalibration periods so as to improve the consistency of decoder properties across sessions.
The performance impact of the dynamical properties we examined may inform the design of
future BMI algorithms more compatible with neural control strategies.

3.5 Appendix: KF with Independent Velocity Control
(IVC)

Recall from (2.3.1) that the BMI system equation governing Kalman filter (KF) decoders is
xt+1 = (I −Kt+1C)Axt +Kt+1yt+1. The Kalman gain Kt+1 in (2.3.1) is given by

Kt+1 = Pt+1C
T
(
CPt+1C

T +Q
)−1

,

in which Pt+1 = var (xt+1|x1, · · · , xt) represents a recursively calculated prediction covari-
ance [25]:

Pt+1 = APtA
T − APtCT

(
CPtC

T +Q
)−1

CPtA
T +W. (3.5.1)

The base condition for (3.5.1) depends on the initial uncertainty about the state of the
cursor; in our system, P1 = W . We expand CT (CPtC

T + Q)−1C with the matrix inversion
lemma:

CT (CPtC
T +Q)−1C = CT

[
Q−1 −Q−1CPt

(
I + CTQ−1CPt

)−1
CTQ−1

]
C

=
[
I − CTQ−1CPt

(
I + CTQ−1CPt

)−1
]
CTQ−1C (3.5.2)
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If

Pt =



eI2 fI2 0
fI2 gI2 0
0 0 0


 , (3.5.3)

then we can calculate Ft defined in (3.3.1), using (3.5.2) above and the constraints in (3.3.4):

Ft =



I2 (∆− βadf) I2 p̄t
0 βaI2 v̄t
0 0 1


 . (3.5.4)

In (3.5.4), β = 1/(1 + dg), p̄t = (βdf 2 − e) Σp − βfΣv, and v̄t = −β (fΣp + gΣv) which
satisfies the desired structure for Ft in (3.3.5). (Σp, Σv, and Σ1 are unconstrained). To
complete the proof, induction can be used to show that under the initial condition for P1,
Pt has the structure of (3.5.3) for all t. Both the base case (P2) and inductive case (Pt+1)
can be verified using (3.5.1) and (3.5.2).

It may be of interest to control the steady-state form Ft. Pt converges in the limit as
t→∞

lim
t→∞

Pt = lim
t→∞

Pt+1.

Equating Pt+1 and Pt above yields

g =
a2g + wgd+ w

1 + gd
=

a2g

1 + gd
+ w (3.5.5)

f =
(f + ∆g) a

1 + gd

We observe that f and g are fully determined given a, w and d. Interestingly, under the
constraints, e in 3.5.3 is not convergent, but this does not affect the convergence of the
Kalman gain. From (3.5.4), we can see that

n =
a

1 + gd
⇒ 1

1 + gd
=
n

a
.
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Figure 3.1: Control memory as a function of the covariance matrices. Control memory is
redundantly controlled by the next state uncertainty and the neural uncertainty.

We substitute this into (3.5.5)

g =
n

a
· a2g + w

=
w

1− an
n =

a

1 + d
(

w
1−an

)

=
a

1−an+dw
1−an

=
a (1− an)

1− an+ dw

(1− an+ dw)n = a (1− an)

dw =
(1− an) (a− n)

n
.
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Chapter 4

Extracting sparsity from natural
movements

This chapter details the development of a method to quickly extract sparse components from
complex kinematic trajectories during natural movements. This work was in collaboration
with Simon Overduin, Mo Chen, Young-Hwan Chang, Claire Tomlin and Jose Carmena. A
version of this work has been published [42].

4.1 Introduction
Movement kinematics and smoothness are analyzed when probing the nature of neurodegen-
erative diseases, including Huntington’s disease [43], multiple sclerosis [44] and Alzheimer’s
disease [45]. One commonly employed technique in movement smoothness analysis is to
decompose movements into one or more discrete canonical shapes, or “submovements”. Su-
perpositions of a few simple submovements, e.g., bell-shaped velocity profiles, can generate
complex kinematic trajectories. Submovement decomposition aims to recover the presumed
underlying submovement components from the observation of the overall trajectory. An ex-
ample of such a decomposition is shown in Figure 4.1, where submovement decomposition
enables us to break up the movement into different components which may reflect the points
at which differing motor plans began execution.

The neural origins of submovements remain only partially understood. One might theo-
rize based on the apparently sparse nature of submovement initiation that motor control may
involve intermittent execution of new feedforward submovements in response to movement
error [46]. Electroencephalographical correlates of this intermittent control hypothesis have
been observed in humans [47]. Alternatively, movement intermittencies may be related to
cortical oscillatory dynamics [48], or they may simply reflect a continuous controller interact-
ing with the musculoskeletal system [49]. Nevertheless, quantitatively precise submovement
algorithms have many clinical and engineering applications. For instance, analysis has shown
that submovements become more overlapping or “blended” as patients recover from stroke
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Figure 4.1: An example of submovement decomposition applied to a movement under target
perturbation conditions in which the instructed target location changes in the middle of
the movement (see Section 4.2 for behavioral details). These perturbation conditions are
likely to necessitate a large secondary corrective movement following the perturbation that
manifests as a distinct segment in the velocity profile. In this movement (gray line), two
separate overlapping submovements are extracted (dotted black lines). More than 98% of the
velocity variance can be explained by two appropriately shaped and scaled “minimum-jerk”
curves (see Methods).

[50].
Several methods of submovement analysis do not require assumptions about the func-

tional form of the submovement basis functions. These methods may simply split movements
into their “primary” and “corrective” components [51], or analyze movement acceleration,
jerk, and higher-order derivatives for zero crossings or local extrema to find velocity inflec-
tion points [52]. However, higher-order derivatives of movement can be hard to acquire
using sensors or to compute numerically without substantial noise. Alternatively, the use of
an explicit prototype submovement function (minimum-jerk [53], lognormal [54], etc.) al-
lows for the use of optimization-based methods to extract submovements from position or
velocity time-series data. This approach involves curve-fitting by optimizing a non-convex
error function. Hogan and colleagues demonstrated that the best results arise from opti-
mizing over all submovement parameters jointly rather than sequentially [55]. For clinical
applications where many movements must be analyzed or decompositions must operate in
real-time, finding an exact solution requires an unsuitable amount of computation time.
Instead, random-restart “scattershot” search retains advantages of joint optimization with
orders of magnitude less computation time [56].

Additional reductions in computation time may help enable otherwise infeasible real-time
applications of submovement decomposition. In this work, we extend the scattershot method
[56] to accelerate computation time. First, we define shape pursuit, a method of iteratively
fitting submovements when the basis function has shape parameters distinct from amplitude
parameters. This condition applies to many submovement function prototypes [54]. Second,
we introduce the idea of error concentration, which allows for tunable concentration of the
iterative search procedure in regions of high error. This heuristic makes it possible to trade
exploration of solution space for computation speed as demanded by the application. Both
of these innovations yield substantial gains in computation time and improve the suitability
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of submovement decomposition for real-time applications.

4.2 Methods

Submovement decomposition as an optimization problem

Suppose that we have a velocity trajectory v(t) that we wish to decompose into N submove-
ments, and that the submovement function can be parameterized as f (t; θ, A), in which t is
the time variable and θ and A are fixed function parameters defining shape (defined precisely
in Section 4.2) and amplitude, respectively. For example, the minimum-jerk submovement
velocity prototype [53] has 3 parameters, the onset time t0, the durationD and the amplitude
A:

f (t; θ, A) = A · 1

D

{
30t4n − 60t3n + 30t2n t ∈ [t0, t0 +D]

0 otherwise
(4.2.1)

in which θ = (t0, D) and tn = t−t0
D

is time normalized to the duration of the movement.
A may in general be a column vector (movements may extend through multiple spatial
dimensions), so f(t; θ, A) maps a scalar t to a vector of the same dimension as A. Examples of
this type of bell-shaped speed profile are shown in Figure 4.1 (dashed lines). This particular
submovement function was previously discovered to be a good characterization of human
hand velocity in multi-joint arm movements [53]. Numerous other functions also may produce
similar bell shapes [54]. The optimization problem to solve is

min
{θi,Ai}Ni=1

K∑

t=1

∥∥∥∥∥v(t)−
N∑

i=1

f (t; θi, Ai)

∥∥∥∥∥

2

2

, (4.2.2)

in which K is the number of sample points in the trajectory and || · ||2 is the `2-norm of a
vector. For a set of submovement parameters {θi, Ai}Ni=1, let r(t) =

∑N
i=1 f (t; θi, Ai) be the

reconstructed movement and let c(t) = ‖v(t)− r(t)‖2
2 be the reconstruction error at time

sample t. This optimization problem has multiple local optima (and is thus not convex)
and finding a globally optimal solution can be computationally expensive. In the scatter-
shot method, local minima of the cost function are found from different initializations of the
parameters {θi, Ai}Ni=1 [56]. With multiple random initializations, the probability of finding
the true global optimum increases with the number of initializations. The number of sub-
movements N is found iteratively, by incrementing N and re-solving the entire optimization
problem [55]. In contrast, a “greedier” algorithm might attempt to increment N by solving
the problem

min
θN ,AN

K∑

t=1

∥∥∥∥∥v(t)−
N−1∑

i=1

f (t; θi, Ai)− f (t; θN , AN)

∥∥∥∥∥

2

2

. (4.2.3)

Rather than fitting N submovements to the velocity curve v(t), (4.2.3) fits one submovement
to the residual error from fitting N − 1 submovements, v(t) −∑N−1

i=1 f (t; θi, Ai). In this
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work, we always jointly optimize over all submovement parameters, including the parameters
resulting from previous optimizations, as joint optimization has been shown to be less prone
to being trapped in local optima [55].

Note there is no restriction on the dimensionality of the velocity data, as each A can
be of dimension k × 1 allowing the optimization to be carried out over multiple kinematic
dimensions jointly. In this study, we decompose 2D movements and use

v(t) =
[
vx(t) vy(t)

√
v2
x(t) + v2

y(t)
]T

Ai =
[
Ax Ay

√
A2
x + A2

y

]T
,

in which the third element of both vectors is the tangential speed. The inclusion of the
tangential speed term acts as a regularization term. Concretely, suppose that we have a
movement where the true vx(t) = f(t; θex, 1) and vy(t) = 0. Then the tangential speed
of this movement is vs(t) = vx(t). If we happen to choose r(t) = f(t; θex, [2, 0, 2]T ) +
f(t; θex, [−1, 0, 1]T ), then r(t) perfectly fits vx(t) and vy(t) since the two submovements par-
tially cancel each other. However, this is clearly an example of overfitting and this particular
type of overfitting results in a bad fit for vs(t). Since the submovements cannot cancel each
other in the speed dimension, vs(t) is fit with an amplitude of 3 when it should have had an
amplitude of 1. Thus, the inclusion of the tangential speed dimension into the optimization
penalizes fits of overlapping submovements with opposite signs. Importantly, it does not
preclude such destructive cancellation; an example is shown in Figure 4.1 in the y-velocity,
where the two submovements of opposite signs slightly overlap. This type of destructive can-
cellation may reflect a new motor plan being vectorially combined with the ongoing motor
plan, e.g., to abruptly change reach direction [57]. Thus we aim to penalize such movements
to avoid overfitting but not eliminate them altogether.

Although we selected an `2-norm cost function in (4.2.2), there is no inherent restriction
to do so. Indeed, the choice of cost function may be motivated by computational rather than
physiological considerations. For example, [55] uses a branch-and-bound algorithm with an
`1-norm cost function for computational speed. Our choice of an `2-norm cost function was
also motivated by computational considerations, as described in Section 4.2.

For a given movement segment, we incremented the number of submovements fit until 1)
success, assessed when the residual error fell below a mean squared error (MSE) threshold
(e.g., 2%), 2) insufficient progress was being made, i.e., when incrementing the number of
submovements resulted in an error reduction less than a threshold (e.g., 0.1% MSE), or
3) the maximum number of submovements was hit, where the maximum was set based
on a restriction that the minimum time between submovement start times be 100ms (a
conservative minimum reaction time to generate a new submovement as a visual feedback
correction).
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Innovation 1: Shape pursuit (SP)

In (4.2.1), the shape parameters θ alter the submovement function independently of the
amplitude parameter A: f(t; θ, A) = A · f(t; θ, 1). In this case, which describes many
submovement functions [54], (4.2.2) becomes

min
{θi,Ai}Ni=1

K∑

t=1

∥∥∥∥∥v(t)− Ai
N∑

i=1

f (t; θi, 1)

∥∥∥∥∥

2

2

. (4.2.4)

Let

V =
[
v(1) · · · v(K)

]T

F =




f (1; θ1, 1) · · · f (1; θN , 1)
...

...
...

f (K; θ1, 1) · · · f (K; θN , 1)




M =
[
A1 · · · AN

]T
.

The optimization cost function can be rewritten in matrix form as ‖V − FM‖2
F , in which

‖·‖F is the Frobenius norm. Once the shape parameters (F ) are fixed, we can optimize for
the amplitude parameters (M). Let Vx, Vy, and Vs be the first, second and third columns of
V , and define Mx, My, and Ms similarly. We seek to solve the problem

min ‖Vx − FMx‖2 + ‖Vy − FMy‖2 + ‖Vs − FMs‖2

subject to M2
x(i) +M2

y(i) −M2
s(i) = 0 i ∈ {1, · · · , N}.

The constraints are necessary to ensure that the last column is consistent with its inter-
pretation as the tangential speed scaling factor. A straightforward application of Lagrange
multipliers yields a system of highly coupled equations. A similar variable coupling occurs
in `1 regularized regressions [58]. For computational reasons, we attempt two relaxations.
First, we notice that the N constraints above imply that MT

xMx + MT
y My −MT

s Ms = 0,
though the converse is not true. Hence we can relax the problem by replacing the N original
constraints with the single condition MT

xMx + MT
y My − MT

s Ms = 0 and then apply the
Lagrange multiplier method:

L (M, r) = ‖Vx − FMx‖2 + ‖Vy − FMy‖2 + ‖Vs − FMs‖2

+ r
(
MT

xMx +MT
y My −MT

s Ms

)

∂

∂Mx

L = −2F T (Vx − FMx) + 2rMx = 0

Mx =
(
F TF + rI

)−1
F TVx. (4.2.5)

Similar equations follow forMx andMs. The Lagrange multiplier method provides a method
of selecting the optimal r, but it again requires solving a complicated equation. However,
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we note that (4.2.5) is a ridge regression in which the ridge parameter r acts to shrink the
amplitudes of each movement [59]. We selected r = 0.5, making an implicit prior assumption
that the submovement amplitudes (in meters) are twice as variable as the observed velocity
(in meters/sec). In reality, we expect that the velocity variance will be greater than the
submovement amplitude, since the peak velocity of a movement (in meters/sec) is typically
greater than its total displacement (in meters). By assuming submovement amplitudes more
variable than observed velocity, we apply a conservative shrinkage penalty to the submove-
ment amplitudes. We refer the reader to [59] for an extended discussion of this Bayesian
interpretation of ridge regression. Importantly, although we have made two simplifications
to the optimization problem to calculate the amplitude parameters, the cost function we use
to evaluate the quality of solutions remained the same across all methods.

A simple 1D illustration of the shape pursuit (SP) concept is shown in Figure 4.1A, where
we attempt to fit one submovement to the black curve. For an estimate of the submovement
shape parameters t̂0 and D̂, the cost varies quadratically as a function of the amplitude
(Figure 4.1A, bottom). For these fixed shape parameters, we can jump directly to the optimal
amplitude rather than seeking the optimal amplitude by an iterative method. On the next
iteration, the shape parameters are refined and subsequently the amplitude parameters are
again found using (4.2.5). Our original optimization problem thus becomes an alternating
minimization problem in which we alternatively fit shape and then amplitude parameters.
Shape pursuit solves the problem

min
{θi}Ni=1

∥∥V − FV (F TF + rI)−1F T
∥∥
F
, (4.2.6)

and makes the search space smaller by reducing the number of variables to search over. For
other types of cost functions, e.g., `1-optimization, the same partitioning of the parameter
space can be applied, but different methods must be used to find M .

Importantly, the scale-shape independence property which we exploit is applicable to sub-
movement functions other than the minimum-jerk function considered above. For instance,
Gaussian functions also produce a bell shape, and we could use

g(t; t0, D,A) = A · exp

{
− 1

D2

[
t−
(
t0 +

D

2

)]2
}

as the submovement function. In this case, the movement is no longer finite length; t0 + D
2

represents the midpoint of the movement (peak velocity) and D represents the duration
(smaller D corresponds to more concentration around the midpoint). However, we still
retain the property that g(t; t0, D,A) = A · g(t; t0, D, 1), meaning that the shape pursuit
method still applies. Since the focus of this work is on the computational methods and not
the function type, we only present results for the minimum-jerk function.
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Figure 4.1: Submovement decomposition innovations. (A) Top: An example of a simulated
bell-shaped speed profile. For the (incorrect) estimates of the shape parameters t̂0 and D̂
shown, the submovement of “unit” norm and two amplitude-scaled submovements, including
the submovement of best fit (i.e., best scale parameter for the given shape parameters), are
shown. Bottom: The cost function for the same fixed t̂0 and D̂ as a function of the movement
amplitude A. The cost function is quadratic (and therefore convex) in A, enabling it to be
found quickly once the shape parameters are fixed. (B) Simulated velocity profiles as well
as the results of fitting one submovement and fitting two submovements. (C) The point-
by-point cost functions c0(t), c1(t), and c2(t) from fitting zero, one and two submovements.
(D) Cost functions from (C) are normalized to sum to one to form c̃0(t), c̃1(t), c̃2(t) with
no reweighting (λ = 1, see Section (4.2)). (E) Different reweighting factors λ can be used
to make the normalized cost more flat (top) or peaked (bottom), enabling control of the
“greediness” of the search concentration.

Innovation 2: Error concentration (EC)

Recall from Section 4.2 that we solve the optimization problem (4.2.2) several times from
various initialization points for a fixed N . One approach to parameter initialization is to
sample independently from uniform distributions for each parameter on each restart. This
is the approach taken by scattershot and the approach that we apply to SP. However, the
number of restarts must be small in order to accrue computational savings. As the number
of submovements being fit increases, a small number of random samples in an exponentially
growing search space has increasingly poor coverage. To combat this, error concentration
(EC) initializes parameters greedily. In particular, if we have already found N − 1 submove-
ment parameters but now we want to fit N submovements, we recycle the old parameters
{θi}N−1

i=1 and append new randomly sampled parameters θN . Furthermore, we concentrate
θN to represent a region of relatively high error by picking a submovement shape which spans



CHAPTER 4. EXTRACTING SPARSITY FROM NATURAL MOVEMENTS 38

two adjacent local minima in the reweighted normalized cost c̃(t) = c(t)λ/
´
c(τ)λdτ in which

τ spans the time samples. The exponent λ is a reweighting factor [60]: λ > 1 makes the
function closer to a “delta” (more “peaked”), λ < 1 makes the function more uniform, and
λ = 1 results in no reweighting (only normalization). Figure 4.1C-E shows simulation exam-
ples of the cost, normalized cost and reweighted cost. As λ increases, there is a reduction in
the number of local minima from which to initialize θN ; thus the greediness of the parameter
initialization can be quantified and controlled.

While we initialize parameters greedily, we still perform joint optimization over all param-
eters. In other words, EC only deals with parameter initialization; the actual optimization
routine runs the same as SP. The cost residual c(t) must be calculated and new parameters
must be sampled from some distribution with or without EC. The predominant computa-
tional expense of EC is to exponentiate the residual c(t), which is an expense similar to a
single evaluation of the cost function. Furthermore, this minor expense is only incurred when
the number of submovements is incremented. Hence EC is in practice free when compared
to the expense of the actual optimization routine. In our results, we used λ = N so that the
greediness of the initialization scaled roughly with the expansion of the search space.

Optimization methods

We primarily used MATLAB’s fmincon to find locally optimal solutions using sequential
quadratic programming (SQP) to solve both (4.2.2) and (4.2.5). The complexity of evaluating
the cost function scales linearly as the number of submovements being fit increases because
(4.2.1) must be evaluated once for each submovement i and each time-point t. In standard
big-O notation, the complexity of evaluating (4.2.2) is O(NK), where N is the number of
submovements andK is the number of time samples in the movement segment. Averaged over
10,000 evaluations, the average computation time to evaluate the cost function scaled linearly
with the number of submovements (R2 > 0.99, p < 10−19, evaluated up to 20 submovements).
Evaluating the SP cost function required strictly more time than evaluating the original
cost function (4.2.2) in our implementation. We first found the amplitude parameters by
evaluating (4.2.5) and then proceeded to evaluate the original cost function (4.2.2).

We supplied an analytical gradient when using SQP. For the minimum-jerk prototype
function, the complexity of evaluating the cost function and computing the gradient also
scaled linearly with the number of submovements (R2 > 0.99, p < 10−19, evaluated up to 20
submovements). Computing both the gradient and cost required about 1.6× more time that
computing the cost alone, and did not change significantly as the number of submovements
increased (R2 = 0.13, p = 0.11). The same gradient was used for solving both (4.2.2) and
(4.2.5). In the case of SP, it is only an approximate gradient since the amplitudes have been
removed from the optimization variables.

We compared the performance of 1) the scattershot (SS) algorithm [56], 2) scattershot
combined with shape pursuit (SP), and 3) scattershot combined with shape pursuit and error
concentration (SPEC). We also compared the performance of the gradient-based SQP to two
non-gradient metaheuristics. Specifically, we assessed the performance of covariance matrix
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adaptation evolution strategy (CMA-ES) [61] and simulated annealing (SA). For CMA-ES,
we used the implementation corresponding to [61]. For SA, we used the implementation
built into MATLAB’s optimization toolbox. These methods do not utilize gradient infor-
mation and instead rely on random search for exploration. We applied CMA-ES and SA
to the original optimization problem (4.2.2), which we refer to as CMA-ES-SS and SA-SS,
respectively. We also applied them to the SP equivalent problem (4.2.6), which we refer to
as CMA-ES-SP and SA-SP, respectively. A pseudocode outline of parameter initialization
and optimization is provided in Algorithm 1.

Behavioral data

Three adult male macaques (Macaca mulatta), J, P and R, were used in this study. All
procedures were conducted in compliance with the National Institutes of Health Guide for
Care and Use of Laboratory Animals and were approved by the University of California,
Berkeley Institutional Animal Care and Use Committee.

All monkeys performed variants of a 2D point-to-point reach and hold task. The monkeys
initiated trials by moving their right hand inside a KINARM exoskeleton (BKIN Technolo-
gies, Kingston, ON, Canada) to the visually-instructed origin and holding for 400-1500ms.
Upon entering the origin, the terminus appeared. The monkeys were then required to reach
to the specified terminus within a 3-7 second time-limit and hold for 400-1500ms (constant
within each dataset) to receive a liquid reward. Depending on the dataset, the terminus was
either 1 of 8 targets spaced uniformly about a circle or 1 of 18 targets at the corners of two
concentric hexagons. During the trial, only the origin, terminus, and cursor representing
the subject’s hand were visible; the remaining targets were hidden. The next trial then
began with the origin appearing at the center of the workspace (center-out) or the previous
terminus (point-to-point). Targets were block-randomized to evenly distribute trials to each
target in pseudorandom order. In all data, trial initiation was self-paced. Monkeys were well-
trained on the task before the datasets analyzed here were collected. Before decomposing
submovements, we applied a Savitzky-Golay filter to remove high-frequency recording noise
(5th order filter, 151ms window, similar to [43]) and decimated to 100 Hz. Dataset-specific
parameters (duration, perturbation conditions, etc.) for the five datasets we examined in
this work are listed in Table 4.1.

Datasets was not decomposed all at once. Instead, a thresholding procedure was applied
to the tangential speed to segment the velocity profile. A movement segment started when-
ever tangential speed increased above a 0.005 m/s threshold, and ended as soon as the speed
fell below the same threshold. The average segment length ranged from 0.7s to 1.1s over the
five datasets.
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Algorithm 1: Submovement decomposition pseudocode
input : v(t), ∆

output: Submovement parameters ΘN

K = # of time samples in v(t), Nmax = K∆
0.1 sec

Dmin = 0.150 sec., Dmax = 1 sec., tmax0 = K∆−Dmin

while True do
for k in {1, · · · 10} do

// Initialize submovement parameters
for i in {1, · · · , N} do

if N > 1 and method is SPEC and i < N : Get t(i)0 , D(i) from ΘN−1

elif method is SPEC : Sample t(i)0 and D(i) as described in Section II.C

elif method is SP : t
(i)
0 ∼ uni[0, tmax0 ], D(i) ∼ uni[Dmin, Dmax]

elif method is Scattershot :
t
(i)
0 ∼ uni[0, tmax0 ], D(i) ∼ uni[Dmin, Dmax],
A

(i)
x ∼ uni[min(vx),max(vx)] ·Dmax, A

(i)
y ∼ uni[min(vy),max(vy)] ·Dmax

θi = (t
(i)
0 , D

(i))

//
// Jointly optimize over all parameters {θi, Ai}Ni=1

// using SQP/CMA-ES/SA
if method is Scattershot :
Solve (4.2.6) to find Θk

N

elif method is SP or method is SPEC :
Solve (4.2.2) to find Θk

N

ΘN = mink error(Θ
k
N)

// Determine the relative MSE of the current best fit

error(ΘN) =
‖V−F (ΘN )M(ΘN )‖2F

‖V ‖2F
∆MSE = error(ΘN−1)− error(ΘN)

// Check termination conditions
if error(ΘN) < 2% MSE or ∆MSE < 0.1% MSE or N > Nmax : break
else: N = N + 1

4.3 Results
For each of the five datasets, we ran each algorithm 5 times in alternating order. Averaging
performance statistics from multiple runs over the same data was necessary due to the
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Table 4.1: Summary of datasets and experimental parameters.

Subj. Data Length Task type Target configuration

P P1 843 s Center-out 8 points on circle

J J1 502 s Point-to-point 18 corners of two hexagons

R R1 611 s Center-out 8 points on circle

P P2 967 s Center-out & curl force field 8 points on circle

J J2 892 s Center-out & mid-trial target jumps 8 points on circle

Data Target radius Workspace diameter Hold times

P1 0.75 cm 10 cm 500ms

J1 1 cm 15 cm 0.5-1.5s

R1 0.75 cm 12 cm 400ms

P2 0.75 cm 10 cm 600ms

J2 1.2 cm 13 cm 700ms

Three monkeys (J, P and R) performed point-to-point reach-to-hold movements under a
variety of experimental conditions, including different target configurations, dynamical per-
turbations (curl force field), and target perturbations (mid-flight target jumps).

stochastic nature of the algorithms. Software was implemented in MATLAB and executed
on a personal computer (Intel Core i7 processor, 16 GB RAM). The results of runtime and
mean squared error (MSE) are shown in Figure 4.1.

In all datasets, the runtime of SP was significantly lower than that of scattershot and
the runtime of SPEC was significantly lower than that of SP (Kruskal-Wallis test, p < 0.01).
Absolute runtime varied across datasets, depending on task structure and any perturbations
applied during the task. Notably, in all datasets SPEC was able to complete faster than real-
time, though in general this will depend on the speed of the computing platform. Depending
on the dataset, scattershot took 2-4 times longer than SPEC to decompose the same move-
ments. Figure 4.1 shows that there was a statistically significant difference in MSE between
the three algorithms, with SPEC outperforming SP, which in turn outperformed scattershot.
Furthermore, SP and SPEC used only slightly more submovements than scattershot to fit
the same data: averaged over all datasets and decompositions, 0.1% more for SP and 3.5%
more for SPEC. Using slightly more submovements, SP and SPEC were able to decompose
the same movements for less MSE and in significantly less time than scattershot.

We assessed the relationship between our extracted submovements and other feature
extraction methods previously proposed which did not rely on explicit function fitting. Figure
4.2 shows the average acceleration of the hand at the start and end of submovements in
dataset P1 extracted using the SPEC method. Local optima in the acceleration correspond to
zero-crossings in the movement jerk. We see clearly that the average submovement onset time
is followed by a zero-crossing in the jerk and the average end of a submovement is preceded
by another jerk zero-crossing. Other datasets had the same property. This is consistent
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Figure 4.1: Runtime and quality of fit for decomposition algorithms. Submovement de-
composition performance for all five datasets described in Section 4.2. The performance
of the scattershot method [56] (SS) was compared to shape pursuit (SP), as well as shape
pursuit combined with error concentration (SPEC). Performance was measured by mean
and standard error of runtime and square-root MSE (RMSE) over 5 attempts. For runtime
comparisons, the length of each dataset is marked with a horizontal dotted line. *p < 0.05;
**p < 0.01; Kruskal-Wallis test.

with the submovement definition utilized by [52], which relies on finding inflection points
based on local extrema of the acceleration or zero-crossings of the jerk. Similarly, we also
observed that for the fitted submovements, the movement duration (D) scaled with tangential
amplitude (As =

√
A2
x + A2

y). Averaged over all datasets, the correlation between the fitted
movement durations and the tangential amplitudes was significant (r = 0.26, p < 10−8). This
relationship was extracted without an explicit constraint, and similar properties have been
observed in other studies which extracted submovements without fitting an explicit function
prototype [62]. These two implicit properties of the submovement statistics extracted in our
approach indicate that physiologically relevant parameters are being extracted.

We examined in detail one complex movement made by monkey J which was not included
in the preceding performance analysis. Figure 4.3A-B shows a 7s circular movement during
which the hand never comes to rest. A 7s movement is considerably longer than the typical
movement duration of the five datasets in the preceding analysis (see Section 4.2). In vari-
ous studies of reaching movements from patients with neurological disorders such as stroke,
Parkinson’s disease, multiple sclerosis and Alzheimer’s disease, typical movements shown in
those studies took 3-10s [44, 45, 50, 64]. Hence this 7s multi-peaked movement represents
a clinically relevant duration. We fit 0-16 submovements to this movement, finding a rel-
atively high number of submovements necessary due to the presence of many peaks in the
speed profile, similar to what is observed in stroke patients. (In comparison, each move-
ment segment in the five datasets previously analyzed required an average of only 2.3-3.4
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Figure 4.2: Average acceleration from dataset P1 at the (A) start and (B) end of submove-
ments extracted using SPEC. The prominent peaks in the acceleration traces, marked by
dots, correspond to zero-crossings in the movement jerk. These features resemble those ex-
tracted without optimization routines purely from higher derivatives of kinematic data (e.g.,
[52, 63]), indicating a relationship between our optimization-based method of submovement
extraction and alternative methods that identify submovement beginning/end by time-series
feature extraction.

submovements to obtain 2% MSE.) We fit this same movement 20 times to get dispersion
estimates of percent MSE and runtime for scattershot, SP and SPEC. The MSE curve as
a function of number of submovements was similar for all algorithms (Figure 4.3C) and all
algorithms show exponential increases in runtime (Figure 4.3D) but the increase in runtime
is visibly less steep for SP than for scattershot and less steep for SPEC than SP. Though
the complexity of cost function evaluations is higher for SP and SPEC, and the complexity
of evaluating the cost function grows with the number of submovements, Figure 4.3E shows
that the number of cost function evaluations plateaus earlier for SP and SPEC than scat-
tershot. SPEC remains subject to the same exponentially growing search space problems as
scattershot but the point at which that begins to impact applications is “pushed back”.

SP is an analytical method to exploit structure in the submovement decomposition op-
timization problem. We also explored the possibility that the same structure might be
discoverable automatically through the use of optimization metaheuristics. For the same
movement segment depicted in Figure 4.3, we again attempted to fit 16 submovements with
either CMA-ES or SA (see Section 4.2). We limited CMA-ES to 500,000 cost function evalua-
tions, which was roughly 100× the computation required for scattershot (2,500 cost function
and gradient evaluations). On average, CMA-ES-SS achieved an average MSE of 14.6% ver-
sus CMA-ES-SP with an average MSE of 2.4%. This difference was statistically significant
( Kruskal-Wallis test, p < 10−10, 20 runs). In addition, CMA-ES-SS required an average of
168,000 function evaluations compared to 41,000 function evaluations for CMA-ES-SP. In the
case of simulated annealing, SA-SS did not fare nearly as well, achieving 73% MSE compared
to 9.2% MSE for SA-SP (Kruskal-Wallis test, p < 10−10, 20 runs). Again, SA-SS required
many more function evaluations than SA-SP: an average of 68,000 for SA-SS versus 34,000
for SA-SP. In both cases, the use of problem-specific structure aided the quality of solution
found. That is, the advantages of SP over SS are not specific to gradient-based optimization
solvers. Furthermore, given that the expense of calculating the gradient is the approximately
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Figure 4.3: (A) Monkey J made a 7 sec. circular movement starting at the dot and ending at
the “x”. (B) The velocity had many peaks and thus required many submovements to capture.
(C) The percent MSE of fitting an increasing number of submovements for scattershot (SS),
SP and SPEC was similar for all algorithms. Error bars indicate standard deviation over
20 independent attempts. (D) For all algorithms, the mean runtime increases exponentially
with the number of submovements being fit, but the steepness of the exponential increase
was much steeper for scattershot than for SPEC. (E) Number of function evaluations for
each of the three methods. The number of function evaluations plateaus earlier for SP and
SPEC than for scattershot.

the same as evaluating the cost function (see Section 4.2), SQP is substantially more efficient
than either metaheuristic.

4.4 Discussion
Optimization-based submovement decompositions allow for a parsimonious and quantita-
tively precise method of submovement decomposition, but can be computationally expensive.
We have described methods for accelerating such decompositions. Further computational
time savings might be acquired by performing computation on a more specialized hardware
platform (e.g., graphical processing units). Though we have described this method in the
context of the minimum-jerk submovement prototype function, the same fundamental parti-
tioning of scale and shape parameters can be applied broadly to other typical submovement
functions, e.g., Gaussian functions, log-normal functions, etc.

Iterative fitting algorithms, including the approach we use here, may suffer from overfit-
ting if only goodness of fit criteria are applied, since increasing the number of parameters
fit always provides the opportunity to decrease error. There are many standard penalty
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methods that apply to these types of optimizations, in particular the Akaike information
criterion and the Bayesian information criterion. This issue of methods to examine overfit-
ting is deserving of further study. However, these standard methods describe termination
conditions for when the number of submovements should stop being incremented, and do
not affect the execution time differences at the core of this work.

The SP algorithm analytically finds submovement amplitudes after the shape parameters
are fixed. This algorithm is very similar to some approaches in sparse coding (e.g., [65]). In
the sparse coding problem, if the basis vectors are fixed, then the coefficients can also be found
quickly (see [65] for a more detailed discussion). Though our approach exploits the same
mathematical properties, there are a few differences. Here, we fit multi-dimensional data and
enforce a consistency constraint between the different data dimensions (speed coefficients are
required to be consistent with the Cartesian coordinate coefficients). More importantly, our
dictionary is a continuous space of functions which we assume from the outset. An interesting
area of future study would be to learn the feature vectors (i.e., the submovement shapes)
using a sparse coding approach, which to our knowledge has not been formally performed.
Unlike sparse coding approaches, the present approach strictly enforces sparsity constraints
by limiting the number of submovements fit, effectively attempting to minimize a non-convex
`0 norm. Interestingly, [66] reports that the procedure for optimizing the scale coefficients is
slower than the procedure for optimizing the basis vectors. The reverse is true in the present
study; further study of the differences between these two approaches may yield additional
computational benefits.

Our methods enable submovement decompositions from optimization-based routines to
be computed in real-time in many cases, which may possibly enable biofeedback applications.
For instance, since stroke recovery is characterized by increased submovement blending [50],
real-time biofeedback of submovement statistics during therapy sessions may have rehabili-
tation value. Though stroke rehabilitation in many ways resembles motor learning [67], the
usefulness of this type of feedback during therapy remains unclear. For example, when visual
feedback is used to augment natural feedback about postural stability and center of gravity,
some studies indicate that the feedback has little therapeutic effect (e.g., [68]) while others
report positive gain in the initial stages of therapy (e.g., [69]). The benefits of quantitative
feedback of movement during rehabilitation require additional testing.

4.5 Conclusion
In this work, we developed two methodological innovations to accelerate the process of fit-
ting natural movements to a sum of smooth submovements. Our innovations apply to a
broad range of submovement functions explored in the literature and significantly reduce
the time required to complete submovement decompositions. These innovations may accel-
erate analysis of submovements for basic neuroscience and enable real-time applications of
submovement decomposition.
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Chapter 5

Evidence of feedforward and
model-based neuroprosthetic control

This chapter explores the hypothesis that BMI control involves the use of an internal model
during motor adaptation and feedforward control. These results are preliminary in that the
experiments have only been performed with one monkey.

5.1 Introduction
Model-based optimal control (e.g., [70]) is an appealing theory of motor control. A very
general control policy ut+1 = π (xt, x

∗
t ) maps the current state xt and the current target

x∗t to the next command ut+1. However, in the highly complex sensorimotor system, it is
difficult to assess whether skilled behavior is due to the use of an explicit “forward model”
xt+1 = f(xt, ut) and control policy calculations based on the goals at hand, or whether an
“inverse model” lookup table stores all the next actions given the current state (i.e., π(·, ·) is
computed directly). (See [71] for a review of relevant literature). One key line of evidence
for model-based control comes from sensory feedback delay. Visual feedback delay may be
more than 100ms and the long delay may lead to controller instabilities. An internal model
used for forward prediction may be used to correct for such instabilities.

Another key line of evidence comes from experiments where a perturbation is applied to
a reaching task, e.g., a curl force field [72]. When such perturbations are applied, subjects
gradually improve their performance, suggesting that they use error measures to gradually
adapt their internal models. Furthermore, when the perturbation is removed, “after-effects”
are observed in which the subjects generate trajectories more consistent with the adapted
internal model than the baseline model. A plethora of such experiments have demonstrated
key findings about motor learning. Yet without finding the cortical substrate of internal
models, the forward model and inverse model ambiguity remains.

BMI may be used as a tool for investigating such questions. The natural motor system
is highly complex, with millions of motor cortical neurons projecting to the spinal cord; the
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relationship between the firing of any single neuron and the muscular output cannot easily
be found. The BMI circuit is considerably simpler than the natural motor circuit since the
system is linear and the output neural layer is directly specified by the experimenter. In
the BMI paradigm, it has been shown that subjects adapt adapt to a visuomotor rotation
in a manner consistent with natural reaching studies under visuomotor rotation [19, 34, 20].
Methods have been developed to extract putative internal model parameters during BMI
control [41].

There are practical implications for neuroprostheics in elucidating the presence (or ab-
sence) of internal models. If an internal model can be extracted, either by inference or by
directed observations of neural activity in other brain regions, then the decoder structure
may be changed to match the internal model to achieve more naturalistic control. This
also may yield more efficient CLDA methods as well if the assumptions regarding intended
kinematics are made using more accurate knowledge of the actual control policy.

In this chapter, we review data indicating that closed-loop BMI control is model-based.
Some suggestion is made to this theory in Chapter 3, as model mismatch between the decoder
and the subject may be the reason why unpredictable changes in the PVKF dynamical
structure yield inferior performance. Data from variants and manipulations of center-out
control are presented. In addition, we show evidence that as one subject improved task
performance, control became more feedforward, indicating a better understanding of the
decoder was internalized.

5.2 Methods

Behavioral tasks

Results in this chapter used variants of the center-out task described previously in Section
2.2. In certain experiments, the following variants of the center-out task were used:

1. The cursor was reset to the center at the end of each trial.

2. There was no explicit hold time requirement. Instead, reward at the end of each trial
was proportional to the total time spent in the target. If a maximum hold time was
reached, the trial ended in reward, capping the total possible reward per trial. This
incentivized the subjects to hold in place for as long as possible.

3. On a randomly chosen subset of trials, the target jumped 8cm further away 0.5s after
the go cue.

Each modification to the standard center-out task was used separately. Results presented in
this chapter involve only Monkey G; surgical details were described previously in Chapter 2
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KF motor commands

The “process noise” term in the KF model can be interpreted as a “motor command”, by
simple analogy.

xt+1 = Axt + wt [KF model]
xt+1 = Axt +But [Standard linear dynamical system]

One interpretation of the KF then is that the process noise wt plays the role of an unknown
command input and the KF is forming an estimate of wt. In this interpretation, A must be
a perfect model. In the virtual BMI setting, this is a reasonable restriction as A may be
entirely set by the experimenters to represent some system that the subject is tasked with
controlling.

Notably, the KF’s prior model of the motor command input is an i.i.d Gaussian model, a
minimally informative model. Hence, the burden to generate appropriate wt rests primarily
on the subject. In reality of course it does not make sense for wt to truly be IID Gaussian.
For instance, when controlling a cursor and moving it along a smooth trajectory, velocities
are likely to be correlated across time (e.g., if moving in a straight line, then the direction of
movement commanded may be exactly the same for the entire trajectory, rather than drawn
from a uniform distribution as assumed by the random walk model.

We therefore define the BMI command coherence as

ct =
π − ∠

(
wvelt−1, w

vel
t

)

π
(5.2.1)

This measure results in a value between 0 and 1.

Error clamp trials

In studies of natural motor adaptation, a common technique is to introduce a perturbation in
the reaching movement, allow multi-trial learning of the perturbation and then subsequently
remove the perturbation and observe “after-effects” of the adaptation [72]. Error clamp trials
can be a powerful tool for measuring motor action after a perturbation has been learned [73].
By creating a channel to constrain arm movements, any systematic error in motor action
must be due to feedforward error. Concretely, suppose that we have the baseline KF cursor
decoder structure
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where 0.07 and 0.5 are values selected arbitrarily based on the range of spontaneously gen-
erated values and which we confirmed experimentally the subject was able to control. As
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Figure 5.1: Error clamp projection for a kinematic cursor.

discussed at length in other chapters, Kyt encapsulates the neural signal component and acts
as a control signal to a linear system. Hence, to generate an equivalent to the visuomotor
rotation commonly used in psychophysics. we can rotate the control signal Kyt:
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in which R(θ) is a 2-D counter clockwise rotation matrix:

R(θ) =

[
cos(θ) −sinθ
sinθ cosθ

]
.

Alternatively, to manipulate the decoder to induce an equivalent of the curl field pertur-
bation, we can make the angle of rotation applied to the control signal dependent on the
cursor’s speed rather than a fixed constant θ:
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During error clamp trials, the position of the cursor is confined to the straight line between
the origin and the target. To implemented this for natural arm movements, a “convergent”
force field is applied to the endpoint to keep it from deviating from the specified path. For
a cursor BMI, we project the position state onto the straight line between origin and target,
as shown in Figure 5.1.

In systems with virtual or physical dynamics, methods similar to those used in natural
motor studies can be used. These methods above are needed in the case where the system is
massless and analogies must be used between forces and the actual parameters of the system.
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Figure 5.2: Error clamp session trial structure. An error clamp session had four epochs:
baseline, perturbation learning, perturbation clamp and washout. During the baseline pe-
riod, subjects operated the CLDA-trained cursor decoder as normal. Error clamp trials were
interspersed to measure baseline feedforward behavior. Then the perturbation was turned
on without cue to the subject. The subject was given time to learn and correct for the
perturbation. After a set number of trials after which the subject had presumably learned
to compensate for the perturbation, error clamps were interspersed to measure feedforward
behavior after learning the perturbation. A washout period followed to examine after-effects.

For error clamp sessions, we used the center out task variant where the cursor was reset
to the center at the end of each trial. This resetting helped to mitigate contamination from
the end of one trial to the next trial by ensuring that the cursor always started in the same
position. The trial structure is depicted in Figure. The center-out task had 8 targets and
targets were block-randomized, i.e. after one block of 8 trials, one successful trial to each
target was completed. During error clamp epochs, one out of 8 trials in the block was selected
as the clamp trial randomly. The clamp and perturbation structure is depicted in Figure
5.2.
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5.3 Results

Modulation of control signal coherence across time

Difference between hold versus target states

Holding a cursor in place during BMI control is known to be a challenging task [3, 24, 11].
We asked whether the control signals between the movement phase and the hold phase of
the standard center-out tasks came from different distributions. Recall from Chapter 3 that
the KF system equation can be described as

xt+1 = Fxt +Kyt,

in which the term Kyt encapsulates the neural command velocity. In our 2-D position-
velocity state space, the position control terms are linearly related to the velocity control
terms; hence we only consider the velocity component, Kvelyt, as made explicit by (5.2.2).
Figure 5.1a shows histograms of the control signal magnitude ||Kvelyt|| during the movement
epoch and the hold epoch. As expected, the typical control signal magnitude during the hold
epoch is less than during the movement epoch. Figure 5.1b shows that the instantaneous
displacement of the cursor, ||pt − pt−1|| is also less during the hold epoch than in the move-
ment epoch, as is implied by the ability to complete the task quickly. These differences in
distributions imply a shift in the control policy during different phases of the task. We asked
whether the shift was due to a gain reduction in the generated control signal, or whether the
policy changed in some state-dependent manner. We measured the efficiency of each control
signal by the ratio of displacement to control signal size: ||pt−pt−1||

||Kyt|| . Figure 5.1c shows that
the efficiency is slightly less during the hold epoch than in the movement epoch.

Similar results were found for the variant of the center-out task where Monkey G was
incentivised to hold in place for as long as possible (see Section 5.2). Figure 5.2a shows a
difference in distributions of control signal size during the hold and movement epochs and
Figure 5.2b shows a difference in the size of the instantaneous cursor displacement during
the two epochs. Similar to the short timed hold paradigm, Figure 5.2c shows that the
displacement per unit control signal was less during the hold epoch. These results indicate
that the subjects generated smaller signals as well as signals tailored to the current state to
generate less endpoint displacement.

Response to target jump perturbation

Figure 5.3 shows the response to the target jump perturbation described in Section 5.2.
Monkey G performed the target jump task using two different types of decoders, the Kalman
filter (KF) and the point-process filter (PPF). The PPF enables high-performance BMI with
decoding at much faster rate than the KF (180 Hz compared to 10 Hz, in this study), enabling
study of the BMI control policy at a much finer time scale. The top row of Figure 5.3 shows
the average cursor speed trajectories for jump trials and regular trials. Predictably, the
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Figure 5.1: Kinematics of BMI cursor reaching versus holding. (a) Histograms of the instan-
taneous neural command magnitude during the hold phase (blue) and the reaching phase
(green). The distributions are overlapping but visually it is clear that the distributions are
different. (b) Histograms of the instantaneous displacement of the cursor during the hold
phase and the movement phase. The movement phase typically has larger displacements.
(c) Efficiency of the control signal in displacing the cursor, calculated as the ratio of the
displacement to the size of the control signal. Efficiency was also reduced during the hold
epoch.
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Figure 5.2: Similar to Figure 5.1 on a center-out task variant where the subject was incen-
tivized to hold in place for as long as possible. The reward was set proportional to the time
the cursor spent in the target. The command magnitudes between the reach and hold phases
are more overlapping than in the timed case.
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Figure 5.3: Cursor speed and control angle for monkey G during a target jump BMI task.
Following the target perturbation, the control angle increases as the cursor slows down
and decreases as it accelerates, demonstrating temporal modulation structure in the control
policy under “surprise” conditions. The left shows the task performed with a Kalman filter
with decoded state updated at 10 Hz. The right shows the same task performed with a
point-process filter (PPF) with the decoded state updated at 180 Hz. For the PPF data,
coherence is smoothed with a 10 Hz moving average.

cursor speed shows a “submovement” following the target jump during the jump trials but
not during normal trials. The command speed (middle row) is similar for both types of trials,
though slightly higher following the target jump. The coherence (bottom row) shows a drop
and than an increase following the target jump, indicating a response in which the subject
decelerates the cursor and then accelerates by altering how commands combine across time.

Internal model adaptation revealed using error clamps

The error clamp paradigm provides a method to measure feedforward control commands by
eliminating task errors. Figure 5.4 shows the direction of the control signal as a function of
the current speed of the cursor. In this analysis, trajectories of the cursor and the control
signal have been rotated so that all trials appear as if they are to the center-out target at 0
degrees. Control signals are concentrated in the direction of the target, not surprisingly. As
the cursor is moving more quickly, the control direction becomes more concentrated in the
direction of the target.
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Figure 5.4: Direction of control signal during baseline clamp trials. Both plots show the same
data in different perspectives. The left plot shows the horizontal/vertical control direction
against the cursor speed state. When the cursor speed is fast, the control directions tend to
cluster in the direction of the target. The right plot shows the same trend with the cursor
speed on the x-axis and the control direction in radians (rather than a 2-D vector). Again,
the control direction is centered around 0, and as the cursor speed is faster, the control
direction is clustered closer to 0.
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Figure 5.5: Trajectories during baseline, early perturbation, late perturbation and washout
during various different perturbations (depicted in different rows).

The monkey improved the straightness of reach trajectories after being exposed to the
various perturbations. Figure 5.5 shows the trajectories during various phases of the ses-
sion: baseline, early perturbation, late perturbation and washout. Trajectories are relatively
straight during the baseline period, are perturbed by the sudden onset of the perturbation,
and gradually straighten out with practice as shown in the late perturbation trajectories
(though they do not reach the straightness of the baseline period).

Analysis of the control signals during the error clamp trials after the perturbation has
been learned is shown in Figure 5.6. Recall that the rotation applied to the control signal
is either constant or proportional to the current speed of the cursor. Thick black lines
indicate the optimal control direction in order to cancel out the rotation to be applied by
our perturbation. Figure 5.6 shows that the control direction during the clamp trials follows
the direction which would optimally cancel out the perturbation.



CHAPTER 5. EVIDENCE OF FEEDFORWARD AND MODEL-BASED
NEUROPROSTHETIC CONTROL 56

0 20
¡¼

¼
CW curl

Co
nt

ro
l d

ir.
 (r

ad
)

Control
speed (cm/s)

0 20
¡¼

¼
CCW curl

Co
nt

ro
l d

ir.
 (r

ad
)

Control
speed (cm/s)

0 20
¡¼

¼
CCW rot.

Co
nt

ro
l d

ir.
 (r

ad
)

Control
speed (cm/s)

a b c

Figure 5.6: Control signal direction as a function of the cursor’s velocity during error clamp
trials for (a) CW curl perturbations, (b) CCW curl perturbations and (c) CCW rotation.
Dashed black lines indicate the optimal command to move toward the target while canceling
out the perturbation.

Movements became more “blended” with learning

In this experiment, the KF intended state space model was altered so that the position of
the cursor evolved with simulated dynamics with the decoder outputting piecewise constant
force in a 2-D plane:

x̃t =



Fx(t)
Fy(t)

1


 .

Endpoint force acting on a 1 kg point mass was decoded at 10 Hz, a typical rate for the KF.
Simulated physics were updated at 60 Hz to match the refresh rate of the screen. Piecewise
constant acceleration was found using the relationship F = ma and then position and velocity
were found by integration of the piecewise constant acceleration. No explicit limitation was
placed on how much the endpoint force was permitted to change from one time point to the
next. To apply CLDA, intended kinematics were found using an experimenter-specified PD
controller.

The decoder parameters were held nearly constant over the course of the experiment, with
most days using the exact same parameters. Waveforms were similar though not exact across
days, though the decoder parameters were not altered (e.g., using CLDA) to compensate for
waveform instability. Figure 5.7a shows the movement times achieved by Monkey G over
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Figure 5.7: Monkey G learned to control a virtual point mass cursor with mass of 1 kg.
Neural control was executed directly over endpoint forces acting on the mass. Over the
course of several days (vertical dashed lines indicate day boundaries) and thousands of trials,
the number of velocity peaks in the trajectory decreased, indicating more “blending” of
submovement components and suggesting more accurate feedforward control of the prosthetic
device.

the course of several thousand trials split over 10 days. The movement times improved over
the first three days and then stabilized for the remaining days.

In natural movements from healthy individuals, movements are often comprised of smooth,
bell-shaped velocity profiles (e.g., [53]). During recovery after stroke, movements initially
have many submovements which appear to “blend” together as recovery progresses [50]. We
asked whether similar trends might occur in BMI skill acquisition. 5.7b shows the number
of speed peaks (local maxima in the speed profile) for each trial. As the movements became
faster, the number of speed peaks per movement decreased, suggesting that movements
became more feedforward as skill improved.
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5.4 Discussion
The results here indicate that BMI control may be model based and when control is consol-
idated with learning may become more feedforward. These results of course remain prelimi-
nary as they involve only one monkey subject. Nevertheless, they are consistent with studies
of natural motor learning.

During center-out control, we discovered that there was a difference in the subject’s
control policy between movement and hold task epochs. An optimal controller need not have
a different policy between these epochs. For instance, an infinite horizon LQR controller
could simply always move toward the center of the target and be able to use the same
controller during both epochs to successfully complete the task. The shift in behavior we
observed during BMI control may indicate a shift to enable the subject to more successfully
deal with control noise (as BMI control is quite noisy) or may require less energetic cost.
Further experiments are necessary to distinguish the various possible hypotheses.

Error clamp trials revealed that BMI control signals after learning a perturbation tended
to optimally cancel the perturbation. Monkey G learned to compensate for a velocity-
dependent perturbation. This suggests that Monkey G adapted to the perturbation and
adjusted the BMI control policy to have a variable compensation for the perturbation de-
pending on the speed state of the cursor. This required the subject to know the speed state
of the cursor, possibly by learning a model of the state-dependent perturbation.

As Monkey G learned to control the point-mass system, the number of peaks in the speed
profile decreased and the trajectory became less segmented. In natural motor studies, similar
behavior after stroke recovery has been implicated as evidence of more feedforward control.
Feedforward control may involve a forward model for prediction of where various sequences
of control signals will drive the system.

In all these cases, degenerate instances of inverse models may also be able to play the same
role as a forward model. The shift between movement and hold control signal generation
can be accomplished by a switch between two different inverse models. The learning of
sudden perturbations may be accomplished by rapidly reprogramming the entire inverse
model to deal with the perturbation. And the appearance of more feedforward control may
be accomplished by an internal model which expands to generate commands for multiple
timesteps instead of a single timestamp. It may always be possible to construct an inverse
model which emulates forward model behavior. These issues remain to be resolved by the
field at large.



59

Chapter 6

Neural control of a redundant kinematic
chain

This chapter describes an experimental demonstration of BMI control over a redundant
virtual robot. The work was in collaboration with Helene Moorman (whose contribution
was equal to mine) and Jose Carmena. At the time of this writing, a version of this work is
in review for publication.

6.1 Overview
A Kalman filter was used to decode the joint velocities of a virtual four-link kinematic chain
from single- and multi-unit neural activity in two non-human primate subjects. The subjects
completed movements of the chain’s endpoint to instructed target locations within a two-
dimensional plane. This system was kinematically redundant for an endpoint movement
task, as four DOFs were used to manipulate the 2-D endpoint position. This redundancy
allows null movements in which the individual links of the chain move in a way that cancels
out and does not result in endpoint movement. Both subjects successfully performed the
task and improved with practice by producing faster endpoint velocity control signals. As the
subjects became more proficient at controlling the chain, the amount of null movement also
increased. Performance suffered when only the endpoint of the chain was visible but the links
of the kinematic chain were hidden. Furthermore, all available degrees of freedom received
task-relevant control inputs. All four DOFs of the joint-velocity control space exhibited
significant task-relevant modulation. The relative fraction of variance explained by each
DOF depended on the configuration of the chain, and trials in which the less-prominent
DOFs were utilized also tended to have better task performance. Overall, these results
indicate that the subjects incorporated the redundant components of the control space into
their control strategy. Future BMI systems with kinematic redundancy, such as exoskeletal
systems or anthropomorphic robotic arms, may benefit from allowing neural control over
redundant configuration dimensions in addition to end-effector control.
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6.2 Introduction
The natural motor system displays impressive dexterity in controlling the many degrees
of freedom (DOFs) of arm movements. The arm contains kinematic redundancy in the
transformation from shoulder, elbow, and wrist angles to hand position in 3-D space as there
are many possible joint postures to achieve a single endpoint position. However, the neural
mechanisms that enable dexterous control of redundant plants remain an area of debate. It
remains unclear whether motor cortical neurons represent kinematic or kinetic parameters, or
whether they represent intrinsic (e.g., joint) coordinates or extrinsic (e.g., hand) coordinates
(see [74] for an overview). Furthermore, the point in the sensorimotor loop when kinematic
redundancy is resolved remains unclear. Early studies indicated that the brain attempts to
resolve redundancy in the planning stages by minimizing a cost function such as kinematic
jerk [53], torque change[75], endpoint variance [76], etc. More recent studies have shown that
variability in redundant dimensions may be greater than in “controlled” dimensions [77],
possibly because movements in the redundant dimensions do not affect task performance
and therefore controlling variability in those dimensions is unnecessary [70]. In addition, the
ability of the natural motor system to control redundant systems transfers to novel mappings.
Human subjects can learn a novel redundant mapping between naturally generated high-
dimensional finger movements and a 2-D cursor [78, 79, 80]. Neural control of redundant
manipulators is an important open question in motor control.

Brain-machine interface (BMI) systems hold tremendous potential to restore motor func-
tion lost to neurological injury or disease. Impressive proofs of concept have been shown
for rodents, non-human primates, and humans controlling a variety of virtual and physi-
cal actuators [81]. The focus of this work is on kinematically redundant BMIs, where the
combination of task and plant under neural control allow for multiple, equally optimal, task
solutions. Typical BMI paradigms are not kinematically redundant. An example is the 2-D
cursor movement task where the two degrees of freedom (DOFs) defining cursor position are
controlled by neural activity [1, 2, 3, 4, 12, 5, 8, 9, 11]. In the cursor paradigm, there is
only one way for the prosthesis to achieve any specific cursor trajectory. In contrast, the
paradigm we use in this work has two added DOFs that allow many different manipulator
trajectories to produce the same endpoint trajectory.

Even when greater numbers of controllable DOFs exist in a BMI system, the corre-
sponding tasks are generally not kinematically redundant. For example, several studies have
demonstrated control of arm-like robots that are able to grasp objects in 3-D space, but
these paradigms lacked kinematic redundancy since neural control was only allowed for the
end effector, e.g., endpoint velocity and 1-D grip [6, 13]. Any remaining mechanical DOFs
remained under machine control and were not subject to neural input. Redundant kinematic
solutions may have been possible in studies which supplemented 3-D velocity and 1-D grip
with 3-D end effector orientation [?] and multiple grasp dimensions [82], and were possible
when functional electrical stimulation was used to drive different muscles with similar effects
on hand grasp [10]. The presence of redundant solutions in those scenarios would depend on
the objects being grasped, and redundant solutions were not the focus of those studies.
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To our knowledge, no studies have explicitly investigated control of a BMI system that
exhibits kinematic redundancy. In order to examine redundant control in BMI, we designed
a virtual four-link kinematic chain that moved in a two-dimensional plane. With this system,
any endpoint position could be achieved by an entire 2-D space of kinematic chain configu-
rations. Two non-human primate subjects were trained to control the four joint velocities of
the chain with neural activity in a closed-loop BMI system. Single- and multi-unit activity
was decoded using a Kalman filter and the parameters of the Kalman filter were calibrated
daily using closed-loop decoder adaptation (CLDA). The subjects were tasked with moving
the endpoint of the redundant kinematic chain to instructed target locations. Hence, the
subjects controlled more DOFs than were necessary to perform the task.

6.3 Methods

Surgery and Electrophysiology

Two adult male rhesus macaques (Macaca mulatta), Monkeys C and G, were used in this
study. Monkey C was implanted with bilateral chronic Teflon-coated 128-channel tungsten
microwire electrode arrays (35 micron diameter, 500 micron wire spacing; Innovative Neu-
rophysiology, Durham, NC) for neural recording. Monkey G was implanted with a similar
array in the left hemisphere but was implanted with two 64-channel arrays (same electrode
diameter and spacing) in the right hemisphere. The arrays targeted the hand and arm rep-
resentation areas of primary motor cortex and dorsal premotor cortex based on stereotactic
coordinates. Single and multi-unit activity was recorded using a 256-channel Omniplex sys-
tem and sorted online using PlexControl (Plexon, Inc., Dallas, TX). All procedures were
conducted in compliance with the National Institute of Health Guide for Care and Use of
Laboratory Animals and were approved by the University of California, Berkeley Institu-
tional Animal Care and Use Committee.

Behavioral tasks

The monkeys were trained on a virtual task in which they were required to move a cursor
to an instructed target on a computer screen. After being trained to control the cursor with
arm movements, the monkeys controlled the cursor with neural activity via a Kalman filter,
which did not require overt arm movements. Once the monkeys had been familiarized with
the brain-control cursor, they began controlling the joints of a four-link virtual kinematic
chain with neural activity. Figure 6.1a illustrates the experimental setup. All tasks required
moving the chain endpoint inside an instructed target (radius 1.3 cm for Monkey C, radius
1.5cm for Monkey G). They were given 7-15 seconds to complete each movement and needed
to hold the endpoint inside the target for 200ms to receive a liquid reward. Failure to
complete the movement in time or hold for sufficient time restarted the same trial without
reward.
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Figure 6.1: Experimental setup and task timelines. (a) Closed-loop BMI control of the
kinematic chain. Observations of single and multi-unit spike counts were used to decode
the joint velocities of a four-link kinematic chain moving in a 2-D plane. (b) Center-out
task and timing. The subjects were required to move the chain’s endpoint to the center to
initiate trials and then move to a peripheral target. (c) Multi-configuration task and timing.
Subjects were required to move the chain’s endpoint to the specified target, starting from
one of 3 possible joint configurations per starting position for Monkey G, or 5 possible joint
configurations per starting position for Monkey C.

In the center-out task, illustrated in Figure 6.1b, the monkeys initiated trials at their
own pace by holding the endpoint in the center for 200ms. Upon entering the center, the
peripheral target appeared. After the center-hold period ended, the center disappeared,
cuing the monkeys to initiate movement to the instructed target. Instructed targets (16 for
Monkey C, 8 for Monkey G) were uniformly spaced about an 8 cm radius circle.

After the monkeys were familiar with the kinematic chain center-out task, they performed
the multi-configuration task, illustrated in Figure 6.1c. At the start of each trial, the endpoint
appeared at the center of one of four uniformly spaced peripheral targets. For each starting
position, we set θ4=-9 degrees and θ3 to one of {135, 157.5, 180, 202.5, 225} degrees for
Monkey C or {135, 180, 225} degrees for Monkey G, in absolute coordinates. The remaining
joint angles θ1 and θ2 are fixed if the endpoint is known [83]. This yielded a total of 20 and
12 possible starting postures for Monkeys C and G, respectively. In all trials, the monkeys
were instructed to move the endpoint to a target at the center of the workspace. Unlike the
center-out task, this task was not continuous since there was a large, automatic movement
of the chain back to one of the preset configurations before each new trial.

In some sessions, we tested the effect of visual feedback of the chain configuration on
multi-configuration task performance. On 50% of trials randomly chosen, the entire chain
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was hidden except for a cursor representing the endpoint. To determine whether the feed-
back reduction significantly impacted movement time, we used a randomization test. Since
task performance varied by starting configuration, randomization was only performed within
starting configuration.

For a small number of sessions that were analyzed separately, Monkey G performed a
variant of the multi-configuration task with different starting configurations and instructed
target locations. In each of these sessions, the starting configurations were selected such
that the primary two principal components of the control signals (see Section 6.3 below)
only allowed the endpoint to move in a single direction. That is, near these configurations,
two DOFs in joint space only translated to one DOF in the endpoint space. In the robotics
literature, such configurations are referred to as singularities. For each configuration, we
placed the instructed target along the path of one of the remaining two principal components.
This placed the target approximately perpendicular to the single path accessible to the
primary principal components. An example is shown in Figure 6.3b. These combinations
of starting configuration and instructed target were intended to elicit activity in the less
prominent principal components.

Manipulator kinematics

Our subjects controlled the endpoint of a four-link virtual kinematic chain. The links of
this chain, from proximal to distal, were 15cm, 15cm, 5cm and 5cm (selected arbitrarily).
The four joint angles θ1, θ2, θ3, θ4 collectively specify the configuration of the chain. The
endpoint position of the chain can be determined from the configuration by standard forward
kinematics: [

px
py

]
= f(θ) =



∑N

l=1 li cos
(∑i

k=1 θk

)

∑N
l=1 li sin

(∑i
k=1 θk

)

 ,

in which f(·) is the forward kinematics function [84]. For sufficiently small velocities ω and
small time-scales ∆, the forward kinematics can be accurately linearized:

f (θt + ∆ωt) ≈ f (θt) + ∆
∂

∂θ
f (θ)|θ=θt · ωt = f (θt) + ∆J (θt)ωt.

The manipulator Jacobian J (θt) is a 2 × 4 matrix mapping joint velocities to endpoint
velocities. Thus it is possible to have joint velocities ωnull such that J (θ)ωnull = 0. These
null velocities reconfigure the chain with little to no endpoint movement. In practice, such
null velocities will induce a small endpoint movement due to linearization inaccuracies. For
the maximum joint velocity we observed (0.6 rad/sec), this inaccuracy was less than 2 mm. In
contrast, other velocities ωendpt = J†(θ)J(θ)ωendpt in which (·)† is the matrix pseudoinverse.
These represent the smallest joint velocities (in the `2-norm sense) that produce a particular
endpoint velocity. All joint velocities can be decomposed into an endpoint component and
a null component: ω = ωnull + ωendpt.
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For tasks in which the endpoint must move toward a specified target p∗, endpoint velocity
can be further divided into a goal component, which moves the endpoint along the axis
g = p∗−f(θ)

‖p∗−f(θ)‖ , and an error component, which moves the endpoint orthogonal to the goal
axis. Thus we subdivide ω = ωnull + ωgoal + ωerror in order to further analyze the endpoint
component of joint velocities, using these equations:

ωgoal = J†(θ)g · (J(θ)ω)T g

ωerror = ωendpt − ωgoal.

BMI decoder architecture

In BMI systems, the decoder plays a central role in mapping the observed neural activity
from the population of BMI neurons to kinematic control signals for the prosthesis. In this
work, we utilize the Kalman filter (KF) as the decoder and calibrate it using closed-loop
decoder adaptation (CLDA).

Kalman filter (KF)

Variants of the KF have been used in several online BMI experiments [25, 24, 27, 11, 26].
When used to control our four-link virtual kinematic chain, x̃t represents the subject’s in-
tended joint angles θ̃ and joint velocities ω̃ at time t:

x̃t =
[
θ̃

(1)
t θ̃

(2)
t θ̃

(3)
t θ̃

(4)
t ω̃

(1)
t ω̃

(2)
t ω̃

(3)
t ω̃

(4)
t 1

]T
.

The KF estimates the hidden state x̃t when it follows the Gaussian process

xt+1 = Axt + αBL (xt − xeq) + wt; wt ∼ N (0,W ) .

This model is a variant on the standard random walk model in which the walk is anchored
around an equilibrium state xeq. We hand-structured the state transition matrix A such
that our model integrated joint velocities to update joint positions, structured the control
input matrix B such that the inputs from the equilibrium state only affected the velocity
states, and structured the state transition covariance W such that the process noise evolved
independently for each joint:

A =



I4 ∆I4 0
0 0.8I4 0
0 0 1


 , B =




04

∆I4

0


 ,W =




04×4 0 0
0 0.01I4 0
0 0 0


 . (6.3.1)

Though we selected values 0.8 and 0.01 arbitrarily, they were effectively overwritten by the
CLDA procedure described below [32]. L is an LQR-optimal infinite horizon feedback gain
matrix [85].



CHAPTER 6. NEURAL CONTROL OF A REDUNDANT KINEMATIC CHAIN 65

The observations yt represent the spikes observed from a population of single and multi-
units in the past 100 ms. The KF models x̃t and yt as jointly Gaussian with the relationship

yt = Cx̃t + qt; qt ∼ N (0, Q) .

This model of neural firing assumes that spikes are linearly related to joint kinematics. In
cursor BMI studies, modeling neural activity as relating to position variables was found
to detrimentally impact performance [24, 11, 32]. Therefore, we only modeled the neural
dependence on the joint velocity and did not model a relationship between neural firing and
joint position. The KF algorithm recursively generates a new state estimate xt using the
previous estimate xt−1 and the most recent observation yt:

xt = (I −KtC)[Axt−1 + αBL(xt−1 − xeq)] +Ktyt (6.3.2)
= (I −KtC)(A+ αBL)xt−1 − (I −KtC)αBLxeq +Ktyt

More KF details are presented in [25]. For analysis purposes, it is convenient and sufficiently
accurate to analyze the system as time-invariant, replacing Kt with the steady-state Kalman
gain K as shown in Figure 6.1a [32].

The value α controls how strongly movement toward the equilibrium affects the state of
the prosthesis. In our previous work, we found that a similar tendency toward an equilibrium
state arises spontaneously in decoders with position-based models of neural activity [32].
Similar strategies have been used to prevent “drift” due to inattention or disengagement
during control of a 4-DOF robot [6]. For Monkey C, the equilibrium was unused (α = 0),
and we sometimes observed the kinematic chain entering into configurations in which he
would lose motivation to perform the task, possibly because the chain configuration became
difficult to manipulate. To prevent this issue for Monkey G, we used α = 0.025 during the
center-out task to keep the chain configuration from drifting too far from the equilibrium.
Since the equilibrium posture’s endpoint position was at the center of the workspace, the
subject remained fully responsible for movements out toward the peripheral targets. This
method was not applied to the multi-configuration task (α = 0) since in that task the
configuration of the chain was reset at each trial onset and the purpose of the attractor was
to reduce the control burden during continuous control conditions.

KF parameter calibration using closed-loop decoder adaptation (CLDA)

Parameters were calibrated using closed-loop decoder adaptation (CLDA), an emerging
paradigm for rapidly improving closed-loop BMI performance by re-estimating decoder pa-
rameters while the subject continues to operate the system [2, 30, 11, 26, 86]. Parameter
estimation procedures were adapted from [26] and [87].

Initial parameters for C and Q were set by regressing against neural activity evoked when
the subjects passively observed computer-generated movements of the kinematic chain. They
were then iteratively re-estimated as the subject performed the task in closed loop. If the
intended kinematics are known, then maximum-likelihood estimates of C and Q can be
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obtained by linear regression. While the intended kinematics cannot be obtained exactly,
simple methods to infer intended kinematics based on the known goals of the task have been
remarkably successful. For instance, the assumption that the subject always intends that
the cursor velocity point toward the target has been used in several previous studies [11, 88].

The kinematic chain in this work has the added complication that the intended final joint
angles are not fully specified by the intended endpoint location. To resolve this redundancy
during CLDA, we constructed an arbitrary one-to-one mapping between target position p∗
and intended configuration θ∗ for each of the peripheral targets and the center target. CLDA
was performed only on the center-out task. This mapping allows us to specify the goal state
x∗, which we used to infer the intended kinematics by:

x̃estt+1 = Axt +BL (xt − x∗) .

A, B and L are the same as in the KF state-space model. This intention estimation method
is the multi-dimensional generalization of a feedback controller that slowly moves a cursor
toward a target position [11].

With the estimates of intended kinematics, we use the recursive maximum likelihood
method to update C and Q [87]. This calibration procedure was repeated daily for both
monkeys. After 5-10 minutes of decoder adaptation, the decoder parameters were fixed for
the remainder of the experimental session.

Control signal analysis and DOF manipulation

In equation (6.3.2), the term Ktyt can be interpreted as a control signal to a linear system.
The instantaneous contribution of the neural control is encapsulated entirely inside this term.
Our control signals Kyt are elements of a 4-D space. The control signal Kyt has 9 elements
because xt has 9 elements. However, because we do not model neural dependence on joint
positions and because the last element of xt is constant, only the 4 velocity inputs are unique
and the other 5 control inputs are linearly related to the velocity inputs. Hence we limit our
analyses to ut = K[5:8,:]yt, the 4-D joint-velocity control. Our tasks only require movement
of the 2-D endpoint, resulting in two redundant DOFs. For our analysis, we decomposed the
control signals into goal, error, and null components (see Manipulator kinematics above),
symbolized as gt, et, and nt, respectively.

Additionally, we analyzed principal components (PCs) of ut, which represent the uncor-
related joint co-activation patterns of maximal variance [89]. If pi is the ith PC, then the
component of a vector β along the ith PC is β(i) = pi

(
pTi β

)
. The scalar quantity (pTi β) is

the activation of dimension pi. This gives us a method to split ut into 12 components:

ut = g
(1)
t + · · ·+ g

(4)
t + e

(1)
t + · · ·+ e

(4)
t + n

(1)
t + · · ·+ n

(4)
t .

We tested several hypotheses regarding the fraction of variance (FV) accounted for by various
dimensions or combinations of these components. For example, to determine the fraction of
each PC contributing to either endpoint or null movement, we calculated the FV for g(i)

t +e
(i)
t
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versus n(i)
t . Or to test the relative contribution of each PC to gt, we calculated the FV due to

g
(1)
t , g(2)

t , g(3)
t , and g(4)

t . The variance of each vector was calculated by adding the variances
of each of the individual components [89]. Variance estimates were made using 1000 samples
(100 sec) of data between the go cue and the terminus hold, and only observations from
rewarded trials were considered (see Figure 6.1).

We also examined the similarity of DOF use across tasks. PCA is a data-dependent
determinant of directions of maximal variance, and in addition to fluctuating across days
due to changes in the decoder or neural population, may change across tasks. Thus when
comparing DOF usage across tasks, we determined which DOFs were used during center-
out control (PCs averaged across sessions and then re-orthogonalized using Gram-Schmidt
orthogonalization) and then used these center-out DOFs to make meaningful comparisons of
control strategies across task manipulations.

In some closed-loop experiments, we restricted ut to 2 PCs. If ū is the mean of ut, then

ut − ū =
4∑

i=1

pip
T
i (ut − ū) .

To allow N PCs, we substituted ū+
∑N

i=1 pip
T
i (ut − ū) in place of Kyt in equation (6.3.2).

6.4 Results

Subjects generated less stereotypic chain configurations as task
performance improved

Both subjects successfully performed the center-out brain-control task with the 4-link kine-
matic chain. Figure 6.1a shows that movement time (the time elapsed between exiting the
center and entering the target) decreased across days in both subjects (Monkey C: R2 = 0.61,
exponential fit; Monkey G: R2 = 0.355, linear fit; p < 0.02) over the course of 17-24 sessions.
Figure 6.1b shows that average movement time was 0.76 s faster for Monkey C and 0.39
s faster for Monkey G in late (last 5) sessions compared to early (first 5) sessions. The
distributions of movement times between early and late sessions were significantly different
as well (Kruskal-Wallis test, p < 10−5).

The joint-space control signals, ut, were partitioned into endpoint and null components,
and endpoint components were further subdivided into goal and error components (see Meth-
ods). Figure 6.1c shows that the variance of the endpoint component increased from early
to late sessions for both monkeys (Kruskal-Wallis test, p < 0.001). This increase suggests
that in later sessions the monkeys utilized a broader range of control signals to accelerate or
decelerate the endpoint. In parallel, we observed that in late sessions, a greater fraction of
endpoint variability was related to control inputs along the goal axis than on the error axis
(Figure 6.1d, Kruskal-Wallis test, p < 0.001), and was likely responsible for an observed de-
crease in the endpoint path length across sessions for Monkey G (r = −0.61, p < 0.01, linear
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Figure 6.1: Performance improvements across sessions correspond to shifts in endpoint and
null velocity control signals. (a) Both monkeys showed improved movement times across
consecutive sessions on the center-out task. The performance improvements were signifi-
cantly fit by an exponential curve for Monkey C (R2 = 0.644, p < 0.001) and a line for
Monkey G (R2 = 0.319, p < 0.05). Early and late sessions were defined for further analysis
as the first five and last five sessions. (b) Consistent with the curve fits from (a), movement
times significantly improved in late sessions (Kruskal-Wallis (KW) test, p < 0.001). (c)
Endpoint velocity variance, corresponding to the range of control inputs which accelerated
or decelerated the endpoint, increased from early to late sessions (KW test, p < 0.001),
consistent with faster movement times. (d) Endpoint velocity was split into goal and error
dimensions, indicating endpoint velocity control inputs on the axis toward the target or the
axis orthogonal to the target, respectively. The fraction of endpoint velocity on the goal axis
increased in late sessions (KW test, p < 0.001), indirectly contributing to faster movement
times by improving the instantaneous accuracy of endpoint control signals. (e) Null velocity
variance, corresponding to control inputs that altered the chain configuration without mov-
ing the endpoint, increased in late sessions (KW test, p < 0.001). (f) The increase in null
variance likely caused an increase in the total variance of joint configurations at the end of
the trial (KW test, p < 0.001). Overall, in late sessions, the monkeys moved the endpoint
of the chain to the target faster and in a larger range of final configurations. *:p < 0.05,
**:p < 0.01, ***:p < 0.001.
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fit). While Monkey C did not display a significant change in path length across sessions, he
did demonstrate a decrease in the ratio of error variability to goal variability (r = −0.81,
p = 0.008, linear fit) as well as path length (r = −0.54, p < 0.001) within-session. These
improvements in performance are consistent with previous studies of co-adaptive BMI per-
formance improvements [2, 88]. Both monkeys were able to generate faster, more accurate
endpoint control signals in late sessions, resulting in shorter movement times.

A more unique component of our study is the redundancy in the kinematic chain, which
allows null movements to reposition the chain without moving the endpoint. Figure 6.1e
shows that variability in the null dimension increased from early sessions to late sessions
(Kruskal-Wallis test, p < 0.001). On the behavioral level, we found that the configuration
of the joints at the end of the trial became more variable across sessions. Figure 6.1f shows
that the within-target, within-session configuration variance was significantly higher in late
sessions than in early sessions (Kruskal-Wallis test, p < 0.00002 for both monkeys). These
increases in null motion and configuration variance are somewhat counter to previously pub-
lished observations of natural motor remapping studies [78], possibly because no physical
movement is required for BMI control (see Discussion). The starting configuration of each
trial, at the time of the go cue, was also more variable in later sessions than in early ses-
sions (Kruskal-Wallis test, p < 0.0005), and the starting configuration in a trial was highly
predictive of the ending configuration. Averaging across targets and sessions, the starting
configuration explained 94% of the variance in the ending configuration variance for Monkey
C and 69% for Monkey G. This may indicate that the subjects attempted to optimize their
solutions on a trial-by-trial basis depending on the configuration at the start of each trial
rather than minimizing variability across trials.

Altogether, the changes in null and endpoint control components allowed the monkeys to
move to the targets faster and achieve a wider range of final configurations without sacrificing
endpoint performance.

Movement times were slower without joint configuration feedback

We analyzed the importance of direct visual feedback of the chain configuration state on task
performance. The subjects performed the multi-configuration task with all links of the chain
hidden on 50% of trials (randomly chosen), leaving only the chain’s endpoint visible. The
multi-configuration task was used to begin each trial with the chain at carefully controlled
starting configurations and prevent the chain configuration at the end of one trial from im-
pacting the strategy for the next trial. Since there were multiple possible joint configurations
for each starting endpoint position, subjects could not determine the exact chain configura-
tion from the starting endpoint position alone. We found that movement times were longer
on average for these reduced-feedback trials. Across starting configurations, movement times
when the links were hidden were on average 5.5% longer for Monkey C and 13.3% longer for
Monkey G (p < 0.0001, randomization test stratified by starting configuration; 3732 trials for
Monkey C and 1763 trials for Monkey G). One configuration in particular required movement
times that were 21.7% longer for Monkey C and 66.0% longer for Monkey G (Kruskal-Wallis
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test, p < 0.01 corrected). This indicates that the control signal generated by the subjects
was influenced by knowledge of the full configuration state of the redundant actuator and
not exclusively the endpoint position.

To confirm that the observed feedback manipulation effect was specific to a plant in which
the joint angles were not uniquely specified by the endpoint position, Monkey G performed
a control experiment in which the four-link chain was replaced with a two-link chain. A
two-link chain contains no kinematic redundancy, and the exact configuration of the joint
angles can always be determined from the endpoint. Under these conditions, hiding the
links had no effect on movement time (p > 0.35, randomization test stratified by starting
configuration; 4632 trials total). The importance of seeing the kinematic chain links was
limited to the four-link chain that lacked a one-to-one mapping between endpoint position
and joint configuration.

Redundant principal components of the neural control signal
contributed to task performance

To extract the DOFs controlled during the continuous center-out task, we performed principal
component analysis on the joint velocity control signals ut. The resulting PCs represent four
orthogonal patterns of relative joint co-activation that span the joint velocity space. Since
the four-link chain possesses two excess DOFs to complete the center-out task, we aimed
to determine which control dimensions were modulated by task goals by calculating the
average activation of each of the PCs during trials to different targets. We hypothesized
that PC activity due to noise would occur at a consistent level regardless of the intended
endpoint movement direction, while activity due to goal-directed control would appear tuned
to target direction. Figure 6.2a shows that activity along all four PCs showed clear direction-
dependent tuning (cosine curve fit, p < 0.001, averaged across sessions), with PCs 3 and 4
(the PCs with less FV) both most active during vertical endpoint movements. This suggests
that despite the relatively small fraction of variance explained by these PCs, they were tuned
to the target direction and thus modulated by the goals of the task.

The PC tuning in Figure 6.2a was significant when averaged across sessions, indicating
that DOFs were used in a consistent manner across center-out sessions. Since PCs are defined
by a particular set of joint movement observations and therefore may vary depending on the
decoder, the neural ensemble, and the requirements of a given task, we also computed more
general DOFs based on average PCs across multiple sessions of the center-out task (see
Methods). Figure 6.2b shows that the first two DOFs had larger FV than the last two
DOFs. Thus we refer to the first two DOFs as primary DOFs (pDOFs) and last two as
secondary DOFs (sDOFs). To determine how each DOF contributes to movement of the
endpoint, we partitioned each DOF into null and endpoint components. Figure 6.2c shows
that the pDOFs were more than four times more active in the endpoint dimension than in
the null dimension for both monkeys (Kruskal-Wallis test, p < 10−7), while the reverse was
true for the sDOFs (Kruskal-Wallis test, p < 10−7). From this, we concluded that the pDOFs
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Figure 6.2: Principal components (PCs) and degrees of freedom (DOFs) during center-out
control. (a) For the center-out task, we calculated PCs of the joint velocity control space (see
Methods) and plotted the average tuning of these PCs to target direction across sessions.
All PCs were significantly fit by a cosine tuning function (p < 0.001). (b) Fraction of
variance (FV) along each DOF, averaged across sessions. Center-out DOFs were constructed
by averaging the center-out PCs from individual sessions (see Methods). Center-out control
was dominated by the use of the “primary” DOFs 1 and 2 (pDOFs), while the “secondary”
DOFs 3 and 4 (sDOFs) accounted for a much smaller FV. (c) Within each DOF, we calculated
the average FV by either endpoint or null movements. Activity in the pDOFs was primarily
endpoint movement while activity in the sDOFs was primarily null movement.

were the main drivers of endpoint movement during center-out control.
We asked whether the seemingly minor contribution of the sDOFs to center-out con-

trol reflected a global, task-independent control strategy, or whether there were regions of
configuration space not traversed during the center-out task where the sDOFs might play
a more prominent role. We examined the usage of these same sDOFs during the multi-
configuration task, in which a more varied range of joint configurations occurred than in
the center-out task. Figure 6.3a illustrates sDOF use by target location (center-out task)
or starting configuration (multi-configuration task). For many starting configurations of the
multi-configuration task, the fraction of endpoint variance due to sDOFs was higher ob-
served during the center-out task. To further explore this effect, we had Monkey G perform
a modification of the multi-configuration task specifically designed to encourage movements
using secondary PCs and to penalize activity in the primary PCs (see Methods; an example
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is shown in Figure 6.3b). When controlling from these configurations, fraction of endpoint
variance due to the sDOFs increased significantly (Figure 6.3a, “Singular Primary PCs”)
relative to both the standard multi-configuration and the center-out tasks. The sDOFs con-
tributed 33% of endpoint movements from these configurations despite only contributing
13% during center-out control. Furthermore, the fraction of goal variance due to the sDOFs
was on average 75% from these configurations. Not only were the sDOFs responsible for a
large portion of endpoint movement from these particular configurations, they were primarily
responsible for movements toward the goal.

We observed that faster trials in the multi-configuration task had a greater FV due
to sDOFs. In all trials for this analysis, the entire chain was visible. For each starting
configuration, we split trials into two groups based on whether they were faster or slower
than the median movement time for that starting configuration. Figure 6.3c shows that
the fast trials (aggregated over all starting configurations) tended to utilize more sDOF
activity than the slow trials (Kruskal-Wallis test, p < 0.001). This same result held within-
configuration for 10 of 20 configurations for Monkey C and all 12 configurations for Monkey
G (Kruskal-Wallis test, p < 0.01 Holm-Bonferroni corrected). This relationship indicates
that sDOFs enhanced task performance.

We performed a separate supplemental control experiment to confirm non-trivial contri-
bution of the sDOFs during center-out control. Monkey G performed the center-out task
with a decoder that was manipulated to only allow movement along the first two PCs, and
the performance of this was compared to performance with the full four PCs (1189 trials
in each condition, four PC data was collected on the same sessions as two PC data and
did not overlap with any data in Figure 6.1). Average movement times were 11% worse in
the 2-PC condition and increased significantly from 1.28 s to 1.42 s (Kruskal-Wallis test,
p = 0.002). The performance gap was most significant when moving toward targets at -90
(0.83s (49.1%) difference, p < 0.001 corrected), -45 (0.32s (21.1%) difference, p < 0.001
corrected), and 180 degrees (0.15s (13.0%) difference, p < 0.05 corrected). These directions
also exhibited corresponding large fractions of endpoint variance due to the sDOFs (Figure
6.2a).

Altogether, these results indicate that despite the 2-D nature of the task, the subjects’
control strategies utilized the redundant sDOFs in addition to the pDOFs. The relative
usage of sDOFs depended on the specific task requirements, and in fact, for some parts of
configuration space, the sDOFs defined by the center-out task were more important than the
pDOFs.

6.5 Discussion
The restoration of upper limb function is one of the most common goals of BMI research.
To fully match the functionality of the natural arm, a BMI system must provide the neural
circuitry a mechanism for generating specific joint postures in addition to hand movements,
an ability that is essential for certain types of movements such as reaching around obstacles.
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Figure 6.3: Contribution of secondary degrees of freedom (sDOFs) to BMI control and
performance. (a) Comparison of fraction of variance due to sDOFs across different tasks (C:
center-out, M: multi-configuration, S: Singular Primary PCs). Some starting configurations
in the multi-configuration task showed a greater usage of sDOFs than in the center-out
task, while even greater sDOF utilization was observed in a modified version of the multi-
configuration task in which configurations and target locations were arranged to penalize
primary DOF (pDOF) use and encourage sDOF use (Singular Primary PCs, Monkey G
only). This demonstrated that the reliance on pDOFs observed during the center-out task
was due the specific task requirements and not a global inability to modulate the sDOFs.
(b) An example configuration for the modified multi-configuration task to encourage sDOF
use. Velocity control signals from PCs 1 and 2 generate endpoint velocities that are roughly
parallel to each other and orthogonal to the direction of the target, while control signals along
PCs 3 and 4 generate endpoint velocities toward the target. (c) On the multi-configuration
task, trials with faster than median movement times tended to have a larger fraction of total
variance from sDOFs than trials with slower than median movement times.

Providing the user with direct control at the joint or even muscle level is one possible way
to incorporate this functionality. Studies involving robotic BMI control have typically only
allowed direct neural control of the end effector [3, 6, 13, ?], with the generation of a corre-
sponding configuration-space trajectory (e.g., joint positions) left to robotic path planning
algorithms. Systems that instead seek to reanimate the natural limb through functional elec-
trical stimulation of intact muscles have the potential to allow control of redundant aspects
of the limb state, but relatively few examples of this type of control have been published.
In a recent study in which brain activity directly controlled functional electrical stimulation
(FES) of 3-5 hand and arm muscles to perform a grasping task [10], the stimulated muscles
likely formed a redundant mapping to the subjects’ grasp. The FES paradigm demonstrates
the clinical value of understanding neural control of redundant actuators.

It is important to note that the neural redundancy present in many BMIs is distinct from
kinematic redundancy. Most BMIs contain neural redundancy in that there are typically
many more neurons directly involved in closed-loop control than there are controllable DOFs
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in the plant. However, there is an important distinction between kinematic redundancy in
the manipulable DOFs of the plant and redundancy in the neural control signal: the user
receives direct sensory feedback about the redundant plant state, but feedback about the
state of individual redundant neural inputs can only be gained indirectly through observation
of their combined effect on the plant. Because BMIs are closed-loop control systems, this
difference in feedback conditions may result in the two types of redundancy exerting different
effects on subjects’ control. The impact of neural redundancy on BMI performance remains
an open question and deserves further study.

A series of experiments investigated abstract motor learning of kinematically redundant
maps [78, 80, 90, 91, 92]. Subjects learned novel mappings from high-dimensional 19-DOF
hand position to 2-D cursor position in order to perform cursor movement tasks. This
paradigm differed from ours in that it remapped natural hand kinematics rather than uti-
lizing direct cortical control of the redundant parameters. Subjects performing the hand-to-
cursor control tasks reduced variability of the cursor position space by producing straighter
trajectories, and reduced variability in the null position space by acquiring the target in more
consistent configurations [78]. However, this null variability was not eliminated completely,
and with continuous visual feedback subjects used remaining null movements to reduce ener-
getic control costs [91]. In our data, we observed an increase in null variability in the velocity
space as well as an increase in variability of the chain configuration at the end of the trial.
This difference in strategy may be due to different cost functions between the two paradigms.
The cost of null movement in our study is the metabolic cost of spiking activity to produce
null movement, but it is unclear how to relate that cost to the cost of physical movement
as in the hand remapping studies, or how to determine the cost of reshaping the network
dynamics to suppress the null activity. It may have been difficult or impossible to generate
neural activity to increase task-relevant speed without also generating larger null velocity
components. In our paradigm, the more efficient strategy was apparently to increase null
variability, consistent with a minimum intervention strategy in which the subjects learned
to ignore or exploit motion in the null space rather than try to correct it [70].

Both subjects in our study engaged the redundant plant DOFs in small but non-trivial
amounts. The coarse elements of control were dominated by the first two DOFs, but the
third and fourth DOFs still influenced finer aspects of control. This control structure is
similar to redundant DOFs that are engaged in natural motor control. For example, in hand
grasping postures, though most of the postural variance can be explained by the first 2 PCs
(>80%), the higher order PCs still contain information about the object being grasped [93].

While our subjects demonstrated that control of the redundant elements of the BMI plant
can be achieved, it remains unclear whether permitting control of redundant DOFs would be
advantageous in a clinical BMI system. Proprioception plays an important role in natural
movement [94] and a few studies have shown improved BMI performance when some form
of proprioceptive feedback was provided [9, 95]. Despite this, most BMI implementations
are limited to visual feedback of a disembodied actuator. Under these impoverished sensory
feedback conditions, it may be that increasing the number of controllable DOFs significantly
increases the cortical control burden. Extensive practice at controlling such a BMI system
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could potentially alleviate this issue to some degree, as many studies have demonstrated the
brain’s remarkable plasticity in learning both novel motor (e.g., [96, 97, 98, 99, 100]) and
BMI skills (e.g., [19, 7, 8, 101, 17, 102]). However, clinical studies have shown that ease of
use and training are important factors in patients’ decisions to accept and use prosthetics
[103, 104]. Thus in practice there will be a tradeoff between the complexity of learning to
operate the system and the potential advantages of controlling more DOFs. Evaluating this
tradeoff may be important to future clinical deployment of BMIs.

While our CLDA methodology was sufficient for subjects to achieve control of the plant
in this study, it may be suboptimal for a redundant system since the presence of kinematic
redundancy complicates the process of estimating intended movements for decoder calibra-
tion. Related calibration issues were raised by Collinger and colleagues [82]. Inferring the
exact intended trajectory is never possible with any CLDA method, even when the optimal
final state for a movement can be determined exactly. Our system poses the additional diffi-
culty that for an endpoint movement task, the redundancy makes it such that any element of
a 2-D state subspace is equally optimal. Our CLDA method makes strict assumptions about
the goal pose of the kinematic chain. This method could be adapted to the plant of a clinical
BMI system if a similar set of instructed configurations can be specified (e.g., useful limb
postures for activities of daily living). Alternative CLDA methods based on reinforcement
learning (e.g., [31]) or LMS-like methods to minimize endpoint error [105] may also achieve
high performance without explicitly assuming the subject is trying to attain a particular
chain configuration. Further experiments are necessary to test these and other methods for
redundant systems. However, no matter how good the CLDA method may be, the lack of
sensory feedback compared to natural motor control is likely to remain a problem.

The BMI paradigm introduced in this study provides a potential framework for investi-
gating elements of motor learning. For example, the concept of muscle synergies involves a
mapping from a redundant parameter space to one with fewer DOFs (see [106] for a review).
A redundant BMI system in which muscle activations are decoded could provide a useful
testbed for synergy theories by enabling researchers to easily specify or disable synergies at
will and observe the resultant effects on control, learning, and adaptation. Such “virtual le-
sions” have been proposed to study myoelectric control (e.g., [107]). One strong confound to
these studies in natural motor control may be force of habit in muscle coordination [108]. In
an environment with novel geometry, such as a non-biomimetic plant, this problem may be
mitigated. Though other novel environments can test control hypotheses [78], BMI systems
may also provide a valuable insight into how cortical structures may be involved in learning
novel redundant systems and compensating for loss in redundancy.
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Chapter 7

Conclusion

BMIs provide the potential to restore the ability for millions to independently perform the
activities of daily living in cases where motor function has been lost to neurological disease
or injury. This dissertation aimed to understand the details of the strategy used during BMI
operation and use this understanding to extend the capability of BMI systems to higher
dimensional prostheses.

Chapter 3 demonstrated that day-to-day task performance is influenced by the specific
decoder parameters selected by our calibration procedure. The presence of certain dynam-
ical properties adversely impacted performance and a tradeoff between speed and accuracy
was traced back to decoder parameters. We reasoned, based on simulations, that this per-
formance impact was due to a model mismatch between the subject’s model of the decoder
and the actual decoder properties. Chapter 5 expanded on this line of inquiry, searching
for evidence that such a model existed. We found that in the error clamp experimental
paradigm, one monkey subject learned to compensate for a perturbation in a way consistent
with constructing a model of the perturbation applied.

In Chapter 4, we developed a method for quickly extracting sparse “submovement” com-
ponents from kinematic trajectories. Submovements are a well-known property of natural
movement kinematics, but their origin is unknown. It is unclear whether they reflect the
control policy itself or instead reflect interaction between the controller and the musculature.
A submovement-based neural controller of movement suggests partial feedforward control. In
Chapter 5, we briefly explored the possibility that submovements exist in BMI control, in the
absence of the musculature. As one monkey subject learned to more quickly move a point-
mass BMI cursor, the velocity profiles became smoother and had fewer submovement-like
components. Similar results have been found in stroke recovery studies [50], suggesting that
as the subjects learn the initial submovements become more accurate, fewer large corrections
are necessary.

Our study of 2-D natural reaching movements and 2-D cursor BMI control enabled us to
develop the architecture of the 4-DOF kinematic chain BMI described in Chapter 6. To our
knowledge, this is the first investigation of how a BMI subject dealt with redundant system
elements. Redundancy is a critical component of natural movements and how the natural
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motor system resolves redundancy is still not well understood. In our work, we showed
that with visual feedback alone, BMI subjects were able to manipulate redundant elements
to achieve task goals. These results suggest that redundant DOFs should receive neural
control input. Current studies typically leave redundant DOFs purely to machine control.
By allowing a combination of neural control and robotic control, control over high-DOF
BMIs may improve. Further experiments are needed to test this idea.

The motivation for much of this work came from the desire to build a BMI to control an
upper arm exoskeleton. Though we have begun initial deployment of some of the concepts
developed here into BMI control of an exoskeleton, much work remains to be done in the
control of a real world dynamics. Thus far, the BMI field has yet to address the important as-
pect of object interaction. Force interactions with objects are difficult for robotic controllers
in unknown environments as interactions with the environment may change the inertia of
the robot in unknown ways. Animals are quite good at learning to manipulate impedance
to deal with unknown environments (e.g., [109]), but BMIs have yet to enable control over
limb impedance. This remains an important area for BMI algorithm development.
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Appendix A

Appendix: Decoding algorithm
derivations

A.1 Derivation of the point-process observation model

Point-process conditional intensity function

λ (t|Ht) =
p(t|Ht)

1−
´ t

0
p(u|Hu)du

Let p
(
ISI(0,t]|Ht

)
= p(t|Ht) represent the probability of observing an inter-spike interval

(0, t]. It may be useful to define the ISI distribution only using the conditional intensity
function. This requires some algebra to evaluate

[
1−
´ t

0
p(u|Hu)du

]
:
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d

dt
log

[
1−
ˆ t

0

p(u|Hu)du

]
=

1

1−
´ t

0
p(u|Hu)du

× d

dt

[
1−
ˆ t

0

p(u|Hu)du

]

= − 1

1−
´ t

0
p(u|Hu)du

× d

dt

ˆ t

0

p(u|Hu)du

= − p(t|Ht)

1−
´ t

0
p(u|Hu)du

[Fund. thm. of calculus]

= −λ(t|Ht) [Using defn above]

=
d

dt

ˆ t

0

−λ(u|Hu)du [Fund. thm of calculus]

log

[
1−
ˆ t

0

p(u|Hu)du

]
=

ˆ t

0

−λ(u|Hu)du [drop derivative]
[
1−
ˆ t

0

p(u|Hu)du

]
= exp

{ˆ t

0

−λ(u|Hu)du

}
[exponentiate both sides]

Thus,

p(ISI(0,t]|Ht) = p(t|Ht) = λ (t|Ht)

[
1−
ˆ t

0

p(u|Hu)du

]
= λ (t|Ht) exp

{ˆ t

0

−λ(u|Hu)du

}
.

Point-process joint distribution

To evaluate model likelihood it is necessary to define a joint distribution. Suppose we have
spike timestamps {u1, · · · , un}. With no constraints on when timestamp un+1 is observed,
the probability of observing {u1, · · · , un} is defined by the ISI distribution:

Pr ({u1, · · · , un}) =
n∏

k=1

p
(
ISI(uk−1,uk]

∣∣Huk

)

=
n∏

k=1

λ (uk|Huk) exp

{
−
ˆ uk

uk−1

λ (v|Hv) dv

}
.

It is also useful to define the probability of observing {u1, · · · , un} in a fixed time interval
(0, T ]. To do so, a key component is to define the probability that timestamp un+1 occurs
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after time T :

Pr (un+1 > T |HT ) = 1− Pr (un < un+1 < T |HT )

= 1−
ˆ T

un

p
(
ISI(un,u]|HT

)
du

= exp

{
−
ˆ T

un

λ (u|HT ) du

}
,

where we have again made use of the algebraic relationship above defining the ISI distribution
as a function of the conditional intensity function.

A.2 Generic inference on hidden Markov models using
Laplace’s method

Chapman-Kolmogorov equation

The generic idea for Bayesian decoders is

posterior ∝ data likelihood×model prediction

The goal is to use a model of the data likelihood p(yt|xt) to infer the posterior p(xt|yt) using
Bayes’ rule:

p
(
xt|yt

)
= p

(
xt|yt, yt−1

)
[expand observations]

=
p (xt, yt, y

t−1)

p (yt, yt−1)
[Bayes’ rule]

=
p (yt|xt, yt−1) p (xt|yt−1) p (yt−1)

p (yt|yt−1) p (yt−1)
[Bayes’ rule]

=
p (yt|xt, yt−1) p (xt|yt−1)

p (yt|yt−1)
. Cancel out p

(
yt−1

)
(A.2.1)

The distribution p (xt|yt−1) represents the “model prediction” distribution, which is computed
using the previous posterior and the Chapman-Kolmogorov equation:

p
(
xt|yt−1

)
=

ˆ
p
(
xt, xt−1|yt−1

)
dxt−1 [Reintroduce xt−1]

=

ˆ
p
(
xt|xt−1, y

t−1
)
p
(
xt−1|yt−1

)
dxt−1. [chain rule] (A.2.2)

If a model of xt given xt−1 is known (as is often the case), then the Chapman-Kolmogorov
recursion calculates p (xt|yt−1) for each possible xt−1 weighted by the posterior probability
p (xt−1|yt−1). Note that the Chapman-Kolmogorov equation is only analytically computable
with simple models, e.g. Kalman filters with linear state evolution and observation models.
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Inference using the Chapman-Kolmogorov equation

We denote estimates of xt by the mean and variance of the estimator:

xt| ys ∼ N
(
x̂t|s, Pt|s

)
.

Suppose that we have a prior estimate of the state in the form

p
(
xt−1|yt−1

)
= N

(
x̂t−1|t−1, Pt−1|t−1

)
.

With the random-walk SSM (or more generally, with any linear SSM), properties of the
multivariate Gaussian make it simple to define the prediciton distribution p (xt|yt−1), i.e the
integral in Eq. A.2.2 above can be computed analytically. Specifically, linear transformations
of Gaussian RVs remain Gaussian RVs, and it sufficies to find the mean and covariance of
the distribution after transformation. In the case of the random walk model,

p
(
xt|yt−1

)
= N

(
x̂t|t−1, Pt|t−1

)

x̂t|t−1 , E
[
xt|yt−1

]
= E

[
Axt−1 + wt|yt−1

]
= Ax̂t−1|t−1

Pt|t−1 , APt−1|t−1A
T +W.

KF posterior distribution calculated using Laplace’s method

To compute the posterior distribution parameters x̂t|t and Pt|t, we employ Laplace’s approx-
imation method based on a Taylor series expansion of the posterior. In the case of the KF
model, this derivation is analogous to using a sledgehammer to carve a diamond; all you’re
going to end up with is a million little pieces. In this case, however, that’s exactly what we
want. We begin by restating Eq. A.2.1 for the KF model:

N
(
xt; x̂t|t, Pt|t

)
∝ N (yt;Cxt, Q)N

(
xt; x̂t|t−1, Pt|t−1

)

logN
(
xt; x̂t|t, Pt|t

)
= const. + logN (yt;Cxt, Q) + logN

(
xt; x̂t|t−1, Pt|t−1

)

−1

2

[(
xt − x̂t|t

)T
P−1
t|t
(
xt − x̂t|t

)]
= const.− 1

2

[
(yt − Cxt)T Q−1 (yt − Cxt)

]

− 1

2

[(
xt − x̂t|t−1

)T
P−1
t|t−1

(
xt − x̂t|t−1

)]
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To find x̂t|t, we begin by evaluating the derivative of both sides w.r.t. xt:

∂

∂xt

{
−1

2

[(
xt − x̂t|t

)T
P−1
t|t
(
xt − x̂t|t

)]}
=

=
∂

∂xt

{
const.− 1

2

[
(yt − Cxt)T Q−1 (yt − Cxt)

]}
(A.2.3)

− ∂

∂xt

{
1

2

[(
xt − x̂t|t−1

)T
P−1
t|t−1

(
xt − x̂t|t−1

)]}
(A.2.4)

−1

2
· 2P−1

t|t
(
xt − x̂t|t

)
= −1

2

[
−2CTQ−1 (yt − Cxt)

]
− 1

2
· 2P−1

t|t−1

(
xt − x̂t|t−1

)

P−1
t|t
(
xt − x̂t|t

)
= P−1

t|t−1

(
xt − x̂t|t−1

)
− CTQ−1 (yt − Cxt) . (A.2.5)

Since the derivative is true for any value of xt, we evaluate both sides at xt = x̂t|t (the
posterior mean) and then solve for x̂t|t. We choose this point for evaluating (A.2.5) because
the left hand side is zero when evaluated at the posterior mean, i.e. we choose the posterior
mean as the expansion point for simpler algebra.

P−1
t|t
(
xt − x̂t|t

)∣∣
xt=x̂t|t

= P−1
t|t−1

(
xt − x̂t|t−1

)
− CTQ−1 (yt − Cxt)|xt=x̂t|t

0 = P−1
t|t−1

(
x̂t|t − x̂t|t−1

)
− CTQ−1

(
yt − Cx̂t|t

)

= P−1
t|t−1x̂t|t − P−1

t|t−1x̂t|t−1 − CTQ−1yt − CTQ−1Cx̂t|t

=
(
P−1
t|t−1 − CTQ−1C

)
x̂t|t − P−1

t|t−1x̂t|t−1 − CTQ−1yt
(
P−1
t|t−1 − CTQ−1C

)
x̂t|t =

(
P−1
t|t−1x̂t|t−1 + CTQ−1yt

)

x̂t|t =
(
P−1
t|t−1 − CTQ−1C

)−1 (
P−1
t|t−1x̂t|t−1 + CTQ−1yt

)

=
(
P−1
t|t−1 − CTQ−1C

)−1

P−1
t|t−1x̂t|t−1

+
(
P−1
t|t−1 − CTQ−1C

)−1

CTQ−1

︸ ︷︷ ︸
Kt

yt

=
(
P−1
t|t−1 − CTQ−1C

)−1

P−1
t|t−1x̂t|t−1 +Ktyt

Making use of the matrix inversion lemma,

=
[
Pt|t−1 − Pt|t−1C

T
(
Q+ CPt|t−1C

T
)−1

CPt|t−1

]
P−1
t|t−1x̂t|t−1 +Ktyt

=


I − Pt|t−1C

T
(
Q+ CPt|t−1C

T
)−1

C︸ ︷︷ ︸
Kt


 x̂t|t−1 +Ktyt

= (I −KtC) x̂t|t−1 +Ktyt

= x̂t|t−1 +Kt

(
yt − Cx̂t|t−1

)
.
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The last equation is the familiar “update” equation of the KF. In the preceeding derivation,
we made use of the equivalence of two different formulations of the Kalman gain:

Kt = Pt|t−1C
T
(
Q+ CPt|t−1C

T
)−1

= Pt|t−1C
T

[
Q−1 −Q−1C

(
P−1
t|t−1 + CTQ−1C

)−1

CTQ−1

]

=

[
Pt|t−1C

TQ−1 − Pt|t−1C
TQ−1C

(
P−1
t|t−1 + CTQ−1C

)−1

CTQ−1

]

=
[
Pt|t−1

(
P−1
t|t−1 + CTQ−1C

)
− Pt|t−1C

TQ−1C
] (
Pt|t−1 + CTQ−1C

)−1
CTQ−1

=
(
Pt|t−1 + CTQ−1C

)−1
CTQ−1.

The corresponding calculation for the covariance matrix is much shorter. We differentiate
the posterior equation again (i.e. differentiate Eq. A.2.5 with respect to xt):

∂

∂xt

{
P−1
t|t
(
xt − x̂t|t

)}
=

∂

∂xt

{
P−1
t|t−1

(
xt − x̂t|t−1

)
− CTQ−1 (yt − Cxt)

}

P−1
t|t = P−1

t|t−1 + CTQ−1C

Pt|t =
(
P−1
t|t−1 + CTQ−1C

)−1

(A.2.6)

= Pt|t−1 − Pt|t−1C
T
(
Q+ CPt|t−1C

T
)−1

CPt|t−1,

where we make the same use of the matrix inversion lemma used above to derive the standard
update to the prediction covariance.

PPF posterior distribution approximated using Laplace’s method

Our goal is (again) to obtain a Gaussian approximation to the posterior density p (xt|yt),
i.e. p (xt|yt) = N

(
xt|t, Pt|t

)
to complete the recursive algorithm. Concretely, we begin with

Eq.A.2.1:

p
(
xt|yt

)
∝ p

(
yt|xt, yt−1

)
· p
(
xt|yt−1

)

N
(
x̂t|t, Pt|t

)
∝ p

(
yt|xt, yt−1

)
· N

(
x̂t|t−1, Pt|t−1

)

exp

{
−1

2

(
xt − x̂t|t

)T
P−1
t|t
(
xt − x̂t|t

)}
∝ p

(
yt|xt, yt−1

)

× exp

{
−1

2

(
xt − xt|t−1

)T
P−1
t|t−1

(
xt − xt|t−1

)}

=
N∏

k=1

([
λk
(
t|xt, yt

)
∆
]y[k,t] exp

{
−λk

(
t|xt, yt

)
∆
})

× exp

{
−1

2

(
xt − x̂t|t−1

)T
P−1
t|t−1

(
xt − x̂t|t−1

)}
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Applying a logarithm to both sides of the last equation above yields

−1

2

(
xt − x̂t|t

)T
P−1
t|t
(
xt − x̂t|t

)
= const. +

N∑

k=1

[
y[k,t] log

[
λk
(
t|xt, yt

)
∆
]

+ λk
(
t|xt, yt

)
∆
]

− 1

2

(
xt − x̂t|t−1

)T
P−1
t|t−1

(
xt − x̂t|t−1

)
.

This equation can be solved for x̂t|t and Pt|t by equating derivatives of both sides. Unlike the
Laplace approximation used for the KF above, the key difference here is the computation
advantages gained by approximating the posterior distribution around the prior mean, not
the posterior mean. We will make use of the fact that

∂

∂xt
λk
(
t|xt, yt

)
=
λk (t|xt, yt)
λk (t|xt, yt)

∂

∂xt
λk
(
t|xt, yt

)
= λk

(
t|xt, yt

) ∂

∂xt

[
log λk

(
t|xt, yt

)]
,

which is useful if the conditional intensity functions λk are log-linear. For conciseness, we
write λk(t) in place of λk (t|xt, yt−1).

∂

∂xt

[
−1

2

(
xt − x̂t|t

)T
P−1
t|t
(
xt − x̂t|t

)]

=
∂

∂xt

{
N∑

k=1

(
y[k,t] log λk(t) + y[k,t] log ∆− λk(t)∆

)
}

+
∂

∂xt

[
−1

2

(
xt − x̂t|t−1

)T
P−1
t|t−1

(
xt − x̂t|t−1

)]

−P−1
t|t
(
xt − x̂t|t

)
=

∂

∂xt

{
N∑

k=1

(
y[k,t] log λk(t) + y[k,t] log ∆− λk(t)∆

)
}

+
∂

∂xt

[
−1

2

(
xt − x̂t|t−1

)T
P−1
t|t−1

(
xt − x̂t|t−1

)]

=
N∑

k=1

∂

∂xt

(
y[k,t] log λk(t) + y[k,t] log ∆− λk(t)∆

)
− P−1

t|t−1

(
xt − x̂t|t−1

)

=
N∑

k=1

(
y[k,t]

∂

∂xt
log λk(t)−∆λk(t)

∂

∂xt
log λk(t)

)
− P−1

t|t−1

(
xt − x̂t|t−1

)

=
N∑

k=1

(
∂

∂xt
log λk(t)

)[
y[k,t] −∆λk(t)

]
− P−1

t|t−1

(
xt − x̂t|t−1

)
.



APPENDIX A. APPENDIX: DECODING ALGORITHM DERIVATIONS 95

We take a second derivative with respect to xt for the second order expansion:

∂

∂xt

[
−P−1

t|t
(
xt − x̂t|t

)]
=

∂

∂xt

[
N∑

k=1

{[
y[k,t] −∆λk(t)

] ∂

∂xt
log λk(t)

}
− P−1

t|t−1

(
xt − x̂t|t−1

)
]

−P−1
t|t =

N∑

k=1

∂

∂xt

(
∂

∂xt
log λk(t)

)[
y[k,t] −∆λk(t)

]
− P−1

t|t−1

=
N∑

k=1

(
∂2

∂xt∂xTt
log λk(t)

)[
y[k,t] −∆λk(t)

]

−
N∑

k=1

(
∂

∂xt
log λk(t)

)
∆

∂

∂xt
λk(t)− P−1

t|t−1 (A.2.7)

=
N∑

k=1

(
∂2

∂xt∂xTt
log λk(t)

)[
y[k,t] −∆λk(t)

]
(A.2.8)

−
N∑

k=1

(
∂

∂xt
log λk(t)

)
∆λk(t)

(
∂

∂xt
log λk(t)

)
− P−1

t|t−1 (A.2.9)

The first equation can be evaluated at the prior mean xt = x̂t|t−1 to get

−P−1
t|t
(
xt − x̂t|t

)∣∣∣
xt=x̂t|t−1

=

(
∂

∂xt
log λt

)
[yt −∆λt]− P−1

t|t−1

(
xt − x̂t|t−1

)∣∣∣∣
xt=x̂t|t−1

−P−1
t|t
(
x̂t|t−1 − x̂t|t

)
=

(
∂

∂xt
log λt

)
[yt −∆λt]

x̂t|t = x̂t|t−1 + P−1
t|t

(
∂

∂xt
log λt

)
[yt −∆λt] (A.2.10)
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PPF for independent units with no history dependence

Furthermore, the second derivatives of the log conditional intensity function are zero, so
(A.2.8) simplifies to

−P−1
t|t = −

N∑

k=1

(
∂

∂xt
log λk(t)

)
∆λk(t)

(
∂

∂xt
log λk(t)

)
− P−1

t|t−1

P−1
t|t =

N∑

k=1

C[k,:]∆λk(t)C
T
[k,:] + P−1

t|t−1

=
[
CT

[0,:] · · · CT
[N,:]

]



∆λ0(t)
. . .

∆λN(t)






C[0,:]
...

C[N,:]


+ P−1

t|t−1 (A.2.11)

=
[
CT

[0,:] · · · CT
[N,:]

]



∆ exp
(
C[0,:]xt

)
. . .

∆ exp
(
C[N,:]xt

)




︸ ︷︷ ︸
Q−1



C[0,:]
...

C[N,:]


+ P−1

t|t−1

=
[
CT

[0,:] · · · CT
[N,:]

]
diag (exp (Cxt))︸ ︷︷ ︸

Q−1



C[0,:]
...

C[N,:]


+ P−1

t|t−1 (A.2.12)

P−1
t|t = CTQ−1C + P−1

t|t−1

Pt|t =
(
CTQ−1C + P−1

t|t−1

)−1

(A.2.13)

= Pt|t−1 − Pt|t−1C
T
(
Q+ CPt|t−1C

T
)−1

CPt|t−1 (A.2.14)

A.3 Rate-matching between the KF and PPF
state-space models

Suppose that our KF SSM matrices are

A =




1 0 ∆KF 0 0
0 1 0 ∆KF 0
0 0 aKF 0 0
0 0 0 aKF 0
0 0 0 0 1



, W =




0 0 0 0 0
0 0 0 0 0
0 0 wKF 0 0
0 0 0 wKF 0
0 0 0 0 0



.

To construct a PPF equivalent state space model, obviously the same structure needs to be
followed but aPPF 6= aKF because ∆PPF � ∆KF . To find the corresponding parameters
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aPPF and wPPF we note that the state-space models are equivalent if

wKF∆PPF = ∆KFwPPF

a
n· ∆KF

∆PPF
PPF = anKF

n · ∆KF

∆PPF

log aPPF = n · log aKF

∆KF

∆PPF

log aPPF = log aKF

log aPPF =
∆PPF

∆KF

log aKF

aPPF = exp

(
∆PPF

∆KF

log aKF

)

= exp

(
log a

∆PPF
∆KF
KF

)

= a
∆PPF
∆KF
KF

The formulas for a and w are different because a acts multiplicatively while w acts additively.
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